1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2020, Delphix. All rights reserved. 25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2020, The FreeBSD Foundation [1] 32 * 33 * [1] Portions of this software were developed by Allan Jude 34 * under sponsorship from the FreeBSD Foundation. 35 */ 36 37 /* 38 * DVA-based Adjustable Replacement Cache 39 * 40 * While much of the theory of operation used here is 41 * based on the self-tuning, low overhead replacement cache 42 * presented by Megiddo and Modha at FAST 2003, there are some 43 * significant differences: 44 * 45 * 1. The Megiddo and Modha model assumes any page is evictable. 46 * Pages in its cache cannot be "locked" into memory. This makes 47 * the eviction algorithm simple: evict the last page in the list. 48 * This also make the performance characteristics easy to reason 49 * about. Our cache is not so simple. At any given moment, some 50 * subset of the blocks in the cache are un-evictable because we 51 * have handed out a reference to them. Blocks are only evictable 52 * when there are no external references active. This makes 53 * eviction far more problematic: we choose to evict the evictable 54 * blocks that are the "lowest" in the list. 55 * 56 * There are times when it is not possible to evict the requested 57 * space. In these circumstances we are unable to adjust the cache 58 * size. To prevent the cache growing unbounded at these times we 59 * implement a "cache throttle" that slows the flow of new data 60 * into the cache until we can make space available. 61 * 62 * 2. The Megiddo and Modha model assumes a fixed cache size. 63 * Pages are evicted when the cache is full and there is a cache 64 * miss. Our model has a variable sized cache. It grows with 65 * high use, but also tries to react to memory pressure from the 66 * operating system: decreasing its size when system memory is 67 * tight. 68 * 69 * 3. The Megiddo and Modha model assumes a fixed page size. All 70 * elements of the cache are therefore exactly the same size. So 71 * when adjusting the cache size following a cache miss, its simply 72 * a matter of choosing a single page to evict. In our model, we 73 * have variable sized cache blocks (ranging from 512 bytes to 74 * 128K bytes). We therefore choose a set of blocks to evict to make 75 * space for a cache miss that approximates as closely as possible 76 * the space used by the new block. 77 * 78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 79 * by N. Megiddo & D. Modha, FAST 2003 80 */ 81 82 /* 83 * The locking model: 84 * 85 * A new reference to a cache buffer can be obtained in two 86 * ways: 1) via a hash table lookup using the DVA as a key, 87 * or 2) via one of the ARC lists. The arc_read() interface 88 * uses method 1, while the internal ARC algorithms for 89 * adjusting the cache use method 2. We therefore provide two 90 * types of locks: 1) the hash table lock array, and 2) the 91 * ARC list locks. 92 * 93 * Buffers do not have their own mutexes, rather they rely on the 94 * hash table mutexes for the bulk of their protection (i.e. most 95 * fields in the arc_buf_hdr_t are protected by these mutexes). 96 * 97 * buf_hash_find() returns the appropriate mutex (held) when it 98 * locates the requested buffer in the hash table. It returns 99 * NULL for the mutex if the buffer was not in the table. 100 * 101 * buf_hash_remove() expects the appropriate hash mutex to be 102 * already held before it is invoked. 103 * 104 * Each ARC state also has a mutex which is used to protect the 105 * buffer list associated with the state. When attempting to 106 * obtain a hash table lock while holding an ARC list lock you 107 * must use: mutex_tryenter() to avoid deadlock. Also note that 108 * the active state mutex must be held before the ghost state mutex. 109 * 110 * It as also possible to register a callback which is run when the 111 * metadata limit is reached and no buffers can be safely evicted. In 112 * this case the arc user should drop a reference on some arc buffers so 113 * they can be reclaimed. For example, when using the ZPL each dentry 114 * holds a references on a znode. These dentries must be pruned before 115 * the arc buffer holding the znode can be safely evicted. 116 * 117 * Note that the majority of the performance stats are manipulated 118 * with atomic operations. 119 * 120 * The L2ARC uses the l2ad_mtx on each vdev for the following: 121 * 122 * - L2ARC buflist creation 123 * - L2ARC buflist eviction 124 * - L2ARC write completion, which walks L2ARC buflists 125 * - ARC header destruction, as it removes from L2ARC buflists 126 * - ARC header release, as it removes from L2ARC buflists 127 */ 128 129 /* 130 * ARC operation: 131 * 132 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 133 * This structure can point either to a block that is still in the cache or to 134 * one that is only accessible in an L2 ARC device, or it can provide 135 * information about a block that was recently evicted. If a block is 136 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 137 * information to retrieve it from the L2ARC device. This information is 138 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 139 * that is in this state cannot access the data directly. 140 * 141 * Blocks that are actively being referenced or have not been evicted 142 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 143 * the arc_buf_hdr_t that will point to the data block in memory. A block can 144 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 145 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 146 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 147 * 148 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 149 * ability to store the physical data (b_pabd) associated with the DVA of the 150 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 151 * it will match its on-disk compression characteristics. This behavior can be 152 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 153 * compressed ARC functionality is disabled, the b_pabd will point to an 154 * uncompressed version of the on-disk data. 155 * 156 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 157 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 158 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 159 * consumer. The ARC will provide references to this data and will keep it 160 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 161 * data block and will evict any arc_buf_t that is no longer referenced. The 162 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 163 * "overhead_size" kstat. 164 * 165 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 166 * compressed form. The typical case is that consumers will want uncompressed 167 * data, and when that happens a new data buffer is allocated where the data is 168 * decompressed for them to use. Currently the only consumer who wants 169 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 170 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 171 * with the arc_buf_hdr_t. 172 * 173 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 174 * first one is owned by a compressed send consumer (and therefore references 175 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 176 * used by any other consumer (and has its own uncompressed copy of the data 177 * buffer). 178 * 179 * arc_buf_hdr_t 180 * +-----------+ 181 * | fields | 182 * | common to | 183 * | L1- and | 184 * | L2ARC | 185 * +-----------+ 186 * | l2arc_buf_hdr_t 187 * | | 188 * +-----------+ 189 * | l1arc_buf_hdr_t 190 * | | arc_buf_t 191 * | b_buf +------------>+-----------+ arc_buf_t 192 * | b_pabd +-+ |b_next +---->+-----------+ 193 * +-----------+ | |-----------| |b_next +-->NULL 194 * | |b_comp = T | +-----------+ 195 * | |b_data +-+ |b_comp = F | 196 * | +-----------+ | |b_data +-+ 197 * +->+------+ | +-----------+ | 198 * compressed | | | | 199 * data | |<--------------+ | uncompressed 200 * +------+ compressed, | data 201 * shared +-->+------+ 202 * data | | 203 * | | 204 * +------+ 205 * 206 * When a consumer reads a block, the ARC must first look to see if the 207 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 208 * arc_buf_t and either copies uncompressed data into a new data buffer from an 209 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 210 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 211 * hdr is compressed and the desired compression characteristics of the 212 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 213 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 214 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 215 * be anywhere in the hdr's list. 216 * 217 * The diagram below shows an example of an uncompressed ARC hdr that is 218 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 219 * the last element in the buf list): 220 * 221 * arc_buf_hdr_t 222 * +-----------+ 223 * | | 224 * | | 225 * | | 226 * +-----------+ 227 * l2arc_buf_hdr_t| | 228 * | | 229 * +-----------+ 230 * l1arc_buf_hdr_t| | 231 * | | arc_buf_t (shared) 232 * | b_buf +------------>+---------+ arc_buf_t 233 * | | |b_next +---->+---------+ 234 * | b_pabd +-+ |---------| |b_next +-->NULL 235 * +-----------+ | | | +---------+ 236 * | |b_data +-+ | | 237 * | +---------+ | |b_data +-+ 238 * +->+------+ | +---------+ | 239 * | | | | 240 * uncompressed | | | | 241 * data +------+ | | 242 * ^ +->+------+ | 243 * | uncompressed | | | 244 * | data | | | 245 * | +------+ | 246 * +---------------------------------+ 247 * 248 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 249 * since the physical block is about to be rewritten. The new data contents 250 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 251 * it may compress the data before writing it to disk. The ARC will be called 252 * with the transformed data and will memcpy the transformed on-disk block into 253 * a newly allocated b_pabd. Writes are always done into buffers which have 254 * either been loaned (and hence are new and don't have other readers) or 255 * buffers which have been released (and hence have their own hdr, if there 256 * were originally other readers of the buf's original hdr). This ensures that 257 * the ARC only needs to update a single buf and its hdr after a write occurs. 258 * 259 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 260 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 261 * that when compressed ARC is enabled that the L2ARC blocks are identical 262 * to the on-disk block in the main data pool. This provides a significant 263 * advantage since the ARC can leverage the bp's checksum when reading from the 264 * L2ARC to determine if the contents are valid. However, if the compressed 265 * ARC is disabled, then the L2ARC's block must be transformed to look 266 * like the physical block in the main data pool before comparing the 267 * checksum and determining its validity. 268 * 269 * The L1ARC has a slightly different system for storing encrypted data. 270 * Raw (encrypted + possibly compressed) data has a few subtle differences from 271 * data that is just compressed. The biggest difference is that it is not 272 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. 273 * The other difference is that encryption cannot be treated as a suggestion. 274 * If a caller would prefer compressed data, but they actually wind up with 275 * uncompressed data the worst thing that could happen is there might be a 276 * performance hit. If the caller requests encrypted data, however, we must be 277 * sure they actually get it or else secret information could be leaked. Raw 278 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 279 * may have both an encrypted version and a decrypted version of its data at 280 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 281 * copied out of this header. To avoid complications with b_pabd, raw buffers 282 * cannot be shared. 283 */ 284 285 #include <sys/spa.h> 286 #include <sys/zio.h> 287 #include <sys/spa_impl.h> 288 #include <sys/zio_compress.h> 289 #include <sys/zio_checksum.h> 290 #include <sys/zfs_context.h> 291 #include <sys/arc.h> 292 #include <sys/zfs_refcount.h> 293 #include <sys/vdev.h> 294 #include <sys/vdev_impl.h> 295 #include <sys/dsl_pool.h> 296 #include <sys/multilist.h> 297 #include <sys/abd.h> 298 #include <sys/zil.h> 299 #include <sys/fm/fs/zfs.h> 300 #include <sys/callb.h> 301 #include <sys/kstat.h> 302 #include <sys/zthr.h> 303 #include <zfs_fletcher.h> 304 #include <sys/arc_impl.h> 305 #include <sys/trace_zfs.h> 306 #include <sys/aggsum.h> 307 #include <sys/wmsum.h> 308 #include <cityhash.h> 309 #include <sys/vdev_trim.h> 310 #include <sys/zfs_racct.h> 311 #include <sys/zstd/zstd.h> 312 313 #ifndef _KERNEL 314 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 315 boolean_t arc_watch = B_FALSE; 316 #endif 317 318 /* 319 * This thread's job is to keep enough free memory in the system, by 320 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves 321 * arc_available_memory(). 322 */ 323 static zthr_t *arc_reap_zthr; 324 325 /* 326 * This thread's job is to keep arc_size under arc_c, by calling 327 * arc_evict(), which improves arc_is_overflowing(). 328 */ 329 static zthr_t *arc_evict_zthr; 330 static arc_buf_hdr_t **arc_state_evict_markers; 331 static int arc_state_evict_marker_count; 332 333 static kmutex_t arc_evict_lock; 334 static boolean_t arc_evict_needed = B_FALSE; 335 static clock_t arc_last_uncached_flush; 336 337 /* 338 * Count of bytes evicted since boot. 339 */ 340 static uint64_t arc_evict_count; 341 342 /* 343 * List of arc_evict_waiter_t's, representing threads waiting for the 344 * arc_evict_count to reach specific values. 345 */ 346 static list_t arc_evict_waiters; 347 348 /* 349 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of 350 * the requested amount of data to be evicted. For example, by default for 351 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. 352 * Since this is above 100%, it ensures that progress is made towards getting 353 * arc_size under arc_c. Since this is finite, it ensures that allocations 354 * can still happen, even during the potentially long time that arc_size is 355 * more than arc_c. 356 */ 357 static uint_t zfs_arc_eviction_pct = 200; 358 359 /* 360 * The number of headers to evict in arc_evict_state_impl() before 361 * dropping the sublist lock and evicting from another sublist. A lower 362 * value means we're more likely to evict the "correct" header (i.e. the 363 * oldest header in the arc state), but comes with higher overhead 364 * (i.e. more invocations of arc_evict_state_impl()). 365 */ 366 static uint_t zfs_arc_evict_batch_limit = 10; 367 368 /* number of seconds before growing cache again */ 369 uint_t arc_grow_retry = 5; 370 371 /* 372 * Minimum time between calls to arc_kmem_reap_soon(). 373 */ 374 static const int arc_kmem_cache_reap_retry_ms = 1000; 375 376 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 377 static int zfs_arc_overflow_shift = 8; 378 379 /* log2(fraction of arc to reclaim) */ 380 uint_t arc_shrink_shift = 7; 381 382 /* percent of pagecache to reclaim arc to */ 383 #ifdef _KERNEL 384 uint_t zfs_arc_pc_percent = 0; 385 #endif 386 387 /* 388 * log2(fraction of ARC which must be free to allow growing). 389 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 390 * when reading a new block into the ARC, we will evict an equal-sized block 391 * from the ARC. 392 * 393 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 394 * we will still not allow it to grow. 395 */ 396 uint_t arc_no_grow_shift = 5; 397 398 399 /* 400 * minimum lifespan of a prefetch block in clock ticks 401 * (initialized in arc_init()) 402 */ 403 static uint_t arc_min_prefetch_ms; 404 static uint_t arc_min_prescient_prefetch_ms; 405 406 /* 407 * If this percent of memory is free, don't throttle. 408 */ 409 uint_t arc_lotsfree_percent = 10; 410 411 /* 412 * The arc has filled available memory and has now warmed up. 413 */ 414 boolean_t arc_warm; 415 416 /* 417 * These tunables are for performance analysis. 418 */ 419 uint64_t zfs_arc_max = 0; 420 uint64_t zfs_arc_min = 0; 421 static uint64_t zfs_arc_dnode_limit = 0; 422 static uint_t zfs_arc_dnode_reduce_percent = 10; 423 static uint_t zfs_arc_grow_retry = 0; 424 static uint_t zfs_arc_shrink_shift = 0; 425 uint_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 426 427 /* 428 * ARC dirty data constraints for arc_tempreserve_space() throttle: 429 * * total dirty data limit 430 * * anon block dirty limit 431 * * each pool's anon allowance 432 */ 433 static const unsigned long zfs_arc_dirty_limit_percent = 50; 434 static const unsigned long zfs_arc_anon_limit_percent = 25; 435 static const unsigned long zfs_arc_pool_dirty_percent = 20; 436 437 /* 438 * Enable or disable compressed arc buffers. 439 */ 440 int zfs_compressed_arc_enabled = B_TRUE; 441 442 /* 443 * Balance between metadata and data on ghost hits. Values above 100 444 * increase metadata caching by proportionally reducing effect of ghost 445 * data hits on target data/metadata rate. 446 */ 447 static uint_t zfs_arc_meta_balance = 500; 448 449 /* 450 * Percentage that can be consumed by dnodes of ARC meta buffers. 451 */ 452 static uint_t zfs_arc_dnode_limit_percent = 10; 453 454 /* 455 * These tunables are Linux-specific 456 */ 457 static uint64_t zfs_arc_sys_free = 0; 458 static uint_t zfs_arc_min_prefetch_ms = 0; 459 static uint_t zfs_arc_min_prescient_prefetch_ms = 0; 460 static uint_t zfs_arc_lotsfree_percent = 10; 461 462 /* 463 * Number of arc_prune threads 464 */ 465 static int zfs_arc_prune_task_threads = 1; 466 467 /* The 7 states: */ 468 arc_state_t ARC_anon; 469 arc_state_t ARC_mru; 470 arc_state_t ARC_mru_ghost; 471 arc_state_t ARC_mfu; 472 arc_state_t ARC_mfu_ghost; 473 arc_state_t ARC_l2c_only; 474 arc_state_t ARC_uncached; 475 476 arc_stats_t arc_stats = { 477 { "hits", KSTAT_DATA_UINT64 }, 478 { "iohits", KSTAT_DATA_UINT64 }, 479 { "misses", KSTAT_DATA_UINT64 }, 480 { "demand_data_hits", KSTAT_DATA_UINT64 }, 481 { "demand_data_iohits", KSTAT_DATA_UINT64 }, 482 { "demand_data_misses", KSTAT_DATA_UINT64 }, 483 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 484 { "demand_metadata_iohits", KSTAT_DATA_UINT64 }, 485 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 486 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 487 { "prefetch_data_iohits", KSTAT_DATA_UINT64 }, 488 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 489 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 490 { "prefetch_metadata_iohits", KSTAT_DATA_UINT64 }, 491 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 492 { "mru_hits", KSTAT_DATA_UINT64 }, 493 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 494 { "mfu_hits", KSTAT_DATA_UINT64 }, 495 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 496 { "uncached_hits", KSTAT_DATA_UINT64 }, 497 { "deleted", KSTAT_DATA_UINT64 }, 498 { "mutex_miss", KSTAT_DATA_UINT64 }, 499 { "access_skip", KSTAT_DATA_UINT64 }, 500 { "evict_skip", KSTAT_DATA_UINT64 }, 501 { "evict_not_enough", KSTAT_DATA_UINT64 }, 502 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 503 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 504 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, 505 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, 506 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 507 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 508 { "hash_elements", KSTAT_DATA_UINT64 }, 509 { "hash_elements_max", KSTAT_DATA_UINT64 }, 510 { "hash_collisions", KSTAT_DATA_UINT64 }, 511 { "hash_chains", KSTAT_DATA_UINT64 }, 512 { "hash_chain_max", KSTAT_DATA_UINT64 }, 513 { "meta", KSTAT_DATA_UINT64 }, 514 { "pd", KSTAT_DATA_UINT64 }, 515 { "pm", KSTAT_DATA_UINT64 }, 516 { "c", KSTAT_DATA_UINT64 }, 517 { "c_min", KSTAT_DATA_UINT64 }, 518 { "c_max", KSTAT_DATA_UINT64 }, 519 { "size", KSTAT_DATA_UINT64 }, 520 { "compressed_size", KSTAT_DATA_UINT64 }, 521 { "uncompressed_size", KSTAT_DATA_UINT64 }, 522 { "overhead_size", KSTAT_DATA_UINT64 }, 523 { "hdr_size", KSTAT_DATA_UINT64 }, 524 { "data_size", KSTAT_DATA_UINT64 }, 525 { "metadata_size", KSTAT_DATA_UINT64 }, 526 { "dbuf_size", KSTAT_DATA_UINT64 }, 527 { "dnode_size", KSTAT_DATA_UINT64 }, 528 { "bonus_size", KSTAT_DATA_UINT64 }, 529 #if defined(COMPAT_FREEBSD11) 530 { "other_size", KSTAT_DATA_UINT64 }, 531 #endif 532 { "anon_size", KSTAT_DATA_UINT64 }, 533 { "anon_data", KSTAT_DATA_UINT64 }, 534 { "anon_metadata", KSTAT_DATA_UINT64 }, 535 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 536 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 537 { "mru_size", KSTAT_DATA_UINT64 }, 538 { "mru_data", KSTAT_DATA_UINT64 }, 539 { "mru_metadata", KSTAT_DATA_UINT64 }, 540 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 541 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 542 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 543 { "mru_ghost_data", KSTAT_DATA_UINT64 }, 544 { "mru_ghost_metadata", KSTAT_DATA_UINT64 }, 545 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 546 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 547 { "mfu_size", KSTAT_DATA_UINT64 }, 548 { "mfu_data", KSTAT_DATA_UINT64 }, 549 { "mfu_metadata", KSTAT_DATA_UINT64 }, 550 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 551 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 552 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 553 { "mfu_ghost_data", KSTAT_DATA_UINT64 }, 554 { "mfu_ghost_metadata", KSTAT_DATA_UINT64 }, 555 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 556 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 557 { "uncached_size", KSTAT_DATA_UINT64 }, 558 { "uncached_data", KSTAT_DATA_UINT64 }, 559 { "uncached_metadata", KSTAT_DATA_UINT64 }, 560 { "uncached_evictable_data", KSTAT_DATA_UINT64 }, 561 { "uncached_evictable_metadata", KSTAT_DATA_UINT64 }, 562 { "l2_hits", KSTAT_DATA_UINT64 }, 563 { "l2_misses", KSTAT_DATA_UINT64 }, 564 { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, 565 { "l2_mru_asize", KSTAT_DATA_UINT64 }, 566 { "l2_mfu_asize", KSTAT_DATA_UINT64 }, 567 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, 568 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, 569 { "l2_feeds", KSTAT_DATA_UINT64 }, 570 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 571 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 572 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 573 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 574 { "l2_writes_done", KSTAT_DATA_UINT64 }, 575 { "l2_writes_error", KSTAT_DATA_UINT64 }, 576 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 577 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 578 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 579 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 580 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 581 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 582 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 583 { "l2_io_error", KSTAT_DATA_UINT64 }, 584 { "l2_size", KSTAT_DATA_UINT64 }, 585 { "l2_asize", KSTAT_DATA_UINT64 }, 586 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 587 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 588 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 589 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 590 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 591 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 592 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 593 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 594 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 595 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 596 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 597 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 598 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 599 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 600 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 601 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 602 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 603 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 604 { "memory_direct_count", KSTAT_DATA_UINT64 }, 605 { "memory_indirect_count", KSTAT_DATA_UINT64 }, 606 { "memory_all_bytes", KSTAT_DATA_UINT64 }, 607 { "memory_free_bytes", KSTAT_DATA_UINT64 }, 608 { "memory_available_bytes", KSTAT_DATA_INT64 }, 609 { "arc_no_grow", KSTAT_DATA_UINT64 }, 610 { "arc_tempreserve", KSTAT_DATA_UINT64 }, 611 { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, 612 { "arc_prune", KSTAT_DATA_UINT64 }, 613 { "arc_meta_used", KSTAT_DATA_UINT64 }, 614 { "arc_dnode_limit", KSTAT_DATA_UINT64 }, 615 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 616 { "predictive_prefetch", KSTAT_DATA_UINT64 }, 617 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 618 { "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64 }, 619 { "prescient_prefetch", KSTAT_DATA_UINT64 }, 620 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 621 { "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64 }, 622 { "arc_need_free", KSTAT_DATA_UINT64 }, 623 { "arc_sys_free", KSTAT_DATA_UINT64 }, 624 { "arc_raw_size", KSTAT_DATA_UINT64 }, 625 { "cached_only_in_progress", KSTAT_DATA_UINT64 }, 626 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, 627 }; 628 629 arc_sums_t arc_sums; 630 631 #define ARCSTAT_MAX(stat, val) { \ 632 uint64_t m; \ 633 while ((val) > (m = arc_stats.stat.value.ui64) && \ 634 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 635 continue; \ 636 } 637 638 /* 639 * We define a macro to allow ARC hits/misses to be easily broken down by 640 * two separate conditions, giving a total of four different subtypes for 641 * each of hits and misses (so eight statistics total). 642 */ 643 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 644 if (cond1) { \ 645 if (cond2) { \ 646 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 647 } else { \ 648 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 649 } \ 650 } else { \ 651 if (cond2) { \ 652 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 653 } else { \ 654 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 655 } \ 656 } 657 658 /* 659 * This macro allows us to use kstats as floating averages. Each time we 660 * update this kstat, we first factor it and the update value by 661 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 662 * average. This macro assumes that integer loads and stores are atomic, but 663 * is not safe for multiple writers updating the kstat in parallel (only the 664 * last writer's update will remain). 665 */ 666 #define ARCSTAT_F_AVG_FACTOR 3 667 #define ARCSTAT_F_AVG(stat, value) \ 668 do { \ 669 uint64_t x = ARCSTAT(stat); \ 670 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 671 (value) / ARCSTAT_F_AVG_FACTOR; \ 672 ARCSTAT(stat) = x; \ 673 } while (0) 674 675 static kstat_t *arc_ksp; 676 677 /* 678 * There are several ARC variables that are critical to export as kstats -- 679 * but we don't want to have to grovel around in the kstat whenever we wish to 680 * manipulate them. For these variables, we therefore define them to be in 681 * terms of the statistic variable. This assures that we are not introducing 682 * the possibility of inconsistency by having shadow copies of the variables, 683 * while still allowing the code to be readable. 684 */ 685 #define arc_tempreserve ARCSTAT(arcstat_tempreserve) 686 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) 687 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */ 688 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ 689 690 hrtime_t arc_growtime; 691 list_t arc_prune_list; 692 kmutex_t arc_prune_mtx; 693 taskq_t *arc_prune_taskq; 694 695 #define GHOST_STATE(state) \ 696 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 697 (state) == arc_l2c_only) 698 699 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 700 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 701 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 702 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 703 #define HDR_PRESCIENT_PREFETCH(hdr) \ 704 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 705 #define HDR_COMPRESSION_ENABLED(hdr) \ 706 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 707 708 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 709 #define HDR_UNCACHED(hdr) ((hdr)->b_flags & ARC_FLAG_UNCACHED) 710 #define HDR_L2_READING(hdr) \ 711 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 712 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 713 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 714 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 715 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 716 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 717 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 718 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 719 720 #define HDR_ISTYPE_METADATA(hdr) \ 721 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 722 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 723 724 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 725 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 726 #define HDR_HAS_RABD(hdr) \ 727 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 728 (hdr)->b_crypt_hdr.b_rabd != NULL) 729 #define HDR_ENCRYPTED(hdr) \ 730 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 731 #define HDR_AUTHENTICATED(hdr) \ 732 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 733 734 /* For storing compression mode in b_flags */ 735 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 736 737 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 738 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 739 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 740 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 741 742 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 743 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 744 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 745 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 746 747 /* 748 * Other sizes 749 */ 750 751 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 752 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 753 754 /* 755 * Hash table routines 756 */ 757 758 #define BUF_LOCKS 2048 759 typedef struct buf_hash_table { 760 uint64_t ht_mask; 761 arc_buf_hdr_t **ht_table; 762 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned; 763 } buf_hash_table_t; 764 765 static buf_hash_table_t buf_hash_table; 766 767 #define BUF_HASH_INDEX(spa, dva, birth) \ 768 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 769 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 770 #define HDR_LOCK(hdr) \ 771 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 772 773 uint64_t zfs_crc64_table[256]; 774 775 /* 776 * Level 2 ARC 777 */ 778 779 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 780 #define L2ARC_HEADROOM 2 /* num of writes */ 781 782 /* 783 * If we discover during ARC scan any buffers to be compressed, we boost 784 * our headroom for the next scanning cycle by this percentage multiple. 785 */ 786 #define L2ARC_HEADROOM_BOOST 200 787 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 788 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 789 790 /* 791 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 792 * and each of the state has two types: data and metadata. 793 */ 794 #define L2ARC_FEED_TYPES 4 795 796 /* L2ARC Performance Tunables */ 797 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ 798 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ 799 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ 800 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 801 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 802 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ 803 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 804 int l2arc_feed_again = B_TRUE; /* turbo warmup */ 805 int l2arc_norw = B_FALSE; /* no reads during writes */ 806 static uint_t l2arc_meta_percent = 33; /* limit on headers size */ 807 808 /* 809 * L2ARC Internals 810 */ 811 static list_t L2ARC_dev_list; /* device list */ 812 static list_t *l2arc_dev_list; /* device list pointer */ 813 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 814 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 815 static list_t L2ARC_free_on_write; /* free after write buf list */ 816 static list_t *l2arc_free_on_write; /* free after write list ptr */ 817 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 818 static uint64_t l2arc_ndev; /* number of devices */ 819 820 typedef struct l2arc_read_callback { 821 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 822 blkptr_t l2rcb_bp; /* original blkptr */ 823 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 824 int l2rcb_flags; /* original flags */ 825 abd_t *l2rcb_abd; /* temporary buffer */ 826 } l2arc_read_callback_t; 827 828 typedef struct l2arc_data_free { 829 /* protected by l2arc_free_on_write_mtx */ 830 abd_t *l2df_abd; 831 size_t l2df_size; 832 arc_buf_contents_t l2df_type; 833 list_node_t l2df_list_node; 834 } l2arc_data_free_t; 835 836 typedef enum arc_fill_flags { 837 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 838 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 839 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 840 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 841 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 842 } arc_fill_flags_t; 843 844 typedef enum arc_ovf_level { 845 ARC_OVF_NONE, /* ARC within target size. */ 846 ARC_OVF_SOME, /* ARC is slightly overflowed. */ 847 ARC_OVF_SEVERE /* ARC is severely overflowed. */ 848 } arc_ovf_level_t; 849 850 static kmutex_t l2arc_feed_thr_lock; 851 static kcondvar_t l2arc_feed_thr_cv; 852 static uint8_t l2arc_thread_exit; 853 854 static kmutex_t l2arc_rebuild_thr_lock; 855 static kcondvar_t l2arc_rebuild_thr_cv; 856 857 enum arc_hdr_alloc_flags { 858 ARC_HDR_ALLOC_RDATA = 0x1, 859 ARC_HDR_USE_RESERVE = 0x4, 860 ARC_HDR_ALLOC_LINEAR = 0x8, 861 }; 862 863 864 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int); 865 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *); 866 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int); 867 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *); 868 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *); 869 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, 870 const void *tag); 871 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); 872 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); 873 static void arc_hdr_destroy(arc_buf_hdr_t *); 874 static void arc_access(arc_buf_hdr_t *, arc_flags_t, boolean_t); 875 static void arc_buf_watch(arc_buf_t *); 876 static void arc_change_state(arc_state_t *, arc_buf_hdr_t *); 877 878 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 879 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 880 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 881 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 882 883 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 884 static void l2arc_read_done(zio_t *); 885 static void l2arc_do_free_on_write(void); 886 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 887 boolean_t state_only); 888 889 #define l2arc_hdr_arcstats_increment(hdr) \ 890 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) 891 #define l2arc_hdr_arcstats_decrement(hdr) \ 892 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) 893 #define l2arc_hdr_arcstats_increment_state(hdr) \ 894 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) 895 #define l2arc_hdr_arcstats_decrement_state(hdr) \ 896 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) 897 898 /* 899 * l2arc_exclude_special : A zfs module parameter that controls whether buffers 900 * present on special vdevs are eligibile for caching in L2ARC. If 901 * set to 1, exclude dbufs on special vdevs from being cached to 902 * L2ARC. 903 */ 904 int l2arc_exclude_special = 0; 905 906 /* 907 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 908 * metadata and data are cached from ARC into L2ARC. 909 */ 910 static int l2arc_mfuonly = 0; 911 912 /* 913 * L2ARC TRIM 914 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of 915 * the current write size (l2arc_write_max) we should TRIM if we 916 * have filled the device. It is defined as a percentage of the 917 * write size. If set to 100 we trim twice the space required to 918 * accommodate upcoming writes. A minimum of 64MB will be trimmed. 919 * It also enables TRIM of the whole L2ARC device upon creation or 920 * addition to an existing pool or if the header of the device is 921 * invalid upon importing a pool or onlining a cache device. The 922 * default is 0, which disables TRIM on L2ARC altogether as it can 923 * put significant stress on the underlying storage devices. This 924 * will vary depending of how well the specific device handles 925 * these commands. 926 */ 927 static uint64_t l2arc_trim_ahead = 0; 928 929 /* 930 * Performance tuning of L2ARC persistence: 931 * 932 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 933 * an L2ARC device (either at pool import or later) will attempt 934 * to rebuild L2ARC buffer contents. 935 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 936 * whether log blocks are written to the L2ARC device. If the L2ARC 937 * device is less than 1GB, the amount of data l2arc_evict() 938 * evicts is significant compared to the amount of restored L2ARC 939 * data. In this case do not write log blocks in L2ARC in order 940 * not to waste space. 941 */ 942 static int l2arc_rebuild_enabled = B_TRUE; 943 static uint64_t l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 944 945 /* L2ARC persistence rebuild control routines. */ 946 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 947 static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg); 948 static int l2arc_rebuild(l2arc_dev_t *dev); 949 950 /* L2ARC persistence read I/O routines. */ 951 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 952 static int l2arc_log_blk_read(l2arc_dev_t *dev, 953 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 954 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 955 zio_t *this_io, zio_t **next_io); 956 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 957 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 958 static void l2arc_log_blk_fetch_abort(zio_t *zio); 959 960 /* L2ARC persistence block restoration routines. */ 961 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 962 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); 963 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 964 l2arc_dev_t *dev); 965 966 /* L2ARC persistence write I/O routines. */ 967 static uint64_t l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 968 l2arc_write_callback_t *cb); 969 970 /* L2ARC persistence auxiliary routines. */ 971 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 972 const l2arc_log_blkptr_t *lbp); 973 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 974 const arc_buf_hdr_t *ab); 975 boolean_t l2arc_range_check_overlap(uint64_t bottom, 976 uint64_t top, uint64_t check); 977 static void l2arc_blk_fetch_done(zio_t *zio); 978 static inline uint64_t 979 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 980 981 /* 982 * We use Cityhash for this. It's fast, and has good hash properties without 983 * requiring any large static buffers. 984 */ 985 static uint64_t 986 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 987 { 988 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 989 } 990 991 #define HDR_EMPTY(hdr) \ 992 ((hdr)->b_dva.dva_word[0] == 0 && \ 993 (hdr)->b_dva.dva_word[1] == 0) 994 995 #define HDR_EMPTY_OR_LOCKED(hdr) \ 996 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 997 998 #define HDR_EQUAL(spa, dva, birth, hdr) \ 999 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 1000 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 1001 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 1002 1003 static void 1004 buf_discard_identity(arc_buf_hdr_t *hdr) 1005 { 1006 hdr->b_dva.dva_word[0] = 0; 1007 hdr->b_dva.dva_word[1] = 0; 1008 hdr->b_birth = 0; 1009 } 1010 1011 static arc_buf_hdr_t * 1012 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 1013 { 1014 const dva_t *dva = BP_IDENTITY(bp); 1015 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 1016 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1017 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1018 arc_buf_hdr_t *hdr; 1019 1020 mutex_enter(hash_lock); 1021 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1022 hdr = hdr->b_hash_next) { 1023 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1024 *lockp = hash_lock; 1025 return (hdr); 1026 } 1027 } 1028 mutex_exit(hash_lock); 1029 *lockp = NULL; 1030 return (NULL); 1031 } 1032 1033 /* 1034 * Insert an entry into the hash table. If there is already an element 1035 * equal to elem in the hash table, then the already existing element 1036 * will be returned and the new element will not be inserted. 1037 * Otherwise returns NULL. 1038 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1039 */ 1040 static arc_buf_hdr_t * 1041 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1042 { 1043 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1044 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1045 arc_buf_hdr_t *fhdr; 1046 uint32_t i; 1047 1048 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1049 ASSERT(hdr->b_birth != 0); 1050 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1051 1052 if (lockp != NULL) { 1053 *lockp = hash_lock; 1054 mutex_enter(hash_lock); 1055 } else { 1056 ASSERT(MUTEX_HELD(hash_lock)); 1057 } 1058 1059 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1060 fhdr = fhdr->b_hash_next, i++) { 1061 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1062 return (fhdr); 1063 } 1064 1065 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1066 buf_hash_table.ht_table[idx] = hdr; 1067 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1068 1069 /* collect some hash table performance data */ 1070 if (i > 0) { 1071 ARCSTAT_BUMP(arcstat_hash_collisions); 1072 if (i == 1) 1073 ARCSTAT_BUMP(arcstat_hash_chains); 1074 1075 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1076 } 1077 uint64_t he = atomic_inc_64_nv( 1078 &arc_stats.arcstat_hash_elements.value.ui64); 1079 ARCSTAT_MAX(arcstat_hash_elements_max, he); 1080 1081 return (NULL); 1082 } 1083 1084 static void 1085 buf_hash_remove(arc_buf_hdr_t *hdr) 1086 { 1087 arc_buf_hdr_t *fhdr, **hdrp; 1088 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1089 1090 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1091 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1092 1093 hdrp = &buf_hash_table.ht_table[idx]; 1094 while ((fhdr = *hdrp) != hdr) { 1095 ASSERT3P(fhdr, !=, NULL); 1096 hdrp = &fhdr->b_hash_next; 1097 } 1098 *hdrp = hdr->b_hash_next; 1099 hdr->b_hash_next = NULL; 1100 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1101 1102 /* collect some hash table performance data */ 1103 atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64); 1104 1105 if (buf_hash_table.ht_table[idx] && 1106 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1107 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1108 } 1109 1110 /* 1111 * Global data structures and functions for the buf kmem cache. 1112 */ 1113 1114 static kmem_cache_t *hdr_full_cache; 1115 static kmem_cache_t *hdr_l2only_cache; 1116 static kmem_cache_t *buf_cache; 1117 1118 static void 1119 buf_fini(void) 1120 { 1121 #if defined(_KERNEL) 1122 /* 1123 * Large allocations which do not require contiguous pages 1124 * should be using vmem_free() in the linux kernel\ 1125 */ 1126 vmem_free(buf_hash_table.ht_table, 1127 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1128 #else 1129 kmem_free(buf_hash_table.ht_table, 1130 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1131 #endif 1132 for (int i = 0; i < BUF_LOCKS; i++) 1133 mutex_destroy(BUF_HASH_LOCK(i)); 1134 kmem_cache_destroy(hdr_full_cache); 1135 kmem_cache_destroy(hdr_l2only_cache); 1136 kmem_cache_destroy(buf_cache); 1137 } 1138 1139 /* 1140 * Constructor callback - called when the cache is empty 1141 * and a new buf is requested. 1142 */ 1143 static int 1144 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1145 { 1146 (void) unused, (void) kmflag; 1147 arc_buf_hdr_t *hdr = vbuf; 1148 1149 memset(hdr, 0, HDR_FULL_SIZE); 1150 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1151 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1152 #ifdef ZFS_DEBUG 1153 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1154 #endif 1155 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1156 list_link_init(&hdr->b_l2hdr.b_l2node); 1157 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1158 1159 return (0); 1160 } 1161 1162 static int 1163 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1164 { 1165 (void) unused, (void) kmflag; 1166 arc_buf_hdr_t *hdr = vbuf; 1167 1168 memset(hdr, 0, HDR_L2ONLY_SIZE); 1169 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1170 1171 return (0); 1172 } 1173 1174 static int 1175 buf_cons(void *vbuf, void *unused, int kmflag) 1176 { 1177 (void) unused, (void) kmflag; 1178 arc_buf_t *buf = vbuf; 1179 1180 memset(buf, 0, sizeof (arc_buf_t)); 1181 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1182 1183 return (0); 1184 } 1185 1186 /* 1187 * Destructor callback - called when a cached buf is 1188 * no longer required. 1189 */ 1190 static void 1191 hdr_full_dest(void *vbuf, void *unused) 1192 { 1193 (void) unused; 1194 arc_buf_hdr_t *hdr = vbuf; 1195 1196 ASSERT(HDR_EMPTY(hdr)); 1197 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1198 #ifdef ZFS_DEBUG 1199 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1200 #endif 1201 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1202 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1203 } 1204 1205 static void 1206 hdr_l2only_dest(void *vbuf, void *unused) 1207 { 1208 (void) unused; 1209 arc_buf_hdr_t *hdr = vbuf; 1210 1211 ASSERT(HDR_EMPTY(hdr)); 1212 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1213 } 1214 1215 static void 1216 buf_dest(void *vbuf, void *unused) 1217 { 1218 (void) unused; 1219 (void) vbuf; 1220 1221 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1222 } 1223 1224 static void 1225 buf_init(void) 1226 { 1227 uint64_t *ct = NULL; 1228 uint64_t hsize = 1ULL << 12; 1229 int i, j; 1230 1231 /* 1232 * The hash table is big enough to fill all of physical memory 1233 * with an average block size of zfs_arc_average_blocksize (default 8K). 