xref: /freebsd/sys/contrib/openzfs/module/zfs/arc.c (revision e25152834cdf3b353892835a4f3b157e066a8ed4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2018, Joyent, Inc.
24  * Copyright (c) 2011, 2019, Delphix. All rights reserved.
25  * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2017, Nexenta Systems, Inc.  All rights reserved.
27  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28  * Copyright (c) 2020, George Amanakis. All rights reserved.
29  * Copyright (c) 2019, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  * Copyright (c) 2020, The FreeBSD Foundation [1]
32  *
33  * [1] Portions of this software were developed by Allan Jude
34  *     under sponsorship from the FreeBSD Foundation.
35  */
36 
37 /*
38  * DVA-based Adjustable Replacement Cache
39  *
40  * While much of the theory of operation used here is
41  * based on the self-tuning, low overhead replacement cache
42  * presented by Megiddo and Modha at FAST 2003, there are some
43  * significant differences:
44  *
45  * 1. The Megiddo and Modha model assumes any page is evictable.
46  * Pages in its cache cannot be "locked" into memory.  This makes
47  * the eviction algorithm simple: evict the last page in the list.
48  * This also make the performance characteristics easy to reason
49  * about.  Our cache is not so simple.  At any given moment, some
50  * subset of the blocks in the cache are un-evictable because we
51  * have handed out a reference to them.  Blocks are only evictable
52  * when there are no external references active.  This makes
53  * eviction far more problematic:  we choose to evict the evictable
54  * blocks that are the "lowest" in the list.
55  *
56  * There are times when it is not possible to evict the requested
57  * space.  In these circumstances we are unable to adjust the cache
58  * size.  To prevent the cache growing unbounded at these times we
59  * implement a "cache throttle" that slows the flow of new data
60  * into the cache until we can make space available.
61  *
62  * 2. The Megiddo and Modha model assumes a fixed cache size.
63  * Pages are evicted when the cache is full and there is a cache
64  * miss.  Our model has a variable sized cache.  It grows with
65  * high use, but also tries to react to memory pressure from the
66  * operating system: decreasing its size when system memory is
67  * tight.
68  *
69  * 3. The Megiddo and Modha model assumes a fixed page size. All
70  * elements of the cache are therefore exactly the same size.  So
71  * when adjusting the cache size following a cache miss, its simply
72  * a matter of choosing a single page to evict.  In our model, we
73  * have variable sized cache blocks (ranging from 512 bytes to
74  * 128K bytes).  We therefore choose a set of blocks to evict to make
75  * space for a cache miss that approximates as closely as possible
76  * the space used by the new block.
77  *
78  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
79  * by N. Megiddo & D. Modha, FAST 2003
80  */
81 
82 /*
83  * The locking model:
84  *
85  * A new reference to a cache buffer can be obtained in two
86  * ways: 1) via a hash table lookup using the DVA as a key,
87  * or 2) via one of the ARC lists.  The arc_read() interface
88  * uses method 1, while the internal ARC algorithms for
89  * adjusting the cache use method 2.  We therefore provide two
90  * types of locks: 1) the hash table lock array, and 2) the
91  * ARC list locks.
92  *
93  * Buffers do not have their own mutexes, rather they rely on the
94  * hash table mutexes for the bulk of their protection (i.e. most
95  * fields in the arc_buf_hdr_t are protected by these mutexes).
96  *
97  * buf_hash_find() returns the appropriate mutex (held) when it
98  * locates the requested buffer in the hash table.  It returns
99  * NULL for the mutex if the buffer was not in the table.
100  *
101  * buf_hash_remove() expects the appropriate hash mutex to be
102  * already held before it is invoked.
103  *
104  * Each ARC state also has a mutex which is used to protect the
105  * buffer list associated with the state.  When attempting to
106  * obtain a hash table lock while holding an ARC list lock you
107  * must use: mutex_tryenter() to avoid deadlock.  Also note that
108  * the active state mutex must be held before the ghost state mutex.
109  *
110  * It as also possible to register a callback which is run when the
111  * arc_meta_limit is reached and no buffers can be safely evicted.  In
112  * this case the arc user should drop a reference on some arc buffers so
113  * they can be reclaimed and the arc_meta_limit honored.  For example,
114  * when using the ZPL each dentry holds a references on a znode.  These
115  * dentries must be pruned before the arc buffer holding the znode can
116  * be safely evicted.
117  *
118  * Note that the majority of the performance stats are manipulated
119  * with atomic operations.
120  *
121  * The L2ARC uses the l2ad_mtx on each vdev for the following:
122  *
123  *	- L2ARC buflist creation
124  *	- L2ARC buflist eviction
125  *	- L2ARC write completion, which walks L2ARC buflists
126  *	- ARC header destruction, as it removes from L2ARC buflists
127  *	- ARC header release, as it removes from L2ARC buflists
128  */
129 
130 /*
131  * ARC operation:
132  *
133  * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
134  * This structure can point either to a block that is still in the cache or to
135  * one that is only accessible in an L2 ARC device, or it can provide
136  * information about a block that was recently evicted. If a block is
137  * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
138  * information to retrieve it from the L2ARC device. This information is
139  * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
140  * that is in this state cannot access the data directly.
141  *
142  * Blocks that are actively being referenced or have not been evicted
143  * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
144  * the arc_buf_hdr_t that will point to the data block in memory. A block can
145  * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
146  * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
147  * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
148  *
149  * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
150  * ability to store the physical data (b_pabd) associated with the DVA of the
151  * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
152  * it will match its on-disk compression characteristics. This behavior can be
153  * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
154  * compressed ARC functionality is disabled, the b_pabd will point to an
155  * uncompressed version of the on-disk data.
156  *
157  * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
158  * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
159  * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
160  * consumer. The ARC will provide references to this data and will keep it
161  * cached until it is no longer in use. The ARC caches only the L1ARC's physical
162  * data block and will evict any arc_buf_t that is no longer referenced. The
163  * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
164  * "overhead_size" kstat.
165  *
166  * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
167  * compressed form. The typical case is that consumers will want uncompressed
168  * data, and when that happens a new data buffer is allocated where the data is
169  * decompressed for them to use. Currently the only consumer who wants
170  * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
171  * exists on disk. When this happens, the arc_buf_t's data buffer is shared
172  * with the arc_buf_hdr_t.
173  *
174  * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
175  * first one is owned by a compressed send consumer (and therefore references
176  * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
177  * used by any other consumer (and has its own uncompressed copy of the data
178  * buffer).
179  *
180  *   arc_buf_hdr_t
181  *   +-----------+
182  *   | fields    |
183  *   | common to |
184  *   | L1- and   |
185  *   | L2ARC     |
186  *   +-----------+
187  *   | l2arc_buf_hdr_t
188  *   |           |
189  *   +-----------+
190  *   | l1arc_buf_hdr_t
191  *   |           |              arc_buf_t
192  *   | b_buf     +------------>+-----------+      arc_buf_t
193  *   | b_pabd    +-+           |b_next     +---->+-----------+
194  *   +-----------+ |           |-----------|     |b_next     +-->NULL
195  *                 |           |b_comp = T |     +-----------+
196  *                 |           |b_data     +-+   |b_comp = F |
197  *                 |           +-----------+ |   |b_data     +-+
198  *                 +->+------+               |   +-----------+ |
199  *        compressed  |      |               |                 |
200  *           data     |      |<--------------+                 | uncompressed
201  *                    +------+          compressed,            |     data
202  *                                        shared               +-->+------+
203  *                                         data                    |      |
204  *                                                                 |      |
205  *                                                                 +------+
206  *
207  * When a consumer reads a block, the ARC must first look to see if the
208  * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
209  * arc_buf_t and either copies uncompressed data into a new data buffer from an
210  * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
211  * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
212  * hdr is compressed and the desired compression characteristics of the
213  * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
214  * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
215  * the last buffer in the hdr's b_buf list, however a shared compressed buf can
216  * be anywhere in the hdr's list.
217  *
218  * The diagram below shows an example of an uncompressed ARC hdr that is
219  * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
220  * the last element in the buf list):
221  *
222  *                arc_buf_hdr_t
223  *                +-----------+
224  *                |           |
225  *                |           |
226  *                |           |
227  *                +-----------+
228  * l2arc_buf_hdr_t|           |
229  *                |           |
230  *                +-----------+
231  * l1arc_buf_hdr_t|           |
232  *                |           |                 arc_buf_t    (shared)
233  *                |    b_buf  +------------>+---------+      arc_buf_t
234  *                |           |             |b_next   +---->+---------+
235  *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
236  *                +-----------+ |           |         |     +---------+
237  *                              |           |b_data   +-+   |         |
238  *                              |           +---------+ |   |b_data   +-+
239  *                              +->+------+             |   +---------+ |
240  *                                 |      |             |               |
241  *                   uncompressed  |      |             |               |
242  *                        data     +------+             |               |
243  *                                    ^                 +->+------+     |
244  *                                    |       uncompressed |      |     |
245  *                                    |           data     |      |     |
246  *                                    |                    +------+     |
247  *                                    +---------------------------------+
248  *
249  * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
250  * since the physical block is about to be rewritten. The new data contents
251  * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
252  * it may compress the data before writing it to disk. The ARC will be called
253  * with the transformed data and will bcopy the transformed on-disk block into
254  * a newly allocated b_pabd. Writes are always done into buffers which have
255  * either been loaned (and hence are new and don't have other readers) or
256  * buffers which have been released (and hence have their own hdr, if there
257  * were originally other readers of the buf's original hdr). This ensures that
258  * the ARC only needs to update a single buf and its hdr after a write occurs.
259  *
260  * When the L2ARC is in use, it will also take advantage of the b_pabd. The
261  * L2ARC will always write the contents of b_pabd to the L2ARC. This means
262  * that when compressed ARC is enabled that the L2ARC blocks are identical
263  * to the on-disk block in the main data pool. This provides a significant
264  * advantage since the ARC can leverage the bp's checksum when reading from the
265  * L2ARC to determine if the contents are valid. However, if the compressed
266  * ARC is disabled, then the L2ARC's block must be transformed to look
267  * like the physical block in the main data pool before comparing the
268  * checksum and determining its validity.
269  *
270  * The L1ARC has a slightly different system for storing encrypted data.
271  * Raw (encrypted + possibly compressed) data has a few subtle differences from
272  * data that is just compressed. The biggest difference is that it is not
273  * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
274  * The other difference is that encryption cannot be treated as a suggestion.
275  * If a caller would prefer compressed data, but they actually wind up with
276  * uncompressed data the worst thing that could happen is there might be a
277  * performance hit. If the caller requests encrypted data, however, we must be
278  * sure they actually get it or else secret information could be leaked. Raw
279  * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
280  * may have both an encrypted version and a decrypted version of its data at
281  * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
282  * copied out of this header. To avoid complications with b_pabd, raw buffers
283  * cannot be shared.
284  */
285 
286 #include <sys/spa.h>
287 #include <sys/zio.h>
288 #include <sys/spa_impl.h>
289 #include <sys/zio_compress.h>
290 #include <sys/zio_checksum.h>
291 #include <sys/zfs_context.h>
292 #include <sys/arc.h>
293 #include <sys/zfs_refcount.h>
294 #include <sys/vdev.h>
295 #include <sys/vdev_impl.h>
296 #include <sys/dsl_pool.h>
297 #include <sys/zio_checksum.h>
298 #include <sys/multilist.h>
299 #include <sys/abd.h>
300 #include <sys/zil.h>
301 #include <sys/fm/fs/zfs.h>
302 #include <sys/callb.h>
303 #include <sys/kstat.h>
304 #include <sys/zthr.h>
305 #include <zfs_fletcher.h>
306 #include <sys/arc_impl.h>
307 #include <sys/trace_zfs.h>
308 #include <sys/aggsum.h>
309 #include <cityhash.h>
310 #include <sys/vdev_trim.h>
311 
312 #ifndef _KERNEL
313 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
314 boolean_t arc_watch = B_FALSE;
315 #endif
316 
317 /*
318  * This thread's job is to keep enough free memory in the system, by
319  * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
320  * arc_available_memory().
321  */
322 static zthr_t *arc_reap_zthr;
323 
324 /*
325  * This thread's job is to keep arc_size under arc_c, by calling
326  * arc_evict(), which improves arc_is_overflowing().
327  */
328 static zthr_t *arc_evict_zthr;
329 
330 static kmutex_t arc_evict_lock;
331 static boolean_t arc_evict_needed = B_FALSE;
332 
333 /*
334  * Count of bytes evicted since boot.
335  */
336 static uint64_t arc_evict_count;
337 
338 /*
339  * List of arc_evict_waiter_t's, representing threads waiting for the
340  * arc_evict_count to reach specific values.
341  */
342 static list_t arc_evict_waiters;
343 
344 /*
345  * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
346  * the requested amount of data to be evicted.  For example, by default for
347  * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
348  * Since this is above 100%, it ensures that progress is made towards getting
349  * arc_size under arc_c.  Since this is finite, it ensures that allocations
350  * can still happen, even during the potentially long time that arc_size is
351  * more than arc_c.
352  */
353 int zfs_arc_eviction_pct = 200;
354 
355 /*
356  * The number of headers to evict in arc_evict_state_impl() before
357  * dropping the sublist lock and evicting from another sublist. A lower
358  * value means we're more likely to evict the "correct" header (i.e. the
359  * oldest header in the arc state), but comes with higher overhead
360  * (i.e. more invocations of arc_evict_state_impl()).
361  */
362 int zfs_arc_evict_batch_limit = 10;
363 
364 /* number of seconds before growing cache again */
365 int arc_grow_retry = 5;
366 
367 /*
368  * Minimum time between calls to arc_kmem_reap_soon().
369  */
370 int arc_kmem_cache_reap_retry_ms = 1000;
371 
372 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
373 int zfs_arc_overflow_shift = 8;
374 
375 /* shift of arc_c for calculating both min and max arc_p */
376 int arc_p_min_shift = 4;
377 
378 /* log2(fraction of arc to reclaim) */
379 int arc_shrink_shift = 7;
380 
381 /* percent of pagecache to reclaim arc to */
382 #ifdef _KERNEL
383 uint_t zfs_arc_pc_percent = 0;
384 #endif
385 
386 /*
387  * log2(fraction of ARC which must be free to allow growing).
388  * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
389  * when reading a new block into the ARC, we will evict an equal-sized block
390  * from the ARC.
391  *
392  * This must be less than arc_shrink_shift, so that when we shrink the ARC,
393  * we will still not allow it to grow.
394  */
395 int			arc_no_grow_shift = 5;
396 
397 
398 /*
399  * minimum lifespan of a prefetch block in clock ticks
400  * (initialized in arc_init())
401  */
402 static int		arc_min_prefetch_ms;
403 static int		arc_min_prescient_prefetch_ms;
404 
405 /*
406  * If this percent of memory is free, don't throttle.
407  */
408 int arc_lotsfree_percent = 10;
409 
410 /*
411  * The arc has filled available memory and has now warmed up.
412  */
413 boolean_t arc_warm;
414 
415 /*
416  * These tunables are for performance analysis.
417  */
418 unsigned long zfs_arc_max = 0;
419 unsigned long zfs_arc_min = 0;
420 unsigned long zfs_arc_meta_limit = 0;
421 unsigned long zfs_arc_meta_min = 0;
422 unsigned long zfs_arc_dnode_limit = 0;
423 unsigned long zfs_arc_dnode_reduce_percent = 10;
424 int zfs_arc_grow_retry = 0;
425 int zfs_arc_shrink_shift = 0;
426 int zfs_arc_p_min_shift = 0;
427 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
428 
429 /*
430  * ARC dirty data constraints for arc_tempreserve_space() throttle.
431  */
432 unsigned long zfs_arc_dirty_limit_percent = 50;	/* total dirty data limit */
433 unsigned long zfs_arc_anon_limit_percent = 25;	/* anon block dirty limit */
434 unsigned long zfs_arc_pool_dirty_percent = 20;	/* each pool's anon allowance */
435 
436 /*
437  * Enable or disable compressed arc buffers.
438  */
439 int zfs_compressed_arc_enabled = B_TRUE;
440 
441 /*
442  * ARC will evict meta buffers that exceed arc_meta_limit. This
443  * tunable make arc_meta_limit adjustable for different workloads.
444  */
445 unsigned long zfs_arc_meta_limit_percent = 75;
446 
447 /*
448  * Percentage that can be consumed by dnodes of ARC meta buffers.
449  */
450 unsigned long zfs_arc_dnode_limit_percent = 10;
451 
452 /*
453  * These tunables are Linux specific
454  */
455 unsigned long zfs_arc_sys_free = 0;
456 int zfs_arc_min_prefetch_ms = 0;
457 int zfs_arc_min_prescient_prefetch_ms = 0;
458 int zfs_arc_p_dampener_disable = 1;
459 int zfs_arc_meta_prune = 10000;
460 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
461 int zfs_arc_meta_adjust_restarts = 4096;
462 int zfs_arc_lotsfree_percent = 10;
463 
464 /* The 6 states: */
465 arc_state_t ARC_anon;
466 arc_state_t ARC_mru;
467 arc_state_t ARC_mru_ghost;
468 arc_state_t ARC_mfu;
469 arc_state_t ARC_mfu_ghost;
470 arc_state_t ARC_l2c_only;
471 
472 arc_stats_t arc_stats = {
473 	{ "hits",			KSTAT_DATA_UINT64 },
474 	{ "misses",			KSTAT_DATA_UINT64 },
475 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
476 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
477 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
478 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
479 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
480 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
481 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
482 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
483 	{ "mru_hits",			KSTAT_DATA_UINT64 },
484 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
485 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
486 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
487 	{ "deleted",			KSTAT_DATA_UINT64 },
488 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
489 	{ "access_skip",		KSTAT_DATA_UINT64 },
490 	{ "evict_skip",			KSTAT_DATA_UINT64 },
491 	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
492 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
493 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
494 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
495 	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
496 	{ "hash_elements",		KSTAT_DATA_UINT64 },
497 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
498 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
499 	{ "hash_chains",		KSTAT_DATA_UINT64 },
500 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
501 	{ "p",				KSTAT_DATA_UINT64 },
502 	{ "c",				KSTAT_DATA_UINT64 },
503 	{ "c_min",			KSTAT_DATA_UINT64 },
504 	{ "c_max",			KSTAT_DATA_UINT64 },
505 	{ "size",			KSTAT_DATA_UINT64 },
506 	{ "compressed_size",		KSTAT_DATA_UINT64 },
507 	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
508 	{ "overhead_size",		KSTAT_DATA_UINT64 },
509 	{ "hdr_size",			KSTAT_DATA_UINT64 },
510 	{ "data_size",			KSTAT_DATA_UINT64 },
511 	{ "metadata_size",		KSTAT_DATA_UINT64 },
512 	{ "dbuf_size",			KSTAT_DATA_UINT64 },
513 	{ "dnode_size",			KSTAT_DATA_UINT64 },
514 	{ "bonus_size",			KSTAT_DATA_UINT64 },
515 #if defined(COMPAT_FREEBSD11)
516 	{ "other_size",			KSTAT_DATA_UINT64 },
517 #endif
518 	{ "anon_size",			KSTAT_DATA_UINT64 },
519 	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
520 	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
521 	{ "mru_size",			KSTAT_DATA_UINT64 },
522 	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
523 	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
524 	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
525 	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
526 	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
527 	{ "mfu_size",			KSTAT_DATA_UINT64 },
528 	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
529 	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
530 	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
531 	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
532 	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
533 	{ "l2_hits",			KSTAT_DATA_UINT64 },
534 	{ "l2_misses",			KSTAT_DATA_UINT64 },
535 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
536 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
537 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
538 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
539 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
540 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
541 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
542 	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
543 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
544 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
545 	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
546 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
547 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
548 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
549 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
550 	{ "l2_size",			KSTAT_DATA_UINT64 },
551 	{ "l2_asize",			KSTAT_DATA_UINT64 },
552 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
553 	{ "l2_log_blk_writes",		KSTAT_DATA_UINT64 },
554 	{ "l2_log_blk_avg_asize",	KSTAT_DATA_UINT64 },
555 	{ "l2_log_blk_asize",		KSTAT_DATA_UINT64 },
556 	{ "l2_log_blk_count",		KSTAT_DATA_UINT64 },
557 	{ "l2_data_to_meta_ratio",	KSTAT_DATA_UINT64 },
558 	{ "l2_rebuild_success",		KSTAT_DATA_UINT64 },
559 	{ "l2_rebuild_unsupported",	KSTAT_DATA_UINT64 },
560 	{ "l2_rebuild_io_errors",	KSTAT_DATA_UINT64 },
561 	{ "l2_rebuild_dh_errors",	KSTAT_DATA_UINT64 },
562 	{ "l2_rebuild_cksum_lb_errors",	KSTAT_DATA_UINT64 },
563 	{ "l2_rebuild_lowmem",		KSTAT_DATA_UINT64 },
564 	{ "l2_rebuild_size",		KSTAT_DATA_UINT64 },
565 	{ "l2_rebuild_asize",		KSTAT_DATA_UINT64 },
566 	{ "l2_rebuild_bufs",		KSTAT_DATA_UINT64 },
567 	{ "l2_rebuild_bufs_precached",	KSTAT_DATA_UINT64 },
568 	{ "l2_rebuild_log_blks",	KSTAT_DATA_UINT64 },
569 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
570 	{ "memory_direct_count",	KSTAT_DATA_UINT64 },
571 	{ "memory_indirect_count",	KSTAT_DATA_UINT64 },
572 	{ "memory_all_bytes",		KSTAT_DATA_UINT64 },
573 	{ "memory_free_bytes",		KSTAT_DATA_UINT64 },
574 	{ "memory_available_bytes",	KSTAT_DATA_INT64 },
575 	{ "arc_no_grow",		KSTAT_DATA_UINT64 },
576 	{ "arc_tempreserve",		KSTAT_DATA_UINT64 },
577 	{ "arc_loaned_bytes",		KSTAT_DATA_UINT64 },
578 	{ "arc_prune",			KSTAT_DATA_UINT64 },
579 	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
580 	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
581 	{ "arc_dnode_limit",		KSTAT_DATA_UINT64 },
582 	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
583 	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
584 	{ "async_upgrade_sync",		KSTAT_DATA_UINT64 },
585 	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
586 	{ "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
587 	{ "arc_need_free",		KSTAT_DATA_UINT64 },
588 	{ "arc_sys_free",		KSTAT_DATA_UINT64 },
589 	{ "arc_raw_size",		KSTAT_DATA_UINT64 },
590 	{ "cached_only_in_progress",	KSTAT_DATA_UINT64 },
591 	{ "abd_chunk_waste_size",	KSTAT_DATA_UINT64 },
592 };
593 
594 #define	ARCSTAT_MAX(stat, val) {					\
595 	uint64_t m;							\
596 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
597 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
598 		continue;						\
599 }
600 
601 #define	ARCSTAT_MAXSTAT(stat) \
602 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
603 
604 /*
605  * We define a macro to allow ARC hits/misses to be easily broken down by
606  * two separate conditions, giving a total of four different subtypes for
607  * each of hits and misses (so eight statistics total).
608  */
609 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
610 	if (cond1) {							\
611 		if (cond2) {						\
612 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
613 		} else {						\
614 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
615 		}							\
616 	} else {							\
617 		if (cond2) {						\
618 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
619 		} else {						\
620 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
621 		}							\
622 	}
623 
624 /*
625  * This macro allows us to use kstats as floating averages. Each time we
626  * update this kstat, we first factor it and the update value by
627  * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
628  * average. This macro assumes that integer loads and stores are atomic, but
629  * is not safe for multiple writers updating the kstat in parallel (only the
630  * last writer's update will remain).
631  */
632 #define	ARCSTAT_F_AVG_FACTOR	3
633 #define	ARCSTAT_F_AVG(stat, value) \
634 	do { \
635 		uint64_t x = ARCSTAT(stat); \
636 		x = x - x / ARCSTAT_F_AVG_FACTOR + \
637 		    (value) / ARCSTAT_F_AVG_FACTOR; \
638 		ARCSTAT(stat) = x; \
639 		_NOTE(CONSTCOND) \
640 	} while (0)
641 
642 kstat_t			*arc_ksp;
643 static arc_state_t	*arc_anon;
644 static arc_state_t	*arc_mru_ghost;
645 static arc_state_t	*arc_mfu_ghost;
646 static arc_state_t	*arc_l2c_only;
647 
648 arc_state_t	*arc_mru;
649 arc_state_t	*arc_mfu;
650 
651 /*
652  * There are several ARC variables that are critical to export as kstats --
653  * but we don't want to have to grovel around in the kstat whenever we wish to
654  * manipulate them.  For these variables, we therefore define them to be in
655  * terms of the statistic variable.  This assures that we are not introducing
656  * the possibility of inconsistency by having shadow copies of the variables,
657  * while still allowing the code to be readable.
658  */
659 #define	arc_tempreserve	ARCSTAT(arcstat_tempreserve)
660 #define	arc_loaned_bytes	ARCSTAT(arcstat_loaned_bytes)
661 #define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
662 /* max size for dnodes */
663 #define	arc_dnode_size_limit	ARCSTAT(arcstat_dnode_limit)
664 #define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
665 #define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
666 #define	arc_need_free	ARCSTAT(arcstat_need_free) /* waiting to be evicted */
667 
668 /* size of all b_rabd's in entire arc */
669 #define	arc_raw_size	ARCSTAT(arcstat_raw_size)
670 /* compressed size of entire arc */
671 #define	arc_compressed_size	ARCSTAT(arcstat_compressed_size)
672 /* uncompressed size of entire arc */
673 #define	arc_uncompressed_size	ARCSTAT(arcstat_uncompressed_size)
674 /* number of bytes in the arc from arc_buf_t's */
675 #define	arc_overhead_size	ARCSTAT(arcstat_overhead_size)
676 
677 /*
678  * There are also some ARC variables that we want to export, but that are
679  * updated so often that having the canonical representation be the statistic
680  * variable causes a performance bottleneck. We want to use aggsum_t's for these
681  * instead, but still be able to export the kstat in the same way as before.
682  * The solution is to always use the aggsum version, except in the kstat update
683  * callback.
684  */
685 aggsum_t arc_size;
686 aggsum_t arc_meta_used;
687 aggsum_t astat_data_size;
688 aggsum_t astat_metadata_size;
689 aggsum_t astat_dbuf_size;
690 aggsum_t astat_dnode_size;
691 aggsum_t astat_bonus_size;
692 aggsum_t astat_hdr_size;
693 aggsum_t astat_l2_hdr_size;
694 aggsum_t astat_abd_chunk_waste_size;
695 
696 hrtime_t arc_growtime;
697 list_t arc_prune_list;
698 kmutex_t arc_prune_mtx;
699 taskq_t *arc_prune_taskq;
700 
701 #define	GHOST_STATE(state)	\
702 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
703 	(state) == arc_l2c_only)
704 
705 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
706 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
707 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
708 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
709 #define	HDR_PRESCIENT_PREFETCH(hdr)	\
710 	((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
711 #define	HDR_COMPRESSION_ENABLED(hdr)	\
712 	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
713 
714 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
715 #define	HDR_L2_READING(hdr)	\
716 	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
717 	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
718 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
719 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
720 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
721 #define	HDR_PROTECTED(hdr)	((hdr)->b_flags & ARC_FLAG_PROTECTED)
722 #define	HDR_NOAUTH(hdr)		((hdr)->b_flags & ARC_FLAG_NOAUTH)
723 #define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
724 
725 #define	HDR_ISTYPE_METADATA(hdr)	\
726 	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
727 #define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
728 
729 #define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
730 #define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
731 #define	HDR_HAS_RABD(hdr)	\
732 	(HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) &&	\
733 	(hdr)->b_crypt_hdr.b_rabd != NULL)
734 #define	HDR_ENCRYPTED(hdr)	\
735 	(HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
736 #define	HDR_AUTHENTICATED(hdr)	\
737 	(HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
738 
739 /* For storing compression mode in b_flags */
740 #define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
741 
742 #define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
743 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
744 #define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
745 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
746 
747 #define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
748 #define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
749 #define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
750 #define	ARC_BUF_ENCRYPTED(buf)	((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
751 
752 /*
753  * Other sizes
754  */
755 
756 #define	HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
757 #define	HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
758 #define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
759 
760 /*
761  * Hash table routines
762  */
763 
764 #define	HT_LOCK_ALIGN	64
765 #define	HT_LOCK_PAD	(P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
766 
767 struct ht_lock {
768 	kmutex_t	ht_lock;
769 #ifdef _KERNEL
770 	unsigned char	pad[HT_LOCK_PAD];
771 #endif
772 };
773 
774 #define	BUF_LOCKS 8192
775 typedef struct buf_hash_table {
776 	uint64_t ht_mask;
777 	arc_buf_hdr_t **ht_table;
778 	struct ht_lock ht_locks[BUF_LOCKS];
779 } buf_hash_table_t;
780 
781 static buf_hash_table_t buf_hash_table;
782 
783 #define	BUF_HASH_INDEX(spa, dva, birth) \
784 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
785 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
786 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
787 #define	HDR_LOCK(hdr) \
788 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
789 
790 uint64_t zfs_crc64_table[256];
791 
792 /*
793  * Level 2 ARC
794  */
795 
796 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
797 #define	L2ARC_HEADROOM		2			/* num of writes */
798 
799 /*
800  * If we discover during ARC scan any buffers to be compressed, we boost
801  * our headroom for the next scanning cycle by this percentage multiple.
802  */
803 #define	L2ARC_HEADROOM_BOOST	200
804 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
805 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
806 
807 /*
808  * We can feed L2ARC from two states of ARC buffers, mru and mfu,
809  * and each of the state has two types: data and metadata.
810  */
811 #define	L2ARC_FEED_TYPES	4
812 
813 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
814 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
815 
816 /* L2ARC Performance Tunables */
817 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE;	/* def max write size */
818 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra warmup write */
819 unsigned long l2arc_headroom = L2ARC_HEADROOM;		/* # of dev writes */
820 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
821 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
822 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval msecs */
823 int l2arc_noprefetch = B_TRUE;			/* don't cache prefetch bufs */
824 int l2arc_feed_again = B_TRUE;			/* turbo warmup */
825 int l2arc_norw = B_FALSE;			/* no reads during writes */
826 
827 /*
828  * L2ARC Internals
829  */
830 static list_t L2ARC_dev_list;			/* device list */
831 static list_t *l2arc_dev_list;			/* device list pointer */
832 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
833 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
834 static list_t L2ARC_free_on_write;		/* free after write buf list */
835 static list_t *l2arc_free_on_write;		/* free after write list ptr */
836 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
837 static uint64_t l2arc_ndev;			/* number of devices */
838 
839 typedef struct l2arc_read_callback {
840 	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
841 	blkptr_t		l2rcb_bp;		/* original blkptr */
842 	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
843 	int			l2rcb_flags;		/* original flags */
844 	abd_t			*l2rcb_abd;		/* temporary buffer */
845 } l2arc_read_callback_t;
846 
847 typedef struct l2arc_data_free {
848 	/* protected by l2arc_free_on_write_mtx */
849 	abd_t		*l2df_abd;
850 	size_t		l2df_size;
851 	arc_buf_contents_t l2df_type;
852 	list_node_t	l2df_list_node;
853 } l2arc_data_free_t;
854 
855 typedef enum arc_fill_flags {
856 	ARC_FILL_LOCKED		= 1 << 0, /* hdr lock is held */
857 	ARC_FILL_COMPRESSED	= 1 << 1, /* fill with compressed data */
858 	ARC_FILL_ENCRYPTED	= 1 << 2, /* fill with encrypted data */
859 	ARC_FILL_NOAUTH		= 1 << 3, /* don't attempt to authenticate */
860 	ARC_FILL_IN_PLACE	= 1 << 4  /* fill in place (special case) */
861 } arc_fill_flags_t;
862 
863 static kmutex_t l2arc_feed_thr_lock;
864 static kcondvar_t l2arc_feed_thr_cv;
865 static uint8_t l2arc_thread_exit;
866 
867 static kmutex_t l2arc_rebuild_thr_lock;
868 static kcondvar_t l2arc_rebuild_thr_cv;
869 
870 enum arc_hdr_alloc_flags {
871 	ARC_HDR_ALLOC_RDATA = 0x1,
872 	ARC_HDR_DO_ADAPT = 0x2,
873 };
874 
875 
876 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, boolean_t);
877 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
878 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, boolean_t);
879 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
880 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
881 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
882 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
883 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int);
884 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
885 static void arc_buf_watch(arc_buf_t *);
886 
887 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
888 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
889 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
890 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
891 
892 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
893 static void l2arc_read_done(zio_t *);
894 static void l2arc_do_free_on_write(void);
895 
896 /*
897  * L2ARC TRIM
898  * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
899  * 		the current write size (l2arc_write_max) we should TRIM if we
900  * 		have filled the device. It is defined as a percentage of the
901  * 		write size. If set to 100 we trim twice the space required to
902  * 		accommodate upcoming writes. A minimum of 64MB will be trimmed.
903  * 		It also enables TRIM of the whole L2ARC device upon creation or
904  * 		addition to an existing pool or if the header of the device is
905  * 		invalid upon importing a pool or onlining a cache device. The
906  * 		default is 0, which disables TRIM on L2ARC altogether as it can
907  * 		put significant stress on the underlying storage devices. This
908  * 		will vary depending of how well the specific device handles
909  * 		these commands.
910  */
911 unsigned long l2arc_trim_ahead = 0;
912 
913 /*
914  * Performance tuning of L2ARC persistence:
915  *
916  * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
917  * 		an L2ARC device (either at pool import or later) will attempt
918  * 		to rebuild L2ARC buffer contents.
919  * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
920  * 		whether log blocks are written to the L2ARC device. If the L2ARC
921  * 		device is less than 1GB, the amount of data l2arc_evict()
922  * 		evicts is significant compared to the amount of restored L2ARC
923  * 		data. In this case do not write log blocks in L2ARC in order
924  * 		not to waste space.
925  */
926 int l2arc_rebuild_enabled = B_TRUE;
927 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
928 
929 /* L2ARC persistence rebuild control routines. */
930 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
931 static void l2arc_dev_rebuild_thread(void *arg);
932 static int l2arc_rebuild(l2arc_dev_t *dev);
933 
934 /* L2ARC persistence read I/O routines. */
935 static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
936 static int l2arc_log_blk_read(l2arc_dev_t *dev,
937     const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
938     l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
939     zio_t *this_io, zio_t **next_io);
940 static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
941     const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
942 static void l2arc_log_blk_fetch_abort(zio_t *zio);
943 
944 /* L2ARC persistence block restoration routines. */
945 static void l2arc_log_blk_restore(l2arc_dev_t *dev,
946     const l2arc_log_blk_phys_t *lb, uint64_t lb_asize, uint64_t lb_daddr);
947 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
948     l2arc_dev_t *dev);
949 
950 /* L2ARC persistence write I/O routines. */
951 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
952     l2arc_write_callback_t *cb);
953 
954 /* L2ARC persistence auxiliary routines. */
955 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
956     const l2arc_log_blkptr_t *lbp);
957 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
958     const arc_buf_hdr_t *ab);
959 boolean_t l2arc_range_check_overlap(uint64_t bottom,
960     uint64_t top, uint64_t check);
961 static void l2arc_blk_fetch_done(zio_t *zio);
962 static inline uint64_t
963     l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
964 
965 /*
966  * We use Cityhash for this. It's fast, and has good hash properties without
967  * requiring any large static buffers.
968  */
969 static uint64_t
970 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
971 {
972 	return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
973 }
974 
975 #define	HDR_EMPTY(hdr)						\
976 	((hdr)->b_dva.dva_word[0] == 0 &&			\
977 	(hdr)->b_dva.dva_word[1] == 0)
978 
979 #define	HDR_EMPTY_OR_LOCKED(hdr)				\
980 	(HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
981 
982 #define	HDR_EQUAL(spa, dva, birth, hdr)				\
983 	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
984 	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
985 	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
986 
987 static void
988 buf_discard_identity(arc_buf_hdr_t *hdr)
989 {
990 	hdr->b_dva.dva_word[0] = 0;
991 	hdr->b_dva.dva_word[1] = 0;
992 	hdr->b_birth = 0;
993 }
994 
995 static arc_buf_hdr_t *
996 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
997 {
998 	const dva_t *dva = BP_IDENTITY(bp);
999 	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1000 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1001 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1002 	arc_buf_hdr_t *hdr;
1003 
1004 	mutex_enter(hash_lock);
1005 	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1006 	    hdr = hdr->b_hash_next) {
1007 		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1008 			*lockp = hash_lock;
1009 			return (hdr);
1010 		}
1011 	}
1012 	mutex_exit(hash_lock);
1013 	*lockp = NULL;
1014 	return (NULL);
1015 }
1016 
1017 /*
1018  * Insert an entry into the hash table.  If there is already an element
1019  * equal to elem in the hash table, then the already existing element
1020  * will be returned and the new element will not be inserted.
1021  * Otherwise returns NULL.
1022  * If lockp == NULL, the caller is assumed to already hold the hash lock.
1023  */
1024 static arc_buf_hdr_t *
1025 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1026 {
1027 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1028 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1029 	arc_buf_hdr_t *fhdr;
1030 	uint32_t i;
1031 
1032 	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1033 	ASSERT(hdr->b_birth != 0);
1034 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1035 
1036 	if (lockp != NULL) {
1037 		*lockp = hash_lock;
1038 		mutex_enter(hash_lock);
1039 	} else {
1040 		ASSERT(MUTEX_HELD(hash_lock));
1041 	}
1042 
1043 	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1044 	    fhdr = fhdr->b_hash_next, i++) {
1045 		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1046 			return (fhdr);
1047 	}
1048 
1049 	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1050 	buf_hash_table.ht_table[idx] = hdr;
1051 	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1052 
1053 	/* collect some hash table performance data */
1054 	if (i > 0) {
1055 		ARCSTAT_BUMP(arcstat_hash_collisions);
1056 		if (i == 1)
1057 			ARCSTAT_BUMP(arcstat_hash_chains);
1058 
1059 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1060 	}
1061 
1062 	ARCSTAT_BUMP(arcstat_hash_elements);
1063 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1064 
1065 	return (NULL);
1066 }
1067 
1068 static void
1069 buf_hash_remove(arc_buf_hdr_t *hdr)
1070 {
1071 	arc_buf_hdr_t *fhdr, **hdrp;
1072 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1073 
1074 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1075 	ASSERT(HDR_IN_HASH_TABLE(hdr));
1076 
1077 	hdrp = &buf_hash_table.ht_table[idx];
1078 	while ((fhdr = *hdrp) != hdr) {
1079 		ASSERT3P(fhdr, !=, NULL);
1080 		hdrp = &fhdr->b_hash_next;
1081 	}
1082 	*hdrp = hdr->b_hash_next;
1083 	hdr->b_hash_next = NULL;
1084 	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1085 
1086 	/* collect some hash table performance data */
1087 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1088 
1089 	if (buf_hash_table.ht_table[idx] &&
1090 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1091 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1092 }
1093 
1094 /*
1095  * Global data structures and functions for the buf kmem cache.
1096  */
1097 
1098 static kmem_cache_t *hdr_full_cache;
1099 static kmem_cache_t *hdr_full_crypt_cache;
1100 static kmem_cache_t *hdr_l2only_cache;
1101 static kmem_cache_t *buf_cache;
1102 
1103 static void
1104 buf_fini(void)
1105 {
1106 	int i;
1107 
1108 #if defined(_KERNEL)
1109 	/*
1110 	 * Large allocations which do not require contiguous pages
1111 	 * should be using vmem_free() in the linux kernel\
1112 	 */
1113 	vmem_free(buf_hash_table.ht_table,
1114 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1115 #else
1116 	kmem_free(buf_hash_table.ht_table,
1117 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1118 #endif
1119 	for (i = 0; i < BUF_LOCKS; i++)
1120 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1121 	kmem_cache_destroy(hdr_full_cache);
1122 	kmem_cache_destroy(hdr_full_crypt_cache);
1123 	kmem_cache_destroy(hdr_l2only_cache);
1124 	kmem_cache_destroy(buf_cache);
1125 }
1126 
1127 /*
1128  * Constructor callback - called when the cache is empty
1129  * and a new buf is requested.
1130  */
1131 /* ARGSUSED */
1132 static int
1133 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1134 {
1135 	arc_buf_hdr_t *hdr = vbuf;
1136 
1137 	bzero(hdr, HDR_FULL_SIZE);
1138 	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1139 	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1140 	zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1141 	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1142 	list_link_init(&hdr->b_l1hdr.b_arc_node);
1143 	list_link_init(&hdr->b_l2hdr.b_l2node);
1144 	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1145 	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1146 
1147 	return (0);
1148 }
1149 
1150 /* ARGSUSED */
1151 static int
1152 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag)
1153 {
1154 	arc_buf_hdr_t *hdr = vbuf;
1155 
1156 	hdr_full_cons(vbuf, unused, kmflag);
1157 	bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr));
1158 	arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1159 
1160 	return (0);
1161 }
1162 
1163 /* ARGSUSED */
1164 static int
1165 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1166 {
1167 	arc_buf_hdr_t *hdr = vbuf;
1168 
1169 	bzero(hdr, HDR_L2ONLY_SIZE);
1170 	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1171 
1172 	return (0);
1173 }
1174 
1175 /* ARGSUSED */
1176 static int
1177 buf_cons(void *vbuf, void *unused, int kmflag)
1178 {
1179 	arc_buf_t *buf = vbuf;
1180 
1181 	bzero(buf, sizeof (arc_buf_t));
1182 	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1183 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1184 
1185 	return (0);
1186 }
1187 
1188 /*
1189  * Destructor callback - called when a cached buf is
1190  * no longer required.
1191  */
1192 /* ARGSUSED */
1193 static void
1194 hdr_full_dest(void *vbuf, void *unused)
1195 {
1196 	arc_buf_hdr_t *hdr = vbuf;
1197 
1198 	ASSERT(HDR_EMPTY(hdr));
1199 	cv_destroy(&hdr->b_l1hdr.b_cv);
1200 	zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1201 	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1202 	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1203 	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1204 }
1205 
1206 /* ARGSUSED */
1207 static void
1208 hdr_full_crypt_dest(void *vbuf, void *unused)
1209 {
1210 	arc_buf_hdr_t *hdr = vbuf;
1211 
1212 	hdr_full_dest(vbuf, unused);
1213 	arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1214 }
1215 
1216 /* ARGSUSED */
1217 static void
1218 hdr_l2only_dest(void *vbuf, void *unused)
1219 {
1220 	arc_buf_hdr_t *hdr __maybe_unused = vbuf;
1221 
1222 	ASSERT(HDR_EMPTY(hdr));
1223 	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1224 }
1225 
1226 /* ARGSUSED */
1227 static void
1228 buf_dest(void *vbuf, void *unused)
1229 {
1230 	arc_buf_t *buf = vbuf;
1231 
1232 	mutex_destroy(&buf->b_evict_lock);
1233 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1234 }
1235 
1236 static void
1237 buf_init(void)
1238 {
1239 	uint64_t *ct = NULL;
1240 	uint64_t hsize = 1ULL << 12;
1241 	int i, j;
1242 
1243 	/*
1244 	 * The hash table is big enough to fill all of physical memory
1245 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1246 	 * By default, the table will take up
1247 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1248 	 */
1249 	while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1250 		hsize <<= 1;
1251 retry:
1252 	buf_hash_table.ht_mask = hsize - 1;
1253 #if defined(_KERNEL)
1254 	/*
1255 	 * Large allocations which do not require contiguous pages
1256 	 * should be using vmem_alloc() in the linux kernel
1257 	 */
1258 	buf_hash_table.ht_table =
1259 	    vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1260 #else
1261 	buf_hash_table.ht_table =
1262 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1263 #endif
1264 	if (buf_hash_table.ht_table == NULL) {
1265 		ASSERT(hsize > (1ULL << 8));
1266 		hsize >>= 1;
1267 		goto retry;
1268 	}
1269 
1270 	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1271 	    0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0);
1272 	hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt",
1273 	    HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest,
1274 	    NULL, NULL, NULL, 0);
1275 	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1276 	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
1277 	    NULL, NULL, 0);
1278 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1279 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1280 
1281 	for (i = 0; i < 256; i++)
1282 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1283 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1284 
1285 	for (i = 0; i < BUF_LOCKS; i++) {
1286 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1287 		    NULL, MUTEX_DEFAULT, NULL);
1288 	}
1289 }
1290 
1291 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
1292 
1293 /*
1294  * This is the size that the buf occupies in memory. If the buf is compressed,
1295  * it will correspond to the compressed size. You should use this method of
1296  * getting the buf size unless you explicitly need the logical size.
1297  */
1298 uint64_t
1299 arc_buf_size(arc_buf_t *buf)
1300 {
1301 	return (ARC_BUF_COMPRESSED(buf) ?
1302 	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1303 }
1304 
1305 uint64_t
1306 arc_buf_lsize(arc_buf_t *buf)
1307 {
1308 	return (HDR_GET_LSIZE(buf->b_hdr));
1309 }
1310 
1311 /*
1312  * This function will return B_TRUE if the buffer is encrypted in memory.
1313  * This buffer can be decrypted by calling arc_untransform().
1314  */
1315 boolean_t
1316 arc_is_encrypted(arc_buf_t *buf)
1317 {
1318 	return (ARC_BUF_ENCRYPTED(buf) != 0);
1319 }
1320 
1321 /*
1322  * Returns B_TRUE if the buffer represents data that has not had its MAC
1323  * verified yet.
1324  */
1325 boolean_t
1326 arc_is_unauthenticated(arc_buf_t *buf)
1327 {
1328 	return (HDR_NOAUTH(buf->b_hdr) != 0);
1329 }
1330 
1331 void
1332 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1333     uint8_t *iv, uint8_t *mac)
1334 {
1335 	arc_buf_hdr_t *hdr = buf->b_hdr;
1336 
1337 	ASSERT(HDR_PROTECTED(hdr));
1338 
1339 	bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
1340 	bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
1341 	bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
1342 	*byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1343 	    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1344 }
1345 
1346 /*
1347  * Indicates how this buffer is compressed in memory. If it is not compressed
1348  * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1349  * arc_untransform() as long as it is also unencrypted.
1350  */
1351 enum zio_compress
1352 arc_get_compression(arc_buf_t *buf)
1353 {
1354 	return (ARC_BUF_COMPRESSED(buf) ?
1355 	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1356 }
1357 
1358 /*
1359  * Return the compression algorithm used to store this data in the ARC. If ARC
1360  * compression is enabled or this is an encrypted block, this will be the same
1361  * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1362  */
1363 static inline enum zio_compress
1364 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1365 {
1366 	return (HDR_COMPRESSION_ENABLED(hdr) ?
1367 	    HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1368 }
1369 
1370 uint8_t
1371 arc_get_complevel(arc_buf_t *buf)
1372 {
1373 	return (buf->b_hdr->b_complevel);
1374 }
1375 
1376 static inline boolean_t
1377 arc_buf_is_shared(arc_buf_t *buf)
1378 {
1379 	boolean_t shared = (buf->b_data != NULL &&
1380 	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1381 	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1382 	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1383 	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1384 	IMPLY(shared, ARC_BUF_SHARED(buf));
1385 	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1386 
1387 	/*
1388 	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1389 	 * already being shared" requirement prevents us from doing that.
1390 	 */
1391 
1392 	return (shared);
1393 }
1394 
1395 /*
1396  * Free the checksum associated with this header. If there is no checksum, this
1397  * is a no-op.
1398  */
1399 static inline void
1400 arc_cksum_free(arc_buf_hdr_t *hdr)
1401 {
1402 	ASSERT(HDR_HAS_L1HDR(hdr));
1403 
1404 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1405 	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1406 		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1407 		hdr->b_l1hdr.b_freeze_cksum = NULL;
1408 	}
1409 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1410 }
1411 
1412 /*
1413  * Return true iff at least one of the bufs on hdr is not compressed.
1414  * Encrypted buffers count as compressed.
1415  */
1416 static boolean_t
1417 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1418 {
1419 	ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1420 
1421 	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1422 		if (!ARC_BUF_COMPRESSED(b)) {
1423 			return (B_TRUE);
1424 		}
1425 	}
1426 	return (B_FALSE);
1427 }
1428 
1429 
1430 /*
1431  * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1432  * matches the checksum that is stored in the hdr. If there is no checksum,
1433  * or if the buf is compressed, this is a no-op.
1434  */
1435 static void
1436 arc_cksum_verify(arc_buf_t *buf)
1437 {
1438 	arc_buf_hdr_t *hdr = buf->b_hdr;
1439 	zio_cksum_t zc;
1440 
1441 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1442 		return;
1443 
1444 	if (ARC_BUF_COMPRESSED(buf))
1445 		return;
1446 
1447 	ASSERT(HDR_HAS_L1HDR(hdr));
1448 
1449 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1450 
1451 	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1452 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1453 		return;
1454 	}
1455 
1456 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1457 	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1458 		panic("buffer modified while frozen!");
1459 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1460 }
1461 
1462 /*
1463  * This function makes the assumption that data stored in the L2ARC
1464  * will be transformed exactly as it is in the main pool. Because of
1465  * this we can verify the checksum against the reading process's bp.
1466  */
1467 static boolean_t
1468 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1469 {
1470 	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1471 	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1472 
1473 	/*
1474 	 * Block pointers always store the checksum for the logical data.
1475 	 * If the block pointer has the gang bit set, then the checksum
1476 	 * it represents is for the reconstituted data and not for an
1477 	 * individual gang member. The zio pipeline, however, must be able to
1478 	 * determine the checksum of each of the gang constituents so it
1479 	 * treats the checksum comparison differently than what we need
1480 	 * for l2arc blocks. This prevents us from using the
1481 	 * zio_checksum_error() interface directly. Instead we must call the
1482 	 * zio_checksum_error_impl() so that we can ensure the checksum is
1483 	 * generated using the correct checksum algorithm and accounts for the
1484 	 * logical I/O size and not just a gang fragment.
1485 	 */
1486 	return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1487 	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1488 	    zio->io_offset, NULL) == 0);
1489 }
1490 
1491 /*
1492  * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1493  * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1494  * isn't modified later on. If buf is compressed or there is already a checksum
1495  * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1496  */
1497 static void
1498 arc_cksum_compute(arc_buf_t *buf)
1499 {
1500 	arc_buf_hdr_t *hdr = buf->b_hdr;
1501 
1502 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1503 		return;
1504 
1505 	ASSERT(HDR_HAS_L1HDR(hdr));
1506 
1507 	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1508 	if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1509 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1510 		return;
1511 	}
1512 
1513 	ASSERT(!ARC_BUF_ENCRYPTED(buf));
1514 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1515 	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1516 	    KM_SLEEP);
1517 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1518 	    hdr->b_l1hdr.b_freeze_cksum);
1519 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1520 	arc_buf_watch(buf);
1521 }
1522 
1523 #ifndef _KERNEL
1524 void
1525 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1526 {
1527 	panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1528 }
1529 #endif
1530 
1531 /* ARGSUSED */
1532 static void
1533 arc_buf_unwatch(arc_buf_t *buf)
1534 {
1535 #ifndef _KERNEL
1536 	if (arc_watch) {
1537 		ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1538 		    PROT_READ | PROT_WRITE));
1539 	}
1540 #endif
1541 }
1542 
1543 /* ARGSUSED */
1544 static void
1545 arc_buf_watch(arc_buf_t *buf)
1546 {
1547 #ifndef _KERNEL
1548 	if (arc_watch)
1549 		ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1550 		    PROT_READ));
1551 #endif
1552 }
1553 
1554 static arc_buf_contents_t
1555 arc_buf_type(arc_buf_hdr_t *hdr)
1556 {
1557 	arc_buf_contents_t type;
1558 	if (HDR_ISTYPE_METADATA(hdr)) {
1559 		type = ARC_BUFC_METADATA;
1560 	} else {
1561 		type = ARC_BUFC_DATA;
1562 	}
1563 	VERIFY3U(hdr->b_type, ==, type);
1564 	return (type);
1565 }
1566 
1567 boolean_t
1568 arc_is_metadata(arc_buf_t *buf)
1569 {
1570 	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1571 }
1572 
1573 static uint32_t
1574 arc_bufc_to_flags(arc_buf_contents_t type)
1575 {
1576 	switch (type) {
1577 	case ARC_BUFC_DATA:
1578 		/* metadata field is 0 if buffer contains normal data */
1579 		return (0);
1580 	case ARC_BUFC_METADATA:
1581 		return (ARC_FLAG_BUFC_METADATA);
1582 	default:
1583 		break;
1584 	}
1585 	panic("undefined ARC buffer type!");
1586 	return ((uint32_t)-1);
1587 }
1588 
1589 void
1590 arc_buf_thaw(arc_buf_t *buf)
1591 {
1592 	arc_buf_hdr_t *hdr = buf->b_hdr;
1593 
1594 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1595 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1596 
1597 	arc_cksum_verify(buf);
1598 
1599 	/*
1600 	 * Compressed buffers do not manipulate the b_freeze_cksum.
1601 	 */
1602 	if (ARC_BUF_COMPRESSED(buf))
1603 		return;
1604 
1605 	ASSERT(HDR_HAS_L1HDR(hdr));
1606 	arc_cksum_free(hdr);
1607 	arc_buf_unwatch(buf);
1608 }
1609 
1610 void
1611 arc_buf_freeze(arc_buf_t *buf)
1612 {
1613 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1614 		return;
1615 
1616 	if (ARC_BUF_COMPRESSED(buf))
1617 		return;
1618 
1619 	ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1620 	arc_cksum_compute(buf);
1621 }
1622 
1623 /*
1624  * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1625  * the following functions should be used to ensure that the flags are
1626  * updated in a thread-safe way. When manipulating the flags either
1627  * the hash_lock must be held or the hdr must be undiscoverable. This
1628  * ensures that we're not racing with any other threads when updating
1629  * the flags.
1630  */
1631 static inline void
1632 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1633 {
1634 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1635 	hdr->b_flags |= flags;
1636 }
1637 
1638 static inline void
1639 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1640 {
1641 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1642 	hdr->b_flags &= ~flags;
1643 }
1644 
1645 /*
1646  * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1647  * done in a special way since we have to clear and set bits
1648  * at the same time. Consumers that wish to set the compression bits
1649  * must use this function to ensure that the flags are updated in
1650  * thread-safe manner.
1651  */
1652 static void
1653 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1654 {
1655 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1656 
1657 	/*
1658 	 * Holes and embedded blocks will always have a psize = 0 so
1659 	 * we ignore the compression of the blkptr and set the
1660 	 * want to uncompress them. Mark them as uncompressed.
1661 	 */
1662 	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1663 		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1664 		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1665 	} else {
1666 		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1667 		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1668 	}
1669 
1670 	HDR_SET_COMPRESS(hdr, cmp);
1671 	ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1672 }
1673 
1674 /*
1675  * Looks for another buf on the same hdr which has the data decompressed, copies
1676  * from it, and returns true. If no such buf exists, returns false.
1677  */
1678 static boolean_t
1679 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1680 {
1681 	arc_buf_hdr_t *hdr = buf->b_hdr;
1682 	boolean_t copied = B_FALSE;
1683 
1684 	ASSERT(HDR_HAS_L1HDR(hdr));
1685 	ASSERT3P(buf->b_data, !=, NULL);
1686 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1687 
1688 	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1689 	    from = from->b_next) {
1690 		/* can't use our own data buffer */
1691 		if (from == buf) {
1692 			continue;
1693 		}
1694 
1695 		if (!ARC_BUF_COMPRESSED(from)) {
1696 			bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1697 			copied = B_TRUE;
1698 			break;
1699 		}
1700 	}
1701 
1702 	/*
1703 	 * There were no decompressed bufs, so there should not be a
1704 	 * checksum on the hdr either.
1705 	 */
1706 	if (zfs_flags & ZFS_DEBUG_MODIFY)
1707 		EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1708 
1709 	return (copied);
1710 }
1711 
1712 /*
1713  * Allocates an ARC buf header that's in an evicted & L2-cached state.
1714  * This is used during l2arc reconstruction to make empty ARC buffers
1715  * which circumvent the regular disk->arc->l2arc path and instead come
1716  * into being in the reverse order, i.e. l2arc->arc.
1717  */
1718 static arc_buf_hdr_t *
1719 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
1720     dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth,
1721     enum zio_compress compress, uint8_t complevel, boolean_t protected,
1722     boolean_t prefetch)
1723 {
1724 	arc_buf_hdr_t	*hdr;
1725 
1726 	ASSERT(size != 0);
1727 	hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
1728 	hdr->b_birth = birth;
1729 	hdr->b_type = type;
1730 	hdr->b_flags = 0;
1731 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
1732 	HDR_SET_LSIZE(hdr, size);
1733 	HDR_SET_PSIZE(hdr, psize);
1734 	arc_hdr_set_compress(hdr, compress);
1735 	hdr->b_complevel = complevel;
1736 	if (protected)
1737 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
1738 	if (prefetch)
1739 		arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
1740 	hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
1741 
1742 	hdr->b_dva = dva;
1743 
1744 	hdr->b_l2hdr.b_dev = dev;
1745 	hdr->b_l2hdr.b_daddr = daddr;
1746 
1747 	return (hdr);
1748 }
1749 
1750 /*
1751  * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1752  */
1753 static uint64_t
1754 arc_hdr_size(arc_buf_hdr_t *hdr)
1755 {
1756 	uint64_t size;
1757 
1758 	if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1759 	    HDR_GET_PSIZE(hdr) > 0) {
1760 		size = HDR_GET_PSIZE(hdr);
1761 	} else {
1762 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1763 		size = HDR_GET_LSIZE(hdr);
1764 	}
1765 	return (size);
1766 }
1767 
1768 static int
1769 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1770 {
1771 	int ret;
1772 	uint64_t csize;
1773 	uint64_t lsize = HDR_GET_LSIZE(hdr);
1774 	uint64_t psize = HDR_GET_PSIZE(hdr);
1775 	void *tmpbuf = NULL;
1776 	abd_t *abd = hdr->b_l1hdr.b_pabd;
1777 
1778 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1779 	ASSERT(HDR_AUTHENTICATED(hdr));
1780 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1781 
1782 	/*
1783 	 * The MAC is calculated on the compressed data that is stored on disk.
1784 	 * However, if compressed arc is disabled we will only have the
1785 	 * decompressed data available to us now. Compress it into a temporary
1786 	 * abd so we can verify the MAC. The performance overhead of this will
1787 	 * be relatively low, since most objects in an encrypted objset will
1788 	 * be encrypted (instead of authenticated) anyway.
1789 	 */
1790 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1791 	    !HDR_COMPRESSION_ENABLED(hdr)) {
1792 		tmpbuf = zio_buf_alloc(lsize);
1793 		abd = abd_get_from_buf(tmpbuf, lsize);
1794 		abd_take_ownership_of_buf(abd, B_TRUE);
1795 		csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1796 		    hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel);
1797 		ASSERT3U(csize, <=, psize);
1798 		abd_zero_off(abd, csize, psize - csize);
1799 	}
1800 
1801 	/*
1802 	 * Authentication is best effort. We authenticate whenever the key is
1803 	 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1804 	 */
1805 	if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1806 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1807 		ASSERT3U(lsize, ==, psize);
1808 		ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1809 		    psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1810 	} else {
1811 		ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1812 		    hdr->b_crypt_hdr.b_mac);
1813 	}
1814 
1815 	if (ret == 0)
1816 		arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1817 	else if (ret != ENOENT)
1818 		goto error;
1819 
1820 	if (tmpbuf != NULL)
1821 		abd_free(abd);
1822 
1823 	return (0);
1824 
1825 error:
1826 	if (tmpbuf != NULL)
1827 		abd_free(abd);
1828 
1829 	return (ret);
1830 }
1831 
1832 /*
1833  * This function will take a header that only has raw encrypted data in
1834  * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1835  * b_l1hdr.b_pabd. If designated in the header flags, this function will
1836  * also decompress the data.
1837  */
1838 static int
1839 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1840 {
1841 	int ret;
1842 	abd_t *cabd = NULL;
1843 	void *tmp = NULL;
1844 	boolean_t no_crypt = B_FALSE;
1845 	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1846 
1847 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1848 	ASSERT(HDR_ENCRYPTED(hdr));
1849 
1850 	arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT);
1851 
1852 	ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1853 	    B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1854 	    hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1855 	    hdr->b_crypt_hdr.b_rabd, &no_crypt);
1856 	if (ret != 0)
1857 		goto error;
1858 
1859 	if (no_crypt) {
1860 		abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1861 		    HDR_GET_PSIZE(hdr));
1862 	}
1863 
1864 	/*
1865 	 * If this header has disabled arc compression but the b_pabd is
1866 	 * compressed after decrypting it, we need to decompress the newly
1867 	 * decrypted data.
1868 	 */
1869 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1870 	    !HDR_COMPRESSION_ENABLED(hdr)) {
1871 		/*
1872 		 * We want to make sure that we are correctly honoring the
1873 		 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1874 		 * and then loan a buffer from it, rather than allocating a
1875 		 * linear buffer and wrapping it in an abd later.
1876 		 */
1877 		cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, B_TRUE);
1878 		tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
1879 
1880 		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1881 		    hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
1882 		    HDR_GET_LSIZE(hdr), &hdr->b_complevel);
1883 		if (ret != 0) {
1884 			abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
1885 			goto error;
1886 		}
1887 
1888 		abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
1889 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1890 		    arc_hdr_size(hdr), hdr);
1891 		hdr->b_l1hdr.b_pabd = cabd;
1892 	}
1893 
1894 	return (0);
1895 
1896 error:
1897 	arc_hdr_free_abd(hdr, B_FALSE);
1898 	if (cabd != NULL)
1899 		arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1900 
1901 	return (ret);
1902 }
1903 
1904 /*
1905  * This function is called during arc_buf_fill() to prepare the header's
1906  * abd plaintext pointer for use. This involves authenticated protected
1907  * data and decrypting encrypted data into the plaintext abd.
1908  */
1909 static int
1910 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1911     const zbookmark_phys_t *zb, boolean_t noauth)
1912 {
1913 	int ret;
1914 
1915 	ASSERT(HDR_PROTECTED(hdr));
1916 
1917 	if (hash_lock != NULL)
1918 		mutex_enter(hash_lock);
1919 
1920 	if (HDR_NOAUTH(hdr) && !noauth) {
1921 		/*
1922 		 * The caller requested authenticated data but our data has
1923 		 * not been authenticated yet. Verify the MAC now if we can.
1924 		 */
1925 		ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1926 		if (ret != 0)
1927 			goto error;
1928 	} else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1929 		/*
1930 		 * If we only have the encrypted version of the data, but the
1931 		 * unencrypted version was requested we take this opportunity
1932 		 * to store the decrypted version in the header for future use.
1933 		 */
1934 		ret = arc_hdr_decrypt(hdr, spa, zb);
1935 		if (ret != 0)
1936 			goto error;
1937 	}
1938 
1939 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1940 
1941 	if (hash_lock != NULL)
1942 		mutex_exit(hash_lock);
1943 
1944 	return (0);
1945 
1946 error:
1947 	if (hash_lock != NULL)
1948 		mutex_exit(hash_lock);
1949 
1950 	return (ret);
1951 }
1952 
1953 /*
1954  * This function is used by the dbuf code to decrypt bonus buffers in place.
1955  * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1956  * block, so we use the hash lock here to protect against concurrent calls to
1957  * arc_buf_fill().
1958  */
1959 static void
1960 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock)
1961 {
1962 	arc_buf_hdr_t *hdr = buf->b_hdr;
1963 
1964 	ASSERT(HDR_ENCRYPTED(hdr));
1965 	ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1966 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1967 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1968 
1969 	zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1970 	    arc_buf_size(buf));
1971 	buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1972 	buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1973 	hdr->b_crypt_hdr.b_ebufcnt -= 1;
1974 }
1975 
1976 /*
1977  * Given a buf that has a data buffer attached to it, this function will
1978  * efficiently fill the buf with data of the specified compression setting from
1979  * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1980  * are already sharing a data buf, no copy is performed.
1981  *
1982  * If the buf is marked as compressed but uncompressed data was requested, this
1983  * will allocate a new data buffer for the buf, remove that flag, and fill the
1984  * buf with uncompressed data. You can't request a compressed buf on a hdr with
1985  * uncompressed data, and (since we haven't added support for it yet) if you
1986  * want compressed data your buf must already be marked as compressed and have
1987  * the correct-sized data buffer.
1988  */
1989 static int
1990 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
1991     arc_fill_flags_t flags)
1992 {
1993 	int error = 0;
1994 	arc_buf_hdr_t *hdr = buf->b_hdr;
1995 	boolean_t hdr_compressed =
1996 	    (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
1997 	boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
1998 	boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
1999 	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2000 	kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
2001 
2002 	ASSERT3P(buf->b_data, !=, NULL);
2003 	IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
2004 	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2005 	IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2006 	IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2007 	IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2008 	IMPLY(encrypted, !ARC_BUF_SHARED(buf));
2009 
2010 	/*
2011 	 * If the caller wanted encrypted data we just need to copy it from
2012 	 * b_rabd and potentially byteswap it. We won't be able to do any
2013 	 * further transforms on it.
2014 	 */
2015 	if (encrypted) {
2016 		ASSERT(HDR_HAS_RABD(hdr));
2017 		abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2018 		    HDR_GET_PSIZE(hdr));
2019 		goto byteswap;
2020 	}
2021 
2022 	/*
2023 	 * Adjust encrypted and authenticated headers to accommodate
2024 	 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2025 	 * allowed to fail decryption due to keys not being loaded
2026 	 * without being marked as an IO error.
2027 	 */
2028 	if (HDR_PROTECTED(hdr)) {
2029 		error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2030 		    zb, !!(flags & ARC_FILL_NOAUTH));
2031 		if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2032 			return (error);
2033 		} else if (error != 0) {
2034 			if (hash_lock != NULL)
2035 				mutex_enter(hash_lock);
2036 			arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2037 			if (hash_lock != NULL)
2038 				mutex_exit(hash_lock);
2039 			return (error);
2040 		}
2041 	}
2042 
2043 	/*
2044 	 * There is a special case here for dnode blocks which are
2045 	 * decrypting their bonus buffers. These blocks may request to
2046 	 * be decrypted in-place. This is necessary because there may
2047 	 * be many dnodes pointing into this buffer and there is
2048 	 * currently no method to synchronize replacing the backing
2049 	 * b_data buffer and updating all of the pointers. Here we use
2050 	 * the hash lock to ensure there are no races. If the need
2051 	 * arises for other types to be decrypted in-place, they must
2052 	 * add handling here as well.
2053 	 */
2054 	if ((flags & ARC_FILL_IN_PLACE) != 0) {
2055 		ASSERT(!hdr_compressed);
2056 		ASSERT(!compressed);
2057 		ASSERT(!encrypted);
2058 
2059 		if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2060 			ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2061 
2062 			if (hash_lock != NULL)
2063 				mutex_enter(hash_lock);
2064 			arc_buf_untransform_in_place(buf, hash_lock);
2065 			if (hash_lock != NULL)
2066 				mutex_exit(hash_lock);
2067 
2068 			/* Compute the hdr's checksum if necessary */
2069 			arc_cksum_compute(buf);
2070 		}
2071 
2072 		return (0);
2073 	}
2074 
2075 	if (hdr_compressed == compressed) {
2076 		if (!arc_buf_is_shared(buf)) {
2077 			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2078 			    arc_buf_size(buf));
2079 		}
2080 	} else {
2081 		ASSERT(hdr_compressed);
2082 		ASSERT(!compressed);
2083 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2084 
2085 		/*
2086 		 * If the buf is sharing its data with the hdr, unlink it and
2087 		 * allocate a new data buffer for the buf.
2088 		 */
2089 		if (arc_buf_is_shared(buf)) {
2090 			ASSERT(ARC_BUF_COMPRESSED(buf));
2091 
2092 			/* We need to give the buf its own b_data */
2093 			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2094 			buf->b_data =
2095 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2096 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2097 
2098 			/* Previously overhead was 0; just add new overhead */
2099 			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2100 		} else if (ARC_BUF_COMPRESSED(buf)) {
2101 			/* We need to reallocate the buf's b_data */
2102 			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2103 			    buf);
2104 			buf->b_data =
2105 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2106 
2107 			/* We increased the size of b_data; update overhead */
2108 			ARCSTAT_INCR(arcstat_overhead_size,
2109 			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2110 		}
2111 
2112 		/*
2113 		 * Regardless of the buf's previous compression settings, it
2114 		 * should not be compressed at the end of this function.
2115 		 */
2116 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2117 
2118 		/*
2119 		 * Try copying the data from another buf which already has a
2120 		 * decompressed version. If that's not possible, it's time to
2121 		 * bite the bullet and decompress the data from the hdr.
2122 		 */
2123 		if (arc_buf_try_copy_decompressed_data(buf)) {
2124 			/* Skip byteswapping and checksumming (already done) */
2125 			return (0);
2126 		} else {
2127 			error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2128 			    hdr->b_l1hdr.b_pabd, buf->b_data,
2129 			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr),
2130 			    &hdr->b_complevel);
2131 
2132 			/*
2133 			 * Absent hardware errors or software bugs, this should
2134 			 * be impossible, but log it anyway so we can debug it.
2135 			 */
2136 			if (error != 0) {
2137 				zfs_dbgmsg(
2138 				    "hdr %px, compress %d, psize %d, lsize %d",
2139 				    hdr, arc_hdr_get_compress(hdr),
2140 				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2141 				if (hash_lock != NULL)
2142 					mutex_enter(hash_lock);
2143 				arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2144 				if (hash_lock != NULL)
2145 					mutex_exit(hash_lock);
2146 				return (SET_ERROR(EIO));
2147 			}
2148 		}
2149 	}
2150 
2151 byteswap:
2152 	/* Byteswap the buf's data if necessary */
2153 	if (bswap != DMU_BSWAP_NUMFUNCS) {
2154 		ASSERT(!HDR_SHARED_DATA(hdr));
2155 		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2156 		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2157 	}
2158 
2159 	/* Compute the hdr's checksum if necessary */
2160 	arc_cksum_compute(buf);
2161 
2162 	return (0);
2163 }
2164 
2165 /*
2166  * If this function is being called to decrypt an encrypted buffer or verify an
2167  * authenticated one, the key must be loaded and a mapping must be made
2168  * available in the keystore via spa_keystore_create_mapping() or one of its
2169  * callers.
2170  */
2171 int
2172 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2173     boolean_t in_place)
2174 {
2175 	int ret;
2176 	arc_fill_flags_t flags = 0;
2177 
2178 	if (in_place)
2179 		flags |= ARC_FILL_IN_PLACE;
2180 
2181 	ret = arc_buf_fill(buf, spa, zb, flags);
2182 	if (ret == ECKSUM) {
2183 		/*
2184 		 * Convert authentication and decryption errors to EIO
2185 		 * (and generate an ereport) before leaving the ARC.
2186 		 */
2187 		ret = SET_ERROR(EIO);
2188 		spa_log_error(spa, zb);
2189 		zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2190 		    spa, NULL, zb, NULL, 0, 0);
2191 	}
2192 
2193 	return (ret);
2194 }
2195 
2196 /*
2197  * Increment the amount of evictable space in the arc_state_t's refcount.
2198  * We account for the space used by the hdr and the arc buf individually
2199  * so that we can add and remove them from the refcount individually.
2200  */
2201 static void
2202 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2203 {
2204 	arc_buf_contents_t type = arc_buf_type(hdr);
2205 
2206 	ASSERT(HDR_HAS_L1HDR(hdr));
2207 
2208 	if (GHOST_STATE(state)) {
2209 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2210 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2211 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2212 		ASSERT(!HDR_HAS_RABD(hdr));
2213 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2214 		    HDR_GET_LSIZE(hdr), hdr);
2215 		return;
2216 	}
2217 
2218 	ASSERT(!GHOST_STATE(state));
2219 	if (hdr->b_l1hdr.b_pabd != NULL) {
2220 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2221 		    arc_hdr_size(hdr), hdr);
2222 	}
2223 	if (HDR_HAS_RABD(hdr)) {
2224 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2225 		    HDR_GET_PSIZE(hdr), hdr);
2226 	}
2227 
2228 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2229 	    buf = buf->b_next) {
2230 		if (arc_buf_is_shared(buf))
2231 			continue;
2232 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2233 		    arc_buf_size(buf), buf);
2234 	}
2235 }
2236 
2237 /*
2238  * Decrement the amount of evictable space in the arc_state_t's refcount.
2239  * We account for the space used by the hdr and the arc buf individually
2240  * so that we can add and remove them from the refcount individually.
2241  */
2242 static void
2243 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2244 {
2245 	arc_buf_contents_t type = arc_buf_type(hdr);
2246 
2247 	ASSERT(HDR_HAS_L1HDR(hdr));
2248 
2249 	if (GHOST_STATE(state)) {
2250 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2251 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2252 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2253 		ASSERT(!HDR_HAS_RABD(hdr));
2254 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2255 		    HDR_GET_LSIZE(hdr), hdr);
2256 		return;
2257 	}
2258 
2259 	ASSERT(!GHOST_STATE(state));
2260 	if (hdr->b_l1hdr.b_pabd != NULL) {
2261 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2262 		    arc_hdr_size(hdr), hdr);
2263 	}
2264 	if (HDR_HAS_RABD(hdr)) {
2265 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2266 		    HDR_GET_PSIZE(hdr), hdr);
2267 	}
2268 
2269 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2270 	    buf = buf->b_next) {
2271 		if (arc_buf_is_shared(buf))
2272 			continue;
2273 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2274 		    arc_buf_size(buf), buf);
2275 	}
2276 }
2277 
2278 /*
2279  * Add a reference to this hdr indicating that someone is actively
2280  * referencing that memory. When the refcount transitions from 0 to 1,
2281  * we remove it from the respective arc_state_t list to indicate that
2282  * it is not evictable.
2283  */
2284 static void
2285 add_reference(arc_buf_hdr_t *hdr, void *tag)
2286 {
2287 	arc_state_t *state;
2288 
2289 	ASSERT(HDR_HAS_L1HDR(hdr));
2290 	if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2291 		ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2292 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2293 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2294 	}
2295 
2296 	state = hdr->b_l1hdr.b_state;
2297 
2298 	if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2299 	    (state != arc_anon)) {
2300 		/* We don't use the L2-only state list. */
2301 		if (state != arc_l2c_only) {
2302 			multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2303 			    hdr);
2304 			arc_evictable_space_decrement(hdr, state);
2305 		}
2306 		/* remove the prefetch flag if we get a reference */
2307 		arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2308 	}
2309 }
2310 
2311 /*
2312  * Remove a reference from this hdr. When the reference transitions from
2313  * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2314  * list making it eligible for eviction.
2315  */
2316 static int
2317 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2318 {
2319 	int cnt;
2320 	arc_state_t *state = hdr->b_l1hdr.b_state;
2321 
2322 	ASSERT(HDR_HAS_L1HDR(hdr));
2323 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2324 	ASSERT(!GHOST_STATE(state));
2325 
2326 	/*
2327 	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2328 	 * check to prevent usage of the arc_l2c_only list.
2329 	 */
2330 	if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2331 	    (state != arc_anon)) {
2332 		multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2333 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2334 		arc_evictable_space_increment(hdr, state);
2335 	}
2336 	return (cnt);
2337 }
2338 
2339 /*
2340  * Returns detailed information about a specific arc buffer.  When the
2341  * state_index argument is set the function will calculate the arc header
2342  * list position for its arc state.  Since this requires a linear traversal
2343  * callers are strongly encourage not to do this.  However, it can be helpful
2344  * for targeted analysis so the functionality is provided.
2345  */
2346 void
2347 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2348 {
2349 	arc_buf_hdr_t *hdr = ab->b_hdr;
2350 	l1arc_buf_hdr_t *l1hdr = NULL;
2351 	l2arc_buf_hdr_t *l2hdr = NULL;
2352 	arc_state_t *state = NULL;
2353 
2354 	memset(abi, 0, sizeof (arc_buf_info_t));
2355 
2356 	if (hdr == NULL)
2357 		return;
2358 
2359 	abi->abi_flags = hdr->b_flags;
2360 
2361 	if (HDR_HAS_L1HDR(hdr)) {
2362 		l1hdr = &hdr->b_l1hdr;
2363 		state = l1hdr->b_state;
2364 	}
2365 	if (HDR_HAS_L2HDR(hdr))
2366 		l2hdr = &hdr->b_l2hdr;
2367 
2368 	if (l1hdr) {
2369 		abi->abi_bufcnt = l1hdr->b_bufcnt;
2370 		abi->abi_access = l1hdr->b_arc_access;
2371 		abi->abi_mru_hits = l1hdr->b_mru_hits;
2372 		abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2373 		abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2374 		abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2375 		abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
2376 	}
2377 
2378 	if (l2hdr) {
2379 		abi->abi_l2arc_dattr = l2hdr->b_daddr;
2380 		abi->abi_l2arc_hits = l2hdr->b_hits;
2381 	}
2382 
2383 	abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2384 	abi->abi_state_contents = arc_buf_type(hdr);
2385 	abi->abi_size = arc_hdr_size(hdr);
2386 }
2387 
2388 /*
2389  * Move the supplied buffer to the indicated state. The hash lock
2390  * for the buffer must be held by the caller.
2391  */
2392 static void
2393 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2394     kmutex_t *hash_lock)
2395 {
2396 	arc_state_t *old_state;
2397 	int64_t refcnt;
2398 	uint32_t bufcnt;
2399 	boolean_t update_old, update_new;
2400 	arc_buf_contents_t buftype = arc_buf_type(hdr);
2401 
2402 	/*
2403 	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2404 	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2405 	 * L1 hdr doesn't always exist when we change state to arc_anon before
2406 	 * destroying a header, in which case reallocating to add the L1 hdr is
2407 	 * pointless.
2408 	 */
2409 	if (HDR_HAS_L1HDR(hdr)) {
2410 		old_state = hdr->b_l1hdr.b_state;
2411 		refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2412 		bufcnt = hdr->b_l1hdr.b_bufcnt;
2413 		update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL ||
2414 		    HDR_HAS_RABD(hdr));
2415 	} else {
2416 		old_state = arc_l2c_only;
2417 		refcnt = 0;
2418 		bufcnt = 0;
2419 		update_old = B_FALSE;
2420 	}
2421 	update_new = update_old;
2422 
2423 	ASSERT(MUTEX_HELD(hash_lock));
2424 	ASSERT3P(new_state, !=, old_state);
2425 	ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2426 	ASSERT(old_state != arc_anon || bufcnt <= 1);
2427 
2428 	/*
2429 	 * If this buffer is evictable, transfer it from the
2430 	 * old state list to the new state list.
2431 	 */
2432 	if (refcnt == 0) {
2433 		if (old_state != arc_anon && old_state != arc_l2c_only) {
2434 			ASSERT(HDR_HAS_L1HDR(hdr));
2435 			multilist_remove(old_state->arcs_list[buftype], hdr);
2436 
2437 			if (GHOST_STATE(old_state)) {
2438 				ASSERT0(bufcnt);
2439 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2440 				update_old = B_TRUE;
2441 			}
2442 			arc_evictable_space_decrement(hdr, old_state);
2443 		}
2444 		if (new_state != arc_anon && new_state != arc_l2c_only) {
2445 			/*
2446 			 * An L1 header always exists here, since if we're
2447 			 * moving to some L1-cached state (i.e. not l2c_only or
2448 			 * anonymous), we realloc the header to add an L1hdr
2449 			 * beforehand.
2450 			 */
2451 			ASSERT(HDR_HAS_L1HDR(hdr));
2452 			multilist_insert(new_state->arcs_list[buftype], hdr);
2453 
2454 			if (GHOST_STATE(new_state)) {
2455 				ASSERT0(bufcnt);
2456 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2457 				update_new = B_TRUE;
2458 			}
2459 			arc_evictable_space_increment(hdr, new_state);
2460 		}
2461 	}
2462 
2463 	ASSERT(!HDR_EMPTY(hdr));
2464 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2465 		buf_hash_remove(hdr);
2466 
2467 	/* adjust state sizes (ignore arc_l2c_only) */
2468 
2469 	if (update_new && new_state != arc_l2c_only) {
2470 		ASSERT(HDR_HAS_L1HDR(hdr));
2471 		if (GHOST_STATE(new_state)) {
2472 			ASSERT0(bufcnt);
2473 
2474 			/*
2475 			 * When moving a header to a ghost state, we first
2476 			 * remove all arc buffers. Thus, we'll have a
2477 			 * bufcnt of zero, and no arc buffer to use for
2478 			 * the reference. As a result, we use the arc
2479 			 * header pointer for the reference.
2480 			 */
2481 			(void) zfs_refcount_add_many(&new_state->arcs_size,
2482 			    HDR_GET_LSIZE(hdr), hdr);
2483 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2484 			ASSERT(!HDR_HAS_RABD(hdr));
2485 		} else {
2486 			uint32_t buffers = 0;
2487 
2488 			/*
2489 			 * Each individual buffer holds a unique reference,
2490 			 * thus we must remove each of these references one
2491 			 * at a time.
2492 			 */
2493 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2494 			    buf = buf->b_next) {
2495 				ASSERT3U(bufcnt, !=, 0);
2496 				buffers++;
2497 
2498 				/*
2499 				 * When the arc_buf_t is sharing the data
2500 				 * block with the hdr, the owner of the
2501 				 * reference belongs to the hdr. Only
2502 				 * add to the refcount if the arc_buf_t is
2503 				 * not shared.
2504 				 */
2505 				if (arc_buf_is_shared(buf))
2506 					continue;
2507 
2508 				(void) zfs_refcount_add_many(
2509 				    &new_state->arcs_size,
2510 				    arc_buf_size(buf), buf);
2511 			}
2512 			ASSERT3U(bufcnt, ==, buffers);
2513 
2514 			if (hdr->b_l1hdr.b_pabd != NULL) {
2515 				(void) zfs_refcount_add_many(
2516 				    &new_state->arcs_size,
2517 				    arc_hdr_size(hdr), hdr);
2518 			}
2519 
2520 			if (HDR_HAS_RABD(hdr)) {
2521 				(void) zfs_refcount_add_many(
2522 				    &new_state->arcs_size,
2523 				    HDR_GET_PSIZE(hdr), hdr);
2524 			}
2525 		}
2526 	}
2527 
2528 	if (update_old && old_state != arc_l2c_only) {
2529 		ASSERT(HDR_HAS_L1HDR(hdr));
2530 		if (GHOST_STATE(old_state)) {
2531 			ASSERT0(bufcnt);
2532 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2533 			ASSERT(!HDR_HAS_RABD(hdr));
2534 
2535 			/*
2536 			 * When moving a header off of a ghost state,
2537 			 * the header will not contain any arc buffers.
2538 			 * We use the arc header pointer for the reference
2539 			 * which is exactly what we did when we put the
2540 			 * header on the ghost state.
2541 			 */
2542 
2543 			(void) zfs_refcount_remove_many(&old_state->arcs_size,
2544 			    HDR_GET_LSIZE(hdr), hdr);
2545 		} else {
2546 			uint32_t buffers = 0;
2547 
2548 			/*
2549 			 * Each individual buffer holds a unique reference,
2550 			 * thus we must remove each of these references one
2551 			 * at a time.
2552 			 */
2553 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2554 			    buf = buf->b_next) {
2555 				ASSERT3U(bufcnt, !=, 0);
2556 				buffers++;
2557 
2558 				/*
2559 				 * When the arc_buf_t is sharing the data
2560 				 * block with the hdr, the owner of the
2561 				 * reference belongs to the hdr. Only
2562 				 * add to the refcount if the arc_buf_t is
2563 				 * not shared.
2564 				 */
2565 				if (arc_buf_is_shared(buf))
2566 					continue;
2567 
2568 				(void) zfs_refcount_remove_many(
2569 				    &old_state->arcs_size, arc_buf_size(buf),
2570 				    buf);
2571 			}
2572 			ASSERT3U(bufcnt, ==, buffers);
2573 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2574 			    HDR_HAS_RABD(hdr));
2575 
2576 			if (hdr->b_l1hdr.b_pabd != NULL) {
2577 				(void) zfs_refcount_remove_many(
2578 				    &old_state->arcs_size, arc_hdr_size(hdr),
2579 				    hdr);
2580 			}
2581 
2582 			if (HDR_HAS_RABD(hdr)) {
2583 				(void) zfs_refcount_remove_many(
2584 				    &old_state->arcs_size, HDR_GET_PSIZE(hdr),
2585 				    hdr);
2586 			}
2587 		}
2588 	}
2589 
2590 	if (HDR_HAS_L1HDR(hdr))
2591 		hdr->b_l1hdr.b_state = new_state;
2592 
2593 	/*
2594 	 * L2 headers should never be on the L2 state list since they don't
2595 	 * have L1 headers allocated.
2596 	 */
2597 	ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2598 	    multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2599 }
2600 
2601 void
2602 arc_space_consume(uint64_t space, arc_space_type_t type)
2603 {
2604 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2605 
2606 	switch (type) {
2607 	default:
2608 		break;
2609 	case ARC_SPACE_DATA:
2610 		aggsum_add(&astat_data_size, space);
2611 		break;
2612 	case ARC_SPACE_META:
2613 		aggsum_add(&astat_metadata_size, space);
2614 		break;
2615 	case ARC_SPACE_BONUS:
2616 		aggsum_add(&astat_bonus_size, space);
2617 		break;
2618 	case ARC_SPACE_DNODE:
2619 		aggsum_add(&astat_dnode_size, space);
2620 		break;
2621 	case ARC_SPACE_DBUF:
2622 		aggsum_add(&astat_dbuf_size, space);
2623 		break;
2624 	case ARC_SPACE_HDRS:
2625 		aggsum_add(&astat_hdr_size, space);
2626 		break;
2627 	case ARC_SPACE_L2HDRS:
2628 		aggsum_add(&astat_l2_hdr_size, space);
2629 		break;
2630 	case ARC_SPACE_ABD_CHUNK_WASTE:
2631 		/*
2632 		 * Note: this includes space wasted by all scatter ABD's, not
2633 		 * just those allocated by the ARC.  But the vast majority of
2634 		 * scatter ABD's come from the ARC, because other users are
2635 		 * very short-lived.
2636 		 */
2637 		aggsum_add(&astat_abd_chunk_waste_size, space);
2638 		break;
2639 	}
2640 
2641 	if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2642 		aggsum_add(&arc_meta_used, space);
2643 
2644 	aggsum_add(&arc_size, space);
2645 }
2646 
2647 void
2648 arc_space_return(uint64_t space, arc_space_type_t type)
2649 {
2650 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2651 
2652 	switch (type) {
2653 	default:
2654 		break;
2655 	case ARC_SPACE_DATA:
2656 		aggsum_add(&astat_data_size, -space);
2657 		break;
2658 	case ARC_SPACE_META:
2659 		aggsum_add(&astat_metadata_size, -space);
2660 		break;
2661 	case ARC_SPACE_BONUS:
2662 		aggsum_add(&astat_bonus_size, -space);
2663 		break;
2664 	case ARC_SPACE_DNODE:
2665 		aggsum_add(&astat_dnode_size, -space);
2666 		break;
2667 	case ARC_SPACE_DBUF:
2668 		aggsum_add(&astat_dbuf_size, -space);
2669 		break;
2670 	case ARC_SPACE_HDRS:
2671 		aggsum_add(&astat_hdr_size, -space);
2672 		break;
2673 	case ARC_SPACE_L2HDRS:
2674 		aggsum_add(&astat_l2_hdr_size, -space);
2675 		break;
2676 	case ARC_SPACE_ABD_CHUNK_WASTE:
2677 		aggsum_add(&astat_abd_chunk_waste_size, -space);
2678 		break;
2679 	}
2680 
2681 	if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) {
2682 		ASSERT(aggsum_compare(&arc_meta_used, space) >= 0);
2683 		/*
2684 		 * We use the upper bound here rather than the precise value
2685 		 * because the arc_meta_max value doesn't need to be
2686 		 * precise. It's only consumed by humans via arcstats.
2687 		 */
2688 		if (arc_meta_max < aggsum_upper_bound(&arc_meta_used))
2689 			arc_meta_max = aggsum_upper_bound(&arc_meta_used);
2690 		aggsum_add(&arc_meta_used, -space);
2691 	}
2692 
2693 	ASSERT(aggsum_compare(&arc_size, space) >= 0);
2694 	aggsum_add(&arc_size, -space);
2695 }
2696 
2697 /*
2698  * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2699  * with the hdr's b_pabd.
2700  */
2701 static boolean_t
2702 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2703 {
2704 	/*
2705 	 * The criteria for sharing a hdr's data are:
2706 	 * 1. the buffer is not encrypted
2707 	 * 2. the hdr's compression matches the buf's compression
2708 	 * 3. the hdr doesn't need to be byteswapped
2709 	 * 4. the hdr isn't already being shared
2710 	 * 5. the buf is either compressed or it is the last buf in the hdr list
2711 	 *
2712 	 * Criterion #5 maintains the invariant that shared uncompressed
2713 	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2714 	 * might ask, "if a compressed buf is allocated first, won't that be the
2715 	 * last thing in the list?", but in that case it's impossible to create
2716 	 * a shared uncompressed buf anyway (because the hdr must be compressed
2717 	 * to have the compressed buf). You might also think that #3 is
2718 	 * sufficient to make this guarantee, however it's possible
2719 	 * (specifically in the rare L2ARC write race mentioned in
2720 	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2721 	 * is shareable, but wasn't at the time of its allocation. Rather than
2722 	 * allow a new shared uncompressed buf to be created and then shuffle
2723 	 * the list around to make it the last element, this simply disallows
2724 	 * sharing if the new buf isn't the first to be added.
2725 	 */
2726 	ASSERT3P(buf->b_hdr, ==, hdr);
2727 	boolean_t hdr_compressed =
2728 	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
2729 	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2730 	return (!ARC_BUF_ENCRYPTED(buf) &&
2731 	    buf_compressed == hdr_compressed &&
2732 	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2733 	    !HDR_SHARED_DATA(hdr) &&
2734 	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2735 }
2736 
2737 /*
2738  * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2739  * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2740  * copy was made successfully, or an error code otherwise.