1234 * By default, the table will take up 1235 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1236 */ 1237 while (hsize * zfs_arc_average_blocksize < arc_all_memory()) 1238 hsize <<= 1; 1239 retry: 1240 buf_hash_table.ht_mask = hsize - 1; 1241 #if defined(_KERNEL) 1242 /* 1243 * Large allocations which do not require contiguous pages 1244 * should be using vmem_alloc() in the linux kernel 1245 */ 1246 buf_hash_table.ht_table = 1247 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 1248 #else 1249 buf_hash_table.ht_table = 1250 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1251 #endif 1252 if (buf_hash_table.ht_table == NULL) { 1253 ASSERT(hsize > (1ULL << 8)); 1254 hsize >>= 1; 1255 goto retry; 1256 } 1257 1258 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1259 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0); 1260 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1261 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, 1262 NULL, NULL, 0); 1263 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1264 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1265 1266 for (i = 0; i < 256; i++) 1267 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1268 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1269 1270 for (i = 0; i < BUF_LOCKS; i++) 1271 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL); 1272 } 1273 1274 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1275 1276 /* 1277 * This is the size that the buf occupies in memory. If the buf is compressed, 1278 * it will correspond to the compressed size. You should use this method of 1279 * getting the buf size unless you explicitly need the logical size. 1280 */ 1281 uint64_t 1282 arc_buf_size(arc_buf_t *buf) 1283 { 1284 return (ARC_BUF_COMPRESSED(buf) ? 1285 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1286 } 1287 1288 uint64_t 1289 arc_buf_lsize(arc_buf_t *buf) 1290 { 1291 return (HDR_GET_LSIZE(buf->b_hdr)); 1292 } 1293 1294 /* 1295 * This function will return B_TRUE if the buffer is encrypted in memory. 1296 * This buffer can be decrypted by calling arc_untransform(). 1297 */ 1298 boolean_t 1299 arc_is_encrypted(arc_buf_t *buf) 1300 { 1301 return (ARC_BUF_ENCRYPTED(buf) != 0); 1302 } 1303 1304 /* 1305 * Returns B_TRUE if the buffer represents data that has not had its MAC 1306 * verified yet. 1307 */ 1308 boolean_t 1309 arc_is_unauthenticated(arc_buf_t *buf) 1310 { 1311 return (HDR_NOAUTH(buf->b_hdr) != 0); 1312 } 1313 1314 void 1315 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1316 uint8_t *iv, uint8_t *mac) 1317 { 1318 arc_buf_hdr_t *hdr = buf->b_hdr; 1319 1320 ASSERT(HDR_PROTECTED(hdr)); 1321 1322 memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 1323 memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 1324 memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 1325 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1326 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1327 } 1328 1329 /* 1330 * Indicates how this buffer is compressed in memory. If it is not compressed 1331 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1332 * arc_untransform() as long as it is also unencrypted. 1333 */ 1334 enum zio_compress 1335 arc_get_compression(arc_buf_t *buf) 1336 { 1337 return (ARC_BUF_COMPRESSED(buf) ? 1338 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1339 } 1340 1341 /* 1342 * Return the compression algorithm used to store this data in the ARC. If ARC 1343 * compression is enabled or this is an encrypted block, this will be the same 1344 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1345 */ 1346 static inline enum zio_compress 1347 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1348 { 1349 return (HDR_COMPRESSION_ENABLED(hdr) ? 1350 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1351 } 1352 1353 uint8_t 1354 arc_get_complevel(arc_buf_t *buf) 1355 { 1356 return (buf->b_hdr->b_complevel); 1357 } 1358 1359 static inline boolean_t 1360 arc_buf_is_shared(arc_buf_t *buf) 1361 { 1362 boolean_t shared = (buf->b_data != NULL && 1363 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1364 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1365 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1366 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1367 EQUIV(shared, ARC_BUF_SHARED(buf)); 1368 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1369 1370 /* 1371 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1372 * already being shared" requirement prevents us from doing that. 1373 */ 1374 1375 return (shared); 1376 } 1377 1378 /* 1379 * Free the checksum associated with this header. If there is no checksum, this 1380 * is a no-op. 1381 */ 1382 static inline void 1383 arc_cksum_free(arc_buf_hdr_t *hdr) 1384 { 1385 #ifdef ZFS_DEBUG 1386 ASSERT(HDR_HAS_L1HDR(hdr)); 1387 1388 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1389 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1390 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1391 hdr->b_l1hdr.b_freeze_cksum = NULL; 1392 } 1393 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1394 #endif 1395 } 1396 1397 /* 1398 * Return true iff at least one of the bufs on hdr is not compressed. 1399 * Encrypted buffers count as compressed. 1400 */ 1401 static boolean_t 1402 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1403 { 1404 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1405 1406 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1407 if (!ARC_BUF_COMPRESSED(b)) { 1408 return (B_TRUE); 1409 } 1410 } 1411 return (B_FALSE); 1412 } 1413 1414 1415 /* 1416 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1417 * matches the checksum that is stored in the hdr. If there is no checksum, 1418 * or if the buf is compressed, this is a no-op. 1419 */ 1420 static void 1421 arc_cksum_verify(arc_buf_t *buf) 1422 { 1423 #ifdef ZFS_DEBUG 1424 arc_buf_hdr_t *hdr = buf->b_hdr; 1425 zio_cksum_t zc; 1426 1427 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1428 return; 1429 1430 if (ARC_BUF_COMPRESSED(buf)) 1431 return; 1432 1433 ASSERT(HDR_HAS_L1HDR(hdr)); 1434 1435 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1436 1437 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1438 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1439 return; 1440 } 1441 1442 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1443 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1444 panic("buffer modified while frozen!"); 1445 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1446 #endif 1447 } 1448 1449 /* 1450 * This function makes the assumption that data stored in the L2ARC 1451 * will be transformed exactly as it is in the main pool. Because of 1452 * this we can verify the checksum against the reading process's bp. 1453 */ 1454 static boolean_t 1455 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1456 { 1457 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1458 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1459 1460 /* 1461 * Block pointers always store the checksum for the logical data. 1462 * If the block pointer has the gang bit set, then the checksum 1463 * it represents is for the reconstituted data and not for an 1464 * individual gang member. The zio pipeline, however, must be able to 1465 * determine the checksum of each of the gang constituents so it 1466 * treats the checksum comparison differently than what we need 1467 * for l2arc blocks. This prevents us from using the 1468 * zio_checksum_error() interface directly. Instead we must call the 1469 * zio_checksum_error_impl() so that we can ensure the checksum is 1470 * generated using the correct checksum algorithm and accounts for the 1471 * logical I/O size and not just a gang fragment. 1472 */ 1473 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1474 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1475 zio->io_offset, NULL) == 0); 1476 } 1477 1478 /* 1479 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1480 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1481 * isn't modified later on. If buf is compressed or there is already a checksum 1482 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1483 */ 1484 static void 1485 arc_cksum_compute(arc_buf_t *buf) 1486 { 1487 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1488 return; 1489 1490 #ifdef ZFS_DEBUG 1491 arc_buf_hdr_t *hdr = buf->b_hdr; 1492 ASSERT(HDR_HAS_L1HDR(hdr)); 1493 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1494 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1495 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1496 return; 1497 } 1498 1499 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1500 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1501 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1502 KM_SLEEP); 1503 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1504 hdr->b_l1hdr.b_freeze_cksum); 1505 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1506 #endif 1507 arc_buf_watch(buf); 1508 } 1509 1510 #ifndef _KERNEL 1511 void 1512 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) 1513 { 1514 (void) sig, (void) unused; 1515 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); 1516 } 1517 #endif 1518 1519 static void 1520 arc_buf_unwatch(arc_buf_t *buf) 1521 { 1522 #ifndef _KERNEL 1523 if (arc_watch) { 1524 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1525 PROT_READ | PROT_WRITE)); 1526 } 1527 #else 1528 (void) buf; 1529 #endif 1530 } 1531 1532 static void 1533 arc_buf_watch(arc_buf_t *buf) 1534 { 1535 #ifndef _KERNEL 1536 if (arc_watch) 1537 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1538 PROT_READ)); 1539 #else 1540 (void) buf; 1541 #endif 1542 } 1543 1544 static arc_buf_contents_t 1545 arc_buf_type(arc_buf_hdr_t *hdr) 1546 { 1547 arc_buf_contents_t type; 1548 if (HDR_ISTYPE_METADATA(hdr)) { 1549 type = ARC_BUFC_METADATA; 1550 } else { 1551 type = ARC_BUFC_DATA; 1552 } 1553 VERIFY3U(hdr->b_type, ==, type); 1554 return (type); 1555 } 1556 1557 boolean_t 1558 arc_is_metadata(arc_buf_t *buf) 1559 { 1560 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1561 } 1562 1563 static uint32_t 1564 arc_bufc_to_flags(arc_buf_contents_t type) 1565 { 1566 switch (type) { 1567 case ARC_BUFC_DATA: 1568 /* metadata field is 0 if buffer contains normal data */ 1569 return (0); 1570 case ARC_BUFC_METADATA: 1571 return (ARC_FLAG_BUFC_METADATA); 1572 default: 1573 break; 1574 } 1575 panic("undefined ARC buffer type!"); 1576 return ((uint32_t)-1); 1577 } 1578 1579 void 1580 arc_buf_thaw(arc_buf_t *buf) 1581 { 1582 arc_buf_hdr_t *hdr = buf->b_hdr; 1583 1584 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1585 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1586 1587 arc_cksum_verify(buf); 1588 1589 /* 1590 * Compressed buffers do not manipulate the b_freeze_cksum. 1591 */ 1592 if (ARC_BUF_COMPRESSED(buf)) 1593 return; 1594 1595 ASSERT(HDR_HAS_L1HDR(hdr)); 1596 arc_cksum_free(hdr); 1597 arc_buf_unwatch(buf); 1598 } 1599 1600 void 1601 arc_buf_freeze(arc_buf_t *buf) 1602 { 1603 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1604 return; 1605 1606 if (ARC_BUF_COMPRESSED(buf)) 1607 return; 1608 1609 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1610 arc_cksum_compute(buf); 1611 } 1612 1613 /* 1614 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1615 * the following functions should be used to ensure that the flags are 1616 * updated in a thread-safe way. When manipulating the flags either 1617 * the hash_lock must be held or the hdr must be undiscoverable. This 1618 * ensures that we're not racing with any other threads when updating 1619 * the flags. 1620 */ 1621 static inline void 1622 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1623 { 1624 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1625 hdr->b_flags |= flags; 1626 } 1627 1628 static inline void 1629 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1630 { 1631 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1632 hdr->b_flags &= ~flags; 1633 } 1634 1635 /* 1636 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1637 * done in a special way since we have to clear and set bits 1638 * at the same time. Consumers that wish to set the compression bits 1639 * must use this function to ensure that the flags are updated in 1640 * thread-safe manner. 1641 */ 1642 static void 1643 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1644 { 1645 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1646 1647 /* 1648 * Holes and embedded blocks will always have a psize = 0 so 1649 * we ignore the compression of the blkptr and set the 1650 * want to uncompress them. Mark them as uncompressed. 1651 */ 1652 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1653 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1654 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1655 } else { 1656 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1657 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1658 } 1659 1660 HDR_SET_COMPRESS(hdr, cmp); 1661 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1662 } 1663 1664 /* 1665 * Looks for another buf on the same hdr which has the data decompressed, copies 1666 * from it, and returns true. If no such buf exists, returns false. 1667 */ 1668 static boolean_t 1669 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1670 { 1671 arc_buf_hdr_t *hdr = buf->b_hdr; 1672 boolean_t copied = B_FALSE; 1673 1674 ASSERT(HDR_HAS_L1HDR(hdr)); 1675 ASSERT3P(buf->b_data, !=, NULL); 1676 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1677 1678 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1679 from = from->b_next) { 1680 /* can't use our own data buffer */ 1681 if (from == buf) { 1682 continue; 1683 } 1684 1685 if (!ARC_BUF_COMPRESSED(from)) { 1686 memcpy(buf->b_data, from->b_data, arc_buf_size(buf)); 1687 copied = B_TRUE; 1688 break; 1689 } 1690 } 1691 1692 #ifdef ZFS_DEBUG 1693 /* 1694 * There were no decompressed bufs, so there should not be a 1695 * checksum on the hdr either. 1696 */ 1697 if (zfs_flags & ZFS_DEBUG_MODIFY) 1698 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1699 #endif 1700 1701 return (copied); 1702 } 1703 1704 /* 1705 * Allocates an ARC buf header that's in an evicted & L2-cached state. 1706 * This is used during l2arc reconstruction to make empty ARC buffers 1707 * which circumvent the regular disk->arc->l2arc path and instead come 1708 * into being in the reverse order, i.e. l2arc->arc. 1709 */ 1710 static arc_buf_hdr_t * 1711 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 1712 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 1713 enum zio_compress compress, uint8_t complevel, boolean_t protected, 1714 boolean_t prefetch, arc_state_type_t arcs_state) 1715 { 1716 arc_buf_hdr_t *hdr; 1717 1718 ASSERT(size != 0); 1719 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 1720 hdr->b_birth = birth; 1721 hdr->b_type = type; 1722 hdr->b_flags = 0; 1723 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 1724 HDR_SET_LSIZE(hdr, size); 1725 HDR_SET_PSIZE(hdr, psize); 1726 arc_hdr_set_compress(hdr, compress); 1727 hdr->b_complevel = complevel; 1728 if (protected) 1729 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 1730 if (prefetch) 1731 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 1732 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 1733 1734 hdr->b_dva = dva; 1735 1736 hdr->b_l2hdr.b_dev = dev; 1737 hdr->b_l2hdr.b_daddr = daddr; 1738 hdr->b_l2hdr.b_arcs_state = arcs_state; 1739 1740 return (hdr); 1741 } 1742 1743 /* 1744 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1745 */ 1746 static uint64_t 1747 arc_hdr_size(arc_buf_hdr_t *hdr) 1748 { 1749 uint64_t size; 1750 1751 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1752 HDR_GET_PSIZE(hdr) > 0) { 1753 size = HDR_GET_PSIZE(hdr); 1754 } else { 1755 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1756 size = HDR_GET_LSIZE(hdr); 1757 } 1758 return (size); 1759 } 1760 1761 static int 1762 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1763 { 1764 int ret; 1765 uint64_t csize; 1766 uint64_t lsize = HDR_GET_LSIZE(hdr); 1767 uint64_t psize = HDR_GET_PSIZE(hdr); 1768 void *tmpbuf = NULL; 1769 abd_t *abd = hdr->b_l1hdr.b_pabd; 1770 1771 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1772 ASSERT(HDR_AUTHENTICATED(hdr)); 1773 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1774 1775 /* 1776 * The MAC is calculated on the compressed data that is stored on disk. 1777 * However, if compressed arc is disabled we will only have the 1778 * decompressed data available to us now. Compress it into a temporary 1779 * abd so we can verify the MAC. The performance overhead of this will 1780 * be relatively low, since most objects in an encrypted objset will 1781 * be encrypted (instead of authenticated) anyway. 1782 */ 1783 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1784 !HDR_COMPRESSION_ENABLED(hdr)) { 1785 1786 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1787 hdr->b_l1hdr.b_pabd, &tmpbuf, lsize, hdr->b_complevel); 1788 ASSERT3P(tmpbuf, !=, NULL); 1789 ASSERT3U(csize, <=, psize); 1790 abd = abd_get_from_buf(tmpbuf, lsize); 1791 abd_take_ownership_of_buf(abd, B_TRUE); 1792 abd_zero_off(abd, csize, psize - csize); 1793 } 1794 1795 /* 1796 * Authentication is best effort. We authenticate whenever the key is 1797 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1798 */ 1799 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1800 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1801 ASSERT3U(lsize, ==, psize); 1802 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1803 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1804 } else { 1805 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1806 hdr->b_crypt_hdr.b_mac); 1807 } 1808 1809 if (ret == 0) 1810 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1811 else if (ret != ENOENT) 1812 goto error; 1813 1814 if (tmpbuf != NULL) 1815 abd_free(abd); 1816 1817 return (0); 1818 1819 error: 1820 if (tmpbuf != NULL) 1821 abd_free(abd); 1822 1823 return (ret); 1824 } 1825 1826 /* 1827 * This function will take a header that only has raw encrypted data in 1828 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1829 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1830 * also decompress the data. 1831 */ 1832 static int 1833 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1834 { 1835 int ret; 1836 abd_t *cabd = NULL; 1837 void *tmp = NULL; 1838 boolean_t no_crypt = B_FALSE; 1839 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1840 1841 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1842 ASSERT(HDR_ENCRYPTED(hdr)); 1843 1844 arc_hdr_alloc_abd(hdr, 0); 1845 1846 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1847 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1848 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1849 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1850 if (ret != 0) 1851 goto error; 1852 1853 if (no_crypt) { 1854 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1855 HDR_GET_PSIZE(hdr)); 1856 } 1857 1858 /* 1859 * If this header has disabled arc compression but the b_pabd is 1860 * compressed after decrypting it, we need to decompress the newly 1861 * decrypted data. 1862 */ 1863 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1864 !HDR_COMPRESSION_ENABLED(hdr)) { 1865 /* 1866 * We want to make sure that we are correctly honoring the 1867 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1868 * and then loan a buffer from it, rather than allocating a 1869 * linear buffer and wrapping it in an abd later. 1870 */ 1871 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 0); 1872 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 1873 1874 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1875 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 1876 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 1877 if (ret != 0) { 1878 abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); 1879 goto error; 1880 } 1881 1882 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 1883 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1884 arc_hdr_size(hdr), hdr); 1885 hdr->b_l1hdr.b_pabd = cabd; 1886 } 1887 1888 return (0); 1889 1890 error: 1891 arc_hdr_free_abd(hdr, B_FALSE); 1892 if (cabd != NULL) 1893 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1894 1895 return (ret); 1896 } 1897 1898 /* 1899 * This function is called during arc_buf_fill() to prepare the header's 1900 * abd plaintext pointer for use. This involves authenticated protected 1901 * data and decrypting encrypted data into the plaintext abd. 1902 */ 1903 static int 1904 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1905 const zbookmark_phys_t *zb, boolean_t noauth) 1906 { 1907 int ret; 1908 1909 ASSERT(HDR_PROTECTED(hdr)); 1910 1911 if (hash_lock != NULL) 1912 mutex_enter(hash_lock); 1913 1914 if (HDR_NOAUTH(hdr) && !noauth) { 1915 /* 1916 * The caller requested authenticated data but our data has 1917 * not been authenticated yet. Verify the MAC now if we can. 1918 */ 1919 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1920 if (ret != 0) 1921 goto error; 1922 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1923 /* 1924 * If we only have the encrypted version of the data, but the 1925 * unencrypted version was requested we take this opportunity 1926 * to store the decrypted version in the header for future use. 1927 */ 1928 ret = arc_hdr_decrypt(hdr, spa, zb); 1929 if (ret != 0) 1930 goto error; 1931 } 1932 1933 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1934 1935 if (hash_lock != NULL) 1936 mutex_exit(hash_lock); 1937 1938 return (0); 1939 1940 error: 1941 if (hash_lock != NULL) 1942 mutex_exit(hash_lock); 1943 1944 return (ret); 1945 } 1946 1947 /* 1948 * This function is used by the dbuf code to decrypt bonus buffers in place. 1949 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1950 * block, so we use the hash lock here to protect against concurrent calls to 1951 * arc_buf_fill(). 1952 */ 1953 static void 1954 arc_buf_untransform_in_place(arc_buf_t *buf) 1955 { 1956 arc_buf_hdr_t *hdr = buf->b_hdr; 1957 1958 ASSERT(HDR_ENCRYPTED(hdr)); 1959 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1960 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1961 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1962 1963 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1964 arc_buf_size(buf)); 1965 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1966 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1967 } 1968 1969 /* 1970 * Given a buf that has a data buffer attached to it, this function will 1971 * efficiently fill the buf with data of the specified compression setting from 1972 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1973 * are already sharing a data buf, no copy is performed. 1974 * 1975 * If the buf is marked as compressed but uncompressed data was requested, this 1976 * will allocate a new data buffer for the buf, remove that flag, and fill the 1977 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1978 * uncompressed data, and (since we haven't added support for it yet) if you 1979 * want compressed data your buf must already be marked as compressed and have 1980 * the correct-sized data buffer. 1981 */ 1982 static int 1983 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 1984 arc_fill_flags_t flags) 1985 { 1986 int error = 0; 1987 arc_buf_hdr_t *hdr = buf->b_hdr; 1988 boolean_t hdr_compressed = 1989 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 1990 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 1991 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 1992 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 1993 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 1994 1995 ASSERT3P(buf->b_data, !=, NULL); 1996 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 1997 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 1998 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 1999 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 2000 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 2001 IMPLY(encrypted, !arc_buf_is_shared(buf)); 2002 2003 /* 2004 * If the caller wanted encrypted data we just need to copy it from 2005 * b_rabd and potentially byteswap it. We won't be able to do any 2006 * further transforms on it. 2007 */ 2008 if (encrypted) { 2009 ASSERT(HDR_HAS_RABD(hdr)); 2010 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 2011 HDR_GET_PSIZE(hdr)); 2012 goto byteswap; 2013 } 2014 2015 /* 2016 * Adjust encrypted and authenticated headers to accommodate 2017 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 2018 * allowed to fail decryption due to keys not being loaded 2019 * without being marked as an IO error. 2020 */ 2021 if (HDR_PROTECTED(hdr)) { 2022 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 2023 zb, !!(flags & ARC_FILL_NOAUTH)); 2024 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 2025 return (error); 2026 } else if (error != 0) { 2027 if (hash_lock != NULL) 2028 mutex_enter(hash_lock); 2029 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2030 if (hash_lock != NULL) 2031 mutex_exit(hash_lock); 2032 return (error); 2033 } 2034 } 2035 2036 /* 2037 * There is a special case here for dnode blocks which are 2038 * decrypting their bonus buffers. These blocks may request to 2039 * be decrypted in-place. This is necessary because there may 2040 * be many dnodes pointing into this buffer and there is 2041 * currently no method to synchronize replacing the backing 2042 * b_data buffer and updating all of the pointers. Here we use 2043 * the hash lock to ensure there are no races. If the need 2044 * arises for other types to be decrypted in-place, they must 2045 * add handling here as well. 2046 */ 2047 if ((flags & ARC_FILL_IN_PLACE) != 0) { 2048 ASSERT(!hdr_compressed); 2049 ASSERT(!compressed); 2050 ASSERT(!encrypted); 2051 2052 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 2053 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 2054 2055 if (hash_lock != NULL) 2056 mutex_enter(hash_lock); 2057 arc_buf_untransform_in_place(buf); 2058 if (hash_lock != NULL) 2059 mutex_exit(hash_lock); 2060 2061 /* Compute the hdr's checksum if necessary */ 2062 arc_cksum_compute(buf); 2063 } 2064 2065 return (0); 2066 } 2067 2068 if (hdr_compressed == compressed) { 2069 if (ARC_BUF_SHARED(buf)) { 2070 ASSERT(arc_buf_is_shared(buf)); 2071 } else { 2072 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 2073 arc_buf_size(buf)); 2074 } 2075 } else { 2076 ASSERT(hdr_compressed); 2077 ASSERT(!compressed); 2078 2079 /* 2080 * If the buf is sharing its data with the hdr, unlink it and 2081 * allocate a new data buffer for the buf. 2082 */ 2083 if (ARC_BUF_SHARED(buf)) { 2084 ASSERT(ARC_BUF_COMPRESSED(buf)); 2085 2086 /* We need to give the buf its own b_data */ 2087 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2088 buf->b_data = 2089 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2090 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2091 2092 /* Previously overhead was 0; just add new overhead */ 2093 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2094 } else if (ARC_BUF_COMPRESSED(buf)) { 2095 ASSERT(!arc_buf_is_shared(buf)); 2096 2097 /* We need to reallocate the buf's b_data */ 2098 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2099 buf); 2100 buf->b_data = 2101 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2102 2103 /* We increased the size of b_data; update overhead */ 2104 ARCSTAT_INCR(arcstat_overhead_size, 2105 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2106 } 2107 2108 /* 2109 * Regardless of the buf's previous compression settings, it 2110 * should not be compressed at the end of this function. 2111 */ 2112 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2113 2114 /* 2115 * Try copying the data from another buf which already has a 2116 * decompressed version. If that's not possible, it's time to 2117 * bite the bullet and decompress the data from the hdr. 2118 */ 2119 if (arc_buf_try_copy_decompressed_data(buf)) { 2120 /* Skip byteswapping and checksumming (already done) */ 2121 return (0); 2122 } else { 2123 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2124 hdr->b_l1hdr.b_pabd, buf->b_data, 2125 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), 2126 &hdr->b_complevel); 2127 2128 /* 2129 * Absent hardware errors or software bugs, this should 2130 * be impossible, but log it anyway so we can debug it. 2131 */ 2132 if (error != 0) { 2133 zfs_dbgmsg( 2134 "hdr %px, compress %d, psize %d, lsize %d", 2135 hdr, arc_hdr_get_compress(hdr), 2136 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2137 if (hash_lock != NULL) 2138 mutex_enter(hash_lock); 2139 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2140 if (hash_lock != NULL) 2141 mutex_exit(hash_lock); 2142 return (SET_ERROR(EIO)); 2143 } 2144 } 2145 } 2146 2147 byteswap: 2148 /* Byteswap the buf's data if necessary */ 2149 if (bswap != DMU_BSWAP_NUMFUNCS) { 2150 ASSERT(!HDR_SHARED_DATA(hdr)); 2151 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2152 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2153 } 2154 2155 /* Compute the hdr's checksum if necessary */ 2156 arc_cksum_compute(buf); 2157 2158 return (0); 2159 } 2160 2161 /* 2162 * If this function is being called to decrypt an encrypted buffer or verify an 2163 * authenticated one, the key must be loaded and a mapping must be made 2164 * available in the keystore via spa_keystore_create_mapping() or one of its 2165 * callers. 2166 */ 2167 int 2168 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2169 boolean_t in_place) 2170 { 2171 int ret; 2172 arc_fill_flags_t flags = 0; 2173 2174 if (in_place) 2175 flags |= ARC_FILL_IN_PLACE; 2176 2177 ret = arc_buf_fill(buf, spa, zb, flags); 2178 if (ret == ECKSUM) { 2179 /* 2180 * Convert authentication and decryption errors to EIO 2181 * (and generate an ereport) before leaving the ARC. 2182 */ 2183 ret = SET_ERROR(EIO); 2184 spa_log_error(spa, zb, &buf->b_hdr->b_birth); 2185 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2186 spa, NULL, zb, NULL, 0); 2187 } 2188 2189 return (ret); 2190 } 2191 2192 /* 2193 * Increment the amount of evictable space in the arc_state_t's refcount. 2194 * We account for the space used by the hdr and the arc buf individually 2195 * so that we can add and remove them from the refcount individually. 2196 */ 2197 static void 2198 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2199 { 2200 arc_buf_contents_t type = arc_buf_type(hdr); 2201 2202 ASSERT(HDR_HAS_L1HDR(hdr)); 2203 2204 if (GHOST_STATE(state)) { 2205 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2206 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2207 ASSERT(!HDR_HAS_RABD(hdr)); 2208 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2209 HDR_GET_LSIZE(hdr), hdr); 2210 return; 2211 } 2212 2213 if (hdr->b_l1hdr.b_pabd != NULL) { 2214 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2215 arc_hdr_size(hdr), hdr); 2216 } 2217 if (HDR_HAS_RABD(hdr)) { 2218 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2219 HDR_GET_PSIZE(hdr), hdr); 2220 } 2221 2222 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2223 buf = buf->b_next) { 2224 if (ARC_BUF_SHARED(buf)) 2225 continue; 2226 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2227 arc_buf_size(buf), buf); 2228 } 2229 } 2230 2231 /* 2232 * Decrement the amount of evictable space in the arc_state_t's refcount. 2233 * We account for the space used by the hdr and the arc buf individually 2234 * so that we can add and remove them from the refcount individually. 2235 */ 2236 static void 2237 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2238 { 2239 arc_buf_contents_t type = arc_buf_type(hdr); 2240 2241 ASSERT(HDR_HAS_L1HDR(hdr)); 2242 2243 if (GHOST_STATE(state)) { 2244 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2245 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2246 ASSERT(!HDR_HAS_RABD(hdr)); 2247 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2248 HDR_GET_LSIZE(hdr), hdr); 2249 return; 2250 } 2251 2252 if (hdr->b_l1hdr.b_pabd != NULL) { 2253 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2254 arc_hdr_size(hdr), hdr); 2255 } 2256 if (HDR_HAS_RABD(hdr)) { 2257 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2258 HDR_GET_PSIZE(hdr), hdr); 2259 } 2260 2261 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2262 buf = buf->b_next) { 2263 if (ARC_BUF_SHARED(buf)) 2264 continue; 2265 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2266 arc_buf_size(buf), buf); 2267 } 2268 } 2269 2270 /* 2271 * Add a reference to this hdr indicating that someone is actively 2272 * referencing that memory. When the refcount transitions from 0 to 1, 2273 * we remove it from the respective arc_state_t list to indicate that 2274 * it is not evictable. 2275 */ 2276 static void 2277 add_reference(arc_buf_hdr_t *hdr, const void *tag) 2278 { 2279 arc_state_t *state = hdr->b_l1hdr.b_state; 2280 2281 ASSERT(HDR_HAS_L1HDR(hdr)); 2282 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2283 ASSERT(state == arc_anon); 2284 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2285 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2286 } 2287 2288 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2289 state != arc_anon && state != arc_l2c_only) { 2290 /* We don't use the L2-only state list. */ 2291 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], hdr); 2292 arc_evictable_space_decrement(hdr, state); 2293 } 2294 } 2295 2296 /* 2297 * Remove a reference from this hdr. When the reference transitions from 2298 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2299 * list making it eligible for eviction. 2300 */ 2301 static int 2302 remove_reference(arc_buf_hdr_t *hdr, const void *tag) 2303 { 2304 int cnt; 2305 arc_state_t *state = hdr->b_l1hdr.b_state; 2306 2307 ASSERT(HDR_HAS_L1HDR(hdr)); 2308 ASSERT(state == arc_anon || MUTEX_HELD(HDR_LOCK(hdr))); 2309 ASSERT(!GHOST_STATE(state)); /* arc_l2c_only counts as a ghost. */ 2310 2311 if ((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) != 0) 2312 return (cnt); 2313 2314 if (state == arc_anon) { 2315 arc_hdr_destroy(hdr); 2316 return (0); 2317 } 2318 if (state == arc_uncached && !HDR_PREFETCH(hdr)) { 2319 arc_change_state(arc_anon, hdr); 2320 arc_hdr_destroy(hdr); 2321 return (0); 2322 } 2323 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); 2324 arc_evictable_space_increment(hdr, state); 2325 return (0); 2326 } 2327 2328 /* 2329 * Returns detailed information about a specific arc buffer. When the 2330 * state_index argument is set the function will calculate the arc header 2331 * list position for its arc state. Since this requires a linear traversal 2332 * callers are strongly encourage not to do this. However, it can be helpful 2333 * for targeted analysis so the functionality is provided. 2334 */ 2335 void 2336 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) 2337 { 2338 (void) state_index; 2339 arc_buf_hdr_t *hdr = ab->b_hdr; 2340 l1arc_buf_hdr_t *l1hdr = NULL; 2341 l2arc_buf_hdr_t *l2hdr = NULL; 2342 arc_state_t *state = NULL; 2343 2344 memset(abi, 0, sizeof (arc_buf_info_t)); 2345 2346 if (hdr == NULL) 2347 return; 2348 2349 abi->abi_flags = hdr->b_flags; 2350 2351 if (HDR_HAS_L1HDR(hdr)) { 2352 l1hdr = &hdr->b_l1hdr; 2353 state = l1hdr->b_state; 2354 } 2355 if (HDR_HAS_L2HDR(hdr)) 2356 l2hdr = &hdr->b_l2hdr; 2357 2358 if (l1hdr) { 2359 abi->abi_bufcnt = 0; 2360 for (arc_buf_t *buf = l1hdr->b_buf; buf; buf = buf->b_next) 2361 abi->abi_bufcnt++; 2362 abi->abi_access = l1hdr->b_arc_access; 2363 abi->abi_mru_hits = l1hdr->b_mru_hits; 2364 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; 2365 abi->abi_mfu_hits = l1hdr->b_mfu_hits; 2366 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; 2367 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); 2368 } 2369 2370 if (l2hdr) { 2371 abi->abi_l2arc_dattr = l2hdr->b_daddr; 2372 abi->abi_l2arc_hits = l2hdr->b_hits; 2373 } 2374 2375 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; 2376 abi->abi_state_contents = arc_buf_type(hdr); 2377 abi->abi_size = arc_hdr_size(hdr); 2378 } 2379 2380 /* 2381 * Move the supplied buffer to the indicated state. The hash lock 2382 * for the buffer must be held by the caller. 2383 */ 2384 static void 2385 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr) 2386 { 2387 arc_state_t *old_state; 2388 int64_t refcnt; 2389 boolean_t update_old, update_new; 2390 arc_buf_contents_t type = arc_buf_type(hdr); 2391 2392 /* 2393 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2394 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2395 * L1 hdr doesn't always exist when we change state to arc_anon before 2396 * destroying a header, in which case reallocating to add the L1 hdr is 2397 * pointless. 2398 */ 2399 if (HDR_HAS_L1HDR(hdr)) { 2400 old_state = hdr->b_l1hdr.b_state; 2401 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2402 update_old = (hdr->b_l1hdr.b_buf != NULL || 2403 hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 2404 2405 IMPLY(GHOST_STATE(old_state), hdr->b_l1hdr.b_buf == NULL); 2406 IMPLY(GHOST_STATE(new_state), hdr->b_l1hdr.b_buf == NULL); 2407 IMPLY(old_state == arc_anon, hdr->b_l1hdr.b_buf == NULL || 2408 ARC_BUF_LAST(hdr->b_l1hdr.b_buf)); 2409 } else { 2410 old_state = arc_l2c_only; 2411 refcnt = 0; 2412 update_old = B_FALSE; 2413 } 2414 update_new = update_old; 2415 if (GHOST_STATE(old_state)) 2416 update_old = B_TRUE; 2417 if (GHOST_STATE(new_state)) 2418 update_new = B_TRUE; 2419 2420 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 2421 ASSERT3P(new_state, !=, old_state); 2422 2423 /* 2424 * If this buffer is evictable, transfer it from the 2425 * old state list to the new state list. 2426 */ 2427 if (refcnt == 0) { 2428 if (old_state != arc_anon && old_state != arc_l2c_only) { 2429 ASSERT(HDR_HAS_L1HDR(hdr)); 2430 /* remove_reference() saves on insert. */ 2431 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2432 multilist_remove(&old_state->arcs_list[type], 2433 hdr); 2434 arc_evictable_space_decrement(hdr, old_state); 2435 } 2436 } 2437 if (new_state != arc_anon && new_state != arc_l2c_only) { 2438 /* 2439 * An L1 header always exists here, since if we're 2440 * moving to some L1-cached state (i.e. not l2c_only or 2441 * anonymous), we realloc the header to add an L1hdr 2442 * beforehand. 2443 */ 2444 ASSERT(HDR_HAS_L1HDR(hdr)); 2445 multilist_insert(&new_state->arcs_list[type], hdr); 2446 arc_evictable_space_increment(hdr, new_state); 2447 } 2448 } 2449 2450 ASSERT(!HDR_EMPTY(hdr)); 2451 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2452 buf_hash_remove(hdr); 2453 2454 /* adjust state sizes (ignore arc_l2c_only) */ 2455 2456 if (update_new && new_state != arc_l2c_only) { 2457 ASSERT(HDR_HAS_L1HDR(hdr)); 2458 if (GHOST_STATE(new_state)) { 2459 2460 /* 2461 * When moving a header to a ghost state, we first 2462 * remove all arc buffers. Thus, we'll have no arc 2463 * buffer to use for the reference. As a result, we 2464 * use the arc header pointer for the reference. 2465 */ 2466 (void) zfs_refcount_add_many( 2467 &new_state->arcs_size[type], 2468 HDR_GET_LSIZE(hdr), hdr); 2469 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2470 ASSERT(!HDR_HAS_RABD(hdr)); 2471 } else { 2472 2473 /* 2474 * Each individual buffer holds a unique reference, 2475 * thus we must remove each of these references one 2476 * at a time. 2477 */ 2478 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2479 buf = buf->b_next) { 2480 2481 /* 2482 * When the arc_buf_t is sharing the data 2483 * block with the hdr, the owner of the 2484 * reference belongs to the hdr. Only 2485 * add to the refcount if the arc_buf_t is 2486 * not shared. 2487 */ 2488 if (ARC_BUF_SHARED(buf)) 2489 continue; 2490 2491 (void) zfs_refcount_add_many( 2492 &new_state->arcs_size[type], 2493 arc_buf_size(buf), buf); 2494 } 2495 2496 if (hdr->b_l1hdr.b_pabd != NULL) { 2497 (void) zfs_refcount_add_many( 2498 &new_state->arcs_size[type], 2499 arc_hdr_size(hdr), hdr); 2500 } 2501 2502 if (HDR_HAS_RABD(hdr)) { 2503 (void) zfs_refcount_add_many( 2504 &new_state->arcs_size[type], 2505 HDR_GET_PSIZE(hdr), hdr); 2506 } 2507 } 2508 } 2509 2510 if (update_old && old_state != arc_l2c_only) { 2511 ASSERT(HDR_HAS_L1HDR(hdr)); 2512 if (GHOST_STATE(old_state)) { 2513 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2514 ASSERT(!HDR_HAS_RABD(hdr)); 2515 2516 /* 2517 * When moving a header off of a ghost state, 2518 * the header will not contain any arc buffers. 2519 * We use the arc header pointer for the reference 2520 * which is exactly what we did when we put the 2521 * header on the ghost state. 2522 */ 2523 2524 (void) zfs_refcount_remove_many( 2525 &old_state->arcs_size[type], 2526 HDR_GET_LSIZE(hdr), hdr); 2527 } else { 2528 2529 /* 2530 * Each individual buffer holds a unique reference, 2531 * thus we must remove each of these references one 2532 * at a time. 2533 */ 2534 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2535 buf = buf->b_next) { 2536 2537 /* 2538 * When the arc_buf_t is sharing the data 2539 * block with the hdr, the owner of the 2540 * reference belongs to the hdr. Only 2541 * add to the refcount if the arc_buf_t is 2542 * not shared. 2543 */ 2544 if (ARC_BUF_SHARED(buf)) 2545 continue; 2546 2547 (void) zfs_refcount_remove_many( 2548 &old_state->arcs_size[type], 2549 arc_buf_size(buf), buf); 2550 } 2551 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2552 HDR_HAS_RABD(hdr)); 2553 2554 if (hdr->b_l1hdr.b_pabd != NULL) { 2555 (void) zfs_refcount_remove_many( 2556 &old_state->arcs_size[type], 2557 arc_hdr_size(hdr), hdr); 2558 } 2559 2560 if (HDR_HAS_RABD(hdr)) { 2561 (void) zfs_refcount_remove_many( 2562 &old_state->arcs_size[type], 2563 HDR_GET_PSIZE(hdr), hdr); 2564 } 2565 } 2566 } 2567 2568 if (HDR_HAS_L1HDR(hdr)) { 2569 hdr->b_l1hdr.b_state = new_state; 2570 2571 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { 2572 l2arc_hdr_arcstats_decrement_state(hdr); 2573 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; 2574 l2arc_hdr_arcstats_increment_state(hdr); 2575 } 2576 } 2577 } 2578 2579 void 2580 arc_space_consume(uint64_t space, arc_space_type_t type) 2581 { 2582 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2583 2584 switch (type) { 2585 default: 2586 break; 2587 case ARC_SPACE_DATA: 2588 ARCSTAT_INCR(arcstat_data_size, space); 2589 break; 2590 case ARC_SPACE_META: 2591 ARCSTAT_INCR(arcstat_metadata_size, space); 2592 break; 2593 case ARC_SPACE_BONUS: 2594 ARCSTAT_INCR(arcstat_bonus_size, space); 2595 break; 2596 case ARC_SPACE_DNODE: 2597 ARCSTAT_INCR(arcstat_dnode_size, space); 2598 break; 2599 case ARC_SPACE_DBUF: 2600 ARCSTAT_INCR(arcstat_dbuf_size, space); 2601 break; 2602 case ARC_SPACE_HDRS: 2603 ARCSTAT_INCR(arcstat_hdr_size, space); 2604 break; 2605 case ARC_SPACE_L2HDRS: 2606 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space); 2607 break; 2608 case ARC_SPACE_ABD_CHUNK_WASTE: 2609 /* 2610 * Note: this includes space wasted by all scatter ABD's, not 2611 * just those allocated by the ARC. But the vast majority of 2612 * scatter ABD's come from the ARC, because other users are 2613 * very short-lived. 2614 */ 2615 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space); 2616 break; 2617 } 2618 2619 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2620 ARCSTAT_INCR(arcstat_meta_used, space); 2621 2622 aggsum_add(&arc_sums.arcstat_size, space); 2623 } 2624 2625 void 2626 arc_space_return(uint64_t space, arc_space_type_t type) 2627 { 2628 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2629 2630 switch (type) { 2631 default: 2632 break; 2633 case ARC_SPACE_DATA: 2634 ARCSTAT_INCR(arcstat_data_size, -space); 2635 break; 2636 case ARC_SPACE_META: 2637 ARCSTAT_INCR(arcstat_metadata_size, -space); 2638 break; 2639 case ARC_SPACE_BONUS: 2640 ARCSTAT_INCR(arcstat_bonus_size, -space); 2641 break; 2642 case ARC_SPACE_DNODE: 2643 ARCSTAT_INCR(arcstat_dnode_size, -space); 2644 break; 2645 case ARC_SPACE_DBUF: 2646 ARCSTAT_INCR(arcstat_dbuf_size, -space); 2647 break; 2648 case ARC_SPACE_HDRS: 2649 ARCSTAT_INCR(arcstat_hdr_size, -space); 2650 break; 2651 case ARC_SPACE_L2HDRS: 2652 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space); 2653 break; 2654 case ARC_SPACE_ABD_CHUNK_WASTE: 2655 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space); 2656 break; 2657 } 2658 2659 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2660 ARCSTAT_INCR(arcstat_meta_used, -space); 2661 2662 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0); 2663 aggsum_add(&arc_sums.arcstat_size, -space); 2664 } 2665 2666 /* 2667 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2668 * with the hdr's b_pabd. 2669 */ 2670 static boolean_t 2671 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2672 { 2673 /* 2674 * The criteria for sharing a hdr's data are: 2675 * 1. the buffer is not encrypted 2676 * 2. the hdr's compression matches the buf's compression 2677 * 3. the hdr doesn't need to be byteswapped 2678 * 4. the hdr isn't already being shared 2679 * 5. the buf is either compressed or it is the last buf in the hdr list 2680 * 2681 * Criterion #5 maintains the invariant that shared uncompressed 2682 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2683 * might ask, "if a compressed buf is allocated first, won't that be the 2684 * last thing in the list?", but in that case it's impossible to create 2685 * a shared uncompressed buf anyway (because the hdr must be compressed 2686 * to have the compressed buf). You might also think that #3 is 2687 * sufficient to make this guarantee, however it's possible 2688 * (specifically in the rare L2ARC write race mentioned in 2689 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2690 * is shareable, but wasn't at the time of its allocation. Rather than 2691 * allow a new shared uncompressed buf to be created and then shuffle 2692 * the list around to make it the last element, this simply disallows 2693 * sharing if the new buf isn't the first to be added. 2694 */ 2695 ASSERT3P(buf->b_hdr, ==, hdr); 2696 boolean_t hdr_compressed = 2697 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; 2698 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2699 return (!ARC_BUF_ENCRYPTED(buf) && 2700 buf_compressed == hdr_compressed && 2701 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2702 !HDR_SHARED_DATA(hdr) && 2703 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2704 } 2705 2706 /* 2707 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2708 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2709 * copy was made successfully, or an error code otherwise. 2710 */ 2711 static int 2712 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2713 const void *tag, boolean_t encrypted, boolean_t compressed, 2714 boolean_t noauth, boolean_t fill, arc_buf_t **ret) 2715 { 2716 arc_buf_t *buf; 2717 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2718 2719 ASSERT(HDR_HAS_L1HDR(hdr)); 2720 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2721 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2722 hdr->b_type == ARC_BUFC_METADATA); 2723 ASSERT3P(ret, !=, NULL); 2724 ASSERT3P(*ret, ==, NULL); 2725 IMPLY(encrypted, compressed); 2726 2727 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2728 buf->b_hdr = hdr; 2729 buf->b_data = NULL; 2730 buf->b_next = hdr->b_l1hdr.b_buf; 2731 buf->b_flags = 0; 2732 2733 add_reference(hdr, tag); 2734 2735 /* 2736 * We're about to change the hdr's b_flags. We must either 2737 * hold the hash_lock or be undiscoverable. 2738 */ 2739 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2740 2741 /* 2742 * Only honor requests for compressed bufs if the hdr is actually 2743 * compressed. This must be overridden if the buffer is encrypted since 2744 * encrypted buffers cannot be decompressed. 2745 */ 2746 if (encrypted) { 2747 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2748 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2749 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2750 } else if (compressed && 2751 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2752 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2753 flags |= ARC_FILL_COMPRESSED; 2754 } 2755 2756 if (noauth) { 2757 ASSERT0(encrypted); 2758 flags |= ARC_FILL_NOAUTH; 2759 } 2760 2761 /* 2762 * If the hdr's data can be shared then we share the data buffer and 2763 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2764 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2765 * buffer to store the buf's data. 2766 * 2767 * There are two additional restrictions here because we're sharing 2768 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2769 * actively involved in an L2ARC write, because if this buf is used by 2770 * an arc_write() then the hdr's data buffer will be released when the 2771 * write completes, even though the L2ARC write might still be using it. 2772 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2773 * need to be ABD-aware. It must be allocated via 2774 * zio_[data_]buf_alloc(), not as a page, because we need to be able 2775 * to abd_release_ownership_of_buf(), which isn't allowed on "linear 2776 * page" buffers because the ABD code needs to handle freeing them 2777 * specially. 2778 */ 2779 boolean_t can_share = arc_can_share(hdr, buf) && 2780 !HDR_L2_WRITING(hdr) && 2781 hdr->b_l1hdr.b_pabd != NULL && 2782 abd_is_linear(hdr->b_l1hdr.b_pabd) && 2783 !abd_is_linear_page(hdr->b_l1hdr.b_pabd); 2784 2785 /* Set up b_data and sharing */ 2786 if (can_share) { 2787 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2788 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2789 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2790 } else { 2791 buf->b_data = 2792 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2793 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2794 } 2795 VERIFY3P(buf->b_data, !=, NULL); 2796 2797 hdr->b_l1hdr.b_buf = buf; 2798 2799 /* 2800 * If the user wants the data from the hdr, we need to either copy or 2801 * decompress the data. 2802 */ 2803 if (fill) { 2804 ASSERT3P(zb, !=, NULL); 2805 return (arc_buf_fill(buf, spa, zb, flags)); 2806 } 2807 2808 return (0); 2809 } 2810 2811 static const char *arc_onloan_tag = "onloan"; 2812 2813 static inline void 2814 arc_loaned_bytes_update(int64_t delta) 2815 { 2816 atomic_add_64(&arc_loaned_bytes, delta); 2817 2818 /* assert that it did not wrap around */ 2819 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2820 } 2821 2822 /* 2823 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2824 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2825 * buffers must be returned to the arc before they can be used by the DMU or 2826 * freed. 2827 */ 2828 arc_buf_t * 2829 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2830 { 2831 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2832 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2833 2834 arc_loaned_bytes_update(arc_buf_size(buf)); 2835 2836 return (buf); 2837 } 2838 2839 arc_buf_t * 2840 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2841 enum zio_compress compression_type, uint8_t complevel) 2842 { 2843 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2844 psize, lsize, compression_type, complevel); 2845 2846 arc_loaned_bytes_update(arc_buf_size(buf)); 2847 2848 return (buf); 2849 } 2850 2851 arc_buf_t * 2852 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2853 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2854 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2855 enum zio_compress compression_type, uint8_t complevel) 2856 { 2857 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2858 byteorder, salt, iv, mac, ot, psize, lsize, compression_type, 2859 complevel); 2860 2861 atomic_add_64(&arc_loaned_bytes, psize); 2862 return (buf); 2863 } 2864 2865 2866 /* 2867 * Return a loaned arc buffer to the arc. 2868 */ 2869 void 2870 arc_return_buf(arc_buf_t *buf, const void *tag) 2871 { 2872 arc_buf_hdr_t *hdr = buf->b_hdr; 2873 2874 ASSERT3P(buf->b_data, !=, NULL); 2875 ASSERT(HDR_HAS_L1HDR(hdr)); 2876 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2877 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2878 2879 arc_loaned_bytes_update(-arc_buf_size(buf)); 2880 } 2881 2882 /* Detach an arc_buf from a dbuf (tag) */ 2883 void 2884 arc_loan_inuse_buf(arc_buf_t *buf, const void *tag) 2885 { 2886 arc_buf_hdr_t *hdr = buf->b_hdr; 2887 2888 ASSERT3P(buf->b_data, !=, NULL); 2889 ASSERT(HDR_HAS_L1HDR(hdr)); 2890 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2891 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2892 2893 arc_loaned_bytes_update(arc_buf_size(buf)); 2894 } 2895 2896 static void 2897 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2898 { 2899 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2900 2901 df->l2df_abd = abd; 2902 df->l2df_size = size; 2903 df->l2df_type = type; 2904 mutex_enter(&l2arc_free_on_write_mtx); 2905 list_insert_head(l2arc_free_on_write, df); 2906 mutex_exit(&l2arc_free_on_write_mtx); 2907 } 2908 2909 static void 2910 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2911 { 2912 arc_state_t *state = hdr->b_l1hdr.b_state; 2913 arc_buf_contents_t type = arc_buf_type(hdr); 2914 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2915 2916 /* protected by hash lock, if in the hash table */ 2917 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2918 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2919 ASSERT(state != arc_anon && state != arc_l2c_only); 2920 2921 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2922 size, hdr); 2923 } 2924 (void) zfs_refcount_remove_many(&state->arcs_size[type], size, hdr); 2925 if (type == ARC_BUFC_METADATA) { 2926 arc_space_return(size, ARC_SPACE_META); 2927 } else { 2928 ASSERT(type == ARC_BUFC_DATA); 2929 arc_space_return(size, ARC_SPACE_DATA); 2930 } 2931 2932 if (free_rdata) { 2933 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2934 } else { 2935 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2936 } 2937 } 2938 2939 /* 2940 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2941 * data buffer, we transfer the refcount ownership to the hdr and update 2942 * the appropriate kstats. 2943 */ 2944 static void 2945 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2946 { 2947 ASSERT(arc_can_share(hdr, buf)); 2948 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2949 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2950 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2951 2952 /* 2953 * Start sharing the data buffer. We transfer the 2954 * refcount ownership to the hdr since it always owns 2955 * the refcount whenever an arc_buf_t is shared. 2956 */ 2957 zfs_refcount_transfer_ownership_many( 2958 &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)], 2959 arc_hdr_size(hdr), buf, hdr); 2960 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2961 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2962 HDR_ISTYPE_METADATA(hdr)); 2963 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2964 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2965 2966 /* 2967 * Since we've transferred ownership to the hdr we need 2968 * to increment its compressed and uncompressed kstats and 2969 * decrement the overhead size. 2970 */ 2971 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2972 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2973 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 2974 } 2975 2976 static void 2977 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2978 { 2979 ASSERT(arc_buf_is_shared(buf)); 2980 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2981 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2982 2983 /* 2984 * We are no longer sharing this buffer so we need 2985 * to transfer its ownership to the rightful owner. 2986 */ 2987 zfs_refcount_transfer_ownership_many( 2988 &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)], 2989 arc_hdr_size(hdr), hdr, buf); 2990 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2991 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 2992 abd_free(hdr->b_l1hdr.b_pabd); 2993 hdr->b_l1hdr.b_pabd = NULL; 2994 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2995 2996 /* 2997 * Since the buffer is no longer shared between 2998 * the arc buf and the hdr, count it as overhead. 2999 */ 3000 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 3001 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3002 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 3003 } 3004 3005 /* 3006 * Remove an arc_buf_t from the hdr's buf list and return the last 3007 * arc_buf_t on the list. If no buffers remain on the list then return 3008 * NULL. 3009 */ 3010 static arc_buf_t * 3011 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3012 { 3013 ASSERT(HDR_HAS_L1HDR(hdr)); 3014 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3015 3016 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 3017 arc_buf_t *lastbuf = NULL; 3018 3019 /* 3020 * Remove the buf from the hdr list and locate the last 3021 * remaining buffer on the list. 3022 */ 3023 while (*bufp != NULL) { 3024 if (*bufp == buf) 3025 *bufp = buf->b_next; 3026 3027 /* 3028 * If we've removed a buffer in the middle of 3029 * the list then update the lastbuf and update 3030 * bufp. 3031 */ 3032 if (*bufp != NULL) { 3033 lastbuf = *bufp; 3034 bufp = &(*bufp)->b_next; 3035 } 3036 } 3037 buf->b_next = NULL; 3038 ASSERT3P(lastbuf, !=, buf); 3039 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 3040 3041 return (lastbuf); 3042 } 3043 3044 /* 3045 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's 3046 * list and free it. 3047 */ 3048 static void 3049 arc_buf_destroy_impl(arc_buf_t *buf) 3050 { 3051 arc_buf_hdr_t *hdr = buf->b_hdr; 3052 3053 /* 3054 * Free up the data associated with the buf but only if we're not 3055 * sharing this with the hdr. If we are sharing it with the hdr, the 3056 * hdr is responsible for doing the free. 3057 */ 3058 if (buf->b_data != NULL) { 3059 /* 3060 * We're about to change the hdr's b_flags. We must either 3061 * hold the hash_lock or be undiscoverable. 3062 */ 3063 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3064 3065 arc_cksum_verify(buf); 3066 arc_buf_unwatch(buf); 3067 3068 if (ARC_BUF_SHARED(buf)) { 3069 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3070 } else { 3071 ASSERT(!arc_buf_is_shared(buf)); 3072 uint64_t size = arc_buf_size(buf); 3073 arc_free_data_buf(hdr, buf->b_data, size, buf); 3074 ARCSTAT_INCR(arcstat_overhead_size, -size); 3075 } 3076 buf->b_data = NULL; 3077 3078 /* 3079 * If we have no more encrypted buffers and we've already 3080 * gotten a copy of the decrypted data we can free b_rabd 3081 * to save some space. 3082 */ 3083 if (ARC_BUF_ENCRYPTED(buf) && HDR_HAS_RABD(hdr) && 3084 hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) { 3085 arc_buf_t *b; 3086 for (b = hdr->b_l1hdr.b_buf; b; b = b->b_next) { 3087 if (b != buf && ARC_BUF_ENCRYPTED(b)) 3088 break; 3089 } 3090 if (b == NULL) 3091 arc_hdr_free_abd(hdr, B_TRUE); 3092 } 3093 } 3094 3095 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3096 3097 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3098 /* 3099 * If the current arc_buf_t is sharing its data buffer with the 3100 * hdr, then reassign the hdr's b_pabd to share it with the new 3101 * buffer at the end of the list. The shared buffer is always 3102 * the last one on the hdr's buffer list. 3103 * 3104 * There is an equivalent case for compressed bufs, but since 3105 * they aren't guaranteed to be the last buf in the list and 3106 * that is an exceedingly rare case, we just allow that space be 3107 * wasted temporarily. We must also be careful not to share 3108 * encrypted buffers, since they cannot be shared. 3109 */ 3110 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3111 /* Only one buf can be shared at once */ 3112 ASSERT(!arc_buf_is_shared(lastbuf)); 3113 /* hdr is uncompressed so can't have compressed buf */ 3114 ASSERT(!ARC_BUF_COMPRESSED(lastbuf)); 3115 3116 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3117 arc_hdr_free_abd(hdr, B_FALSE); 3118 3119 /* 3120 * We must setup a new shared block between the 3121 * last buffer and the hdr. The data would have 3122 * been allocated by the arc buf so we need to transfer 3123 * ownership to the hdr since it's now being shared. 3124 */ 3125 arc_share_buf(hdr, lastbuf); 3126 } 3127 } else if (HDR_SHARED_DATA(hdr)) { 3128 /* 3129 * Uncompressed shared buffers are always at the end 3130 * of the list. Compressed buffers don't have the 3131 * same requirements. This makes it hard to 3132 * simply assert that the lastbuf is shared so 3133 * we rely on the hdr's compression flags to determine 3134 * if we have a compressed, shared buffer. 3135 */ 3136 ASSERT3P(lastbuf, !=, NULL); 3137 ASSERT(arc_buf_is_shared(lastbuf) || 3138 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3139 } 3140 3141 /* 3142 * Free the checksum if we're removing the last uncompressed buf from 3143 * this hdr. 3144 */ 3145 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3146 arc_cksum_free(hdr); 3147 } 3148 3149 /* clean up the buf */ 3150 buf->b_hdr = NULL; 3151 kmem_cache_free(buf_cache, buf); 3152 } 3153 3154 static void 3155 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) 3156 { 3157 uint64_t size; 3158 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3159 3160 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3161 ASSERT(HDR_HAS_L1HDR(hdr)); 3162 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3163 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3164 3165 if (alloc_rdata) { 3166 size = HDR_GET_PSIZE(hdr); 3167 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3168 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3169 alloc_flags); 3170 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3171 ARCSTAT_INCR(arcstat_raw_size, size); 3172 } else { 3173 size = arc_hdr_size(hdr); 3174 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3175 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3176 alloc_flags); 3177 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3178 } 3179 3180 ARCSTAT_INCR(arcstat_compressed_size, size); 3181 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3182 } 3183 3184 static void 3185 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3186 { 3187 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3188 3189 ASSERT(HDR_HAS_L1HDR(hdr)); 3190 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3191 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3192 3193 /* 3194 * If the hdr is currently being written to the l2arc then 3195 * we defer freeing the data by adding it to the l2arc_free_on_write 3196 * list. The l2arc will free the data once it's finished 3197 * writing it to the l2arc device. 3198 */ 3199 if (HDR_L2_WRITING(hdr)) { 3200 arc_hdr_free_on_write(hdr, free_rdata); 3201 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3202 } else if (free_rdata) { 3203 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3204 } else { 3205 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); 3206 } 3207 3208 if (free_rdata) { 3209 hdr->b_crypt_hdr.b_rabd = NULL; 3210 ARCSTAT_INCR(arcstat_raw_size, -size); 3211 } else { 3212 hdr->b_l1hdr.b_pabd = NULL; 3213 } 3214 3215 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3216 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3217 3218 ARCSTAT_INCR(arcstat_compressed_size, -size); 3219 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3220 } 3221 3222 /* 3223 * Allocate empty anonymous ARC header. The header will get its identity 3224 * assigned and buffers attached later as part of read or write operations. 3225 * 3226 * In case of read arc_read() assigns header its identify (b_dva + b_birth), 3227 * inserts it into ARC hash to become globally visible and allocates physical 3228 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read 3229 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially 3230 * sharing one of them with the physical ABD buffer. 3231 * 3232 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with 3233 * data. Then after compression and/or encryption arc_write_ready() allocates 3234 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD 3235 * buffer. On disk write completion arc_write_done() assigns the header its 3236 * new identity (b_dva + b_birth) and inserts into ARC hash. 3237 * 3238 * In case of partial overwrite the old data is read first as described. Then 3239 * arc_release() either allocates new anonymous ARC header and moves the ARC 3240 * buffer to it, or reuses the old ARC header by discarding its identity and 3241 * removing it from ARC hash. After buffer modification normal write process 3242 * follows as described. 3243 */ 3244 static arc_buf_hdr_t * 3245 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3246 boolean_t protected, enum zio_compress compression_type, uint8_t complevel, 3247 arc_buf_contents_t type) 3248 { 3249 arc_buf_hdr_t *hdr; 3250 3251 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3252 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3253 3254 ASSERT(HDR_EMPTY(hdr)); 3255 #ifdef ZFS_DEBUG 3256 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3257 #endif 3258 HDR_SET_PSIZE(hdr, psize); 3259 HDR_SET_LSIZE(hdr, lsize); 3260 hdr->b_spa = spa; 3261 hdr->b_type = type; 3262 hdr->b_flags = 0; 3263 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3264 arc_hdr_set_compress(hdr, compression_type); 3265 hdr->b_complevel = complevel; 3266 if (protected) 3267 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3268 3269 hdr->b_l1hdr.b_state = arc_anon; 3270 hdr->b_l1hdr.b_arc_access = 0; 3271 hdr->b_l1hdr.b_mru_hits = 0; 3272 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3273 hdr->b_l1hdr.b_mfu_hits = 0; 3274 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3275 hdr->b_l1hdr.b_buf = NULL; 3276 3277 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3278 3279 return (hdr); 3280 } 3281 3282 /* 3283 * Transition between the two allocation states for the arc_buf_hdr struct. 3284 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3285 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3286 * version is used when a cache buffer is only in the L2ARC in order to reduce 3287 * memory usage. 3288 */ 3289 static arc_buf_hdr_t * 3290 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3291 { 3292 ASSERT(HDR_HAS_L2HDR(hdr)); 3293 3294 arc_buf_hdr_t *nhdr; 3295 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3296 3297 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3298 (old == hdr_l2only_cache && new == hdr_full_cache)); 3299 3300 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3301 3302 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3303 buf_hash_remove(hdr); 3304 3305 memcpy(nhdr, hdr, HDR_L2ONLY_SIZE); 3306 3307 if (new == hdr_full_cache) { 3308 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3309 /* 3310 * arc_access and arc_change_state need to be aware that a 3311 * header has just come out of L2ARC, so we set its state to 3312 * l2c_only even though it's about to change. 3313 */ 3314 nhdr->b_l1hdr.b_state = arc_l2c_only; 3315 3316 /* Verify previous threads set to NULL before freeing */ 3317 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3318 ASSERT(!HDR_HAS_RABD(hdr)); 3319 } else { 3320 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3321 #ifdef ZFS_DEBUG 3322 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3323 #endif 3324 3325 /* 3326 * If we've reached here, We must have been called from 3327 * arc_evict_hdr(), as such we should have already been 3328 * removed from any ghost list we were previously on 3329 * (which protects us from racing with arc_evict_state), 3330 * thus no locking is needed during this check. 3331 */ 3332 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3333 3334 /* 3335 * A buffer must not be moved into the arc_l2c_only 3336 * state if it's not finished being written out to the 3337 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3338 * might try to be accessed, even though it was removed. 3339 */ 3340 VERIFY(!HDR_L2_WRITING(hdr)); 3341 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3342 ASSERT(!HDR_HAS_RABD(hdr)); 3343 3344 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3345 } 3346 /* 3347 * The header has been reallocated so we need to re-insert it into any 3348 * lists it was on. 3349 */ 3350 (void) buf_hash_insert(nhdr, NULL); 3351 3352 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3353 3354 mutex_enter(&dev->l2ad_mtx); 3355 3356 /* 3357 * We must place the realloc'ed header back into the list at 3358 * the same spot. Otherwise, if it's placed earlier in the list, 3359 * l2arc_write_buffers() could find it during the function's 3360 * write phase, and try to write it out to the l2arc. 3361 */ 3362 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3363 list_remove(&dev->l2ad_buflist, hdr); 3364 3365 mutex_exit(&dev->l2ad_mtx); 3366 3367 /* 3368 * Since we're using the pointer address as the tag when 3369 * incrementing and decrementing the l2ad_alloc refcount, we 3370 * must remove the old pointer (that we're about to destroy) and 3371 * add the new pointer to the refcount. Otherwise we'd remove 3372 * the wrong pointer address when calling arc_hdr_destroy() later. 3373 */ 3374 3375 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 3376 arc_hdr_size(hdr), hdr); 3377 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 3378 arc_hdr_size(nhdr), nhdr); 3379 3380 buf_discard_identity(hdr); 3381 kmem_cache_free(old, hdr); 3382 3383 return (nhdr); 3384 } 3385 3386 /* 3387 * This function is used by the send / receive code to convert a newly 3388 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3389 * is also used to allow the root objset block to be updated without altering 3390 * its embedded MACs. Both block types will always be uncompressed so we do not 3391 * have to worry about compression type or psize. 3392 */ 3393 void 3394 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3395 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3396 const uint8_t *mac) 3397 { 3398 arc_buf_hdr_t *hdr = buf->b_hdr; 3399 3400 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3401 ASSERT(HDR_HAS_L1HDR(hdr)); 3402 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3403 3404 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3405 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3406 hdr->b_crypt_hdr.b_dsobj = dsobj; 3407 hdr->b_crypt_hdr.b_ot = ot; 3408 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3409 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3410 if (!arc_hdr_has_uncompressed_buf(hdr)) 3411 arc_cksum_free(hdr); 3412 3413 if (salt != NULL) 3414 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 3415 if (iv != NULL) 3416 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 3417 if (mac != NULL) 3418 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 3419 } 3420 3421 /* 3422 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3423 * The buf is returned thawed since we expect the consumer to modify it. 3424 */ 3425 arc_buf_t * 3426 arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type, 3427 int32_t size) 3428 { 3429 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3430 B_FALSE, ZIO_COMPRESS_OFF, 0, type); 3431 3432 arc_buf_t *buf = NULL; 3433 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3434 B_FALSE, B_FALSE, &buf)); 3435 arc_buf_thaw(buf); 3436 3437 return (buf); 3438 } 3439 3440 /* 3441 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3442 * for bufs containing metadata. 3443 */ 3444 arc_buf_t * 3445 arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize, 3446 uint64_t lsize, enum zio_compress compression_type, uint8_t complevel) 3447 { 3448 ASSERT3U(lsize, >, 0); 3449 ASSERT3U(lsize, >=, psize); 3450 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3451 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3452 3453 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3454 B_FALSE, compression_type, complevel, ARC_BUFC_DATA); 3455 3456 arc_buf_t *buf = NULL; 3457 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3458 B_TRUE, B_FALSE, B_FALSE, &buf)); 3459 arc_buf_thaw(buf); 3460 3461 /* 3462 * To ensure that the hdr has the correct data in it if we call 3463 * arc_untransform() on this buf before it's been written to disk, 3464 * it's easiest if we just set up sharing between the buf and the hdr. 3465 */ 3466 arc_share_buf(hdr, buf); 3467 3468 return (buf); 3469 } 3470 3471 arc_buf_t * 3472 arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj, 3473 boolean_t byteorder, const uint8_t *salt, const uint8_t *iv, 3474 const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3475 enum zio_compress compression_type, uint8_t complevel) 3476 { 3477 arc_buf_hdr_t *hdr; 3478 arc_buf_t *buf; 3479 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3480 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3481 3482 ASSERT3U(lsize, >, 0); 3483 ASSERT3U(lsize, >=, psize); 3484 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3485 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3486 3487 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3488 compression_type, complevel, type); 3489 3490 hdr->b_crypt_hdr.b_dsobj = dsobj; 3491 hdr->b_crypt_hdr.b_ot = ot; 3492 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3493 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3494 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 3495 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 3496 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 3497 3498 /* 3499 * This buffer will be considered encrypted even if the ot is not an 3500 * encrypted type. It will become authenticated instead in 3501 * arc_write_ready(). 3502 */ 3503 buf = NULL; 3504 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3505 B_FALSE, B_FALSE, &buf)); 3506 arc_buf_thaw(buf); 3507 3508 return (buf); 3509 } 3510 3511 static void 3512 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 3513 boolean_t state_only) 3514 { 3515 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3516 l2arc_dev_t *dev = l2hdr->b_dev; 3517 uint64_t lsize = HDR_GET_LSIZE(hdr); 3518 uint64_t psize = HDR_GET_PSIZE(hdr); 3519 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3520 arc_buf_contents_t type = hdr->b_type; 3521 int64_t lsize_s; 3522 int64_t psize_s; 3523 int64_t asize_s; 3524 3525 if (incr) { 3526 lsize_s = lsize; 3527 psize_s = psize; 3528 asize_s = asize; 3529 } else { 3530 lsize_s = -lsize; 3531 psize_s = -psize; 3532 asize_s = -asize; 3533 } 3534 3535 /* If the buffer is a prefetch, count it as such. */ 3536 if (HDR_PREFETCH(hdr)) { 3537 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); 3538 } else { 3539 /* 3540 * We use the value stored in the L2 header upon initial 3541 * caching in L2ARC. This value will be updated in case 3542 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC 3543 * metadata (log entry) cannot currently be updated. Having 3544 * the ARC state in the L2 header solves the problem of a 3545 * possibly absent L1 header (apparent in buffers restored 3546 * from persistent L2ARC). 3547 */ 3548 switch (hdr->b_l2hdr.b_arcs_state) { 3549 case ARC_STATE_MRU_GHOST: 3550 case ARC_STATE_MRU: 3551 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); 3552 break; 3553 case ARC_STATE_MFU_GHOST: 3554 case ARC_STATE_MFU: 3555 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); 3556 break; 3557 default: 3558 break; 3559 } 3560 } 3561 3562 if (state_only) 3563 return; 3564 3565 ARCSTAT_INCR(arcstat_l2_psize, psize_s); 3566 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); 3567 3568 switch (type) { 3569 case ARC_BUFC_DATA: 3570 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); 3571 break; 3572 case ARC_BUFC_METADATA: 3573 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); 3574 break; 3575 default: 3576 break; 3577 } 3578 } 3579 3580 3581 static void 3582 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3583 { 3584 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3585 l2arc_dev_t *dev = l2hdr->b_dev; 3586 uint64_t psize = HDR_GET_PSIZE(hdr); 3587 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3588 3589 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3590 ASSERT(HDR_HAS_L2HDR(hdr)); 3591 3592 list_remove(&dev->l2ad_buflist, hdr); 3593 3594 l2arc_hdr_arcstats_decrement(hdr); 3595 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3596 3597 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3598 hdr); 3599 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3600 } 3601 3602 static void 3603 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3604 { 3605 if (HDR_HAS_L1HDR(hdr)) { 3606 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3607 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3608 } 3609 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3610 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3611 3612 if (HDR_HAS_L2HDR(hdr)) { 3613 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3614 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3615 3616 if (!buflist_held) 3617 mutex_enter(&dev->l2ad_mtx); 3618 3619 /* 3620 * Even though we checked this conditional above, we 3621 * need to check this again now that we have the 3622 * l2ad_mtx. This is because we could be racing with 3623 * another thread calling l2arc_evict() which might have 3624 * destroyed this header's L2 portion as we were waiting 3625 * to acquire the l2ad_mtx. If that happens, we don't 3626 * want to re-destroy the header's L2 portion. 3627 */ 3628 if (HDR_HAS_L2HDR(hdr)) { 3629 3630 if (!HDR_EMPTY(hdr)) 3631 buf_discard_identity(hdr); 3632 3633 arc_hdr_l2hdr_destroy(hdr); 3634 } 3635 3636 if (!buflist_held) 3637 mutex_exit(&dev->l2ad_mtx); 3638 } 3639 3640 /* 3641 * The header's identify can only be safely discarded once it is no 3642 * longer discoverable. This requires removing it from the hash table 3643 * and the l2arc header list. After this point the hash lock can not 3644 * be used to protect the header. 3645 */ 3646 if (!HDR_EMPTY(hdr)) 3647 buf_discard_identity(hdr); 3648 3649 if (HDR_HAS_L1HDR(hdr)) { 3650 arc_cksum_free(hdr); 3651 3652 while (hdr->b_l1hdr.b_buf != NULL) 3653 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3654 3655 if (hdr->b_l1hdr.b_pabd != NULL) 3656 arc_hdr_free_abd(hdr, B_FALSE); 3657 3658 if (HDR_HAS_RABD(hdr)) 3659 arc_hdr_free_abd(hdr, B_TRUE); 3660 } 3661 3662 ASSERT3P(hdr->b_hash_next, ==, NULL); 3663 if (HDR_HAS_L1HDR(hdr)) { 3664 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3665 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3666 #ifdef ZFS_DEBUG 3667 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3668 #endif 3669 kmem_cache_free(hdr_full_cache, hdr); 3670 } else { 3671 kmem_cache_free(hdr_l2only_cache, hdr); 3672 } 3673 } 3674 3675 void 3676 arc_buf_destroy(arc_buf_t *buf, const void *tag) 3677 { 3678 arc_buf_hdr_t *hdr = buf->b_hdr; 3679 3680 if (hdr->b_l1hdr.b_state == arc_anon) { 3681 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf); 3682 ASSERT(ARC_BUF_LAST(buf)); 3683 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3684 VERIFY0(remove_reference(hdr, tag)); 3685 return; 3686 } 3687 3688 kmutex_t *hash_lock = HDR_LOCK(hdr); 3689 mutex_enter(hash_lock); 3690 3691 ASSERT3P(hdr, ==, buf->b_hdr); 3692 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL); 3693 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3694 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3695 ASSERT3P(buf->b_data, !=, NULL); 3696 3697 arc_buf_destroy_impl(buf); 3698 (void) remove_reference(hdr, tag); 3699 mutex_exit(hash_lock); 3700 } 3701 3702 /* 3703 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3704 * state of the header is dependent on its state prior to entering this 3705 * function. The following transitions are possible: 3706 * 3707 * - arc_mru -> arc_mru_ghost 3708 * - arc_mfu -> arc_mfu_ghost 3709 * - arc_mru_ghost -> arc_l2c_only 3710 * - arc_mru_ghost -> deleted 3711 * - arc_mfu_ghost -> arc_l2c_only 3712 * - arc_mfu_ghost -> deleted 3713 * - arc_uncached -> deleted 3714 * 3715 * Return total size of evicted data buffers for eviction progress tracking. 3716 * When evicting from ghost states return logical buffer size to make eviction 3717 * progress at the same (or at least comparable) rate as from non-ghost states. 3718 * 3719 * Return *real_evicted for actual ARC size reduction to wake up threads 3720 * waiting for it. For non-ghost states it includes size of evicted data 3721 * buffers (the headers are not freed there). For ghost states it includes 3722 * only the evicted headers size. 3723 */ 3724 static int64_t 3725 arc_evict_hdr(arc_buf_hdr_t *hdr, uint64_t *real_evicted) 3726 { 3727 arc_state_t *evicted_state, *state; 3728 int64_t bytes_evicted = 0; 3729 uint_t min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3730 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; 3731 3732 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3733 ASSERT(HDR_HAS_L1HDR(hdr)); 3734 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3735 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3736 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3737 3738 *real_evicted = 0; 3739 state = hdr->b_l1hdr.b_state; 3740 if (GHOST_STATE(state)) { 3741 3742 /* 3743 * l2arc_write_buffers() relies on a header's L1 portion 3744 * (i.e. its b_pabd field) during it's write phase. 3745 * Thus, we cannot push a header onto the arc_l2c_only 3746 * state (removing its L1 piece) until the header is 3747 * done being written to the l2arc. 3748 */ 3749 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3750 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3751 return (bytes_evicted); 3752 } 3753 3754 ARCSTAT_BUMP(arcstat_deleted); 3755 bytes_evicted += HDR_GET_LSIZE(hdr); 3756 3757 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3758 3759 if (HDR_HAS_L2HDR(hdr)) { 3760 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3761 ASSERT(!HDR_HAS_RABD(hdr)); 3762 /* 3763 * This buffer is cached on the 2nd Level ARC; 3764 * don't destroy the header. 3765 */ 3766 arc_change_state(arc_l2c_only, hdr); 3767 /* 3768 * dropping from L1+L2 cached to L2-only, 3769 * realloc to remove the L1 header. 3770 */ 3771 (void) arc_hdr_realloc(hdr, hdr_full_cache, 3772 hdr_l2only_cache); 3773 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE; 3774 } else { 3775 arc_change_state(arc_anon, hdr); 3776 arc_hdr_destroy(hdr); 3777 *real_evicted += HDR_FULL_SIZE; 3778 } 3779 return (bytes_evicted); 3780 } 3781 3782 ASSERT(state == arc_mru || state == arc_mfu || state == arc_uncached); 3783 evicted_state = (state == arc_uncached) ? arc_anon : 3784 ((state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost); 3785 3786 /* prefetch buffers have a minimum lifespan */ 3787 if ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3788 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3789 MSEC_TO_TICK(min_lifetime)) { 3790 ARCSTAT_BUMP(arcstat_evict_skip); 3791 return (bytes_evicted); 3792 } 3793 3794 if (HDR_HAS_L2HDR(hdr)) { 3795 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3796 } else { 3797 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3798 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3799 HDR_GET_LSIZE(hdr)); 3800 3801 switch (state->arcs_state) { 3802 case ARC_STATE_MRU: 3803 ARCSTAT_INCR( 3804 arcstat_evict_l2_eligible_mru, 3805 HDR_GET_LSIZE(hdr)); 3806 break; 3807 case ARC_STATE_MFU: 3808 ARCSTAT_INCR( 3809 arcstat_evict_l2_eligible_mfu, 3810 HDR_GET_LSIZE(hdr)); 3811 break; 3812 default: 3813 break; 3814 } 3815 } else { 3816 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3817 HDR_GET_LSIZE(hdr)); 3818 } 3819 } 3820 3821 bytes_evicted += arc_hdr_size(hdr); 3822 *real_evicted += arc_hdr_size(hdr); 3823 3824 /* 3825 * If this hdr is being evicted and has a compressed buffer then we 3826 * discard it here before we change states. This ensures that the 3827 * accounting is updated correctly in arc_free_data_impl(). 3828 */ 3829 if (hdr->b_l1hdr.b_pabd != NULL) 3830 arc_hdr_free_abd(hdr, B_FALSE); 3831 3832 if (HDR_HAS_RABD(hdr)) 3833 arc_hdr_free_abd(hdr, B_TRUE); 3834 3835 arc_change_state(evicted_state, hdr); 3836 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3837 if (evicted_state == arc_anon) { 3838 arc_hdr_destroy(hdr); 3839 *real_evicted += HDR_FULL_SIZE; 3840 } else { 3841 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3842 } 3843 3844 return (bytes_evicted); 3845 } 3846 3847 static void 3848 arc_set_need_free(void) 3849 { 3850 ASSERT(MUTEX_HELD(&arc_evict_lock)); 3851 int64_t remaining = arc_free_memory() - arc_sys_free / 2; 3852 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); 3853 if (aw == NULL) { 3854 arc_need_free = MAX(-remaining, 0); 3855 } else { 3856 arc_need_free = 3857 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); 3858 } 3859 } 3860 3861 static uint64_t 3862 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3863 uint64_t spa, uint64_t bytes) 3864 { 3865 multilist_sublist_t *mls; 3866 uint64_t bytes_evicted = 0, real_evicted = 0; 3867 arc_buf_hdr_t *hdr; 3868 kmutex_t *hash_lock; 3869 uint_t evict_count = zfs_arc_evict_batch_limit; 3870 3871 ASSERT3P(marker, !=, NULL); 3872 3873 mls = multilist_sublist_lock(ml, idx); 3874 3875 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL); 3876 hdr = multilist_sublist_prev(mls, marker)) { 3877 if ((evict_count == 0) || (bytes_evicted >= bytes)) 3878 break; 3879 3880 /* 3881 * To keep our iteration location, move the marker 3882 * forward. Since we're not holding hdr's hash lock, we 3883 * must be very careful and not remove 'hdr' from the 3884 * sublist. Otherwise, other consumers might mistake the 3885 * 'hdr' as not being on a sublist when they call the 3886 * multilist_link_active() function (they all rely on 3887 * the hash lock protecting concurrent insertions and 3888 * removals). multilist_sublist_move_forward() was 3889 * specifically implemented to ensure this is the case 3890 * (only 'marker' will be removed and re-inserted). 3891 */ 3892 multilist_sublist_move_forward(mls, marker); 3893 3894 /* 3895 * The only case where the b_spa field should ever be 3896 * zero, is the marker headers inserted by 3897 * arc_evict_state(). It's possible for multiple threads 3898 * to be calling arc_evict_state() concurrently (e.g. 3899 * dsl_pool_close() and zio_inject_fault()), so we must 3900 * skip any markers we see from these other threads. 3901 */ 3902 if (hdr->b_spa == 0) 3903 continue; 3904 3905 /* we're only interested in evicting buffers of a certain spa */ 3906 if (spa != 0 && hdr->b_spa != spa) { 3907 ARCSTAT_BUMP(arcstat_evict_skip); 3908 continue; 3909 } 3910 3911 hash_lock = HDR_LOCK(hdr); 3912 3913 /* 3914 * We aren't calling this function from any code path 3915 * that would already be holding a hash lock, so we're 3916 * asserting on this assumption to be defensive in case 3917 * this ever changes. Without this check, it would be 3918 * possible to incorrectly increment arcstat_mutex_miss 3919 * below (e.g. if the code changed such that we called 3920 * this function with a hash lock held). 3921 */ 3922 ASSERT(!MUTEX_HELD(hash_lock)); 3923 3924 if (mutex_tryenter(hash_lock)) { 3925 uint64_t revicted; 3926 uint64_t evicted = arc_evict_hdr(hdr, &revicted); 3927 mutex_exit(hash_lock); 3928 3929 bytes_evicted += evicted; 3930 real_evicted += revicted; 3931 3932 /* 3933 * If evicted is zero, arc_evict_hdr() must have 3934 * decided to skip this header, don't increment 3935 * evict_count in this case. 3936 */ 3937 if (evicted != 0) 3938 evict_count--; 3939 3940 } else { 3941 ARCSTAT_BUMP(arcstat_mutex_miss); 3942 } 3943 } 3944 3945 multilist_sublist_unlock(mls); 3946 3947 /* 3948 * Increment the count of evicted bytes, and wake up any threads that 3949 * are waiting for the count to reach this value. Since the list is 3950 * ordered by ascending aew_count, we pop off the beginning of the 3951 * list until we reach the end, or a waiter that's past the current 3952 * "count". Doing this outside the loop reduces the number of times 3953 * we need to acquire the global arc_evict_lock. 3954 * 3955 * Only wake when there's sufficient free memory in the system 3956 * (specifically, arc_sys_free/2, which by default is a bit more than 3957 * 1/64th of RAM). See the comments in arc_wait_for_eviction(). 3958 */ 3959 mutex_enter(&arc_evict_lock); 3960 arc_evict_count += real_evicted; 3961 3962 if (arc_free_memory() > arc_sys_free / 2) { 3963 arc_evict_waiter_t *aw; 3964 while ((aw = list_head(&arc_evict_waiters)) != NULL && 3965 aw->aew_count <= arc_evict_count) { 3966 list_remove(&arc_evict_waiters, aw); 3967 cv_broadcast(&aw->aew_cv); 3968 } 3969 } 3970 arc_set_need_free(); 3971 mutex_exit(&arc_evict_lock); 3972 3973 /* 3974 * If the ARC size is reduced from arc_c_max to arc_c_min (especially 3975 * if the average cached block is small), eviction can be on-CPU for 3976 * many seconds. To ensure that other threads that may be bound to 3977 * this CPU are able to make progress, make a voluntary preemption 3978 * call here. 3979 */ 3980 kpreempt(KPREEMPT_SYNC); 3981 3982 return (bytes_evicted); 3983 } 3984 3985 /* 3986 * Allocate an array of buffer headers used as placeholders during arc state 3987 * eviction. 3988 */ 3989 static arc_buf_hdr_t ** 3990 arc_state_alloc_markers(int count) 3991 { 3992 arc_buf_hdr_t **markers; 3993 3994 markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP); 3995 for (int i = 0; i < count; i++) { 3996 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 3997 3998 /* 3999 * A b_spa of 0 is used to indicate that this header is 4000 * a marker. This fact is used in arc_evict_state_impl(). 4001 */ 4002 markers[i]->b_spa = 0; 4003 4004 } 4005 return (markers); 4006 } 4007 4008 static void 4009 arc_state_free_markers(arc_buf_hdr_t **markers, int count) 4010 { 4011 for (int i = 0; i < count; i++) 4012 kmem_cache_free(hdr_full_cache, markers[i]); 4013 kmem_free(markers, sizeof (*markers) * count); 4014 } 4015 4016 /* 4017 * Evict buffers from the given arc state, until we've removed the 4018 * specified number of bytes. Move the removed buffers to the 4019 * appropriate evict state. 4020 * 4021 * This function makes a "best effort". It skips over any buffers 4022 * it can't get a hash_lock on, and so, may not catch all candidates. 4023 * It may also return without evicting as much space as requested. 4024 * 4025 * If bytes is specified using the special value ARC_EVICT_ALL, this 4026 * will evict all available (i.e. unlocked and evictable) buffers from 4027 * the given arc state; which is used by arc_flush(). 4028 */ 4029 static uint64_t 4030 arc_evict_state(arc_state_t *state, arc_buf_contents_t type, uint64_t spa, 4031 uint64_t bytes) 4032 { 4033 uint64_t total_evicted = 0; 4034 multilist_t *ml = &state->arcs_list[type]; 4035 int num_sublists; 4036 arc_buf_hdr_t **markers; 4037 4038 num_sublists = multilist_get_num_sublists(ml); 4039 4040 /* 4041 * If we've tried to evict from each sublist, made some 4042 * progress, but still have not hit the target number of bytes 4043 * to evict, we want to keep trying. The markers allow us to 4044 * pick up where we left off for each individual sublist, rather 4045 * than starting from the tail each time. 4046 */ 4047 if (zthr_iscurthread(arc_evict_zthr)) { 4048 markers = arc_state_evict_markers; 4049 ASSERT3S(num_sublists, <=, arc_state_evict_marker_count); 4050 } else { 4051 markers = arc_state_alloc_markers(num_sublists); 4052 } 4053 for (int i = 0; i < num_sublists; i++) { 4054 multilist_sublist_t *mls; 4055 4056 mls = multilist_sublist_lock(ml, i); 4057 multilist_sublist_insert_tail(mls, markers[i]); 4058 multilist_sublist_unlock(mls); 4059 } 4060 4061 /* 4062 * While we haven't hit our target number of bytes to evict, or 4063 * we're evicting all available buffers. 4064 */ 4065 while (total_evicted < bytes) { 4066 int sublist_idx = multilist_get_random_index(ml); 4067 uint64_t scan_evicted = 0; 4068 4069 /* 4070 * Start eviction using a randomly selected sublist, 4071 * this is to try and evenly balance eviction across all 4072 * sublists. Always starting at the same sublist 4073 * (e.g. index 0) would cause evictions to favor certain 4074 * sublists over others. 4075 */ 4076 for (int i = 0; i < num_sublists; i++) { 4077 uint64_t bytes_remaining; 4078 uint64_t bytes_evicted; 4079 4080 if (total_evicted < bytes) 4081 bytes_remaining = bytes - total_evicted; 4082 else 4083 break; 4084 4085 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4086 markers[sublist_idx], spa, bytes_remaining); 4087 4088 scan_evicted += bytes_evicted; 4089 total_evicted += bytes_evicted; 4090 4091 /* we've reached the end, wrap to the beginning */ 4092 if (++sublist_idx >= num_sublists) 4093 sublist_idx = 0; 4094 } 4095 4096 /* 4097 * If we didn't evict anything during this scan, we have 4098 * no reason to believe we'll evict more during another 4099 * scan, so break the loop. 4100 */ 4101 if (scan_evicted == 0) { 4102 /* This isn't possible, let's make that obvious */ 4103 ASSERT3S(bytes, !=, 0); 4104 4105 /* 4106 * When bytes is ARC_EVICT_ALL, the only way to 4107 * break the loop is when scan_evicted is zero. 4108 * In that case, we actually have evicted enough, 4109 * so we don't want to increment the kstat. 4110 */ 4111 if (bytes != ARC_EVICT_ALL) { 4112 ASSERT3S(total_evicted, <, bytes); 4113 ARCSTAT_BUMP(arcstat_evict_not_enough); 4114 } 4115 4116 break; 4117 } 4118 } 4119 4120 for (int i = 0; i < num_sublists; i++) { 4121 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4122 multilist_sublist_remove(mls, markers[i]); 4123 multilist_sublist_unlock(mls); 4124 } 4125 if (markers != arc_state_evict_markers) 4126 arc_state_free_markers(markers, num_sublists); 4127 4128 return (total_evicted); 4129 } 4130 4131 /* 4132 * Flush all "evictable" data of the given type from the arc state 4133 * specified. This will not evict any "active" buffers (i.e. referenced). 4134 * 4135 * When 'retry' is set to B_FALSE, the function will make a single pass 4136 * over the state and evict any buffers that it can. Since it doesn't 4137 * continually retry the eviction, it might end up leaving some buffers 4138 * in the ARC due to lock misses. 