2741  */
2742 static int
2743 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2744     void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth,
2745     boolean_t fill, arc_buf_t **ret)
2746 {
2747 	arc_buf_t *buf;
2748 	arc_fill_flags_t flags = ARC_FILL_LOCKED;
2749 
2750 	ASSERT(HDR_HAS_L1HDR(hdr));
2751 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2752 	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2753 	    hdr->b_type == ARC_BUFC_METADATA);
2754 	ASSERT3P(ret, !=, NULL);
2755 	ASSERT3P(*ret, ==, NULL);
2756 	IMPLY(encrypted, compressed);
2757 
2758 	hdr->b_l1hdr.b_mru_hits = 0;
2759 	hdr->b_l1hdr.b_mru_ghost_hits = 0;
2760 	hdr->b_l1hdr.b_mfu_hits = 0;
2761 	hdr->b_l1hdr.b_mfu_ghost_hits = 0;
2762 	hdr->b_l1hdr.b_l2_hits = 0;
2763 
2764 	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2765 	buf->b_hdr = hdr;
2766 	buf->b_data = NULL;
2767 	buf->b_next = hdr->b_l1hdr.b_buf;
2768 	buf->b_flags = 0;
2769 
2770 	add_reference(hdr, tag);
2771 
2772 	/*
2773 	 * We're about to change the hdr's b_flags. We must either
2774 	 * hold the hash_lock or be undiscoverable.
2775 	 */
2776 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2777 
2778 	/*
2779 	 * Only honor requests for compressed bufs if the hdr is actually
2780 	 * compressed. This must be overridden if the buffer is encrypted since
2781 	 * encrypted buffers cannot be decompressed.
2782 	 */
2783 	if (encrypted) {
2784 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2785 		buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2786 		flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2787 	} else if (compressed &&
2788 	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2789 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2790 		flags |= ARC_FILL_COMPRESSED;
2791 	}
2792 
2793 	if (noauth) {
2794 		ASSERT0(encrypted);
2795 		flags |= ARC_FILL_NOAUTH;
2796 	}
2797 
2798 	/*
2799 	 * If the hdr's data can be shared then we share the data buffer and
2800 	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2801 	 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2802 	 * buffer to store the buf's data.
2803 	 *
2804 	 * There are two additional restrictions here because we're sharing
2805 	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2806 	 * actively involved in an L2ARC write, because if this buf is used by
2807 	 * an arc_write() then the hdr's data buffer will be released when the
2808 	 * write completes, even though the L2ARC write might still be using it.
2809 	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2810 	 * need to be ABD-aware.  It must be allocated via
2811 	 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2812 	 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2813 	 * page" buffers because the ABD code needs to handle freeing them
2814 	 * specially.
2815 	 */
2816 	boolean_t can_share = arc_can_share(hdr, buf) &&
2817 	    !HDR_L2_WRITING(hdr) &&
2818 	    hdr->b_l1hdr.b_pabd != NULL &&
2819 	    abd_is_linear(hdr->b_l1hdr.b_pabd) &&
2820 	    !abd_is_linear_page(hdr->b_l1hdr.b_pabd);
2821 
2822 	/* Set up b_data and sharing */
2823 	if (can_share) {
2824 		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2825 		buf->b_flags |= ARC_BUF_FLAG_SHARED;
2826 		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2827 	} else {
2828 		buf->b_data =
2829 		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2830 		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2831 	}
2832 	VERIFY3P(buf->b_data, !=, NULL);
2833 
2834 	hdr->b_l1hdr.b_buf = buf;
2835 	hdr->b_l1hdr.b_bufcnt += 1;
2836 	if (encrypted)
2837 		hdr->b_crypt_hdr.b_ebufcnt += 1;
2838 
2839 	/*
2840 	 * If the user wants the data from the hdr, we need to either copy or
2841 	 * decompress the data.
2842 	 */
2843 	if (fill) {
2844 		ASSERT3P(zb, !=, NULL);
2845 		return (arc_buf_fill(buf, spa, zb, flags));
2846 	}
2847 
2848 	return (0);
2849 }
2850 
2851 static char *arc_onloan_tag = "onloan";
2852 
2853 static inline void
2854 arc_loaned_bytes_update(int64_t delta)
2855 {
2856 	atomic_add_64(&arc_loaned_bytes, delta);
2857 
2858 	/* assert that it did not wrap around */
2859 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2860 }
2861 
2862 /*
2863  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2864  * flight data by arc_tempreserve_space() until they are "returned". Loaned
2865  * buffers must be returned to the arc before they can be used by the DMU or
2866  * freed.
2867  */
2868 arc_buf_t *
2869 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2870 {
2871 	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2872 	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2873 
2874 	arc_loaned_bytes_update(arc_buf_size(buf));
2875 
2876 	return (buf);
2877 }
2878 
2879 arc_buf_t *
2880 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2881     enum zio_compress compression_type, uint8_t complevel)
2882 {
2883 	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2884 	    psize, lsize, compression_type, complevel);
2885 
2886 	arc_loaned_bytes_update(arc_buf_size(buf));
2887 
2888 	return (buf);
2889 }
2890 
2891 arc_buf_t *
2892 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2893     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2894     dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2895     enum zio_compress compression_type, uint8_t complevel)
2896 {
2897 	arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2898 	    byteorder, salt, iv, mac, ot, psize, lsize, compression_type,
2899 	    complevel);
2900 
2901 	atomic_add_64(&arc_loaned_bytes, psize);
2902 	return (buf);
2903 }
2904 
2905 
2906 /*
2907  * Return a loaned arc buffer to the arc.
2908  */
2909 void
2910 arc_return_buf(arc_buf_t *buf, void *tag)
2911 {
2912 	arc_buf_hdr_t *hdr = buf->b_hdr;
2913 
2914 	ASSERT3P(buf->b_data, !=, NULL);
2915 	ASSERT(HDR_HAS_L1HDR(hdr));
2916 	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2917 	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2918 
2919 	arc_loaned_bytes_update(-arc_buf_size(buf));
2920 }
2921 
2922 /* Detach an arc_buf from a dbuf (tag) */
2923 void
2924 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2925 {
2926 	arc_buf_hdr_t *hdr = buf->b_hdr;
2927 
2928 	ASSERT3P(buf->b_data, !=, NULL);
2929 	ASSERT(HDR_HAS_L1HDR(hdr));
2930 	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2931 	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2932 
2933 	arc_loaned_bytes_update(arc_buf_size(buf));
2934 }
2935 
2936 static void
2937 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2938 {
2939 	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2940 
2941 	df->l2df_abd = abd;
2942 	df->l2df_size = size;
2943 	df->l2df_type = type;
2944 	mutex_enter(&l2arc_free_on_write_mtx);
2945 	list_insert_head(l2arc_free_on_write, df);
2946 	mutex_exit(&l2arc_free_on_write_mtx);
2947 }
2948 
2949 static void
2950 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2951 {
2952 	arc_state_t *state = hdr->b_l1hdr.b_state;
2953 	arc_buf_contents_t type = arc_buf_type(hdr);
2954 	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2955 
2956 	/* protected by hash lock, if in the hash table */
2957 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2958 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2959 		ASSERT(state != arc_anon && state != arc_l2c_only);
2960 
2961 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2962 		    size, hdr);
2963 	}
2964 	(void) zfs_refcount_remove_many(&state->arcs_size, size, hdr);
2965 	if (type == ARC_BUFC_METADATA) {
2966 		arc_space_return(size, ARC_SPACE_META);
2967 	} else {
2968 		ASSERT(type == ARC_BUFC_DATA);
2969 		arc_space_return(size, ARC_SPACE_DATA);
2970 	}
2971 
2972 	if (free_rdata) {
2973 		l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2974 	} else {
2975 		l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2976 	}
2977 }
2978 
2979 /*
2980  * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2981  * data buffer, we transfer the refcount ownership to the hdr and update
2982  * the appropriate kstats.
2983  */
2984 static void
2985 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2986 {
2987 	ASSERT(arc_can_share(hdr, buf));
2988 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2989 	ASSERT(!ARC_BUF_ENCRYPTED(buf));
2990 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2991 
2992 	/*
2993 	 * Start sharing the data buffer. We transfer the
2994 	 * refcount ownership to the hdr since it always owns
2995 	 * the refcount whenever an arc_buf_t is shared.
2996 	 */
2997 	zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
2998 	    arc_hdr_size(hdr), buf, hdr);
2999 	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
3000 	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
3001 	    HDR_ISTYPE_METADATA(hdr));
3002 	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
3003 	buf->b_flags |= ARC_BUF_FLAG_SHARED;
3004 
3005 	/*
3006 	 * Since we've transferred ownership to the hdr we need
3007 	 * to increment its compressed and uncompressed kstats and
3008 	 * decrement the overhead size.
3009 	 */
3010 	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3011 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3012 	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
3013 }
3014 
3015 static void
3016 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3017 {
3018 	ASSERT(arc_buf_is_shared(buf));
3019 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3020 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3021 
3022 	/*
3023 	 * We are no longer sharing this buffer so we need
3024 	 * to transfer its ownership to the rightful owner.
3025 	 */
3026 	zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
3027 	    arc_hdr_size(hdr), hdr, buf);
3028 	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3029 	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3030 	abd_put(hdr->b_l1hdr.b_pabd);
3031 	hdr->b_l1hdr.b_pabd = NULL;
3032 	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
3033 
3034 	/*
3035 	 * Since the buffer is no longer shared between
3036 	 * the arc buf and the hdr, count it as overhead.
3037 	 */
3038 	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3039 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3040 	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3041 }
3042 
3043 /*
3044  * Remove an arc_buf_t from the hdr's buf list and return the last
3045  * arc_buf_t on the list. If no buffers remain on the list then return
3046  * NULL.
3047  */
3048 static arc_buf_t *
3049 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3050 {
3051 	ASSERT(HDR_HAS_L1HDR(hdr));
3052 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3053 
3054 	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3055 	arc_buf_t *lastbuf = NULL;
3056 
3057 	/*
3058 	 * Remove the buf from the hdr list and locate the last
3059 	 * remaining buffer on the list.
3060 	 */
3061 	while (*bufp != NULL) {
3062 		if (*bufp == buf)
3063 			*bufp = buf->b_next;
3064 
3065 		/*
3066 		 * If we've removed a buffer in the middle of
3067 		 * the list then update the lastbuf and update
3068 		 * bufp.
3069 		 */
3070 		if (*bufp != NULL) {
3071 			lastbuf = *bufp;
3072 			bufp = &(*bufp)->b_next;
3073 		}
3074 	}
3075 	buf->b_next = NULL;
3076 	ASSERT3P(lastbuf, !=, buf);
3077 	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
3078 	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
3079 	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3080 
3081 	return (lastbuf);
3082 }
3083 
3084 /*
3085  * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3086  * list and free it.
3087  */
3088 static void
3089 arc_buf_destroy_impl(arc_buf_t *buf)
3090 {
3091 	arc_buf_hdr_t *hdr = buf->b_hdr;
3092 
3093 	/*
3094 	 * Free up the data associated with the buf but only if we're not
3095 	 * sharing this with the hdr. If we are sharing it with the hdr, the
3096 	 * hdr is responsible for doing the free.
3097 	 */
3098 	if (buf->b_data != NULL) {
3099 		/*
3100 		 * We're about to change the hdr's b_flags. We must either
3101 		 * hold the hash_lock or be undiscoverable.
3102 		 */
3103 		ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3104 
3105 		arc_cksum_verify(buf);
3106 		arc_buf_unwatch(buf);
3107 
3108 		if (arc_buf_is_shared(buf)) {
3109 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3110 		} else {
3111 			uint64_t size = arc_buf_size(buf);
3112 			arc_free_data_buf(hdr, buf->b_data, size, buf);
3113 			ARCSTAT_INCR(arcstat_overhead_size, -size);
3114 		}
3115 		buf->b_data = NULL;
3116 
3117 		ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3118 		hdr->b_l1hdr.b_bufcnt -= 1;
3119 
3120 		if (ARC_BUF_ENCRYPTED(buf)) {
3121 			hdr->b_crypt_hdr.b_ebufcnt -= 1;
3122 
3123 			/*
3124 			 * If we have no more encrypted buffers and we've
3125 			 * already gotten a copy of the decrypted data we can
3126 			 * free b_rabd to save some space.
3127 			 */
3128 			if (hdr->b_crypt_hdr.b_ebufcnt == 0 &&
3129 			    HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL &&
3130 			    !HDR_IO_IN_PROGRESS(hdr)) {
3131 				arc_hdr_free_abd(hdr, B_TRUE);
3132 			}
3133 		}
3134 	}
3135 
3136 	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3137 
3138 	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3139 		/*
3140 		 * If the current arc_buf_t is sharing its data buffer with the
3141 		 * hdr, then reassign the hdr's b_pabd to share it with the new
3142 		 * buffer at the end of the list. The shared buffer is always
3143 		 * the last one on the hdr's buffer list.
3144 		 *
3145 		 * There is an equivalent case for compressed bufs, but since
3146 		 * they aren't guaranteed to be the last buf in the list and
3147 		 * that is an exceedingly rare case, we just allow that space be
3148 		 * wasted temporarily. We must also be careful not to share
3149 		 * encrypted buffers, since they cannot be shared.
3150 		 */
3151 		if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3152 			/* Only one buf can be shared at once */
3153 			VERIFY(!arc_buf_is_shared(lastbuf));
3154 			/* hdr is uncompressed so can't have compressed buf */
3155 			VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
3156 
3157 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3158 			arc_hdr_free_abd(hdr, B_FALSE);
3159 
3160 			/*
3161 			 * We must setup a new shared block between the
3162 			 * last buffer and the hdr. The data would have
3163 			 * been allocated by the arc buf so we need to transfer
3164 			 * ownership to the hdr since it's now being shared.
3165 			 */
3166 			arc_share_buf(hdr, lastbuf);
3167 		}
3168 	} else if (HDR_SHARED_DATA(hdr)) {
3169 		/*
3170 		 * Uncompressed shared buffers are always at the end
3171 		 * of the list. Compressed buffers don't have the
3172 		 * same requirements. This makes it hard to
3173 		 * simply assert that the lastbuf is shared so
3174 		 * we rely on the hdr's compression flags to determine
3175 		 * if we have a compressed, shared buffer.
3176 		 */
3177 		ASSERT3P(lastbuf, !=, NULL);
3178 		ASSERT(arc_buf_is_shared(lastbuf) ||
3179 		    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3180 	}
3181 
3182 	/*
3183 	 * Free the checksum if we're removing the last uncompressed buf from
3184 	 * this hdr.
3185 	 */
3186 	if (!arc_hdr_has_uncompressed_buf(hdr)) {
3187 		arc_cksum_free(hdr);
3188 	}
3189 
3190 	/* clean up the buf */
3191 	buf->b_hdr = NULL;
3192 	kmem_cache_free(buf_cache, buf);
3193 }
3194 
3195 static void
3196 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags)
3197 {
3198 	uint64_t size;
3199 	boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3200 	boolean_t do_adapt = ((alloc_flags & ARC_HDR_DO_ADAPT) != 0);
3201 
3202 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3203 	ASSERT(HDR_HAS_L1HDR(hdr));
3204 	ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3205 	IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3206 
3207 	if (alloc_rdata) {
3208 		size = HDR_GET_PSIZE(hdr);
3209 		ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3210 		hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3211 		    do_adapt);
3212 		ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3213 		ARCSTAT_INCR(arcstat_raw_size, size);
3214 	} else {
3215 		size = arc_hdr_size(hdr);
3216 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3217 		hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3218 		    do_adapt);
3219 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3220 	}
3221 
3222 	ARCSTAT_INCR(arcstat_compressed_size, size);
3223 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3224 }
3225 
3226 static void
3227 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3228 {
3229 	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3230 
3231 	ASSERT(HDR_HAS_L1HDR(hdr));
3232 	ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3233 	IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3234 
3235 	/*
3236 	 * If the hdr is currently being written to the l2arc then
3237 	 * we defer freeing the data by adding it to the l2arc_free_on_write
3238 	 * list. The l2arc will free the data once it's finished
3239 	 * writing it to the l2arc device.
3240 	 */
3241 	if (HDR_L2_WRITING(hdr)) {
3242 		arc_hdr_free_on_write(hdr, free_rdata);
3243 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
3244 	} else if (free_rdata) {
3245 		arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3246 	} else {
3247 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
3248 	}
3249 
3250 	if (free_rdata) {
3251 		hdr->b_crypt_hdr.b_rabd = NULL;
3252 		ARCSTAT_INCR(arcstat_raw_size, -size);
3253 	} else {
3254 		hdr->b_l1hdr.b_pabd = NULL;
3255 	}
3256 
3257 	if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3258 		hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3259 
3260 	ARCSTAT_INCR(arcstat_compressed_size, -size);
3261 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3262 }
3263 
3264 static arc_buf_hdr_t *
3265 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3266     boolean_t protected, enum zio_compress compression_type, uint8_t complevel,
3267     arc_buf_contents_t type, boolean_t alloc_rdata)
3268 {
3269 	arc_buf_hdr_t *hdr;
3270 	int flags = ARC_HDR_DO_ADAPT;
3271 
3272 	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3273 	if (protected) {
3274 		hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE);
3275 	} else {
3276 		hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3277 	}
3278 	flags |= alloc_rdata ? ARC_HDR_ALLOC_RDATA : 0;
3279 
3280 	ASSERT(HDR_EMPTY(hdr));
3281 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3282 	HDR_SET_PSIZE(hdr, psize);
3283 	HDR_SET_LSIZE(hdr, lsize);
3284 	hdr->b_spa = spa;
3285 	hdr->b_type = type;
3286 	hdr->b_flags = 0;
3287 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3288 	arc_hdr_set_compress(hdr, compression_type);
3289 	hdr->b_complevel = complevel;
3290 	if (protected)
3291 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3292 
3293 	hdr->b_l1hdr.b_state = arc_anon;
3294 	hdr->b_l1hdr.b_arc_access = 0;
3295 	hdr->b_l1hdr.b_bufcnt = 0;
3296 	hdr->b_l1hdr.b_buf = NULL;
3297 
3298 	/*
3299 	 * Allocate the hdr's buffer. This will contain either
3300 	 * the compressed or uncompressed data depending on the block
3301 	 * it references and compressed arc enablement.
3302 	 */
3303 	arc_hdr_alloc_abd(hdr, flags);
3304 	ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3305 
3306 	return (hdr);
3307 }
3308 
3309 /*
3310  * Transition between the two allocation states for the arc_buf_hdr struct.
3311  * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3312  * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3313  * version is used when a cache buffer is only in the L2ARC in order to reduce
3314  * memory usage.
3315  */
3316 static arc_buf_hdr_t *
3317 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3318 {
3319 	ASSERT(HDR_HAS_L2HDR(hdr));
3320 
3321 	arc_buf_hdr_t *nhdr;
3322 	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3323 
3324 	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3325 	    (old == hdr_l2only_cache && new == hdr_full_cache));
3326 
3327 	/*
3328 	 * if the caller wanted a new full header and the header is to be
3329 	 * encrypted we will actually allocate the header from the full crypt
3330 	 * cache instead. The same applies to freeing from the old cache.
3331 	 */
3332 	if (HDR_PROTECTED(hdr) && new == hdr_full_cache)
3333 		new = hdr_full_crypt_cache;
3334 	if (HDR_PROTECTED(hdr) && old == hdr_full_cache)
3335 		old = hdr_full_crypt_cache;
3336 
3337 	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3338 
3339 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3340 	buf_hash_remove(hdr);
3341 
3342 	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3343 
3344 	if (new == hdr_full_cache || new == hdr_full_crypt_cache) {
3345 		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3346 		/*
3347 		 * arc_access and arc_change_state need to be aware that a
3348 		 * header has just come out of L2ARC, so we set its state to
3349 		 * l2c_only even though it's about to change.
3350 		 */
3351 		nhdr->b_l1hdr.b_state = arc_l2c_only;
3352 
3353 		/* Verify previous threads set to NULL before freeing */
3354 		ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3355 		ASSERT(!HDR_HAS_RABD(hdr));
3356 	} else {
3357 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3358 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
3359 		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3360 
3361 		/*
3362 		 * If we've reached here, We must have been called from
3363 		 * arc_evict_hdr(), as such we should have already been
3364 		 * removed from any ghost list we were previously on
3365 		 * (which protects us from racing with arc_evict_state),
3366 		 * thus no locking is needed during this check.
3367 		 */
3368 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3369 
3370 		/*
3371 		 * A buffer must not be moved into the arc_l2c_only
3372 		 * state if it's not finished being written out to the
3373 		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3374 		 * might try to be accessed, even though it was removed.
3375 		 */
3376 		VERIFY(!HDR_L2_WRITING(hdr));
3377 		VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3378 		ASSERT(!HDR_HAS_RABD(hdr));
3379 
3380 		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3381 	}
3382 	/*
3383 	 * The header has been reallocated so we need to re-insert it into any
3384 	 * lists it was on.
3385 	 */
3386 	(void) buf_hash_insert(nhdr, NULL);
3387 
3388 	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3389 
3390 	mutex_enter(&dev->l2ad_mtx);
3391 
3392 	/*
3393 	 * We must place the realloc'ed header back into the list at
3394 	 * the same spot. Otherwise, if it's placed earlier in the list,
3395 	 * l2arc_write_buffers() could find it during the function's
3396 	 * write phase, and try to write it out to the l2arc.
3397 	 */
3398 	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3399 	list_remove(&dev->l2ad_buflist, hdr);
3400 
3401 	mutex_exit(&dev->l2ad_mtx);
3402 
3403 	/*
3404 	 * Since we're using the pointer address as the tag when
3405 	 * incrementing and decrementing the l2ad_alloc refcount, we
3406 	 * must remove the old pointer (that we're about to destroy) and
3407 	 * add the new pointer to the refcount. Otherwise we'd remove
3408 	 * the wrong pointer address when calling arc_hdr_destroy() later.
3409 	 */
3410 
3411 	(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3412 	    arc_hdr_size(hdr), hdr);
3413 	(void) zfs_refcount_add_many(&dev->l2ad_alloc,
3414 	    arc_hdr_size(nhdr), nhdr);
3415 
3416 	buf_discard_identity(hdr);
3417 	kmem_cache_free(old, hdr);
3418 
3419 	return (nhdr);
3420 }
3421 
3422 /*
3423  * This function allows an L1 header to be reallocated as a crypt
3424  * header and vice versa. If we are going to a crypt header, the
3425  * new fields will be zeroed out.
3426  */
3427 static arc_buf_hdr_t *
3428 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt)
3429 {
3430 	arc_buf_hdr_t *nhdr;
3431 	arc_buf_t *buf;
3432 	kmem_cache_t *ncache, *ocache;
3433 	unsigned nsize, osize;
3434 
3435 	/*
3436 	 * This function requires that hdr is in the arc_anon state.
3437 	 * Therefore it won't have any L2ARC data for us to worry
3438 	 * about copying.
3439 	 */
3440 	ASSERT(HDR_HAS_L1HDR(hdr));
3441 	ASSERT(!HDR_HAS_L2HDR(hdr));
3442 	ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt);
3443 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3444 	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3445 	ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node));
3446 	ASSERT3P(hdr->b_hash_next, ==, NULL);
3447 
3448 	if (need_crypt) {
3449 		ncache = hdr_full_crypt_cache;
3450 		nsize = sizeof (hdr->b_crypt_hdr);
3451 		ocache = hdr_full_cache;
3452 		osize = HDR_FULL_SIZE;
3453 	} else {
3454 		ncache = hdr_full_cache;
3455 		nsize = HDR_FULL_SIZE;
3456 		ocache = hdr_full_crypt_cache;
3457 		osize = sizeof (hdr->b_crypt_hdr);
3458 	}
3459 
3460 	nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE);
3461 
3462 	/*
3463 	 * Copy all members that aren't locks or condvars to the new header.
3464 	 * No lists are pointing to us (as we asserted above), so we don't
3465 	 * need to worry about the list nodes.
3466 	 */
3467 	nhdr->b_dva = hdr->b_dva;
3468 	nhdr->b_birth = hdr->b_birth;
3469 	nhdr->b_type = hdr->b_type;
3470 	nhdr->b_flags = hdr->b_flags;
3471 	nhdr->b_psize = hdr->b_psize;
3472 	nhdr->b_lsize = hdr->b_lsize;
3473 	nhdr->b_spa = hdr->b_spa;
3474 	nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum;
3475 	nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt;
3476 	nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap;
3477 	nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state;
3478 	nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access;
3479 	nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits;
3480 	nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits;
3481 	nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits;
3482 	nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits;
3483 	nhdr->b_l1hdr.b_l2_hits = hdr->b_l1hdr.b_l2_hits;
3484 	nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb;
3485 	nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd;
3486 
3487 	/*
3488 	 * This zfs_refcount_add() exists only to ensure that the individual
3489 	 * arc buffers always point to a header that is referenced, avoiding
3490 	 * a small race condition that could trigger ASSERTs.
3491 	 */
3492 	(void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG);
3493 	nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf;
3494 	for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
3495 		mutex_enter(&buf->b_evict_lock);
3496 		buf->b_hdr = nhdr;
3497 		mutex_exit(&buf->b_evict_lock);
3498 	}
3499 
3500 	zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt);
3501 	(void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG);
3502 	ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3503 
3504 	if (need_crypt) {
3505 		arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED);
3506 	} else {
3507 		arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED);
3508 	}
3509 
3510 	/* unset all members of the original hdr */
3511 	bzero(&hdr->b_dva, sizeof (dva_t));
3512 	hdr->b_birth = 0;
3513 	hdr->b_type = ARC_BUFC_INVALID;
3514 	hdr->b_flags = 0;
3515 	hdr->b_psize = 0;
3516 	hdr->b_lsize = 0;
3517 	hdr->b_spa = 0;
3518 	hdr->b_l1hdr.b_freeze_cksum = NULL;
3519 	hdr->b_l1hdr.b_buf = NULL;
3520 	hdr->b_l1hdr.b_bufcnt = 0;
3521 	hdr->b_l1hdr.b_byteswap = 0;
3522 	hdr->b_l1hdr.b_state = NULL;
3523 	hdr->b_l1hdr.b_arc_access = 0;
3524 	hdr->b_l1hdr.b_mru_hits = 0;
3525 	hdr->b_l1hdr.b_mru_ghost_hits = 0;
3526 	hdr->b_l1hdr.b_mfu_hits = 0;
3527 	hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3528 	hdr->b_l1hdr.b_l2_hits = 0;
3529 	hdr->b_l1hdr.b_acb = NULL;
3530 	hdr->b_l1hdr.b_pabd = NULL;
3531 
3532 	if (ocache == hdr_full_crypt_cache) {
3533 		ASSERT(!HDR_HAS_RABD(hdr));
3534 		hdr->b_crypt_hdr.b_ot = DMU_OT_NONE;
3535 		hdr->b_crypt_hdr.b_ebufcnt = 0;
3536 		hdr->b_crypt_hdr.b_dsobj = 0;
3537 		bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3538 		bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3539 		bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3540 	}
3541 
3542 	buf_discard_identity(hdr);
3543 	kmem_cache_free(ocache, hdr);
3544 
3545 	return (nhdr);
3546 }
3547 
3548 /*
3549  * This function is used by the send / receive code to convert a newly
3550  * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3551  * is also used to allow the root objset block to be updated without altering
3552  * its embedded MACs. Both block types will always be uncompressed so we do not
3553  * have to worry about compression type or psize.
3554  */
3555 void
3556 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3557     dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3558     const uint8_t *mac)
3559 {
3560 	arc_buf_hdr_t *hdr = buf->b_hdr;
3561 
3562 	ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3563 	ASSERT(HDR_HAS_L1HDR(hdr));
3564 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3565 
3566 	buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3567 	if (!HDR_PROTECTED(hdr))
3568 		hdr = arc_hdr_realloc_crypt(hdr, B_TRUE);
3569 	hdr->b_crypt_hdr.b_dsobj = dsobj;
3570 	hdr->b_crypt_hdr.b_ot = ot;
3571 	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3572 	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3573 	if (!arc_hdr_has_uncompressed_buf(hdr))
3574 		arc_cksum_free(hdr);
3575 
3576 	if (salt != NULL)
3577 		bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3578 	if (iv != NULL)
3579 		bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3580 	if (mac != NULL)
3581 		bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3582 }
3583 
3584 /*
3585  * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3586  * The buf is returned thawed since we expect the consumer to modify it.
3587  */
3588 arc_buf_t *
3589 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3590 {
3591 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3592 	    B_FALSE, ZIO_COMPRESS_OFF, 0, type, B_FALSE);
3593 
3594 	arc_buf_t *buf = NULL;
3595 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3596 	    B_FALSE, B_FALSE, &buf));
3597 	arc_buf_thaw(buf);
3598 
3599 	return (buf);
3600 }
3601 
3602 /*
3603  * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3604  * for bufs containing metadata.
3605  */
3606 arc_buf_t *
3607 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3608     enum zio_compress compression_type, uint8_t complevel)
3609 {
3610 	ASSERT3U(lsize, >, 0);
3611 	ASSERT3U(lsize, >=, psize);
3612 	ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3613 	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3614 
3615 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3616 	    B_FALSE, compression_type, complevel, ARC_BUFC_DATA, B_FALSE);
3617 
3618 	arc_buf_t *buf = NULL;
3619 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3620 	    B_TRUE, B_FALSE, B_FALSE, &buf));
3621 	arc_buf_thaw(buf);
3622 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3623 
3624 	if (!arc_buf_is_shared(buf)) {
3625 		/*
3626 		 * To ensure that the hdr has the correct data in it if we call
3627 		 * arc_untransform() on this buf before it's been written to
3628 		 * disk, it's easiest if we just set up sharing between the
3629 		 * buf and the hdr.
3630 		 */
3631 		arc_hdr_free_abd(hdr, B_FALSE);
3632 		arc_share_buf(hdr, buf);
3633 	}
3634 
3635 	return (buf);
3636 }
3637 
3638 arc_buf_t *
3639 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder,
3640     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3641     dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3642     enum zio_compress compression_type, uint8_t complevel)
3643 {
3644 	arc_buf_hdr_t *hdr;
3645 	arc_buf_t *buf;
3646 	arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3647 	    ARC_BUFC_METADATA : ARC_BUFC_DATA;
3648 
3649 	ASSERT3U(lsize, >, 0);
3650 	ASSERT3U(lsize, >=, psize);
3651 	ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3652 	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3653 
3654 	hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3655 	    compression_type, complevel, type, B_TRUE);
3656 
3657 	hdr->b_crypt_hdr.b_dsobj = dsobj;
3658 	hdr->b_crypt_hdr.b_ot = ot;
3659 	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3660 	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3661 	bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3662 	bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3663 	bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3664 
3665 	/*
3666 	 * This buffer will be considered encrypted even if the ot is not an
3667 	 * encrypted type. It will become authenticated instead in
3668 	 * arc_write_ready().
3669 	 */
3670 	buf = NULL;
3671 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3672 	    B_FALSE, B_FALSE, &buf));
3673 	arc_buf_thaw(buf);
3674 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3675 
3676 	return (buf);
3677 }
3678 
3679 static void
3680 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3681 {
3682 	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3683 	l2arc_dev_t *dev = l2hdr->b_dev;
3684 	uint64_t psize = HDR_GET_PSIZE(hdr);
3685 	uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3686 
3687 	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3688 	ASSERT(HDR_HAS_L2HDR(hdr));
3689 
3690 	list_remove(&dev->l2ad_buflist, hdr);
3691 
3692 	ARCSTAT_INCR(arcstat_l2_psize, -psize);
3693 	ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3694 
3695 	vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3696 
3697 	(void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3698 	    hdr);
3699 	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3700 }
3701 
3702 static void
3703 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3704 {
3705 	if (HDR_HAS_L1HDR(hdr)) {
3706 		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3707 		    hdr->b_l1hdr.b_bufcnt > 0);
3708 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3709 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3710 	}
3711 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3712 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3713 
3714 	if (HDR_HAS_L2HDR(hdr)) {
3715 		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3716 		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3717 
3718 		if (!buflist_held)
3719 			mutex_enter(&dev->l2ad_mtx);
3720 
3721 		/*
3722 		 * Even though we checked this conditional above, we
3723 		 * need to check this again now that we have the
3724 		 * l2ad_mtx. This is because we could be racing with
3725 		 * another thread calling l2arc_evict() which might have
3726 		 * destroyed this header's L2 portion as we were waiting
3727 		 * to acquire the l2ad_mtx. If that happens, we don't
3728 		 * want to re-destroy the header's L2 portion.
3729 		 */
3730 		if (HDR_HAS_L2HDR(hdr))
3731 			arc_hdr_l2hdr_destroy(hdr);
3732 
3733 		if (!buflist_held)
3734 			mutex_exit(&dev->l2ad_mtx);
3735 	}
3736 
3737 	/*
3738 	 * The header's identify can only be safely discarded once it is no
3739 	 * longer discoverable.  This requires removing it from the hash table
3740 	 * and the l2arc header list.  After this point the hash lock can not
3741 	 * be used to protect the header.
3742 	 */
3743 	if (!HDR_EMPTY(hdr))
3744 		buf_discard_identity(hdr);
3745 
3746 	if (HDR_HAS_L1HDR(hdr)) {
3747 		arc_cksum_free(hdr);
3748 
3749 		while (hdr->b_l1hdr.b_buf != NULL)
3750 			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3751 
3752 		if (hdr->b_l1hdr.b_pabd != NULL)
3753 			arc_hdr_free_abd(hdr, B_FALSE);
3754 
3755 		if (HDR_HAS_RABD(hdr))
3756 			arc_hdr_free_abd(hdr, B_TRUE);
3757 	}
3758 
3759 	ASSERT3P(hdr->b_hash_next, ==, NULL);
3760 	if (HDR_HAS_L1HDR(hdr)) {
3761 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3762 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3763 
3764 		if (!HDR_PROTECTED(hdr)) {
3765 			kmem_cache_free(hdr_full_cache, hdr);
3766 		} else {
3767 			kmem_cache_free(hdr_full_crypt_cache, hdr);
3768 		}
3769 	} else {
3770 		kmem_cache_free(hdr_l2only_cache, hdr);
3771 	}
3772 }
3773 
3774 void
3775 arc_buf_destroy(arc_buf_t *buf, void* tag)
3776 {
3777 	arc_buf_hdr_t *hdr = buf->b_hdr;
3778 
3779 	if (hdr->b_l1hdr.b_state == arc_anon) {
3780 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3781 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3782 		VERIFY0(remove_reference(hdr, NULL, tag));
3783 		arc_hdr_destroy(hdr);
3784 		return;
3785 	}
3786 
3787 	kmutex_t *hash_lock = HDR_LOCK(hdr);
3788 	mutex_enter(hash_lock);
3789 
3790 	ASSERT3P(hdr, ==, buf->b_hdr);
3791 	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3792 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3793 	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3794 	ASSERT3P(buf->b_data, !=, NULL);
3795 
3796 	(void) remove_reference(hdr, hash_lock, tag);
3797 	arc_buf_destroy_impl(buf);
3798 	mutex_exit(hash_lock);
3799 }
3800 
3801 /*
3802  * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3803  * state of the header is dependent on its state prior to entering this
3804  * function. The following transitions are possible:
3805  *
3806  *    - arc_mru -> arc_mru_ghost
3807  *    - arc_mfu -> arc_mfu_ghost
3808  *    - arc_mru_ghost -> arc_l2c_only
3809  *    - arc_mru_ghost -> deleted
3810  *    - arc_mfu_ghost -> arc_l2c_only
3811  *    - arc_mfu_ghost -> deleted
3812  */
3813 static int64_t
3814 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3815 {
3816 	arc_state_t *evicted_state, *state;
3817 	int64_t bytes_evicted = 0;
3818 	int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3819 	    arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
3820 
3821 	ASSERT(MUTEX_HELD(hash_lock));
3822 	ASSERT(HDR_HAS_L1HDR(hdr));
3823 
3824 	state = hdr->b_l1hdr.b_state;
3825 	if (GHOST_STATE(state)) {
3826 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3827 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3828 
3829 		/*
3830 		 * l2arc_write_buffers() relies on a header's L1 portion
3831 		 * (i.e. its b_pabd field) during it's write phase.
3832 		 * Thus, we cannot push a header onto the arc_l2c_only
3833 		 * state (removing its L1 piece) until the header is
3834 		 * done being written to the l2arc.
3835 		 */
3836 		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3837 			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3838 			return (bytes_evicted);
3839 		}
3840 
3841 		ARCSTAT_BUMP(arcstat_deleted);
3842 		bytes_evicted += HDR_GET_LSIZE(hdr);
3843 
3844 		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3845 
3846 		if (HDR_HAS_L2HDR(hdr)) {
3847 			ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3848 			ASSERT(!HDR_HAS_RABD(hdr));
3849 			/*
3850 			 * This buffer is cached on the 2nd Level ARC;
3851 			 * don't destroy the header.
3852 			 */
3853 			arc_change_state(arc_l2c_only, hdr, hash_lock);
3854 			/*
3855 			 * dropping from L1+L2 cached to L2-only,
3856 			 * realloc to remove the L1 header.
3857 			 */
3858 			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3859 			    hdr_l2only_cache);
3860 		} else {
3861 			arc_change_state(arc_anon, hdr, hash_lock);
3862 			arc_hdr_destroy(hdr);
3863 		}
3864 		return (bytes_evicted);
3865 	}
3866 
3867 	ASSERT(state == arc_mru || state == arc_mfu);
3868 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3869 
3870 	/* prefetch buffers have a minimum lifespan */
3871 	if (HDR_IO_IN_PROGRESS(hdr) ||
3872 	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3873 	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3874 	    MSEC_TO_TICK(min_lifetime))) {
3875 		ARCSTAT_BUMP(arcstat_evict_skip);
3876 		return (bytes_evicted);
3877 	}
3878 
3879 	ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3880 	while (hdr->b_l1hdr.b_buf) {
3881 		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3882 		if (!mutex_tryenter(&buf->b_evict_lock)) {
3883 			ARCSTAT_BUMP(arcstat_mutex_miss);
3884 			break;
3885 		}
3886 		if (buf->b_data != NULL)
3887 			bytes_evicted += HDR_GET_LSIZE(hdr);
3888 		mutex_exit(&buf->b_evict_lock);
3889 		arc_buf_destroy_impl(buf);
3890 	}
3891 
3892 	if (HDR_HAS_L2HDR(hdr)) {
3893 		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3894 	} else {
3895 		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3896 			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3897 			    HDR_GET_LSIZE(hdr));
3898 		} else {
3899 			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3900 			    HDR_GET_LSIZE(hdr));
3901 		}
3902 	}
3903 
3904 	if (hdr->b_l1hdr.b_bufcnt == 0) {
3905 		arc_cksum_free(hdr);
3906 
3907 		bytes_evicted += arc_hdr_size(hdr);
3908 
3909 		/*
3910 		 * If this hdr is being evicted and has a compressed
3911 		 * buffer then we discard it here before we change states.
3912 		 * This ensures that the accounting is updated correctly
3913 		 * in arc_free_data_impl().
3914 		 */
3915 		if (hdr->b_l1hdr.b_pabd != NULL)
3916 			arc_hdr_free_abd(hdr, B_FALSE);
3917 
3918 		if (HDR_HAS_RABD(hdr))
3919 			arc_hdr_free_abd(hdr, B_TRUE);
3920 
3921 		arc_change_state(evicted_state, hdr, hash_lock);
3922 		ASSERT(HDR_IN_HASH_TABLE(hdr));
3923 		arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3924 		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3925 	}
3926 
3927 	return (bytes_evicted);
3928 }
3929 
3930 static void
3931 arc_set_need_free(void)
3932 {
3933 	ASSERT(MUTEX_HELD(&arc_evict_lock));
3934 	int64_t remaining = arc_free_memory() - arc_sys_free / 2;
3935 	arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters);
3936 	if (aw == NULL) {
3937 		arc_need_free = MAX(-remaining, 0);
3938 	} else {
3939 		arc_need_free =
3940 		    MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count));
3941 	}
3942 }
3943 
3944 static uint64_t
3945 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3946     uint64_t spa, int64_t bytes)
3947 {
3948 	multilist_sublist_t *mls;
3949 	uint64_t bytes_evicted = 0;
3950 	arc_buf_hdr_t *hdr;
3951 	kmutex_t *hash_lock;
3952 	int evict_count = 0;
3953 
3954 	ASSERT3P(marker, !=, NULL);
3955 	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3956 
3957 	mls = multilist_sublist_lock(ml, idx);
3958 
3959 	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3960 	    hdr = multilist_sublist_prev(mls, marker)) {
3961 		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3962 		    (evict_count >= zfs_arc_evict_batch_limit))
3963 			break;
3964 
3965 		/*
3966 		 * To keep our iteration location, move the marker
3967 		 * forward. Since we're not holding hdr's hash lock, we
3968 		 * must be very careful and not remove 'hdr' from the
3969 		 * sublist. Otherwise, other consumers might mistake the
3970 		 * 'hdr' as not being on a sublist when they call the
3971 		 * multilist_link_active() function (they all rely on
3972 		 * the hash lock protecting concurrent insertions and
3973 		 * removals). multilist_sublist_move_forward() was
3974 		 * specifically implemented to ensure this is the case
3975 		 * (only 'marker' will be removed and re-inserted).
3976 		 */
3977 		multilist_sublist_move_forward(mls, marker);
3978 
3979 		/*
3980 		 * The only case where the b_spa field should ever be
3981 		 * zero, is the marker headers inserted by
3982 		 * arc_evict_state(). It's possible for multiple threads
3983 		 * to be calling arc_evict_state() concurrently (e.g.
3984 		 * dsl_pool_close() and zio_inject_fault()), so we must
3985 		 * skip any markers we see from these other threads.
3986 		 */
3987 		if (hdr->b_spa == 0)
3988 			continue;
3989 
3990 		/* we're only interested in evicting buffers of a certain spa */
3991 		if (spa != 0 && hdr->b_spa != spa) {
3992 			ARCSTAT_BUMP(arcstat_evict_skip);
3993 			continue;
3994 		}
3995 
3996 		hash_lock = HDR_LOCK(hdr);
3997 
3998 		/*
3999 		 * We aren't calling this function from any code path
4000 		 * that would already be holding a hash lock, so we're
4001 		 * asserting on this assumption to be defensive in case
4002 		 * this ever changes. Without this check, it would be
4003 		 * possible to incorrectly increment arcstat_mutex_miss
4004 		 * below (e.g. if the code changed such that we called
4005 		 * this function with a hash lock held).
4006 		 */
4007 		ASSERT(!MUTEX_HELD(hash_lock));
4008 
4009 		if (mutex_tryenter(hash_lock)) {
4010 			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
4011 			mutex_exit(hash_lock);
4012 
4013 			bytes_evicted += evicted;
4014 
4015 			/*
4016 			 * If evicted is zero, arc_evict_hdr() must have
4017 			 * decided to skip this header, don't increment
4018 			 * evict_count in this case.
4019 			 */
4020 			if (evicted != 0)
4021 				evict_count++;
4022 
4023 		} else {
4024 			ARCSTAT_BUMP(arcstat_mutex_miss);
4025 		}
4026 	}
4027 
4028 	multilist_sublist_unlock(mls);
4029 
4030 	/*
4031 	 * Increment the count of evicted bytes, and wake up any threads that
4032 	 * are waiting for the count to reach this value.  Since the list is
4033 	 * ordered by ascending aew_count, we pop off the beginning of the
4034 	 * list until we reach the end, or a waiter that's past the current
4035 	 * "count".  Doing this outside the loop reduces the number of times
4036 	 * we need to acquire the global arc_evict_lock.
4037 	 *
4038 	 * Only wake when there's sufficient free memory in the system
4039 	 * (specifically, arc_sys_free/2, which by default is a bit more than
4040 	 * 1/64th of RAM).  See the comments in arc_wait_for_eviction().
4041 	 */
4042 	mutex_enter(&arc_evict_lock);
4043 	arc_evict_count += bytes_evicted;
4044 
4045 	if ((int64_t)(arc_free_memory() - arc_sys_free / 2) > 0) {
4046 		arc_evict_waiter_t *aw;
4047 		while ((aw = list_head(&arc_evict_waiters)) != NULL &&
4048 		    aw->aew_count <= arc_evict_count) {
4049 			list_remove(&arc_evict_waiters, aw);
4050 			cv_broadcast(&aw->aew_cv);
4051 		}
4052 	}
4053 	arc_set_need_free();
4054 	mutex_exit(&arc_evict_lock);
4055 
4056 	/*
4057 	 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
4058 	 * if the average cached block is small), eviction can be on-CPU for
4059 	 * many seconds.  To ensure that other threads that may be bound to
4060 	 * this CPU are able to make progress, make a voluntary preemption
4061 	 * call here.
4062 	 */
4063 	cond_resched();
4064 
4065 	return (bytes_evicted);
4066 }
4067 
4068 /*
4069  * Evict buffers from the given arc state, until we've removed the
4070  * specified number of bytes. Move the removed buffers to the
4071  * appropriate evict state.