4139 * 4140 * When 'retry' is set to B_TRUE, the function will continually retry the 4141 * eviction until *all* evictable buffers have been removed from the 4142 * state. As a result, if concurrent insertions into the state are 4143 * allowed (e.g. if the ARC isn't shutting down), this function might 4144 * wind up in an infinite loop, continually trying to evict buffers. 4145 */ 4146 static uint64_t 4147 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4148 boolean_t retry) 4149 { 4150 uint64_t evicted = 0; 4151 4152 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4153 evicted += arc_evict_state(state, type, spa, ARC_EVICT_ALL); 4154 4155 if (!retry) 4156 break; 4157 } 4158 4159 return (evicted); 4160 } 4161 4162 /* 4163 * Evict the specified number of bytes from the state specified. This 4164 * function prevents us from trying to evict more from a state's list 4165 * than is "evictable", and to skip evicting altogether when passed a 4166 * negative value for "bytes". In contrast, arc_evict_state() will 4167 * evict everything it can, when passed a negative value for "bytes". 4168 */ 4169 static uint64_t 4170 arc_evict_impl(arc_state_t *state, arc_buf_contents_t type, int64_t bytes) 4171 { 4172 uint64_t delta; 4173 4174 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4175 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4176 bytes); 4177 return (arc_evict_state(state, type, 0, delta)); 4178 } 4179 4180 return (0); 4181 } 4182 4183 /* 4184 * Adjust specified fraction, taking into account initial ghost state(s) size, 4185 * ghost hit bytes towards increasing the fraction, ghost hit bytes towards 4186 * decreasing it, plus a balance factor, controlling the decrease rate, used 4187 * to balance metadata vs data. 4188 */ 4189 static uint64_t 4190 arc_evict_adj(uint64_t frac, uint64_t total, uint64_t up, uint64_t down, 4191 uint_t balance) 4192 { 4193 if (total < 8 || up + down == 0) 4194 return (frac); 4195 4196 /* 4197 * We should not have more ghost hits than ghost size, but they 4198 * may get close. Restrict maximum adjustment in that case. 4199 */ 4200 if (up + down >= total / 4) { 4201 uint64_t scale = (up + down) / (total / 8); 4202 up /= scale; 4203 down /= scale; 4204 } 4205 4206 /* Get maximal dynamic range by choosing optimal shifts. */ 4207 int s = highbit64(total); 4208 s = MIN(64 - s, 32); 4209 4210 uint64_t ofrac = (1ULL << 32) - frac; 4211 4212 if (frac >= 4 * ofrac) 4213 up /= frac / (2 * ofrac + 1); 4214 up = (up << s) / (total >> (32 - s)); 4215 if (ofrac >= 4 * frac) 4216 down /= ofrac / (2 * frac + 1); 4217 down = (down << s) / (total >> (32 - s)); 4218 down = down * 100 / balance; 4219 4220 return (frac + up - down); 4221 } 4222 4223 /* 4224 * Evict buffers from the cache, such that arcstat_size is capped by arc_c. 4225 */ 4226 static uint64_t 4227 arc_evict(void) 4228 { 4229 uint64_t asize, bytes, total_evicted = 0; 4230 int64_t e, mrud, mrum, mfud, mfum, w; 4231 static uint64_t ogrd, ogrm, ogfd, ogfm; 4232 static uint64_t gsrd, gsrm, gsfd, gsfm; 4233 uint64_t ngrd, ngrm, ngfd, ngfm; 4234 4235 /* Get current size of ARC states we can evict from. */ 4236 mrud = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_DATA]) + 4237 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]); 4238 mrum = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) + 4239 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]); 4240 mfud = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_DATA]); 4241 mfum = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]); 4242 uint64_t d = mrud + mfud; 4243 uint64_t m = mrum + mfum; 4244 uint64_t t = d + m; 4245 4246 /* Get ARC ghost hits since last eviction. */ 4247 ngrd = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]); 4248 uint64_t grd = ngrd - ogrd; 4249 ogrd = ngrd; 4250 ngrm = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]); 4251 uint64_t grm = ngrm - ogrm; 4252 ogrm = ngrm; 4253 ngfd = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]); 4254 uint64_t gfd = ngfd - ogfd; 4255 ogfd = ngfd; 4256 ngfm = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]); 4257 uint64_t gfm = ngfm - ogfm; 4258 ogfm = ngfm; 4259 4260 /* Adjust ARC states balance based on ghost hits. */ 4261 arc_meta = arc_evict_adj(arc_meta, gsrd + gsrm + gsfd + gsfm, 4262 grm + gfm, grd + gfd, zfs_arc_meta_balance); 4263 arc_pd = arc_evict_adj(arc_pd, gsrd + gsfd, grd, gfd, 100); 4264 arc_pm = arc_evict_adj(arc_pm, gsrm + gsfm, grm, gfm, 100); 4265 4266 asize = aggsum_value(&arc_sums.arcstat_size); 4267 int64_t wt = t - (asize - arc_c); 4268 4269 /* 4270 * Try to reduce pinned dnodes if more than 3/4 of wanted metadata 4271 * target is not evictable or if they go over arc_dnode_limit. 4272 */ 4273 int64_t prune = 0; 4274 int64_t dn = wmsum_value(&arc_sums.arcstat_dnode_size); 4275 w = wt * (int64_t)(arc_meta >> 16) >> 16; 4276 if (zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) + 4277 zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]) - 4278 zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) - 4279 zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]) > 4280 w * 3 / 4) { 4281 prune = dn / sizeof (dnode_t) * 4282 zfs_arc_dnode_reduce_percent / 100; 4283 } else if (dn > arc_dnode_limit) { 4284 prune = (dn - arc_dnode_limit) / sizeof (dnode_t) * 4285 zfs_arc_dnode_reduce_percent / 100; 4286 } 4287 if (prune > 0) 4288 arc_prune_async(prune); 4289 4290 /* Evict MRU metadata. */ 4291 w = wt * (int64_t)(arc_meta * arc_pm >> 48) >> 16; 4292 e = MIN((int64_t)(asize - arc_c), (int64_t)(mrum - w)); 4293 bytes = arc_evict_impl(arc_mru, ARC_BUFC_METADATA, e); 4294 total_evicted += bytes; 4295 mrum -= bytes; 4296 asize -= bytes; 4297 4298 /* Evict MFU metadata. */ 4299 w = wt * (int64_t)(arc_meta >> 16) >> 16; 4300 e = MIN((int64_t)(asize - arc_c), (int64_t)(m - w)); 4301 bytes = arc_evict_impl(arc_mfu, ARC_BUFC_METADATA, e); 4302 total_evicted += bytes; 4303 mfum -= bytes; 4304 asize -= bytes; 4305 4306 /* Evict MRU data. */ 4307 wt -= m - total_evicted; 4308 w = wt * (int64_t)(arc_pd >> 16) >> 16; 4309 e = MIN((int64_t)(asize - arc_c), (int64_t)(mrud - w)); 4310 bytes = arc_evict_impl(arc_mru, ARC_BUFC_DATA, e); 4311 total_evicted += bytes; 4312 mrud -= bytes; 4313 asize -= bytes; 4314 4315 /* Evict MFU data. */ 4316 e = asize - arc_c; 4317 bytes = arc_evict_impl(arc_mfu, ARC_BUFC_DATA, e); 4318 mfud -= bytes; 4319 total_evicted += bytes; 4320 4321 /* 4322 * Evict ghost lists 4323 * 4324 * Size of each state's ghost list represents how much that state 4325 * may grow by shrinking the other states. Would it need to shrink 4326 * other states to zero (that is unlikely), its ghost size would be 4327 * equal to sum of other three state sizes. But excessive ghost 4328 * size may result in false ghost hits (too far back), that may 4329 * never result in real cache hits if several states are competing. 4330 * So choose some arbitraty point of 1/2 of other state sizes. 4331 */ 4332 gsrd = (mrum + mfud + mfum) / 2; 4333 e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]) - 4334 gsrd; 4335 (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_DATA, e); 4336 4337 gsrm = (mrud + mfud + mfum) / 2; 4338 e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]) - 4339 gsrm; 4340 (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_METADATA, e); 4341 4342 gsfd = (mrud + mrum + mfum) / 2; 4343 e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]) - 4344 gsfd; 4345 (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_DATA, e); 4346 4347 gsfm = (mrud + mrum + mfud) / 2; 4348 e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]) - 4349 gsfm; 4350 (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_METADATA, e); 4351 4352 return (total_evicted); 4353 } 4354 4355 void 4356 arc_flush(spa_t *spa, boolean_t retry) 4357 { 4358 uint64_t guid = 0; 4359 4360 /* 4361 * If retry is B_TRUE, a spa must not be specified since we have 4362 * no good way to determine if all of a spa's buffers have been 4363 * evicted from an arc state. 4364 */ 4365 ASSERT(!retry || spa == NULL); 4366 4367 if (spa != NULL) 4368 guid = spa_load_guid(spa); 4369 4370 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4371 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4372 4373 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4374 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4375 4376 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4377 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4378 4379 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4380 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4381 4382 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_DATA, retry); 4383 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_METADATA, retry); 4384 } 4385 4386 void 4387 arc_reduce_target_size(int64_t to_free) 4388 { 4389 uint64_t c = arc_c; 4390 4391 if (c <= arc_c_min) 4392 return; 4393 4394 /* 4395 * All callers want the ARC to actually evict (at least) this much 4396 * memory. Therefore we reduce from the lower of the current size and 4397 * the target size. This way, even if arc_c is much higher than 4398 * arc_size (as can be the case after many calls to arc_freed(), we will 4399 * immediately have arc_c < arc_size and therefore the arc_evict_zthr 4400 * will evict. 4401 */ 4402 uint64_t asize = aggsum_value(&arc_sums.arcstat_size); 4403 if (asize < c) 4404 to_free += c - asize; 4405 arc_c = MAX((int64_t)c - to_free, (int64_t)arc_c_min); 4406 4407 /* See comment in arc_evict_cb_check() on why lock+flag */ 4408 mutex_enter(&arc_evict_lock); 4409 arc_evict_needed = B_TRUE; 4410 mutex_exit(&arc_evict_lock); 4411 zthr_wakeup(arc_evict_zthr); 4412 } 4413 4414 /* 4415 * Determine if the system is under memory pressure and is asking 4416 * to reclaim memory. A return value of B_TRUE indicates that the system 4417 * is under memory pressure and that the arc should adjust accordingly. 4418 */ 4419 boolean_t 4420 arc_reclaim_needed(void) 4421 { 4422 return (arc_available_memory() < 0); 4423 } 4424 4425 void 4426 arc_kmem_reap_soon(void) 4427 { 4428 size_t i; 4429 kmem_cache_t *prev_cache = NULL; 4430 kmem_cache_t *prev_data_cache = NULL; 4431 4432 #ifdef _KERNEL 4433 #if defined(_ILP32) 4434 /* 4435 * Reclaim unused memory from all kmem caches. 4436 */ 4437 kmem_reap(); 4438 #endif 4439 #endif 4440 4441 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4442 #if defined(_ILP32) 4443 /* reach upper limit of cache size on 32-bit */ 4444 if (zio_buf_cache[i] == NULL) 4445 break; 4446 #endif 4447 if (zio_buf_cache[i] != prev_cache) { 4448 prev_cache = zio_buf_cache[i]; 4449 kmem_cache_reap_now(zio_buf_cache[i]); 4450 } 4451 if (zio_data_buf_cache[i] != prev_data_cache) { 4452 prev_data_cache = zio_data_buf_cache[i]; 4453 kmem_cache_reap_now(zio_data_buf_cache[i]); 4454 } 4455 } 4456 kmem_cache_reap_now(buf_cache); 4457 kmem_cache_reap_now(hdr_full_cache); 4458 kmem_cache_reap_now(hdr_l2only_cache); 4459 kmem_cache_reap_now(zfs_btree_leaf_cache); 4460 abd_cache_reap_now(); 4461 } 4462 4463 static boolean_t 4464 arc_evict_cb_check(void *arg, zthr_t *zthr) 4465 { 4466 (void) arg, (void) zthr; 4467 4468 #ifdef ZFS_DEBUG 4469 /* 4470 * This is necessary in order to keep the kstat information 4471 * up to date for tools that display kstat data such as the 4472 * mdb ::arc dcmd and the Linux crash utility. These tools 4473 * typically do not call kstat's update function, but simply 4474 * dump out stats from the most recent update. Without 4475 * this call, these commands may show stale stats for the 4476 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4477 * with this call, the data might be out of date if the 4478 * evict thread hasn't been woken recently; but that should 4479 * suffice. The arc_state_t structures can be queried 4480 * directly if more accurate information is needed. 4481 */ 4482 if (arc_ksp != NULL) 4483 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4484 #endif 4485 4486 /* 4487 * We have to rely on arc_wait_for_eviction() to tell us when to 4488 * evict, rather than checking if we are overflowing here, so that we 4489 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. 4490 * If we have become "not overflowing" since arc_wait_for_eviction() 4491 * checked, we need to wake it up. We could broadcast the CV here, 4492 * but arc_wait_for_eviction() may have not yet gone to sleep. We 4493 * would need to use a mutex to ensure that this function doesn't 4494 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. 4495 * the arc_evict_lock). However, the lock ordering of such a lock 4496 * would necessarily be incorrect with respect to the zthr_lock, 4497 * which is held before this function is called, and is held by 4498 * arc_wait_for_eviction() when it calls zthr_wakeup(). 4499 */ 4500 if (arc_evict_needed) 4501 return (B_TRUE); 4502 4503 /* 4504 * If we have buffers in uncached state, evict them periodically. 4505 */ 4506 return ((zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_DATA]) + 4507 zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]) && 4508 ddi_get_lbolt() - arc_last_uncached_flush > 4509 MSEC_TO_TICK(arc_min_prefetch_ms / 2))); 4510 } 4511 4512 /* 4513 * Keep arc_size under arc_c by running arc_evict which evicts data 4514 * from the ARC. 4515 */ 4516 static void 4517 arc_evict_cb(void *arg, zthr_t *zthr) 4518 { 4519 (void) arg, (void) zthr; 4520 4521 uint64_t evicted = 0; 4522 fstrans_cookie_t cookie = spl_fstrans_mark(); 4523 4524 /* Always try to evict from uncached state. */ 4525 arc_last_uncached_flush = ddi_get_lbolt(); 4526 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_DATA, B_FALSE); 4527 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_METADATA, B_FALSE); 4528 4529 /* Evict from other states only if told to. */ 4530 if (arc_evict_needed) 4531 evicted += arc_evict(); 4532 4533 /* 4534 * If evicted is zero, we couldn't evict anything 4535 * via arc_evict(). This could be due to hash lock 4536 * collisions, but more likely due to the majority of 4537 * arc buffers being unevictable. Therefore, even if 4538 * arc_size is above arc_c, another pass is unlikely to 4539 * be helpful and could potentially cause us to enter an 4540 * infinite loop. Additionally, zthr_iscancelled() is 4541 * checked here so that if the arc is shutting down, the 4542 * broadcast will wake any remaining arc evict waiters. 4543 */ 4544 mutex_enter(&arc_evict_lock); 4545 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) && 4546 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0; 4547 if (!arc_evict_needed) { 4548 /* 4549 * We're either no longer overflowing, or we 4550 * can't evict anything more, so we should wake 4551 * arc_get_data_impl() sooner. 4552 */ 4553 arc_evict_waiter_t *aw; 4554 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { 4555 cv_broadcast(&aw->aew_cv); 4556 } 4557 arc_set_need_free(); 4558 } 4559 mutex_exit(&arc_evict_lock); 4560 spl_fstrans_unmark(cookie); 4561 } 4562 4563 static boolean_t 4564 arc_reap_cb_check(void *arg, zthr_t *zthr) 4565 { 4566 (void) arg, (void) zthr; 4567 4568 int64_t free_memory = arc_available_memory(); 4569 static int reap_cb_check_counter = 0; 4570 4571 /* 4572 * If a kmem reap is already active, don't schedule more. We must 4573 * check for this because kmem_cache_reap_soon() won't actually 4574 * block on the cache being reaped (this is to prevent callers from 4575 * becoming implicitly blocked by a system-wide kmem reap -- which, 4576 * on a system with many, many full magazines, can take minutes). 4577 */ 4578 if (!kmem_cache_reap_active() && free_memory < 0) { 4579 4580 arc_no_grow = B_TRUE; 4581 arc_warm = B_TRUE; 4582 /* 4583 * Wait at least zfs_grow_retry (default 5) seconds 4584 * before considering growing. 4585 */ 4586 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4587 return (B_TRUE); 4588 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4589 arc_no_grow = B_TRUE; 4590 } else if (gethrtime() >= arc_growtime) { 4591 arc_no_grow = B_FALSE; 4592 } 4593 4594 /* 4595 * Called unconditionally every 60 seconds to reclaim unused 4596 * zstd compression and decompression context. This is done 4597 * here to avoid the need for an independent thread. 4598 */ 4599 if (!((reap_cb_check_counter++) % 60)) 4600 zfs_zstd_cache_reap_now(); 4601 4602 return (B_FALSE); 4603 } 4604 4605 /* 4606 * Keep enough free memory in the system by reaping the ARC's kmem 4607 * caches. To cause more slabs to be reapable, we may reduce the 4608 * target size of the cache (arc_c), causing the arc_evict_cb() 4609 * to free more buffers. 4610 */ 4611 static void 4612 arc_reap_cb(void *arg, zthr_t *zthr) 4613 { 4614 (void) arg, (void) zthr; 4615 4616 int64_t free_memory; 4617 fstrans_cookie_t cookie = spl_fstrans_mark(); 4618 4619 /* 4620 * Kick off asynchronous kmem_reap()'s of all our caches. 4621 */ 4622 arc_kmem_reap_soon(); 4623 4624 /* 4625 * Wait at least arc_kmem_cache_reap_retry_ms between 4626 * arc_kmem_reap_soon() calls. Without this check it is possible to 4627 * end up in a situation where we spend lots of time reaping 4628 * caches, while we're near arc_c_min. Waiting here also gives the 4629 * subsequent free memory check a chance of finding that the 4630 * asynchronous reap has already freed enough memory, and we don't 4631 * need to call arc_reduce_target_size(). 4632 */ 4633 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 4634 4635 /* 4636 * Reduce the target size as needed to maintain the amount of free 4637 * memory in the system at a fraction of the arc_size (1/128th by 4638 * default). If oversubscribed (free_memory < 0) then reduce the 4639 * target arc_size by the deficit amount plus the fractional 4640 * amount. If free memory is positive but less than the fractional 4641 * amount, reduce by what is needed to hit the fractional amount. 4642 */ 4643 free_memory = arc_available_memory(); 4644 4645 int64_t can_free = arc_c - arc_c_min; 4646 if (can_free > 0) { 4647 int64_t to_free = (can_free >> arc_shrink_shift) - free_memory; 4648 if (to_free > 0) 4649 arc_reduce_target_size(to_free); 4650 } 4651 spl_fstrans_unmark(cookie); 4652 } 4653 4654 #ifdef _KERNEL 4655 /* 4656 * Determine the amount of memory eligible for eviction contained in the 4657 * ARC. All clean data reported by the ghost lists can always be safely 4658 * evicted. Due to arc_c_min, the same does not hold for all clean data 4659 * contained by the regular mru and mfu lists. 4660 * 4661 * In the case of the regular mru and mfu lists, we need to report as 4662 * much clean data as possible, such that evicting that same reported 4663 * data will not bring arc_size below arc_c_min. Thus, in certain 4664 * circumstances, the total amount of clean data in the mru and mfu 4665 * lists might not actually be evictable. 4666 * 4667 * The following two distinct cases are accounted for: 4668 * 4669 * 1. The sum of the amount of dirty data contained by both the mru and 4670 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 4671 * is greater than or equal to arc_c_min. 4672 * (i.e. amount of dirty data >= arc_c_min) 4673 * 4674 * This is the easy case; all clean data contained by the mru and mfu 4675 * lists is evictable. Evicting all clean data can only drop arc_size 4676 * to the amount of dirty data, which is greater than arc_c_min. 4677 * 4678 * 2. The sum of the amount of dirty data contained by both the mru and 4679 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 4680 * is less than arc_c_min. 4681 * (i.e. arc_c_min > amount of dirty data) 4682 * 4683 * 2.1. arc_size is greater than or equal arc_c_min. 4684 * (i.e. arc_size >= arc_c_min > amount of dirty data) 4685 * 4686 * In this case, not all clean data from the regular mru and mfu 4687 * lists is actually evictable; we must leave enough clean data 4688 * to keep arc_size above arc_c_min. Thus, the maximum amount of 4689 * evictable data from the two lists combined, is exactly the 4690 * difference between arc_size and arc_c_min. 4691 * 4692 * 2.2. arc_size is less than arc_c_min 4693 * (i.e. arc_c_min > arc_size > amount of dirty data) 4694 * 4695 * In this case, none of the data contained in the mru and mfu 4696 * lists is evictable, even if it's clean. Since arc_size is 4697 * already below arc_c_min, evicting any more would only 4698 * increase this negative difference. 4699 */ 4700 4701 #endif /* _KERNEL */ 4702 4703 /* 4704 * Adapt arc info given the number of bytes we are trying to add and 4705 * the state that we are coming from. This function is only called 4706 * when we are adding new content to the cache. 4707 */ 4708 static void 4709 arc_adapt(uint64_t bytes) 4710 { 4711 /* 4712 * Wake reap thread if we do not have any available memory 4713 */ 4714 if (arc_reclaim_needed()) { 4715 zthr_wakeup(arc_reap_zthr); 4716 return; 4717 } 4718 4719 if (arc_no_grow) 4720 return; 4721 4722 if (arc_c >= arc_c_max) 4723 return; 4724 4725 /* 4726 * If we're within (2 * maxblocksize) bytes of the target 4727 * cache size, increment the target cache size 4728 */ 4729 if (aggsum_upper_bound(&arc_sums.arcstat_size) + 4730 2 * SPA_MAXBLOCKSIZE >= arc_c) { 4731 uint64_t dc = MAX(bytes, SPA_OLD_MAXBLOCKSIZE); 4732 if (atomic_add_64_nv(&arc_c, dc) > arc_c_max) 4733 arc_c = arc_c_max; 4734 } 4735 } 4736 4737 /* 4738 * Check if arc_size has grown past our upper threshold, determined by 4739 * zfs_arc_overflow_shift. 4740 */ 4741 static arc_ovf_level_t 4742 arc_is_overflowing(boolean_t use_reserve) 4743 { 4744 /* Always allow at least one block of overflow */ 4745 int64_t overflow = MAX(SPA_MAXBLOCKSIZE, 4746 arc_c >> zfs_arc_overflow_shift); 4747 4748 /* 4749 * We just compare the lower bound here for performance reasons. Our 4750 * primary goals are to make sure that the arc never grows without 4751 * bound, and that it can reach its maximum size. This check 4752 * accomplishes both goals. The maximum amount we could run over by is 4753 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 4754 * in the ARC. In practice, that's in the tens of MB, which is low 4755 * enough to be safe. 4756 */ 4757 int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) - 4758 arc_c - overflow / 2; 4759 if (!use_reserve) 4760 overflow /= 2; 4761 return (over < 0 ? ARC_OVF_NONE : 4762 over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE); 4763 } 4764 4765 static abd_t * 4766 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag, 4767 int alloc_flags) 4768 { 4769 arc_buf_contents_t type = arc_buf_type(hdr); 4770 4771 arc_get_data_impl(hdr, size, tag, alloc_flags); 4772 if (alloc_flags & ARC_HDR_ALLOC_LINEAR) 4773 return (abd_alloc_linear(size, type == ARC_BUFC_METADATA)); 4774 else 4775 return (abd_alloc(size, type == ARC_BUFC_METADATA)); 4776 } 4777 4778 static void * 4779 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag) 4780 { 4781 arc_buf_contents_t type = arc_buf_type(hdr); 4782 4783 arc_get_data_impl(hdr, size, tag, 0); 4784 if (type == ARC_BUFC_METADATA) { 4785 return (zio_buf_alloc(size)); 4786 } else { 4787 ASSERT(type == ARC_BUFC_DATA); 4788 return (zio_data_buf_alloc(size)); 4789 } 4790 } 4791 4792 /* 4793 * Wait for the specified amount of data (in bytes) to be evicted from the 4794 * ARC, and for there to be sufficient free memory in the system. Waiting for 4795 * eviction ensures that the memory used by the ARC decreases. Waiting for 4796 * free memory ensures that the system won't run out of free pages, regardless 4797 * of ARC behavior and settings. See arc_lowmem_init(). 4798 */ 4799 void 4800 arc_wait_for_eviction(uint64_t amount, boolean_t use_reserve) 4801 { 4802 switch (arc_is_overflowing(use_reserve)) { 4803 case ARC_OVF_NONE: 4804 return; 4805 case ARC_OVF_SOME: 4806 /* 4807 * This is a bit racy without taking arc_evict_lock, but the 4808 * worst that can happen is we either call zthr_wakeup() extra 4809 * time due to race with other thread here, or the set flag 4810 * get cleared by arc_evict_cb(), which is unlikely due to 4811 * big hysteresis, but also not important since at this level 4812 * of overflow the eviction is purely advisory. Same time 4813 * taking the global lock here every time without waiting for 4814 * the actual eviction creates a significant lock contention. 4815 */ 4816 if (!arc_evict_needed) { 4817 arc_evict_needed = B_TRUE; 4818 zthr_wakeup(arc_evict_zthr); 4819 } 4820 return; 4821 case ARC_OVF_SEVERE: 4822 default: 4823 { 4824 arc_evict_waiter_t aw; 4825 list_link_init(&aw.aew_node); 4826 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); 4827 4828 uint64_t last_count = 0; 4829 mutex_enter(&arc_evict_lock); 4830 if (!list_is_empty(&arc_evict_waiters)) { 4831 arc_evict_waiter_t *last = 4832 list_tail(&arc_evict_waiters); 4833 last_count = last->aew_count; 4834 } else if (!arc_evict_needed) { 4835 arc_evict_needed = B_TRUE; 4836 zthr_wakeup(arc_evict_zthr); 4837 } 4838 /* 4839 * Note, the last waiter's count may be less than 4840 * arc_evict_count if we are low on memory in which 4841 * case arc_evict_state_impl() may have deferred 4842 * wakeups (but still incremented arc_evict_count). 4843 */ 4844 aw.aew_count = MAX(last_count, arc_evict_count) + amount; 4845 4846 list_insert_tail(&arc_evict_waiters, &aw); 4847 4848 arc_set_need_free(); 4849 4850 DTRACE_PROBE3(arc__wait__for__eviction, 4851 uint64_t, amount, 4852 uint64_t, arc_evict_count, 4853 uint64_t, aw.aew_count); 4854 4855 /* 4856 * We will be woken up either when arc_evict_count reaches 4857 * aew_count, or when the ARC is no longer overflowing and 4858 * eviction completes. 4859 * In case of "false" wakeup, we will still be on the list. 4860 */ 4861 do { 4862 cv_wait(&aw.aew_cv, &arc_evict_lock); 4863 } while (list_link_active(&aw.aew_node)); 4864 mutex_exit(&arc_evict_lock); 4865 4866 cv_destroy(&aw.aew_cv); 4867 } 4868 } 4869 } 4870 4871 /* 4872 * Allocate a block and return it to the caller. If we are hitting the 4873 * hard limit for the cache size, we must sleep, waiting for the eviction 4874 * thread to catch up. If we're past the target size but below the hard 4875 * limit, we'll only signal the reclaim thread and continue on. 4876 */ 4877 static void 4878 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag, 4879 int alloc_flags) 4880 { 4881 arc_adapt(size); 4882 4883 /* 4884 * If arc_size is currently overflowing, we must be adding data 4885 * faster than we are evicting. To ensure we don't compound the 4886 * problem by adding more data and forcing arc_size to grow even 4887 * further past it's target size, we wait for the eviction thread to 4888 * make some progress. We also wait for there to be sufficient free 4889 * memory in the system, as measured by arc_free_memory(). 4890 * 4891 * Specifically, we wait for zfs_arc_eviction_pct percent of the 4892 * requested size to be evicted. This should be more than 100%, to 4893 * ensure that that progress is also made towards getting arc_size 4894 * under arc_c. See the comment above zfs_arc_eviction_pct. 4895 */ 4896 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100, 4897 alloc_flags & ARC_HDR_USE_RESERVE); 4898 4899 arc_buf_contents_t type = arc_buf_type(hdr); 4900 if (type == ARC_BUFC_METADATA) { 4901 arc_space_consume(size, ARC_SPACE_META); 4902 } else { 4903 arc_space_consume(size, ARC_SPACE_DATA); 4904 } 4905 4906 /* 4907 * Update the state size. Note that ghost states have a 4908 * "ghost size" and so don't need to be updated. 4909 */ 4910 arc_state_t *state = hdr->b_l1hdr.b_state; 4911 if (!GHOST_STATE(state)) { 4912 4913 (void) zfs_refcount_add_many(&state->arcs_size[type], size, 4914 tag); 4915 4916 /* 4917 * If this is reached via arc_read, the link is 4918 * protected by the hash lock. If reached via 4919 * arc_buf_alloc, the header should not be accessed by 4920 * any other thread. And, if reached via arc_read_done, 4921 * the hash lock will protect it if it's found in the 4922 * hash table; otherwise no other thread should be 4923 * trying to [add|remove]_reference it. 4924 */ 4925 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4926 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4927 (void) zfs_refcount_add_many(&state->arcs_esize[type], 4928 size, tag); 4929 } 4930 } 4931 } 4932 4933 static void 4934 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, 4935 const void *tag) 4936 { 4937 arc_free_data_impl(hdr, size, tag); 4938 abd_free(abd); 4939 } 4940 4941 static void 4942 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag) 4943 { 4944 arc_buf_contents_t type = arc_buf_type(hdr); 4945 4946 arc_free_data_impl(hdr, size, tag); 4947 if (type == ARC_BUFC_METADATA) { 4948 zio_buf_free(buf, size); 4949 } else { 4950 ASSERT(type == ARC_BUFC_DATA); 4951 zio_data_buf_free(buf, size); 4952 } 4953 } 4954 4955 /* 4956 * Free the arc data buffer. 4957 */ 4958 static void 4959 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag) 4960 { 4961 arc_state_t *state = hdr->b_l1hdr.b_state; 4962 arc_buf_contents_t type = arc_buf_type(hdr); 4963 4964 /* protected by hash lock, if in the hash table */ 4965 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4966 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4967 ASSERT(state != arc_anon && state != arc_l2c_only); 4968 4969 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 4970 size, tag); 4971 } 4972 (void) zfs_refcount_remove_many(&state->arcs_size[type], size, tag); 4973 4974 VERIFY3U(hdr->b_type, ==, type); 4975 if (type == ARC_BUFC_METADATA) { 4976 arc_space_return(size, ARC_SPACE_META); 4977 } else { 4978 ASSERT(type == ARC_BUFC_DATA); 4979 arc_space_return(size, ARC_SPACE_DATA); 4980 } 4981 } 4982 4983 /* 4984 * This routine is called whenever a buffer is accessed. 4985 */ 4986 static void 4987 arc_access(arc_buf_hdr_t *hdr, arc_flags_t arc_flags, boolean_t hit) 4988 { 4989 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 4990 ASSERT(HDR_HAS_L1HDR(hdr)); 4991 4992 /* 4993 * Update buffer prefetch status. 4994 */ 4995 boolean_t was_prefetch = HDR_PREFETCH(hdr); 4996 boolean_t now_prefetch = arc_flags & ARC_FLAG_PREFETCH; 4997 if (was_prefetch != now_prefetch) { 4998 if (was_prefetch) { 4999 ARCSTAT_CONDSTAT(hit, demand_hit, demand_iohit, 5000 HDR_PRESCIENT_PREFETCH(hdr), prescient, predictive, 5001 prefetch); 5002 } 5003 if (HDR_HAS_L2HDR(hdr)) 5004 l2arc_hdr_arcstats_decrement_state(hdr); 5005 if (was_prefetch) { 5006 arc_hdr_clear_flags(hdr, 5007 ARC_FLAG_PREFETCH | ARC_FLAG_PRESCIENT_PREFETCH); 5008 } else { 5009 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5010 } 5011 if (HDR_HAS_L2HDR(hdr)) 5012 l2arc_hdr_arcstats_increment_state(hdr); 5013 } 5014 if (now_prefetch) { 5015 if (arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 5016 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 5017 ARCSTAT_BUMP(arcstat_prescient_prefetch); 5018 } else { 5019 ARCSTAT_BUMP(arcstat_predictive_prefetch); 5020 } 5021 } 5022 if (arc_flags & ARC_FLAG_L2CACHE) 5023 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5024 5025 clock_t now = ddi_get_lbolt(); 5026 if (hdr->b_l1hdr.b_state == arc_anon) { 5027 arc_state_t *new_state; 5028 /* 5029 * This buffer is not in the cache, and does not appear in 5030 * our "ghost" lists. Add it to the MRU or uncached state. 5031 */ 5032 ASSERT0(hdr->b_l1hdr.b_arc_access); 5033 hdr->b_l1hdr.b_arc_access = now; 5034 if (HDR_UNCACHED(hdr)) { 5035 new_state = arc_uncached; 5036 DTRACE_PROBE1(new_state__uncached, arc_buf_hdr_t *, 5037 hdr); 5038 } else { 5039 new_state = arc_mru; 5040 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5041 } 5042 arc_change_state(new_state, hdr); 5043 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5044 /* 5045 * This buffer has been accessed once recently and either 5046 * its read is still in progress or it is in the cache. 5047 */ 5048 if (HDR_IO_IN_PROGRESS(hdr)) { 5049 hdr->b_l1hdr.b_arc_access = now; 5050 return; 5051 } 5052 hdr->b_l1hdr.b_mru_hits++; 5053 ARCSTAT_BUMP(arcstat_mru_hits); 5054 5055 /* 5056 * If the previous access was a prefetch, then it already 5057 * handled possible promotion, so nothing more to do for now. 5058 */ 5059 if (was_prefetch) { 5060 hdr->b_l1hdr.b_arc_access = now; 5061 return; 5062 } 5063 5064 /* 5065 * If more than ARC_MINTIME have passed from the previous 5066 * hit, promote the buffer to the MFU state. 5067 */ 5068 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + 5069 ARC_MINTIME)) { 5070 hdr->b_l1hdr.b_arc_access = now; 5071 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5072 arc_change_state(arc_mfu, hdr); 5073 } 5074 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5075 arc_state_t *new_state; 5076 /* 5077 * This buffer has been accessed once recently, but was 5078 * evicted from the cache. Would we have bigger MRU, it 5079 * would be an MRU hit, so handle it the same way, except 5080 * we don't need to check the previous access time. 5081 */ 5082 hdr->b_l1hdr.b_mru_ghost_hits++; 5083 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5084 hdr->b_l1hdr.b_arc_access = now; 5085 wmsum_add(&arc_mru_ghost->arcs_hits[arc_buf_type(hdr)], 5086 arc_hdr_size(hdr)); 5087 if (was_prefetch) { 5088 new_state = arc_mru; 5089 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5090 } else { 5091 new_state = arc_mfu; 5092 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5093 } 5094 arc_change_state(new_state, hdr); 5095 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5096 /* 5097 * This buffer has been accessed more than once and either 5098 * still in the cache or being restored from one of ghosts. 5099 */ 5100 if (!HDR_IO_IN_PROGRESS(hdr)) { 5101 hdr->b_l1hdr.b_mfu_hits++; 5102 ARCSTAT_BUMP(arcstat_mfu_hits); 5103 } 5104 hdr->b_l1hdr.b_arc_access = now; 5105 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5106 /* 5107 * This buffer has been accessed more than once recently, but 5108 * has been evicted from the cache. Would we have bigger MFU 5109 * it would stay in cache, so move it back to MFU state. 5110 */ 5111 hdr->b_l1hdr.b_mfu_ghost_hits++; 5112 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5113 hdr->b_l1hdr.b_arc_access = now; 5114 wmsum_add(&arc_mfu_ghost->arcs_hits[arc_buf_type(hdr)], 5115 arc_hdr_size(hdr)); 5116 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5117 arc_change_state(arc_mfu, hdr); 5118 } else if (hdr->b_l1hdr.b_state == arc_uncached) { 5119 /* 5120 * This buffer is uncacheable, but we got a hit. Probably 5121 * a demand read after prefetch. Nothing more to do here. 5122 */ 5123 if (!HDR_IO_IN_PROGRESS(hdr)) 5124 ARCSTAT_BUMP(arcstat_uncached_hits); 5125 hdr->b_l1hdr.b_arc_access = now; 5126 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5127 /* 5128 * This buffer is on the 2nd Level ARC and was not accessed 5129 * for a long time, so treat it as new and put into MRU. 5130 */ 5131 hdr->b_l1hdr.b_arc_access = now; 5132 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5133 arc_change_state(arc_mru, hdr); 5134 } else { 5135 cmn_err(CE_PANIC, "invalid arc state 0x%p", 5136 hdr->b_l1hdr.b_state); 5137 } 5138 } 5139 5140 /* 5141 * This routine is called by dbuf_hold() to update the arc_access() state 5142 * which otherwise would be skipped for entries in the dbuf cache. 5143 */ 5144 void 5145 arc_buf_access(arc_buf_t *buf) 5146 { 5147 arc_buf_hdr_t *hdr = buf->b_hdr; 5148 5149 /* 5150 * Avoid taking the hash_lock when possible as an optimization. 5151 * The header must be checked again under the hash_lock in order 5152 * to handle the case where it is concurrently being released. 5153 */ 5154 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) 5155 return; 5156 5157 kmutex_t *hash_lock = HDR_LOCK(hdr); 5158 mutex_enter(hash_lock); 5159 5160 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5161 mutex_exit(hash_lock); 5162 ARCSTAT_BUMP(arcstat_access_skip); 5163 return; 5164 } 5165 5166 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5167 hdr->b_l1hdr.b_state == arc_mfu || 5168 hdr->b_l1hdr.b_state == arc_uncached); 5169 5170 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5171 arc_access(hdr, 0, B_TRUE); 5172 mutex_exit(hash_lock); 5173 5174 ARCSTAT_BUMP(arcstat_hits); 5175 ARCSTAT_CONDSTAT(B_TRUE /* demand */, demand, prefetch, 5176 !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5177 } 5178 5179 /* a generic arc_read_done_func_t which you can use */ 5180 void 5181 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5182 arc_buf_t *buf, void *arg) 5183 { 5184 (void) zio, (void) zb, (void) bp; 5185 5186 if (buf == NULL) 5187 return; 5188 5189 memcpy(arg, buf->b_data, arc_buf_size(buf)); 5190 arc_buf_destroy(buf, arg); 5191 } 5192 5193 /* a generic arc_read_done_func_t */ 5194 void 5195 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5196 arc_buf_t *buf, void *arg) 5197 { 5198 (void) zb, (void) bp; 5199 arc_buf_t **bufp = arg; 5200 5201 if (buf == NULL) { 5202 ASSERT(zio == NULL || zio->io_error != 0); 5203 *bufp = NULL; 5204 } else { 5205 ASSERT(zio == NULL || zio->io_error == 0); 5206 *bufp = buf; 5207 ASSERT(buf->b_data != NULL); 5208 } 5209 } 5210 5211 static void 5212 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 5213 { 5214 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5215 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5216 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5217 } else { 5218 if (HDR_COMPRESSION_ENABLED(hdr)) { 5219 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5220 BP_GET_COMPRESS(bp)); 5221 } 5222 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5223 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5224 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5225 } 5226 } 5227 5228 static void 5229 arc_read_done(zio_t *zio) 5230 { 5231 blkptr_t *bp = zio->io_bp; 5232 arc_buf_hdr_t *hdr = zio->io_private; 5233 kmutex_t *hash_lock = NULL; 5234 arc_callback_t *callback_list; 5235 arc_callback_t *acb; 5236 5237 /* 5238 * The hdr was inserted into hash-table and removed from lists 5239 * prior to starting I/O. We should find this header, since 5240 * it's in the hash table, and it should be legit since it's 5241 * not possible to evict it during the I/O. The only possible 5242 * reason for it not to be found is if we were freed during the 5243 * read. 5244 */ 5245 if (HDR_IN_HASH_TABLE(hdr)) { 5246 arc_buf_hdr_t *found; 5247 5248 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 5249 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5250 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5251 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5252 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5253 5254 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); 5255 5256 ASSERT((found == hdr && 5257 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5258 (found == hdr && HDR_L2_READING(hdr))); 5259 ASSERT3P(hash_lock, !=, NULL); 5260 } 5261 5262 if (BP_IS_PROTECTED(bp)) { 5263 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5264 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5265 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5266 hdr->b_crypt_hdr.b_iv); 5267 5268 if (zio->io_error == 0) { 5269 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5270 void *tmpbuf; 5271 5272 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5273 sizeof (zil_chain_t)); 5274 zio_crypt_decode_mac_zil(tmpbuf, 5275 hdr->b_crypt_hdr.b_mac); 5276 abd_return_buf(zio->io_abd, tmpbuf, 5277 sizeof (zil_chain_t)); 5278 } else { 5279 zio_crypt_decode_mac_bp(bp, 5280 hdr->b_crypt_hdr.b_mac); 5281 } 5282 } 5283 } 5284 5285 if (zio->io_error == 0) { 5286 /* byteswap if necessary */ 5287 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5288 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5289 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5290 } else { 5291 hdr->b_l1hdr.b_byteswap = 5292 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5293 } 5294 } else { 5295 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5296 } 5297 if (!HDR_L2_READING(hdr)) { 5298 hdr->b_complevel = zio->io_prop.zp_complevel; 5299 } 5300 } 5301 5302 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5303 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 5304 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 5305 5306 callback_list = hdr->b_l1hdr.b_acb; 5307 ASSERT3P(callback_list, !=, NULL); 5308 hdr->b_l1hdr.b_acb = NULL; 5309 5310 /* 5311 * If a read request has a callback (i.e. acb_done is not NULL), then we 5312 * make a buf containing the data according to the parameters which were 5313 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5314 * aren't needlessly decompressing the data multiple times. 5315 */ 5316 int callback_cnt = 0; 5317 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5318 5319 /* We need the last one to call below in original order. */ 5320 callback_list = acb; 5321 5322 if (!acb->acb_done || acb->acb_nobuf) 5323 continue; 5324 5325 callback_cnt++; 5326 5327 if (zio->io_error != 0) 5328 continue; 5329 5330 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5331 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5332 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5333 &acb->acb_buf); 5334 5335 /* 5336 * Assert non-speculative zios didn't fail because an 5337 * encryption key wasn't loaded 5338 */ 5339 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5340 error != EACCES); 5341 5342 /* 5343 * If we failed to decrypt, report an error now (as the zio 5344 * layer would have done if it had done the transforms). 5345 */ 5346 if (error == ECKSUM) { 5347 ASSERT(BP_IS_PROTECTED(bp)); 5348 error = SET_ERROR(EIO); 5349 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5350 spa_log_error(zio->io_spa, &acb->acb_zb, 5351 &zio->io_bp->blk_birth); 5352 (void) zfs_ereport_post( 5353 FM_EREPORT_ZFS_AUTHENTICATION, 5354 zio->io_spa, NULL, &acb->acb_zb, zio, 0); 5355 } 5356 } 5357 5358 if (error != 0) { 5359 /* 5360 * Decompression or decryption failed. Set 5361 * io_error so that when we call acb_done 5362 * (below), we will indicate that the read 5363 * failed. Note that in the unusual case 5364 * where one callback is compressed and another 5365 * uncompressed, we will mark all of them 5366 * as failed, even though the uncompressed 5367 * one can't actually fail. In this case, 5368 * the hdr will not be anonymous, because 5369 * if there are multiple callbacks, it's 5370 * because multiple threads found the same 5371 * arc buf in the hash table. 5372 */ 5373 zio->io_error = error; 5374 } 5375 } 5376 5377 /* 5378 * If there are multiple callbacks, we must have the hash lock, 5379 * because the only way for multiple threads to find this hdr is 5380 * in the hash table. This ensures that if there are multiple 5381 * callbacks, the hdr is not anonymous. If it were anonymous, 5382 * we couldn't use arc_buf_destroy() in the error case below. 5383 */ 5384 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5385 5386 if (zio->io_error == 0) { 5387 arc_hdr_verify(hdr, zio->io_bp); 5388 } else { 5389 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5390 if (hdr->b_l1hdr.b_state != arc_anon) 5391 arc_change_state(arc_anon, hdr); 5392 if (HDR_IN_HASH_TABLE(hdr)) 5393 buf_hash_remove(hdr); 5394 } 5395 5396 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5397 (void) remove_reference(hdr, hdr); 5398 5399 if (hash_lock != NULL) 5400 mutex_exit(hash_lock); 5401 5402 /* execute each callback and free its structure */ 5403 while ((acb = callback_list) != NULL) { 5404 if (acb->acb_done != NULL) { 5405 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5406 /* 5407 * If arc_buf_alloc_impl() fails during 5408 * decompression, the buf will still be 5409 * allocated, and needs to be freed here. 5410 */ 5411 arc_buf_destroy(acb->acb_buf, 5412 acb->acb_private); 5413 acb->acb_buf = NULL; 5414 } 5415 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5416 acb->acb_buf, acb->acb_private); 5417 } 5418 5419 if (acb->acb_zio_dummy != NULL) { 5420 acb->acb_zio_dummy->io_error = zio->io_error; 5421 zio_nowait(acb->acb_zio_dummy); 5422 } 5423 5424 callback_list = acb->acb_prev; 5425 if (acb->acb_wait) { 5426 mutex_enter(&acb->acb_wait_lock); 5427 acb->acb_wait_error = zio->io_error; 5428 acb->acb_wait = B_FALSE; 5429 cv_signal(&acb->acb_wait_cv); 5430 mutex_exit(&acb->acb_wait_lock); 5431 /* acb will be freed by the waiting thread. */ 5432 } else { 5433 kmem_free(acb, sizeof (arc_callback_t)); 5434 } 5435 } 5436 } 5437 5438 /* 5439 * "Read" the block at the specified DVA (in bp) via the 5440 * cache. If the block is found in the cache, invoke the provided 5441 * callback immediately and return. Note that the `zio' parameter 5442 * in the callback will be NULL in this case, since no IO was 5443 * required. If the block is not in the cache pass the read request 5444 * on to the spa with a substitute callback function, so that the 5445 * requested block will be added to the cache. 5446 * 5447 * If a read request arrives for a block that has a read in-progress, 5448 * either wait for the in-progress read to complete (and return the 5449 * results); or, if this is a read with a "done" func, add a record 5450 * to the read to invoke the "done" func when the read completes, 5451 * and return; or just return. 5452 * 5453 * arc_read_done() will invoke all the requested "done" functions 5454 * for readers of this block. 5455 */ 5456 int 5457 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 5458 arc_read_done_func_t *done, void *private, zio_priority_t priority, 5459 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5460 { 5461 arc_buf_hdr_t *hdr = NULL; 5462 kmutex_t *hash_lock = NULL; 5463 zio_t *rzio; 5464 uint64_t guid = spa_load_guid(spa); 5465 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5466 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5467 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5468 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5469 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5470 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); 5471 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF; 5472 arc_buf_t *buf = NULL; 5473 int rc = 0; 5474 5475 ASSERT(!embedded_bp || 5476 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5477 ASSERT(!BP_IS_HOLE(bp)); 5478 ASSERT(!BP_IS_REDACTED(bp)); 5479 5480 /* 5481 * Normally SPL_FSTRANS will already be set since kernel threads which 5482 * expect to call the DMU interfaces will set it when created. System 5483 * calls are similarly handled by setting/cleaning the bit in the 5484 * registered callback (module/os/.../zfs/zpl_*). 5485 * 5486 * External consumers such as Lustre which call the exported DMU 5487 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock 5488 * on the hash_lock always set and clear the bit. 5489 */ 5490 fstrans_cookie_t cookie = spl_fstrans_mark(); 5491 top: 5492 /* 5493 * Verify the block pointer contents are reasonable. This should 5494 * always be the case since the blkptr is protected by a checksum. 5495 * However, if there is damage it's desirable to detect this early 5496 * and treat it as a checksum error. This allows an alternate blkptr 5497 * to be tried when one is available (e.g. ditto blocks). 