4072  *
4073  * This function makes a "best effort". It skips over any buffers
4074  * it can't get a hash_lock on, and so, may not catch all candidates.
4075  * It may also return without evicting as much space as requested.
4076  *
4077  * If bytes is specified using the special value ARC_EVICT_ALL, this
4078  * will evict all available (i.e. unlocked and evictable) buffers from
4079  * the given arc state; which is used by arc_flush().
4080  */
4081 static uint64_t
4082 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
4083     arc_buf_contents_t type)
4084 {
4085 	uint64_t total_evicted = 0;
4086 	multilist_t *ml = state->arcs_list[type];
4087 	int num_sublists;
4088 	arc_buf_hdr_t **markers;
4089 
4090 	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
4091 
4092 	num_sublists = multilist_get_num_sublists(ml);
4093 
4094 	/*
4095 	 * If we've tried to evict from each sublist, made some
4096 	 * progress, but still have not hit the target number of bytes
4097 	 * to evict, we want to keep trying. The markers allow us to
4098 	 * pick up where we left off for each individual sublist, rather
4099 	 * than starting from the tail each time.
4100 	 */
4101 	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
4102 	for (int i = 0; i < num_sublists; i++) {
4103 		multilist_sublist_t *mls;
4104 
4105 		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4106 
4107 		/*
4108 		 * A b_spa of 0 is used to indicate that this header is
4109 		 * a marker. This fact is used in arc_evict_type() and
4110 		 * arc_evict_state_impl().
4111 		 */
4112 		markers[i]->b_spa = 0;
4113 
4114 		mls = multilist_sublist_lock(ml, i);
4115 		multilist_sublist_insert_tail(mls, markers[i]);
4116 		multilist_sublist_unlock(mls);
4117 	}
4118 
4119 	/*
4120 	 * While we haven't hit our target number of bytes to evict, or
4121 	 * we're evicting all available buffers.
4122 	 */
4123 	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
4124 		int sublist_idx = multilist_get_random_index(ml);
4125 		uint64_t scan_evicted = 0;
4126 
4127 		/*
4128 		 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
4129 		 * Request that 10% of the LRUs be scanned by the superblock
4130 		 * shrinker.
4131 		 */
4132 		if (type == ARC_BUFC_DATA && aggsum_compare(&astat_dnode_size,
4133 		    arc_dnode_size_limit) > 0) {
4134 			arc_prune_async((aggsum_upper_bound(&astat_dnode_size) -
4135 			    arc_dnode_size_limit) / sizeof (dnode_t) /
4136 			    zfs_arc_dnode_reduce_percent);
4137 		}
4138 
4139 		/*
4140 		 * Start eviction using a randomly selected sublist,
4141 		 * this is to try and evenly balance eviction across all
4142 		 * sublists. Always starting at the same sublist
4143 		 * (e.g. index 0) would cause evictions to favor certain
4144 		 * sublists over others.
4145 		 */
4146 		for (int i = 0; i < num_sublists; i++) {
4147 			uint64_t bytes_remaining;
4148 			uint64_t bytes_evicted;
4149 
4150 			if (bytes == ARC_EVICT_ALL)
4151 				bytes_remaining = ARC_EVICT_ALL;
4152 			else if (total_evicted < bytes)
4153 				bytes_remaining = bytes - total_evicted;
4154 			else
4155 				break;
4156 
4157 			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4158 			    markers[sublist_idx], spa, bytes_remaining);
4159 
4160 			scan_evicted += bytes_evicted;
4161 			total_evicted += bytes_evicted;
4162 
4163 			/* we've reached the end, wrap to the beginning */
4164 			if (++sublist_idx >= num_sublists)
4165 				sublist_idx = 0;
4166 		}
4167 
4168 		/*
4169 		 * If we didn't evict anything during this scan, we have
4170 		 * no reason to believe we'll evict more during another
4171 		 * scan, so break the loop.
4172 		 */
4173 		if (scan_evicted == 0) {
4174 			/* This isn't possible, let's make that obvious */
4175 			ASSERT3S(bytes, !=, 0);
4176 
4177 			/*
4178 			 * When bytes is ARC_EVICT_ALL, the only way to
4179 			 * break the loop is when scan_evicted is zero.
4180 			 * In that case, we actually have evicted enough,
4181 			 * so we don't want to increment the kstat.
4182 			 */
4183 			if (bytes != ARC_EVICT_ALL) {
4184 				ASSERT3S(total_evicted, <, bytes);
4185 				ARCSTAT_BUMP(arcstat_evict_not_enough);
4186 			}
4187 
4188 			break;
4189 		}
4190 	}
4191 
4192 	for (int i = 0; i < num_sublists; i++) {
4193 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4194 		multilist_sublist_remove(mls, markers[i]);
4195 		multilist_sublist_unlock(mls);
4196 
4197 		kmem_cache_free(hdr_full_cache, markers[i]);
4198 	}
4199 	kmem_free(markers, sizeof (*markers) * num_sublists);
4200 
4201 	return (total_evicted);
4202 }
4203 
4204 /*
4205  * Flush all "evictable" data of the given type from the arc state
4206  * specified. This will not evict any "active" buffers (i.e. referenced).
4207  *
4208  * When 'retry' is set to B_FALSE, the function will make a single pass
4209  * over the state and evict any buffers that it can. Since it doesn't
4210  * continually retry the eviction, it might end up leaving some buffers
4211  * in the ARC due to lock misses.
4212  *
4213  * When 'retry' is set to B_TRUE, the function will continually retry the
4214  * eviction until *all* evictable buffers have been removed from the
4215  * state. As a result, if concurrent insertions into the state are
4216  * allowed (e.g. if the ARC isn't shutting down), this function might
4217  * wind up in an infinite loop, continually trying to evict buffers.
4218  */
4219 static uint64_t
4220 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4221     boolean_t retry)
4222 {
4223 	uint64_t evicted = 0;
4224 
4225 	while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4226 		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4227 
4228 		if (!retry)
4229 			break;
4230 	}
4231 
4232 	return (evicted);
4233 }
4234 
4235 /*
4236  * Evict the specified number of bytes from the state specified,
4237  * restricting eviction to the spa and type given. This function
4238  * prevents us from trying to evict more from a state's list than
4239  * is "evictable", and to skip evicting altogether when passed a
4240  * negative value for "bytes". In contrast, arc_evict_state() will
4241  * evict everything it can, when passed a negative value for "bytes".
4242  */
4243 static uint64_t
4244 arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
4245     arc_buf_contents_t type)
4246 {
4247 	int64_t delta;
4248 
4249 	if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4250 		delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4251 		    bytes);
4252 		return (arc_evict_state(state, spa, delta, type));
4253 	}
4254 
4255 	return (0);
4256 }
4257 
4258 /*
4259  * The goal of this function is to evict enough meta data buffers from the
4260  * ARC in order to enforce the arc_meta_limit.  Achieving this is slightly
4261  * more complicated than it appears because it is common for data buffers
4262  * to have holds on meta data buffers.  In addition, dnode meta data buffers
4263  * will be held by the dnodes in the block preventing them from being freed.
4264  * This means we can't simply traverse the ARC and expect to always find
4265  * enough unheld meta data buffer to release.
4266  *
4267  * Therefore, this function has been updated to make alternating passes
4268  * over the ARC releasing data buffers and then newly unheld meta data
4269  * buffers.  This ensures forward progress is maintained and meta_used
4270  * will decrease.  Normally this is sufficient, but if required the ARC
4271  * will call the registered prune callbacks causing dentry and inodes to
4272  * be dropped from the VFS cache.  This will make dnode meta data buffers
4273  * available for reclaim.
4274  */
4275 static uint64_t
4276 arc_evict_meta_balanced(uint64_t meta_used)
4277 {
4278 	int64_t delta, prune = 0, adjustmnt;
4279 	uint64_t total_evicted = 0;
4280 	arc_buf_contents_t type = ARC_BUFC_DATA;
4281 	int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
4282 
4283 restart:
4284 	/*
4285 	 * This slightly differs than the way we evict from the mru in
4286 	 * arc_evict because we don't have a "target" value (i.e. no
4287 	 * "meta" arc_p). As a result, I think we can completely
4288 	 * cannibalize the metadata in the MRU before we evict the
4289 	 * metadata from the MFU. I think we probably need to implement a
4290 	 * "metadata arc_p" value to do this properly.
4291 	 */
4292 	adjustmnt = meta_used - arc_meta_limit;
4293 
4294 	if (adjustmnt > 0 &&
4295 	    zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) {
4296 		delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]),
4297 		    adjustmnt);
4298 		total_evicted += arc_evict_impl(arc_mru, 0, delta, type);
4299 		adjustmnt -= delta;
4300 	}
4301 
4302 	/*
4303 	 * We can't afford to recalculate adjustmnt here. If we do,
4304 	 * new metadata buffers can sneak into the MRU or ANON lists,
4305 	 * thus penalize the MFU metadata. Although the fudge factor is
4306 	 * small, it has been empirically shown to be significant for
4307 	 * certain workloads (e.g. creating many empty directories). As
4308 	 * such, we use the original calculation for adjustmnt, and
4309 	 * simply decrement the amount of data evicted from the MRU.
4310 	 */
4311 
4312 	if (adjustmnt > 0 &&
4313 	    zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
4314 		delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]),
4315 		    adjustmnt);
4316 		total_evicted += arc_evict_impl(arc_mfu, 0, delta, type);
4317 	}
4318 
4319 	adjustmnt = meta_used - arc_meta_limit;
4320 
4321 	if (adjustmnt > 0 &&
4322 	    zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
4323 		delta = MIN(adjustmnt,
4324 		    zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]));
4325 		total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type);
4326 		adjustmnt -= delta;
4327 	}
4328 
4329 	if (adjustmnt > 0 &&
4330 	    zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
4331 		delta = MIN(adjustmnt,
4332 		    zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]));
4333 		total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type);
4334 	}
4335 
4336 	/*
4337 	 * If after attempting to make the requested adjustment to the ARC
4338 	 * the meta limit is still being exceeded then request that the
4339 	 * higher layers drop some cached objects which have holds on ARC
4340 	 * meta buffers.  Requests to the upper layers will be made with
4341 	 * increasingly large scan sizes until the ARC is below the limit.
4342 	 */
4343 	if (meta_used > arc_meta_limit) {
4344 		if (type == ARC_BUFC_DATA) {
4345 			type = ARC_BUFC_METADATA;
4346 		} else {
4347 			type = ARC_BUFC_DATA;
4348 
4349 			if (zfs_arc_meta_prune) {
4350 				prune += zfs_arc_meta_prune;
4351 				arc_prune_async(prune);
4352 			}
4353 		}
4354 
4355 		if (restarts > 0) {
4356 			restarts--;
4357 			goto restart;
4358 		}
4359 	}
4360 	return (total_evicted);
4361 }
4362 
4363 /*
4364  * Evict metadata buffers from the cache, such that arc_meta_used is
4365  * capped by the arc_meta_limit tunable.
4366  */
4367 static uint64_t
4368 arc_evict_meta_only(uint64_t meta_used)
4369 {
4370 	uint64_t total_evicted = 0;
4371 	int64_t target;
4372 
4373 	/*
4374 	 * If we're over the meta limit, we want to evict enough
4375 	 * metadata to get back under the meta limit. We don't want to
4376 	 * evict so much that we drop the MRU below arc_p, though. If
4377 	 * we're over the meta limit more than we're over arc_p, we
4378 	 * evict some from the MRU here, and some from the MFU below.
4379 	 */
4380 	target = MIN((int64_t)(meta_used - arc_meta_limit),
4381 	    (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4382 	    zfs_refcount_count(&arc_mru->arcs_size) - arc_p));
4383 
4384 	total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4385 
4386 	/*
4387 	 * Similar to the above, we want to evict enough bytes to get us
4388 	 * below the meta limit, but not so much as to drop us below the
4389 	 * space allotted to the MFU (which is defined as arc_c - arc_p).
4390 	 */
4391 	target = MIN((int64_t)(meta_used - arc_meta_limit),
4392 	    (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) -
4393 	    (arc_c - arc_p)));
4394 
4395 	total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4396 
4397 	return (total_evicted);
4398 }
4399 
4400 static uint64_t
4401 arc_evict_meta(uint64_t meta_used)
4402 {
4403 	if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
4404 		return (arc_evict_meta_only(meta_used));
4405 	else
4406 		return (arc_evict_meta_balanced(meta_used));
4407 }
4408 
4409 /*
4410  * Return the type of the oldest buffer in the given arc state
4411  *
4412  * This function will select a random sublist of type ARC_BUFC_DATA and
4413  * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4414  * is compared, and the type which contains the "older" buffer will be
4415  * returned.
4416  */
4417 static arc_buf_contents_t
4418 arc_evict_type(arc_state_t *state)
4419 {
4420 	multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
4421 	multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
4422 	int data_idx = multilist_get_random_index(data_ml);
4423 	int meta_idx = multilist_get_random_index(meta_ml);
4424 	multilist_sublist_t *data_mls;
4425 	multilist_sublist_t *meta_mls;
4426 	arc_buf_contents_t type;
4427 	arc_buf_hdr_t *data_hdr;
4428 	arc_buf_hdr_t *meta_hdr;
4429 
4430 	/*
4431 	 * We keep the sublist lock until we're finished, to prevent
4432 	 * the headers from being destroyed via arc_evict_state().
4433 	 */
4434 	data_mls = multilist_sublist_lock(data_ml, data_idx);
4435 	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4436 
4437 	/*
4438 	 * These two loops are to ensure we skip any markers that
4439 	 * might be at the tail of the lists due to arc_evict_state().
4440 	 */
4441 
4442 	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4443 	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4444 		if (data_hdr->b_spa != 0)
4445 			break;
4446 	}
4447 
4448 	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4449 	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4450 		if (meta_hdr->b_spa != 0)
4451 			break;
4452 	}
4453 
4454 	if (data_hdr == NULL && meta_hdr == NULL) {
4455 		type = ARC_BUFC_DATA;
4456 	} else if (data_hdr == NULL) {
4457 		ASSERT3P(meta_hdr, !=, NULL);
4458 		type = ARC_BUFC_METADATA;
4459 	} else if (meta_hdr == NULL) {
4460 		ASSERT3P(data_hdr, !=, NULL);
4461 		type = ARC_BUFC_DATA;
4462 	} else {
4463 		ASSERT3P(data_hdr, !=, NULL);
4464 		ASSERT3P(meta_hdr, !=, NULL);
4465 
4466 		/* The headers can't be on the sublist without an L1 header */
4467 		ASSERT(HDR_HAS_L1HDR(data_hdr));
4468 		ASSERT(HDR_HAS_L1HDR(meta_hdr));
4469 
4470 		if (data_hdr->b_l1hdr.b_arc_access <
4471 		    meta_hdr->b_l1hdr.b_arc_access) {
4472 			type = ARC_BUFC_DATA;
4473 		} else {
4474 			type = ARC_BUFC_METADATA;
4475 		}
4476 	}
4477 
4478 	multilist_sublist_unlock(meta_mls);
4479 	multilist_sublist_unlock(data_mls);
4480 
4481 	return (type);
4482 }
4483 
4484 /*
4485  * Evict buffers from the cache, such that arc_size is capped by arc_c.
4486  */
4487 static uint64_t
4488 arc_evict(void)
4489 {
4490 	uint64_t total_evicted = 0;
4491 	uint64_t bytes;
4492 	int64_t target;
4493 	uint64_t asize = aggsum_value(&arc_size);
4494 	uint64_t ameta = aggsum_value(&arc_meta_used);
4495 
4496 	/*
4497 	 * If we're over arc_meta_limit, we want to correct that before
4498 	 * potentially evicting data buffers below.
4499 	 */
4500 	total_evicted += arc_evict_meta(ameta);
4501 
4502 	/*
4503 	 * Adjust MRU size
4504 	 *
4505 	 * If we're over the target cache size, we want to evict enough
4506 	 * from the list to get back to our target size. We don't want
4507 	 * to evict too much from the MRU, such that it drops below
4508 	 * arc_p. So, if we're over our target cache size more than
4509 	 * the MRU is over arc_p, we'll evict enough to get back to
4510 	 * arc_p here, and then evict more from the MFU below.
4511 	 */
4512 	target = MIN((int64_t)(asize - arc_c),
4513 	    (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4514 	    zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
4515 
4516 	/*
4517 	 * If we're below arc_meta_min, always prefer to evict data.
4518 	 * Otherwise, try to satisfy the requested number of bytes to
4519 	 * evict from the type which contains older buffers; in an
4520 	 * effort to keep newer buffers in the cache regardless of their
4521 	 * type. If we cannot satisfy the number of bytes from this
4522 	 * type, spill over into the next type.
4523 	 */
4524 	if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA &&
4525 	    ameta > arc_meta_min) {
4526 		bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4527 		total_evicted += bytes;
4528 
4529 		/*
4530 		 * If we couldn't evict our target number of bytes from
4531 		 * metadata, we try to get the rest from data.
4532 		 */
4533 		target -= bytes;
4534 
4535 		total_evicted +=
4536 		    arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4537 	} else {
4538 		bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4539 		total_evicted += bytes;
4540 
4541 		/*
4542 		 * If we couldn't evict our target number of bytes from
4543 		 * data, we try to get the rest from metadata.
4544 		 */
4545 		target -= bytes;
4546 
4547 		total_evicted +=
4548 		    arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4549 	}
4550 
4551 	/*
4552 	 * Re-sum ARC stats after the first round of evictions.
4553 	 */
4554 	asize = aggsum_value(&arc_size);
4555 	ameta = aggsum_value(&arc_meta_used);
4556 
4557 
4558 	/*
4559 	 * Adjust MFU size
4560 	 *
4561 	 * Now that we've tried to evict enough from the MRU to get its
4562 	 * size back to arc_p, if we're still above the target cache
4563 	 * size, we evict the rest from the MFU.
4564 	 */
4565 	target = asize - arc_c;
4566 
4567 	if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA &&
4568 	    ameta > arc_meta_min) {
4569 		bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4570 		total_evicted += bytes;
4571 
4572 		/*
4573 		 * If we couldn't evict our target number of bytes from
4574 		 * metadata, we try to get the rest from data.
4575 		 */
4576 		target -= bytes;
4577 
4578 		total_evicted +=
4579 		    arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4580 	} else {
4581 		bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4582 		total_evicted += bytes;
4583 
4584 		/*
4585 		 * If we couldn't evict our target number of bytes from
4586 		 * data, we try to get the rest from data.
4587 		 */
4588 		target -= bytes;
4589 
4590 		total_evicted +=
4591 		    arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4592 	}
4593 
4594 	/*
4595 	 * Adjust ghost lists
4596 	 *
4597 	 * In addition to the above, the ARC also defines target values
4598 	 * for the ghost lists. The sum of the mru list and mru ghost
4599 	 * list should never exceed the target size of the cache, and
4600 	 * the sum of the mru list, mfu list, mru ghost list, and mfu
4601 	 * ghost list should never exceed twice the target size of the
4602 	 * cache. The following logic enforces these limits on the ghost
4603 	 * caches, and evicts from them as needed.
4604 	 */
4605 	target = zfs_refcount_count(&arc_mru->arcs_size) +
4606 	    zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
4607 
4608 	bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4609 	total_evicted += bytes;
4610 
4611 	target -= bytes;
4612 
4613 	total_evicted +=
4614 	    arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4615 
4616 	/*
4617 	 * We assume the sum of the mru list and mfu list is less than
4618 	 * or equal to arc_c (we enforced this above), which means we
4619 	 * can use the simpler of the two equations below:
4620 	 *
4621 	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4622 	 *		    mru ghost + mfu ghost <= arc_c
4623 	 */
4624 	target = zfs_refcount_count(&arc_mru_ghost->arcs_size) +
4625 	    zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
4626 
4627 	bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4628 	total_evicted += bytes;
4629 
4630 	target -= bytes;
4631 
4632 	total_evicted +=
4633 	    arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4634 
4635 	return (total_evicted);
4636 }
4637 
4638 void
4639 arc_flush(spa_t *spa, boolean_t retry)
4640 {
4641 	uint64_t guid = 0;
4642 
4643 	/*
4644 	 * If retry is B_TRUE, a spa must not be specified since we have
4645 	 * no good way to determine if all of a spa's buffers have been
4646 	 * evicted from an arc state.
4647 	 */
4648 	ASSERT(!retry || spa == 0);
4649 
4650 	if (spa != NULL)
4651 		guid = spa_load_guid(spa);
4652 
4653 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4654 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4655 
4656 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4657 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4658 
4659 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4660 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4661 
4662 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4663 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4664 }
4665 
4666 void
4667 arc_reduce_target_size(int64_t to_free)
4668 {
4669 	uint64_t asize = aggsum_value(&arc_size);
4670 
4671 	/*
4672 	 * All callers want the ARC to actually evict (at least) this much
4673 	 * memory.  Therefore we reduce from the lower of the current size and
4674 	 * the target size.  This way, even if arc_c is much higher than
4675 	 * arc_size (as can be the case after many calls to arc_freed(), we will
4676 	 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4677 	 * will evict.
4678 	 */
4679 	uint64_t c = MIN(arc_c, asize);
4680 
4681 	if (c > to_free && c - to_free > arc_c_min) {
4682 		arc_c = c - to_free;
4683 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
4684 		if (arc_p > arc_c)
4685 			arc_p = (arc_c >> 1);
4686 		ASSERT(arc_c >= arc_c_min);
4687 		ASSERT((int64_t)arc_p >= 0);
4688 	} else {
4689 		arc_c = arc_c_min;
4690 	}
4691 
4692 	if (asize > arc_c) {
4693 		/* See comment in arc_evict_cb_check() on why lock+flag */
4694 		mutex_enter(&arc_evict_lock);
4695 		arc_evict_needed = B_TRUE;
4696 		mutex_exit(&arc_evict_lock);
4697 		zthr_wakeup(arc_evict_zthr);
4698 	}
4699 }
4700 
4701 /*
4702  * Determine if the system is under memory pressure and is asking
4703  * to reclaim memory. A return value of B_TRUE indicates that the system
4704  * is under memory pressure and that the arc should adjust accordingly.
4705  */
4706 boolean_t
4707 arc_reclaim_needed(void)
4708 {
4709 	return (arc_available_memory() < 0);
4710 }
4711 
4712 void
4713 arc_kmem_reap_soon(void)
4714 {
4715 	size_t			i;
4716 	kmem_cache_t		*prev_cache = NULL;
4717 	kmem_cache_t		*prev_data_cache = NULL;
4718 	extern kmem_cache_t	*zio_buf_cache[];
4719 	extern kmem_cache_t	*zio_data_buf_cache[];
4720 
4721 #ifdef _KERNEL
4722 	if ((aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) &&
4723 	    zfs_arc_meta_prune) {
4724 		/*
4725 		 * We are exceeding our meta-data cache limit.
4726 		 * Prune some entries to release holds on meta-data.
4727 		 */
4728 		arc_prune_async(zfs_arc_meta_prune);
4729 	}
4730 #if defined(_ILP32)
4731 	/*
4732 	 * Reclaim unused memory from all kmem caches.
4733 	 */
4734 	kmem_reap();
4735 #endif
4736 #endif
4737 
4738 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4739 #if defined(_ILP32)
4740 		/* reach upper limit of cache size on 32-bit */
4741 		if (zio_buf_cache[i] == NULL)
4742 			break;
4743 #endif
4744 		if (zio_buf_cache[i] != prev_cache) {
4745 			prev_cache = zio_buf_cache[i];
4746 			kmem_cache_reap_now(zio_buf_cache[i]);
4747 		}
4748 		if (zio_data_buf_cache[i] != prev_data_cache) {
4749 			prev_data_cache = zio_data_buf_cache[i];
4750 			kmem_cache_reap_now(zio_data_buf_cache[i]);
4751 		}
4752 	}
4753 	kmem_cache_reap_now(buf_cache);
4754 	kmem_cache_reap_now(hdr_full_cache);
4755 	kmem_cache_reap_now(hdr_l2only_cache);
4756 	kmem_cache_reap_now(zfs_btree_leaf_cache);
4757 	abd_cache_reap_now();
4758 }
4759 
4760 /* ARGSUSED */
4761 static boolean_t
4762 arc_evict_cb_check(void *arg, zthr_t *zthr)
4763 {
4764 	/*
4765 	 * This is necessary so that any changes which may have been made to
4766 	 * many of the zfs_arc_* module parameters will be propagated to
4767 	 * their actual internal variable counterparts. Without this,
4768 	 * changing those module params at runtime would have no effect.
4769 	 */
4770 	arc_tuning_update(B_FALSE);
4771 
4772 	/*
4773 	 * This is necessary in order to keep the kstat information
4774 	 * up to date for tools that display kstat data such as the
4775 	 * mdb ::arc dcmd and the Linux crash utility.  These tools
4776 	 * typically do not call kstat's update function, but simply
4777 	 * dump out stats from the most recent update.  Without
4778 	 * this call, these commands may show stale stats for the
4779 	 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4780 	 * with this change, the data might be up to 1 second
4781 	 * out of date(the arc_evict_zthr has a maximum sleep
4782 	 * time of 1 second); but that should suffice.  The
4783 	 * arc_state_t structures can be queried directly if more
4784 	 * accurate information is needed.
4785 	 */
4786 	if (arc_ksp != NULL)
4787 		arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4788 
4789 	/*
4790 	 * We have to rely on arc_wait_for_eviction() to tell us when to
4791 	 * evict, rather than checking if we are overflowing here, so that we
4792 	 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4793 	 * If we have become "not overflowing" since arc_wait_for_eviction()
4794 	 * checked, we need to wake it up.  We could broadcast the CV here,
4795 	 * but arc_wait_for_eviction() may have not yet gone to sleep.  We
4796 	 * would need to use a mutex to ensure that this function doesn't
4797 	 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4798 	 * the arc_evict_lock).  However, the lock ordering of such a lock
4799 	 * would necessarily be incorrect with respect to the zthr_lock,
4800 	 * which is held before this function is called, and is held by
4801 	 * arc_wait_for_eviction() when it calls zthr_wakeup().
4802 	 */
4803 	return (arc_evict_needed);
4804 }
4805 
4806 /*
4807  * Keep arc_size under arc_c by running arc_evict which evicts data
4808  * from the ARC.
4809  */
4810 /* ARGSUSED */
4811 static void
4812 arc_evict_cb(void *arg, zthr_t *zthr)
4813 {
4814 	uint64_t evicted = 0;
4815 	fstrans_cookie_t cookie = spl_fstrans_mark();
4816 
4817 	/* Evict from cache */
4818 	evicted = arc_evict();
4819 
4820 	/*
4821 	 * If evicted is zero, we couldn't evict anything
4822 	 * via arc_evict(). This could be due to hash lock
4823 	 * collisions, but more likely due to the majority of
4824 	 * arc buffers being unevictable. Therefore, even if
4825 	 * arc_size is above arc_c, another pass is unlikely to
4826 	 * be helpful and could potentially cause us to enter an
4827 	 * infinite loop.  Additionally, zthr_iscancelled() is
4828 	 * checked here so that if the arc is shutting down, the
4829 	 * broadcast will wake any remaining arc evict waiters.
4830 	 */
4831 	mutex_enter(&arc_evict_lock);
4832 	arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) &&
4833 	    evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0;
4834 	if (!arc_evict_needed) {
4835 		/*
4836 		 * We're either no longer overflowing, or we
4837 		 * can't evict anything more, so we should wake
4838 		 * arc_get_data_impl() sooner.
4839 		 */
4840 		arc_evict_waiter_t *aw;
4841 		while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) {
4842 			cv_broadcast(&aw->aew_cv);
4843 		}
4844 		arc_set_need_free();
4845 	}
4846 	mutex_exit(&arc_evict_lock);
4847 	spl_fstrans_unmark(cookie);
4848 }
4849 
4850 /* ARGSUSED */
4851 static boolean_t
4852 arc_reap_cb_check(void *arg, zthr_t *zthr)
4853 {
4854 	int64_t free_memory = arc_available_memory();
4855 
4856 	/*
4857 	 * If a kmem reap is already active, don't schedule more.  We must
4858 	 * check for this because kmem_cache_reap_soon() won't actually
4859 	 * block on the cache being reaped (this is to prevent callers from
4860 	 * becoming implicitly blocked by a system-wide kmem reap -- which,
4861 	 * on a system with many, many full magazines, can take minutes).
4862 	 */
4863 	if (!kmem_cache_reap_active() && free_memory < 0) {
4864 
4865 		arc_no_grow = B_TRUE;
4866 		arc_warm = B_TRUE;
4867 		/*
4868 		 * Wait at least zfs_grow_retry (default 5) seconds
4869 		 * before considering growing.
4870 		 */
4871 		arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4872 		return (B_TRUE);
4873 	} else if (free_memory < arc_c >> arc_no_grow_shift) {
4874 		arc_no_grow = B_TRUE;
4875 	} else if (gethrtime() >= arc_growtime) {
4876 		arc_no_grow = B_FALSE;
4877 	}
4878 
4879 	return (B_FALSE);
4880 }
4881 
4882 /*
4883  * Keep enough free memory in the system by reaping the ARC's kmem
4884  * caches.  To cause more slabs to be reapable, we may reduce the
4885  * target size of the cache (arc_c), causing the arc_evict_cb()
4886  * to free more buffers.
4887  */
4888 /* ARGSUSED */
4889 static void
4890 arc_reap_cb(void *arg, zthr_t *zthr)
4891 {
4892 	int64_t free_memory;
4893 	fstrans_cookie_t cookie = spl_fstrans_mark();
4894 
4895 	/*
4896 	 * Kick off asynchronous kmem_reap()'s of all our caches.
4897 	 */
4898 	arc_kmem_reap_soon();
4899 
4900 	/*
4901 	 * Wait at least arc_kmem_cache_reap_retry_ms between
4902 	 * arc_kmem_reap_soon() calls. Without this check it is possible to
4903 	 * end up in a situation where we spend lots of time reaping
4904 	 * caches, while we're near arc_c_min.  Waiting here also gives the
4905 	 * subsequent free memory check a chance of finding that the
4906 	 * asynchronous reap has already freed enough memory, and we don't
4907 	 * need to call arc_reduce_target_size().
4908 	 */
4909 	delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4910 
4911 	/*
4912 	 * Reduce the target size as needed to maintain the amount of free
4913 	 * memory in the system at a fraction of the arc_size (1/128th by
4914 	 * default).  If oversubscribed (free_memory < 0) then reduce the
4915 	 * target arc_size by the deficit amount plus the fractional
4916 	 * amount.  If free memory is positive but less then the fractional
4917 	 * amount, reduce by what is needed to hit the fractional amount.
4918 	 */
4919 	free_memory = arc_available_memory();
4920 
4921 	int64_t to_free =
4922 	    (arc_c >> arc_shrink_shift) - free_memory;
4923 	if (to_free > 0) {
4924 		arc_reduce_target_size(to_free);
4925 	}
4926 	spl_fstrans_unmark(cookie);
4927 }
4928 
4929 #ifdef _KERNEL
4930 /*
4931  * Determine the amount of memory eligible for eviction contained in the
4932  * ARC. All clean data reported by the ghost lists can always be safely
4933  * evicted. Due to arc_c_min, the same does not hold for all clean data
4934  * contained by the regular mru and mfu lists.
4935  *
4936  * In the case of the regular mru and mfu lists, we need to report as
4937  * much clean data as possible, such that evicting that same reported
4938  * data will not bring arc_size below arc_c_min. Thus, in certain
4939  * circumstances, the total amount of clean data in the mru and mfu
4940  * lists might not actually be evictable.
4941  *
4942  * The following two distinct cases are accounted for:
4943  *
4944  * 1. The sum of the amount of dirty data contained by both the mru and
4945  *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
4946  *    is greater than or equal to arc_c_min.
4947  *    (i.e. amount of dirty data >= arc_c_min)
4948  *
4949  *    This is the easy case; all clean data contained by the mru and mfu
4950  *    lists is evictable. Evicting all clean data can only drop arc_size
4951  *    to the amount of dirty data, which is greater than arc_c_min.
4952  *
4953  * 2. The sum of the amount of dirty data contained by both the mru and
4954  *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
4955  *    is less than arc_c_min.
4956  *    (i.e. arc_c_min > amount of dirty data)
4957  *
4958  *    2.1. arc_size is greater than or equal arc_c_min.
4959  *         (i.e. arc_size >= arc_c_min > amount of dirty data)
4960  *
4961  *         In this case, not all clean data from the regular mru and mfu
4962  *         lists is actually evictable; we must leave enough clean data
4963  *         to keep arc_size above arc_c_min. Thus, the maximum amount of
4964  *         evictable data from the two lists combined, is exactly the
4965  *         difference between arc_size and arc_c_min.
4966  *
4967  *    2.2. arc_size is less than arc_c_min
4968  *         (i.e. arc_c_min > arc_size > amount of dirty data)
4969  *
4970  *         In this case, none of the data contained in the mru and mfu
4971  *         lists is evictable, even if it's clean. Since arc_size is
4972  *         already below arc_c_min, evicting any more would only
4973  *         increase this negative difference.
4974  */
4975 
4976 #endif /* _KERNEL */
4977 
4978 /*
4979  * Adapt arc info given the number of bytes we are trying to add and
4980  * the state that we are coming from.  This function is only called
4981  * when we are adding new content to the cache.
4982  */
4983 static void
4984 arc_adapt(int bytes, arc_state_t *state)
4985 {
4986 	int mult;
4987 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4988 	int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size);
4989 	int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size);
4990 
4991 	if (state == arc_l2c_only)
4992 		return;
4993 
4994 	ASSERT(bytes > 0);
4995 	/*
4996 	 * Adapt the target size of the MRU list:
4997 	 *	- if we just hit in the MRU ghost list, then increase
4998 	 *	  the target size of the MRU list.
4999 	 *	- if we just hit in the MFU ghost list, then increase
5000 	 *	  the target size of the MFU list by decreasing the
5001 	 *	  target size of the MRU list.
5002 	 */
5003 	if (state == arc_mru_ghost) {
5004 		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
5005 		if (!zfs_arc_p_dampener_disable)
5006 			mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
5007 
5008 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
5009 	} else if (state == arc_mfu_ghost) {
5010 		uint64_t delta;
5011 
5012 		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
5013 		if (!zfs_arc_p_dampener_disable)
5014 			mult = MIN(mult, 10);
5015 
5016 		delta = MIN(bytes * mult, arc_p);
5017 		arc_p = MAX(arc_p_min, arc_p - delta);
5018 	}
5019 	ASSERT((int64_t)arc_p >= 0);
5020 
5021 	/*
5022 	 * Wake reap thread if we do not have any available memory
5023 	 */
5024 	if (arc_reclaim_needed()) {
5025 		zthr_wakeup(arc_reap_zthr);
5026 		return;
5027 	}
5028 
5029 	if (arc_no_grow)
5030 		return;
5031 
5032 	if (arc_c >= arc_c_max)
5033 		return;
5034 
5035 	/*
5036 	 * If we're within (2 * maxblocksize) bytes of the target
5037 	 * cache size, increment the target cache size
5038 	 */
5039 	ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
5040 	if (aggsum_upper_bound(&arc_size) >=
5041 	    arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
5042 		atomic_add_64(&arc_c, (int64_t)bytes);
5043 		if (arc_c > arc_c_max)
5044 			arc_c = arc_c_max;
5045 		else if (state == arc_anon)
5046 			atomic_add_64(&arc_p, (int64_t)bytes);
5047 		if (arc_p > arc_c)
5048 			arc_p = arc_c;
5049 	}
5050 	ASSERT((int64_t)arc_p >= 0);
5051 }
5052 
5053 /*
5054  * Check if arc_size has grown past our upper threshold, determined by
5055  * zfs_arc_overflow_shift.
5056  */
5057 boolean_t
5058 arc_is_overflowing(void)
5059 {
5060 	/* Always allow at least one block of overflow */
5061 	int64_t overflow = MAX(SPA_MAXBLOCKSIZE,
5062 	    arc_c >> zfs_arc_overflow_shift);
5063 
5064 	/*
5065 	 * We just compare the lower bound here for performance reasons. Our
5066 	 * primary goals are to make sure that the arc never grows without
5067 	 * bound, and that it can reach its maximum size. This check
5068 	 * accomplishes both goals. The maximum amount we could run over by is
5069 	 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5070 	 * in the ARC. In practice, that's in the tens of MB, which is low
5071 	 * enough to be safe.
5072 	 */
5073 	return (aggsum_lower_bound(&arc_size) >= (int64_t)arc_c + overflow);
5074 }
5075 
5076 static abd_t *
5077 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag,
5078     boolean_t do_adapt)
5079 {
5080 	arc_buf_contents_t type = arc_buf_type(hdr);
5081 
5082 	arc_get_data_impl(hdr, size, tag, do_adapt);
5083 	if (type == ARC_BUFC_METADATA) {
5084 		return (abd_alloc(size, B_TRUE));
5085 	} else {
5086 		ASSERT(type == ARC_BUFC_DATA);
5087 		return (abd_alloc(size, B_FALSE));
5088 	}
5089 }
5090 
5091 static void *
5092 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5093 {
5094 	arc_buf_contents_t type = arc_buf_type(hdr);
5095 
5096 	arc_get_data_impl(hdr, size, tag, B_TRUE);
5097 	if (type == ARC_BUFC_METADATA) {
5098 		return (zio_buf_alloc(size));
5099 	} else {
5100 		ASSERT(type == ARC_BUFC_DATA);
5101 		return (zio_data_buf_alloc(size));
5102 	}
5103 }
5104 
5105 /*
5106  * Wait for the specified amount of data (in bytes) to be evicted from the
5107  * ARC, and for there to be sufficient free memory in the system.  Waiting for
5108  * eviction ensures that the memory used by the ARC decreases.  Waiting for
5109  * free memory ensures that the system won't run out of free pages, regardless
5110  * of ARC behavior and settings.  See arc_lowmem_init().
5111  */
5112 void
5113 arc_wait_for_eviction(uint64_t amount)
5114 {
5115 	mutex_enter(&arc_evict_lock);
5116 	if (arc_is_overflowing()) {
5117 		arc_evict_needed = B_TRUE;
5118 		zthr_wakeup(arc_evict_zthr);
5119 
5120 		if (amount != 0) {
5121 			arc_evict_waiter_t aw;
5122 			list_link_init(&aw.aew_node);
5123 			cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL);
5124 
5125 			arc_evict_waiter_t *last =
5126 			    list_tail(&arc_evict_waiters);
5127 			if (last != NULL) {
5128 				ASSERT3U(last->aew_count, >, arc_evict_count);
5129 				aw.aew_count = last->aew_count + amount;
5130 			} else {
5131 				aw.aew_count = arc_evict_count + amount;
5132 			}
5133 
5134 			list_insert_tail(&arc_evict_waiters, &aw);
5135 
5136 			arc_set_need_free();
5137 
5138 			DTRACE_PROBE3(arc__wait__for__eviction,
5139 			    uint64_t, amount,
5140 			    uint64_t, arc_evict_count,
5141 			    uint64_t, aw.aew_count);
5142 
5143 			/*
5144 			 * We will be woken up either when arc_evict_count
5145 			 * reaches aew_count, or when the ARC is no longer
5146 			 * overflowing and eviction completes.
5147 			 */
5148 			cv_wait(&aw.aew_cv, &arc_evict_lock);
5149 
5150 			/*
5151 			 * In case of "false" wakeup, we will still be on the
5152 			 * list.
5153 			 */
5154 			if (list_link_active(&aw.aew_node))
5155 				list_remove(&arc_evict_waiters, &aw);
5156 
5157 			cv_destroy(&aw.aew_cv);
5158 		}
5159 	}
5160 	mutex_exit(&arc_evict_lock);
5161 }
5162 
5163 /*
5164  * Allocate a block and return it to the caller. If we are hitting the
5165  * hard limit for the cache size, we must sleep, waiting for the eviction
5166  * thread to catch up. If we're past the target size but below the hard
5167  * limit, we'll only signal the reclaim thread and continue on.
5168  */
5169 static void
5170 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag,
5171     boolean_t do_adapt)
5172 {
5173 	arc_state_t *state = hdr->b_l1hdr.b_state;
5174 	arc_buf_contents_t type = arc_buf_type(hdr);
5175 
5176 	if (do_adapt)
5177 		arc_adapt(size, state);
5178 
5179 	/*
5180 	 * If arc_size is currently overflowing, we must be adding data
5181 	 * faster than we are evicting.  To ensure we don't compound the
5182 	 * problem by adding more data and forcing arc_size to grow even
5183 	 * further past it's target size, we wait for the eviction thread to
5184 	 * make some progress.  We also wait for there to be sufficient free
5185 	 * memory in the system, as measured by arc_free_memory().
5186 	 *
5187 	 * Specifically, we wait for zfs_arc_eviction_pct percent of the
5188 	 * requested size to be evicted.  This should be more than 100%, to
5189 	 * ensure that that progress is also made towards getting arc_size
5190 	 * under arc_c.  See the comment above zfs_arc_eviction_pct.
5191 	 *
5192 	 * We do the overflowing check without holding the arc_evict_lock to
5193 	 * reduce lock contention in this hot path.  Note that
5194 	 * arc_wait_for_eviction() will acquire the lock and check again to
5195 	 * ensure we are truly overflowing before blocking.
5196 	 */
5197 	if (arc_is_overflowing()) {
5198 		arc_wait_for_eviction(size *
5199 		    zfs_arc_eviction_pct / 100);
5200 	}
5201 
5202 	VERIFY3U(hdr->b_type, ==, type);
5203 	if (type == ARC_BUFC_METADATA) {
5204 		arc_space_consume(size, ARC_SPACE_META);
5205 	} else {
5206 		arc_space_consume(size, ARC_SPACE_DATA);
5207 	}
5208 
5209 	/*
5210 	 * Update the state size.  Note that ghost states have a
5211 	 * "ghost size" and so don't need to be updated.
5212 	 */
5213 	if (!GHOST_STATE(state)) {
5214 
5215 		(void) zfs_refcount_add_many(&state->arcs_size, size, tag);
5216 
5217 		/*
5218 		 * If this is reached via arc_read, the link is
5219 		 * protected by the hash lock. If reached via
5220 		 * arc_buf_alloc, the header should not be accessed by
5221 		 * any other thread. And, if reached via arc_read_done,
5222 		 * the hash lock will protect it if it's found in the
5223 		 * hash table; otherwise no other thread should be
5224 		 * trying to [add|remove]_reference it.
5225 		 */
5226 		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5227 			ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5228 			(void) zfs_refcount_add_many(&state->arcs_esize[type],
5229 			    size, tag);
5230 		}
5231 
5232 		/*
5233 		 * If we are growing the cache, and we are adding anonymous
5234 		 * data, and we have outgrown arc_p, update arc_p
5235 		 */
5236 		if (aggsum_upper_bound(&arc_size) < arc_c &&
5237 		    hdr->b_l1hdr.b_state == arc_anon &&
5238 		    (zfs_refcount_count(&arc_anon->arcs_size) +
5239 		    zfs_refcount_count(&arc_mru->arcs_size) > arc_p))
5240 			arc_p = MIN(arc_c, arc_p + size);
5241 	}
5242 }
5243 
5244 static void
5245 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
5246 {
5247 	arc_free_data_impl(hdr, size, tag);
5248 	abd_free(abd);
5249 }
5250 
5251 static void
5252 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
5253 {
5254 	arc_buf_contents_t type = arc_buf_type(hdr);
5255 
5256 	arc_free_data_impl(hdr, size, tag);
5257 	if (type == ARC_BUFC_METADATA) {
5258 		zio_buf_free(buf, size);
5259 	} else {
5260 		ASSERT(type == ARC_BUFC_DATA);
5261 		zio_data_buf_free(buf, size);
5262 	}
5263 }
5264 
5265 /*
5266  * Free the arc data buffer.
5267  */
5268 static void
5269 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5270 {
5271 	arc_state_t *state = hdr->b_l1hdr.b_state;
5272 	arc_buf_contents_t type = arc_buf_type(hdr);
5273 
5274 	/* protected by hash lock, if in the hash table */
5275 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5276 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5277 		ASSERT(state != arc_anon && state != arc_l2c_only);
5278 
5279 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
5280 		    size, tag);
5281 	}
5282 	(void) zfs_refcount_remove_many(&state->arcs_size, size, tag);
5283 
5284 	VERIFY3U(hdr->b_type, ==, type);
5285 	if (type == ARC_BUFC_METADATA) {
5286 		arc_space_return(size, ARC_SPACE_META);
5287 	} else {
5288 		ASSERT(type == ARC_BUFC_DATA);
5289 		arc_space_return(size, ARC_SPACE_DATA);
5290 	}
5291 }
5292 
5293 /*
5294  * This routine is called whenever a buffer is accessed.
5295  * NOTE: the hash lock is dropped in this function.
5296  */
5297 static void
5298 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
5299 {
5300 	clock_t now;
5301 
5302 	ASSERT(MUTEX_HELD(hash_lock));
5303 	ASSERT(HDR_HAS_L1HDR(hdr));
5304 
5305 	if (hdr->b_l1hdr.b_state == arc_anon) {
5306 		/*
5307 		 * This buffer is not in the cache, and does not
5308 		 * appear in our "ghost" list.  Add the new buffer
5309 		 * to the MRU state.
5310 		 */
5311 
5312 		ASSERT0(hdr->b_l1hdr.b_arc_access);
5313 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5314 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5315 		arc_change_state(arc_mru, hdr, hash_lock);
5316 
5317 	} else if (hdr->b_l1hdr.b_state == arc_mru) {
5318 		now = ddi_get_lbolt();
5319 
5320 		/*
5321 		 * If this buffer is here because of a prefetch, then either:
5322 		 * - clear the flag if this is a "referencing" read
5323 		 *   (any subsequent access will bump this into the MFU state).
5324 		 * or
5325 		 * - move the buffer to the head of the list if this is
5326 		 *   another prefetch (to make it less likely to be evicted).
5327 		 */
5328 		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5329 			if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5330 				/* link protected by hash lock */
5331 				ASSERT(multilist_link_active(
5332 				    &hdr->b_l1hdr.b_arc_node));
5333 			} else {
5334 				arc_hdr_clear_flags(hdr,
5335 				    ARC_FLAG_PREFETCH |
5336 				    ARC_FLAG_PRESCIENT_PREFETCH);
5337 				atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
5338 				ARCSTAT_BUMP(arcstat_mru_hits);
5339 			}
5340 			hdr->b_l1hdr.b_arc_access = now;
5341 			return;
5342 		}
5343 
5344 		/*
5345 		 * This buffer has been "accessed" only once so far,
5346 		 * but it is still in the cache. Move it to the MFU
5347 		 * state.
5348 		 */
5349 		if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5350 		    ARC_MINTIME)) {
5351 			/*
5352 			 * More than 125ms have passed since we
5353 			 * instantiated this buffer.  Move it to the
5354 			 * most frequently used state.
5355 			 */
5356 			hdr->b_l1hdr.b_arc_access = now;
5357 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5358 			arc_change_state(arc_mfu, hdr, hash_lock);
5359 		}
5360 		atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
5361 		ARCSTAT_BUMP(arcstat_mru_hits);
5362 	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5363 		arc_state_t	*new_state;
5364 		/*
5365 		 * This buffer has been "accessed" recently, but
5366 		 * was evicted from the cache.  Move it to the
5367 		 * MFU state.
5368 		 */
5369 
5370 		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5371 			new_state = arc_mru;
5372 			if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
5373 				arc_hdr_clear_flags(hdr,
5374 				    ARC_FLAG_PREFETCH |
5375 				    ARC_FLAG_PRESCIENT_PREFETCH);
5376 			}
5377 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5378 		} else {
5379 			new_state = arc_mfu;
5380 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5381 		}
5382 
5383 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5384 		arc_change_state(new_state, hdr, hash_lock);
5385 
5386 		atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
5387 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5388 	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
5389 		/*
5390 		 * This buffer has been accessed more than once and is
5391 		 * still in the cache.  Keep it in the MFU state.
5392 		 *
5393 		 * NOTE: an add_reference() that occurred when we did
5394 		 * the arc_read() will have kicked this off the list.
5395 		 * If it was a prefetch, we will explicitly move it to
5396 		 * the head of the list now.
5397 		 */
5398 
5399 		atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
5400 		ARCSTAT_BUMP(arcstat_mfu_hits);
5401 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5402 	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5403 		arc_state_t	*new_state = arc_mfu;
5404 		/*
5405 		 * This buffer has been accessed more than once but has
5406 		 * been evicted from the cache.  Move it back to the
5407 		 * MFU state.
5408 		 */
5409 
5410 		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5411 			/*
5412 			 * This is a prefetch access...
5413 			 * move this block back to the MRU state.
5414 			 */
5415 			new_state = arc_mru;
5416 		}
5417 
5418 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5419 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5420 		arc_change_state(new_state, hdr, hash_lock);
5421 
5422 		atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
5423 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5424 	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5425 		/*
5426 		 * This buffer is on the 2nd Level ARC.
5427 		 */
5428 
5429 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5430 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5431 		arc_change_state(arc_mfu, hdr, hash_lock);
5432 	} else {
5433 		cmn_err(CE_PANIC, "invalid arc state 0x%p",
5434 		    hdr->b_l1hdr.b_state);
5435 	}
5436 }
5437 
5438 /*
5439  * This routine is called by dbuf_hold() to update the arc_access() state
5440  * which otherwise would be skipped for entries in the dbuf cache.
5441  */
5442 void
5443 arc_buf_access(arc_buf_t *buf)
5444 {
5445 	mutex_enter(&buf->b_evict_lock);
5446 	arc_buf_hdr_t *hdr = buf->b_hdr;
5447 
5448 	/*
5449 	 * Avoid taking the hash_lock when possible as an optimization.
5450 	 * The header must be checked again under the hash_lock in order
5451 	 * to handle the case where it is concurrently being released.
5452 	 */
5453 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5454 		mutex_exit(&buf->b_evict_lock);
5455 		return;
5456 	}
5457 
5458 	kmutex_t *hash_lock = HDR_LOCK(hdr);
5459 	mutex_enter(hash_lock);
5460 
5461 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5462 		mutex_exit(hash_lock);
5463 		mutex_exit(&buf->b_evict_lock);
5464 		ARCSTAT_BUMP(arcstat_access_skip);
5465 		return;
5466 	}
5467 
5468 	mutex_exit(&buf->b_evict_lock);
5469 
5470 	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5471 	    hdr->b_l1hdr.b_state == arc_mfu);
5472 
5473 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5474 	arc_access(hdr, hash_lock);
5475 	mutex_exit(hash_lock);
5476 
5477 	ARCSTAT_BUMP(arcstat_hits);
5478 	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr),
5479 	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5480 }
5481 
5482 /* a generic arc_read_done_func_t which you can use */
5483 /* ARGSUSED */
5484 void
5485 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5486     arc_buf_t *buf, void *arg)
5487 {
5488 	if (buf == NULL)
5489 		return;
5490 
5491 	bcopy(buf->b_data, arg, arc_buf_size(buf));
5492 	arc_buf_destroy(buf, arg);
5493 }
5494 
5495 /* a generic arc_read_done_func_t */
5496 /* ARGSUSED */
5497 void
5498 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5499     arc_buf_t *buf, void *arg)
5500 {
5501 	arc_buf_t **bufp = arg;
5502 
5503 	if (buf == NULL) {
5504 		ASSERT(zio == NULL || zio->io_error != 0);
5505 		*bufp = NULL;
5506 	} else {
5507 		ASSERT(zio == NULL || zio->io_error == 0);
5508 		*bufp = buf;
5509 		ASSERT(buf->b_data != NULL);
5510 	}
5511 }
5512 
5513 static void
5514 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5515 {
5516 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5517 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5518 		ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5519 	} else {
5520 		if (HDR_COMPRESSION_ENABLED(hdr)) {
5521 			ASSERT3U(arc_hdr_get_compress(hdr), ==,
5522 			    BP_GET_COMPRESS(bp));
5523 		}
5524 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5525 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5526 		ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5527 	}
5528 }
5529 
5530 static void
5531 arc_read_done(zio_t *zio)
5532 {
5533 	blkptr_t 	*bp = zio->io_bp;
5534 	arc_buf_hdr_t	*hdr = zio->io_private;
5535 	kmutex_t	*hash_lock = NULL;
5536 	arc_callback_t	*callback_list;
5537 	arc_callback_t	*acb;
5538 	boolean_t	freeable = B_FALSE;
5539 
5540 	/*
5541 	 * The hdr was inserted into hash-table and removed from lists
5542 	 * prior to starting I/O.  We should find this header, since
5543 	 * it's in the hash table, and it should be legit since it's
5544 	 * not possible to evict it during the I/O.  The only possible
5545 	 * reason for it not to be found is if we were freed during the
5546 	 * read.
5547 	 */
5548 	if (HDR_IN_HASH_TABLE(hdr)) {
5549 		arc_buf_hdr_t *found;
5550 
5551 		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5552 		ASSERT3U(hdr->b_dva.dva_word[0], ==,
5553 		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
5554 		ASSERT3U(hdr->b_dva.dva_word[1], ==,
5555 		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
5556 
5557 		found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5558 
5559 		ASSERT((found == hdr &&
5560 		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5561 		    (found == hdr && HDR_L2_READING(hdr)));
5562 		ASSERT3P(hash_lock, !=, NULL);
5563 	}
5564 
5565 	if (BP_IS_PROTECTED(bp)) {
5566 		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5567 		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5568 		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5569 		    hdr->b_crypt_hdr.b_iv);
5570 
5571 		if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5572 			void *tmpbuf;
5573 
5574 			tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5575 			    sizeof (zil_chain_t));
5576 			zio_crypt_decode_mac_zil(tmpbuf,
5577 			    hdr->b_crypt_hdr.b_mac);
5578 			abd_return_buf(zio->io_abd, tmpbuf,
5579 			    sizeof (zil_chain_t));
5580 		} else {
5581 			zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
5582 		}
5583 	}
5584 
5585 	if (zio->io_error == 0) {
5586 		/* byteswap if necessary */
5587 		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5588 			if (BP_GET_LEVEL(zio->io_bp) > 0) {
5589 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5590 			} else {
5591 				hdr->b_l1hdr.b_byteswap =
5592 				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5593 			}
5594 		} else {
5595 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5596 		}
5597 		if (!HDR_L2_READING(hdr)) {
5598 			hdr->b_complevel = zio->io_prop.zp_complevel;
5599 		}
5600 	}
5601 
5602 	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5603 	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5604 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5605 
5606 	callback_list = hdr->b_l1hdr.b_acb;
5607 	ASSERT3P(callback_list, !=, NULL);
5608 
5609 	if (hash_lock && zio->io_error == 0 &&
5610 	    hdr->b_l1hdr.b_state == arc_anon) {
5611 		/*
5612 		 * Only call arc_access on anonymous buffers.  This is because
5613 		 * if we've issued an I/O for an evicted buffer, we've already
5614 		 * called arc_access (to prevent any simultaneous readers from
5615 		 * getting confused).
5616 		 */
5617 		arc_access(hdr, hash_lock);
5618 	}
5619 
5620 	/*
5621 	 * If a read request has a callback (i.e. acb_done is not NULL), then we
5622 	 * make a buf containing the data according to the parameters which were
5623 	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5624 	 * aren't needlessly decompressing the data multiple times.
5625 	 */
5626 	int callback_cnt = 0;
5627 	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5628 		if (!acb->acb_done)
5629 			continue;
5630 
5631 		callback_cnt++;
5632 
5633 		if (zio->io_error != 0)
5634 			continue;
5635 
5636 		int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5637 		    &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5638 		    acb->acb_compressed, acb->acb_noauth, B_TRUE,
5639 		    &acb->acb_buf);
5640 
5641 		/*
5642 		 * Assert non-speculative zios didn't fail because an
5643 		 * encryption key wasn't loaded
5644 		 */
5645 		ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5646 		    error != EACCES);
5647 
5648 		/*
5649 		 * If we failed to decrypt, report an error now (as the zio
5650 		 * layer would have done if it had done the transforms).
5651 		 */
5652 		if (error == ECKSUM) {
5653 			ASSERT(BP_IS_PROTECTED(bp));
5654 			error = SET_ERROR(EIO);
5655 			if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5656 				spa_log_error(zio->io_spa, &acb->acb_zb);
5657 				zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
5658 				    zio->io_spa, NULL, &acb->acb_zb, zio, 0, 0);
5659 			}
5660 		}
5661 
5662 		if (error != 0) {
5663 			/*
5664 			 * Decompression or decryption failed.  Set
5665 			 * io_error so that when we call acb_done
5666 			 * (below), we will indicate that the read
5667 			 * failed. Note that in the unusual case
5668 			 * where one callback is compressed and another
5669 			 * uncompressed, we will mark all of them
5670 			 * as failed, even though the uncompressed
5671 			 * one can't actually fail.  In this case,
5672 			 * the hdr will not be anonymous, because
5673 			 * if there are multiple callbacks, it's
5674 			 * because multiple threads found the same
5675 			 * arc buf in the hash table.
5676 			 */
5677 			zio->io_error = error;
5678 		}
5679 	}
5680 
5681 	/*
5682 	 * If there are multiple callbacks, we must have the hash lock,
5683 	 * because the only way for multiple threads to find this hdr is
5684 	 * in the hash table.  This ensures that if there are multiple
5685 	 * callbacks, the hdr is not anonymous.  If it were anonymous,
5686 	 * we couldn't use arc_buf_destroy() in the error case below.
5687 	 */
5688 	ASSERT(callback_cnt < 2 || hash_lock != NULL);
5689 
5690 	hdr->b_l1hdr.b_acb = NULL;
5691 	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5692 	if (callback_cnt == 0)
5693 		ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
5694 
5695 	ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5696 	    callback_list != NULL);
5697 
5698 	if (zio->io_error == 0) {
5699 		arc_hdr_verify(hdr, zio->io_bp);
5700 	} else {
5701 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5702 		if (hdr->b_l1hdr.b_state != arc_anon)
5703 			arc_change_state(arc_anon, hdr, hash_lock);
5704 		if (HDR_IN_HASH_TABLE(hdr))
5705 			buf_hash_remove(hdr);
5706 		freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5707 	}
5708 
5709 	/*
5710 	 * Broadcast before we drop the hash_lock to avoid the possibility
5711 	 * that the hdr (and hence the cv) might be freed before we get to
5712 	 * the cv_broadcast().
5713 	 */
5714 	cv_broadcast(&hdr->b_l1hdr.b_cv);
5715 
5716 	if (hash_lock != NULL) {
5717 		mutex_exit(hash_lock);
5718 	} else {
5719 		/*
5720 		 * This block was freed while we waited for the read to
5721 		 * complete.  It has been removed from the hash table and
5722 		 * moved to the anonymous state (so that it won't show up
5723 		 * in the cache).
5724 		 */
5725 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5726 		freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5727 	}
5728 
5729 	/* execute each callback and free its structure */
5730 	while ((acb = callback_list) != NULL) {
5731 		if (acb->acb_done != NULL) {
5732 			if (zio->io_error != 0 && acb->acb_buf != NULL) {
5733 				/*
5734 				 * If arc_buf_alloc_impl() fails during
5735 				 * decompression, the buf will still be
5736 				 * allocated, and needs to be freed here.
5737 				 */
5738 				arc_buf_destroy(acb->acb_buf,
5739 				    acb->acb_private);
5740 				acb->acb_buf = NULL;
5741 			}
5742 			acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5743 			    acb->acb_buf, acb->acb_private);
5744 		}
5745 
5746 		if (acb->acb_zio_dummy != NULL) {
5747 			acb->acb_zio_dummy->io_error = zio->io_error;
5748 			zio_nowait(acb->acb_zio_dummy);
5749 		}
5750 
5751 		callback_list = acb->acb_next;
5752 		kmem_free(acb, sizeof (arc_callback_t));
5753 	}
5754 
5755 	if (freeable)
5756 		arc_hdr_destroy(hdr);
5757 }
5758 
5759 /*
5760  * "Read" the block at the specified DVA (in bp) via the
5761  * cache.  If the block is found in the cache, invoke the provided
5762  * callback immediately and return.  Note that the `zio' parameter
5763  * in the callback will be NULL in this case, since no IO was
5764  * required.  If the block is not in the cache pass the read request
5765  * on to the spa with a substitute callback function, so that the
5766  * requested block will be added to the cache.
5767  *
5768  * If a read request arrives for a block that has a read in-progress,
5769  * either wait for the in-progress read to complete (and return the
5770  * results); or, if this is a read with a "done" func, add a record
5771  * to the read to invoke the "done" func when the read completes,
5772  * and return; or just return.
5773  *
5774  * arc_read_done() will invoke all the requested "done" functions
5775  * for readers of this block.
5776  */
5777 int
5778 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5779     arc_read_done_func_t *done, void *private, zio_priority_t priority,
5780     int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5781 {
5782 	arc_buf_hdr_t *hdr = NULL;
5783 	kmutex_t *hash_lock = NULL;
5784 	zio_t *rzio;
5785 	uint64_t guid = spa_load_guid(spa);
5786 	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5787 	boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5788 	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5789 	boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5790 	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5791 	boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
5792 	int rc = 0;
5793 
5794 	ASSERT(!embedded_bp ||
5795 	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5796 	ASSERT(!BP_IS_HOLE(bp));
5797 	ASSERT(!BP_IS_REDACTED(bp));
5798 
5799 	/*
5800 	 * Normally SPL_FSTRANS will already be set since kernel threads which
5801 	 * expect to call the DMU interfaces will set it when created.  System
5802 	 * calls are similarly handled by setting/cleaning the bit in the
5803 	 * registered callback (module/os/.../zfs/zpl_*).
5804 	 *
5805 	 * External consumers such as Lustre which call the exported DMU
5806 	 * interfaces may not have set SPL_FSTRANS.  To avoid a deadlock
5807 	 * on the hash_lock always set and clear the bit.
5808 	 */
5809 	fstrans_cookie_t cookie = spl_fstrans_mark();
5810 top:
5811 	if (!embedded_bp) {
5812 		/*
5813 		 * Embedded BP's have no DVA and require no I/O to "read".
5814 		 * Create an anonymous arc buf to back it.
5815 		 */
5816 		hdr = buf_hash_find(guid, bp, &hash_lock);
5817 	}
5818 
5819 	/*
5820 	 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5821 	 * we maintain encrypted data separately from compressed / uncompressed
5822 	 * data. If the user is requesting raw encrypted data and we don't have
5823 	 * that in the header we will read from disk to guarantee that we can
5824 	 * get it even if the encryption keys aren't loaded.
5825 	 */
5826 	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5827 	    (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5828 		arc_buf_t *buf = NULL;
5829 		*arc_flags |= ARC_FLAG_CACHED;
5830 
5831 		if (HDR_IO_IN_PROGRESS(hdr)) {
5832 			zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5833 
5834 			if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5835 				mutex_exit(hash_lock);
5836 				ARCSTAT_BUMP(arcstat_cached_only_in_progress);
5837 				rc = SET_ERROR(ENOENT);
5838 				goto out;
5839 			}
5840 
5841 			ASSERT3P(head_zio, !=, NULL);
5842 			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5843 			    priority == ZIO_PRIORITY_SYNC_READ) {
5844 				/*
5845 				 * This is a sync read that needs to wait for
5846 				 * an in-flight async read. Request that the
5847 				 * zio have its priority upgraded.
5848 				 */
5849 				zio_change_priority(head_zio, priority);
5850 				DTRACE_PROBE1(arc__async__upgrade__sync,
5851 				    arc_buf_hdr_t *, hdr);
5852 				ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5853 			}
5854 			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5855 				arc_hdr_clear_flags(hdr,
5856 				    ARC_FLAG_PREDICTIVE_PREFETCH);
5857 			}
5858 
5859 			if (*arc_flags & ARC_FLAG_WAIT) {
5860 				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5861 				mutex_exit(hash_lock);
5862 				goto top;
5863 			}
5864 			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5865 
5866 			if (done) {
5867 				arc_callback_t *acb = NULL;
5868 
5869 				acb = kmem_zalloc(sizeof (arc_callback_t),
5870 				    KM_SLEEP);
5871 				acb->acb_done = done;
5872 				acb->acb_private = private;
5873 				acb->acb_compressed = compressed_read;
5874 				acb->acb_encrypted = encrypted_read;
5875 				acb->acb_noauth = noauth_read;
5876 				acb->acb_zb = *zb;
5877 				if (pio != NULL)
5878 					acb->acb_zio_dummy = zio_null(pio,
5879 					    spa, NULL, NULL, NULL, zio_flags);
5880 
5881 				ASSERT3P(acb->acb_done, !=, NULL);
5882 				acb->acb_zio_head = head_zio;
5883 				acb->acb_next = hdr->b_l1hdr.b_acb;
5884 				hdr->b_l1hdr.b_acb = acb;
5885 				mutex_exit(hash_lock);
5886 				goto out;
5887 			}
5888 			mutex_exit(hash_lock);
5889 			goto out;
5890 		}
5891 
5892 		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5893 		    hdr->b_l1hdr.b_state == arc_mfu);
5894 
5895 		if (done) {
5896 			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5897 				/*
5898 				 * This is a demand read which does not have to
5899 				 * wait for i/o because we did a predictive
5900 				 * prefetch i/o for it, which has completed.
5901 				 */
5902 				DTRACE_PROBE1(
5903 				    arc__demand__hit__predictive__prefetch,
5904 				    arc_buf_hdr_t *, hdr);
5905 				ARCSTAT_BUMP(
5906 				    arcstat_demand_hit_predictive_prefetch);
5907 				arc_hdr_clear_flags(hdr,
5908 				    ARC_FLAG_PREDICTIVE_PREFETCH);
5909 			}
5910 
5911 			if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5912 				ARCSTAT_BUMP(
5913 				    arcstat_demand_hit_prescient_prefetch);
5914 				arc_hdr_clear_flags(hdr,
5915 				    ARC_FLAG_PRESCIENT_PREFETCH);
5916 			}
5917 
5918 			ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
5919 
5920 			/* Get a buf with the desired data in it. */
5921 			rc = arc_buf_alloc_impl(hdr, spa, zb, private,
5922 			    encrypted_read, compressed_read, noauth_read,
5923 			    B_TRUE, &buf);
5924 			if (rc == ECKSUM) {
5925 				/*
5926 				 * Convert authentication and decryption errors
5927 				 * to EIO (and generate an ereport if needed)
5928 				 * before leaving the ARC.
5929 				 */
5930 				rc = SET_ERROR(EIO);
5931 				if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5932 					spa_log_error(spa, zb);
5933 					zfs_ereport_post(
5934 					    FM_EREPORT_ZFS_AUTHENTICATION,
5935 					    spa, NULL, zb, NULL, 0, 0);
5936 				}
5937 			}
5938 			if (rc != 0) {
5939 				(void) remove_reference(hdr, hash_lock,
5940 				    private);
5941 				arc_buf_destroy_impl(buf);
5942 				buf = NULL;
5943 			}
5944 
5945 			/* assert any errors weren't due to unloaded keys */
5946 			ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
5947 			    rc != EACCES);
5948 		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
5949 		    zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5950 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5951 		}
5952 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5953 		arc_access(hdr, hash_lock);
5954 		if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
5955 			arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5956 		if (*arc_flags & ARC_FLAG_L2CACHE)
5957 			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5958 		mutex_exit(hash_lock);
5959 		ARCSTAT_BUMP(arcstat_hits);
5960 		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5961 		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5962 		    data, metadata, hits);
5963 
5964 		if (done)
5965 			done(NULL, zb, bp, buf, private);
5966 	} else {
5967 		uint64_t lsize = BP_GET_LSIZE(bp);
5968 		uint64_t psize = BP_GET_PSIZE(bp);
5969 		arc_callback_t *acb;
5970 		vdev_t *vd = NULL;
5971 		uint64_t addr = 0;
5972 		boolean_t devw = B_FALSE;
5973 		uint64_t size;
5974 		abd_t *hdr_abd;
5975 		int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
5976 
5977 		if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5978 			rc = SET_ERROR(ENOENT);
5979 			if (hash_lock != NULL)
5980 				mutex_exit(hash_lock);
5981 			goto out;
5982 		}
5983 
5984 		/*
5985 		 * Gracefully handle a damaged logical block size as a
5986 		 * checksum error.
5987 		 */
5988 		if (lsize > spa_maxblocksize(spa)) {
5989 			rc = SET_ERROR(ECKSUM);
5990 			if (hash_lock != NULL)
5991 				mutex_exit(hash_lock);
5992 			goto out;
5993 		}
5994 
5995 		if (hdr == NULL) {
5996 			/*
5997 			 * This block is not in the cache or it has
5998 			 * embedded data.
5999 			 */
6000 			arc_buf_hdr_t *exists = NULL;
6001 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
6002 			hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
6003 			    BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type,
6004 			    encrypted_read);
6005 
6006 			if (!embedded_bp) {
6007 				hdr->b_dva = *BP_IDENTITY(bp);
6008 				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
6009 				exists = buf_hash_insert(hdr, &hash_lock);
6010 			}
6011 			if (exists != NULL) {
6012 				/* somebody beat us to the hash insert */
6013 				mutex_exit(hash_lock);
6014 				buf_discard_identity(hdr);
6015 				arc_hdr_destroy(hdr);
6016 				goto top; /* restart the IO request */
6017 			}
6018 		} else {
6019 			/*
6020 			 * This block is in the ghost cache or encrypted data
6021 			 * was requested and we didn't have it. If it was
6022 			 * L2-only (and thus didn't have an L1 hdr),
6023 			 * we realloc the header to add an L1 hdr.
6024 			 */
6025 			if (!HDR_HAS_L1HDR(hdr)) {
6026 				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
6027 				    hdr_full_cache);
6028 			}
6029 
6030 			if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
6031 				ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6032 				ASSERT(!HDR_HAS_RABD(hdr));
6033 				ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6034 				ASSERT0(zfs_refcount_count(
6035 				    &hdr->b_l1hdr.b_refcnt));
6036 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
6037 				ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
6038 			} else if (HDR_IO_IN_PROGRESS(hdr)) {
6039 				/*
6040 				 * If this header already had an IO in progress
6041 				 * and we are performing another IO to fetch
6042 				 * encrypted data we must wait until the first
6043 				 * IO completes so as not to confuse
6044 				 * arc_read_done(). This should be very rare
6045 				 * and so the performance impact shouldn't
6046 				 * matter.
6047 				 */
6048 				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
6049 				mutex_exit(hash_lock);
6050 				goto top;
6051 			}
6052 
6053 			/*
6054 			 * This is a delicate dance that we play here.
6055 			 * This hdr might be in the ghost list so we access
6056 			 * it to move it out of the ghost list before we
6057 			 * initiate the read. If it's a prefetch then
6058 			 * it won't have a callback so we'll remove the
6059 			 * reference that arc_buf_alloc_impl() created. We
6060 			 * do this after we've called arc_access() to
6061 			 * avoid hitting an assert in remove_reference().
6062 			 */
6063 			arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state);
6064 			arc_access(hdr, hash_lock);
6065 			arc_hdr_alloc_abd(hdr, alloc_flags);
6066 		}
6067 
6068 		if (encrypted_read) {
6069 			ASSERT(HDR_HAS_RABD(hdr));
6070 			size = HDR_GET_PSIZE(hdr);
6071 			hdr_abd = hdr->b_crypt_hdr.b_rabd;
6072 			zio_flags |= ZIO_FLAG_RAW;
6073 		} else {
6074 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6075 			size = arc_hdr_size(hdr);
6076 			hdr_abd = hdr->b_l1hdr.b_pabd;
6077 
6078 			if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6079 				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6080 			}
6081 
6082 			/*
6083 			 * For authenticated bp's, we do not ask the ZIO layer
6084 			 * to authenticate them since this will cause the entire
6085 			 * IO to fail if the key isn't loaded. Instead, we
6086 			 * defer authentication until arc_buf_fill(), which will
6087 			 * verify the data when the key is available.
6088 			 */
6089 			if (BP_IS_AUTHENTICATED(bp))
6090 				zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
6091 		}
6092 
6093 		if (*arc_flags & ARC_FLAG_PREFETCH &&
6094 		    zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))
6095 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
6096 		if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6097 			arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
6098 		if (*arc_flags & ARC_FLAG_L2CACHE)
6099 			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6100 		if (BP_IS_AUTHENTICATED(bp))
6101 			arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6102 		if (BP_GET_LEVEL(bp) > 0)
6103 			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
6104 		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
6105 			arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
6106 		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
6107 
6108 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
6109 		acb->acb_done = done;
6110 		acb->acb_private = private;
6111 		acb->acb_compressed = compressed_read;
6112 		acb->acb_encrypted = encrypted_read;
6113 		acb->acb_noauth = noauth_read;
6114 		acb->acb_zb = *zb;
6115 
6116 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6117 		hdr->b_l1hdr.b_acb = acb;
6118 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6119 
6120 		if (HDR_HAS_L2HDR(hdr) &&
6121 		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6122 			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6123 			addr = hdr->b_l2hdr.b_daddr;
6124 			/*
6125 			 * Lock out L2ARC device removal.
6126 			 */
6127 			if (vdev_is_dead(vd) ||
6128 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6129 				vd = NULL;
6130 		}
6131 
6132 		/*
6133 		 * We count both async reads and scrub IOs as asynchronous so
6134 		 * that both can be upgraded in the event of a cache hit while
6135 		 * the read IO is still in-flight.
6136 		 */
6137 		if (priority == ZIO_PRIORITY_ASYNC_READ ||
6138 		    priority == ZIO_PRIORITY_SCRUB)
6139 			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6140 		else
6141 			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6142 
6143 		/*
6144 		 * At this point, we have a level 1 cache miss or a blkptr
6145 		 * with embedded data.  Try again in L2ARC if possible.
6146 		 */
6147 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6148 
6149 		/*
6150 		 * Skip ARC stat bump for block pointers with embedded
6151 		 * data. The data are read from the blkptr itself via
6152 		 * decode_embedded_bp_compressed().
6153 		 */
6154 		if (!embedded_bp) {
6155 			DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
6156 			    blkptr_t *, bp, uint64_t, lsize,
6157 			    zbookmark_phys_t *, zb);
6158 			ARCSTAT_BUMP(arcstat_misses);
6159 			ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6160 			    demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
6161 			    metadata, misses);
6162 		}
6163 
6164 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
6165 			/*
6166 			 * Read from the L2ARC if the following are true:
6167 			 * 1. The L2ARC vdev was previously cached.
6168 			 * 2. This buffer still has L2ARC metadata.
6169 			 * 3. This buffer isn't currently writing to the L2ARC.
6170 			 * 4. The L2ARC entry wasn't evicted, which may
6171 			 *    also have invalidated the vdev.
6172 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
6173 			 */
6174 			if (HDR_HAS_L2HDR(hdr) &&
6175 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
6176 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
6177 				l2arc_read_callback_t *cb;
6178 				abd_t *abd;
6179 				uint64_t asize;
6180 
6181 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6182 				ARCSTAT_BUMP(arcstat_l2_hits);
6183 				atomic_inc_32(&hdr->b_l2hdr.b_hits);
6184 
6185 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
6186 				    KM_SLEEP);
6187 				cb->l2rcb_hdr = hdr;
6188 				cb->l2rcb_bp = *bp;
6189 				cb->l2rcb_zb = *zb;
6190 				cb->l2rcb_flags = zio_flags;
6191 
6192 				/*
6193 				 * When Compressed ARC is disabled, but the
6194 				 * L2ARC block is compressed, arc_hdr_size()
6195 				 * will have returned LSIZE rather than PSIZE.
6196 				 */
6197 				if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
6198 				    !HDR_COMPRESSION_ENABLED(hdr) &&
6199 				    HDR_GET_PSIZE(hdr) != 0) {
6200 					size = HDR_GET_PSIZE(hdr);
6201 				}
6202 
6203 				asize = vdev_psize_to_asize(vd, size);
6204 				if (asize != size) {
6205 					abd = abd_alloc_for_io(asize,
6206 					    HDR_ISTYPE_METADATA(hdr));
6207 					cb->l2rcb_abd = abd;
6208 				} else {
6209 					abd = hdr_abd;
6210 				}
6211 
6212 				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6213 				    addr + asize <= vd->vdev_psize -
6214 				    VDEV_LABEL_END_SIZE);
6215 
6216 				/*
6217 				 * l2arc read.  The SCL_L2ARC lock will be
6218 				 * released by l2arc_read_done().
6219 				 * Issue a null zio if the underlying buffer
6220 				 * was squashed to zero size by compression.
6221 				 */
6222 				ASSERT3U(arc_hdr_get_compress(hdr), !=,
6223 				    ZIO_COMPRESS_EMPTY);
6224 				rzio = zio_read_phys(pio, vd, addr,
6225 				    asize, abd,
6226 				    ZIO_CHECKSUM_OFF,
6227 				    l2arc_read_done, cb, priority,
6228 				    zio_flags | ZIO_FLAG_DONT_CACHE |
6229 				    ZIO_FLAG_CANFAIL |
6230 				    ZIO_FLAG_DONT_PROPAGATE |
6231 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
6232 				acb->acb_zio_head = rzio;
6233 
6234 				if (hash_lock != NULL)
6235 					mutex_exit(hash_lock);
6236 
6237 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6238 				    zio_t *, rzio);
6239 				ARCSTAT_INCR(arcstat_l2_read_bytes,
6240 				    HDR_GET_PSIZE(hdr));
6241 
6242 				if (*arc_flags & ARC_FLAG_NOWAIT) {
6243 					zio_nowait(rzio);
6244 					goto out;
6245 				}
6246 
6247 				ASSERT(*arc_flags & ARC_FLAG_WAIT);
6248 				if (zio_wait(rzio) == 0)
6249 					goto out;
6250 
6251 				/* l2arc read error; goto zio_read() */
6252 				if (hash_lock != NULL)
6253 					mutex_enter(hash_lock);
6254 			} else {
6255 				DTRACE_PROBE1(l2arc__miss,
6256 				    arc_buf_hdr_t *, hdr);
6257 				ARCSTAT_BUMP(arcstat_l2_misses);
6258 				if (HDR_L2_WRITING(hdr))
6259 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
6260 				spa_config_exit(spa, SCL_L2ARC, vd);
6261 			}
6262 		} else {
6263 			if (vd != NULL)
6264 				spa_config_exit(spa, SCL_L2ARC, vd);
6265 			/*
6266 			 * Skip ARC stat bump for block pointers with
6267 			 * embedded data. The data are read from the blkptr
6268 			 * itself via decode_embedded_bp_compressed().
6269 			 */
6270 			if (l2arc_ndev != 0 && !embedded_bp) {
6271 				DTRACE_PROBE1(l2arc__miss,
6272 				    arc_buf_hdr_t *, hdr);
6273 				ARCSTAT_BUMP(arcstat_l2_misses);
6274 			}
6275 		}
6276 
6277 		rzio = zio_read(pio, spa, bp, hdr_abd, size,
6278 		    arc_read_done, hdr, priority, zio_flags, zb);
6279 		acb->acb_zio_head = rzio;
6280 
6281 		if (hash_lock != NULL)
6282 			mutex_exit(hash_lock);
6283 
6284 		if (*arc_flags & ARC_FLAG_WAIT) {
6285 			rc = zio_wait(rzio);
6286 			goto out;
6287 		}
6288 
6289 		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6290 		zio_nowait(rzio);
6291 	}
6292 
6293 out:
6294 	/* embedded bps don't actually go to disk */
6295 	if (!embedded_bp)
6296 		spa_read_history_add(spa, zb, *arc_flags);
6297 	spl_fstrans_unmark(cookie);
6298 	return (rc);
6299 }
6300 
6301 arc_prune_t *
6302 arc_add_prune_callback(arc_prune_func_t *func, void *private)
6303 {
6304 	arc_prune_t *p;
6305 
6306 	p = kmem_alloc(sizeof (*p), KM_SLEEP);
6307 	p->p_pfunc = func;
6308 	p->p_private = private;
6309 	list_link_init(&p->p_node);
6310 	zfs_refcount_create(&p->p_refcnt);
6311 
6312 	mutex_enter(&arc_prune_mtx);
6313 	zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
6314 	list_insert_head(&arc_prune_list, p);
6315 	mutex_exit(&arc_prune_mtx);
6316 
6317 	return (p);
6318 }
6319 
6320 void
6321 arc_remove_prune_callback(arc_prune_t *p)
6322 {
6323 	boolean_t wait = B_FALSE;
6324 	mutex_enter(&arc_prune_mtx);
6325 	list_remove(&arc_prune_list, p);
6326 	if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6327 		wait = B_TRUE;
6328 	mutex_exit(&arc_prune_mtx);
6329 
6330 	/* wait for arc_prune_task to finish */
6331 	if (wait)
6332 		taskq_wait_outstanding(arc_prune_taskq, 0);
6333 	ASSERT0(zfs_refcount_count(&p->p_refcnt));
6334 	zfs_refcount_destroy(&p->p_refcnt);
6335 	kmem_free(p, sizeof (*p));
6336 }
6337 
6338 /*
6339  * Notify the arc that a block was freed, and thus will never be used again.
6340  */
6341 void
6342 arc_freed(spa_t *spa, const blkptr_t *bp)
6343 {
6344 	arc_buf_hdr_t *hdr;
6345 	kmutex_t *hash_lock;
6346 	uint64_t guid = spa_load_guid(spa);
6347 
6348 	ASSERT(!BP_IS_EMBEDDED(bp));
6349 
6350 	hdr = buf_hash_find(guid, bp, &hash_lock);
6351 	if (hdr == NULL)
6352 		return;
6353 
6354 	/*
6355 	 * We might be trying to free a block that is still doing I/O
6356 	 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6357 	 * dmu_sync-ed block). If this block is being prefetched, then it
6358 	 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6359 	 * until the I/O completes. A block may also have a reference if it is
6360 	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6361 	 * have written the new block to its final resting place on disk but
6362 	 * without the dedup flag set. This would have left the hdr in the MRU
6363 	 * state and discoverable. When the txg finally syncs it detects that
6364 	 * the block was overridden in open context and issues an override I/O.
6365 	 * Since this is a dedup block, the override I/O will determine if the
6366 	 * block is already in the DDT. If so, then it will replace the io_bp
6367 	 * with the bp from the DDT and allow the I/O to finish. When the I/O
6368 	 * reaches the done callback, dbuf_write_override_done, it will
6369 	 * check to see if the io_bp and io_bp_override are identical.
6370 	 * If they are not, then it indicates that the bp was replaced with
6371 	 * the bp in the DDT and the override bp is freed. This allows
6372 	 * us to arrive here with a reference on a block that is being
6373 	 * freed. So if we have an I/O in progress, or a reference to
6374 	 * this hdr, then we don't destroy the hdr.
6375 	 */
6376 	if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
6377 	    zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
6378 		arc_change_state(arc_anon, hdr, hash_lock);
6379 		arc_hdr_destroy(hdr);
6380 		mutex_exit(hash_lock);
6381 	} else {
6382 		mutex_exit(hash_lock);
6383 	}
6384 
6385 }
6386 
6387 /*
6388  * Release this buffer from the cache, making it an anonymous buffer.  This
6389  * must be done after a read and prior to modifying the buffer contents.
6390  * If the buffer has more than one reference, we must make
6391  * a new hdr for the buffer.
6392  */
6393 void
6394 arc_release(arc_buf_t *buf, void *tag)
6395 {
6396 	arc_buf_hdr_t *hdr = buf->b_hdr;
6397 
6398 	/*
6399 	 * It would be nice to assert that if its DMU metadata (level >
6400 	 * 0 || it's the dnode file), then it must be syncing context.
6401 	 * But we don't know that information at this level.
6402 	 */
6403 
6404 	mutex_enter(&buf->b_evict_lock);
6405 
6406 	ASSERT(HDR_HAS_L1HDR(hdr));
6407 
6408 	/*
6409 	 * We don't grab the hash lock prior to this check, because if
6410 	 * the buffer's header is in the arc_anon state, it won't be
6411 	 * linked into the hash table.
6412 	 */
6413 	if (hdr->b_l1hdr.b_state == arc_anon) {
6414 		mutex_exit(&buf->b_evict_lock);
6415 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6416 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
6417 		ASSERT(!HDR_HAS_L2HDR(hdr));
6418 		ASSERT(HDR_EMPTY(hdr));
6419 
6420 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6421 		ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6422 		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
6423 
6424 		hdr->b_l1hdr.b_arc_access = 0;
6425 
6426 		/*
6427 		 * If the buf is being overridden then it may already
6428 		 * have a hdr that is not empty.
6429 		 */
6430 		buf_discard_identity(hdr);
6431 		arc_buf_thaw(buf);
6432 
6433 		return;
6434 	}
6435 
6436 	kmutex_t *hash_lock = HDR_LOCK(hdr);
6437 	mutex_enter(hash_lock);
6438 
6439 	/*
6440 	 * This assignment is only valid as long as the hash_lock is
6441 	 * held, we must be careful not to reference state or the
6442 	 * b_state field after dropping the lock.
6443 	 */
6444 	arc_state_t *state = hdr->b_l1hdr.b_state;
6445 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6446 	ASSERT3P(state, !=, arc_anon);
6447 
6448 	/* this buffer is not on any list */
6449 	ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6450 
6451 	if (HDR_HAS_L2HDR(hdr)) {
6452 		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6453 
6454 		/*
6455 		 * We have to recheck this conditional again now that
6456 		 * we're holding the l2ad_mtx to prevent a race with
6457 		 * another thread which might be concurrently calling
6458 		 * l2arc_evict(). In that case, l2arc_evict() might have
6459 		 * destroyed the header's L2 portion as we were waiting
6460 		 * to acquire the l2ad_mtx.
6461 		 */
6462 		if (HDR_HAS_L2HDR(hdr))
6463 			arc_hdr_l2hdr_destroy(hdr);
6464 
6465 		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6466 	}
6467 
6468 	/*
6469 	 * Do we have more than one buf?
6470 	 */
6471 	if (hdr->b_l1hdr.b_bufcnt > 1) {
6472 		arc_buf_hdr_t *nhdr;
6473 		uint64_t spa = hdr->b_spa;
6474 		uint64_t psize = HDR_GET_PSIZE(hdr);
6475 		uint64_t lsize = HDR_GET_LSIZE(hdr);
6476 		boolean_t protected = HDR_PROTECTED(hdr);
6477 		enum zio_compress compress = arc_hdr_get_compress(hdr);
6478 		arc_buf_contents_t type = arc_buf_type(hdr);
6479 		VERIFY3U(hdr->b_type, ==, type);
6480 
6481 		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6482 		(void) remove_reference(hdr, hash_lock, tag);
6483 
6484 		if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
6485 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6486 			ASSERT(ARC_BUF_LAST(buf));
6487 		}
6488 
6489 		/*
6490 		 * Pull the data off of this hdr and attach it to
6491 		 * a new anonymous hdr. Also find the last buffer
6492 		 * in the hdr's buffer list.
6493 		 */
6494 		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6495 		ASSERT3P(lastbuf, !=, NULL);
6496 
6497 		/*
6498 		 * If the current arc_buf_t and the hdr are sharing their data
6499 		 * buffer, then we must stop sharing that block.
6500 		 */
6501 		if (arc_buf_is_shared(buf)) {
6502 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6503 			VERIFY(!arc_buf_is_shared(lastbuf));
6504 
6505 			/*
6506 			 * First, sever the block sharing relationship between
6507 			 * buf and the arc_buf_hdr_t.
6508 			 */
6509 			arc_unshare_buf(hdr, buf);
6510 
6511 			/*
6512 			 * Now we need to recreate the hdr's b_pabd. Since we
6513 			 * have lastbuf handy, we try to share with it, but if
6514 			 * we can't then we allocate a new b_pabd and copy the
6515 			 * data from buf into it.
6516 			 */
6517 			if (arc_can_share(hdr, lastbuf)) {
6518 				arc_share_buf(hdr, lastbuf);
6519 			} else {
6520 				arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT);
6521 				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6522 				    buf->b_data, psize);
6523 			}
6524 			VERIFY3P(lastbuf->b_data, !=, NULL);
6525 		} else if (HDR_SHARED_DATA(hdr)) {
6526 			/*
6527 			 * Uncompressed shared buffers are always at the end
6528 			 * of the list. Compressed buffers don't have the
6529 			 * same requirements. This makes it hard to
6530 			 * simply assert that the lastbuf is shared so
6531 			 * we rely on the hdr's compression flags to determine
6532 			 * if we have a compressed, shared buffer.
6533 			 */
6534 			ASSERT(arc_buf_is_shared(lastbuf) ||
6535 			    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6536 			ASSERT(!ARC_BUF_SHARED(buf));
6537 		}
6538 
6539 		ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6540 		ASSERT3P(state, !=, arc_l2c_only);
6541 
6542 		(void) zfs_refcount_remove_many(&state->arcs_size,
6543 		    arc_buf_size(buf), buf);
6544 
6545 		if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6546 			ASSERT3P(state, !=, arc_l2c_only);
6547 			(void) zfs_refcount_remove_many(
6548 			    &state->arcs_esize[type],
6549 			    arc_buf_size(buf), buf);
6550 		}
6551 
6552 		hdr->b_l1hdr.b_bufcnt -= 1;
6553 		if (ARC_BUF_ENCRYPTED(buf))
6554 			hdr->b_crypt_hdr.b_ebufcnt -= 1;
6555 
6556 		arc_cksum_verify(buf);
6557 		arc_buf_unwatch(buf);
6558 
6559 		/* if this is the last uncompressed buf free the checksum */
6560 		if (!arc_hdr_has_uncompressed_buf(hdr))
6561 			arc_cksum_free(hdr);
6562 
6563 		mutex_exit(hash_lock);
6564 
6565 		/*
6566 		 * Allocate a new hdr. The new hdr will contain a b_pabd
6567 		 * buffer which will be freed in arc_write().