5498 */ 5499 if (!zfs_blkptr_verify(spa, bp, (zio_flags & ZIO_FLAG_CONFIG_WRITER) ? 5500 BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) { 5501 rc = SET_ERROR(ECKSUM); 5502 goto done; 5503 } 5504 5505 if (!embedded_bp) { 5506 /* 5507 * Embedded BP's have no DVA and require no I/O to "read". 5508 * Create an anonymous arc buf to back it. 5509 */ 5510 hdr = buf_hash_find(guid, bp, &hash_lock); 5511 } 5512 5513 /* 5514 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5515 * we maintain encrypted data separately from compressed / uncompressed 5516 * data. If the user is requesting raw encrypted data and we don't have 5517 * that in the header we will read from disk to guarantee that we can 5518 * get it even if the encryption keys aren't loaded. 5519 */ 5520 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5521 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5522 boolean_t is_data = !HDR_ISTYPE_METADATA(hdr); 5523 5524 if (HDR_IO_IN_PROGRESS(hdr)) { 5525 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5526 mutex_exit(hash_lock); 5527 ARCSTAT_BUMP(arcstat_cached_only_in_progress); 5528 rc = SET_ERROR(ENOENT); 5529 goto done; 5530 } 5531 5532 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5533 ASSERT3P(head_zio, !=, NULL); 5534 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5535 priority == ZIO_PRIORITY_SYNC_READ) { 5536 /* 5537 * This is a sync read that needs to wait for 5538 * an in-flight async read. Request that the 5539 * zio have its priority upgraded. 5540 */ 5541 zio_change_priority(head_zio, priority); 5542 DTRACE_PROBE1(arc__async__upgrade__sync, 5543 arc_buf_hdr_t *, hdr); 5544 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5545 } 5546 5547 DTRACE_PROBE1(arc__iohit, arc_buf_hdr_t *, hdr); 5548 arc_access(hdr, *arc_flags, B_FALSE); 5549 5550 /* 5551 * If there are multiple threads reading the same block 5552 * and that block is not yet in the ARC, then only one 5553 * thread will do the physical I/O and all other 5554 * threads will wait until that I/O completes. 5555 * Synchronous reads use the acb_wait_cv whereas nowait 5556 * reads register a callback. Both are signalled/called 5557 * in arc_read_done. 5558 * 5559 * Errors of the physical I/O may need to be propagated. 5560 * Synchronous read errors are returned here from 5561 * arc_read_done via acb_wait_error. Nowait reads 5562 * attach the acb_zio_dummy zio to pio and 5563 * arc_read_done propagates the physical I/O's io_error 5564 * to acb_zio_dummy, and thereby to pio. 5565 */ 5566 arc_callback_t *acb = NULL; 5567 if (done || pio || *arc_flags & ARC_FLAG_WAIT) { 5568 acb = kmem_zalloc(sizeof (arc_callback_t), 5569 KM_SLEEP); 5570 acb->acb_done = done; 5571 acb->acb_private = private; 5572 acb->acb_compressed = compressed_read; 5573 acb->acb_encrypted = encrypted_read; 5574 acb->acb_noauth = noauth_read; 5575 acb->acb_nobuf = no_buf; 5576 if (*arc_flags & ARC_FLAG_WAIT) { 5577 acb->acb_wait = B_TRUE; 5578 mutex_init(&acb->acb_wait_lock, NULL, 5579 MUTEX_DEFAULT, NULL); 5580 cv_init(&acb->acb_wait_cv, NULL, 5581 CV_DEFAULT, NULL); 5582 } 5583 acb->acb_zb = *zb; 5584 if (pio != NULL) { 5585 acb->acb_zio_dummy = zio_null(pio, 5586 spa, NULL, NULL, NULL, zio_flags); 5587 } 5588 acb->acb_zio_head = head_zio; 5589 acb->acb_next = hdr->b_l1hdr.b_acb; 5590 hdr->b_l1hdr.b_acb->acb_prev = acb; 5591 hdr->b_l1hdr.b_acb = acb; 5592 } 5593 mutex_exit(hash_lock); 5594 5595 ARCSTAT_BUMP(arcstat_iohits); 5596 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH), 5597 demand, prefetch, is_data, data, metadata, iohits); 5598 5599 if (*arc_flags & ARC_FLAG_WAIT) { 5600 mutex_enter(&acb->acb_wait_lock); 5601 while (acb->acb_wait) { 5602 cv_wait(&acb->acb_wait_cv, 5603 &acb->acb_wait_lock); 5604 } 5605 rc = acb->acb_wait_error; 5606 mutex_exit(&acb->acb_wait_lock); 5607 mutex_destroy(&acb->acb_wait_lock); 5608 cv_destroy(&acb->acb_wait_cv); 5609 kmem_free(acb, sizeof (arc_callback_t)); 5610 } 5611 goto out; 5612 } 5613 5614 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5615 hdr->b_l1hdr.b_state == arc_mfu || 5616 hdr->b_l1hdr.b_state == arc_uncached); 5617 5618 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5619 arc_access(hdr, *arc_flags, B_TRUE); 5620 5621 if (done && !no_buf) { 5622 ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); 5623 5624 /* Get a buf with the desired data in it. */ 5625 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 5626 encrypted_read, compressed_read, noauth_read, 5627 B_TRUE, &buf); 5628 if (rc == ECKSUM) { 5629 /* 5630 * Convert authentication and decryption errors 5631 * to EIO (and generate an ereport if needed) 5632 * before leaving the ARC. 5633 */ 5634 rc = SET_ERROR(EIO); 5635 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5636 spa_log_error(spa, zb, &hdr->b_birth); 5637 (void) zfs_ereport_post( 5638 FM_EREPORT_ZFS_AUTHENTICATION, 5639 spa, NULL, zb, NULL, 0); 5640 } 5641 } 5642 if (rc != 0) { 5643 arc_buf_destroy_impl(buf); 5644 buf = NULL; 5645 (void) remove_reference(hdr, private); 5646 } 5647 5648 /* assert any errors weren't due to unloaded keys */ 5649 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 5650 rc != EACCES); 5651 } 5652 mutex_exit(hash_lock); 5653 ARCSTAT_BUMP(arcstat_hits); 5654 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH), 5655 demand, prefetch, is_data, data, metadata, hits); 5656 *arc_flags |= ARC_FLAG_CACHED; 5657 goto done; 5658 } else { 5659 uint64_t lsize = BP_GET_LSIZE(bp); 5660 uint64_t psize = BP_GET_PSIZE(bp); 5661 arc_callback_t *acb; 5662 vdev_t *vd = NULL; 5663 uint64_t addr = 0; 5664 boolean_t devw = B_FALSE; 5665 uint64_t size; 5666 abd_t *hdr_abd; 5667 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 5668 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 5669 5670 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5671 if (hash_lock != NULL) 5672 mutex_exit(hash_lock); 5673 rc = SET_ERROR(ENOENT); 5674 goto done; 5675 } 5676 5677 if (hdr == NULL) { 5678 /* 5679 * This block is not in the cache or it has 5680 * embedded data. 5681 */ 5682 arc_buf_hdr_t *exists = NULL; 5683 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 5684 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type); 5685 5686 if (!embedded_bp) { 5687 hdr->b_dva = *BP_IDENTITY(bp); 5688 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 5689 exists = buf_hash_insert(hdr, &hash_lock); 5690 } 5691 if (exists != NULL) { 5692 /* somebody beat us to the hash insert */ 5693 mutex_exit(hash_lock); 5694 buf_discard_identity(hdr); 5695 arc_hdr_destroy(hdr); 5696 goto top; /* restart the IO request */ 5697 } 5698 } else { 5699 /* 5700 * This block is in the ghost cache or encrypted data 5701 * was requested and we didn't have it. If it was 5702 * L2-only (and thus didn't have an L1 hdr), 5703 * we realloc the header to add an L1 hdr. 5704 */ 5705 if (!HDR_HAS_L1HDR(hdr)) { 5706 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 5707 hdr_full_cache); 5708 } 5709 5710 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 5711 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5712 ASSERT(!HDR_HAS_RABD(hdr)); 5713 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5714 ASSERT0(zfs_refcount_count( 5715 &hdr->b_l1hdr.b_refcnt)); 5716 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 5717 #ifdef ZFS_DEBUG 5718 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 5719 #endif 5720 } else if (HDR_IO_IN_PROGRESS(hdr)) { 5721 /* 5722 * If this header already had an IO in progress 5723 * and we are performing another IO to fetch 5724 * encrypted data we must wait until the first 5725 * IO completes so as not to confuse 5726 * arc_read_done(). This should be very rare 5727 * and so the performance impact shouldn't 5728 * matter. 5729 */ 5730 arc_callback_t *acb = kmem_zalloc( 5731 sizeof (arc_callback_t), KM_SLEEP); 5732 acb->acb_wait = B_TRUE; 5733 mutex_init(&acb->acb_wait_lock, NULL, 5734 MUTEX_DEFAULT, NULL); 5735 cv_init(&acb->acb_wait_cv, NULL, CV_DEFAULT, 5736 NULL); 5737 acb->acb_zio_head = 5738 hdr->b_l1hdr.b_acb->acb_zio_head; 5739 acb->acb_next = hdr->b_l1hdr.b_acb; 5740 hdr->b_l1hdr.b_acb->acb_prev = acb; 5741 hdr->b_l1hdr.b_acb = acb; 5742 mutex_exit(hash_lock); 5743 mutex_enter(&acb->acb_wait_lock); 5744 while (acb->acb_wait) { 5745 cv_wait(&acb->acb_wait_cv, 5746 &acb->acb_wait_lock); 5747 } 5748 mutex_exit(&acb->acb_wait_lock); 5749 mutex_destroy(&acb->acb_wait_lock); 5750 cv_destroy(&acb->acb_wait_cv); 5751 kmem_free(acb, sizeof (arc_callback_t)); 5752 goto top; 5753 } 5754 } 5755 if (*arc_flags & ARC_FLAG_UNCACHED) { 5756 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED); 5757 if (!encrypted_read) 5758 alloc_flags |= ARC_HDR_ALLOC_LINEAR; 5759 } 5760 5761 /* 5762 * Take additional reference for IO_IN_PROGRESS. It stops 5763 * arc_access() from putting this header without any buffers 5764 * and so other references but obviously nonevictable onto 5765 * the evictable list of MRU or MFU state. 5766 */ 5767 add_reference(hdr, hdr); 5768 if (!embedded_bp) 5769 arc_access(hdr, *arc_flags, B_FALSE); 5770 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5771 arc_hdr_alloc_abd(hdr, alloc_flags); 5772 if (encrypted_read) { 5773 ASSERT(HDR_HAS_RABD(hdr)); 5774 size = HDR_GET_PSIZE(hdr); 5775 hdr_abd = hdr->b_crypt_hdr.b_rabd; 5776 zio_flags |= ZIO_FLAG_RAW; 5777 } else { 5778 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 5779 size = arc_hdr_size(hdr); 5780 hdr_abd = hdr->b_l1hdr.b_pabd; 5781 5782 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 5783 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 5784 } 5785 5786 /* 5787 * For authenticated bp's, we do not ask the ZIO layer 5788 * to authenticate them since this will cause the entire 5789 * IO to fail if the key isn't loaded. Instead, we 5790 * defer authentication until arc_buf_fill(), which will 5791 * verify the data when the key is available. 5792 */ 5793 if (BP_IS_AUTHENTICATED(bp)) 5794 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 5795 } 5796 5797 if (BP_IS_AUTHENTICATED(bp)) 5798 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 5799 if (BP_GET_LEVEL(bp) > 0) 5800 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 5801 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 5802 5803 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 5804 acb->acb_done = done; 5805 acb->acb_private = private; 5806 acb->acb_compressed = compressed_read; 5807 acb->acb_encrypted = encrypted_read; 5808 acb->acb_noauth = noauth_read; 5809 acb->acb_zb = *zb; 5810 5811 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5812 hdr->b_l1hdr.b_acb = acb; 5813 5814 if (HDR_HAS_L2HDR(hdr) && 5815 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 5816 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 5817 addr = hdr->b_l2hdr.b_daddr; 5818 /* 5819 * Lock out L2ARC device removal. 5820 */ 5821 if (vdev_is_dead(vd) || 5822 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 5823 vd = NULL; 5824 } 5825 5826 /* 5827 * We count both async reads and scrub IOs as asynchronous so 5828 * that both can be upgraded in the event of a cache hit while 5829 * the read IO is still in-flight. 5830 */ 5831 if (priority == ZIO_PRIORITY_ASYNC_READ || 5832 priority == ZIO_PRIORITY_SCRUB) 5833 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5834 else 5835 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5836 5837 /* 5838 * At this point, we have a level 1 cache miss or a blkptr 5839 * with embedded data. Try again in L2ARC if possible. 5840 */ 5841 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 5842 5843 /* 5844 * Skip ARC stat bump for block pointers with embedded 5845 * data. The data are read from the blkptr itself via 5846 * decode_embedded_bp_compressed(). 5847 */ 5848 if (!embedded_bp) { 5849 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, 5850 blkptr_t *, bp, uint64_t, lsize, 5851 zbookmark_phys_t *, zb); 5852 ARCSTAT_BUMP(arcstat_misses); 5853 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH), 5854 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, 5855 metadata, misses); 5856 zfs_racct_read(size, 1); 5857 } 5858 5859 /* Check if the spa even has l2 configured */ 5860 const boolean_t spa_has_l2 = l2arc_ndev != 0 && 5861 spa->spa_l2cache.sav_count > 0; 5862 5863 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) { 5864 /* 5865 * Read from the L2ARC if the following are true: 5866 * 1. The L2ARC vdev was previously cached. 5867 * 2. This buffer still has L2ARC metadata. 5868 * 3. This buffer isn't currently writing to the L2ARC. 5869 * 4. The L2ARC entry wasn't evicted, which may 5870 * also have invalidated the vdev. 5871 * 5. This isn't prefetch or l2arc_noprefetch is 0. 5872 */ 5873 if (HDR_HAS_L2HDR(hdr) && 5874 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 5875 !(l2arc_noprefetch && 5876 (*arc_flags & ARC_FLAG_PREFETCH))) { 5877 l2arc_read_callback_t *cb; 5878 abd_t *abd; 5879 uint64_t asize; 5880 5881 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 5882 ARCSTAT_BUMP(arcstat_l2_hits); 5883 hdr->b_l2hdr.b_hits++; 5884 5885 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 5886 KM_SLEEP); 5887 cb->l2rcb_hdr = hdr; 5888 cb->l2rcb_bp = *bp; 5889 cb->l2rcb_zb = *zb; 5890 cb->l2rcb_flags = zio_flags; 5891 5892 /* 5893 * When Compressed ARC is disabled, but the 5894 * L2ARC block is compressed, arc_hdr_size() 5895 * will have returned LSIZE rather than PSIZE. 5896 */ 5897 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 5898 !HDR_COMPRESSION_ENABLED(hdr) && 5899 HDR_GET_PSIZE(hdr) != 0) { 5900 size = HDR_GET_PSIZE(hdr); 5901 } 5902 5903 asize = vdev_psize_to_asize(vd, size); 5904 if (asize != size) { 5905 abd = abd_alloc_for_io(asize, 5906 HDR_ISTYPE_METADATA(hdr)); 5907 cb->l2rcb_abd = abd; 5908 } else { 5909 abd = hdr_abd; 5910 } 5911 5912 ASSERT(addr >= VDEV_LABEL_START_SIZE && 5913 addr + asize <= vd->vdev_psize - 5914 VDEV_LABEL_END_SIZE); 5915 5916 /* 5917 * l2arc read. The SCL_L2ARC lock will be 5918 * released by l2arc_read_done(). 5919 * Issue a null zio if the underlying buffer 5920 * was squashed to zero size by compression. 5921 */ 5922 ASSERT3U(arc_hdr_get_compress(hdr), !=, 5923 ZIO_COMPRESS_EMPTY); 5924 rzio = zio_read_phys(pio, vd, addr, 5925 asize, abd, 5926 ZIO_CHECKSUM_OFF, 5927 l2arc_read_done, cb, priority, 5928 zio_flags | ZIO_FLAG_CANFAIL | 5929 ZIO_FLAG_DONT_PROPAGATE | 5930 ZIO_FLAG_DONT_RETRY, B_FALSE); 5931 acb->acb_zio_head = rzio; 5932 5933 if (hash_lock != NULL) 5934 mutex_exit(hash_lock); 5935 5936 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 5937 zio_t *, rzio); 5938 ARCSTAT_INCR(arcstat_l2_read_bytes, 5939 HDR_GET_PSIZE(hdr)); 5940 5941 if (*arc_flags & ARC_FLAG_NOWAIT) { 5942 zio_nowait(rzio); 5943 goto out; 5944 } 5945 5946 ASSERT(*arc_flags & ARC_FLAG_WAIT); 5947 if (zio_wait(rzio) == 0) 5948 goto out; 5949 5950 /* l2arc read error; goto zio_read() */ 5951 if (hash_lock != NULL) 5952 mutex_enter(hash_lock); 5953 } else { 5954 DTRACE_PROBE1(l2arc__miss, 5955 arc_buf_hdr_t *, hdr); 5956 ARCSTAT_BUMP(arcstat_l2_misses); 5957 if (HDR_L2_WRITING(hdr)) 5958 ARCSTAT_BUMP(arcstat_l2_rw_clash); 5959 spa_config_exit(spa, SCL_L2ARC, vd); 5960 } 5961 } else { 5962 if (vd != NULL) 5963 spa_config_exit(spa, SCL_L2ARC, vd); 5964 5965 /* 5966 * Only a spa with l2 should contribute to l2 5967 * miss stats. (Including the case of having a 5968 * faulted cache device - that's also a miss.) 5969 */ 5970 if (spa_has_l2) { 5971 /* 5972 * Skip ARC stat bump for block pointers with 5973 * embedded data. The data are read from the 5974 * blkptr itself via 5975 * decode_embedded_bp_compressed(). 5976 */ 5977 if (!embedded_bp) { 5978 DTRACE_PROBE1(l2arc__miss, 5979 arc_buf_hdr_t *, hdr); 5980 ARCSTAT_BUMP(arcstat_l2_misses); 5981 } 5982 } 5983 } 5984 5985 rzio = zio_read(pio, spa, bp, hdr_abd, size, 5986 arc_read_done, hdr, priority, zio_flags, zb); 5987 acb->acb_zio_head = rzio; 5988 5989 if (hash_lock != NULL) 5990 mutex_exit(hash_lock); 5991 5992 if (*arc_flags & ARC_FLAG_WAIT) { 5993 rc = zio_wait(rzio); 5994 goto out; 5995 } 5996 5997 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5998 zio_nowait(rzio); 5999 } 6000 6001 out: 6002 /* embedded bps don't actually go to disk */ 6003 if (!embedded_bp) 6004 spa_read_history_add(spa, zb, *arc_flags); 6005 spl_fstrans_unmark(cookie); 6006 return (rc); 6007 6008 done: 6009 if (done) 6010 done(NULL, zb, bp, buf, private); 6011 if (pio && rc != 0) { 6012 zio_t *zio = zio_null(pio, spa, NULL, NULL, NULL, zio_flags); 6013 zio->io_error = rc; 6014 zio_nowait(zio); 6015 } 6016 goto out; 6017 } 6018 6019 arc_prune_t * 6020 arc_add_prune_callback(arc_prune_func_t *func, void *private) 6021 { 6022 arc_prune_t *p; 6023 6024 p = kmem_alloc(sizeof (*p), KM_SLEEP); 6025 p->p_pfunc = func; 6026 p->p_private = private; 6027 list_link_init(&p->p_node); 6028 zfs_refcount_create(&p->p_refcnt); 6029 6030 mutex_enter(&arc_prune_mtx); 6031 zfs_refcount_add(&p->p_refcnt, &arc_prune_list); 6032 list_insert_head(&arc_prune_list, p); 6033 mutex_exit(&arc_prune_mtx); 6034 6035 return (p); 6036 } 6037 6038 void 6039 arc_remove_prune_callback(arc_prune_t *p) 6040 { 6041 boolean_t wait = B_FALSE; 6042 mutex_enter(&arc_prune_mtx); 6043 list_remove(&arc_prune_list, p); 6044 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) 6045 wait = B_TRUE; 6046 mutex_exit(&arc_prune_mtx); 6047 6048 /* wait for arc_prune_task to finish */ 6049 if (wait) 6050 taskq_wait_outstanding(arc_prune_taskq, 0); 6051 ASSERT0(zfs_refcount_count(&p->p_refcnt)); 6052 zfs_refcount_destroy(&p->p_refcnt); 6053 kmem_free(p, sizeof (*p)); 6054 } 6055 6056 /* 6057 * Notify the arc that a block was freed, and thus will never be used again. 6058 */ 6059 void 6060 arc_freed(spa_t *spa, const blkptr_t *bp) 6061 { 6062 arc_buf_hdr_t *hdr; 6063 kmutex_t *hash_lock; 6064 uint64_t guid = spa_load_guid(spa); 6065 6066 ASSERT(!BP_IS_EMBEDDED(bp)); 6067 6068 hdr = buf_hash_find(guid, bp, &hash_lock); 6069 if (hdr == NULL) 6070 return; 6071 6072 /* 6073 * We might be trying to free a block that is still doing I/O 6074 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed, 6075 * dmu_sync-ed block). A block may also have a reference if it is 6076 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6077 * have written the new block to its final resting place on disk but 6078 * without the dedup flag set. This would have left the hdr in the MRU 6079 * state and discoverable. When the txg finally syncs it detects that 6080 * the block was overridden in open context and issues an override I/O. 6081 * Since this is a dedup block, the override I/O will determine if the 6082 * block is already in the DDT. If so, then it will replace the io_bp 6083 * with the bp from the DDT and allow the I/O to finish. When the I/O 6084 * reaches the done callback, dbuf_write_override_done, it will 6085 * check to see if the io_bp and io_bp_override are identical. 6086 * If they are not, then it indicates that the bp was replaced with 6087 * the bp in the DDT and the override bp is freed. This allows 6088 * us to arrive here with a reference on a block that is being 6089 * freed. So if we have an I/O in progress, or a reference to 6090 * this hdr, then we don't destroy the hdr. 6091 */ 6092 if (!HDR_HAS_L1HDR(hdr) || 6093 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6094 arc_change_state(arc_anon, hdr); 6095 arc_hdr_destroy(hdr); 6096 mutex_exit(hash_lock); 6097 } else { 6098 mutex_exit(hash_lock); 6099 } 6100 6101 } 6102 6103 /* 6104 * Release this buffer from the cache, making it an anonymous buffer. This 6105 * must be done after a read and prior to modifying the buffer contents. 6106 * If the buffer has more than one reference, we must make 6107 * a new hdr for the buffer. 6108 */ 6109 void 6110 arc_release(arc_buf_t *buf, const void *tag) 6111 { 6112 arc_buf_hdr_t *hdr = buf->b_hdr; 6113 6114 /* 6115 * It would be nice to assert that if its DMU metadata (level > 6116 * 0 || it's the dnode file), then it must be syncing context. 6117 * But we don't know that information at this level. 6118 */ 6119 6120 ASSERT(HDR_HAS_L1HDR(hdr)); 6121 6122 /* 6123 * We don't grab the hash lock prior to this check, because if 6124 * the buffer's header is in the arc_anon state, it won't be 6125 * linked into the hash table. 6126 */ 6127 if (hdr->b_l1hdr.b_state == arc_anon) { 6128 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6129 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6130 ASSERT(!HDR_HAS_L2HDR(hdr)); 6131 6132 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf); 6133 ASSERT(ARC_BUF_LAST(buf)); 6134 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6135 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6136 6137 hdr->b_l1hdr.b_arc_access = 0; 6138 6139 /* 6140 * If the buf is being overridden then it may already 6141 * have a hdr that is not empty. 6142 */ 6143 buf_discard_identity(hdr); 6144 arc_buf_thaw(buf); 6145 6146 return; 6147 } 6148 6149 kmutex_t *hash_lock = HDR_LOCK(hdr); 6150 mutex_enter(hash_lock); 6151 6152 /* 6153 * This assignment is only valid as long as the hash_lock is 6154 * held, we must be careful not to reference state or the 6155 * b_state field after dropping the lock. 6156 */ 6157 arc_state_t *state = hdr->b_l1hdr.b_state; 6158 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6159 ASSERT3P(state, !=, arc_anon); 6160 6161 /* this buffer is not on any list */ 6162 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6163 6164 if (HDR_HAS_L2HDR(hdr)) { 6165 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6166 6167 /* 6168 * We have to recheck this conditional again now that 6169 * we're holding the l2ad_mtx to prevent a race with 6170 * another thread which might be concurrently calling 6171 * l2arc_evict(). In that case, l2arc_evict() might have 6172 * destroyed the header's L2 portion as we were waiting 6173 * to acquire the l2ad_mtx. 6174 */ 6175 if (HDR_HAS_L2HDR(hdr)) 6176 arc_hdr_l2hdr_destroy(hdr); 6177 6178 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6179 } 6180 6181 /* 6182 * Do we have more than one buf? 6183 */ 6184 if (hdr->b_l1hdr.b_buf != buf || !ARC_BUF_LAST(buf)) { 6185 arc_buf_hdr_t *nhdr; 6186 uint64_t spa = hdr->b_spa; 6187 uint64_t psize = HDR_GET_PSIZE(hdr); 6188 uint64_t lsize = HDR_GET_LSIZE(hdr); 6189 boolean_t protected = HDR_PROTECTED(hdr); 6190 enum zio_compress compress = arc_hdr_get_compress(hdr); 6191 arc_buf_contents_t type = arc_buf_type(hdr); 6192 VERIFY3U(hdr->b_type, ==, type); 6193 6194 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6195 VERIFY3S(remove_reference(hdr, tag), >, 0); 6196 6197 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 6198 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6199 ASSERT(ARC_BUF_LAST(buf)); 6200 } 6201 6202 /* 6203 * Pull the data off of this hdr and attach it to 6204 * a new anonymous hdr. Also find the last buffer 6205 * in the hdr's buffer list. 6206 */ 6207 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6208 ASSERT3P(lastbuf, !=, NULL); 6209 6210 /* 6211 * If the current arc_buf_t and the hdr are sharing their data 6212 * buffer, then we must stop sharing that block. 6213 */ 6214 if (ARC_BUF_SHARED(buf)) { 6215 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6216 ASSERT(!arc_buf_is_shared(lastbuf)); 6217 6218 /* 6219 * First, sever the block sharing relationship between 6220 * buf and the arc_buf_hdr_t. 6221 */ 6222 arc_unshare_buf(hdr, buf); 6223 6224 /* 6225 * Now we need to recreate the hdr's b_pabd. Since we 6226 * have lastbuf handy, we try to share with it, but if 6227 * we can't then we allocate a new b_pabd and copy the 6228 * data from buf into it. 6229 */ 6230 if (arc_can_share(hdr, lastbuf)) { 6231 arc_share_buf(hdr, lastbuf); 6232 } else { 6233 arc_hdr_alloc_abd(hdr, 0); 6234 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6235 buf->b_data, psize); 6236 } 6237 VERIFY3P(lastbuf->b_data, !=, NULL); 6238 } else if (HDR_SHARED_DATA(hdr)) { 6239 /* 6240 * Uncompressed shared buffers are always at the end 6241 * of the list. Compressed buffers don't have the 6242 * same requirements. This makes it hard to 6243 * simply assert that the lastbuf is shared so 6244 * we rely on the hdr's compression flags to determine 6245 * if we have a compressed, shared buffer. 6246 */ 6247 ASSERT(arc_buf_is_shared(lastbuf) || 6248 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6249 ASSERT(!arc_buf_is_shared(buf)); 6250 } 6251 6252 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6253 ASSERT3P(state, !=, arc_l2c_only); 6254 6255 (void) zfs_refcount_remove_many(&state->arcs_size[type], 6256 arc_buf_size(buf), buf); 6257 6258 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6259 ASSERT3P(state, !=, arc_l2c_only); 6260 (void) zfs_refcount_remove_many( 6261 &state->arcs_esize[type], 6262 arc_buf_size(buf), buf); 6263 } 6264 6265 arc_cksum_verify(buf); 6266 arc_buf_unwatch(buf); 6267 6268 /* if this is the last uncompressed buf free the checksum */ 6269 if (!arc_hdr_has_uncompressed_buf(hdr)) 6270 arc_cksum_free(hdr); 6271 6272 mutex_exit(hash_lock); 6273 6274 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6275 compress, hdr->b_complevel, type); 6276 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6277 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6278 VERIFY3U(nhdr->b_type, ==, type); 6279 ASSERT(!HDR_SHARED_DATA(nhdr)); 6280 6281 nhdr->b_l1hdr.b_buf = buf; 6282 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6283 buf->b_hdr = nhdr; 6284 6285 (void) zfs_refcount_add_many(&arc_anon->arcs_size[type], 6286 arc_buf_size(buf), buf); 6287 } else { 6288 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6289 /* protected by hash lock, or hdr is on arc_anon */ 6290 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6291 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6292 hdr->b_l1hdr.b_mru_hits = 0; 6293 hdr->b_l1hdr.b_mru_ghost_hits = 0; 6294 hdr->b_l1hdr.b_mfu_hits = 0; 6295 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 6296 arc_change_state(arc_anon, hdr); 6297 hdr->b_l1hdr.b_arc_access = 0; 6298 6299 mutex_exit(hash_lock); 6300 buf_discard_identity(hdr); 6301 arc_buf_thaw(buf); 6302 } 6303 } 6304 6305 int 6306 arc_released(arc_buf_t *buf) 6307 { 6308 return (buf->b_data != NULL && 6309 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6310 } 6311 6312 #ifdef ZFS_DEBUG 6313 int 6314 arc_referenced(arc_buf_t *buf) 6315 { 6316 return (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6317 } 6318 #endif 6319 6320 static void 6321 arc_write_ready(zio_t *zio) 6322 { 6323 arc_write_callback_t *callback = zio->io_private; 6324 arc_buf_t *buf = callback->awcb_buf; 6325 arc_buf_hdr_t *hdr = buf->b_hdr; 6326 blkptr_t *bp = zio->io_bp; 6327 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6328 fstrans_cookie_t cookie = spl_fstrans_mark(); 6329 6330 ASSERT(HDR_HAS_L1HDR(hdr)); 6331 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6332 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL); 6333 6334 /* 6335 * If we're reexecuting this zio because the pool suspended, then 6336 * cleanup any state that was previously set the first time the 6337 * callback was invoked. 6338 */ 6339 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6340 arc_cksum_free(hdr); 6341 arc_buf_unwatch(buf); 6342 if (hdr->b_l1hdr.b_pabd != NULL) { 6343 if (ARC_BUF_SHARED(buf)) { 6344 arc_unshare_buf(hdr, buf); 6345 } else { 6346 ASSERT(!arc_buf_is_shared(buf)); 6347 arc_hdr_free_abd(hdr, B_FALSE); 6348 } 6349 } 6350 6351 if (HDR_HAS_RABD(hdr)) 6352 arc_hdr_free_abd(hdr, B_TRUE); 6353 } 6354 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6355 ASSERT(!HDR_HAS_RABD(hdr)); 6356 ASSERT(!HDR_SHARED_DATA(hdr)); 6357 ASSERT(!arc_buf_is_shared(buf)); 6358 6359 callback->awcb_ready(zio, buf, callback->awcb_private); 6360 6361 if (HDR_IO_IN_PROGRESS(hdr)) { 6362 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6363 } else { 6364 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6365 add_reference(hdr, hdr); /* For IO_IN_PROGRESS. */ 6366 } 6367 6368 if (BP_IS_PROTECTED(bp)) { 6369 /* ZIL blocks are written through zio_rewrite */ 6370 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6371 6372 if (BP_SHOULD_BYTESWAP(bp)) { 6373 if (BP_GET_LEVEL(bp) > 0) { 6374 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6375 } else { 6376 hdr->b_l1hdr.b_byteswap = 6377 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6378 } 6379 } else { 6380 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6381 } 6382 6383 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 6384 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6385 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6386 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6387 hdr->b_crypt_hdr.b_iv); 6388 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6389 } else { 6390 arc_hdr_clear_flags(hdr, ARC_FLAG_PROTECTED); 6391 } 6392 6393 /* 6394 * If this block was written for raw encryption but the zio layer 6395 * ended up only authenticating it, adjust the buffer flags now. 6396 */ 6397 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6398 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6399 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6400 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6401 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6402 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6403 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6404 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6405 } 6406 6407 /* this must be done after the buffer flags are adjusted */ 6408 arc_cksum_compute(buf); 6409 6410 enum zio_compress compress; 6411 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6412 compress = ZIO_COMPRESS_OFF; 6413 } else { 6414 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6415 compress = BP_GET_COMPRESS(bp); 6416 } 6417 HDR_SET_PSIZE(hdr, psize); 6418 arc_hdr_set_compress(hdr, compress); 6419 hdr->b_complevel = zio->io_prop.zp_complevel; 6420 6421 if (zio->io_error != 0 || psize == 0) 6422 goto out; 6423 6424 /* 6425 * Fill the hdr with data. If the buffer is encrypted we have no choice 6426 * but to copy the data into b_radb. If the hdr is compressed, the data 6427 * we want is available from the zio, otherwise we can take it from 6428 * the buf. 6429 * 6430 * We might be able to share the buf's data with the hdr here. However, 6431 * doing so would cause the ARC to be full of linear ABDs if we write a 6432 * lot of shareable data. As a compromise, we check whether scattered 6433 * ABDs are allowed, and assume that if they are then the user wants 6434 * the ARC to be primarily filled with them regardless of the data being 6435 * written. Therefore, if they're allowed then we allocate one and copy 6436 * the data into it; otherwise, we share the data directly if we can. 6437 */ 6438 if (ARC_BUF_ENCRYPTED(buf)) { 6439 ASSERT3U(psize, >, 0); 6440 ASSERT(ARC_BUF_COMPRESSED(buf)); 6441 arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA | 6442 ARC_HDR_USE_RESERVE); 6443 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6444 } else if (!(HDR_UNCACHED(hdr) || 6445 abd_size_alloc_linear(arc_buf_size(buf))) || 6446 !arc_can_share(hdr, buf)) { 6447 /* 6448 * Ideally, we would always copy the io_abd into b_pabd, but the 6449 * user may have disabled compressed ARC, thus we must check the 6450 * hdr's compression setting rather than the io_bp's. 6451 */ 6452 if (BP_IS_ENCRYPTED(bp)) { 6453 ASSERT3U(psize, >, 0); 6454 arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA | 6455 ARC_HDR_USE_RESERVE); 6456 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6457 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6458 !ARC_BUF_COMPRESSED(buf)) { 6459 ASSERT3U(psize, >, 0); 6460 arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE); 6461 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6462 } else { 6463 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6464 arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE); 6465 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6466 arc_buf_size(buf)); 6467 } 6468 } else { 6469 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6470 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6471 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf); 6472 ASSERT(ARC_BUF_LAST(buf)); 6473 6474 arc_share_buf(hdr, buf); 6475 } 6476 6477 out: 6478 arc_hdr_verify(hdr, bp); 6479 spl_fstrans_unmark(cookie); 6480 } 6481 6482 static void 6483 arc_write_children_ready(zio_t *zio) 6484 { 6485 arc_write_callback_t *callback = zio->io_private; 6486 arc_buf_t *buf = callback->awcb_buf; 6487 6488 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6489 } 6490 6491 static void 6492 arc_write_done(zio_t *zio) 6493 { 6494 arc_write_callback_t *callback = zio->io_private; 6495 arc_buf_t *buf = callback->awcb_buf; 6496 arc_buf_hdr_t *hdr = buf->b_hdr; 6497 6498 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6499 6500 if (zio->io_error == 0) { 6501 arc_hdr_verify(hdr, zio->io_bp); 6502 6503 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6504 buf_discard_identity(hdr); 6505 } else { 6506 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6507 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 6508 } 6509 } else { 6510 ASSERT(HDR_EMPTY(hdr)); 6511 } 6512 6513 /* 6514 * If the block to be written was all-zero or compressed enough to be 6515 * embedded in the BP, no write was performed so there will be no 6516 * dva/birth/checksum. The buffer must therefore remain anonymous 6517 * (and uncached). 6518 */ 6519 if (!HDR_EMPTY(hdr)) { 6520 arc_buf_hdr_t *exists; 6521 kmutex_t *hash_lock; 6522 6523 ASSERT3U(zio->io_error, ==, 0); 6524 6525 arc_cksum_verify(buf); 6526 6527 exists = buf_hash_insert(hdr, &hash_lock); 6528 if (exists != NULL) { 6529 /* 6530 * This can only happen if we overwrite for 6531 * sync-to-convergence, because we remove 6532 * buffers from the hash table when we arc_free(). 6533 */ 6534 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 6535 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6536 panic("bad overwrite, hdr=%p exists=%p", 6537 (void *)hdr, (void *)exists); 6538 ASSERT(zfs_refcount_is_zero( 6539 &exists->b_l1hdr.b_refcnt)); 6540 arc_change_state(arc_anon, exists); 6541 arc_hdr_destroy(exists); 6542 mutex_exit(hash_lock); 6543 exists = buf_hash_insert(hdr, &hash_lock); 6544 ASSERT3P(exists, ==, NULL); 6545 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 6546 /* nopwrite */ 6547 ASSERT(zio->io_prop.zp_nopwrite); 6548 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6549 panic("bad nopwrite, hdr=%p exists=%p", 6550 (void *)hdr, (void *)exists); 6551 } else { 6552 /* Dedup */ 6553 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL); 6554 ASSERT(ARC_BUF_LAST(hdr->b_l1hdr.b_buf)); 6555 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 6556 ASSERT(BP_GET_DEDUP(zio->io_bp)); 6557 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 6558 } 6559 } 6560 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6561 VERIFY3S(remove_reference(hdr, hdr), >, 0); 6562 /* if it's not anon, we are doing a scrub */ 6563 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 6564 arc_access(hdr, 0, B_FALSE); 6565 mutex_exit(hash_lock); 6566 } else { 6567 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6568 VERIFY3S(remove_reference(hdr, hdr), >, 0); 6569 } 6570 6571 callback->awcb_done(zio, buf, callback->awcb_private); 6572 6573 abd_free(zio->io_abd); 6574 kmem_free(callback, sizeof (arc_write_callback_t)); 6575 } 6576 6577 zio_t * 6578 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 6579 blkptr_t *bp, arc_buf_t *buf, boolean_t uncached, boolean_t l2arc, 6580 const zio_prop_t *zp, arc_write_done_func_t *ready, 6581 arc_write_done_func_t *children_ready, arc_write_done_func_t *done, 6582 void *private, zio_priority_t priority, int zio_flags, 6583 const zbookmark_phys_t *zb) 6584 { 6585 arc_buf_hdr_t *hdr = buf->b_hdr; 6586 arc_write_callback_t *callback; 6587 zio_t *zio; 6588 zio_prop_t localprop = *zp; 6589 6590 ASSERT3P(ready, !=, NULL); 6591 ASSERT3P(done, !=, NULL); 6592 ASSERT(!HDR_IO_ERROR(hdr)); 6593 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6594 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6595 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL); 6596 if (uncached) 6597 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED); 6598 else if (l2arc) 6599 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6600 6601 if (ARC_BUF_ENCRYPTED(buf)) { 6602 ASSERT(ARC_BUF_COMPRESSED(buf)); 6603 localprop.zp_encrypt = B_TRUE; 6604 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6605 localprop.zp_complevel = hdr->b_complevel; 6606 localprop.zp_byteorder = 6607 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 6608 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 6609 memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt, 6610 ZIO_DATA_SALT_LEN); 6611 memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv, 6612 ZIO_DATA_IV_LEN); 6613 memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac, 6614 ZIO_DATA_MAC_LEN); 6615 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 6616 localprop.zp_nopwrite = B_FALSE; 6617 localprop.zp_copies = 6618 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 6619 } 6620 zio_flags |= ZIO_FLAG_RAW; 6621 } else if (ARC_BUF_COMPRESSED(buf)) { 6622 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 6623 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6624 localprop.zp_complevel = hdr->b_complevel; 6625 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6626 } 6627 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 6628 callback->awcb_ready = ready; 6629 callback->awcb_children_ready = children_ready; 6630 callback->awcb_done = done; 6631 callback->awcb_private = private; 6632 callback->awcb_buf = buf; 6633 6634 /* 6635 * The hdr's b_pabd is now stale, free it now. A new data block 6636 * will be allocated when the zio pipeline calls arc_write_ready(). 6637 */ 6638 if (hdr->b_l1hdr.b_pabd != NULL) { 6639 /* 6640 * If the buf is currently sharing the data block with 6641 * the hdr then we need to break that relationship here. 6642 * The hdr will remain with a NULL data pointer and the 6643 * buf will take sole ownership of the block. 6644 */ 6645 if (ARC_BUF_SHARED(buf)) { 6646 arc_unshare_buf(hdr, buf); 6647 } else { 6648 ASSERT(!arc_buf_is_shared(buf)); 6649 arc_hdr_free_abd(hdr, B_FALSE); 6650 } 6651 VERIFY3P(buf->b_data, !=, NULL); 6652 } 6653 6654 if (HDR_HAS_RABD(hdr)) 6655 arc_hdr_free_abd(hdr, B_TRUE); 6656 6657 if (!(zio_flags & ZIO_FLAG_RAW)) 6658 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 6659 6660 ASSERT(!arc_buf_is_shared(buf)); 6661 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6662 6663 zio = zio_write(pio, spa, txg, bp, 6664 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 6665 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 6666 (children_ready != NULL) ? arc_write_children_ready : NULL, 6667 arc_write_done, callback, priority, zio_flags, zb); 6668 6669 return (zio); 6670 } 6671 6672 void 6673 arc_tempreserve_clear(uint64_t reserve) 6674 { 6675 atomic_add_64(&arc_tempreserve, -reserve); 6676 ASSERT((int64_t)arc_tempreserve >= 0); 6677 } 6678 6679 int 6680 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 6681 { 6682 int error; 6683 uint64_t anon_size; 6684 6685 if (!arc_no_grow && 6686 reserve > arc_c/4 && 6687 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) 6688 arc_c = MIN(arc_c_max, reserve * 4); 6689 6690 /* 6691 * Throttle when the calculated memory footprint for the TXG 6692 * exceeds the target ARC size. 6693 */ 6694 if (reserve > arc_c) { 6695 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); 6696 return (SET_ERROR(ERESTART)); 6697 } 6698 6699 /* 6700 * Don't count loaned bufs as in flight dirty data to prevent long 6701 * network delays from blocking transactions that are ready to be 6702 * assigned to a txg. 6703 */ 6704 6705 /* assert that it has not wrapped around */ 6706 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 6707 6708 anon_size = MAX((int64_t) 6709 (zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]) + 6710 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]) - 6711 arc_loaned_bytes), 0); 6712 6713 /* 6714 * Writes will, almost always, require additional memory allocations 6715 * in order to compress/encrypt/etc the data. We therefore need to 6716 * make sure that there is sufficient available memory for this. 6717 */ 6718 error = arc_memory_throttle(spa, reserve, txg); 6719 if (error != 0) 6720 return (error); 6721 6722 /* 6723 * Throttle writes when the amount of dirty data in the cache 6724 * gets too large. We try to keep the cache less than half full 6725 * of dirty blocks so that our sync times don't grow too large. 6726 * 6727 * In the case of one pool being built on another pool, we want 6728 * to make sure we don't end up throttling the lower (backing) 6729 * pool when the upper pool is the majority contributor to dirty 6730 * data. To insure we make forward progress during throttling, we 6731 * also check the current pool's net dirty data and only throttle 6732 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 6733 * data in the cache. 