6568 		 */
6569 		nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6570 		    compress, hdr->b_complevel, type, HDR_HAS_RABD(hdr));
6571 		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6572 		ASSERT0(nhdr->b_l1hdr.b_bufcnt);
6573 		ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6574 		VERIFY3U(nhdr->b_type, ==, type);
6575 		ASSERT(!HDR_SHARED_DATA(nhdr));
6576 
6577 		nhdr->b_l1hdr.b_buf = buf;
6578 		nhdr->b_l1hdr.b_bufcnt = 1;
6579 		if (ARC_BUF_ENCRYPTED(buf))
6580 			nhdr->b_crypt_hdr.b_ebufcnt = 1;
6581 		nhdr->b_l1hdr.b_mru_hits = 0;
6582 		nhdr->b_l1hdr.b_mru_ghost_hits = 0;
6583 		nhdr->b_l1hdr.b_mfu_hits = 0;
6584 		nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
6585 		nhdr->b_l1hdr.b_l2_hits = 0;
6586 		(void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6587 		buf->b_hdr = nhdr;
6588 
6589 		mutex_exit(&buf->b_evict_lock);
6590 		(void) zfs_refcount_add_many(&arc_anon->arcs_size,
6591 		    arc_buf_size(buf), buf);
6592 	} else {
6593 		mutex_exit(&buf->b_evict_lock);
6594 		ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6595 		/* protected by hash lock, or hdr is on arc_anon */
6596 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6597 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6598 		hdr->b_l1hdr.b_mru_hits = 0;
6599 		hdr->b_l1hdr.b_mru_ghost_hits = 0;
6600 		hdr->b_l1hdr.b_mfu_hits = 0;
6601 		hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6602 		hdr->b_l1hdr.b_l2_hits = 0;
6603 		arc_change_state(arc_anon, hdr, hash_lock);
6604 		hdr->b_l1hdr.b_arc_access = 0;
6605 
6606 		mutex_exit(hash_lock);
6607 		buf_discard_identity(hdr);
6608 		arc_buf_thaw(buf);
6609 	}
6610 }
6611 
6612 int
6613 arc_released(arc_buf_t *buf)
6614 {
6615 	int released;
6616 
6617 	mutex_enter(&buf->b_evict_lock);
6618 	released = (buf->b_data != NULL &&
6619 	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
6620 	mutex_exit(&buf->b_evict_lock);
6621 	return (released);
6622 }
6623 
6624 #ifdef ZFS_DEBUG
6625 int
6626 arc_referenced(arc_buf_t *buf)
6627 {
6628 	int referenced;
6629 
6630 	mutex_enter(&buf->b_evict_lock);
6631 	referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6632 	mutex_exit(&buf->b_evict_lock);
6633 	return (referenced);
6634 }
6635 #endif
6636 
6637 static void
6638 arc_write_ready(zio_t *zio)
6639 {
6640 	arc_write_callback_t *callback = zio->io_private;
6641 	arc_buf_t *buf = callback->awcb_buf;
6642 	arc_buf_hdr_t *hdr = buf->b_hdr;
6643 	blkptr_t *bp = zio->io_bp;
6644 	uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6645 	fstrans_cookie_t cookie = spl_fstrans_mark();
6646 
6647 	ASSERT(HDR_HAS_L1HDR(hdr));
6648 	ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6649 	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
6650 
6651 	/*
6652 	 * If we're reexecuting this zio because the pool suspended, then
6653 	 * cleanup any state that was previously set the first time the
6654 	 * callback was invoked.
6655 	 */
6656 	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6657 		arc_cksum_free(hdr);
6658 		arc_buf_unwatch(buf);
6659 		if (hdr->b_l1hdr.b_pabd != NULL) {
6660 			if (arc_buf_is_shared(buf)) {
6661 				arc_unshare_buf(hdr, buf);
6662 			} else {
6663 				arc_hdr_free_abd(hdr, B_FALSE);
6664 			}
6665 		}
6666 
6667 		if (HDR_HAS_RABD(hdr))
6668 			arc_hdr_free_abd(hdr, B_TRUE);
6669 	}
6670 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6671 	ASSERT(!HDR_HAS_RABD(hdr));
6672 	ASSERT(!HDR_SHARED_DATA(hdr));
6673 	ASSERT(!arc_buf_is_shared(buf));
6674 
6675 	callback->awcb_ready(zio, buf, callback->awcb_private);
6676 
6677 	if (HDR_IO_IN_PROGRESS(hdr))
6678 		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6679 
6680 	arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6681 
6682 	if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr))
6683 		hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp));
6684 
6685 	if (BP_IS_PROTECTED(bp)) {
6686 		/* ZIL blocks are written through zio_rewrite */
6687 		ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6688 		ASSERT(HDR_PROTECTED(hdr));
6689 
6690 		if (BP_SHOULD_BYTESWAP(bp)) {
6691 			if (BP_GET_LEVEL(bp) > 0) {
6692 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6693 			} else {
6694 				hdr->b_l1hdr.b_byteswap =
6695 				    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6696 			}
6697 		} else {
6698 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6699 		}
6700 
6701 		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6702 		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6703 		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6704 		    hdr->b_crypt_hdr.b_iv);
6705 		zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6706 	}
6707 
6708 	/*
6709 	 * If this block was written for raw encryption but the zio layer
6710 	 * ended up only authenticating it, adjust the buffer flags now.
6711 	 */
6712 	if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6713 		arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6714 		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6715 		if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6716 			buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6717 	} else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6718 		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6719 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6720 	}
6721 
6722 	/* this must be done after the buffer flags are adjusted */
6723 	arc_cksum_compute(buf);
6724 
6725 	enum zio_compress compress;
6726 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6727 		compress = ZIO_COMPRESS_OFF;
6728 	} else {
6729 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6730 		compress = BP_GET_COMPRESS(bp);
6731 	}
6732 	HDR_SET_PSIZE(hdr, psize);
6733 	arc_hdr_set_compress(hdr, compress);
6734 	hdr->b_complevel = zio->io_prop.zp_complevel;
6735 
6736 	if (zio->io_error != 0 || psize == 0)
6737 		goto out;
6738 
6739 	/*
6740 	 * Fill the hdr with data. If the buffer is encrypted we have no choice
6741 	 * but to copy the data into b_radb. If the hdr is compressed, the data
6742 	 * we want is available from the zio, otherwise we can take it from
6743 	 * the buf.
6744 	 *
6745 	 * We might be able to share the buf's data with the hdr here. However,
6746 	 * doing so would cause the ARC to be full of linear ABDs if we write a
6747 	 * lot of shareable data. As a compromise, we check whether scattered
6748 	 * ABDs are allowed, and assume that if they are then the user wants
6749 	 * the ARC to be primarily filled with them regardless of the data being
6750 	 * written. Therefore, if they're allowed then we allocate one and copy
6751 	 * the data into it; otherwise, we share the data directly if we can.
6752 	 */
6753 	if (ARC_BUF_ENCRYPTED(buf)) {
6754 		ASSERT3U(psize, >, 0);
6755 		ASSERT(ARC_BUF_COMPRESSED(buf));
6756 		arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA);
6757 		abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6758 	} else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
6759 		/*
6760 		 * Ideally, we would always copy the io_abd into b_pabd, but the
6761 		 * user may have disabled compressed ARC, thus we must check the
6762 		 * hdr's compression setting rather than the io_bp's.
6763 		 */
6764 		if (BP_IS_ENCRYPTED(bp)) {
6765 			ASSERT3U(psize, >, 0);
6766 			arc_hdr_alloc_abd(hdr,
6767 			    ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA);
6768 			abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6769 		} else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6770 		    !ARC_BUF_COMPRESSED(buf)) {
6771 			ASSERT3U(psize, >, 0);
6772 			arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT);
6773 			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6774 		} else {
6775 			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6776 			arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT);
6777 			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6778 			    arc_buf_size(buf));
6779 		}
6780 	} else {
6781 		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6782 		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6783 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6784 
6785 		arc_share_buf(hdr, buf);
6786 	}
6787 
6788 out:
6789 	arc_hdr_verify(hdr, bp);
6790 	spl_fstrans_unmark(cookie);
6791 }
6792 
6793 static void
6794 arc_write_children_ready(zio_t *zio)
6795 {
6796 	arc_write_callback_t *callback = zio->io_private;
6797 	arc_buf_t *buf = callback->awcb_buf;
6798 
6799 	callback->awcb_children_ready(zio, buf, callback->awcb_private);
6800 }
6801 
6802 /*
6803  * The SPA calls this callback for each physical write that happens on behalf
6804  * of a logical write.  See the comment in dbuf_write_physdone() for details.
6805  */
6806 static void
6807 arc_write_physdone(zio_t *zio)
6808 {
6809 	arc_write_callback_t *cb = zio->io_private;
6810 	if (cb->awcb_physdone != NULL)
6811 		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6812 }
6813 
6814 static void
6815 arc_write_done(zio_t *zio)
6816 {
6817 	arc_write_callback_t *callback = zio->io_private;
6818 	arc_buf_t *buf = callback->awcb_buf;
6819 	arc_buf_hdr_t *hdr = buf->b_hdr;
6820 
6821 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6822 
6823 	if (zio->io_error == 0) {
6824 		arc_hdr_verify(hdr, zio->io_bp);
6825 
6826 		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6827 			buf_discard_identity(hdr);
6828 		} else {
6829 			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6830 			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
6831 		}
6832 	} else {
6833 		ASSERT(HDR_EMPTY(hdr));
6834 	}
6835 
6836 	/*
6837 	 * If the block to be written was all-zero or compressed enough to be
6838 	 * embedded in the BP, no write was performed so there will be no
6839 	 * dva/birth/checksum.  The buffer must therefore remain anonymous
6840 	 * (and uncached).
6841 	 */
6842 	if (!HDR_EMPTY(hdr)) {
6843 		arc_buf_hdr_t *exists;
6844 		kmutex_t *hash_lock;
6845 
6846 		ASSERT3U(zio->io_error, ==, 0);
6847 
6848 		arc_cksum_verify(buf);
6849 
6850 		exists = buf_hash_insert(hdr, &hash_lock);
6851 		if (exists != NULL) {
6852 			/*
6853 			 * This can only happen if we overwrite for
6854 			 * sync-to-convergence, because we remove
6855 			 * buffers from the hash table when we arc_free().
6856 			 */
6857 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6858 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6859 					panic("bad overwrite, hdr=%p exists=%p",
6860 					    (void *)hdr, (void *)exists);
6861 				ASSERT(zfs_refcount_is_zero(
6862 				    &exists->b_l1hdr.b_refcnt));
6863 				arc_change_state(arc_anon, exists, hash_lock);
6864 				arc_hdr_destroy(exists);
6865 				mutex_exit(hash_lock);
6866 				exists = buf_hash_insert(hdr, &hash_lock);
6867 				ASSERT3P(exists, ==, NULL);
6868 			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6869 				/* nopwrite */
6870 				ASSERT(zio->io_prop.zp_nopwrite);
6871 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6872 					panic("bad nopwrite, hdr=%p exists=%p",
6873 					    (void *)hdr, (void *)exists);
6874 			} else {
6875 				/* Dedup */
6876 				ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
6877 				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6878 				ASSERT(BP_GET_DEDUP(zio->io_bp));
6879 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6880 			}
6881 		}
6882 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6883 		/* if it's not anon, we are doing a scrub */
6884 		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6885 			arc_access(hdr, hash_lock);
6886 		mutex_exit(hash_lock);
6887 	} else {
6888 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6889 	}
6890 
6891 	ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
6892 	callback->awcb_done(zio, buf, callback->awcb_private);
6893 
6894 	abd_put(zio->io_abd);
6895 	kmem_free(callback, sizeof (arc_write_callback_t));
6896 }
6897 
6898 zio_t *
6899 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
6900     blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc,
6901     const zio_prop_t *zp, arc_write_done_func_t *ready,
6902     arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
6903     arc_write_done_func_t *done, void *private, zio_priority_t priority,
6904     int zio_flags, const zbookmark_phys_t *zb)
6905 {
6906 	arc_buf_hdr_t *hdr = buf->b_hdr;
6907 	arc_write_callback_t *callback;
6908 	zio_t *zio;
6909 	zio_prop_t localprop = *zp;
6910 
6911 	ASSERT3P(ready, !=, NULL);
6912 	ASSERT3P(done, !=, NULL);
6913 	ASSERT(!HDR_IO_ERROR(hdr));
6914 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6915 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6916 	ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
6917 	if (l2arc)
6918 		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6919 
6920 	if (ARC_BUF_ENCRYPTED(buf)) {
6921 		ASSERT(ARC_BUF_COMPRESSED(buf));
6922 		localprop.zp_encrypt = B_TRUE;
6923 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6924 		localprop.zp_complevel = hdr->b_complevel;
6925 		localprop.zp_byteorder =
6926 		    (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
6927 		    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
6928 		bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt,
6929 		    ZIO_DATA_SALT_LEN);
6930 		bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv,
6931 		    ZIO_DATA_IV_LEN);
6932 		bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac,
6933 		    ZIO_DATA_MAC_LEN);
6934 		if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
6935 			localprop.zp_nopwrite = B_FALSE;
6936 			localprop.zp_copies =
6937 			    MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
6938 		}
6939 		zio_flags |= ZIO_FLAG_RAW;
6940 	} else if (ARC_BUF_COMPRESSED(buf)) {
6941 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6942 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6943 		localprop.zp_complevel = hdr->b_complevel;
6944 		zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6945 	}
6946 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6947 	callback->awcb_ready = ready;
6948 	callback->awcb_children_ready = children_ready;
6949 	callback->awcb_physdone = physdone;
6950 	callback->awcb_done = done;
6951 	callback->awcb_private = private;
6952 	callback->awcb_buf = buf;
6953 
6954 	/*
6955 	 * The hdr's b_pabd is now stale, free it now. A new data block
6956 	 * will be allocated when the zio pipeline calls arc_write_ready().
6957 	 */
6958 	if (hdr->b_l1hdr.b_pabd != NULL) {
6959 		/*
6960 		 * If the buf is currently sharing the data block with
6961 		 * the hdr then we need to break that relationship here.
6962 		 * The hdr will remain with a NULL data pointer and the
6963 		 * buf will take sole ownership of the block.
6964 		 */
6965 		if (arc_buf_is_shared(buf)) {
6966 			arc_unshare_buf(hdr, buf);
6967 		} else {
6968 			arc_hdr_free_abd(hdr, B_FALSE);
6969 		}
6970 		VERIFY3P(buf->b_data, !=, NULL);
6971 	}
6972 
6973 	if (HDR_HAS_RABD(hdr))
6974 		arc_hdr_free_abd(hdr, B_TRUE);
6975 
6976 	if (!(zio_flags & ZIO_FLAG_RAW))
6977 		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6978 
6979 	ASSERT(!arc_buf_is_shared(buf));
6980 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6981 
6982 	zio = zio_write(pio, spa, txg, bp,
6983 	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6984 	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6985 	    (children_ready != NULL) ? arc_write_children_ready : NULL,
6986 	    arc_write_physdone, arc_write_done, callback,
6987 	    priority, zio_flags, zb);
6988 
6989 	return (zio);
6990 }
6991 
6992 void
6993 arc_tempreserve_clear(uint64_t reserve)
6994 {
6995 	atomic_add_64(&arc_tempreserve, -reserve);
6996 	ASSERT((int64_t)arc_tempreserve >= 0);
6997 }
6998 
6999 int
7000 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
7001 {
7002 	int error;
7003 	uint64_t anon_size;
7004 
7005 	if (!arc_no_grow &&
7006 	    reserve > arc_c/4 &&
7007 	    reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
7008 		arc_c = MIN(arc_c_max, reserve * 4);
7009 
7010 	/*
7011 	 * Throttle when the calculated memory footprint for the TXG
7012 	 * exceeds the target ARC size.
7013 	 */
7014 	if (reserve > arc_c) {
7015 		DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
7016 		return (SET_ERROR(ERESTART));
7017 	}
7018 
7019 	/*
7020 	 * Don't count loaned bufs as in flight dirty data to prevent long
7021 	 * network delays from blocking transactions that are ready to be
7022 	 * assigned to a txg.
7023 	 */
7024 
7025 	/* assert that it has not wrapped around */
7026 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
7027 
7028 	anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) -
7029 	    arc_loaned_bytes), 0);
7030 
7031 	/*
7032 	 * Writes will, almost always, require additional memory allocations
7033 	 * in order to compress/encrypt/etc the data.  We therefore need to
7034 	 * make sure that there is sufficient available memory for this.
7035 	 */
7036 	error = arc_memory_throttle(spa, reserve, txg);
7037 	if (error != 0)
7038 		return (error);
7039 
7040 	/*
7041 	 * Throttle writes when the amount of dirty data in the cache
7042 	 * gets too large.  We try to keep the cache less than half full
7043 	 * of dirty blocks so that our sync times don't grow too large.
7044 	 *
7045 	 * In the case of one pool being built on another pool, we want
7046 	 * to make sure we don't end up throttling the lower (backing)
7047 	 * pool when the upper pool is the majority contributor to dirty
7048 	 * data. To insure we make forward progress during throttling, we
7049 	 * also check the current pool's net dirty data and only throttle
7050 	 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
7051 	 * data in the cache.
7052 	 *
7053 	 * Note: if two requests come in concurrently, we might let them
7054 	 * both succeed, when one of them should fail.  Not a huge deal.
7055 	 */
7056 	uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
7057 	uint64_t spa_dirty_anon = spa_dirty_data(spa);
7058 
7059 	if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 &&
7060 	    anon_size > arc_c * zfs_arc_anon_limit_percent / 100 &&
7061 	    spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
7062 #ifdef ZFS_DEBUG
7063 		uint64_t meta_esize = zfs_refcount_count(
7064 		    &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7065 		uint64_t data_esize =
7066 		    zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7067 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7068 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
7069 		    arc_tempreserve >> 10, meta_esize >> 10,
7070 		    data_esize >> 10, reserve >> 10, arc_c >> 10);
7071 #endif
7072 		DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
7073 		return (SET_ERROR(ERESTART));
7074 	}
7075 	atomic_add_64(&arc_tempreserve, reserve);
7076 	return (0);
7077 }
7078 
7079 static void
7080 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7081     kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7082 {
7083 	size->value.ui64 = zfs_refcount_count(&state->arcs_size);
7084 	evict_data->value.ui64 =
7085 	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
7086 	evict_metadata->value.ui64 =
7087 	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
7088 }
7089 
7090 static int
7091 arc_kstat_update(kstat_t *ksp, int rw)
7092 {
7093 	arc_stats_t *as = ksp->ks_data;
7094 
7095 	if (rw == KSTAT_WRITE) {
7096 		return (SET_ERROR(EACCES));
7097 	} else {
7098 		arc_kstat_update_state(arc_anon,
7099 		    &as->arcstat_anon_size,
7100 		    &as->arcstat_anon_evictable_data,
7101 		    &as->arcstat_anon_evictable_metadata);
7102 		arc_kstat_update_state(arc_mru,
7103 		    &as->arcstat_mru_size,
7104 		    &as->arcstat_mru_evictable_data,
7105 		    &as->arcstat_mru_evictable_metadata);
7106 		arc_kstat_update_state(arc_mru_ghost,
7107 		    &as->arcstat_mru_ghost_size,
7108 		    &as->arcstat_mru_ghost_evictable_data,
7109 		    &as->arcstat_mru_ghost_evictable_metadata);
7110 		arc_kstat_update_state(arc_mfu,
7111 		    &as->arcstat_mfu_size,
7112 		    &as->arcstat_mfu_evictable_data,
7113 		    &as->arcstat_mfu_evictable_metadata);
7114 		arc_kstat_update_state(arc_mfu_ghost,
7115 		    &as->arcstat_mfu_ghost_size,
7116 		    &as->arcstat_mfu_ghost_evictable_data,
7117 		    &as->arcstat_mfu_ghost_evictable_metadata);
7118 
7119 		ARCSTAT(arcstat_size) = aggsum_value(&arc_size);
7120 		ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used);
7121 		ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size);
7122 		ARCSTAT(arcstat_metadata_size) =
7123 		    aggsum_value(&astat_metadata_size);
7124 		ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size);
7125 		ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size);
7126 		ARCSTAT(arcstat_dbuf_size) = aggsum_value(&astat_dbuf_size);
7127 #if defined(COMPAT_FREEBSD11)
7128 		ARCSTAT(arcstat_other_size) = aggsum_value(&astat_bonus_size) +
7129 		    aggsum_value(&astat_dnode_size) +
7130 		    aggsum_value(&astat_dbuf_size);
7131 #endif
7132 		ARCSTAT(arcstat_dnode_size) = aggsum_value(&astat_dnode_size);
7133 		ARCSTAT(arcstat_bonus_size) = aggsum_value(&astat_bonus_size);
7134 		ARCSTAT(arcstat_abd_chunk_waste_size) =
7135 		    aggsum_value(&astat_abd_chunk_waste_size);
7136 
7137 		as->arcstat_memory_all_bytes.value.ui64 =
7138 		    arc_all_memory();
7139 		as->arcstat_memory_free_bytes.value.ui64 =
7140 		    arc_free_memory();
7141 		as->arcstat_memory_available_bytes.value.i64 =
7142 		    arc_available_memory();
7143 	}
7144 
7145 	return (0);
7146 }
7147 
7148 /*
7149  * This function *must* return indices evenly distributed between all
7150  * sublists of the multilist. This is needed due to how the ARC eviction
7151  * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7152  * distributed between all sublists and uses this assumption when
7153  * deciding which sublist to evict from and how much to evict from it.
7154  */
7155 static unsigned int
7156 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7157 {
7158 	arc_buf_hdr_t *hdr = obj;
7159 
7160 	/*
7161 	 * We rely on b_dva to generate evenly distributed index
7162 	 * numbers using buf_hash below. So, as an added precaution,
7163 	 * let's make sure we never add empty buffers to the arc lists.
7164 	 */
7165 	ASSERT(!HDR_EMPTY(hdr));
7166 
7167 	/*
7168 	 * The assumption here, is the hash value for a given
7169 	 * arc_buf_hdr_t will remain constant throughout its lifetime
7170 	 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7171 	 * Thus, we don't need to store the header's sublist index
7172 	 * on insertion, as this index can be recalculated on removal.
7173 	 *
7174 	 * Also, the low order bits of the hash value are thought to be
7175 	 * distributed evenly. Otherwise, in the case that the multilist
7176 	 * has a power of two number of sublists, each sublists' usage
7177 	 * would not be evenly distributed.
7178 	 */
7179 	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7180 	    multilist_get_num_sublists(ml));
7181 }
7182 
7183 #define	WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do {	\
7184 	if ((do_warn) && (tuning) && ((tuning) != (value))) {	\
7185 		cmn_err(CE_WARN,				\
7186 		    "ignoring tunable %s (using %llu instead)",	\
7187 		    (#tuning), (value));			\
7188 	}							\
7189 } while (0)
7190 
7191 /*
7192  * Called during module initialization and periodically thereafter to
7193  * apply reasonable changes to the exposed performance tunings.  Can also be
7194  * called explicitly by param_set_arc_*() functions when ARC tunables are
7195  * updated manually.  Non-zero zfs_* values which differ from the currently set
7196  * values will be applied.
7197  */
7198 void
7199 arc_tuning_update(boolean_t verbose)
7200 {
7201 	uint64_t allmem = arc_all_memory();
7202 	unsigned long limit;
7203 
7204 	/* Valid range: 32M - <arc_c_max> */
7205 	if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7206 	    (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7207 	    (zfs_arc_min <= arc_c_max)) {
7208 		arc_c_min = zfs_arc_min;
7209 		arc_c = MAX(arc_c, arc_c_min);
7210 	}
7211 	WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose);
7212 
7213 	/* Valid range: 64M - <all physical memory> */
7214 	if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7215 	    (zfs_arc_max >= 64 << 20) && (zfs_arc_max < allmem) &&
7216 	    (zfs_arc_max > arc_c_min)) {
7217 		arc_c_max = zfs_arc_max;
7218 		arc_c = MIN(arc_c, arc_c_max);
7219 		arc_p = (arc_c >> 1);
7220 		if (arc_meta_limit > arc_c_max)
7221 			arc_meta_limit = arc_c_max;
7222 		if (arc_dnode_size_limit > arc_meta_limit)
7223 			arc_dnode_size_limit = arc_meta_limit;
7224 	}
7225 	WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose);
7226 
7227 	/* Valid range: 16M - <arc_c_max> */
7228 	if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
7229 	    (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
7230 	    (zfs_arc_meta_min <= arc_c_max)) {
7231 		arc_meta_min = zfs_arc_meta_min;
7232 		if (arc_meta_limit < arc_meta_min)
7233 			arc_meta_limit = arc_meta_min;
7234 		if (arc_dnode_size_limit < arc_meta_min)
7235 			arc_dnode_size_limit = arc_meta_min;
7236 	}
7237 	WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose);
7238 
7239 	/* Valid range: <arc_meta_min> - <arc_c_max> */
7240 	limit = zfs_arc_meta_limit ? zfs_arc_meta_limit :
7241 	    MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100;
7242 	if ((limit != arc_meta_limit) &&
7243 	    (limit >= arc_meta_min) &&
7244 	    (limit <= arc_c_max))
7245 		arc_meta_limit = limit;
7246 	WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose);
7247 
7248 	/* Valid range: <arc_meta_min> - <arc_meta_limit> */
7249 	limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7250 	    MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100;
7251 	if ((limit != arc_dnode_size_limit) &&
7252 	    (limit >= arc_meta_min) &&
7253 	    (limit <= arc_meta_limit))
7254 		arc_dnode_size_limit = limit;
7255 	WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit,
7256 	    verbose);
7257 
7258 	/* Valid range: 1 - N */
7259 	if (zfs_arc_grow_retry)
7260 		arc_grow_retry = zfs_arc_grow_retry;
7261 
7262 	/* Valid range: 1 - N */
7263 	if (zfs_arc_shrink_shift) {
7264 		arc_shrink_shift = zfs_arc_shrink_shift;
7265 		arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7266 	}
7267 
7268 	/* Valid range: 1 - N */
7269 	if (zfs_arc_p_min_shift)
7270 		arc_p_min_shift = zfs_arc_p_min_shift;
7271 
7272 	/* Valid range: 1 - N ms */
7273 	if (zfs_arc_min_prefetch_ms)
7274 		arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7275 
7276 	/* Valid range: 1 - N ms */
7277 	if (zfs_arc_min_prescient_prefetch_ms) {
7278 		arc_min_prescient_prefetch_ms =
7279 		    zfs_arc_min_prescient_prefetch_ms;
7280 	}
7281 
7282 	/* Valid range: 0 - 100 */
7283 	if ((zfs_arc_lotsfree_percent >= 0) &&
7284 	    (zfs_arc_lotsfree_percent <= 100))
7285 		arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7286 	WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent,
7287 	    verbose);
7288 
7289 	/* Valid range: 0 - <all physical memory> */
7290 	if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
7291 		arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem);
7292 	WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose);
7293 }
7294 
7295 static void
7296 arc_state_init(void)
7297 {
7298 	arc_anon = &ARC_anon;
7299 	arc_mru = &ARC_mru;
7300 	arc_mru_ghost = &ARC_mru_ghost;
7301 	arc_mfu = &ARC_mfu;
7302 	arc_mfu_ghost = &ARC_mfu_ghost;
7303 	arc_l2c_only = &ARC_l2c_only;
7304 
7305 	arc_mru->arcs_list[ARC_BUFC_METADATA] =
7306 	    multilist_create(sizeof (arc_buf_hdr_t),
7307 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7308 	    arc_state_multilist_index_func);
7309 	arc_mru->arcs_list[ARC_BUFC_DATA] =
7310 	    multilist_create(sizeof (arc_buf_hdr_t),
7311 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7312 	    arc_state_multilist_index_func);
7313 	arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
7314 	    multilist_create(sizeof (arc_buf_hdr_t),
7315 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7316 	    arc_state_multilist_index_func);
7317 	arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
7318 	    multilist_create(sizeof (arc_buf_hdr_t),
7319 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7320 	    arc_state_multilist_index_func);
7321 	arc_mfu->arcs_list[ARC_BUFC_METADATA] =
7322 	    multilist_create(sizeof (arc_buf_hdr_t),
7323 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7324 	    arc_state_multilist_index_func);
7325 	arc_mfu->arcs_list[ARC_BUFC_DATA] =
7326 	    multilist_create(sizeof (arc_buf_hdr_t),
7327 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7328 	    arc_state_multilist_index_func);
7329 	arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
7330 	    multilist_create(sizeof (arc_buf_hdr_t),
7331 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7332 	    arc_state_multilist_index_func);
7333 	arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
7334 	    multilist_create(sizeof (arc_buf_hdr_t),
7335 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7336 	    arc_state_multilist_index_func);
7337 	arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
7338 	    multilist_create(sizeof (arc_buf_hdr_t),
7339 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7340 	    arc_state_multilist_index_func);
7341 	arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
7342 	    multilist_create(sizeof (arc_buf_hdr_t),
7343 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7344 	    arc_state_multilist_index_func);
7345 
7346 	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7347 	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7348 	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7349 	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7350 	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7351 	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7352 	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7353 	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7354 	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7355 	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7356 	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7357 	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7358 
7359 	zfs_refcount_create(&arc_anon->arcs_size);
7360 	zfs_refcount_create(&arc_mru->arcs_size);
7361 	zfs_refcount_create(&arc_mru_ghost->arcs_size);
7362 	zfs_refcount_create(&arc_mfu->arcs_size);
7363 	zfs_refcount_create(&arc_mfu_ghost->arcs_size);
7364 	zfs_refcount_create(&arc_l2c_only->arcs_size);
7365 
7366 	aggsum_init(&arc_meta_used, 0);
7367 	aggsum_init(&arc_size, 0);
7368 	aggsum_init(&astat_data_size, 0);
7369 	aggsum_init(&astat_metadata_size, 0);
7370 	aggsum_init(&astat_hdr_size, 0);
7371 	aggsum_init(&astat_l2_hdr_size, 0);
7372 	aggsum_init(&astat_bonus_size, 0);
7373 	aggsum_init(&astat_dnode_size, 0);
7374 	aggsum_init(&astat_dbuf_size, 0);
7375 	aggsum_init(&astat_abd_chunk_waste_size, 0);
7376 
7377 	arc_anon->arcs_state = ARC_STATE_ANON;
7378 	arc_mru->arcs_state = ARC_STATE_MRU;
7379 	arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7380 	arc_mfu->arcs_state = ARC_STATE_MFU;
7381 	arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7382 	arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7383 }
7384 
7385 static void
7386 arc_state_fini(void)
7387 {
7388 	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7389 	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7390 	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7391 	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7392 	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7393 	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7394 	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7395 	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7396 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7397 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7398 	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7399 	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7400 
7401 	zfs_refcount_destroy(&arc_anon->arcs_size);
7402 	zfs_refcount_destroy(&arc_mru->arcs_size);
7403 	zfs_refcount_destroy(&arc_mru_ghost->arcs_size);
7404 	zfs_refcount_destroy(&arc_mfu->arcs_size);
7405 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size);
7406 	zfs_refcount_destroy(&arc_l2c_only->arcs_size);
7407 
7408 	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
7409 	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7410 	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7411 	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7412 	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
7413 	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7414 	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
7415 	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7416 	multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7417 	multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7418 
7419 	aggsum_fini(&arc_meta_used);
7420 	aggsum_fini(&arc_size);
7421 	aggsum_fini(&astat_data_size);
7422 	aggsum_fini(&astat_metadata_size);
7423 	aggsum_fini(&astat_hdr_size);
7424 	aggsum_fini(&astat_l2_hdr_size);
7425 	aggsum_fini(&astat_bonus_size);
7426 	aggsum_fini(&astat_dnode_size);
7427 	aggsum_fini(&astat_dbuf_size);
7428 	aggsum_fini(&astat_abd_chunk_waste_size);
7429 }
7430 
7431 uint64_t
7432 arc_target_bytes(void)
7433 {
7434 	return (arc_c);
7435 }
7436 
7437 void
7438 arc_init(void)
7439 {
7440 	uint64_t percent, allmem = arc_all_memory();
7441 	mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL);
7442 	list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t),
7443 	    offsetof(arc_evict_waiter_t, aew_node));
7444 
7445 	arc_min_prefetch_ms = 1000;
7446 	arc_min_prescient_prefetch_ms = 6000;
7447 
7448 #if defined(_KERNEL)
7449 	arc_lowmem_init();
7450 #endif
7451 
7452 	/* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7453 	arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7454 
7455 	/* How to set default max varies by platform. */
7456 	arc_c_max = arc_default_max(arc_c_min, allmem);
7457 
7458 #ifndef _KERNEL
7459 	/*
7460 	 * In userland, there's only the memory pressure that we artificially
7461 	 * create (see arc_available_memory()).  Don't let arc_c get too
7462 	 * small, because it can cause transactions to be larger than
7463 	 * arc_c, causing arc_tempreserve_space() to fail.
7464 	 */
7465 	arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
7466 #endif
7467 
7468 	arc_c = arc_c_min;
7469 	arc_p = (arc_c >> 1);
7470 
7471 	/* Set min to 1/2 of arc_c_min */
7472 	arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
7473 	/* Initialize maximum observed usage to zero */
7474 	arc_meta_max = 0;
7475 	/*
7476 	 * Set arc_meta_limit to a percent of arc_c_max with a floor of
7477 	 * arc_meta_min, and a ceiling of arc_c_max.
7478 	 */
7479 	percent = MIN(zfs_arc_meta_limit_percent, 100);
7480 	arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
7481 	percent = MIN(zfs_arc_dnode_limit_percent, 100);
7482 	arc_dnode_size_limit = (percent * arc_meta_limit) / 100;
7483 
7484 	/* Apply user specified tunings */
7485 	arc_tuning_update(B_TRUE);
7486 
7487 	/* if kmem_flags are set, lets try to use less memory */
7488 	if (kmem_debugging())
7489 		arc_c = arc_c / 2;
7490 	if (arc_c < arc_c_min)
7491 		arc_c = arc_c_min;
7492 
7493 	arc_state_init();
7494 
7495 	buf_init();
7496 
7497 	list_create(&arc_prune_list, sizeof (arc_prune_t),
7498 	    offsetof(arc_prune_t, p_node));
7499 	mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
7500 
7501 	arc_prune_taskq = taskq_create("arc_prune", boot_ncpus, defclsyspri,
7502 	    boot_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
7503 
7504 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7505 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7506 
7507 	if (arc_ksp != NULL) {
7508 		arc_ksp->ks_data = &arc_stats;
7509 		arc_ksp->ks_update = arc_kstat_update;
7510 		kstat_install(arc_ksp);
7511 	}
7512 
7513 	arc_evict_zthr = zthr_create_timer("arc_evict",
7514 	    arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1));
7515 	arc_reap_zthr = zthr_create_timer("arc_reap",
7516 	    arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1));
7517 
7518 	arc_warm = B_FALSE;
7519 
7520 	/*
7521 	 * Calculate maximum amount of dirty data per pool.
7522 	 *
7523 	 * If it has been set by a module parameter, take that.
7524 	 * Otherwise, use a percentage of physical memory defined by
7525 	 * zfs_dirty_data_max_percent (default 10%) with a cap at
7526 	 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
7527 	 */
7528 #ifdef __LP64__
7529 	if (zfs_dirty_data_max_max == 0)
7530 		zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
7531 		    allmem * zfs_dirty_data_max_max_percent / 100);
7532 #else
7533 	if (zfs_dirty_data_max_max == 0)
7534 		zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
7535 		    allmem * zfs_dirty_data_max_max_percent / 100);
7536 #endif
7537 
7538 	if (zfs_dirty_data_max == 0) {
7539 		zfs_dirty_data_max = allmem *
7540 		    zfs_dirty_data_max_percent / 100;
7541 		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7542 		    zfs_dirty_data_max_max);
7543 	}
7544 }
7545 
7546 void
7547 arc_fini(void)
7548 {
7549 	arc_prune_t *p;
7550 
7551 #ifdef _KERNEL
7552 	arc_lowmem_fini();
7553 #endif /* _KERNEL */
7554 
7555 	/* Use B_TRUE to ensure *all* buffers are evicted */
7556 	arc_flush(NULL, B_TRUE);
7557 
7558 	if (arc_ksp != NULL) {
7559 		kstat_delete(arc_ksp);
7560 		arc_ksp = NULL;
7561 	}
7562 
7563 	taskq_wait(arc_prune_taskq);
7564 	taskq_destroy(arc_prune_taskq);
7565 
7566 	mutex_enter(&arc_prune_mtx);
7567 	while ((p = list_head(&arc_prune_list)) != NULL) {
7568 		list_remove(&arc_prune_list, p);
7569 		zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
7570 		zfs_refcount_destroy(&p->p_refcnt);
7571 		kmem_free(p, sizeof (*p));
7572 	}
7573 	mutex_exit(&arc_prune_mtx);
7574 
7575 	list_destroy(&arc_prune_list);
7576 	mutex_destroy(&arc_prune_mtx);
7577 
7578 	(void) zthr_cancel(arc_evict_zthr);
7579 	(void) zthr_cancel(arc_reap_zthr);
7580 
7581 	mutex_destroy(&arc_evict_lock);
7582 	list_destroy(&arc_evict_waiters);
7583 
7584 	/*
7585 	 * Free any buffers that were tagged for destruction.  This needs
7586 	 * to occur before arc_state_fini() runs and destroys the aggsum
7587 	 * values which are updated when freeing scatter ABDs.
7588 	 */
7589 	l2arc_do_free_on_write();
7590 
7591 	/*
7592 	 * buf_fini() must proceed arc_state_fini() because buf_fin() may
7593 	 * trigger the release of kmem magazines, which can callback to
7594 	 * arc_space_return() which accesses aggsums freed in act_state_fini().
7595 	 */
7596 	buf_fini();
7597 	arc_state_fini();
7598 
7599 	/*
7600 	 * We destroy the zthrs after all the ARC state has been
7601 	 * torn down to avoid the case of them receiving any
7602 	 * wakeup() signals after they are destroyed.
7603 	 */
7604 	zthr_destroy(arc_evict_zthr);
7605 	zthr_destroy(arc_reap_zthr);
7606 
7607 	ASSERT0(arc_loaned_bytes);
7608 }
7609 
7610 /*
7611  * Level 2 ARC
7612  *
7613  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7614  * It uses dedicated storage devices to hold cached data, which are populated
7615  * using large infrequent writes.  The main role of this cache is to boost
7616  * the performance of random read workloads.  The intended L2ARC devices
7617  * include short-stroked disks, solid state disks, and other media with
7618  * substantially faster read latency than disk.
7619  *
7620  *                 +-----------------------+
7621  *                 |         ARC           |
7622  *                 +-----------------------+
7623  *                    |         ^     ^
7624  *                    |         |     |
7625  *      l2arc_feed_thread()    arc_read()
7626  *                    |         |     |
7627  *                    |  l2arc read   |
7628  *                    V         |     |
7629  *               +---------------+    |
7630  *               |     L2ARC     |    |
7631  *               +---------------+    |
7632  *                   |    ^           |
7633  *          l2arc_write() |           |
7634  *                   |    |           |
7635  *                   V    |           |
7636  *                 +-------+      +-------+
7637  *                 | vdev  |      | vdev  |
7638  *                 | cache |      | cache |
7639  *                 +-------+      +-------+
7640  *                 +=========+     .-----.
7641  *                 :  L2ARC  :    |-_____-|
7642  *                 : devices :    | Disks |
7643  *                 +=========+    `-_____-'
7644  *
7645  * Read requests are satisfied from the following sources, in order:
7646  *
7647  *	1) ARC
7648  *	2) vdev cache of L2ARC devices
7649  *	3) L2ARC devices
7650  *	4) vdev cache of disks
7651  *	5) disks
7652  *
7653  * Some L2ARC device types exhibit extremely slow write performance.
7654  * To accommodate for this there are some significant differences between
7655  * the L2ARC and traditional cache design:
7656  *
7657  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
7658  * the ARC behave as usual, freeing buffers and placing headers on ghost
7659  * lists.  The ARC does not send buffers to the L2ARC during eviction as
7660  * this would add inflated write latencies for all ARC memory pressure.
7661  *
7662  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7663  * It does this by periodically scanning buffers from the eviction-end of
7664  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
7665  * not already there. It scans until a headroom of buffers is satisfied,
7666  * which itself is a buffer for ARC eviction. If a compressible buffer is
7667  * found during scanning and selected for writing to an L2ARC device, we
7668  * temporarily boost scanning headroom during the next scan cycle to make
7669  * sure we adapt to compression effects (which might significantly reduce
7670  * the data volume we write to L2ARC). The thread that does this is
7671  * l2arc_feed_thread(), illustrated below; example sizes are included to
7672  * provide a better sense of ratio than this diagram:
7673  *
7674  *	       head -->                        tail
7675  *	        +---------------------+----------+
7676  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
7677  *	        +---------------------+----------+   |   o L2ARC eligible
7678  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
7679  *	        +---------------------+----------+   |
7680  *	             15.9 Gbytes      ^ 32 Mbytes    |
7681  *	                           headroom          |
7682  *	                                      l2arc_feed_thread()
7683  *	                                             |
7684  *	                 l2arc write hand <--[oooo]--'
7685  *	                         |           8 Mbyte
7686  *	                         |          write max
7687  *	                         V
7688  *		  +==============================+
7689  *	L2ARC dev |####|#|###|###|    |####| ... |
7690  *	          +==============================+
7691  *	                     32 Gbytes
7692  *
7693  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7694  * evicted, then the L2ARC has cached a buffer much sooner than it probably
7695  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
7696  * safe to say that this is an uncommon case, since buffers at the end of
7697  * the ARC lists have moved there due to inactivity.
7698  *
7699  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7700  * then the L2ARC simply misses copying some buffers.  This serves as a
7701  * pressure valve to prevent heavy read workloads from both stalling the ARC
7702  * with waits and clogging the L2ARC with writes.  This also helps prevent
7703  * the potential for the L2ARC to churn if it attempts to cache content too
7704  * quickly, such as during backups of the entire pool.
7705  *
7706  * 5. After system boot and before the ARC has filled main memory, there are
7707  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7708  * lists can remain mostly static.  Instead of searching from tail of these
7709  * lists as pictured, the l2arc_feed_thread() will search from the list heads
7710  * for eligible buffers, greatly increasing its chance of finding them.
7711  *
7712  * The L2ARC device write speed is also boosted during this time so that
7713  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
7714  * there are no L2ARC reads, and no fear of degrading read performance
7715  * through increased writes.
7716  *
7717  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7718  * the vdev queue can aggregate them into larger and fewer writes.  Each
7719  * device is written to in a rotor fashion, sweeping writes through
7720  * available space then repeating.
7721  *
7722  * 7. The L2ARC does not store dirty content.  It never needs to flush
7723  * write buffers back to disk based storage.
7724  *
7725  * 8. If an ARC buffer is written (and dirtied) which also exists in the
7726  * L2ARC, the now stale L2ARC buffer is immediately dropped.
7727  *
7728  * The performance of the L2ARC can be tweaked by a number of tunables, which
7729  * may be necessary for different workloads:
7730  *
7731  *	l2arc_write_max		max write bytes per interval
7732  *	l2arc_write_boost	extra write bytes during device warmup
7733  *	l2arc_noprefetch	skip caching prefetched buffers
7734  *	l2arc_headroom		number of max device writes to precache
7735  *	l2arc_headroom_boost	when we find compressed buffers during ARC
7736  *				scanning, we multiply headroom by this
7737  *				percentage factor for the next scan cycle,
7738  *				since more compressed buffers are likely to
7739  *				be present
7740  *	l2arc_feed_secs		seconds between L2ARC writing
7741  *
7742  * Tunables may be removed or added as future performance improvements are
7743  * integrated, and also may become zpool properties.
7744  *
7745  * There are three key functions that control how the L2ARC warms up:
7746  *
7747  *	l2arc_write_eligible()	check if a buffer is eligible to cache
7748  *	l2arc_write_size()	calculate how much to write
7749  *	l2arc_write_interval()	calculate sleep delay between writes
7750  *
7751  * These three functions determine what to write, how much, and how quickly
7752  * to send writes.
7753  *
7754  * L2ARC persistence:
7755  *
7756  * When writing buffers to L2ARC, we periodically add some metadata to
7757  * make sure we can pick them up after reboot, thus dramatically reducing
7758  * the impact that any downtime has on the performance of storage systems
7759  * with large caches.
7760  *
7761  * The implementation works fairly simply by integrating the following two
7762  * modifications:
7763  *
7764  * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
7765  *    which is an additional piece of metadata which describes what's been
7766  *    written. This allows us to rebuild the arc_buf_hdr_t structures of the
7767  *    main ARC buffers. There are 2 linked-lists of log blocks headed by
7768  *    dh_start_lbps[2]. We alternate which chain we append to, so they are
7769  *    time-wise and offset-wise interleaved, but that is an optimization rather
7770  *    than for correctness. The log block also includes a pointer to the
7771  *    previous block in its chain.
7772  *
7773  * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
7774  *    for our header bookkeeping purposes. This contains a device header,
7775  *    which contains our top-level reference structures. We update it each
7776  *    time we write a new log block, so that we're able to locate it in the
7777  *    L2ARC device. If this write results in an inconsistent device header
7778  *    (e.g. due to power failure), we detect this by verifying the header's
7779  *    checksum and simply fail to reconstruct the L2ARC after reboot.
7780  *
7781  * Implementation diagram:
7782  *
7783  * +=== L2ARC device (not to scale) ======================================+
7784  * |       ___two newest log block pointers__.__________                  |
7785  * |      /                                   \dh_start_lbps[1]           |
7786  * |	 /				       \         \dh_start_lbps[0]|
7787  * |.___/__.                                    V         V               |
7788  * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
7789  * ||   hdr|      ^         /^       /^        /         /                |
7790  * |+------+  ...--\-------/  \-----/--\------/         /                 |
7791  * |                \--------------/    \--------------/                  |
7792  * +======================================================================+
7793  *
7794  * As can be seen on the diagram, rather than using a simple linked list,
7795  * we use a pair of linked lists with alternating elements. This is a
7796  * performance enhancement due to the fact that we only find out the
7797  * address of the next log block access once the current block has been
7798  * completely read in. Obviously, this hurts performance, because we'd be
7799  * keeping the device's I/O queue at only a 1 operation deep, thus
7800  * incurring a large amount of I/O round-trip latency. Having two lists
7801  * allows us to fetch two log blocks ahead of where we are currently
7802  * rebuilding L2ARC buffers.
7803  *
7804  * On-device data structures:
7805  *
7806  * L2ARC device header:	l2arc_dev_hdr_phys_t
7807  * L2ARC log block:	l2arc_log_blk_phys_t
7808  *
7809  * L2ARC reconstruction:
7810  *
7811  * When writing data, we simply write in the standard rotary fashion,
7812  * evicting buffers as we go and simply writing new data over them (writing
7813  * a new log block every now and then). This obviously means that once we
7814  * loop around the end of the device, we will start cutting into an already
7815  * committed log block (and its referenced data buffers), like so:
7816  *
7817  *    current write head__       __old tail
7818  *                        \     /
7819  *                        V    V
7820  * <--|bufs |lb |bufs |lb |    |bufs |lb |bufs |lb |-->
7821  *                         ^    ^^^^^^^^^___________________________________
7822  *                         |                                                \
7823  *                   <<nextwrite>> may overwrite this blk and/or its bufs --'
7824  *
7825  * When importing the pool, we detect this situation and use it to stop
7826  * our scanning process (see l2arc_rebuild).
7827  *
7828  * There is one significant caveat to consider when rebuilding ARC contents
7829  * from an L2ARC device: what about invalidated buffers? Given the above
7830  * construction, we cannot update blocks which we've already written to amend
7831  * them to remove buffers which were invalidated. Thus, during reconstruction,
7832  * we might be populating the cache with buffers for data that's not on the
7833  * main pool anymore, or may have been overwritten!
7834  *
7835  * As it turns out, this isn't a problem. Every arc_read request includes
7836  * both the DVA and, crucially, the birth TXG of the BP the caller is
7837  * looking for. So even if the cache were populated by completely rotten
7838  * blocks for data that had been long deleted and/or overwritten, we'll
7839  * never actually return bad data from the cache, since the DVA with the
7840  * birth TXG uniquely identify a block in space and time - once created,
7841  * a block is immutable on disk. The worst thing we have done is wasted
7842  * some time and memory at l2arc rebuild to reconstruct outdated ARC
7843  * entries that will get dropped from the l2arc as it is being updated
7844  * with new blocks.
7845  *
7846  * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
7847  * hand are not restored. This is done by saving the offset (in bytes)
7848  * l2arc_evict() has evicted to in the L2ARC device header and taking it
7849  * into account when restoring buffers.
7850  */
7851 
7852 static boolean_t
7853 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
7854 {
7855 	/*
7856 	 * A buffer is *not* eligible for the L2ARC if it:
7857 	 * 1. belongs to a different spa.
7858 	 * 2. is already cached on the L2ARC.
7859 	 * 3. has an I/O in progress (it may be an incomplete read).
7860 	 * 4. is flagged not eligible (zfs property).
7861 	 */
7862 	if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
7863 	    HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
7864 		return (B_FALSE);
7865 
7866 	return (B_TRUE);
7867 }
7868 
7869 static uint64_t
7870 l2arc_write_size(l2arc_dev_t *dev)
7871 {
7872 	uint64_t size, dev_size, tsize;
7873 
7874 	/*
7875 	 * Make sure our globals have meaningful values in case the user
7876 	 * altered them.
7877 	 */
7878 	size = l2arc_write_max;
7879 	if (size == 0) {
7880 		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
7881 		    "be greater than zero, resetting it to the default (%d)",
7882 		    L2ARC_WRITE_SIZE);
7883 		size = l2arc_write_max = L2ARC_WRITE_SIZE;
7884 	}
7885 
7886 	if (arc_warm == B_FALSE)
7887 		size += l2arc_write_boost;
7888 
7889 	/*
7890 	 * Make sure the write size does not exceed the size of the cache
7891 	 * device. This is important in l2arc_evict(), otherwise infinite
7892 	 * iteration can occur.
7893 	 */
7894 	dev_size = dev->l2ad_end - dev->l2ad_start;
7895 	tsize = size + l2arc_log_blk_overhead(size, dev);
7896 	if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0)
7897 		tsize += MAX(64 * 1024 * 1024,
7898 		    (tsize * l2arc_trim_ahead) / 100);
7899 
7900 	if (tsize >= dev_size) {
7901 		cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost "
7902 		    "plus the overhead of log blocks (persistent L2ARC, "
7903 		    "%llu bytes) exceeds the size of the cache device "
7904 		    "(guid %llu), resetting them to the default (%d)",
7905 		    l2arc_log_blk_overhead(size, dev),
7906 		    dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE);
7907 		size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE;
7908 
7909 		if (arc_warm == B_FALSE)
7910 			size += l2arc_write_boost;
7911 	}
7912 
7913 	return (size);
7914 
7915 }
7916 
7917 static clock_t
7918 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
7919 {
7920 	clock_t interval, next, now;
7921 
7922 	/*
7923 	 * If the ARC lists are busy, increase our write rate; if the
7924 	 * lists are stale, idle back.  This is achieved by checking
7925 	 * how much we previously wrote - if it was more than half of
7926 	 * what we wanted, schedule the next write much sooner.
7927 	 */
7928 	if (l2arc_feed_again && wrote > (wanted / 2))
7929 		interval = (hz * l2arc_feed_min_ms) / 1000;
7930 	else
7931 		interval = hz * l2arc_feed_secs;
7932 
7933 	now = ddi_get_lbolt();
7934 	next = MAX(now, MIN(now + interval, began + interval));
7935 
7936 	return (next);
7937 }
7938 
7939 /*
7940  * Cycle through L2ARC devices.  This is how L2ARC load balances.
7941  * If a device is returned, this also returns holding the spa config lock.
7942  */
7943 static l2arc_dev_t *
7944 l2arc_dev_get_next(void)
7945 {
7946 	l2arc_dev_t *first, *next = NULL;
7947 
7948 	/*
7949 	 * Lock out the removal of spas (spa_namespace_lock), then removal
7950 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
7951 	 * both locks will be dropped and a spa config lock held instead.
7952 	 */
7953 	mutex_enter(&spa_namespace_lock);
7954 	mutex_enter(&l2arc_dev_mtx);
7955 
7956 	/* if there are no vdevs, there is nothing to do */
7957 	if (l2arc_ndev == 0)
7958 		goto out;
7959 
7960 	first = NULL;
7961 	next = l2arc_dev_last;
7962 	do {
7963 		/* loop around the list looking for a non-faulted vdev */
7964 		if (next == NULL) {
7965 			next = list_head(l2arc_dev_list);
7966 		} else {
7967 			next = list_next(l2arc_dev_list, next);
7968 			if (next == NULL)
7969 				next = list_head(l2arc_dev_list);
7970 		}
7971 
7972 		/* if we have come back to the start, bail out */
7973 		if (first == NULL)
7974 			first = next;
7975 		else if (next == first)
7976 			break;
7977 
7978 	} while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
7979 	    next->l2ad_trim_all);
7980 
7981 	/* if we were unable to find any usable vdevs, return NULL */
7982 	if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
7983 	    next->l2ad_trim_all)
7984 		next = NULL;
7985 
7986 	l2arc_dev_last = next;
7987 
7988 out:
7989 	mutex_exit(&l2arc_dev_mtx);
7990 
7991 	/*
7992 	 * Grab the config lock to prevent the 'next' device from being
7993 	 * removed while we are writing to it.
7994 	 */
7995 	if (next != NULL)
7996 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
7997 	mutex_exit(&spa_namespace_lock);
7998 
7999 	return (next);
8000 }
8001 
8002 /*
8003  * Free buffers that were tagged for destruction.
8004  */
8005 static void
8006 l2arc_do_free_on_write(void)
8007 {
8008 	list_t *buflist;
8009 	l2arc_data_free_t *df, *df_prev;
8010 
8011 	mutex_enter(&l2arc_free_on_write_mtx);
8012 	buflist = l2arc_free_on_write;
8013 
8014 	for (df = list_tail(buflist); df; df = df_prev) {
8015 		df_prev = list_prev(buflist, df);
8016 		ASSERT3P(df->l2df_abd, !=, NULL);
8017 		abd_free(df->l2df_abd);
8018 		list_remove(buflist, df);
8019 		kmem_free(df, sizeof (l2arc_data_free_t));
8020 	}
8021 
8022 	mutex_exit(&l2arc_free_on_write_mtx);
8023 }
8024 
8025 /*
8026  * A write to a cache device has completed.  Update all headers to allow
8027  * reads from these buffers to begin.
8028  */
8029 static void
8030 l2arc_write_done(zio_t *zio)
8031 {
8032 	l2arc_write_callback_t	*cb;
8033 	l2arc_lb_abd_buf_t	*abd_buf;
8034 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
8035 	l2arc_dev_t		*dev;
8036 	l2arc_dev_hdr_phys_t	*l2dhdr;
8037 	list_t			*buflist;
8038 	arc_buf_hdr_t		*head, *hdr, *hdr_prev;
8039 	kmutex_t		*hash_lock;
8040 	int64_t			bytes_dropped = 0;
8041 
8042 	cb = zio->io_private;
8043 	ASSERT3P(cb, !=, NULL);
8044 	dev = cb->l2wcb_dev;
8045 	l2dhdr = dev->l2ad_dev_hdr;
8046 	ASSERT3P(dev, !=, NULL);
8047 	head = cb->l2wcb_head;
8048 	ASSERT3P(head, !=, NULL);
8049 	buflist = &dev->l2ad_buflist;
8050 	ASSERT3P(buflist, !=, NULL);
8051 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8052 	    l2arc_write_callback_t *, cb);
8053 
8054 	if (zio->io_error != 0)
8055 		ARCSTAT_BUMP(arcstat_l2_writes_error);
8056 
8057 	/*
8058 	 * All writes completed, or an error was hit.
8059 	 */
8060 top:
8061 	mutex_enter(&dev->l2ad_mtx);
8062 	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8063 		hdr_prev = list_prev(buflist, hdr);
8064 
8065 		hash_lock = HDR_LOCK(hdr);
8066 
8067 		/*
8068 		 * We cannot use mutex_enter or else we can deadlock
8069 		 * with l2arc_write_buffers (due to swapping the order
8070 		 * the hash lock and l2ad_mtx are taken).
8071 		 */
8072 		if (!mutex_tryenter(hash_lock)) {
8073 			/*
8074 			 * Missed the hash lock. We must retry so we
8075 			 * don't leave the ARC_FLAG_L2_WRITING bit set.
8076 			 */
8077 			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8078 
8079 			/*
8080 			 * We don't want to rescan the headers we've
8081 			 * already marked as having been written out, so
8082 			 * we reinsert the head node so we can pick up
8083 			 * where we left off.
8084 			 */
8085 			list_remove(buflist, head);
8086 			list_insert_after(buflist, hdr, head);
8087 
8088 			mutex_exit(&dev->l2ad_mtx);
8089 
8090 			/*
8091 			 * We wait for the hash lock to become available
8092 			 * to try and prevent busy waiting, and increase
8093 			 * the chance we'll be able to acquire the lock
8094 			 * the next time around.
8095 			 */
8096 			mutex_enter(hash_lock);
8097 			mutex_exit(hash_lock);
8098 			goto top;
8099 		}
8100 
8101 		/*
8102 		 * We could not have been moved into the arc_l2c_only
8103 		 * state while in-flight due to our ARC_FLAG_L2_WRITING
8104 		 * bit being set. Let's just ensure that's being enforced.
8105 		 */
8106 		ASSERT(HDR_HAS_L1HDR(hdr));
8107 
8108 		/*
8109 		 * Skipped - drop L2ARC entry and mark the header as no
8110 		 * longer L2 eligibile.
8111 		 */
8112 		if (zio->io_error != 0) {
8113 			/*
8114 			 * Error - drop L2ARC entry.
8115 			 */
8116 			list_remove(buflist, hdr);
8117 			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
8118 
8119 			uint64_t psize = HDR_GET_PSIZE(hdr);
8120 			ARCSTAT_INCR(arcstat_l2_psize, -psize);
8121 			ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
8122 
8123 			bytes_dropped +=
8124 			    vdev_psize_to_asize(dev->l2ad_vdev, psize);
8125 			(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
8126 			    arc_hdr_size(hdr), hdr);
8127 		}
8128 
8129 		/*
8130 		 * Allow ARC to begin reads and ghost list evictions to
8131 		 * this L2ARC entry.
8132 		 */
8133 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
8134 
8135 		mutex_exit(hash_lock);
8136 	}
8137 
8138 	/*
8139 	 * Free the allocated abd buffers for writing the log blocks.
8140 	 * If the zio failed reclaim the allocated space and remove the
8141 	 * pointers to these log blocks from the log block pointer list
8142 	 * of the L2ARC device.
8143 	 */
8144 	while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
8145 		abd_free(abd_buf->abd);
8146 		zio_buf_free(abd_buf, sizeof (*abd_buf));
8147 		if (zio->io_error != 0) {
8148 			lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
8149 			/*
8150 			 * L2BLK_GET_PSIZE returns aligned size for log
8151 			 * blocks.
8152 			 */
8153 			uint64_t asize =
8154 			    L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
8155 			bytes_dropped += asize;
8156 			ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8157 			ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8158 			zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8159 			    lb_ptr_buf);
8160 			zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
8161 			kmem_free(lb_ptr_buf->lb_ptr,
8162 			    sizeof (l2arc_log_blkptr_t));
8163 			kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8164 		}
8165 	}
8166 	list_destroy(&cb->l2wcb_abd_list);
8167 
8168 	if (zio->io_error != 0) {
8169 		/*
8170 		 * Restore the lbps array in the header to its previous state.
8171 		 * If the list of log block pointers is empty, zero out the
8172 		 * log block pointers in the device header.
8173 		 */
8174 		lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
8175 		for (int i = 0; i < 2; i++) {
8176 			if (lb_ptr_buf == NULL) {
8177 				/*
8178 				 * If the list is empty zero out the device
8179 				 * header. Otherwise zero out the second log
8180 				 * block pointer in the header.
8181 				 */
8182 				if (i == 0) {
8183 					bzero(l2dhdr, dev->l2ad_dev_hdr_asize);
8184 				} else {
8185 					bzero(&l2dhdr->dh_start_lbps[i],
8186 					    sizeof (l2arc_log_blkptr_t));
8187 				}
8188 				break;
8189 			}
8190 			bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i],
8191 			    sizeof (l2arc_log_blkptr_t));
8192 			lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
8193 			    lb_ptr_buf);
8194 		}
8195 	}
8196 
8197 	atomic_inc_64(&l2arc_writes_done);
8198 	list_remove(buflist, head);
8199 	ASSERT(!HDR_HAS_L1HDR(head));
8200 	kmem_cache_free(hdr_l2only_cache, head);
8201 	mutex_exit(&dev->l2ad_mtx);
8202 
8203 	ASSERT(dev->l2ad_vdev != NULL);
8204 	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8205 
8206 	l2arc_do_free_on_write();
8207 
8208 	kmem_free(cb, sizeof (l2arc_write_callback_t));
8209 }
8210 
8211 static int
8212 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8213 {
8214 	int ret;
8215 	spa_t *spa = zio->io_spa;
8216 	arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8217 	blkptr_t *bp = zio->io_bp;
8218 	uint8_t salt[ZIO_DATA_SALT_LEN];
8219 	uint8_t iv[ZIO_DATA_IV_LEN];
8220 	uint8_t mac[ZIO_DATA_MAC_LEN];
8221 	boolean_t no_crypt = B_FALSE;
8222 
8223 	/*
8224 	 * ZIL data is never be written to the L2ARC, so we don't need
8225 	 * special handling for its unique MAC storage.
8226 	 */
8227 	ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8228 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
8229 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8230 
8231 	/*
8232 	 * If the data was encrypted, decrypt it now. Note that
8233 	 * we must check the bp here and not the hdr, since the
8234 	 * hdr does not have its encryption parameters updated
8235 	 * until arc_read_done().
8236 	 */
8237 	if (BP_IS_ENCRYPTED(bp)) {
8238 		abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8239 		    B_TRUE);
8240 
8241 		zio_crypt_decode_params_bp(bp, salt, iv);
8242 		zio_crypt_decode_mac_bp(bp, mac);
8243 
8244 		ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8245 		    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8246 		    salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8247 		    hdr->b_l1hdr.b_pabd, &no_crypt);
8248 		if (ret != 0) {
8249 			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8250 			goto error;
8251 		}
8252 
8253 		/*
8254 		 * If we actually performed decryption, replace b_pabd
8255 		 * with the decrypted data. Otherwise we can just throw
8256 		 * our decryption buffer away.
8257 		 */
8258 		if (!no_crypt) {
8259 			arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8260 			    arc_hdr_size(hdr), hdr);
8261 			hdr->b_l1hdr.b_pabd = eabd;
8262 			zio->io_abd = eabd;
8263 		} else {
8264 			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8265 		}
8266 	}
8267 
8268 	/*
8269 	 * If the L2ARC block was compressed, but ARC compression
8270 	 * is disabled we decompress the data into a new buffer and
8271 	 * replace the existing data.
8272 	 */
8273 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8274 	    !HDR_COMPRESSION_ENABLED(hdr)) {
8275 		abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8276 		    B_TRUE);
8277 		void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
8278 
8279 		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8280 		    hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
8281 		    HDR_GET_LSIZE(hdr), &hdr->b_complevel);
8282 		if (ret != 0) {
8283 			abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8284 			arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8285 			goto error;
8286 		}
8287 
8288 		abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8289 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8290 		    arc_hdr_size(hdr), hdr);
8291 		hdr->b_l1hdr.b_pabd = cabd;
8292 		zio->io_abd = cabd;
8293 		zio->io_size = HDR_GET_LSIZE(hdr);
8294 	}
8295 
8296 	return (0);
8297 
8298 error:
8299 	return (ret);
8300 }
8301 
8302 
8303 /*
8304  * A read to a cache device completed.  Validate buffer contents before
8305  * handing over to the regular ARC routines.
8306  */
8307 static void
8308 l2arc_read_done(zio_t *zio)
8309 {
8310 	int tfm_error = 0;
8311 	l2arc_read_callback_t *cb = zio->io_private;
8312 	arc_buf_hdr_t *hdr;
8313 	kmutex_t *hash_lock;
8314 	boolean_t valid_cksum;
8315 	boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8316 	    (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
8317 
8318 	ASSERT3P(zio->io_vd, !=, NULL);
8319 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8320 
8321 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8322 
8323 	ASSERT3P(cb, !=, NULL);
8324 	hdr = cb->l2rcb_hdr;
8325 	ASSERT3P(hdr, !=, NULL);
8326 
8327 	hash_lock = HDR_LOCK(hdr);
8328 	mutex_enter(hash_lock);
8329 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8330 
8331 	/*
8332 	 * If the data was read into a temporary buffer,
8333 	 * move it and free the buffer.
8334 	 */
8335 	if (cb->l2rcb_abd != NULL) {
8336 		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8337 		if (zio->io_error == 0) {
8338 			if (using_rdata) {
8339 				abd_copy(hdr->b_crypt_hdr.b_rabd,
8340 				    cb->l2rcb_abd, arc_hdr_size(hdr));
8341 			} else {
8342 				abd_copy(hdr->b_l1hdr.b_pabd,
8343 				    cb->l2rcb_abd, arc_hdr_size(hdr));
8344 			}
8345 		}
8346 
8347 		/*
8348 		 * The following must be done regardless of whether
8349 		 * there was an error:
8350 		 * - free the temporary buffer
8351 		 * - point zio to the real ARC buffer
8352 		 * - set zio size accordingly
8353 		 * These are required because zio is either re-used for
8354 		 * an I/O of the block in the case of the error
8355 		 * or the zio is passed to arc_read_done() and it
8356 		 * needs real data.
8357 		 */
8358 		abd_free(cb->l2rcb_abd);
8359 		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8360 
8361 		if (using_rdata) {
8362 			ASSERT(HDR_HAS_RABD(hdr));
8363 			zio->io_abd = zio->io_orig_abd =
8364 			    hdr->b_crypt_hdr.b_rabd;
8365 		} else {
8366 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8367 			zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8368 		}
8369 	}
8370 
8371 	ASSERT3P(zio->io_abd, !=, NULL);
8372 
8373 	/*
8374 	 * Check this survived the L2ARC journey.
8375 	 */
8376 	ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8377 	    (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8378 	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
8379 	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
8380 	zio->io_prop.zp_complevel = hdr->b_complevel;
8381 
8382 	valid_cksum = arc_cksum_is_equal(hdr, zio);
8383 
8384 	/*
8385 	 * b_rabd will always match the data as it exists on disk if it is
8386 	 * being used. Therefore if we are reading into b_rabd we do not
8387 	 * attempt to untransform the data.
8388 	 */
8389 	if (valid_cksum && !using_rdata)
8390 		tfm_error = l2arc_untransform(zio, cb);
8391 
8392 	if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8393 	    !HDR_L2_EVICTED(hdr)) {
8394 		mutex_exit(hash_lock);
8395 		zio->io_private = hdr;
8396 		arc_read_done(zio);
8397 	} else {
8398 		/*
8399 		 * Buffer didn't survive caching.  Increment stats and
8400 		 * reissue to the original storage device.
8401 		 */
8402 		if (zio->io_error != 0) {
8403 			ARCSTAT_BUMP(arcstat_l2_io_error);
8404 		} else {
8405 			zio->io_error = SET_ERROR(EIO);
8406 		}
8407 		if (!valid_cksum || tfm_error != 0)
8408 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8409 
8410 		/*
8411 		 * If there's no waiter, issue an async i/o to the primary
8412 		 * storage now.  If there *is* a waiter, the caller must
8413 		 * issue the i/o in a context where it's OK to block.
8414 		 */
8415 		if (zio->io_waiter == NULL) {
8416 			zio_t *pio = zio_unique_parent(zio);
8417 			void *abd = (using_rdata) ?
8418 			    hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
8419 
8420 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8421 
8422 			zio = zio_read(pio, zio->io_spa, zio->io_bp,
8423 			    abd, zio->io_size, arc_read_done,
8424 			    hdr, zio->io_priority, cb->l2rcb_flags,
8425 			    &cb->l2rcb_zb);
8426 
8427 			/*
8428 			 * Original ZIO will be freed, so we need to update
8429 			 * ARC header with the new ZIO pointer to be used
8430 			 * by zio_change_priority() in arc_read().
8431 			 */
8432 			for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
8433 			    acb != NULL; acb = acb->acb_next)
8434 				acb->acb_zio_head = zio;
8435 
8436 			mutex_exit(hash_lock);
8437 			zio_nowait(zio);
8438 		} else {
8439 			mutex_exit(hash_lock);
8440 		}
8441 	}
8442 
8443 	kmem_free(cb, sizeof (l2arc_read_callback_t));
8444 }
8445 
8446 /*
8447  * This is the list priority from which the L2ARC will search for pages to
8448  * cache.  This is used within loops (0..3) to cycle through lists in the
8449  * desired order.  This order can have a significant effect on cache
8450  * performance.
8451  *
8452  * Currently the metadata lists are hit first, MFU then MRU, followed by
8453  * the data lists.  This function returns a locked list, and also returns
8454  * the lock pointer.
8455  */
8456 static multilist_sublist_t *
8457 l2arc_sublist_lock(int list_num)
8458 {
8459 	multilist_t *ml = NULL;
8460 	unsigned int idx;
8461 
8462 	ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
8463 
8464 	switch (list_num) {
8465 	case 0:
8466 		ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
8467 		break;
8468 	case 1:
8469 		ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
8470 		break;
8471 	case 2:
8472 		ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
8473 		break;
8474 	case 3:
8475 		ml = arc_mru->arcs_list[ARC_BUFC_DATA];
8476 		break;
8477 	default:
8478 		return (NULL);
8479 	}
8480 
8481 	/*
8482 	 * Return a randomly-selected sublist. This is acceptable
8483 	 * because the caller feeds only a little bit of data for each
8484 	 * call (8MB). Subsequent calls will result in different
8485 	 * sublists being selected.
8486 	 */
8487 	idx = multilist_get_random_index(ml);
8488 	return (multilist_sublist_lock(ml, idx));
8489 }
8490 
8491 /*
8492  * Calculates the maximum overhead of L2ARC metadata log blocks for a given
8493  * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
8494  * overhead in processing to make sure there is enough headroom available
8495  * when writing buffers.
8496  */
8497 static inline uint64_t
8498 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
8499 {
8500 	if (dev->l2ad_log_entries == 0) {
8501 		return (0);
8502 	} else {
8503 		uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
8504 
8505 		uint64_t log_blocks = (log_entries +
8506 		    dev->l2ad_log_entries - 1) /
8507 		    dev->l2ad_log_entries;
8508 
8509 		return (vdev_psize_to_asize(dev->l2ad_vdev,
8510 		    sizeof (l2arc_log_blk_phys_t)) * log_blocks);
8511 	}
8512 }
8513 
8514 /*
8515  * Evict buffers from the device write hand to the distance specified in
8516  * bytes. This distance may span populated buffers, it may span nothing.
8517  * This is clearing a region on the L2ARC device ready for writing.
8518  * If the 'all' boolean is set, every buffer is evicted.
8519  */
8520 static void
8521 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8522 {
8523 	list_t *buflist;
8524 	arc_buf_hdr_t *hdr, *hdr_prev;
8525 	kmutex_t *hash_lock;
8526 	uint64_t taddr;
8527 	l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
8528 	vdev_t *vd = dev->l2ad_vdev;
8529 	boolean_t rerun;
8530 
8531 	buflist = &dev->l2ad_buflist;
8532 
8533 	/*
8534 	 * We need to add in the worst case scenario of log block overhead.
8535 	 */
8536 	distance += l2arc_log_blk_overhead(distance, dev);
8537 	if (vd->vdev_has_trim && l2arc_trim_ahead > 0) {
8538 		/*
8539 		 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
8540 		 * times the write size, whichever is greater.
8541 		 */
8542 		distance += MAX(64 * 1024 * 1024,
8543 		    (distance * l2arc_trim_ahead) / 100);
8544 	}
8545 
8546 top:
8547 	rerun = B_FALSE;
8548 	if (dev->l2ad_hand >= (dev->l2ad_end - distance)) {
8549 		/*
8550 		 * When there is no space to accommodate upcoming writes,
8551 		 * evict to the end. Then bump the write and evict hands
8552 		 * to the start and iterate. This iteration does not
8553 		 * happen indefinitely as we make sure in
8554 		 * l2arc_write_size() that when the write hand is reset,
8555 		 * the write size does not exceed the end of the device.
8556 		 */
8557 		rerun = B_TRUE;
8558 		taddr = dev->l2ad_end;
8559 	} else {
8560 		taddr = dev->l2ad_hand + distance;
8561 	}
8562 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8563 	    uint64_t, taddr, boolean_t, all);
8564 
8565 	if (!all) {
8566 		/*
8567 		 * This check has to be placed after deciding whether to
8568 		 * iterate (rerun).
8569 		 */
8570 		if (dev->l2ad_first) {
8571 			/*
8572 			 * This is the first sweep through the device. There is
8573 			 * nothing to evict. We have already trimmmed the
8574 			 * whole device.
8575 			 */
8576 			goto out;
8577 		} else {
8578 			/*
8579 			 * Trim the space to be evicted.
8580 			 */
8581 			if (vd->vdev_has_trim && dev->l2ad_evict < taddr &&
8582 			    l2arc_trim_ahead > 0) {
8583 				/*
8584 				 * We have to drop the spa_config lock because
8585 				 * vdev_trim_range() will acquire it.
8586 				 * l2ad_evict already accounts for the label
8587 				 * size. To prevent vdev_trim_ranges() from
8588 				 * adding it again, we subtract it from
8589 				 * l2ad_evict.
8590 				 */
8591 				spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev);
8592 				vdev_trim_simple(vd,
8593 				    dev->l2ad_evict - VDEV_LABEL_START_SIZE,
8594 				    taddr - dev->l2ad_evict);
8595 				spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev,
8596 				    RW_READER);
8597 			}
8598 
8599 			/*
8600 			 * When rebuilding L2ARC we retrieve the evict hand
8601 			 * from the header of the device. Of note, l2arc_evict()
8602 			 * does not actually delete buffers from the cache
8603 			 * device, but trimming may do so depending on the
8604 			 * hardware implementation. Thus keeping track of the
8605 			 * evict hand is useful.
8606 			 */
8607 			dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
8608 		}
8609 	}
8610 
8611 retry:
8612 	mutex_enter(&dev->l2ad_mtx);
8613 	/*
8614 	 * We have to account for evicted log blocks. Run vdev_space_update()
8615 	 * on log blocks whose offset (in bytes) is before the evicted offset
8616 	 * (in bytes) by searching in the list of pointers to log blocks
8617 	 * present in the L2ARC device.
8618 	 */
8619 	for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
8620 	    lb_ptr_buf = lb_ptr_buf_prev) {
8621 
8622 		lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
8623 
8624 		/* L2BLK_GET_PSIZE returns aligned size for log blocks */
8625 		uint64_t asize = L2BLK_GET_PSIZE(
8626 		    (lb_ptr_buf->lb_ptr)->lbp_prop);
8627 
8628 		/*
8629 		 * We don't worry about log blocks left behind (ie
8630 		 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
8631 		 * will never write more than l2arc_evict() evicts.
8632 		 */
8633 		if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
8634 			break;
8635 		} else {
8636 			vdev_space_update(vd, -asize, 0, 0);
8637 			ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8638 			ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8639 			zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8640 			    lb_ptr_buf);
8641 			zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
8642 			list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
8643 			kmem_free(lb_ptr_buf->lb_ptr,
8644 			    sizeof (l2arc_log_blkptr_t));
8645 			kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8646 		}
8647 	}
8648 
8649 	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
8650 		hdr_prev = list_prev(buflist, hdr);
8651 
8652 		ASSERT(!HDR_EMPTY(hdr));
8653 		hash_lock = HDR_LOCK(hdr);
8654 
8655 		/*
8656 		 * We cannot use mutex_enter or else we can deadlock
8657 		 * with l2arc_write_buffers (due to swapping the order
8658 		 * the hash lock and l2ad_mtx are taken).
8659 		 */
8660 		if (!mutex_tryenter(hash_lock)) {
8661 			/*
8662 			 * Missed the hash lock.  Retry.
8663 			 */
8664 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
8665 			mutex_exit(&dev->l2ad_mtx);
8666 			mutex_enter(hash_lock);
8667 			mutex_exit(hash_lock);
8668 			goto retry;
8669 		}
8670 
8671 		/*
8672 		 * A header can't be on this list if it doesn't have L2 header.
8673 		 */
8674 		ASSERT(HDR_HAS_L2HDR(hdr));
8675 
8676 		/* Ensure this header has finished being written. */
8677 		ASSERT(!HDR_L2_WRITING(hdr));
8678 		ASSERT(!HDR_L2_WRITE_HEAD(hdr));
8679 
8680 		if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
8681 		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
8682 			/*
8683 			 * We've evicted to the target address,
8684 			 * or the end of the device.
8685 			 */
8686 			mutex_exit(hash_lock);
8687 			break;
8688 		}
8689 
8690 		if (!HDR_HAS_L1HDR(hdr)) {
8691 			ASSERT(!HDR_L2_READING(hdr));
8692 			/*
8693 			 * This doesn't exist in the ARC.  Destroy.
8694 			 * arc_hdr_destroy() will call list_remove()
8695 			 * and decrement arcstat_l2_lsize.
8696 			 */
8697 			arc_change_state(arc_anon, hdr, hash_lock);
8698 			arc_hdr_destroy(hdr);
8699 		} else {
8700 			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
8701 			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
8702 			/*
8703 			 * Invalidate issued or about to be issued
8704 			 * reads, since we may be about to write
8705 			 * over this location.
8706 			 */
8707 			if (HDR_L2_READING(hdr)) {
8708 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
8709 				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
8710 			}
8711 
8712 			arc_hdr_l2hdr_destroy(hdr);
8713 		}
8714 		mutex_exit(hash_lock);
8715 	}
8716 	mutex_exit(&dev->l2ad_mtx);
8717 
8718 out:
8719 	/*
8720 	 * We need to check if we evict all buffers, otherwise we may iterate
8721 	 * unnecessarily.
8722 	 */
8723 	if (!all && rerun) {
8724 		/*
8725 		 * Bump device hand to the device start if it is approaching the
8726 		 * end. l2arc_evict() has already evicted ahead for this case.
8727 		 */
8728 		dev->l2ad_hand = dev->l2ad_start;
8729 		dev->l2ad_evict = dev->l2ad_start;
8730 		dev->l2ad_first = B_FALSE;
8731 		goto top;
8732 	}
8733 
8734 	ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end);
8735 	if (!dev->l2ad_first)
8736 		ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict);
8737 }
8738 
8739 /*
8740  * Handle any abd transforms that might be required for writing to the L2ARC.
8741  * If successful, this function will always return an abd with the data
8742  * transformed as it is on disk in a new abd of asize bytes.
8743  */
8744 static int
8745 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
8746     abd_t **abd_out)
8747 {
8748 	int ret;
8749 	void *tmp = NULL;
8750 	abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
8751 	enum zio_compress compress = HDR_GET_COMPRESS(hdr);
8752 	uint64_t psize = HDR_GET_PSIZE(hdr);
8753 	uint64_t size = arc_hdr_size(hdr);
8754 	boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
8755 	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
8756 	dsl_crypto_key_t *dck = NULL;
8757 	uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
8758 	boolean_t no_crypt = B_FALSE;
8759 
8760 	ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8761 	    !HDR_COMPRESSION_ENABLED(hdr)) ||
8762 	    HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
8763 	ASSERT3U(psize, <=, asize);
8764 
8765 	/*
8766 	 * If this data simply needs its own buffer, we simply allocate it
8767 	 * and copy the data. This may be done to eliminate a dependency on a
8768 	 * shared buffer or to reallocate the buffer to match asize.
8769 	 */
8770 	if (HDR_HAS_RABD(hdr) && asize != psize) {
8771 		ASSERT3U(asize, >=, psize);
8772 		to_write = abd_alloc_for_io(asize, ismd);
8773 		abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
8774 		if (psize != asize)
8775 			abd_zero_off(to_write, psize, asize - psize);
8776 		goto out;
8777 	}
8778 
8779 	if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
8780 	    !HDR_ENCRYPTED(hdr)) {
8781 		ASSERT3U(size, ==, psize);
8782 		to_write = abd_alloc_for_io(asize, ismd);
8783 		abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
8784 		if (size != asize)
8785 			abd_zero_off(to_write, size, asize - size);
8786 		goto out;
8787 	}
8788 
8789 	if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
8790 		cabd = abd_alloc_for_io(asize, ismd);
8791 		tmp = abd_borrow_buf(cabd, asize);
8792 
8793 		psize = zio_compress_data(compress, to_write, tmp, size,
8794 		    hdr->b_complevel);
8795 
8796 		if (psize >= size) {
8797 			abd_return_buf(cabd, tmp, asize);
8798 			HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
8799 			to_write = cabd;
8800 			abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
8801 			if (size != asize)
8802 				abd_zero_off(to_write, size, asize - size);
8803 			goto encrypt;
8804 		}
8805 		ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr));
8806 		if (psize < asize)
8807 			bzero((char *)tmp + psize, asize - psize);
8808 		psize = HDR_GET_PSIZE(hdr);
8809 		abd_return_buf_copy(cabd, tmp, asize);
8810 		to_write = cabd;
8811 	}
8812 
8813 encrypt:
8814 	if (HDR_ENCRYPTED(hdr)) {
8815 		eabd = abd_alloc_for_io(asize, ismd);
8816 
8817 		/*
8818 		 * If the dataset was disowned before the buffer
8819 		 * made it to this point, the key to re-encrypt
8820 		 * it won't be available. In this case we simply
8821 		 * won't write the buffer to the L2ARC.
8822 		 */
8823 		ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
8824 		    FTAG, &dck);
8825 		if (ret != 0)
8826 			goto error;
8827 
8828 		ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
8829 		    hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
8830 		    hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
8831 		    &no_crypt);
8832 		if (ret != 0)
8833 			goto error;
8834 
8835 		if (no_crypt)
8836 			abd_copy(eabd, to_write, psize);
8837 
8838 		if (psize != asize)
8839 			abd_zero_off(eabd, psize, asize - psize);
8840 
8841 		/* assert that the MAC we got here matches the one we saved */
8842 		ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
8843 		spa_keystore_dsl_key_rele(spa, dck, FTAG);
8844 
8845 		if (to_write == cabd)
8846 			abd_free(cabd);
8847 
8848 		to_write = eabd;
8849 	}
8850 
8851 out:
8852 	ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
8853 	*abd_out = to_write;
8854 	return (0);
8855 
8856 error:
8857 	if (dck != NULL)
8858 		spa_keystore_dsl_key_rele(spa, dck, FTAG);
8859 	if (cabd != NULL)
8860 		abd_free(cabd);
8861 	if (eabd != NULL)
8862 		abd_free(eabd);
8863 
8864 	*abd_out = NULL;
8865 	return (ret);
8866 }
8867 
8868 static void
8869 l2arc_blk_fetch_done(zio_t *zio)
8870 {
8871 	l2arc_read_callback_t *cb;
8872 
8873 	cb = zio->io_private;
8874 	if (cb->l2rcb_abd != NULL)
8875 		abd_put(cb->l2rcb_abd);
8876 	kmem_free(cb, sizeof (l2arc_read_callback_t));
8877 }
8878 
8879 /*
8880  * Find and write ARC buffers to the L2ARC device.
8881  *
8882  * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
8883  * for reading until they have completed writing.
8884  * The headroom_boost is an in-out parameter used to maintain headroom boost
8885  * state between calls to this function.
8886  *
8887  * Returns the number of bytes actually written (which may be smaller than
8888  * the delta by which the device hand has changed due to alignment and the
8889  * writing of log blocks).
8890  */
8891 static uint64_t
8892 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
8893 {
8894 	arc_buf_hdr_t 		*hdr, *hdr_prev, *head;
8895 	uint64_t 		write_asize, write_psize, write_lsize, headroom;
8896 	boolean_t		full;
8897 	l2arc_write_callback_t	*cb = NULL;
8898 	zio_t 			*pio, *wzio;
8899 	uint64_t 		guid = spa_load_guid(spa);
8900 
8901 	ASSERT3P(dev->l2ad_vdev, !=, NULL);
8902 
8903 	pio = NULL;
8904 	write_lsize = write_asize = write_psize = 0;
8905 	full = B_FALSE;
8906 	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
8907 	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
8908 
8909 	/*
8910 	 * Copy buffers for L2ARC writing.
8911 	 */
8912 	for (int try = 0; try < L2ARC_FEED_TYPES; try++) {
8913 		multilist_sublist_t *mls = l2arc_sublist_lock(try);
8914 		uint64_t passed_sz = 0;
8915 
8916 		VERIFY3P(mls, !=, NULL);
8917 
8918 		/*
8919 		 * L2ARC fast warmup.
8920 		 *
8921 		 * Until the ARC is warm and starts to evict, read from the
8922 		 * head of the ARC lists rather than the tail.
8923 		 */
8924 		if (arc_warm == B_FALSE)
8925 			hdr = multilist_sublist_head(mls);
8926 		else
8927 			hdr = multilist_sublist_tail(mls);
8928 
8929 		headroom = target_sz * l2arc_headroom;
8930 		if (zfs_compressed_arc_enabled)
8931 			headroom = (headroom * l2arc_headroom_boost) / 100;
8932 
8933 		for (; hdr; hdr = hdr_prev) {
8934 			kmutex_t *hash_lock;
8935 			abd_t *to_write = NULL;
8936 
8937 			if (arc_warm == B_FALSE)
8938 				hdr_prev = multilist_sublist_next(mls, hdr);
8939 			else
8940 				hdr_prev = multilist_sublist_prev(mls, hdr);
8941 
8942 			hash_lock = HDR_LOCK(hdr);
8943 			if (!mutex_tryenter(hash_lock)) {
8944 				/*
8945 				 * Skip this buffer rather than waiting.
8946 				 */
8947 				continue;
8948 			}
8949 
8950 			passed_sz += HDR_GET_LSIZE(hdr);
8951 			if (l2arc_headroom != 0 && passed_sz > headroom) {
8952 				/*
8953 				 * Searched too far.
8954 				 */
8955 				mutex_exit(hash_lock);
8956 				break;
8957 			}
8958 
8959 			if (!l2arc_write_eligible(guid, hdr)) {
8960 				mutex_exit(hash_lock);
8961 				continue;
8962 			}
8963 
8964 			/*
8965 			 * We rely on the L1 portion of the header below, so
8966 			 * it's invalid for this header to have been evicted out
8967 			 * of the ghost cache, prior to being written out. The
8968 			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8969 			 */
8970 			ASSERT(HDR_HAS_L1HDR(hdr));
8971 
8972 			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8973 			ASSERT3U(arc_hdr_size(hdr), >, 0);
8974 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8975 			    HDR_HAS_RABD(hdr));
8976 			uint64_t psize = HDR_GET_PSIZE(hdr);
8977 			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
8978 			    psize);
8979 
8980 			if ((write_asize + asize) > target_sz) {
8981 				full = B_TRUE;
8982 				mutex_exit(hash_lock);
8983 				break;
8984 			}
8985 
8986 			/*
8987 			 * We rely on the L1 portion of the header below, so
8988 			 * it's invalid for this header to have been evicted out
8989 			 * of the ghost cache, prior to being written out. The
8990 			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8991 			 */
8992 			arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING);
8993 			ASSERT(HDR_HAS_L1HDR(hdr));
8994 
8995 			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8996 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8997 			    HDR_HAS_RABD(hdr));
8998 			ASSERT3U(arc_hdr_size(hdr), >, 0);
8999 
9000 			/*
9001 			 * If this header has b_rabd, we can use this since it
9002 			 * must always match the data exactly as it exists on
9003 			 * disk. Otherwise, the L2ARC can normally use the
9004 			 * hdr's data, but if we're sharing data between the
9005 			 * hdr and one of its bufs, L2ARC needs its own copy of
9006 			 * the data so that the ZIO below can't race with the
9007 			 * buf consumer. To ensure that this copy will be
9008 			 * available for the lifetime of the ZIO and be cleaned
9009 			 * up afterwards, we add it to the l2arc_free_on_write
9010 			 * queue. If we need to apply any transforms to the
9011 			 * data (compression, encryption) we will also need the
9012 			 * extra buffer.
9013 			 */
9014 			if (HDR_HAS_RABD(hdr) && psize == asize) {
9015 				to_write = hdr->b_crypt_hdr.b_rabd;
9016 			} else if ((HDR_COMPRESSION_ENABLED(hdr) ||
9017 			    HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
9018 			    !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
9019 			    psize == asize) {
9020 				to_write = hdr->b_l1hdr.b_pabd;
9021 			} else {
9022 				int ret;
9023 				arc_buf_contents_t type = arc_buf_type(hdr);
9024 
9025 				ret = l2arc_apply_transforms(spa, hdr, asize,
9026 				    &to_write);
9027 				if (ret != 0) {
9028 					arc_hdr_clear_flags(hdr,
9029 					    ARC_FLAG_L2_WRITING);
9030 					mutex_exit(hash_lock);
9031 					continue;
9032 				}
9033 
9034 				l2arc_free_abd_on_write(to_write, asize, type);
9035 			}
9036 
9037 			if (pio == NULL) {
9038 				/*
9039 				 * Insert a dummy header on the buflist so
9040 				 * l2arc_write_done() can find where the
9041 				 * write buffers begin without searching.
9042 				 */
9043 				mutex_enter(&dev->l2ad_mtx);
9044 				list_insert_head(&dev->l2ad_buflist, head);
9045 				mutex_exit(&dev->l2ad_mtx);
9046 
9047 				cb = kmem_alloc(
9048 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
9049 				cb->l2wcb_dev = dev;
9050 				cb->l2wcb_head = head;
9051 				/*
9052 				 * Create a list to save allocated abd buffers
9053 				 * for l2arc_log_blk_commit().