6734 * 6735 * Note: if two requests come in concurrently, we might let them 6736 * both succeed, when one of them should fail. Not a huge deal. 6737 */ 6738 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 6739 uint64_t spa_dirty_anon = spa_dirty_data(spa); 6740 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max; 6741 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 && 6742 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 && 6743 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 6744 #ifdef ZFS_DEBUG 6745 uint64_t meta_esize = zfs_refcount_count( 6746 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 6747 uint64_t data_esize = 6748 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 6749 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 6750 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n", 6751 (u_longlong_t)arc_tempreserve >> 10, 6752 (u_longlong_t)meta_esize >> 10, 6753 (u_longlong_t)data_esize >> 10, 6754 (u_longlong_t)reserve >> 10, 6755 (u_longlong_t)rarc_c >> 10); 6756 #endif 6757 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); 6758 return (SET_ERROR(ERESTART)); 6759 } 6760 atomic_add_64(&arc_tempreserve, reserve); 6761 return (0); 6762 } 6763 6764 static void 6765 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 6766 kstat_named_t *data, kstat_named_t *metadata, 6767 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 6768 { 6769 data->value.ui64 = 6770 zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]); 6771 metadata->value.ui64 = 6772 zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]); 6773 size->value.ui64 = data->value.ui64 + metadata->value.ui64; 6774 evict_data->value.ui64 = 6775 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 6776 evict_metadata->value.ui64 = 6777 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 6778 } 6779 6780 static int 6781 arc_kstat_update(kstat_t *ksp, int rw) 6782 { 6783 arc_stats_t *as = ksp->ks_data; 6784 6785 if (rw == KSTAT_WRITE) 6786 return (SET_ERROR(EACCES)); 6787 6788 as->arcstat_hits.value.ui64 = 6789 wmsum_value(&arc_sums.arcstat_hits); 6790 as->arcstat_iohits.value.ui64 = 6791 wmsum_value(&arc_sums.arcstat_iohits); 6792 as->arcstat_misses.value.ui64 = 6793 wmsum_value(&arc_sums.arcstat_misses); 6794 as->arcstat_demand_data_hits.value.ui64 = 6795 wmsum_value(&arc_sums.arcstat_demand_data_hits); 6796 as->arcstat_demand_data_iohits.value.ui64 = 6797 wmsum_value(&arc_sums.arcstat_demand_data_iohits); 6798 as->arcstat_demand_data_misses.value.ui64 = 6799 wmsum_value(&arc_sums.arcstat_demand_data_misses); 6800 as->arcstat_demand_metadata_hits.value.ui64 = 6801 wmsum_value(&arc_sums.arcstat_demand_metadata_hits); 6802 as->arcstat_demand_metadata_iohits.value.ui64 = 6803 wmsum_value(&arc_sums.arcstat_demand_metadata_iohits); 6804 as->arcstat_demand_metadata_misses.value.ui64 = 6805 wmsum_value(&arc_sums.arcstat_demand_metadata_misses); 6806 as->arcstat_prefetch_data_hits.value.ui64 = 6807 wmsum_value(&arc_sums.arcstat_prefetch_data_hits); 6808 as->arcstat_prefetch_data_iohits.value.ui64 = 6809 wmsum_value(&arc_sums.arcstat_prefetch_data_iohits); 6810 as->arcstat_prefetch_data_misses.value.ui64 = 6811 wmsum_value(&arc_sums.arcstat_prefetch_data_misses); 6812 as->arcstat_prefetch_metadata_hits.value.ui64 = 6813 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits); 6814 as->arcstat_prefetch_metadata_iohits.value.ui64 = 6815 wmsum_value(&arc_sums.arcstat_prefetch_metadata_iohits); 6816 as->arcstat_prefetch_metadata_misses.value.ui64 = 6817 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses); 6818 as->arcstat_mru_hits.value.ui64 = 6819 wmsum_value(&arc_sums.arcstat_mru_hits); 6820 as->arcstat_mru_ghost_hits.value.ui64 = 6821 wmsum_value(&arc_sums.arcstat_mru_ghost_hits); 6822 as->arcstat_mfu_hits.value.ui64 = 6823 wmsum_value(&arc_sums.arcstat_mfu_hits); 6824 as->arcstat_mfu_ghost_hits.value.ui64 = 6825 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits); 6826 as->arcstat_uncached_hits.value.ui64 = 6827 wmsum_value(&arc_sums.arcstat_uncached_hits); 6828 as->arcstat_deleted.value.ui64 = 6829 wmsum_value(&arc_sums.arcstat_deleted); 6830 as->arcstat_mutex_miss.value.ui64 = 6831 wmsum_value(&arc_sums.arcstat_mutex_miss); 6832 as->arcstat_access_skip.value.ui64 = 6833 wmsum_value(&arc_sums.arcstat_access_skip); 6834 as->arcstat_evict_skip.value.ui64 = 6835 wmsum_value(&arc_sums.arcstat_evict_skip); 6836 as->arcstat_evict_not_enough.value.ui64 = 6837 wmsum_value(&arc_sums.arcstat_evict_not_enough); 6838 as->arcstat_evict_l2_cached.value.ui64 = 6839 wmsum_value(&arc_sums.arcstat_evict_l2_cached); 6840 as->arcstat_evict_l2_eligible.value.ui64 = 6841 wmsum_value(&arc_sums.arcstat_evict_l2_eligible); 6842 as->arcstat_evict_l2_eligible_mfu.value.ui64 = 6843 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu); 6844 as->arcstat_evict_l2_eligible_mru.value.ui64 = 6845 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru); 6846 as->arcstat_evict_l2_ineligible.value.ui64 = 6847 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible); 6848 as->arcstat_evict_l2_skip.value.ui64 = 6849 wmsum_value(&arc_sums.arcstat_evict_l2_skip); 6850 as->arcstat_hash_collisions.value.ui64 = 6851 wmsum_value(&arc_sums.arcstat_hash_collisions); 6852 as->arcstat_hash_chains.value.ui64 = 6853 wmsum_value(&arc_sums.arcstat_hash_chains); 6854 as->arcstat_size.value.ui64 = 6855 aggsum_value(&arc_sums.arcstat_size); 6856 as->arcstat_compressed_size.value.ui64 = 6857 wmsum_value(&arc_sums.arcstat_compressed_size); 6858 as->arcstat_uncompressed_size.value.ui64 = 6859 wmsum_value(&arc_sums.arcstat_uncompressed_size); 6860 as->arcstat_overhead_size.value.ui64 = 6861 wmsum_value(&arc_sums.arcstat_overhead_size); 6862 as->arcstat_hdr_size.value.ui64 = 6863 wmsum_value(&arc_sums.arcstat_hdr_size); 6864 as->arcstat_data_size.value.ui64 = 6865 wmsum_value(&arc_sums.arcstat_data_size); 6866 as->arcstat_metadata_size.value.ui64 = 6867 wmsum_value(&arc_sums.arcstat_metadata_size); 6868 as->arcstat_dbuf_size.value.ui64 = 6869 wmsum_value(&arc_sums.arcstat_dbuf_size); 6870 #if defined(COMPAT_FREEBSD11) 6871 as->arcstat_other_size.value.ui64 = 6872 wmsum_value(&arc_sums.arcstat_bonus_size) + 6873 wmsum_value(&arc_sums.arcstat_dnode_size) + 6874 wmsum_value(&arc_sums.arcstat_dbuf_size); 6875 #endif 6876 6877 arc_kstat_update_state(arc_anon, 6878 &as->arcstat_anon_size, 6879 &as->arcstat_anon_data, 6880 &as->arcstat_anon_metadata, 6881 &as->arcstat_anon_evictable_data, 6882 &as->arcstat_anon_evictable_metadata); 6883 arc_kstat_update_state(arc_mru, 6884 &as->arcstat_mru_size, 6885 &as->arcstat_mru_data, 6886 &as->arcstat_mru_metadata, 6887 &as->arcstat_mru_evictable_data, 6888 &as->arcstat_mru_evictable_metadata); 6889 arc_kstat_update_state(arc_mru_ghost, 6890 &as->arcstat_mru_ghost_size, 6891 &as->arcstat_mru_ghost_data, 6892 &as->arcstat_mru_ghost_metadata, 6893 &as->arcstat_mru_ghost_evictable_data, 6894 &as->arcstat_mru_ghost_evictable_metadata); 6895 arc_kstat_update_state(arc_mfu, 6896 &as->arcstat_mfu_size, 6897 &as->arcstat_mfu_data, 6898 &as->arcstat_mfu_metadata, 6899 &as->arcstat_mfu_evictable_data, 6900 &as->arcstat_mfu_evictable_metadata); 6901 arc_kstat_update_state(arc_mfu_ghost, 6902 &as->arcstat_mfu_ghost_size, 6903 &as->arcstat_mfu_ghost_data, 6904 &as->arcstat_mfu_ghost_metadata, 6905 &as->arcstat_mfu_ghost_evictable_data, 6906 &as->arcstat_mfu_ghost_evictable_metadata); 6907 arc_kstat_update_state(arc_uncached, 6908 &as->arcstat_uncached_size, 6909 &as->arcstat_uncached_data, 6910 &as->arcstat_uncached_metadata, 6911 &as->arcstat_uncached_evictable_data, 6912 &as->arcstat_uncached_evictable_metadata); 6913 6914 as->arcstat_dnode_size.value.ui64 = 6915 wmsum_value(&arc_sums.arcstat_dnode_size); 6916 as->arcstat_bonus_size.value.ui64 = 6917 wmsum_value(&arc_sums.arcstat_bonus_size); 6918 as->arcstat_l2_hits.value.ui64 = 6919 wmsum_value(&arc_sums.arcstat_l2_hits); 6920 as->arcstat_l2_misses.value.ui64 = 6921 wmsum_value(&arc_sums.arcstat_l2_misses); 6922 as->arcstat_l2_prefetch_asize.value.ui64 = 6923 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize); 6924 as->arcstat_l2_mru_asize.value.ui64 = 6925 wmsum_value(&arc_sums.arcstat_l2_mru_asize); 6926 as->arcstat_l2_mfu_asize.value.ui64 = 6927 wmsum_value(&arc_sums.arcstat_l2_mfu_asize); 6928 as->arcstat_l2_bufc_data_asize.value.ui64 = 6929 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize); 6930 as->arcstat_l2_bufc_metadata_asize.value.ui64 = 6931 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize); 6932 as->arcstat_l2_feeds.value.ui64 = 6933 wmsum_value(&arc_sums.arcstat_l2_feeds); 6934 as->arcstat_l2_rw_clash.value.ui64 = 6935 wmsum_value(&arc_sums.arcstat_l2_rw_clash); 6936 as->arcstat_l2_read_bytes.value.ui64 = 6937 wmsum_value(&arc_sums.arcstat_l2_read_bytes); 6938 as->arcstat_l2_write_bytes.value.ui64 = 6939 wmsum_value(&arc_sums.arcstat_l2_write_bytes); 6940 as->arcstat_l2_writes_sent.value.ui64 = 6941 wmsum_value(&arc_sums.arcstat_l2_writes_sent); 6942 as->arcstat_l2_writes_done.value.ui64 = 6943 wmsum_value(&arc_sums.arcstat_l2_writes_done); 6944 as->arcstat_l2_writes_error.value.ui64 = 6945 wmsum_value(&arc_sums.arcstat_l2_writes_error); 6946 as->arcstat_l2_writes_lock_retry.value.ui64 = 6947 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry); 6948 as->arcstat_l2_evict_lock_retry.value.ui64 = 6949 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry); 6950 as->arcstat_l2_evict_reading.value.ui64 = 6951 wmsum_value(&arc_sums.arcstat_l2_evict_reading); 6952 as->arcstat_l2_evict_l1cached.value.ui64 = 6953 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached); 6954 as->arcstat_l2_free_on_write.value.ui64 = 6955 wmsum_value(&arc_sums.arcstat_l2_free_on_write); 6956 as->arcstat_l2_abort_lowmem.value.ui64 = 6957 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem); 6958 as->arcstat_l2_cksum_bad.value.ui64 = 6959 wmsum_value(&arc_sums.arcstat_l2_cksum_bad); 6960 as->arcstat_l2_io_error.value.ui64 = 6961 wmsum_value(&arc_sums.arcstat_l2_io_error); 6962 as->arcstat_l2_lsize.value.ui64 = 6963 wmsum_value(&arc_sums.arcstat_l2_lsize); 6964 as->arcstat_l2_psize.value.ui64 = 6965 wmsum_value(&arc_sums.arcstat_l2_psize); 6966 as->arcstat_l2_hdr_size.value.ui64 = 6967 aggsum_value(&arc_sums.arcstat_l2_hdr_size); 6968 as->arcstat_l2_log_blk_writes.value.ui64 = 6969 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes); 6970 as->arcstat_l2_log_blk_asize.value.ui64 = 6971 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize); 6972 as->arcstat_l2_log_blk_count.value.ui64 = 6973 wmsum_value(&arc_sums.arcstat_l2_log_blk_count); 6974 as->arcstat_l2_rebuild_success.value.ui64 = 6975 wmsum_value(&arc_sums.arcstat_l2_rebuild_success); 6976 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 = 6977 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 6978 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 = 6979 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 6980 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 = 6981 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 6982 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 = 6983 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 6984 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 = 6985 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 6986 as->arcstat_l2_rebuild_size.value.ui64 = 6987 wmsum_value(&arc_sums.arcstat_l2_rebuild_size); 6988 as->arcstat_l2_rebuild_asize.value.ui64 = 6989 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize); 6990 as->arcstat_l2_rebuild_bufs.value.ui64 = 6991 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs); 6992 as->arcstat_l2_rebuild_bufs_precached.value.ui64 = 6993 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached); 6994 as->arcstat_l2_rebuild_log_blks.value.ui64 = 6995 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks); 6996 as->arcstat_memory_throttle_count.value.ui64 = 6997 wmsum_value(&arc_sums.arcstat_memory_throttle_count); 6998 as->arcstat_memory_direct_count.value.ui64 = 6999 wmsum_value(&arc_sums.arcstat_memory_direct_count); 7000 as->arcstat_memory_indirect_count.value.ui64 = 7001 wmsum_value(&arc_sums.arcstat_memory_indirect_count); 7002 7003 as->arcstat_memory_all_bytes.value.ui64 = 7004 arc_all_memory(); 7005 as->arcstat_memory_free_bytes.value.ui64 = 7006 arc_free_memory(); 7007 as->arcstat_memory_available_bytes.value.i64 = 7008 arc_available_memory(); 7009 7010 as->arcstat_prune.value.ui64 = 7011 wmsum_value(&arc_sums.arcstat_prune); 7012 as->arcstat_meta_used.value.ui64 = 7013 wmsum_value(&arc_sums.arcstat_meta_used); 7014 as->arcstat_async_upgrade_sync.value.ui64 = 7015 wmsum_value(&arc_sums.arcstat_async_upgrade_sync); 7016 as->arcstat_predictive_prefetch.value.ui64 = 7017 wmsum_value(&arc_sums.arcstat_predictive_prefetch); 7018 as->arcstat_demand_hit_predictive_prefetch.value.ui64 = 7019 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7020 as->arcstat_demand_iohit_predictive_prefetch.value.ui64 = 7021 wmsum_value(&arc_sums.arcstat_demand_iohit_predictive_prefetch); 7022 as->arcstat_prescient_prefetch.value.ui64 = 7023 wmsum_value(&arc_sums.arcstat_prescient_prefetch); 7024 as->arcstat_demand_hit_prescient_prefetch.value.ui64 = 7025 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7026 as->arcstat_demand_iohit_prescient_prefetch.value.ui64 = 7027 wmsum_value(&arc_sums.arcstat_demand_iohit_prescient_prefetch); 7028 as->arcstat_raw_size.value.ui64 = 7029 wmsum_value(&arc_sums.arcstat_raw_size); 7030 as->arcstat_cached_only_in_progress.value.ui64 = 7031 wmsum_value(&arc_sums.arcstat_cached_only_in_progress); 7032 as->arcstat_abd_chunk_waste_size.value.ui64 = 7033 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size); 7034 7035 return (0); 7036 } 7037 7038 /* 7039 * This function *must* return indices evenly distributed between all 7040 * sublists of the multilist. This is needed due to how the ARC eviction 7041 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 7042 * distributed between all sublists and uses this assumption when 7043 * deciding which sublist to evict from and how much to evict from it. 7044 */ 7045 static unsigned int 7046 arc_state_multilist_index_func(multilist_t *ml, void *obj) 7047 { 7048 arc_buf_hdr_t *hdr = obj; 7049 7050 /* 7051 * We rely on b_dva to generate evenly distributed index 7052 * numbers using buf_hash below. So, as an added precaution, 7053 * let's make sure we never add empty buffers to the arc lists. 7054 */ 7055 ASSERT(!HDR_EMPTY(hdr)); 7056 7057 /* 7058 * The assumption here, is the hash value for a given 7059 * arc_buf_hdr_t will remain constant throughout its lifetime 7060 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 7061 * Thus, we don't need to store the header's sublist index 7062 * on insertion, as this index can be recalculated on removal. 7063 * 7064 * Also, the low order bits of the hash value are thought to be 7065 * distributed evenly. Otherwise, in the case that the multilist 7066 * has a power of two number of sublists, each sublists' usage 7067 * would not be evenly distributed. In this context full 64bit 7068 * division would be a waste of time, so limit it to 32 bits. 7069 */ 7070 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 7071 multilist_get_num_sublists(ml)); 7072 } 7073 7074 static unsigned int 7075 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj) 7076 { 7077 panic("Header %p insert into arc_l2c_only %p", obj, ml); 7078 } 7079 7080 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ 7081 if ((do_warn) && (tuning) && ((tuning) != (value))) { \ 7082 cmn_err(CE_WARN, \ 7083 "ignoring tunable %s (using %llu instead)", \ 7084 (#tuning), (u_longlong_t)(value)); \ 7085 } \ 7086 } while (0) 7087 7088 /* 7089 * Called during module initialization and periodically thereafter to 7090 * apply reasonable changes to the exposed performance tunings. Can also be 7091 * called explicitly by param_set_arc_*() functions when ARC tunables are 7092 * updated manually. Non-zero zfs_* values which differ from the currently set 7093 * values will be applied. 7094 */ 7095 void 7096 arc_tuning_update(boolean_t verbose) 7097 { 7098 uint64_t allmem = arc_all_memory(); 7099 7100 /* Valid range: 32M - <arc_c_max> */ 7101 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && 7102 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && 7103 (zfs_arc_min <= arc_c_max)) { 7104 arc_c_min = zfs_arc_min; 7105 arc_c = MAX(arc_c, arc_c_min); 7106 } 7107 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); 7108 7109 /* Valid range: 64M - <all physical memory> */ 7110 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && 7111 (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) && 7112 (zfs_arc_max > arc_c_min)) { 7113 arc_c_max = zfs_arc_max; 7114 arc_c = MIN(arc_c, arc_c_max); 7115 if (arc_dnode_limit > arc_c_max) 7116 arc_dnode_limit = arc_c_max; 7117 } 7118 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); 7119 7120 /* Valid range: 0 - <all physical memory> */ 7121 arc_dnode_limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : 7122 MIN(zfs_arc_dnode_limit_percent, 100) * arc_c_max / 100; 7123 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_limit, verbose); 7124 7125 /* Valid range: 1 - N */ 7126 if (zfs_arc_grow_retry) 7127 arc_grow_retry = zfs_arc_grow_retry; 7128 7129 /* Valid range: 1 - N */ 7130 if (zfs_arc_shrink_shift) { 7131 arc_shrink_shift = zfs_arc_shrink_shift; 7132 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); 7133 } 7134 7135 /* Valid range: 1 - N ms */ 7136 if (zfs_arc_min_prefetch_ms) 7137 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; 7138 7139 /* Valid range: 1 - N ms */ 7140 if (zfs_arc_min_prescient_prefetch_ms) { 7141 arc_min_prescient_prefetch_ms = 7142 zfs_arc_min_prescient_prefetch_ms; 7143 } 7144 7145 /* Valid range: 0 - 100 */ 7146 if (zfs_arc_lotsfree_percent <= 100) 7147 arc_lotsfree_percent = zfs_arc_lotsfree_percent; 7148 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, 7149 verbose); 7150 7151 /* Valid range: 0 - <all physical memory> */ 7152 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) 7153 arc_sys_free = MIN(zfs_arc_sys_free, allmem); 7154 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); 7155 } 7156 7157 static void 7158 arc_state_multilist_init(multilist_t *ml, 7159 multilist_sublist_index_func_t *index_func, int *maxcountp) 7160 { 7161 multilist_create(ml, sizeof (arc_buf_hdr_t), 7162 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func); 7163 *maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml)); 7164 } 7165 7166 static void 7167 arc_state_init(void) 7168 { 7169 int num_sublists = 0; 7170 7171 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA], 7172 arc_state_multilist_index_func, &num_sublists); 7173 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA], 7174 arc_state_multilist_index_func, &num_sublists); 7175 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 7176 arc_state_multilist_index_func, &num_sublists); 7177 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 7178 arc_state_multilist_index_func, &num_sublists); 7179 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 7180 arc_state_multilist_index_func, &num_sublists); 7181 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA], 7182 arc_state_multilist_index_func, &num_sublists); 7183 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 7184 arc_state_multilist_index_func, &num_sublists); 7185 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 7186 arc_state_multilist_index_func, &num_sublists); 7187 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_METADATA], 7188 arc_state_multilist_index_func, &num_sublists); 7189 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_DATA], 7190 arc_state_multilist_index_func, &num_sublists); 7191 7192 /* 7193 * L2 headers should never be on the L2 state list since they don't 7194 * have L1 headers allocated. Special index function asserts that. 7195 */ 7196 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 7197 arc_state_l2c_multilist_index_func, &num_sublists); 7198 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 7199 arc_state_l2c_multilist_index_func, &num_sublists); 7200 7201 /* 7202 * Keep track of the number of markers needed to reclaim buffers from 7203 * any ARC state. The markers will be pre-allocated so as to minimize 7204 * the number of memory allocations performed by the eviction thread. 7205 */ 7206 arc_state_evict_marker_count = num_sublists; 7207 7208 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7209 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7210 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7211 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7212 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7213 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7214 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7215 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7216 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7217 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7218 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7219 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7220 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]); 7221 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_DATA]); 7222 7223 zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_DATA]); 7224 zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_METADATA]); 7225 zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_DATA]); 7226 zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_METADATA]); 7227 zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]); 7228 zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]); 7229 zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_DATA]); 7230 zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_METADATA]); 7231 zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]); 7232 zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]); 7233 zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]); 7234 zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]); 7235 zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_DATA]); 7236 zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_METADATA]); 7237 7238 wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA], 0); 7239 wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA], 0); 7240 wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA], 0); 7241 wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA], 0); 7242 7243 wmsum_init(&arc_sums.arcstat_hits, 0); 7244 wmsum_init(&arc_sums.arcstat_iohits, 0); 7245 wmsum_init(&arc_sums.arcstat_misses, 0); 7246 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0); 7247 wmsum_init(&arc_sums.arcstat_demand_data_iohits, 0); 7248 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0); 7249 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0); 7250 wmsum_init(&arc_sums.arcstat_demand_metadata_iohits, 0); 7251 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0); 7252 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0); 7253 wmsum_init(&arc_sums.arcstat_prefetch_data_iohits, 0); 7254 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0); 7255 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0); 7256 wmsum_init(&arc_sums.arcstat_prefetch_metadata_iohits, 0); 7257 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0); 7258 wmsum_init(&arc_sums.arcstat_mru_hits, 0); 7259 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0); 7260 wmsum_init(&arc_sums.arcstat_mfu_hits, 0); 7261 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0); 7262 wmsum_init(&arc_sums.arcstat_uncached_hits, 0); 7263 wmsum_init(&arc_sums.arcstat_deleted, 0); 7264 wmsum_init(&arc_sums.arcstat_mutex_miss, 0); 7265 wmsum_init(&arc_sums.arcstat_access_skip, 0); 7266 wmsum_init(&arc_sums.arcstat_evict_skip, 0); 7267 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0); 7268 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0); 7269 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0); 7270 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0); 7271 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0); 7272 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0); 7273 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0); 7274 wmsum_init(&arc_sums.arcstat_hash_collisions, 0); 7275 wmsum_init(&arc_sums.arcstat_hash_chains, 0); 7276 aggsum_init(&arc_sums.arcstat_size, 0); 7277 wmsum_init(&arc_sums.arcstat_compressed_size, 0); 7278 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0); 7279 wmsum_init(&arc_sums.arcstat_overhead_size, 0); 7280 wmsum_init(&arc_sums.arcstat_hdr_size, 0); 7281 wmsum_init(&arc_sums.arcstat_data_size, 0); 7282 wmsum_init(&arc_sums.arcstat_metadata_size, 0); 7283 wmsum_init(&arc_sums.arcstat_dbuf_size, 0); 7284 wmsum_init(&arc_sums.arcstat_dnode_size, 0); 7285 wmsum_init(&arc_sums.arcstat_bonus_size, 0); 7286 wmsum_init(&arc_sums.arcstat_l2_hits, 0); 7287 wmsum_init(&arc_sums.arcstat_l2_misses, 0); 7288 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0); 7289 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0); 7290 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0); 7291 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0); 7292 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0); 7293 wmsum_init(&arc_sums.arcstat_l2_feeds, 0); 7294 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0); 7295 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0); 7296 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0); 7297 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0); 7298 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0); 7299 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0); 7300 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0); 7301 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0); 7302 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0); 7303 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0); 7304 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0); 7305 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0); 7306 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0); 7307 wmsum_init(&arc_sums.arcstat_l2_io_error, 0); 7308 wmsum_init(&arc_sums.arcstat_l2_lsize, 0); 7309 wmsum_init(&arc_sums.arcstat_l2_psize, 0); 7310 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0); 7311 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0); 7312 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0); 7313 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0); 7314 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0); 7315 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0); 7316 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0); 7317 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0); 7318 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0); 7319 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0); 7320 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0); 7321 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0); 7322 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0); 7323 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0); 7324 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0); 7325 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0); 7326 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0); 7327 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0); 7328 wmsum_init(&arc_sums.arcstat_prune, 0); 7329 wmsum_init(&arc_sums.arcstat_meta_used, 0); 7330 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0); 7331 wmsum_init(&arc_sums.arcstat_predictive_prefetch, 0); 7332 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0); 7333 wmsum_init(&arc_sums.arcstat_demand_iohit_predictive_prefetch, 0); 7334 wmsum_init(&arc_sums.arcstat_prescient_prefetch, 0); 7335 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0); 7336 wmsum_init(&arc_sums.arcstat_demand_iohit_prescient_prefetch, 0); 7337 wmsum_init(&arc_sums.arcstat_raw_size, 0); 7338 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0); 7339 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0); 7340 7341 arc_anon->arcs_state = ARC_STATE_ANON; 7342 arc_mru->arcs_state = ARC_STATE_MRU; 7343 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7344 arc_mfu->arcs_state = ARC_STATE_MFU; 7345 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7346 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7347 arc_uncached->arcs_state = ARC_STATE_UNCACHED; 7348 } 7349 7350 static void 7351 arc_state_fini(void) 7352 { 7353 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7354 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7355 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7356 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7357 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7358 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7359 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7360 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7361 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7362 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7363 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7364 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7365 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]); 7366 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_DATA]); 7367 7368 zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_DATA]); 7369 zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_METADATA]); 7370 zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_DATA]); 7371 zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_METADATA]); 7372 zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]); 7373 zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]); 7374 zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_DATA]); 7375 zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_METADATA]); 7376 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]); 7377 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]); 7378 zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]); 7379 zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]); 7380 zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_DATA]); 7381 zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_METADATA]); 7382 7383 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 7384 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7385 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7386 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7387 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 7388 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7389 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 7390 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7391 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7392 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7393 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_METADATA]); 7394 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_DATA]); 7395 7396 wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]); 7397 wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]); 7398 wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]); 7399 wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]); 7400 7401 wmsum_fini(&arc_sums.arcstat_hits); 7402 wmsum_fini(&arc_sums.arcstat_iohits); 7403 wmsum_fini(&arc_sums.arcstat_misses); 7404 wmsum_fini(&arc_sums.arcstat_demand_data_hits); 7405 wmsum_fini(&arc_sums.arcstat_demand_data_iohits); 7406 wmsum_fini(&arc_sums.arcstat_demand_data_misses); 7407 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits); 7408 wmsum_fini(&arc_sums.arcstat_demand_metadata_iohits); 7409 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses); 7410 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits); 7411 wmsum_fini(&arc_sums.arcstat_prefetch_data_iohits); 7412 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses); 7413 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits); 7414 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_iohits); 7415 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses); 7416 wmsum_fini(&arc_sums.arcstat_mru_hits); 7417 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits); 7418 wmsum_fini(&arc_sums.arcstat_mfu_hits); 7419 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits); 7420 wmsum_fini(&arc_sums.arcstat_uncached_hits); 7421 wmsum_fini(&arc_sums.arcstat_deleted); 7422 wmsum_fini(&arc_sums.arcstat_mutex_miss); 7423 wmsum_fini(&arc_sums.arcstat_access_skip); 7424 wmsum_fini(&arc_sums.arcstat_evict_skip); 7425 wmsum_fini(&arc_sums.arcstat_evict_not_enough); 7426 wmsum_fini(&arc_sums.arcstat_evict_l2_cached); 7427 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible); 7428 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu); 7429 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru); 7430 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible); 7431 wmsum_fini(&arc_sums.arcstat_evict_l2_skip); 7432 wmsum_fini(&arc_sums.arcstat_hash_collisions); 7433 wmsum_fini(&arc_sums.arcstat_hash_chains); 7434 aggsum_fini(&arc_sums.arcstat_size); 7435 wmsum_fini(&arc_sums.arcstat_compressed_size); 7436 wmsum_fini(&arc_sums.arcstat_uncompressed_size); 7437 wmsum_fini(&arc_sums.arcstat_overhead_size); 7438 wmsum_fini(&arc_sums.arcstat_hdr_size); 7439 wmsum_fini(&arc_sums.arcstat_data_size); 7440 wmsum_fini(&arc_sums.arcstat_metadata_size); 7441 wmsum_fini(&arc_sums.arcstat_dbuf_size); 7442 wmsum_fini(&arc_sums.arcstat_dnode_size); 7443 wmsum_fini(&arc_sums.arcstat_bonus_size); 7444 wmsum_fini(&arc_sums.arcstat_l2_hits); 7445 wmsum_fini(&arc_sums.arcstat_l2_misses); 7446 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize); 7447 wmsum_fini(&arc_sums.arcstat_l2_mru_asize); 7448 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize); 7449 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize); 7450 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize); 7451 wmsum_fini(&arc_sums.arcstat_l2_feeds); 7452 wmsum_fini(&arc_sums.arcstat_l2_rw_clash); 7453 wmsum_fini(&arc_sums.arcstat_l2_read_bytes); 7454 wmsum_fini(&arc_sums.arcstat_l2_write_bytes); 7455 wmsum_fini(&arc_sums.arcstat_l2_writes_sent); 7456 wmsum_fini(&arc_sums.arcstat_l2_writes_done); 7457 wmsum_fini(&arc_sums.arcstat_l2_writes_error); 7458 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry); 7459 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry); 7460 wmsum_fini(&arc_sums.arcstat_l2_evict_reading); 7461 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached); 7462 wmsum_fini(&arc_sums.arcstat_l2_free_on_write); 7463 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem); 7464 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad); 7465 wmsum_fini(&arc_sums.arcstat_l2_io_error); 7466 wmsum_fini(&arc_sums.arcstat_l2_lsize); 7467 wmsum_fini(&arc_sums.arcstat_l2_psize); 7468 aggsum_fini(&arc_sums.arcstat_l2_hdr_size); 7469 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes); 7470 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize); 7471 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count); 7472 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success); 7473 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported); 7474 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors); 7475 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors); 7476 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors); 7477 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem); 7478 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size); 7479 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize); 7480 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs); 7481 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached); 7482 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks); 7483 wmsum_fini(&arc_sums.arcstat_memory_throttle_count); 7484 wmsum_fini(&arc_sums.arcstat_memory_direct_count); 7485 wmsum_fini(&arc_sums.arcstat_memory_indirect_count); 7486 wmsum_fini(&arc_sums.arcstat_prune); 7487 wmsum_fini(&arc_sums.arcstat_meta_used); 7488 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync); 7489 wmsum_fini(&arc_sums.arcstat_predictive_prefetch); 7490 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch); 7491 wmsum_fini(&arc_sums.arcstat_demand_iohit_predictive_prefetch); 7492 wmsum_fini(&arc_sums.arcstat_prescient_prefetch); 7493 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch); 7494 wmsum_fini(&arc_sums.arcstat_demand_iohit_prescient_prefetch); 7495 wmsum_fini(&arc_sums.arcstat_raw_size); 7496 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress); 7497 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size); 7498 } 7499 7500 uint64_t 7501 arc_target_bytes(void) 7502 { 7503 return (arc_c); 7504 } 7505 7506 void 7507 arc_set_limits(uint64_t allmem) 7508 { 7509 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ 7510 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); 7511 7512 /* How to set default max varies by platform. */ 7513 arc_c_max = arc_default_max(arc_c_min, allmem); 7514 } 7515 void 7516 arc_init(void) 7517 { 7518 uint64_t percent, allmem = arc_all_memory(); 7519 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); 7520 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), 7521 offsetof(arc_evict_waiter_t, aew_node)); 7522 7523 arc_min_prefetch_ms = 1000; 7524 arc_min_prescient_prefetch_ms = 6000; 7525 7526 #if defined(_KERNEL) 7527 arc_lowmem_init(); 7528 #endif 7529 7530 arc_set_limits(allmem); 7531 7532 #ifdef _KERNEL 7533 /* 7534 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel 7535 * environment before the module was loaded, don't block setting the 7536 * maximum because it is less than arc_c_min, instead, reset arc_c_min 7537 * to a lower value. 7538 * zfs_arc_min will be handled by arc_tuning_update(). 7539 */ 7540 if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX && 7541 zfs_arc_max < allmem) { 7542 arc_c_max = zfs_arc_max; 7543 if (arc_c_min >= arc_c_max) { 7544 arc_c_min = MAX(zfs_arc_max / 2, 7545 2ULL << SPA_MAXBLOCKSHIFT); 7546 } 7547 } 7548 #else 7549 /* 7550 * In userland, there's only the memory pressure that we artificially 7551 * create (see arc_available_memory()). Don't let arc_c get too 7552 * small, because it can cause transactions to be larger than 7553 * arc_c, causing arc_tempreserve_space() to fail. 7554 */ 7555 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); 7556 #endif 7557 7558 arc_c = arc_c_min; 7559 /* 7560 * 32-bit fixed point fractions of metadata from total ARC size, 7561 * MRU data from all data and MRU metadata from all metadata. 7562 */ 7563 arc_meta = (1ULL << 32) / 4; /* Metadata is 25% of arc_c. */ 7564 arc_pd = (1ULL << 32) / 2; /* Data MRU is 50% of data. */ 7565 arc_pm = (1ULL << 32) / 2; /* Metadata MRU is 50% of metadata. */ 7566 7567 percent = MIN(zfs_arc_dnode_limit_percent, 100); 7568 arc_dnode_limit = arc_c_max * percent / 100; 7569 7570 /* Apply user specified tunings */ 7571 arc_tuning_update(B_TRUE); 7572 7573 /* if kmem_flags are set, lets try to use less memory */ 7574 if (kmem_debugging()) 7575 arc_c = arc_c / 2; 7576 if (arc_c < arc_c_min) 7577 arc_c = arc_c_min; 7578 7579 arc_register_hotplug(); 7580 7581 arc_state_init(); 7582 7583 buf_init(); 7584 7585 list_create(&arc_prune_list, sizeof (arc_prune_t), 7586 offsetof(arc_prune_t, p_node)); 7587 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); 7588 7589 arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads, 7590 defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 7591 7592 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7593 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7594 7595 if (arc_ksp != NULL) { 7596 arc_ksp->ks_data = &arc_stats; 7597 arc_ksp->ks_update = arc_kstat_update; 7598 kstat_install(arc_ksp); 7599 } 7600 7601 arc_state_evict_markers = 7602 arc_state_alloc_markers(arc_state_evict_marker_count); 7603 arc_evict_zthr = zthr_create_timer("arc_evict", 7604 arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1), defclsyspri); 7605 arc_reap_zthr = zthr_create_timer("arc_reap", 7606 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri); 7607 7608 arc_warm = B_FALSE; 7609 7610 /* 7611 * Calculate maximum amount of dirty data per pool. 7612 * 7613 * If it has been set by a module parameter, take that. 7614 * Otherwise, use a percentage of physical memory defined by 7615 * zfs_dirty_data_max_percent (default 10%) with a cap at 7616 * zfs_dirty_data_max_max (default 4G or 25% of physical memory). 7617 */ 7618 #ifdef __LP64__ 7619 if (zfs_dirty_data_max_max == 0) 7620 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, 7621 allmem * zfs_dirty_data_max_max_percent / 100); 7622 #else 7623 if (zfs_dirty_data_max_max == 0) 7624 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, 7625 allmem * zfs_dirty_data_max_max_percent / 100); 7626 #endif 7627 7628 if (zfs_dirty_data_max == 0) { 7629 zfs_dirty_data_max = allmem * 7630 zfs_dirty_data_max_percent / 100; 7631 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 7632 zfs_dirty_data_max_max); 7633 } 7634 7635 if (zfs_wrlog_data_max == 0) { 7636 7637 /* 7638 * dp_wrlog_total is reduced for each txg at the end of 7639 * spa_sync(). However, dp_dirty_total is reduced every time 7640 * a block is written out. Thus under normal operation, 7641 * dp_wrlog_total could grow 2 times as big as 7642 * zfs_dirty_data_max. 7643 */ 7644 zfs_wrlog_data_max = zfs_dirty_data_max * 2; 7645 } 7646 } 7647 7648 void 7649 arc_fini(void) 7650 { 7651 arc_prune_t *p; 7652 7653 #ifdef _KERNEL 7654 arc_lowmem_fini(); 7655 #endif /* _KERNEL */ 7656 7657 /* Use B_TRUE to ensure *all* buffers are evicted */ 7658 arc_flush(NULL, B_TRUE); 7659 7660 if (arc_ksp != NULL) { 7661 kstat_delete(arc_ksp); 7662 arc_ksp = NULL; 7663 } 7664 7665 taskq_wait(arc_prune_taskq); 7666 taskq_destroy(arc_prune_taskq); 7667 7668 mutex_enter(&arc_prune_mtx); 7669 while ((p = list_remove_head(&arc_prune_list)) != NULL) { 7670 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); 7671 zfs_refcount_destroy(&p->p_refcnt); 7672 kmem_free(p, sizeof (*p)); 7673 } 7674 mutex_exit(&arc_prune_mtx); 7675 7676 list_destroy(&arc_prune_list); 7677 mutex_destroy(&arc_prune_mtx); 7678 7679 (void) zthr_cancel(arc_evict_zthr); 7680 (void) zthr_cancel(arc_reap_zthr); 7681 arc_state_free_markers(arc_state_evict_markers, 7682 arc_state_evict_marker_count); 7683 7684 mutex_destroy(&arc_evict_lock); 7685 list_destroy(&arc_evict_waiters); 7686 7687 /* 7688 * Free any buffers that were tagged for destruction. This needs 7689 * to occur before arc_state_fini() runs and destroys the aggsum 7690 * values which are updated when freeing scatter ABDs. 7691 */ 7692 l2arc_do_free_on_write(); 7693 7694 /* 7695 * buf_fini() must proceed arc_state_fini() because buf_fin() may 7696 * trigger the release of kmem magazines, which can callback to 7697 * arc_space_return() which accesses aggsums freed in act_state_fini(). 7698 */ 7699 buf_fini(); 7700 arc_state_fini(); 7701 7702 arc_unregister_hotplug(); 7703 7704 /* 7705 * We destroy the zthrs after all the ARC state has been 7706 * torn down to avoid the case of them receiving any 7707 * wakeup() signals after they are destroyed. 7708 */ 7709 zthr_destroy(arc_evict_zthr); 7710 zthr_destroy(arc_reap_zthr); 7711 7712 ASSERT0(arc_loaned_bytes); 7713 } 7714 7715 /* 7716 * Level 2 ARC 7717 * 7718 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 7719 * It uses dedicated storage devices to hold cached data, which are populated 7720 * using large infrequent writes. The main role of this cache is to boost 7721 * the performance of random read workloads. The intended L2ARC devices 7722 * include short-stroked disks, solid state disks, and other media with 7723 * substantially faster read latency than disk. 7724 * 7725 * +-----------------------+ 7726 * | ARC | 7727 * +-----------------------+ 7728 * | ^ ^ 7729 * | | | 7730 * l2arc_feed_thread() arc_read() 7731 * | | | 7732 * | l2arc read | 7733 * V | | 7734 * +---------------+ | 7735 * | L2ARC | | 7736 * +---------------+ | 7737 * | ^ | 7738 * l2arc_write() | | 7739 * | | | 7740 * V | | 7741 * +-------+ +-------+ 7742 * | vdev | | vdev | 7743 * | cache | | cache | 7744 * +-------+ +-------+ 7745 * +=========+ .-----. 7746 * : L2ARC : |-_____-| 7747 * : devices : | Disks | 7748 * +=========+ `-_____-' 7749 * 7750 * Read requests are satisfied from the following sources, in order: 7751 * 7752 * 1) ARC 7753 * 2) vdev cache of L2ARC devices 7754 * 3) L2ARC devices 7755 * 4) vdev cache of disks 7756 * 5) disks 7757 * 7758 * Some L2ARC device types exhibit extremely slow write performance. 7759 * To accommodate for this there are some significant differences between 7760 * the L2ARC and traditional cache design: 7761 * 7762 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 7763 * the ARC behave as usual, freeing buffers and placing headers on ghost 7764 * lists. The ARC does not send buffers to the L2ARC during eviction as 7765 * this would add inflated write latencies for all ARC memory pressure. 7766 * 7767 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 7768 * It does this by periodically scanning buffers from the eviction-end of 7769 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 7770 * not already there. It scans until a headroom of buffers is satisfied, 7771 * which itself is a buffer for ARC eviction. If a compressible buffer is 7772 * found during scanning and selected for writing to an L2ARC device, we 7773 * temporarily boost scanning headroom during the next scan cycle to make 7774 * sure we adapt to compression effects (which might significantly reduce 7775 * the data volume we write to L2ARC). The thread that does this is 7776 * l2arc_feed_thread(), illustrated below; example sizes are included to 7777 * provide a better sense of ratio than this diagram: 7778 * 7779 * head --> tail 7780 * +---------------------+----------+ 7781 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 7782 * +---------------------+----------+ | o L2ARC eligible 7783 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 7784 * +---------------------+----------+ | 7785 * 15.9 Gbytes ^ 32 Mbytes | 7786 * headroom | 7787 * l2arc_feed_thread() 7788 * | 7789 * l2arc write hand <--[oooo]--' 7790 * | 8 Mbyte 7791 * | write max 7792 * V 7793 * +==============================+ 7794 * L2ARC dev |####|#|###|###| |####| ... | 7795 * +==============================+ 7796 * 32 Gbytes 7797 * 7798 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 7799 * evicted, then the L2ARC has cached a buffer much sooner than it probably 7800 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 7801 * safe to say that this is an uncommon case, since buffers at the end of 7802 * the ARC lists have moved there due to inactivity. 7803 * 7804 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 7805 * then the L2ARC simply misses copying some buffers. This serves as a 7806 * pressure valve to prevent heavy read workloads from both stalling the ARC 7807 * with waits and clogging the L2ARC with writes. This also helps prevent 7808 * the potential for the L2ARC to churn if it attempts to cache content too 7809 * quickly, such as during backups of the entire pool. 7810 * 7811 * 5. After system boot and before the ARC has filled main memory, there are 7812 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 7813 * lists can remain mostly static. Instead of searching from tail of these 7814 * lists as pictured, the l2arc_feed_thread() will search from the list heads 7815 * for eligible buffers, greatly increasing its chance of finding them. 7816 * 7817 * The L2ARC device write speed is also boosted during this time so that 7818 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 7819 * there are no L2ARC reads, and no fear of degrading read performance 7820 * through increased writes. 7821 * 7822 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 7823 * the vdev queue can aggregate them into larger and fewer writes. Each 7824 * device is written to in a rotor fashion, sweeping writes through 7825 * available space then repeating. 7826 * 7827 * 7. The L2ARC does not store dirty content. It never needs to flush 7828 * write buffers back to disk based storage. 7829 * 7830 * 8. If an ARC buffer is written (and dirtied) which also exists in the 7831 * L2ARC, the now stale L2ARC buffer is immediately dropped. 7832 * 7833 * The performance of the L2ARC can be tweaked by a number of tunables, which 7834 * may be necessary for different workloads: 7835 * 7836 * l2arc_write_max max write bytes per interval 7837 * l2arc_write_boost extra write bytes during device warmup 7838 * l2arc_noprefetch skip caching prefetched buffers 7839 * l2arc_headroom number of max device writes to precache 7840 * l2arc_headroom_boost when we find compressed buffers during ARC 7841 * scanning, we multiply headroom by this 7842 * percentage factor for the next scan cycle, 7843 * since more compressed buffers are likely to 7844 * be present 7845 * l2arc_feed_secs seconds between L2ARC writing 7846 * 7847 * Tunables may be removed or added as future performance improvements are 7848 * integrated, and also may become zpool properties. 7849 * 7850 * There are three key functions that control how the L2ARC warms up: 7851 * 7852 * l2arc_write_eligible() check if a buffer is eligible to cache 7853 * l2arc_write_size() calculate how much to write 7854 * l2arc_write_interval() calculate sleep delay between writes 7855 * 7856 * These three functions determine what to write, how much, and how quickly 7857 * to send writes. 7858 * 7859 * L2ARC persistence: 7860 * 7861 * When writing buffers to L2ARC, we periodically add some metadata to 7862 * make sure we can pick them up after reboot, thus dramatically reducing 7863 * the impact that any downtime has on the performance of storage systems 7864 * with large caches. 7865 * 7866 * The implementation works fairly simply by integrating the following two 7867 * modifications: 7868 * 7869 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 7870 * which is an additional piece of metadata which describes what's been 7871 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 7872 * main ARC buffers. There are 2 linked-lists of log blocks headed by 7873 * dh_start_lbps[2]. We alternate which chain we append to, so they are 7874 * time-wise and offset-wise interleaved, but that is an optimization rather 7875 * than for correctness. The log block also includes a pointer to the 7876 * previous block in its chain. 7877 * 7878 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 7879 * for our header bookkeeping purposes. This contains a device header, 7880 * which contains our top-level reference structures. We update it each 7881 * time we write a new log block, so that we're able to locate it in the 7882 * L2ARC device. If this write results in an inconsistent device header 7883 * (e.g. due to power failure), we detect this by verifying the header's 7884 * checksum and simply fail to reconstruct the L2ARC after reboot. 7885 * 7886 * Implementation diagram: 7887 * 7888 * +=== L2ARC device (not to scale) ======================================+ 7889 * | ___two newest log block pointers__.__________ | 7890 * | / \dh_start_lbps[1] | 7891 * | / \ \dh_start_lbps[0]| 7892 * |.___/__. V V | 7893 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 7894 * || hdr| ^ /^ /^ / / | 7895 * |+------+ ...--\-------/ \-----/--\------/ / | 7896 * | \--------------/ \--------------/ | 7897 * +======================================================================+ 7898 * 7899 * As can be seen on the diagram, rather than using a simple linked list, 7900 * we use a pair of linked lists with alternating elements. This is a 7901 * performance enhancement due to the fact that we only find out the 7902 * address of the next log block access once the current block has been 7903 * completely read in. Obviously, this hurts performance, because we'd be 7904 * keeping the device's I/O queue at only a 1 operation deep, thus 7905 * incurring a large amount of I/O round-trip latency. Having two lists 7906 * allows us to fetch two log blocks ahead of where we are currently 7907 * rebuilding L2ARC buffers. 7908 * 7909 * On-device data structures: 7910 * 7911 * L2ARC device header: l2arc_dev_hdr_phys_t 7912 * L2ARC log block: l2arc_log_blk_phys_t 7913 * 7914 * L2ARC reconstruction: 7915 * 7916 * When writing data, we simply write in the standard rotary fashion, 7917 * evicting buffers as we go and simply writing new data over them (writing 7918 * a new log block every now and then). This obviously means that once we 7919 * loop around the end of the device, we will start cutting into an already 7920 * committed log block (and its referenced data buffers), like so: 7921 * 7922 * current write head__ __old tail 7923 * \ / 7924 * V V 7925 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 7926 * ^ ^^^^^^^^^___________________________________ 7927 * | \ 7928 * <<nextwrite>> may overwrite this blk and/or its bufs --' 7929 * 7930 * When importing the pool, we detect this situation and use it to stop 7931 * our scanning process (see l2arc_rebuild). 7932 * 7933 * There is one significant caveat to consider when rebuilding ARC contents 7934 * from an L2ARC device: what about invalidated buffers? Given the above 7935 * construction, we cannot update blocks which we've already written to amend 7936 * them to remove buffers which were invalidated. Thus, during reconstruction, 7937 * we might be populating the cache with buffers for data that's not on the 7938 * main pool anymore, or may have been overwritten! 7939 * 7940 * As it turns out, this isn't a problem. Every arc_read request includes 7941 * both the DVA and, crucially, the birth TXG of the BP the caller is 7942 * looking for. So even if the cache were populated by completely rotten 7943 * blocks for data that had been long deleted and/or overwritten, we'll 7944 * never actually return bad data from the cache, since the DVA with the 7945 * birth TXG uniquely identify a block in space and time - once created, 7946 * a block is immutable on disk. The worst thing we have done is wasted 7947 * some time and memory at l2arc rebuild to reconstruct outdated ARC 7948 * entries that will get dropped from the l2arc as it is being updated 7949 * with new blocks. 7950 * 7951 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 7952 * hand are not restored. This is done by saving the offset (in bytes) 7953 * l2arc_evict() has evicted to in the L2ARC device header and taking it 7954 * into account when restoring buffers. 7955 */ 7956 7957 static boolean_t 7958 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 7959 { 7960 /* 7961 * A buffer is *not* eligible for the L2ARC if it: 7962 * 1. belongs to a different spa. 7963 * 2. is already cached on the L2ARC. 7964 * 3. has an I/O in progress (it may be an incomplete read). 7965 * 4. is flagged not eligible (zfs property). 7966 */ 7967 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 7968 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 7969 return (B_FALSE); 7970 7971 return (B_TRUE); 7972 } 7973 7974 static uint64_t 7975 l2arc_write_size(l2arc_dev_t *dev) 7976 { 7977 uint64_t size; 7978 7979 /* 7980 * Make sure our globals have meaningful values in case the user 7981 * altered them. 7982 */ 7983 size = l2arc_write_max; 7984 if (size == 0) { 7985 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 7986 "be greater than zero, resetting it to the default (%d)", 7987 L2ARC_WRITE_SIZE); 7988 size = l2arc_write_max = L2ARC_WRITE_SIZE; 7989 } 7990 7991 if (arc_warm == B_FALSE) 7992 size += l2arc_write_boost; 7993 7994 /* We need to add in the worst case scenario of log block overhead. */ 7995 size += l2arc_log_blk_overhead(size, dev); 7996 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) { 7997 /* 7998 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) 7999 * times the writesize, whichever is greater. 8000 */ 8001 size += MAX(64 * 1024 * 1024, 8002 (size * l2arc_trim_ahead) / 100); 8003 } 8004 8005 /* 8006 * Make sure the write size does not exceed the size of the cache 8007 * device. This is important in l2arc_evict(), otherwise infinite 8008 * iteration can occur. 8009 */ 8010 if (size > dev->l2ad_end - dev->l2ad_start) { 8011 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " 8012 "plus the overhead of log blocks (persistent L2ARC, " 8013 "%llu bytes) exceeds the size of the cache device " 8014 "(guid %llu), resetting them to the default (%d)", 8015 (u_longlong_t)l2arc_log_blk_overhead(size, dev), 8016 (u_longlong_t)dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); 8017 8018 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; 8019 8020 if (l2arc_trim_ahead > 1) { 8021 cmn_err(CE_NOTE, "l2arc_trim_ahead set to 1"); 8022 l2arc_trim_ahead = 1; 8023 } 8024 8025 if (arc_warm == B_FALSE) 8026 size += l2arc_write_boost; 8027 8028 size += l2arc_log_blk_overhead(size, dev); 8029 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) { 8030 size += MAX(64 * 1024 * 1024, 8031 (size * l2arc_trim_ahead) / 100); 8032 } 8033 } 8034 8035 return (size); 8036 8037 } 8038 8039 static clock_t 8040 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 8041 { 8042 clock_t interval, next, now; 8043 8044 /* 8045 * If the ARC lists are busy, increase our write rate; if the 8046 * lists are stale, idle back. This is achieved by checking 8047 * how much we previously wrote - if it was more than half of 8048 * what we wanted, schedule the next write much sooner. 8049 */ 8050 if (l2arc_feed_again && wrote > (wanted / 2)) 8051 interval = (hz * l2arc_feed_min_ms) / 1000; 8052 else 8053 interval = hz * l2arc_feed_secs; 8054 8055 now = ddi_get_lbolt(); 8056 next = MAX(now, MIN(now + interval, began + interval)); 8057 8058 return (next); 8059 } 8060 8061 /* 8062 * Cycle through L2ARC devices. This is how L2ARC load balances. 8063 * If a device is returned, this also returns holding the spa config lock. 8064 */ 8065 static l2arc_dev_t * 8066 l2arc_dev_get_next(void) 8067 { 8068 l2arc_dev_t *first, *next = NULL; 8069 8070 /* 8071 * Lock out the removal of spas (spa_namespace_lock), then removal 8072 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 8073 * both locks will be dropped and a spa config lock held instead. 8074 */ 8075 mutex_enter(&spa_namespace_lock); 8076 mutex_enter(&l2arc_dev_mtx); 8077 8078 /* if there are no vdevs, there is nothing to do */ 8079 if (l2arc_ndev == 0) 8080 goto out; 8081 8082 first = NULL; 8083 next = l2arc_dev_last; 8084 do { 8085 /* loop around the list looking for a non-faulted vdev */ 8086 if (next == NULL) { 8087 next = list_head(l2arc_dev_list); 8088 } else { 8089 next = list_next(l2arc_dev_list, next); 8090 if (next == NULL) 8091 next = list_head(l2arc_dev_list); 8092 } 8093 8094 /* if we have come back to the start, bail out */ 8095 if (first == NULL) 8096 first = next; 8097 else if (next == first) 8098 break; 8099 8100 ASSERT3P(next, !=, NULL); 8101 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8102 next->l2ad_trim_all); 8103 8104 /* if we were unable to find any usable vdevs, return NULL */ 8105 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 8106 next->l2ad_trim_all) 8107 next = NULL; 8108 8109 l2arc_dev_last = next; 8110 8111 out: 8112 mutex_exit(&l2arc_dev_mtx); 8113 8114 /* 8115 * Grab the config lock to prevent the 'next' device from being 8116 * removed while we are writing to it. 8117 */ 8118 if (next != NULL) 8119 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 8120 mutex_exit(&spa_namespace_lock); 8121 8122 return (next); 8123 } 8124 8125 /* 8126 * Free buffers that were tagged for destruction. 8127 */ 8128 static void 8129 l2arc_do_free_on_write(void) 8130 { 8131 l2arc_data_free_t *df; 8132 8133 mutex_enter(&l2arc_free_on_write_mtx); 8134 while ((df = list_remove_head(l2arc_free_on_write)) != NULL) { 8135 ASSERT3P(df->l2df_abd, !=, NULL); 8136 abd_free(df->l2df_abd); 8137 kmem_free(df, sizeof (l2arc_data_free_t)); 8138 } 8139 mutex_exit(&l2arc_free_on_write_mtx); 8140 } 8141 8142 /* 8143 * A write to a cache device has completed. Update all headers to allow 8144 * reads from these buffers to begin. 8145 */ 8146 static void 8147 l2arc_write_done(zio_t *zio) 8148 { 8149 l2arc_write_callback_t *cb; 8150 l2arc_lb_abd_buf_t *abd_buf; 8151 l2arc_lb_ptr_buf_t *lb_ptr_buf; 8152 l2arc_dev_t *dev; 8153 l2arc_dev_hdr_phys_t *l2dhdr; 8154 list_t *buflist; 8155 arc_buf_hdr_t *head, *hdr, *hdr_prev; 8156 kmutex_t *hash_lock; 8157 int64_t bytes_dropped = 0; 8158 8159 cb = zio->io_private; 8160 ASSERT3P(cb, !=, NULL); 8161 dev = cb->l2wcb_dev; 8162 l2dhdr = dev->l2ad_dev_hdr; 8163 ASSERT3P(dev, !=, NULL); 8164 head = cb->l2wcb_head; 8165 ASSERT3P(head, !=, NULL); 8166 buflist = &dev->l2ad_buflist; 8167 ASSERT3P(buflist, !=, NULL); 8168 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 8169 l2arc_write_callback_t *, cb); 8170 8171 /* 8172 * All writes completed, or an error was hit. 8173 */ 8174 top: 8175 mutex_enter(&dev->l2ad_mtx); 8176 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 8177 hdr_prev = list_prev(buflist, hdr); 8178 8179 hash_lock = HDR_LOCK(hdr); 8180 8181 /* 8182 * We cannot use mutex_enter or else we can deadlock 8183 * with l2arc_write_buffers (due to swapping the order 8184 * the hash lock and l2ad_mtx are taken). 8185 */ 8186 if (!mutex_tryenter(hash_lock)) { 8187 /* 8188 * Missed the hash lock. We must retry so we 8189 * don't leave the ARC_FLAG_L2_WRITING bit set. 8190 */ 8191 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 8192 8193 /* 8194 * We don't want to rescan the headers we've 8195 * already marked as having been written out, so 8196 * we reinsert the head node so we can pick up 8197 * where we left off. 8198 */ 8199 list_remove(buflist, head); 8200 list_insert_after(buflist, hdr, head); 8201 8202 mutex_exit(&dev->l2ad_mtx); 8203 8204 /* 8205 * We wait for the hash lock to become available 8206 * to try and prevent busy waiting, and increase 8207 * the chance we'll be able to acquire the lock 8208 * the next time around. 8209 */ 8210 mutex_enter(hash_lock); 8211 mutex_exit(hash_lock); 8212 goto top; 8213 } 8214 8215 /* 8216 * We could not have been moved into the arc_l2c_only 8217 * state while in-flight due to our ARC_FLAG_L2_WRITING 8218 * bit being set. Let's just ensure that's being enforced. 8219 */ 8220 ASSERT(HDR_HAS_L1HDR(hdr)); 8221 8222 /* 8223 * Skipped - drop L2ARC entry and mark the header as no 8224 * longer L2 eligibile. 8225 */ 8226 if (zio->io_error != 0) { 8227 /* 8228 * Error - drop L2ARC entry. 8229 */ 8230 list_remove(buflist, hdr); 8231 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 8232 8233 uint64_t psize = HDR_GET_PSIZE(hdr); 8234 l2arc_hdr_arcstats_decrement(hdr); 8235 8236 bytes_dropped += 8237 vdev_psize_to_asize(dev->l2ad_vdev, psize); 8238 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 8239 arc_hdr_size(hdr), hdr); 8240 } 8241 8242 /* 8243 * Allow ARC to begin reads and ghost list evictions to 8244 * this L2ARC entry. 8245 */ 8246 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 8247 8248 mutex_exit(hash_lock); 8249 } 8250 8251 /* 8252 * Free the allocated abd buffers for writing the log blocks. 8253 * If the zio failed reclaim the allocated space and remove the 8254 * pointers to these log blocks from the log block pointer list 8255 * of the L2ARC device. 8256 */ 8257 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 8258 abd_free(abd_buf->abd); 8259 zio_buf_free(abd_buf, sizeof (*abd_buf)); 8260 if (zio->io_error != 0) { 8261 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 8262 /* 8263 * L2BLK_GET_PSIZE returns aligned size for log 8264 * blocks. 8265 */ 8266 uint64_t asize = 8267 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 8268 bytes_dropped += asize; 8269 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8270 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8271 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8272 lb_ptr_buf); 8273 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8274 kmem_free(lb_ptr_buf->lb_ptr, 8275 sizeof (l2arc_log_blkptr_t)); 8276 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8277 } 8278 } 8279 list_destroy(&cb->l2wcb_abd_list); 8280 8281 if (zio->io_error != 0) { 8282 ARCSTAT_BUMP(arcstat_l2_writes_error); 8283 8284 /* 8285 * Restore the lbps array in the header to its previous state. 8286 * If the list of log block pointers is empty, zero out the 8287 * log block pointers in the device header. 8288 */ 8289 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 8290 for (int i = 0; i < 2; i++) { 8291 if (lb_ptr_buf == NULL) { 8292 /* 8293 * If the list is empty zero out the device 8294 * header. Otherwise zero out the second log 8295 * block pointer in the header. 8296 */ 8297 if (i == 0) { 8298 memset(l2dhdr, 0, 8299 dev->l2ad_dev_hdr_asize); 8300 } else { 8301 memset(&l2dhdr->dh_start_lbps[i], 0, 8302 sizeof (l2arc_log_blkptr_t)); 8303 } 8304 break; 8305 } 8306 memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr, 8307 sizeof (l2arc_log_blkptr_t)); 8308 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 8309 lb_ptr_buf); 8310 } 8311 } 8312 8313 ARCSTAT_BUMP(arcstat_l2_writes_done); 8314 list_remove(buflist, head); 8315 ASSERT(!HDR_HAS_L1HDR(head)); 8316 kmem_cache_free(hdr_l2only_cache, head); 8317 mutex_exit(&dev->l2ad_mtx); 8318 8319 ASSERT(dev->l2ad_vdev != NULL); 8320 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 8321 8322 l2arc_do_free_on_write(); 8323 8324 kmem_free(cb, sizeof (l2arc_write_callback_t)); 8325 } 8326 8327 static int 8328 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 8329 { 8330 int ret; 8331 spa_t *spa = zio->io_spa; 8332 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 8333 blkptr_t *bp = zio->io_bp; 8334 uint8_t salt[ZIO_DATA_SALT_LEN]; 8335 uint8_t iv[ZIO_DATA_IV_LEN]; 8336 uint8_t mac[ZIO_DATA_MAC_LEN]; 8337 boolean_t no_crypt = B_FALSE; 8338 8339 /* 8340 * ZIL data is never be written to the L2ARC, so we don't need 8341 * special handling for its unique MAC storage. 8342 */ 8343 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 8344 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 8345 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8346 8347 /* 8348 * If the data was encrypted, decrypt it now. Note that 8349 * we must check the bp here and not the hdr, since the 8350 * hdr does not have its encryption parameters updated 8351 * until arc_read_done(). 8352 */ 8353 if (BP_IS_ENCRYPTED(bp)) { 8354 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8355 ARC_HDR_USE_RESERVE); 8356 8357 zio_crypt_decode_params_bp(bp, salt, iv); 8358 zio_crypt_decode_mac_bp(bp, mac); 8359 8360 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 8361 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 8362 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 8363 hdr->b_l1hdr.b_pabd, &no_crypt); 8364 if (ret != 0) { 8365 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8366 goto error; 8367 } 8368 8369 /* 8370 * If we actually performed decryption, replace b_pabd 8371 * with the decrypted data. Otherwise we can just throw 8372 * our decryption buffer away. 8373 */ 8374 if (!no_crypt) { 8375 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8376 arc_hdr_size(hdr), hdr); 8377 hdr->b_l1hdr.b_pabd = eabd; 8378 zio->io_abd = eabd; 8379 } else { 8380 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8381 } 8382 } 8383 8384 /* 8385 * If the L2ARC block was compressed, but ARC compression 8386 * is disabled we decompress the data into a new buffer and 8387 * replace the existing data. 8388 */ 8389 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8390 !HDR_COMPRESSION_ENABLED(hdr)) { 8391 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8392 ARC_HDR_USE_RESERVE); 8393 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 8394 8395 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 8396 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 8397 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 8398 if (ret != 0) { 8399 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8400 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 8401 goto error; 8402 } 8403 8404 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8405 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8406 arc_hdr_size(hdr), hdr); 8407 hdr->b_l1hdr.b_pabd = cabd; 8408 zio->io_abd = cabd; 8409 zio->io_size = HDR_GET_LSIZE(hdr); 8410 } 8411 8412 return (0); 8413 8414 error: 8415 return (ret); 8416 } 8417 8418 8419 /* 8420 * A read to a cache device completed. Validate buffer contents before 8421 * handing over to the regular ARC routines. 8422 */ 8423 static void 8424 l2arc_read_done(zio_t *zio) 8425 { 8426 int tfm_error = 0; 8427 l2arc_read_callback_t *cb = zio->io_private; 8428 arc_buf_hdr_t *hdr; 8429 kmutex_t *hash_lock; 8430 boolean_t valid_cksum; 8431 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 8432 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 8433 8434 ASSERT3P(zio->io_vd, !=, NULL); 8435 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 8436 8437 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 8438 8439 ASSERT3P(cb, !=, NULL); 8440 hdr = cb->l2rcb_hdr; 8441 ASSERT3P(hdr, !=, NULL); 8442 8443 hash_lock = HDR_LOCK(hdr); 8444 mutex_enter(hash_lock); 8445 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 8446 8447 /* 8448 * If the data was read into a temporary buffer, 8449 * move it and free the buffer. 8450 */ 8451 if (cb->l2rcb_abd != NULL) { 8452 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 8453 if (zio->io_error == 0) { 8454 if (using_rdata) { 8455 abd_copy(hdr->b_crypt_hdr.b_rabd, 8456 cb->l2rcb_abd, arc_hdr_size(hdr)); 8457 } else { 8458 abd_copy(hdr->b_l1hdr.b_pabd, 8459 cb->l2rcb_abd, arc_hdr_size(hdr)); 8460 } 8461 } 8462 8463 /* 8464 * The following must be done regardless of whether 8465 * there was an error: 8466 * - free the temporary buffer 8467 * - point zio to the real ARC buffer 8468 * - set zio size accordingly 8469 * These are required because zio is either re-used for 8470 * an I/O of the block in the case of the error 8471 * or the zio is passed to arc_read_done() and it 8472 * needs real data. 8473 */ 8474 abd_free(cb->l2rcb_abd); 8475 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8476 8477 if (using_rdata) { 8478 ASSERT(HDR_HAS_RABD(hdr)); 8479 zio->io_abd = zio->io_orig_abd = 8480 hdr->b_crypt_hdr.b_rabd; 8481 } else { 8482 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8483 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8484 } 8485 } 8486 8487 ASSERT3P(zio->io_abd, !=, NULL); 8488 8489 /* 8490 * Check this survived the L2ARC journey. 8491 */ 8492 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8493 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8494 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8495 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8496 zio->io_prop.zp_complevel = hdr->b_complevel; 8497 8498 valid_cksum = arc_cksum_is_equal(hdr, zio); 8499 8500 /* 8501 * b_rabd will always match the data as it exists on disk if it is 8502 * being used. Therefore if we are reading into b_rabd we do not 8503 * attempt to untransform the data. 8504 */ 8505 if (valid_cksum && !using_rdata) 8506 tfm_error = l2arc_untransform(zio, cb); 8507 8508 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8509 !HDR_L2_EVICTED(hdr)) { 8510 mutex_exit(hash_lock); 8511 zio->io_private = hdr; 8512 arc_read_done(zio); 8513 } else { 8514 /* 8515 * Buffer didn't survive caching. Increment stats and 8516 * reissue to the original storage device. 8517 */ 8518 if (zio->io_error != 0) { 8519 ARCSTAT_BUMP(arcstat_l2_io_error); 8520 } else { 8521 zio->io_error = SET_ERROR(EIO); 8522 } 8523 if (!valid_cksum || tfm_error != 0) 8524 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8525 8526 /* 8527 * If there's no waiter, issue an async i/o to the primary 8528 * storage now. If there *is* a waiter, the caller must 8529 * issue the i/o in a context where it's OK to block. 8530 */ 8531 if (zio->io_waiter == NULL) { 8532 zio_t *pio = zio_unique_parent(zio); 8533 void *abd = (using_rdata) ? 8534 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8535 8536 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8537 8538 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8539 abd, zio->io_size, arc_read_done, 8540 hdr, zio->io_priority, cb->l2rcb_flags, 8541 &cb->l2rcb_zb); 8542 8543 /* 8544 * Original ZIO will be freed, so we need to update 8545 * ARC header with the new ZIO pointer to be used 8546 * by zio_change_priority() in arc_read(). 8547 */ 8548 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8549 acb != NULL; acb = acb->acb_next) 8550 acb->acb_zio_head = zio; 8551 8552 mutex_exit(hash_lock); 8553 zio_nowait(zio); 8554 } else { 8555 mutex_exit(hash_lock); 8556 } 8557 } 8558 8559 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8560 } 8561 8562 /* 8563 * This is the list priority from which the L2ARC will search for pages to 8564 * cache. This is used within loops (0..3) to cycle through lists in the 8565 * desired order. This order can have a significant effect on cache 8566 * performance. 8567 * 8568 * Currently the metadata lists are hit first, MFU then MRU, followed by 8569 * the data lists. This function returns a locked list, and also returns 8570 * the lock pointer. 8571 */ 8572 static multilist_sublist_t * 8573 l2arc_sublist_lock(int list_num) 8574 { 8575 multilist_t *ml = NULL; 8576 unsigned int idx; 8577 8578 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8579 8580 switch (list_num) { 8581 case 0: 8582 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8583 break; 8584 case 1: 8585 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 8586 break; 8587 case 2: 8588 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 8589 break; 8590 case 3: 8591 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 8592 break; 8593 default: 8594 return (NULL); 8595 } 8596 8597 /* 8598 * Return a randomly-selected sublist. This is acceptable 8599 * because the caller feeds only a little bit of data for each 8600 * call (8MB). Subsequent calls will result in different 8601 * sublists being selected. 8602 */ 8603 idx = multilist_get_random_index(ml); 8604 return (multilist_sublist_lock(ml, idx)); 8605 } 8606 8607 /* 8608 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8609 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8610 * overhead in processing to make sure there is enough headroom available 8611 * when writing buffers. 8612 */ 8613 static inline uint64_t 8614 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8615 { 8616 if (dev->l2ad_log_entries == 0) { 8617 return (0); 8618 } else { 8619 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 8620 8621 uint64_t log_blocks = (log_entries + 8622 dev->l2ad_log_entries - 1) / 8623 dev->l2ad_log_entries; 8624 8625 return (vdev_psize_to_asize(dev->l2ad_vdev, 8626 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 8627 } 8628 } 8629 8630 /* 8631 * Evict buffers from the device write hand to the distance specified in 8632 * bytes. This distance may span populated buffers, it may span nothing. 8633 * This is clearing a region on the L2ARC device ready for writing. 8634 * If the 'all' boolean is set, every buffer is evicted. 8635 */ 8636 static void 8637 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 8638 { 8639 list_t *buflist; 8640 arc_buf_hdr_t *hdr, *hdr_prev; 8641 kmutex_t *hash_lock; 8642 uint64_t taddr; 8643 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 8644 vdev_t *vd = dev->l2ad_vdev; 8645 boolean_t rerun; 8646 8647 buflist = &dev->l2ad_buflist; 8648 8649 top: 8650 rerun = B_FALSE; 8651 if (dev->l2ad_hand + distance > dev->l2ad_end) { 8652 /* 8653 * When there is no space to accommodate upcoming writes, 8654 * evict to the end. Then bump the write and evict hands 8655 * to the start and iterate. This iteration does not 8656 * happen indefinitely as we make sure in 8657 * l2arc_write_size() that when the write hand is reset, 8658 * the write size does not exceed the end of the device. 8659 */ 8660 rerun = B_TRUE; 8661 taddr = dev->l2ad_end; 8662 } else { 8663 taddr = dev->l2ad_hand + distance; 8664 } 8665 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 8666 uint64_t, taddr, boolean_t, all); 8667 8668 if (!all) { 8669 /* 8670 * This check has to be placed after deciding whether to 8671 * iterate (rerun). 8672 */ 8673 if (dev->l2ad_first) { 8674 /* 8675 * This is the first sweep through the device. There is 8676 * nothing to evict. We have already trimmmed the 8677 * whole device. 8678 */ 8679 goto out; 8680 } else { 8681 /* 8682 * Trim the space to be evicted. 8683 */ 8684 if (vd->vdev_has_trim && dev->l2ad_evict < taddr && 8685 l2arc_trim_ahead > 0) { 8686 /* 8687 * We have to drop the spa_config lock because 8688 * vdev_trim_range() will acquire it. 8689 * l2ad_evict already accounts for the label 8690 * size. To prevent vdev_trim_ranges() from 8691 * adding it again, we subtract it from 8692 * l2ad_evict. 8693 */ 8694 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); 8695 vdev_trim_simple(vd, 8696 dev->l2ad_evict - VDEV_LABEL_START_SIZE, 8697 taddr - dev->l2ad_evict); 8698 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, 8699 RW_READER); 8700 } 8701 8702 /* 8703 * When rebuilding L2ARC we retrieve the evict hand 8704 * from the header of the device. Of note, l2arc_evict() 8705 * does not actually delete buffers from the cache 8706 * device, but trimming may do so depending on the 8707 * hardware implementation. Thus keeping track of the 8708 * evict hand is useful. 8709 */ 8710 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 8711 } 8712 } 8713 8714 retry: 8715 mutex_enter(&dev->l2ad_mtx); 8716 /* 8717 * We have to account for evicted log blocks. Run vdev_space_update() 8718 * on log blocks whose offset (in bytes) is before the evicted offset 8719 * (in bytes) by searching in the list of pointers to log blocks 8720 * present in the L2ARC device. 8721 */ 8722 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 8723 lb_ptr_buf = lb_ptr_buf_prev) { 8724 8725 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 8726 8727 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 8728 uint64_t asize = L2BLK_GET_PSIZE( 8729 (lb_ptr_buf->lb_ptr)->lbp_prop); 8730 8731 /* 8732 * We don't worry about log blocks left behind (ie 8733 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 8734 * will never write more than l2arc_evict() evicts. 8735 */ 8736 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 8737 break; 8738 } else { 8739 vdev_space_update(vd, -asize, 0, 0); 8740 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8741 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8742 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8743 lb_ptr_buf); 8744 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8745 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 8746 kmem_free(lb_ptr_buf->lb_ptr, 8747 sizeof (l2arc_log_blkptr_t)); 8748 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8749 } 8750 } 8751 8752 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 8753 hdr_prev = list_prev(buflist, hdr); 8754 8755 ASSERT(!HDR_EMPTY(hdr)); 8756 hash_lock = HDR_LOCK(hdr); 8757 8758 /* 8759 * We cannot use mutex_enter or else we can deadlock 8760 * with l2arc_write_buffers (due to swapping the order 8761 * the hash lock and l2ad_mtx are taken). 8762 */ 8763 if (!mutex_tryenter(hash_lock)) { 8764 /* 8765 * Missed the hash lock. Retry. 8766 */ 8767 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 8768 mutex_exit(&dev->l2ad_mtx); 8769 mutex_enter(hash_lock); 8770 mutex_exit(hash_lock); 8771 goto retry; 8772 } 8773 8774 /* 8775 * A header can't be on this list if it doesn't have L2 header. 8776 */ 8777 ASSERT(HDR_HAS_L2HDR(hdr)); 8778 8779 /* Ensure this header has finished being written. */ 8780 ASSERT(!HDR_L2_WRITING(hdr)); 8781 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 8782 8783 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 8784 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 8785 /* 8786 * We've evicted to the target address, 8787 * or the end of the device. 8788 */ 8789 mutex_exit(hash_lock); 8790 break; 8791 } 8792 8793 if (!HDR_HAS_L1HDR(hdr)) { 8794 ASSERT(!HDR_L2_READING(hdr)); 8795 /* 8796 * This doesn't exist in the ARC. Destroy. 8797 * arc_hdr_destroy() will call list_remove() 8798 * and decrement arcstat_l2_lsize. 8799 */ 8800 arc_change_state(arc_anon, hdr); 8801 arc_hdr_destroy(hdr); 8802 } else { 8803 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 8804 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 8805 /* 8806 * Invalidate issued or about to be issued 8807 * reads, since we may be about to write 8808 * over this location. 8809 */ 8810 if (HDR_L2_READING(hdr)) { 8811 ARCSTAT_BUMP(arcstat_l2_evict_reading); 8812 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 8813 } 8814 8815 arc_hdr_l2hdr_destroy(hdr); 8816 } 8817 mutex_exit(hash_lock); 8818 } 8819 mutex_exit(&dev->l2ad_mtx); 8820 8821 out: 8822 /* 8823 * We need to check if we evict all buffers, otherwise we may iterate 8824 * unnecessarily. 8825 */ 8826 if (!all && rerun) { 8827 /* 8828 * Bump device hand to the device start if it is approaching the 8829 * end. l2arc_evict() has already evicted ahead for this case. 8830 */ 8831 dev->l2ad_hand = dev->l2ad_start; 8832 dev->l2ad_evict = dev->l2ad_start; 8833 dev->l2ad_first = B_FALSE; 8834 goto top; 8835 } 8836 8837 if (!all) { 8838 /* 8839 * In case of cache device removal (all) the following 8840 * assertions may be violated without functional consequences 8841 * as the device is about to be removed. 8842 */ 8843 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); 8844 if (!dev->l2ad_first) 8845 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 8846 } 8847 } 8848 8849 /* 8850 * Handle any abd transforms that might be required for writing to the L2ARC. 8851 * If successful, this function will always return an abd with the data 8852 * transformed as it is on disk in a new abd of asize bytes. 8853 */ 8854 static int 8855 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 8856 abd_t **abd_out) 8857 { 8858 int ret; 8859 void *tmp = NULL; 8860 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 8861 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 8862 uint64_t psize = HDR_GET_PSIZE(hdr); 8863 uint64_t size = arc_hdr_size(hdr); 8864 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 8865 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 8866 dsl_crypto_key_t *dck = NULL; 8867 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 8868 boolean_t no_crypt = B_FALSE; 8869 8870 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8871 !HDR_COMPRESSION_ENABLED(hdr)) || 8872 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 8873 ASSERT3U(psize, <=, asize); 8874 8875 /* 8876 * If this data simply needs its own buffer, we simply allocate it 8877 * and copy the data. This may be done to eliminate a dependency on a 8878 * shared buffer or to reallocate the buffer to match asize. 8879 */ 8880 if (HDR_HAS_RABD(hdr) && asize != psize) { 8881 ASSERT3U(asize, >=, psize); 8882 to_write = abd_alloc_for_io(asize, ismd); 8883 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 8884 if (psize != asize) 8885 abd_zero_off(to_write, psize, asize - psize); 8886 goto out; 8887 } 8888 8889 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 8890 !HDR_ENCRYPTED(hdr)) { 8891 ASSERT3U(size, ==, psize); 8892 to_write = abd_alloc_for_io(asize, ismd); 8893 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 8894 if (size != asize) 8895 abd_zero_off(to_write, size, asize - size); 8896 goto out; 8897 } 8898 8899 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 8900 /* 8901 * In some cases, we can wind up with size > asize, so 8902 * we need to opt for the larger allocation option here. 8903 * 8904 * (We also need abd_return_buf_copy in all cases because 8905 * it's an ASSERT() to modify the buffer before returning it 8906 * with arc_return_buf(), and all the compressors 8907 * write things before deciding to fail compression in nearly 8908 * every case.) 8909 */ 8910 uint64_t bufsize = MAX(size, asize); 8911 cabd = abd_alloc_for_io(bufsize, ismd); 8912 tmp = abd_borrow_buf(cabd, bufsize); 8913 8914 psize = zio_compress_data(compress, to_write, &tmp, size, 8915 hdr->b_complevel); 8916 8917 if (psize >= asize) { 8918 psize = HDR_GET_PSIZE(hdr); 8919 abd_return_buf_copy(cabd, tmp, bufsize); 8920 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 8921 to_write = cabd; 8922 abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize); 8923 if (psize != asize) 8924 abd_zero_off(to_write, psize, asize - psize); 8925 goto encrypt; 8926 } 8927 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); 8928 if (psize < asize) 8929 memset((char *)tmp + psize, 0, bufsize - psize); 8930 psize = HDR_GET_PSIZE(hdr); 8931 abd_return_buf_copy(cabd, tmp, bufsize); 8932 to_write = cabd; 8933 } 8934 8935 encrypt: 8936 if (HDR_ENCRYPTED(hdr)) { 8937 eabd = abd_alloc_for_io(asize, ismd); 8938 8939 /* 8940 * If the dataset was disowned before the buffer 8941 * made it to this point, the key to re-encrypt 8942 * it won't be available. In this case we simply 8943 * won't write the buffer to the L2ARC. 8944 */ 8945 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 8946 FTAG, &dck); 8947 if (ret != 0) 8948 goto error; 8949 8950 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 8951 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 8952 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 8953 &no_crypt); 8954 if (ret != 0) 8955 goto error; 8956 8957 if (no_crypt) 8958 abd_copy(eabd, to_write, psize); 8959 8960 if (psize != asize) 8961 abd_zero_off(eabd, psize, asize - psize); 8962 8963 /* assert that the MAC we got here matches the one we saved */ 8964 ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 8965 spa_keystore_dsl_key_rele(spa, dck, FTAG); 8966 8967 if (to_write == cabd) 8968 abd_free(cabd); 8969 8970 to_write = eabd; 8971 } 8972 8973 out: 8974 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 8975 *abd_out = to_write; 8976 return (0); 8977 8978 error: 8979 if (dck != NULL) 8980 spa_keystore_dsl_key_rele(spa, dck, FTAG); 8981 if (cabd != NULL) 8982 abd_free(cabd); 8983 if (eabd != NULL) 8984 abd_free(eabd); 8985 8986 *abd_out = NULL; 8987 return (ret); 8988 } 8989 8990 static void 8991 l2arc_blk_fetch_done(zio_t *zio) 8992 { 8993 l2arc_read_callback_t *cb; 8994 8995 cb = zio->io_private; 8996 if (cb->l2rcb_abd != NULL) 8997 abd_free(cb->l2rcb_abd); 8998 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8999 } 9000 9001 /* 9002 * Find and write ARC buffers to the L2ARC device. 9003 * 9004 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 9005 * for reading until they have completed writing. 9006 * The headroom_boost is an in-out parameter used to maintain headroom boost 9007 * state between calls to this function. 9008 * 9009 * Returns the number of bytes actually written (which may be smaller than 9010 * the delta by which the device hand has changed due to alignment and the 9011 * writing of log blocks). 9012 */ 9013 static uint64_t 9014 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 9015 { 9016 arc_buf_hdr_t *hdr, *hdr_prev, *head; 9017 uint64_t write_asize, write_psize, write_lsize, headroom; 9018 boolean_t full; 9019 l2arc_write_callback_t *cb = NULL; 9020 zio_t *pio, *wzio; 9021 uint64_t guid = spa_load_guid(spa); 9022 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9023 9024 ASSERT3P(dev->l2ad_vdev, !=, NULL); 9025 9026 pio = NULL; 9027 write_lsize = write_asize = write_psize = 0; 9028 full = B_FALSE; 9029 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 9030 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 9031 9032 /* 9033 * Copy buffers for L2ARC writing. 9034 */ 9035 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) { 9036 /* 9037 * If pass == 1 or 3, we cache MRU metadata and data 9038 * respectively. 9039 */ 9040 if (l2arc_mfuonly) { 9041 if (pass == 1 || pass == 3) 9042 continue; 9043 } 9044 9045 multilist_sublist_t *mls = l2arc_sublist_lock(pass); 9046 uint64_t passed_sz = 0; 9047 9048 VERIFY3P(mls, !=, NULL); 9049 9050 /* 9051 * L2ARC fast warmup. 9052 * 9053 * Until the ARC is warm and starts to evict, read from the 9054 * head of the ARC lists rather than the tail. 9055 */ 9056 if (arc_warm == B_FALSE) 9057 hdr = multilist_sublist_head(mls); 9058 else 9059 hdr = multilist_sublist_tail(mls); 9060 9061 headroom = target_sz * l2arc_headroom; 9062 if (zfs_compressed_arc_enabled) 9063 headroom = (headroom * l2arc_headroom_boost) / 100; 9064 9065 for (; hdr; hdr = hdr_prev) { 9066 kmutex_t *hash_lock; 9067 abd_t *to_write = NULL; 9068 9069 if (arc_warm == B_FALSE) 9070 hdr_prev = multilist_sublist_next(mls, hdr); 9071 else 9072 hdr_prev = multilist_sublist_prev(mls, hdr); 9073 9074 hash_lock = HDR_LOCK(hdr); 9075 if (!mutex_tryenter(hash_lock)) { 9076 /* 9077 * Skip this buffer rather than waiting. 9078 */ 9079 continue; 9080 } 9081 9082 passed_sz += HDR_GET_LSIZE(hdr); 9083 if (l2arc_headroom != 0 && passed_sz > headroom) { 9084 /* 9085 * Searched too far. 9086 */ 9087 mutex_exit(hash_lock); 9088 break; 9089 } 9090 9091 if (!l2arc_write_eligible(guid, hdr)) { 9092 mutex_exit(hash_lock); 9093 continue; 9094 } 9095 9096 ASSERT(HDR_HAS_L1HDR(hdr)); 9097 9098 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9099 ASSERT3U(arc_hdr_size(hdr), >, 0); 9100 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9101 HDR_HAS_RABD(hdr)); 9102 uint64_t psize = HDR_GET_PSIZE(hdr); 9103 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 9104 psize); 9105 9106 /* 9107 * If the allocated size of this buffer plus the max 9108 * size for the pending log block exceeds the evicted 9109 * target size, terminate writing buffers for this run. 9110 */ 9111 if (write_asize + asize + 9112 sizeof (l2arc_log_blk_phys_t) > target_sz) { 9113 full = B_TRUE; 9114 mutex_exit(hash_lock); 9115 break; 9116 } 9117 9118 /* 9119 * We rely on the L1 portion of the header below, so 9120 * it's invalid for this header to have been evicted out 9121 * of the ghost cache, prior to being written out. The 9122 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9123 */ 9124 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); 9125 9126 /* 9127 * If this header has b_rabd, we can use this since it 9128 * must always match the data exactly as it exists on 9129 * disk. Otherwise, the L2ARC can normally use the 9130 * hdr's data, but if we're sharing data between the 9131 * hdr and one of its bufs, L2ARC needs its own copy of 9132 * the data so that the ZIO below can't race with the 9133 * buf consumer. To ensure that this copy will be 9134 * available for the lifetime of the ZIO and be cleaned 9135 * up afterwards, we add it to the l2arc_free_on_write 9136 * queue. If we need to apply any transforms to the 9137 * data (compression, encryption) we will also need the 9138 * extra buffer. 9139 */ 9140 if (HDR_HAS_RABD(hdr) && psize == asize) { 9141 to_write = hdr->b_crypt_hdr.b_rabd; 9142 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 9143 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 9144 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 9145 psize == asize) { 9146 to_write = hdr->b_l1hdr.b_pabd; 9147 } else { 9148 int ret; 9149 arc_buf_contents_t type = arc_buf_type(hdr); 9150 9151 ret = l2arc_apply_transforms(spa, hdr, asize, 9152 &to_write); 9153 if (ret != 0) { 9154 arc_hdr_clear_flags(hdr, 9155 ARC_FLAG_L2_WRITING); 9156 mutex_exit(hash_lock); 9157 continue; 9158 } 9159 9160 l2arc_free_abd_on_write(to_write, asize, type); 9161 } 9162 9163 if (pio == NULL) { 9164 /* 9165 * Insert a dummy header on the buflist so 9166 * l2arc_write_done() can find where the 9167 * write buffers begin without searching. 9168 */ 9169 mutex_enter(&dev->l2ad_mtx); 9170 list_insert_head(&dev->l2ad_buflist, head); 9171 mutex_exit(&dev->l2ad_mtx); 9172 9173 cb = kmem_alloc( 9174 sizeof (l2arc_write_callback_t), KM_SLEEP); 9175 cb->l2wcb_dev = dev; 9176 cb->l2wcb_head = head; 9177 /* 9178 * Create a list to save allocated abd buffers 9179 * for l2arc_log_blk_commit(). 9180 */ 9181 list_create(&cb->l2wcb_abd_list, 9182 sizeof (l2arc_lb_abd_buf_t), 9183 offsetof(l2arc_lb_abd_buf_t, node)); 9184 pio = zio_root(spa, l2arc_write_done, cb, 9185 ZIO_FLAG_CANFAIL); 9186 } 9187 9188 hdr->b_l2hdr.b_dev = dev; 9189 hdr->b_l2hdr.b_hits = 0; 9190 9191 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 9192 hdr->b_l2hdr.b_arcs_state = 9193 hdr->b_l1hdr.b_state->arcs_state; 9194 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR); 9195 9196 mutex_enter(&dev->l2ad_mtx); 9197 list_insert_head(&dev->l2ad_buflist, hdr); 9198 mutex_exit(&dev->l2ad_mtx); 9199 9200 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9201 arc_hdr_size(hdr), hdr); 9202 9203 wzio = zio_write_phys(pio, dev->l2ad_vdev, 9204 hdr->b_l2hdr.b_daddr, asize, to_write, 9205 ZIO_CHECKSUM_OFF, NULL, hdr, 9206 ZIO_PRIORITY_ASYNC_WRITE, 9207 ZIO_FLAG_CANFAIL, B_FALSE); 9208 9209 write_lsize += HDR_GET_LSIZE(hdr); 9210 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 9211 zio_t *, wzio); 9212 9213 write_psize += psize; 9214 write_asize += asize; 9215 dev->l2ad_hand += asize; 9216 l2arc_hdr_arcstats_increment(hdr); 9217 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9218 9219 mutex_exit(hash_lock); 9220 9221 /* 9222 * Append buf info to current log and commit if full. 9223 * arcstat_l2_{size,asize} kstats are updated 9224 * internally. 9225 */ 9226 if (l2arc_log_blk_insert(dev, hdr)) { 9227 /* 9228 * l2ad_hand will be adjusted in 9229 * l2arc_log_blk_commit(). 9230 */ 9231 write_asize += 9232 l2arc_log_blk_commit(dev, pio, cb); 9233 } 9234 9235 zio_nowait(wzio); 9236 } 9237 9238 multilist_sublist_unlock(mls); 9239 9240 if (full == B_TRUE) 9241 break; 9242 } 9243 9244 /* No buffers selected for writing? */ 9245 if (pio == NULL) { 9246 ASSERT0(write_lsize); 9247 ASSERT(!HDR_HAS_L1HDR(head)); 9248 kmem_cache_free(hdr_l2only_cache, head); 9249 9250 /* 9251 * Although we did not write any buffers l2ad_evict may 9252 * have advanced. 9253 */ 9254 if (dev->l2ad_evict != l2dhdr->dh_evict) 9255 l2arc_dev_hdr_update(dev); 9256 9257 return (0); 9258 } 9259 9260 if (!dev->l2ad_first) 9261 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9262 9263 ASSERT3U(write_asize, <=, target_sz); 9264 ARCSTAT_BUMP(arcstat_l2_writes_sent); 9265 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 9266 9267 dev->l2ad_writing = B_TRUE; 9268 (void) zio_wait(pio); 9269 dev->l2ad_writing = B_FALSE; 9270 9271 /* 9272 * Update the device header after the zio completes as 9273 * l2arc_write_done() may have updated the memory holding the log block 9274 * pointers in the device header. 9275 */ 9276 l2arc_dev_hdr_update(dev); 9277 9278 return (write_asize); 9279 } 9280 9281 static boolean_t 9282 l2arc_hdr_limit_reached(void) 9283 { 9284 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size); 9285 9286 return (arc_reclaim_needed() || 9287 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 9288 } 9289 9290 /* 9291 * This thread feeds the L2ARC at regular intervals. This is the beating 9292 * heart of the L2ARC. 9293 */ 9294 static __attribute__((noreturn)) void 9295 l2arc_feed_thread(void *unused) 9296 { 9297 (void) unused; 9298 callb_cpr_t cpr; 9299 l2arc_dev_t *dev; 9300 spa_t *spa; 9301 uint64_t size, wrote; 9302 clock_t begin, next = ddi_get_lbolt(); 9303 fstrans_cookie_t cookie; 9304 9305 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 9306 9307 mutex_enter(&l2arc_feed_thr_lock); 9308 9309 cookie = spl_fstrans_mark(); 9310 while (l2arc_thread_exit == 0) { 9311 CALLB_CPR_SAFE_BEGIN(&cpr); 9312 (void) cv_timedwait_idle(&l2arc_feed_thr_cv, 9313 &l2arc_feed_thr_lock, next); 9314 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 9315 next = ddi_get_lbolt() + hz; 9316 9317 /* 9318 * Quick check for L2ARC devices. 9319 */ 9320 mutex_enter(&l2arc_dev_mtx); 9321 if (l2arc_ndev == 0) { 9322 mutex_exit(&l2arc_dev_mtx); 9323 continue; 9324 } 9325 mutex_exit(&l2arc_dev_mtx); 9326 begin = ddi_get_lbolt(); 9327 9328 /* 9329 * This selects the next l2arc device to write to, and in 9330 * doing so the next spa to feed from: dev->l2ad_spa. This 9331 * will return NULL if there are now no l2arc devices or if 9332 * they are all faulted. 9333 * 9334 * If a device is returned, its spa's config lock is also 9335 * held to prevent device removal. l2arc_dev_get_next() 9336 * will grab and release l2arc_dev_mtx. 9337 */ 9338 if ((dev = l2arc_dev_get_next()) == NULL) 9339 continue; 9340 9341 spa = dev->l2ad_spa; 9342 ASSERT3P(spa, !=, NULL); 9343 9344 /* 9345 * If the pool is read-only then force the feed thread to 9346 * sleep a little longer. 9347 */ 9348 if (!spa_writeable(spa)) { 9349 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 9350 spa_config_exit(spa, SCL_L2ARC, dev); 9351 continue; 9352 } 9353 9354 /* 9355 * Avoid contributing to memory pressure. 9356 */ 9357 if (l2arc_hdr_limit_reached()) { 9358 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 9359 spa_config_exit(spa, SCL_L2ARC, dev); 9360 continue; 9361 } 9362 9363 ARCSTAT_BUMP(arcstat_l2_feeds); 9364 9365 size = l2arc_write_size(dev); 9366 9367 /* 9368 * Evict L2ARC buffers that will be overwritten. 9369 */ 9370 l2arc_evict(dev, size, B_FALSE); 9371 9372 /* 9373 * Write ARC buffers. 9374 */ 9375 wrote = l2arc_write_buffers(spa, dev, size); 9376 9377 /* 9378 * Calculate interval between writes. 9379 */ 9380 next = l2arc_write_interval(begin, size, wrote); 9381 spa_config_exit(spa, SCL_L2ARC, dev); 9382 } 9383 spl_fstrans_unmark(cookie); 9384 9385 l2arc_thread_exit = 0; 9386 cv_broadcast(&l2arc_feed_thr_cv); 9387 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 9388 thread_exit(); 9389 } 9390 9391 boolean_t 9392 l2arc_vdev_present(vdev_t *vd) 9393 { 9394 return (l2arc_vdev_get(vd) != NULL); 9395 } 9396 9397 /* 9398 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 9399 * the vdev_t isn't an L2ARC device. 9400 */ 9401 l2arc_dev_t * 9402 l2arc_vdev_get(vdev_t *vd) 9403 { 9404 l2arc_dev_t *dev; 9405 9406 mutex_enter(&l2arc_dev_mtx); 9407 for (dev = list_head(l2arc_dev_list); dev != NULL; 9408 dev = list_next(l2arc_dev_list, dev)) { 9409 if (dev->l2ad_vdev == vd) 9410 break; 9411 } 9412 mutex_exit(&l2arc_dev_mtx); 9413 9414 return (dev); 9415 } 9416 9417 static void 9418 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen) 9419 { 9420 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9421 uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9422 spa_t *spa = dev->l2ad_spa; 9423 9424 /* 9425 * The L2ARC has to hold at least the payload of one log block for 9426 * them to be restored (persistent L2ARC). The payload of a log block 9427 * depends on the amount of its log entries. We always write log blocks 9428 * with 1022 entries. How many of them are committed or restored depends 9429 * on the size of the L2ARC device. Thus the maximum payload of 9430 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 9431 * is less than that, we reduce the amount of committed and restored 9432 * log entries per block so as to enable persistence. 9433 */ 9434 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 9435 dev->l2ad_log_entries = 0; 9436 } else { 9437 dev->l2ad_log_entries = MIN((dev->l2ad_end - 9438 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 9439 L2ARC_LOG_BLK_MAX_ENTRIES); 9440 } 9441 9442 /* 9443 * Read the device header, if an error is returned do not rebuild L2ARC. 9444 */ 9445 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { 9446 /* 9447 * If we are onlining a cache device (vdev_reopen) that was 9448 * still present (l2arc_vdev_present()) and rebuild is enabled, 9449 * we should evict all ARC buffers and pointers to log blocks 9450 * and reclaim their space before restoring its contents to 9451 * L2ARC. 9452 */ 9453 if (reopen) { 9454 if (!l2arc_rebuild_enabled) { 9455 return; 9456 } else { 9457 l2arc_evict(dev, 0, B_TRUE); 9458 /* start a new log block */ 9459 dev->l2ad_log_ent_idx = 0; 9460 dev->l2ad_log_blk_payload_asize = 0; 9461 dev->l2ad_log_blk_payload_start = 0; 9462 } 9463 } 9464 /* 9465 * Just mark the device as pending for a rebuild. We won't 9466 * be starting a rebuild in line here as it would block pool 9467 * import. Instead spa_load_impl will hand that off to an 9468 * async task which will call l2arc_spa_rebuild_start. 9469 */ 9470 dev->l2ad_rebuild = B_TRUE; 9471 } else if (spa_writeable(spa)) { 9472 /* 9473 * In this case TRIM the whole device if l2arc_trim_ahead > 0, 9474 * otherwise create a new header. We zero out the memory holding 9475 * the header to reset dh_start_lbps. If we TRIM the whole 9476 * device the new header will be written by 9477 * vdev_trim_l2arc_thread() at the end of the TRIM to update the 9478 * trim_state in the header too. When reading the header, if 9479 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 9480 * we opt to TRIM the whole device again. 9481 */ 9482 if (l2arc_trim_ahead > 0) { 9483 dev->l2ad_trim_all = B_TRUE; 9484 } else { 9485 memset(l2dhdr, 0, l2dhdr_asize); 9486 l2arc_dev_hdr_update(dev); 9487 } 9488 } 9489 } 9490 9491 /* 9492 * Add a vdev for use by the L2ARC. By this point the spa has already 9493 * validated the vdev and opened it. 9494 */ 9495 void 9496 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 9497 { 9498 l2arc_dev_t *adddev; 9499 uint64_t l2dhdr_asize; 9500 9501 ASSERT(!l2arc_vdev_present(vd)); 9502 9503 /* 9504 * Create a new l2arc device entry. 9505 */ 9506 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 9507 adddev->l2ad_spa = spa; 9508 adddev->l2ad_vdev = vd; 9509 /* leave extra size for an l2arc device header */ 9510 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 9511 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 9512 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 9513 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 9514 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 9515 adddev->l2ad_hand = adddev->l2ad_start; 9516 adddev->l2ad_evict = adddev->l2ad_start; 9517 adddev->l2ad_first = B_TRUE; 9518 adddev->l2ad_writing = B_FALSE; 9519 adddev->l2ad_trim_all = B_FALSE; 9520 list_link_init(&adddev->l2ad_node); 9521 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 9522 9523 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 9524 /* 9525 * This is a list of all ARC buffers that are still valid on the 9526 * device. 9527 */ 9528 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 9529 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 9530 9531 /* 9532 * This is a list of pointers to log blocks that are still present 9533 * on the device. 9534 */ 9535 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 9536 offsetof(l2arc_lb_ptr_buf_t, node)); 9537 9538 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 9539 zfs_refcount_create(&adddev->l2ad_alloc); 9540 zfs_refcount_create(&adddev->l2ad_lb_asize); 9541 zfs_refcount_create(&adddev->l2ad_lb_count); 9542 9543 /* 9544 * Decide if dev is eligible for L2ARC rebuild or whole device 9545 * trimming. This has to happen before the device is added in the 9546 * cache device list and l2arc_dev_mtx is released. Otherwise 9547 * l2arc_feed_thread() might already start writing on the 9548 * device. 9549 */ 9550 l2arc_rebuild_dev(adddev, B_FALSE); 9551 9552 /* 9553 * Add device to global list 9554 */ 9555 mutex_enter(&l2arc_dev_mtx); 9556 list_insert_head(l2arc_dev_list, adddev); 9557 atomic_inc_64(&l2arc_ndev); 9558 mutex_exit(&l2arc_dev_mtx); 9559 } 9560 9561 /* 9562 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen() 9563 * in case of onlining a cache device. 9564 */ 9565 void 9566 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 9567 { 9568 l2arc_dev_t *dev = NULL; 9569 9570 dev = l2arc_vdev_get(vd); 9571 ASSERT3P(dev, !=, NULL); 9572 9573 /* 9574 * In contrast to l2arc_add_vdev() we do not have to worry about 9575 * l2arc_feed_thread() invalidating previous content when onlining a 9576 * cache device. The device parameters (l2ad*) are not cleared when 9577 * offlining the device and writing new buffers will not invalidate 9578 * all previous content. In worst case only buffers that have not had 9579 * their log block written to the device will be lost. 9580 * When onlining the cache device (ie offline->online without exporting 9581 * the pool in between) this happens: 9582 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev() 9583 * | | 9584 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE 9585 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild 9586 * is set to B_TRUE we might write additional buffers to the device. 9587 */ 9588 l2arc_rebuild_dev(dev, reopen); 9589 } 9590 9591 /* 9592 * Remove a vdev from the L2ARC. 9593 */ 9594 void 9595 l2arc_remove_vdev(vdev_t *vd) 9596 { 9597 l2arc_dev_t *remdev = NULL; 9598 9599 /* 9600 * Find the device by vdev 9601 */ 9602 remdev = l2arc_vdev_get(vd); 9603 ASSERT3P(remdev, !=, NULL); 9604 9605 /* 9606 * Cancel any ongoing or scheduled rebuild. 9607 */ 9608 mutex_enter(&l2arc_rebuild_thr_lock); 9609 if (remdev->l2ad_rebuild_began == B_TRUE) { 9610 remdev->l2ad_rebuild_cancel = B_TRUE; 9611 while (remdev->l2ad_rebuild == B_TRUE) 9612 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9613 } 9614 mutex_exit(&l2arc_rebuild_thr_lock); 9615 9616 /* 9617 * Remove device from global list 9618 */ 9619 mutex_enter(&l2arc_dev_mtx); 9620 list_remove(l2arc_dev_list, remdev); 9621 l2arc_dev_last = NULL; /* may have been invalidated */ 9622 atomic_dec_64(&l2arc_ndev); 9623 mutex_exit(&l2arc_dev_mtx); 9624 9625 /* 9626 * Clear all buflists and ARC references. L2ARC device flush. 9627 */ 9628 l2arc_evict(remdev, 0, B_TRUE); 9629 list_destroy(&remdev->l2ad_buflist); 9630 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 9631 list_destroy(&remdev->l2ad_lbptr_list); 9632 mutex_destroy(&remdev->l2ad_mtx); 9633 zfs_refcount_destroy(&remdev->l2ad_alloc); 9634 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 9635 zfs_refcount_destroy(&remdev->l2ad_lb_count); 9636 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 9637 vmem_free(remdev, sizeof (l2arc_dev_t)); 9638 } 9639 9640 void 9641 l2arc_init(void) 9642 { 9643 l2arc_thread_exit = 0; 9644 l2arc_ndev = 0; 9645 9646 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9647 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 9648 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9649 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 9650 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 9651 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 9652 9653 l2arc_dev_list = &L2ARC_dev_list; 9654 l2arc_free_on_write = &L2ARC_free_on_write; 9655 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 9656 offsetof(l2arc_dev_t, l2ad_node)); 9657 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 9658 offsetof(l2arc_data_free_t, l2df_list_node)); 9659 } 9660 9661 void 9662 l2arc_fini(void) 9663 { 9664 mutex_destroy(&l2arc_feed_thr_lock); 9665 cv_destroy(&l2arc_feed_thr_cv); 9666 mutex_destroy(&l2arc_rebuild_thr_lock); 9667 cv_destroy(&l2arc_rebuild_thr_cv); 9668 mutex_destroy(&l2arc_dev_mtx); 9669 mutex_destroy(&l2arc_free_on_write_mtx); 9670 9671 list_destroy(l2arc_dev_list); 9672 list_destroy(l2arc_free_on_write); 9673 } 9674 9675 void 9676 l2arc_start(void) 9677 { 9678 if (!(spa_mode_global & SPA_MODE_WRITE)) 9679 return; 9680 9681 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 9682 TS_RUN, defclsyspri); 9683 } 9684 9685 void 9686 l2arc_stop(void) 9687 { 9688 if (!(spa_mode_global & SPA_MODE_WRITE)) 9689 return; 9690 9691 mutex_enter(&l2arc_feed_thr_lock); 9692 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 9693 l2arc_thread_exit = 1; 9694 while (l2arc_thread_exit != 0) 9695 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 9696 mutex_exit(&l2arc_feed_thr_lock); 9697 } 9698 9699 /* 9700 * Punches out rebuild threads for the L2ARC devices in a spa. This should 9701 * be called after pool import from the spa async thread, since starting 9702 * these threads directly from spa_import() will make them part of the 9703 * "zpool import" context and delay process exit (and thus pool import). 9704 */ 9705 void 9706 l2arc_spa_rebuild_start(spa_t *spa) 9707 { 9708 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 9709 9710 /* 9711 * Locate the spa's l2arc devices and kick off rebuild threads. 9712 */ 9713 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 9714 l2arc_dev_t *dev = 9715 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 9716 if (dev == NULL) { 9717 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 9718 continue; 9719 } 9720 mutex_enter(&l2arc_rebuild_thr_lock); 9721 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 9722 dev->l2ad_rebuild_began = B_TRUE; 9723 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, 9724 dev, 0, &p0, TS_RUN, minclsyspri); 9725 } 9726 mutex_exit(&l2arc_rebuild_thr_lock); 9727 } 9728 } 9729 9730 /* 9731 * Main entry point for L2ARC rebuilding. 9732 */ 9733 static __attribute__((noreturn)) void 9734 l2arc_dev_rebuild_thread(void *arg) 9735 { 9736 l2arc_dev_t *dev = arg; 9737 9738 VERIFY(!dev->l2ad_rebuild_cancel); 9739 VERIFY(dev->l2ad_rebuild); 9740 (void) l2arc_rebuild(dev); 9741 mutex_enter(&l2arc_rebuild_thr_lock); 9742 dev->l2ad_rebuild_began = B_FALSE; 9743 dev->l2ad_rebuild = B_FALSE; 9744 mutex_exit(&l2arc_rebuild_thr_lock); 9745 9746 thread_exit(); 9747 } 9748 9749 /* 9750 * This function implements the actual L2ARC metadata rebuild. It: 9751 * starts reading the log block chain and restores each block's contents 9752 * to memory (reconstructing arc_buf_hdr_t's). 9753 * 9754 * Operation stops under any of the following conditions: 9755 * 9756 * 1) We reach the end of the log block chain. 9757 * 2) We encounter *any* error condition (cksum errors, io errors) 9758 */ 9759 static int 9760 l2arc_rebuild(l2arc_dev_t *dev) 9761 { 9762 vdev_t *vd = dev->l2ad_vdev; 9763 spa_t *spa = vd->vdev_spa; 9764 int err = 0; 9765 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9766 l2arc_log_blk_phys_t *this_lb, *next_lb; 9767 zio_t *this_io = NULL, *next_io = NULL; 9768 l2arc_log_blkptr_t lbps[2]; 9769 l2arc_lb_ptr_buf_t *lb_ptr_buf; 9770 boolean_t lock_held; 9771 9772 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); 9773 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); 9774 9775 /* 9776 * We prevent device removal while issuing reads to the device, 9777 * then during the rebuilding phases we drop this lock again so 9778 * that a spa_unload or device remove can be initiated - this is 9779 * safe, because the spa will signal us to stop before removing 9780 * our device and wait for us to stop. 9781 */ 9782 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 9783 lock_held = B_TRUE; 9784 9785 /* 9786 * Retrieve the persistent L2ARC device state. 9787 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9788 */ 9789 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 9790 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 9791 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 9792 dev->l2ad_start); 9793 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 9794 9795 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; 9796 vd->vdev_trim_state = l2dhdr->dh_trim_state; 9797 9798 /* 9799 * In case the zfs module parameter l2arc_rebuild_enabled is false 9800 * we do not start the rebuild process. 9801 */ 9802 if (!l2arc_rebuild_enabled) 9803 goto out; 9804 9805 /* Prepare the rebuild process */ 9806 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 9807 9808 /* Start the rebuild process */ 9809 for (;;) { 9810 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 9811 break; 9812 9813 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 9814 this_lb, next_lb, this_io, &next_io)) != 0) 9815 goto out; 9816 9817 /* 9818 * Our memory pressure valve. If the system is running low 9819 * on memory, rather than swamping memory with new ARC buf 9820 * hdrs, we opt not to rebuild the L2ARC. At this point, 9821 * however, we have already set up our L2ARC dev to chain in 9822 * new metadata log blocks, so the user may choose to offline/ 9823 * online the L2ARC dev at a later time (or re-import the pool) 9824 * to reconstruct it (when there's less memory pressure). 9825 */ 9826 if (l2arc_hdr_limit_reached()) { 9827 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 9828 cmn_err(CE_NOTE, "System running low on memory, " 9829 "aborting L2ARC rebuild."); 9830 err = SET_ERROR(ENOMEM); 9831 goto out; 9832 } 9833 9834 spa_config_exit(spa, SCL_L2ARC, vd); 9835 lock_held = B_FALSE; 9836 9837 /* 9838 * Now that we know that the next_lb checks out alright, we 9839 * can start reconstruction from this log block. 9840 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9841 */ 9842 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 9843 l2arc_log_blk_restore(dev, this_lb, asize); 9844 9845 /* 9846 * log block restored, include its pointer in the list of 9847 * pointers to log blocks present in the L2ARC device. 9848 */ 9849 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 9850 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 9851 KM_SLEEP); 9852 memcpy(lb_ptr_buf->lb_ptr, &lbps[0], 9853 sizeof (l2arc_log_blkptr_t)); 9854 mutex_enter(&dev->l2ad_mtx); 9855 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 9856 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 9857 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 9858 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 9859 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 9860 mutex_exit(&dev->l2ad_mtx); 9861 vdev_space_update(vd, asize, 0, 0); 9862 9863 /* 9864 * Protection against loops of log blocks: 9865 * 9866 * l2ad_hand l2ad_evict 9867 * V V 9868 * l2ad_start |=======================================| l2ad_end 9869 * -----|||----|||---|||----||| 9870 * (3) (2) (1) (0) 9871 * ---|||---|||----|||---||| 9872 * (7) (6) (5) (4) 9873 * 9874 * In this situation the pointer of log block (4) passes 9875 * l2arc_log_blkptr_valid() but the log block should not be 9876 * restored as it is overwritten by the payload of log block 9877 * (0). Only log blocks (0)-(3) should be restored. We check 9878 * whether l2ad_evict lies in between the payload starting 9879 * offset of the next log block (lbps[1].lbp_payload_start) 9880 * and the payload starting offset of the present log block 9881 * (lbps[0].lbp_payload_start). If true and this isn't the 9882 * first pass, we are looping from the beginning and we should 9883 * stop. 9884 */ 9885 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 9886 lbps[0].lbp_payload_start, dev->l2ad_evict) && 9887 !dev->l2ad_first) 9888 goto out; 9889 9890 kpreempt(KPREEMPT_SYNC); 9891 for (;;) { 9892 mutex_enter(&l2arc_rebuild_thr_lock); 9893 if (dev->l2ad_rebuild_cancel) { 9894 dev->l2ad_rebuild = B_FALSE; 9895 cv_signal(&l2arc_rebuild_thr_cv); 9896 mutex_exit(&l2arc_rebuild_thr_lock); 9897 err = SET_ERROR(ECANCELED); 9898 goto out; 9899 } 9900 mutex_exit(&l2arc_rebuild_thr_lock); 9901 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 9902 RW_READER)) { 9903 lock_held = B_TRUE; 9904 break; 9905 } 9906 /* 9907 * L2ARC config lock held by somebody in writer, 9908 * possibly due to them trying to remove us. They'll 9909 * likely to want us to shut down, so after a little 9910 * delay, we check l2ad_rebuild_cancel and retry 9911 * the lock again. 9912 */ 9913 delay(1); 9914 } 9915 9916 /* 9917 * Continue with the next log block. 9918 */ 9919 lbps[0] = lbps[1]; 9920 lbps[1] = this_lb->lb_prev_lbp; 9921 PTR_SWAP(this_lb, next_lb); 9922 this_io = next_io; 9923 next_io = NULL; 9924 } 9925 9926 if (this_io != NULL) 9927 l2arc_log_blk_fetch_abort(this_io); 9928 out: 9929 if (next_io != NULL) 9930 l2arc_log_blk_fetch_abort(next_io); 9931 vmem_free(this_lb, sizeof (*this_lb)); 9932 vmem_free(next_lb, sizeof (*next_lb)); 9933 9934 if (!l2arc_rebuild_enabled) { 9935 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9936 "disabled"); 9937 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 9938 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 9939 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9940 "successful, restored %llu blocks", 9941 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9942 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 9943 /* 9944 * No error but also nothing restored, meaning the lbps array 9945 * in the device header points to invalid/non-present log 9946 * blocks. Reset the header. 9947 */ 9948 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9949 "no valid log blocks"); 9950 memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize); 9951 l2arc_dev_hdr_update(dev); 9952 } else if (err == ECANCELED) { 9953 /* 9954 * In case the rebuild was canceled do not log to spa history 9955 * log as the pool may be in the process of being removed. 9956 */ 9957 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 9958 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9959 } else if (err != 0) { 9960 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9961 "aborted, restored %llu blocks", 9962 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9963 } 9964 9965 if (lock_held) 9966 spa_config_exit(spa, SCL_L2ARC, vd); 9967 9968 return (err); 9969 } 9970 9971 /* 9972 * Attempts to read the device header on the provided L2ARC device and writes 9973 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 9974 * error code is returned. 9975 */ 9976 static int 9977 l2arc_dev_hdr_read(l2arc_dev_t *dev) 9978 { 9979 int err; 9980 uint64_t guid; 9981 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9982 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9983 abd_t *abd; 9984 9985 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 9986 9987 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 9988 9989 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 9990 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 9991 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 9992 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 9993 ZIO_FLAG_SPECULATIVE, B_FALSE)); 9994 9995 abd_free(abd); 9996 9997 if (err != 0) { 9998 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 9999 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 10000 "vdev guid: %llu", err, 10001 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10002 return (err); 10003 } 10004 10005 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 10006 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 10007 10008 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 10009 l2dhdr->dh_spa_guid != guid || 10010 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 10011 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 10012 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 10013 l2dhdr->dh_end != dev->l2ad_end || 10014 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 10015 l2dhdr->dh_evict) || 10016 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && 10017 l2arc_trim_ahead > 0)) { 10018 /* 10019 * Attempt to rebuild a device containing no actual dev hdr 10020 * or containing a header from some other pool or from another 10021 * version of persistent L2ARC. 10022 */ 10023 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 10024 return (SET_ERROR(ENOTSUP)); 10025 } 10026 10027 return (0); 10028 } 10029 10030 /* 10031 * Reads L2ARC log blocks from storage and validates their contents. 10032 * 10033 * This function implements a simple fetcher to make sure that while 10034 * we're processing one buffer the L2ARC is already fetching the next 10035 * one in the chain. 10036 * 10037 * The arguments this_lp and next_lp point to the current and next log block 10038 * address in the block chain. Similarly, this_lb and next_lb hold the 10039 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 10040 * 10041 * The `this_io' and `next_io' arguments are used for block fetching. 10042 * When issuing the first blk IO during rebuild, you should pass NULL for 10043 * `this_io'. This function will then issue a sync IO to read the block and 10044 * also issue an async IO to fetch the next block in the block chain. The 10045 * fetched IO is returned in `next_io'. On subsequent calls to this 10046 * function, pass the value returned in `next_io' from the previous call 10047 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 10048 * Prior to the call, you should initialize your `next_io' pointer to be 10049 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 10050 * 10051 * On success, this function returns 0, otherwise it returns an appropriate 10052 * error code. On error the fetching IO is aborted and cleared before 10053 * returning from this function. Therefore, if we return `success', the 10054 * caller can assume that we have taken care of cleanup of fetch IOs. 10055 */ 10056 static int 10057 l2arc_log_blk_read(l2arc_dev_t *dev, 10058 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 10059 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 10060 zio_t *this_io, zio_t **next_io) 10061 { 10062 int err = 0; 10063 zio_cksum_t cksum; 10064 abd_t *abd = NULL; 10065 uint64_t asize; 10066 10067 ASSERT(this_lbp != NULL && next_lbp != NULL); 10068 ASSERT(this_lb != NULL && next_lb != NULL); 10069 ASSERT(next_io != NULL && *next_io == NULL); 10070 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 10071 10072 /* 10073 * Check to see if we have issued the IO for this log block in a 10074 * previous run. If not, this is the first call, so issue it now. 10075 */ 10076 if (this_io == NULL) { 10077 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 10078 this_lb); 10079 } 10080 10081 /* 10082 * Peek to see if we can start issuing the next IO immediately. 10083 */ 10084 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 10085 /* 10086 * Start issuing IO for the next log block early - this 10087 * should help keep the L2ARC device busy while we 10088 * decompress and restore this log block. 10089 */ 10090 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 10091 next_lb); 10092 } 10093 10094 /* Wait for the IO to read this log block to complete */ 10095 if ((err = zio_wait(this_io)) != 0) { 10096 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 10097 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 10098 "offset: %llu, vdev guid: %llu", err, 10099 (u_longlong_t)this_lbp->lbp_daddr, 10100 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10101 goto cleanup; 10102 } 10103 10104 /* 10105 * Make sure the buffer checks out. 10106 * L2BLK_GET_PSIZE returns aligned size for log blocks. 10107 */ 10108 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 10109 fletcher_4_native(this_lb, asize, NULL, &cksum); 10110 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 10111 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 10112 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 10113 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 10114 (u_longlong_t)this_lbp->lbp_daddr, 10115 (u_longlong_t)dev->l2ad_vdev->vdev_guid, 10116 (u_longlong_t)dev->l2ad_hand, 10117 (u_longlong_t)dev->l2ad_evict); 10118 err = SET_ERROR(ECKSUM); 10119 goto cleanup; 10120 } 10121 10122 /* Now we can take our time decoding this buffer */ 10123 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 10124 case ZIO_COMPRESS_OFF: 10125 break; 10126 case ZIO_COMPRESS_LZ4: 10127 abd = abd_alloc_for_io(asize, B_TRUE); 10128 abd_copy_from_buf_off(abd, this_lb, 0, asize); 10129 if ((err = zio_decompress_data( 10130 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 10131 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) { 10132 err = SET_ERROR(EINVAL); 10133 goto cleanup; 10134 } 10135 break; 10136 default: 10137 err = SET_ERROR(EINVAL); 10138 goto cleanup; 10139 } 10140 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 10141 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 10142 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 10143 err = SET_ERROR(EINVAL); 10144 goto cleanup; 10145 } 10146 cleanup: 10147 /* Abort an in-flight fetch I/O in case of error */ 10148 if (err != 0 && *next_io != NULL) { 10149 l2arc_log_blk_fetch_abort(*next_io); 10150 *next_io = NULL; 10151 } 10152 if (abd != NULL) 10153 abd_free(abd); 10154 return (err); 10155 } 10156 10157 /* 10158 * Restores the payload of a log block to ARC. This creates empty ARC hdr 10159 * entries which only contain an l2arc hdr, essentially restoring the 10160 * buffers to their L2ARC evicted state. This function also updates space 10161 * usage on the L2ARC vdev to make sure it tracks restored buffers. 10162 */ 10163 static void 10164 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 10165 uint64_t lb_asize) 10166 { 10167 uint64_t size = 0, asize = 0; 10168 uint64_t log_entries = dev->l2ad_log_entries; 10169 10170 /* 10171 * Usually arc_adapt() is called only for data, not headers, but 10172 * since we may allocate significant amount of memory here, let ARC 10173 * grow its arc_c. 10174 */ 10175 arc_adapt(log_entries * HDR_L2ONLY_SIZE); 10176 10177 for (int i = log_entries - 1; i >= 0; i--) { 10178 /* 10179 * Restore goes in the reverse temporal direction to preserve 10180 * correct temporal ordering of buffers in the l2ad_buflist. 10181 * l2arc_hdr_restore also does a list_insert_tail instead of 10182 * list_insert_head on the l2ad_buflist: 10183 * 10184 * LIST l2ad_buflist LIST 10185 * HEAD <------ (time) ------ TAIL 10186 * direction +-----+-----+-----+-----+-----+ direction 10187 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 10188 * fill +-----+-----+-----+-----+-----+ 10189 * ^ ^ 10190 * | | 10191 * | | 10192 * l2arc_feed_thread l2arc_rebuild 10193 * will place new bufs here restores bufs here 10194 * 10195 * During l2arc_rebuild() the device is not used by 10196 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 10197 */ 10198 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 10199 asize += vdev_psize_to_asize(dev->l2ad_vdev, 10200 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 10201 l2arc_hdr_restore(&lb->lb_entries[i], dev); 10202 } 10203 10204 /* 10205 * Record rebuild stats: 10206 * size Logical size of restored buffers in the L2ARC 10207 * asize Aligned size of restored buffers in the L2ARC 10208 */ 10209 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 10210 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 10211 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 10212 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 10213 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 10214 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 10215 } 10216 10217 /* 10218 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 10219 * into a state indicating that it has been evicted to L2ARC. 10220 */ 10221 static void 10222 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 10223 { 10224 arc_buf_hdr_t *hdr, *exists; 10225 kmutex_t *hash_lock; 10226 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 10227 uint64_t asize; 10228 10229 /* 10230 * Do all the allocation before grabbing any locks, this lets us 10231 * sleep if memory is full and we don't have to deal with failed 10232 * allocations. 10233 */ 10234 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 10235 dev, le->le_dva, le->le_daddr, 10236 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 10237 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, 10238 L2BLK_GET_PROTECTED((le)->le_prop), 10239 L2BLK_GET_PREFETCH((le)->le_prop), 10240 L2BLK_GET_STATE((le)->le_prop)); 10241 asize = vdev_psize_to_asize(dev->l2ad_vdev, 10242 L2BLK_GET_PSIZE((le)->le_prop)); 10243 10244 /* 10245 * vdev_space_update() has to be called before arc_hdr_destroy() to 10246 * avoid underflow since the latter also calls vdev_space_update(). 10247 */ 10248 l2arc_hdr_arcstats_increment(hdr); 10249 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10250 10251 mutex_enter(&dev->l2ad_mtx); 10252 list_insert_tail(&dev->l2ad_buflist, hdr); 10253 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 10254 mutex_exit(&dev->l2ad_mtx); 10255 10256 exists = buf_hash_insert(hdr, &hash_lock); 10257 if (exists) { 10258 /* Buffer was already cached, no need to restore it. */ 10259 arc_hdr_destroy(hdr); 10260 /* 10261 * If the buffer is already cached, check whether it has 10262 * L2ARC metadata. If not, enter them and update the flag. 10263 * This is important is case of onlining a cache device, since 10264 * we previously evicted all L2ARC metadata from ARC. 10265 */ 10266 if (!HDR_HAS_L2HDR(exists)) { 10267 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 10268 exists->b_l2hdr.b_dev = dev; 10269 exists->b_l2hdr.b_daddr = le->le_daddr; 10270 exists->b_l2hdr.b_arcs_state = 10271 L2BLK_GET_STATE((le)->le_prop); 10272 mutex_enter(&dev->l2ad_mtx); 10273 list_insert_tail(&dev->l2ad_buflist, exists); 10274 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 10275 arc_hdr_size(exists), exists); 10276 mutex_exit(&dev->l2ad_mtx); 10277 l2arc_hdr_arcstats_increment(exists); 10278 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10279 } 10280 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 10281 } 10282 10283 mutex_exit(hash_lock); 10284 } 10285 10286 /* 10287 * Starts an asynchronous read IO to read a log block. This is used in log 10288 * block reconstruction to start reading the next block before we are done 10289 * decoding and reconstructing the current block, to keep the l2arc device 10290 * nice and hot with read IO to process. 10291 * The returned zio will contain a newly allocated memory buffers for the IO 10292 * data which should then be freed by the caller once the zio is no longer 10293 * needed (i.e. due to it having completed). If you wish to abort this 10294 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 10295 * care of disposing of the allocated buffers correctly. 10296 */ 10297 static zio_t * 10298 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 10299 l2arc_log_blk_phys_t *lb) 10300 { 10301 uint32_t asize; 10302 zio_t *pio; 10303 l2arc_read_callback_t *cb; 10304 10305 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10306 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10307 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 10308 10309 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 10310 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 10311 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 10312 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY); 10313 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 10314 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10315 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL | 10316 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 10317 10318 return (pio); 10319 } 10320 10321 /* 10322 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 10323 * buffers allocated for it. 10324 */ 10325 static void 10326 l2arc_log_blk_fetch_abort(zio_t *zio) 10327 { 10328 (void) zio_wait(zio); 10329 } 10330 10331 /* 10332 * Creates a zio to update the device header on an l2arc device. 10333 */ 10334 void 10335 l2arc_dev_hdr_update(l2arc_dev_t *dev) 10336 { 10337 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10338 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10339 abd_t *abd; 10340 int err; 10341 10342 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 10343 10344 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 10345 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 10346 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10347 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 10348 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 10349 l2dhdr->dh_evict = dev->l2ad_evict; 10350 l2dhdr->dh_start = dev->l2ad_start; 10351 l2dhdr->dh_end = dev->l2ad_end; 10352 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 10353 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 10354 l2dhdr->dh_flags = 0; 10355 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; 10356 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; 10357 if (dev->l2ad_first) 10358 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 10359 10360 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10361 10362 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 10363 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 10364 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 10365 10366 abd_free(abd); 10367 10368 if (err != 0) { 10369 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 10370 "vdev guid: %llu", err, 10371 (u_longlong_t)dev->l2ad_vdev->vdev_guid); 10372 } 10373 } 10374 10375 /* 10376 * Commits a log block to the L2ARC device. This routine is invoked from 10377 * l2arc_write_buffers when the log block fills up. 10378 * This function allocates some memory to temporarily hold the serialized 10379 * buffer to be written. This is then released in l2arc_write_done. 10380 */ 10381 static uint64_t 10382 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 10383 { 10384 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10385 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10386 uint64_t psize, asize; 10387 zio_t *wzio; 10388 l2arc_lb_abd_buf_t *abd_buf; 10389 uint8_t *tmpbuf = NULL; 10390 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10391 10392 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 10393 10394 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 10395 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 10396 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10397 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 10398 10399 /* link the buffer into the block chain */ 10400 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 10401 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 10402 10403 /* 10404 * l2arc_log_blk_commit() may be called multiple times during a single 10405 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 10406 * so we can free them in l2arc_write_done() later on. 10407 */ 10408 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 10409 10410 /* try to compress the buffer */ 10411 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 10412 abd_buf->abd, (void **) &tmpbuf, sizeof (*lb), 0); 10413 10414 /* a log block is never entirely zero */ 10415 ASSERT(psize != 0); 10416 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 10417 ASSERT(asize <= sizeof (*lb)); 10418 10419 /* 10420 * Update the start log block pointer in the device header to point 10421 * to the log block we're about to write. 10422 */ 10423 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 10424 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 10425 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 10426 dev->l2ad_log_blk_payload_asize; 10427 l2dhdr->dh_start_lbps[0].lbp_payload_start = 10428 dev->l2ad_log_blk_payload_start; 10429 L2BLK_SET_LSIZE( 10430 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 10431 L2BLK_SET_PSIZE( 10432 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 10433 L2BLK_SET_CHECKSUM( 10434 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10435 ZIO_CHECKSUM_FLETCHER_4); 10436 if (asize < sizeof (*lb)) { 10437 /* compression succeeded */ 10438 memset(tmpbuf + psize, 0, asize - psize); 10439 L2BLK_SET_COMPRESS( 10440 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10441 ZIO_COMPRESS_LZ4); 10442 } else { 10443 /* compression failed */ 10444 memcpy(tmpbuf, lb, sizeof (*lb)); 10445 L2BLK_SET_COMPRESS( 10446 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10447 ZIO_COMPRESS_OFF); 10448 } 10449 10450 /* checksum what we're about to write */ 10451 fletcher_4_native(tmpbuf, asize, NULL, 10452 &l2dhdr->dh_start_lbps[0].lbp_cksum); 10453 10454 abd_free(abd_buf->abd); 10455 10456 /* perform the write itself */ 10457 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); 10458 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); 10459 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 10460 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10461 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 10462 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 10463 (void) zio_nowait(wzio); 10464 10465 dev->l2ad_hand += asize; 10466 /* 10467 * Include the committed log block's pointer in the list of pointers 10468 * to log blocks present in the L2ARC device. 10469 */ 10470 memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0], 10471 sizeof (l2arc_log_blkptr_t)); 10472 mutex_enter(&dev->l2ad_mtx); 10473 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 10474 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10475 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10476 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10477 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10478 mutex_exit(&dev->l2ad_mtx); 10479 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10480 10481 /* bump the kstats */ 10482 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 10483 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 10484 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 10485 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 10486 dev->l2ad_log_blk_payload_asize / asize); 10487 10488 /* start a new log block */ 10489 dev->l2ad_log_ent_idx = 0; 10490 dev->l2ad_log_blk_payload_asize = 0; 10491 dev->l2ad_log_blk_payload_start = 0; 10492 10493 return (asize); 10494 } 10495 10496 /* 10497 * Validates an L2ARC log block address to make sure that it can be read 10498 * from the provided L2ARC device. 10499 */ 10500 boolean_t 10501 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 10502 { 10503 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10504 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10505 uint64_t end = lbp->lbp_daddr + asize - 1; 10506 uint64_t start = lbp->lbp_payload_start; 10507 boolean_t evicted = B_FALSE; 10508 10509 /* 10510 * A log block is valid if all of the following conditions are true: 10511 * - it fits entirely (including its payload) between l2ad_start and 10512 * l2ad_end 10513 * - it has a valid size 10514 * - neither the log block itself nor part of its payload was evicted 10515 * by l2arc_evict(): 10516 * 10517 * l2ad_hand l2ad_evict 10518 * | | lbp_daddr 10519 * | start | | end 10520 * | | | | | 10521 * V V V V V 10522 * l2ad_start ============================================ l2ad_end 10523 * --------------------------|||| 10524 * ^ ^ 10525 * | log block 10526 * payload 10527 */ 10528 10529 evicted = 10530 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 10531 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 10532 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 10533 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 10534 10535 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 10536 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 10537 (!evicted || dev->l2ad_first)); 10538 } 10539 10540 /* 10541 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 10542 * the device. The buffer being inserted must be present in L2ARC. 10543 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 10544 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 10545 */ 10546 static boolean_t 10547 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 10548 { 10549 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10550 l2arc_log_ent_phys_t *le; 10551 10552 if (dev->l2ad_log_entries == 0) 10553 return (B_FALSE); 10554 10555 int index = dev->l2ad_log_ent_idx++; 10556 10557 ASSERT3S(index, <, dev->l2ad_log_entries); 10558 ASSERT(HDR_HAS_L2HDR(hdr)); 10559 10560 le = &lb->lb_entries[index]; 10561 memset(le, 0, sizeof (*le)); 10562 le->le_dva = hdr->b_dva; 10563 le->le_birth = hdr->b_birth; 10564 le->le_daddr = hdr->b_l2hdr.b_daddr; 10565 if (index == 0) 10566 dev->l2ad_log_blk_payload_start = le->le_daddr; 10567 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 10568 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 10569 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 10570 le->le_complevel = hdr->b_complevel; 10571 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 10572 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 10573 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 10574 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state); 10575 10576 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 10577 HDR_GET_PSIZE(hdr)); 10578 10579 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 10580 } 10581 10582 /* 10583 * Checks whether a given L2ARC device address sits in a time-sequential 10584 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 10585 * just do a range comparison, we need to handle the situation in which the 10586 * range wraps around the end of the L2ARC device. Arguments: 10587 * bottom -- Lower end of the range to check (written to earlier). 10588 * top -- Upper end of the range to check (written to later). 10589 * check -- The address for which we want to determine if it sits in 10590 * between the top and bottom. 10591 * 10592 * The 3-way conditional below represents the following cases: 10593 * 10594 * bottom < top : Sequentially ordered case: 10595 * <check>--------+-------------------+ 10596 * | (overlap here?) | 10597 * L2ARC dev V V 10598 * |---------------<bottom>============<top>--------------| 10599 * 10600 * bottom > top: Looped-around case: 10601 * <check>--------+------------------+ 10602 * | (overlap here?) | 10603 * L2ARC dev V V 10604 * |===============<top>---------------<bottom>===========| 10605 * ^ ^ 10606 * | (or here?) | 10607 * +---------------+---------<check> 10608 * 10609 * top == bottom : Just a single address comparison. 10610 */ 10611 boolean_t 10612 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10613 { 10614 if (bottom < top) 10615 return (bottom <= check && check <= top); 10616 else if (bottom > top) 10617 return (check <= top || bottom <= check); 10618 else 10619 return (check == top); 10620 } 10621 10622 EXPORT_SYMBOL(arc_buf_size); 10623 EXPORT_SYMBOL(arc_write); 10624 EXPORT_SYMBOL(arc_read); 10625 EXPORT_SYMBOL(arc_buf_info); 10626 EXPORT_SYMBOL(arc_getbuf_func); 10627 EXPORT_SYMBOL(arc_add_prune_callback); 10628 EXPORT_SYMBOL(arc_remove_prune_callback); 10629 10630 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min, 10631 spl_param_get_u64, ZMOD_RW, "Minimum ARC size in bytes"); 10632 10633 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max, 10634 spl_param_get_u64, ZMOD_RW, "Maximum ARC size in bytes"); 10635 10636 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_balance, UINT, ZMOD_RW, 10637 "Balance between metadata and data on ghost hits."); 10638 10639 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, 10640 param_get_uint, ZMOD_RW, "Seconds before growing ARC size"); 10641 10642 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, 10643 param_get_uint, ZMOD_RW, "log2(fraction of ARC to reclaim)"); 10644 10645 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, 10646 "Percent of pagecache to reclaim ARC to"); 10647 10648 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, UINT, ZMOD_RD, 10649 "Target average block size"); 10650 10651 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, 10652 "Disable compressed ARC buffers"); 10653 10654 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, 10655 param_get_uint, ZMOD_RW, "Min life of prefetch block in ms"); 10656 10657 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, 10658 param_set_arc_int, param_get_uint, ZMOD_RW, 10659 "Min life of prescient prefetched block in ms"); 10660 10661 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, U64, ZMOD_RW, 10662 "Max write bytes per interval"); 10663 10664 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, U64, ZMOD_RW, 10665 "Extra write bytes during device warmup"); 10666 10667 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, U64, ZMOD_RW, 10668 "Number of max device writes to precache"); 10669 10670 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, U64, ZMOD_RW, 10671 "Compressed l2arc_headroom multiplier"); 10672 10673 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, U64, ZMOD_RW, 10674 "TRIM ahead L2ARC write size multiplier"); 10675 10676 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, U64, ZMOD_RW, 10677 "Seconds between L2ARC writing"); 10678 10679 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, U64, ZMOD_RW, 10680 "Min feed interval in milliseconds"); 10681 10682 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, 10683 "Skip caching prefetched buffers"); 10684 10685 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, 10686 "Turbo L2ARC warmup"); 10687 10688 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, 10689 "No reads during writes"); 10690 10691 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, UINT, ZMOD_RW, 10692 "Percent of ARC size allowed for L2ARC-only headers"); 10693 10694 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, 10695 "Rebuild the L2ARC when importing a pool"); 10696 10697 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, U64, ZMOD_RW, 10698 "Min size in bytes to write rebuild log blocks in L2ARC"); 10699 10700 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW, 10701 "Cache only MFU data from ARC into L2ARC"); 10702 10703 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW, 10704 "Exclude dbufs on special vdevs from being cached to L2ARC if set."); 10705 10706 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, 10707 param_get_uint, ZMOD_RW, "System free memory I/O throttle in bytes"); 10708 10709 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_u64, 10710 spl_param_get_u64, ZMOD_RW, "System free memory target size in bytes"); 10711 10712 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_u64, 10713 spl_param_get_u64, ZMOD_RW, "Minimum bytes of dnodes in ARC"); 10714 10715 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, 10716 param_set_arc_int, param_get_uint, ZMOD_RW, 10717 "Percent of ARC meta buffers for dnodes"); 10718 10719 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, UINT, ZMOD_RW, 10720 "Percentage of excess dnodes to try to unpin"); 10721 10722 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, UINT, ZMOD_RW, 10723 "When full, ARC allocation waits for eviction of this % of alloc size"); 10724 10725 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, UINT, ZMOD_RW, 10726 "The number of headers to evict per sublist before moving to the next"); 10727 10728 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW, 10729 "Number of arc_prune threads"); 10730