9054 				 */
9055 				list_create(&cb->l2wcb_abd_list,
9056 				    sizeof (l2arc_lb_abd_buf_t),
9057 				    offsetof(l2arc_lb_abd_buf_t, node));
9058 				pio = zio_root(spa, l2arc_write_done, cb,
9059 				    ZIO_FLAG_CANFAIL);
9060 			}
9061 
9062 			hdr->b_l2hdr.b_dev = dev;
9063 			hdr->b_l2hdr.b_hits = 0;
9064 
9065 			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
9066 			arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR);
9067 
9068 			mutex_enter(&dev->l2ad_mtx);
9069 			list_insert_head(&dev->l2ad_buflist, hdr);
9070 			mutex_exit(&dev->l2ad_mtx);
9071 
9072 			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
9073 			    arc_hdr_size(hdr), hdr);
9074 
9075 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
9076 			    hdr->b_l2hdr.b_daddr, asize, to_write,
9077 			    ZIO_CHECKSUM_OFF, NULL, hdr,
9078 			    ZIO_PRIORITY_ASYNC_WRITE,
9079 			    ZIO_FLAG_CANFAIL, B_FALSE);
9080 
9081 			write_lsize += HDR_GET_LSIZE(hdr);
9082 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9083 			    zio_t *, wzio);
9084 
9085 			write_psize += psize;
9086 			write_asize += asize;
9087 			dev->l2ad_hand += asize;
9088 			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9089 
9090 			mutex_exit(hash_lock);
9091 
9092 			/*
9093 			 * Append buf info to current log and commit if full.
9094 			 * arcstat_l2_{size,asize} kstats are updated
9095 			 * internally.
9096 			 */
9097 			if (l2arc_log_blk_insert(dev, hdr))
9098 				l2arc_log_blk_commit(dev, pio, cb);
9099 
9100 			zio_nowait(wzio);
9101 		}
9102 
9103 		multilist_sublist_unlock(mls);
9104 
9105 		if (full == B_TRUE)
9106 			break;
9107 	}
9108 
9109 	/* No buffers selected for writing? */
9110 	if (pio == NULL) {
9111 		ASSERT0(write_lsize);
9112 		ASSERT(!HDR_HAS_L1HDR(head));
9113 		kmem_cache_free(hdr_l2only_cache, head);
9114 
9115 		/*
9116 		 * Although we did not write any buffers l2ad_evict may
9117 		 * have advanced.
9118 		 */
9119 		l2arc_dev_hdr_update(dev);
9120 
9121 		return (0);
9122 	}
9123 
9124 	if (!dev->l2ad_first)
9125 		ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9126 
9127 	ASSERT3U(write_asize, <=, target_sz);
9128 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
9129 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
9130 	ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
9131 	ARCSTAT_INCR(arcstat_l2_psize, write_psize);
9132 
9133 	dev->l2ad_writing = B_TRUE;
9134 	(void) zio_wait(pio);
9135 	dev->l2ad_writing = B_FALSE;
9136 
9137 	/*
9138 	 * Update the device header after the zio completes as
9139 	 * l2arc_write_done() may have updated the memory holding the log block
9140 	 * pointers in the device header.
9141 	 */
9142 	l2arc_dev_hdr_update(dev);
9143 
9144 	return (write_asize);
9145 }
9146 
9147 /*
9148  * This thread feeds the L2ARC at regular intervals.  This is the beating
9149  * heart of the L2ARC.
9150  */
9151 /* ARGSUSED */
9152 static void
9153 l2arc_feed_thread(void *unused)
9154 {
9155 	callb_cpr_t cpr;
9156 	l2arc_dev_t *dev;
9157 	spa_t *spa;
9158 	uint64_t size, wrote;
9159 	clock_t begin, next = ddi_get_lbolt();
9160 	fstrans_cookie_t cookie;
9161 
9162 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9163 
9164 	mutex_enter(&l2arc_feed_thr_lock);
9165 
9166 	cookie = spl_fstrans_mark();
9167 	while (l2arc_thread_exit == 0) {
9168 		CALLB_CPR_SAFE_BEGIN(&cpr);
9169 		(void) cv_timedwait_sig(&l2arc_feed_thr_cv,
9170 		    &l2arc_feed_thr_lock, next);
9171 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
9172 		next = ddi_get_lbolt() + hz;
9173 
9174 		/*
9175 		 * Quick check for L2ARC devices.
9176 		 */
9177 		mutex_enter(&l2arc_dev_mtx);
9178 		if (l2arc_ndev == 0) {
9179 			mutex_exit(&l2arc_dev_mtx);
9180 			continue;
9181 		}
9182 		mutex_exit(&l2arc_dev_mtx);
9183 		begin = ddi_get_lbolt();
9184 
9185 		/*
9186 		 * This selects the next l2arc device to write to, and in
9187 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
9188 		 * will return NULL if there are now no l2arc devices or if
9189 		 * they are all faulted.
9190 		 *
9191 		 * If a device is returned, its spa's config lock is also
9192 		 * held to prevent device removal.  l2arc_dev_get_next()
9193 		 * will grab and release l2arc_dev_mtx.
9194 		 */
9195 		if ((dev = l2arc_dev_get_next()) == NULL)
9196 			continue;
9197 
9198 		spa = dev->l2ad_spa;
9199 		ASSERT3P(spa, !=, NULL);
9200 
9201 		/*
9202 		 * If the pool is read-only then force the feed thread to
9203 		 * sleep a little longer.
9204 		 */
9205 		if (!spa_writeable(spa)) {
9206 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9207 			spa_config_exit(spa, SCL_L2ARC, dev);
9208 			continue;
9209 		}
9210 
9211 		/*
9212 		 * Avoid contributing to memory pressure.
9213 		 */
9214 		if (arc_reclaim_needed()) {
9215 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9216 			spa_config_exit(spa, SCL_L2ARC, dev);
9217 			continue;
9218 		}
9219 
9220 		ARCSTAT_BUMP(arcstat_l2_feeds);
9221 
9222 		size = l2arc_write_size(dev);
9223 
9224 		/*
9225 		 * Evict L2ARC buffers that will be overwritten.
9226 		 */
9227 		l2arc_evict(dev, size, B_FALSE);
9228 
9229 		/*
9230 		 * Write ARC buffers.
9231 		 */
9232 		wrote = l2arc_write_buffers(spa, dev, size);
9233 
9234 		/*
9235 		 * Calculate interval between writes.
9236 		 */
9237 		next = l2arc_write_interval(begin, size, wrote);
9238 		spa_config_exit(spa, SCL_L2ARC, dev);
9239 	}
9240 	spl_fstrans_unmark(cookie);
9241 
9242 	l2arc_thread_exit = 0;
9243 	cv_broadcast(&l2arc_feed_thr_cv);
9244 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
9245 	thread_exit();
9246 }
9247 
9248 boolean_t
9249 l2arc_vdev_present(vdev_t *vd)
9250 {
9251 	return (l2arc_vdev_get(vd) != NULL);
9252 }
9253 
9254 /*
9255  * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9256  * the vdev_t isn't an L2ARC device.
9257  */
9258 l2arc_dev_t *
9259 l2arc_vdev_get(vdev_t *vd)
9260 {
9261 	l2arc_dev_t	*dev;
9262 
9263 	mutex_enter(&l2arc_dev_mtx);
9264 	for (dev = list_head(l2arc_dev_list); dev != NULL;
9265 	    dev = list_next(l2arc_dev_list, dev)) {
9266 		if (dev->l2ad_vdev == vd)
9267 			break;
9268 	}
9269 	mutex_exit(&l2arc_dev_mtx);
9270 
9271 	return (dev);
9272 }
9273 
9274 /*
9275  * Add a vdev for use by the L2ARC.  By this point the spa has already
9276  * validated the vdev and opened it.
9277  */
9278 void
9279 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
9280 {
9281 	l2arc_dev_t		*adddev;
9282 	uint64_t		l2dhdr_asize;
9283 
9284 	ASSERT(!l2arc_vdev_present(vd));
9285 
9286 	vdev_ashift_optimize(vd);
9287 
9288 	/*
9289 	 * Create a new l2arc device entry.
9290 	 */
9291 	adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9292 	adddev->l2ad_spa = spa;
9293 	adddev->l2ad_vdev = vd;
9294 	/* leave extra size for an l2arc device header */
9295 	l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9296 	    MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9297 	adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9298 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
9299 	ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
9300 	adddev->l2ad_hand = adddev->l2ad_start;
9301 	adddev->l2ad_evict = adddev->l2ad_start;
9302 	adddev->l2ad_first = B_TRUE;
9303 	adddev->l2ad_writing = B_FALSE;
9304 	adddev->l2ad_trim_all = B_FALSE;
9305 	list_link_init(&adddev->l2ad_node);
9306 	adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
9307 
9308 	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
9309 	/*
9310 	 * This is a list of all ARC buffers that are still valid on the
9311 	 * device.
9312 	 */
9313 	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
9314 	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
9315 
9316 	/*
9317 	 * This is a list of pointers to log blocks that are still present
9318 	 * on the device.
9319 	 */
9320 	list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
9321 	    offsetof(l2arc_lb_ptr_buf_t, node));
9322 
9323 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
9324 	zfs_refcount_create(&adddev->l2ad_alloc);
9325 	zfs_refcount_create(&adddev->l2ad_lb_asize);
9326 	zfs_refcount_create(&adddev->l2ad_lb_count);
9327 
9328 	/*
9329 	 * Add device to global list
9330 	 */
9331 	mutex_enter(&l2arc_dev_mtx);
9332 	list_insert_head(l2arc_dev_list, adddev);
9333 	atomic_inc_64(&l2arc_ndev);
9334 	mutex_exit(&l2arc_dev_mtx);
9335 
9336 	/*
9337 	 * Decide if vdev is eligible for L2ARC rebuild
9338 	 */
9339 	l2arc_rebuild_vdev(adddev->l2ad_vdev, B_FALSE);
9340 }
9341 
9342 void
9343 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
9344 {
9345 	l2arc_dev_t		*dev = NULL;
9346 	l2arc_dev_hdr_phys_t	*l2dhdr;
9347 	uint64_t		l2dhdr_asize;
9348 	spa_t			*spa;
9349 	int			err;
9350 	boolean_t		l2dhdr_valid = B_TRUE;
9351 
9352 	dev = l2arc_vdev_get(vd);
9353 	ASSERT3P(dev, !=, NULL);
9354 	spa = dev->l2ad_spa;
9355 	l2dhdr = dev->l2ad_dev_hdr;
9356 	l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9357 
9358 	/*
9359 	 * The L2ARC has to hold at least the payload of one log block for
9360 	 * them to be restored (persistent L2ARC). The payload of a log block
9361 	 * depends on the amount of its log entries. We always write log blocks
9362 	 * with 1022 entries. How many of them are committed or restored depends
9363 	 * on the size of the L2ARC device. Thus the maximum payload of
9364 	 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9365 	 * is less than that, we reduce the amount of committed and restored
9366 	 * log entries per block so as to enable persistence.
9367 	 */
9368 	if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9369 		dev->l2ad_log_entries = 0;
9370 	} else {
9371 		dev->l2ad_log_entries = MIN((dev->l2ad_end -
9372 		    dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9373 		    L2ARC_LOG_BLK_MAX_ENTRIES);
9374 	}
9375 
9376 	/*
9377 	 * Read the device header, if an error is returned do not rebuild L2ARC.
9378 	 */
9379 	if ((err = l2arc_dev_hdr_read(dev)) != 0)
9380 		l2dhdr_valid = B_FALSE;
9381 
9382 	if (l2dhdr_valid && dev->l2ad_log_entries > 0) {
9383 		/*
9384 		 * If we are onlining a cache device (vdev_reopen) that was
9385 		 * still present (l2arc_vdev_present()) and rebuild is enabled,
9386 		 * we should evict all ARC buffers and pointers to log blocks
9387 		 * and reclaim their space before restoring its contents to
9388 		 * L2ARC.
9389 		 */
9390 		if (reopen) {
9391 			if (!l2arc_rebuild_enabled) {
9392 				return;
9393 			} else {
9394 				l2arc_evict(dev, 0, B_TRUE);
9395 				/* start a new log block */
9396 				dev->l2ad_log_ent_idx = 0;
9397 				dev->l2ad_log_blk_payload_asize = 0;
9398 				dev->l2ad_log_blk_payload_start = 0;
9399 			}
9400 		}
9401 		/*
9402 		 * Just mark the device as pending for a rebuild. We won't
9403 		 * be starting a rebuild in line here as it would block pool
9404 		 * import. Instead spa_load_impl will hand that off to an
9405 		 * async task which will call l2arc_spa_rebuild_start.
9406 		 */
9407 		dev->l2ad_rebuild = B_TRUE;
9408 	} else if (spa_writeable(spa)) {
9409 		/*
9410 		 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9411 		 * otherwise create a new header. We zero out the memory holding
9412 		 * the header to reset dh_start_lbps. If we TRIM the whole
9413 		 * device the new header will be written by
9414 		 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9415 		 * trim_state in the header too. When reading the header, if
9416 		 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9417 		 * we opt to TRIM the whole device again.
9418 		 */
9419 		if (l2arc_trim_ahead > 0) {
9420 			dev->l2ad_trim_all = B_TRUE;
9421 		} else {
9422 			bzero(l2dhdr, l2dhdr_asize);
9423 			l2arc_dev_hdr_update(dev);
9424 		}
9425 	}
9426 }
9427 
9428 /*
9429  * Remove a vdev from the L2ARC.
9430  */
9431 void
9432 l2arc_remove_vdev(vdev_t *vd)
9433 {
9434 	l2arc_dev_t *remdev = NULL;
9435 
9436 	/*
9437 	 * Find the device by vdev
9438 	 */
9439 	remdev = l2arc_vdev_get(vd);
9440 	ASSERT3P(remdev, !=, NULL);
9441 
9442 	/*
9443 	 * Cancel any ongoing or scheduled rebuild.
9444 	 */
9445 	mutex_enter(&l2arc_rebuild_thr_lock);
9446 	if (remdev->l2ad_rebuild_began == B_TRUE) {
9447 		remdev->l2ad_rebuild_cancel = B_TRUE;
9448 		while (remdev->l2ad_rebuild == B_TRUE)
9449 			cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
9450 	}
9451 	mutex_exit(&l2arc_rebuild_thr_lock);
9452 
9453 	/*
9454 	 * Remove device from global list
9455 	 */
9456 	mutex_enter(&l2arc_dev_mtx);
9457 	list_remove(l2arc_dev_list, remdev);
9458 	l2arc_dev_last = NULL;		/* may have been invalidated */
9459 	atomic_dec_64(&l2arc_ndev);
9460 	mutex_exit(&l2arc_dev_mtx);
9461 
9462 	/*
9463 	 * Clear all buflists and ARC references.  L2ARC device flush.
9464 	 */
9465 	l2arc_evict(remdev, 0, B_TRUE);
9466 	list_destroy(&remdev->l2ad_buflist);
9467 	ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
9468 	list_destroy(&remdev->l2ad_lbptr_list);
9469 	mutex_destroy(&remdev->l2ad_mtx);
9470 	zfs_refcount_destroy(&remdev->l2ad_alloc);
9471 	zfs_refcount_destroy(&remdev->l2ad_lb_asize);
9472 	zfs_refcount_destroy(&remdev->l2ad_lb_count);
9473 	kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
9474 	vmem_free(remdev, sizeof (l2arc_dev_t));
9475 }
9476 
9477 void
9478 l2arc_init(void)
9479 {
9480 	l2arc_thread_exit = 0;
9481 	l2arc_ndev = 0;
9482 	l2arc_writes_sent = 0;
9483 	l2arc_writes_done = 0;
9484 
9485 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9486 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
9487 	mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9488 	cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
9489 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
9490 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
9491 
9492 	l2arc_dev_list = &L2ARC_dev_list;
9493 	l2arc_free_on_write = &L2ARC_free_on_write;
9494 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
9495 	    offsetof(l2arc_dev_t, l2ad_node));
9496 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
9497 	    offsetof(l2arc_data_free_t, l2df_list_node));
9498 }
9499 
9500 void
9501 l2arc_fini(void)
9502 {
9503 	mutex_destroy(&l2arc_feed_thr_lock);
9504 	cv_destroy(&l2arc_feed_thr_cv);
9505 	mutex_destroy(&l2arc_rebuild_thr_lock);
9506 	cv_destroy(&l2arc_rebuild_thr_cv);
9507 	mutex_destroy(&l2arc_dev_mtx);
9508 	mutex_destroy(&l2arc_free_on_write_mtx);
9509 
9510 	list_destroy(l2arc_dev_list);
9511 	list_destroy(l2arc_free_on_write);
9512 }
9513 
9514 void
9515 l2arc_start(void)
9516 {
9517 	if (!(spa_mode_global & SPA_MODE_WRITE))
9518 		return;
9519 
9520 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
9521 	    TS_RUN, defclsyspri);
9522 }
9523 
9524 void
9525 l2arc_stop(void)
9526 {
9527 	if (!(spa_mode_global & SPA_MODE_WRITE))
9528 		return;
9529 
9530 	mutex_enter(&l2arc_feed_thr_lock);
9531 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
9532 	l2arc_thread_exit = 1;
9533 	while (l2arc_thread_exit != 0)
9534 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
9535 	mutex_exit(&l2arc_feed_thr_lock);
9536 }
9537 
9538 /*
9539  * Punches out rebuild threads for the L2ARC devices in a spa. This should
9540  * be called after pool import from the spa async thread, since starting
9541  * these threads directly from spa_import() will make them part of the
9542  * "zpool import" context and delay process exit (and thus pool import).
9543  */
9544 void
9545 l2arc_spa_rebuild_start(spa_t *spa)
9546 {
9547 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
9548 
9549 	/*
9550 	 * Locate the spa's l2arc devices and kick off rebuild threads.
9551 	 */
9552 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
9553 		l2arc_dev_t *dev =
9554 		    l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
9555 		if (dev == NULL) {
9556 			/* Don't attempt a rebuild if the vdev is UNAVAIL */
9557 			continue;
9558 		}
9559 		mutex_enter(&l2arc_rebuild_thr_lock);
9560 		if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
9561 			dev->l2ad_rebuild_began = B_TRUE;
9562 			(void) thread_create(NULL, 0, l2arc_dev_rebuild_thread,
9563 			    dev, 0, &p0, TS_RUN, minclsyspri);
9564 		}
9565 		mutex_exit(&l2arc_rebuild_thr_lock);
9566 	}
9567 }
9568 
9569 /*
9570  * Main entry point for L2ARC rebuilding.
9571  */
9572 static void
9573 l2arc_dev_rebuild_thread(void *arg)
9574 {
9575 	l2arc_dev_t *dev = arg;
9576 
9577 	VERIFY(!dev->l2ad_rebuild_cancel);
9578 	VERIFY(dev->l2ad_rebuild);
9579 	(void) l2arc_rebuild(dev);
9580 	mutex_enter(&l2arc_rebuild_thr_lock);
9581 	dev->l2ad_rebuild_began = B_FALSE;
9582 	dev->l2ad_rebuild = B_FALSE;
9583 	mutex_exit(&l2arc_rebuild_thr_lock);
9584 
9585 	thread_exit();
9586 }
9587 
9588 /*
9589  * This function implements the actual L2ARC metadata rebuild. It:
9590  * starts reading the log block chain and restores each block's contents
9591  * to memory (reconstructing arc_buf_hdr_t's).
9592  *
9593  * Operation stops under any of the following conditions:
9594  *
9595  * 1) We reach the end of the log block chain.
9596  * 2) We encounter *any* error condition (cksum errors, io errors)
9597  */
9598 static int
9599 l2arc_rebuild(l2arc_dev_t *dev)
9600 {
9601 	vdev_t			*vd = dev->l2ad_vdev;
9602 	spa_t			*spa = vd->vdev_spa;
9603 	int			err = 0;
9604 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
9605 	l2arc_log_blk_phys_t	*this_lb, *next_lb;
9606 	zio_t			*this_io = NULL, *next_io = NULL;
9607 	l2arc_log_blkptr_t	lbps[2];
9608 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
9609 	boolean_t		lock_held;
9610 
9611 	this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP);
9612 	next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP);
9613 
9614 	/*
9615 	 * We prevent device removal while issuing reads to the device,
9616 	 * then during the rebuilding phases we drop this lock again so
9617 	 * that a spa_unload or device remove can be initiated - this is
9618 	 * safe, because the spa will signal us to stop before removing
9619 	 * our device and wait for us to stop.
9620 	 */
9621 	spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
9622 	lock_held = B_TRUE;
9623 
9624 	/*
9625 	 * Retrieve the persistent L2ARC device state.
9626 	 * L2BLK_GET_PSIZE returns aligned size for log blocks.
9627 	 */
9628 	dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
9629 	dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
9630 	    L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
9631 	    dev->l2ad_start);
9632 	dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
9633 
9634 	vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time;
9635 	vd->vdev_trim_state = l2dhdr->dh_trim_state;
9636 
9637 	/*
9638 	 * In case the zfs module parameter l2arc_rebuild_enabled is false
9639 	 * we do not start the rebuild process.
9640 	 */
9641 	if (!l2arc_rebuild_enabled)
9642 		goto out;
9643 
9644 	/* Prepare the rebuild process */
9645 	bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps));
9646 
9647 	/* Start the rebuild process */
9648 	for (;;) {
9649 		if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
9650 			break;
9651 
9652 		if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
9653 		    this_lb, next_lb, this_io, &next_io)) != 0)
9654 			goto out;
9655 
9656 		/*
9657 		 * Our memory pressure valve. If the system is running low
9658 		 * on memory, rather than swamping memory with new ARC buf
9659 		 * hdrs, we opt not to rebuild the L2ARC. At this point,
9660 		 * however, we have already set up our L2ARC dev to chain in
9661 		 * new metadata log blocks, so the user may choose to offline/
9662 		 * online the L2ARC dev at a later time (or re-import the pool)
9663 		 * to reconstruct it (when there's less memory pressure).
9664 		 */
9665 		if (arc_reclaim_needed()) {
9666 			ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
9667 			cmn_err(CE_NOTE, "System running low on memory, "
9668 			    "aborting L2ARC rebuild.");
9669 			err = SET_ERROR(ENOMEM);
9670 			goto out;
9671 		}
9672 
9673 		spa_config_exit(spa, SCL_L2ARC, vd);
9674 		lock_held = B_FALSE;
9675 
9676 		/*
9677 		 * Now that we know that the next_lb checks out alright, we
9678 		 * can start reconstruction from this log block.
9679 		 * L2BLK_GET_PSIZE returns aligned size for log blocks.
9680 		 */
9681 		uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
9682 		l2arc_log_blk_restore(dev, this_lb, asize, lbps[0].lbp_daddr);
9683 
9684 		/*
9685 		 * log block restored, include its pointer in the list of
9686 		 * pointers to log blocks present in the L2ARC device.
9687 		 */
9688 		lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
9689 		lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
9690 		    KM_SLEEP);
9691 		bcopy(&lbps[0], lb_ptr_buf->lb_ptr,
9692 		    sizeof (l2arc_log_blkptr_t));
9693 		mutex_enter(&dev->l2ad_mtx);
9694 		list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
9695 		ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
9696 		ARCSTAT_BUMP(arcstat_l2_log_blk_count);
9697 		zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
9698 		zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
9699 		mutex_exit(&dev->l2ad_mtx);
9700 		vdev_space_update(vd, asize, 0, 0);
9701 
9702 		/*
9703 		 * Protection against loops of log blocks:
9704 		 *
9705 		 *				       l2ad_hand  l2ad_evict
9706 		 *                                         V	      V
9707 		 * l2ad_start |=======================================| l2ad_end
9708 		 *             -----|||----|||---|||----|||
9709 		 *                  (3)    (2)   (1)    (0)
9710 		 *             ---|||---|||----|||---|||
9711 		 *		  (7)   (6)    (5)   (4)
9712 		 *
9713 		 * In this situation the pointer of log block (4) passes
9714 		 * l2arc_log_blkptr_valid() but the log block should not be
9715 		 * restored as it is overwritten by the payload of log block
9716 		 * (0). Only log blocks (0)-(3) should be restored. We check
9717 		 * whether l2ad_evict lies in between the payload starting
9718 		 * offset of the next log block (lbps[1].lbp_payload_start)
9719 		 * and the payload starting offset of the present log block
9720 		 * (lbps[0].lbp_payload_start). If true and this isn't the
9721 		 * first pass, we are looping from the beginning and we should
9722 		 * stop.
9723 		 */
9724 		if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
9725 		    lbps[0].lbp_payload_start, dev->l2ad_evict) &&
9726 		    !dev->l2ad_first)
9727 			goto out;
9728 
9729 		for (;;) {
9730 			mutex_enter(&l2arc_rebuild_thr_lock);
9731 			if (dev->l2ad_rebuild_cancel) {
9732 				dev->l2ad_rebuild = B_FALSE;
9733 				cv_signal(&l2arc_rebuild_thr_cv);
9734 				mutex_exit(&l2arc_rebuild_thr_lock);
9735 				err = SET_ERROR(ECANCELED);
9736 				goto out;
9737 			}
9738 			mutex_exit(&l2arc_rebuild_thr_lock);
9739 			if (spa_config_tryenter(spa, SCL_L2ARC, vd,
9740 			    RW_READER)) {
9741 				lock_held = B_TRUE;
9742 				break;
9743 			}
9744 			/*
9745 			 * L2ARC config lock held by somebody in writer,
9746 			 * possibly due to them trying to remove us. They'll
9747 			 * likely to want us to shut down, so after a little
9748 			 * delay, we check l2ad_rebuild_cancel and retry
9749 			 * the lock again.
9750 			 */
9751 			delay(1);
9752 		}
9753 
9754 		/*
9755 		 * Continue with the next log block.
9756 		 */
9757 		lbps[0] = lbps[1];
9758 		lbps[1] = this_lb->lb_prev_lbp;
9759 		PTR_SWAP(this_lb, next_lb);
9760 		this_io = next_io;
9761 		next_io = NULL;
9762 		}
9763 
9764 	if (this_io != NULL)
9765 		l2arc_log_blk_fetch_abort(this_io);
9766 out:
9767 	if (next_io != NULL)
9768 		l2arc_log_blk_fetch_abort(next_io);
9769 	vmem_free(this_lb, sizeof (*this_lb));
9770 	vmem_free(next_lb, sizeof (*next_lb));
9771 
9772 	if (!l2arc_rebuild_enabled) {
9773 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9774 		    "disabled");
9775 	} else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
9776 		ARCSTAT_BUMP(arcstat_l2_rebuild_success);
9777 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9778 		    "successful, restored %llu blocks",
9779 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9780 	} else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
9781 		/*
9782 		 * No error but also nothing restored, meaning the lbps array
9783 		 * in the device header points to invalid/non-present log
9784 		 * blocks. Reset the header.
9785 		 */
9786 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9787 		    "no valid log blocks");
9788 		bzero(l2dhdr, dev->l2ad_dev_hdr_asize);
9789 		l2arc_dev_hdr_update(dev);
9790 	} else if (err == ECANCELED) {
9791 		/*
9792 		 * In case the rebuild was canceled do not log to spa history
9793 		 * log as the pool may be in the process of being removed.
9794 		 */
9795 		zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
9796 		    zfs_refcount_count(&dev->l2ad_lb_count));
9797 	} else if (err != 0) {
9798 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9799 		    "aborted, restored %llu blocks",
9800 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9801 	}
9802 
9803 	if (lock_held)
9804 		spa_config_exit(spa, SCL_L2ARC, vd);
9805 
9806 	return (err);
9807 }
9808 
9809 /*
9810  * Attempts to read the device header on the provided L2ARC device and writes
9811  * it to `hdr'. On success, this function returns 0, otherwise the appropriate
9812  * error code is returned.
9813  */
9814 static int
9815 l2arc_dev_hdr_read(l2arc_dev_t *dev)
9816 {
9817 	int			err;
9818 	uint64_t		guid;
9819 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
9820 	const uint64_t		l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9821 	abd_t 			*abd;
9822 
9823 	guid = spa_guid(dev->l2ad_vdev->vdev_spa);
9824 
9825 	abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
9826 
9827 	err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
9828 	    VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
9829 	    ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_ASYNC_READ,
9830 	    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
9831 	    ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
9832 	    ZIO_FLAG_SPECULATIVE, B_FALSE));
9833 
9834 	abd_put(abd);
9835 
9836 	if (err != 0) {
9837 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
9838 		zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
9839 		    "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid);
9840 		return (err);
9841 	}
9842 
9843 	if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
9844 		byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
9845 
9846 	if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
9847 	    l2dhdr->dh_spa_guid != guid ||
9848 	    l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
9849 	    l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
9850 	    l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
9851 	    l2dhdr->dh_end != dev->l2ad_end ||
9852 	    !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
9853 	    l2dhdr->dh_evict) ||
9854 	    (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE &&
9855 	    l2arc_trim_ahead > 0)) {
9856 		/*
9857 		 * Attempt to rebuild a device containing no actual dev hdr
9858 		 * or containing a header from some other pool or from another
9859 		 * version of persistent L2ARC.
9860 		 */
9861 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
9862 		return (SET_ERROR(ENOTSUP));
9863 	}
9864 
9865 	return (0);
9866 }
9867 
9868 /*
9869  * Reads L2ARC log blocks from storage and validates their contents.
9870  *
9871  * This function implements a simple fetcher to make sure that while
9872  * we're processing one buffer the L2ARC is already fetching the next
9873  * one in the chain.
9874  *
9875  * The arguments this_lp and next_lp point to the current and next log block
9876  * address in the block chain. Similarly, this_lb and next_lb hold the
9877  * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
9878  *
9879  * The `this_io' and `next_io' arguments are used for block fetching.
9880  * When issuing the first blk IO during rebuild, you should pass NULL for
9881  * `this_io'. This function will then issue a sync IO to read the block and
9882  * also issue an async IO to fetch the next block in the block chain. The
9883  * fetched IO is returned in `next_io'. On subsequent calls to this
9884  * function, pass the value returned in `next_io' from the previous call
9885  * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
9886  * Prior to the call, you should initialize your `next_io' pointer to be
9887  * NULL. If no fetch IO was issued, the pointer is left set at NULL.
9888  *
9889  * On success, this function returns 0, otherwise it returns an appropriate
9890  * error code. On error the fetching IO is aborted and cleared before
9891  * returning from this function. Therefore, if we return `success', the
9892  * caller can assume that we have taken care of cleanup of fetch IOs.
9893  */
9894 static int
9895 l2arc_log_blk_read(l2arc_dev_t *dev,
9896     const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
9897     l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
9898     zio_t *this_io, zio_t **next_io)
9899 {
9900 	int		err = 0;
9901 	zio_cksum_t	cksum;
9902 	abd_t		*abd = NULL;
9903 	uint64_t	asize;
9904 
9905 	ASSERT(this_lbp != NULL && next_lbp != NULL);
9906 	ASSERT(this_lb != NULL && next_lb != NULL);
9907 	ASSERT(next_io != NULL && *next_io == NULL);
9908 	ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
9909 
9910 	/*
9911 	 * Check to see if we have issued the IO for this log block in a
9912 	 * previous run. If not, this is the first call, so issue it now.
9913 	 */
9914 	if (this_io == NULL) {
9915 		this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
9916 		    this_lb);
9917 	}
9918 
9919 	/*
9920 	 * Peek to see if we can start issuing the next IO immediately.
9921 	 */
9922 	if (l2arc_log_blkptr_valid(dev, next_lbp)) {
9923 		/*
9924 		 * Start issuing IO for the next log block early - this
9925 		 * should help keep the L2ARC device busy while we
9926 		 * decompress and restore this log block.
9927 		 */
9928 		*next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
9929 		    next_lb);
9930 	}
9931 
9932 	/* Wait for the IO to read this log block to complete */
9933 	if ((err = zio_wait(this_io)) != 0) {
9934 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
9935 		zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
9936 		    "offset: %llu, vdev guid: %llu", err, this_lbp->lbp_daddr,
9937 		    dev->l2ad_vdev->vdev_guid);
9938 		goto cleanup;
9939 	}
9940 
9941 	/*
9942 	 * Make sure the buffer checks out.
9943 	 * L2BLK_GET_PSIZE returns aligned size for log blocks.
9944 	 */
9945 	asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
9946 	fletcher_4_native(this_lb, asize, NULL, &cksum);
9947 	if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
9948 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
9949 		zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
9950 		    "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
9951 		    this_lbp->lbp_daddr, dev->l2ad_vdev->vdev_guid,
9952 		    dev->l2ad_hand, dev->l2ad_evict);
9953 		err = SET_ERROR(ECKSUM);
9954 		goto cleanup;
9955 	}
9956 
9957 	/* Now we can take our time decoding this buffer */
9958 	switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
9959 	case ZIO_COMPRESS_OFF:
9960 		break;
9961 	case ZIO_COMPRESS_LZ4:
9962 		abd = abd_alloc_for_io(asize, B_TRUE);
9963 		abd_copy_from_buf_off(abd, this_lb, 0, asize);
9964 		if ((err = zio_decompress_data(
9965 		    L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
9966 		    abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) {
9967 			err = SET_ERROR(EINVAL);
9968 			goto cleanup;
9969 		}
9970 		break;
9971 	default:
9972 		err = SET_ERROR(EINVAL);
9973 		goto cleanup;
9974 	}
9975 	if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
9976 		byteswap_uint64_array(this_lb, sizeof (*this_lb));
9977 	if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
9978 		err = SET_ERROR(EINVAL);
9979 		goto cleanup;
9980 	}
9981 cleanup:
9982 	/* Abort an in-flight fetch I/O in case of error */
9983 	if (err != 0 && *next_io != NULL) {
9984 		l2arc_log_blk_fetch_abort(*next_io);
9985 		*next_io = NULL;
9986 	}
9987 	if (abd != NULL)
9988 		abd_free(abd);
9989 	return (err);
9990 }
9991 
9992 /*
9993  * Restores the payload of a log block to ARC. This creates empty ARC hdr
9994  * entries which only contain an l2arc hdr, essentially restoring the
9995  * buffers to their L2ARC evicted state. This function also updates space
9996  * usage on the L2ARC vdev to make sure it tracks restored buffers.
9997  */
9998 static void
9999 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
10000     uint64_t lb_asize, uint64_t lb_daddr)
10001 {
10002 	uint64_t	size = 0, asize = 0;
10003 	uint64_t	log_entries = dev->l2ad_log_entries;
10004 
10005 	for (int i = log_entries - 1; i >= 0; i--) {
10006 		/*
10007 		 * Restore goes in the reverse temporal direction to preserve
10008 		 * correct temporal ordering of buffers in the l2ad_buflist.
10009 		 * l2arc_hdr_restore also does a list_insert_tail instead of
10010 		 * list_insert_head on the l2ad_buflist:
10011 		 *
10012 		 *		LIST	l2ad_buflist		LIST
10013 		 *		HEAD  <------ (time) ------	TAIL
10014 		 * direction	+-----+-----+-----+-----+-----+    direction
10015 		 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10016 		 * fill		+-----+-----+-----+-----+-----+
10017 		 *		^				^
10018 		 *		|				|
10019 		 *		|				|
10020 		 *	l2arc_feed_thread		l2arc_rebuild
10021 		 *	will place new bufs here	restores bufs here
10022 		 *
10023 		 * During l2arc_rebuild() the device is not used by
10024 		 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10025 		 */
10026 		size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
10027 		asize += vdev_psize_to_asize(dev->l2ad_vdev,
10028 		    L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
10029 		l2arc_hdr_restore(&lb->lb_entries[i], dev);
10030 	}
10031 
10032 	/*
10033 	 * Record rebuild stats:
10034 	 *	size		Logical size of restored buffers in the L2ARC
10035 	 *	asize		Aligned size of restored buffers in the L2ARC
10036 	 */
10037 	ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
10038 	ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
10039 	ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
10040 	ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
10041 	ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
10042 	ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
10043 }
10044 
10045 /*
10046  * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10047  * into a state indicating that it has been evicted to L2ARC.
10048  */
10049 static void
10050 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
10051 {
10052 	arc_buf_hdr_t		*hdr, *exists;
10053 	kmutex_t		*hash_lock;
10054 	arc_buf_contents_t	type = L2BLK_GET_TYPE((le)->le_prop);
10055 	uint64_t		asize;
10056 
10057 	/*
10058 	 * Do all the allocation before grabbing any locks, this lets us
10059 	 * sleep if memory is full and we don't have to deal with failed
10060 	 * allocations.
10061 	 */
10062 	hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
10063 	    dev, le->le_dva, le->le_daddr,
10064 	    L2BLK_GET_PSIZE((le)->le_prop), le->le_birth,
10065 	    L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel,
10066 	    L2BLK_GET_PROTECTED((le)->le_prop),
10067 	    L2BLK_GET_PREFETCH((le)->le_prop));
10068 	asize = vdev_psize_to_asize(dev->l2ad_vdev,
10069 	    L2BLK_GET_PSIZE((le)->le_prop));
10070 
10071 	/*
10072 	 * vdev_space_update() has to be called before arc_hdr_destroy() to
10073 	 * avoid underflow since the latter also calls the former.
10074 	 */
10075 	vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10076 
10077 	ARCSTAT_INCR(arcstat_l2_lsize, HDR_GET_LSIZE(hdr));
10078 	ARCSTAT_INCR(arcstat_l2_psize, HDR_GET_PSIZE(hdr));
10079 
10080 	mutex_enter(&dev->l2ad_mtx);
10081 	list_insert_tail(&dev->l2ad_buflist, hdr);
10082 	(void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
10083 	mutex_exit(&dev->l2ad_mtx);
10084 
10085 	exists = buf_hash_insert(hdr, &hash_lock);
10086 	if (exists) {
10087 		/* Buffer was already cached, no need to restore it. */
10088 		arc_hdr_destroy(hdr);
10089 		/*
10090 		 * If the buffer is already cached, check whether it has
10091 		 * L2ARC metadata. If not, enter them and update the flag.
10092 		 * This is important is case of onlining a cache device, since
10093 		 * we previously evicted all L2ARC metadata from ARC.
10094 		 */
10095 		if (!HDR_HAS_L2HDR(exists)) {
10096 			arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
10097 			exists->b_l2hdr.b_dev = dev;
10098 			exists->b_l2hdr.b_daddr = le->le_daddr;
10099 			mutex_enter(&dev->l2ad_mtx);
10100 			list_insert_tail(&dev->l2ad_buflist, exists);
10101 			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
10102 			    arc_hdr_size(exists), exists);
10103 			mutex_exit(&dev->l2ad_mtx);
10104 			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10105 			ARCSTAT_INCR(arcstat_l2_lsize, HDR_GET_LSIZE(exists));
10106 			ARCSTAT_INCR(arcstat_l2_psize, HDR_GET_PSIZE(exists));
10107 		}
10108 		ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
10109 	}
10110 
10111 	mutex_exit(hash_lock);
10112 }
10113 
10114 /*
10115  * Starts an asynchronous read IO to read a log block. This is used in log
10116  * block reconstruction to start reading the next block before we are done
10117  * decoding and reconstructing the current block, to keep the l2arc device
10118  * nice and hot with read IO to process.
10119  * The returned zio will contain a newly allocated memory buffers for the IO
10120  * data which should then be freed by the caller once the zio is no longer
10121  * needed (i.e. due to it having completed). If you wish to abort this
10122  * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10123  * care of disposing of the allocated buffers correctly.
10124  */
10125 static zio_t *
10126 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
10127     l2arc_log_blk_phys_t *lb)
10128 {
10129 	uint32_t		asize;
10130 	zio_t			*pio;
10131 	l2arc_read_callback_t	*cb;
10132 
10133 	/* L2BLK_GET_PSIZE returns aligned size for log blocks */
10134 	asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10135 	ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
10136 
10137 	cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
10138 	cb->l2rcb_abd = abd_get_from_buf(lb, asize);
10139 	pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
10140 	    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
10141 	    ZIO_FLAG_DONT_RETRY);
10142 	(void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
10143 	    cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10144 	    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
10145 	    ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
10146 
10147 	return (pio);
10148 }
10149 
10150 /*
10151  * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10152  * buffers allocated for it.
10153  */
10154 static void
10155 l2arc_log_blk_fetch_abort(zio_t *zio)
10156 {
10157 	(void) zio_wait(zio);
10158 }
10159 
10160 /*
10161  * Creates a zio to update the device header on an l2arc device.
10162  */
10163 void
10164 l2arc_dev_hdr_update(l2arc_dev_t *dev)
10165 {
10166 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10167 	const uint64_t		l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10168 	abd_t			*abd;
10169 	int			err;
10170 
10171 	VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
10172 
10173 	l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
10174 	l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
10175 	l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10176 	l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
10177 	l2dhdr->dh_log_entries = dev->l2ad_log_entries;
10178 	l2dhdr->dh_evict = dev->l2ad_evict;
10179 	l2dhdr->dh_start = dev->l2ad_start;
10180 	l2dhdr->dh_end = dev->l2ad_end;
10181 	l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
10182 	l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
10183 	l2dhdr->dh_flags = 0;
10184 	l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time;
10185 	l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state;
10186 	if (dev->l2ad_first)
10187 		l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
10188 
10189 	abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10190 
10191 	err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
10192 	    VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
10193 	    NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
10194 
10195 	abd_put(abd);
10196 
10197 	if (err != 0) {
10198 		zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10199 		    "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid);
10200 	}
10201 }
10202 
10203 /*
10204  * Commits a log block to the L2ARC device. This routine is invoked from
10205  * l2arc_write_buffers when the log block fills up.
10206  * This function allocates some memory to temporarily hold the serialized
10207  * buffer to be written. This is then released in l2arc_write_done.
10208  */
10209 static void
10210 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
10211 {
10212 	l2arc_log_blk_phys_t	*lb = &dev->l2ad_log_blk;
10213 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10214 	uint64_t		psize, asize;
10215 	zio_t			*wzio;
10216 	l2arc_lb_abd_buf_t	*abd_buf;
10217 	uint8_t			*tmpbuf;
10218 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
10219 
10220 	VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
10221 
10222 	tmpbuf = zio_buf_alloc(sizeof (*lb));
10223 	abd_buf = zio_buf_alloc(sizeof (*abd_buf));
10224 	abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
10225 	lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10226 	lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
10227 
10228 	/* link the buffer into the block chain */
10229 	lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
10230 	lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
10231 
10232 	/*
10233 	 * l2arc_log_blk_commit() may be called multiple times during a single
10234 	 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10235 	 * so we can free them in l2arc_write_done() later on.
10236 	 */
10237 	list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
10238 
10239 	/* try to compress the buffer */
10240 	psize = zio_compress_data(ZIO_COMPRESS_LZ4,
10241 	    abd_buf->abd, tmpbuf, sizeof (*lb), 0);
10242 
10243 	/* a log block is never entirely zero */
10244 	ASSERT(psize != 0);
10245 	asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
10246 	ASSERT(asize <= sizeof (*lb));
10247 
10248 	/*
10249 	 * Update the start log block pointer in the device header to point
10250 	 * to the log block we're about to write.
10251 	 */
10252 	l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
10253 	l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
10254 	l2dhdr->dh_start_lbps[0].lbp_payload_asize =
10255 	    dev->l2ad_log_blk_payload_asize;
10256 	l2dhdr->dh_start_lbps[0].lbp_payload_start =
10257 	    dev->l2ad_log_blk_payload_start;
10258 	_NOTE(CONSTCOND)
10259 	L2BLK_SET_LSIZE(
10260 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
10261 	L2BLK_SET_PSIZE(
10262 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
10263 	L2BLK_SET_CHECKSUM(
10264 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10265 	    ZIO_CHECKSUM_FLETCHER_4);
10266 	if (asize < sizeof (*lb)) {
10267 		/* compression succeeded */
10268 		bzero(tmpbuf + psize, asize - psize);
10269 		L2BLK_SET_COMPRESS(
10270 		    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10271 		    ZIO_COMPRESS_LZ4);
10272 	} else {
10273 		/* compression failed */
10274 		bcopy(lb, tmpbuf, sizeof (*lb));
10275 		L2BLK_SET_COMPRESS(
10276 		    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10277 		    ZIO_COMPRESS_OFF);
10278 	}
10279 
10280 	/* checksum what we're about to write */
10281 	fletcher_4_native(tmpbuf, asize, NULL,
10282 	    &l2dhdr->dh_start_lbps[0].lbp_cksum);
10283 
10284 	abd_put(abd_buf->abd);
10285 
10286 	/* perform the write itself */
10287 	abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb));
10288 	abd_take_ownership_of_buf(abd_buf->abd, B_TRUE);
10289 	wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
10290 	    asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10291 	    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
10292 	DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
10293 	(void) zio_nowait(wzio);
10294 
10295 	dev->l2ad_hand += asize;
10296 	/*
10297 	 * Include the committed log block's pointer  in the list of pointers
10298 	 * to log blocks present in the L2ARC device.
10299 	 */
10300 	bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr,
10301 	    sizeof (l2arc_log_blkptr_t));
10302 	mutex_enter(&dev->l2ad_mtx);
10303 	list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
10304 	ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10305 	ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10306 	zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10307 	zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10308 	mutex_exit(&dev->l2ad_mtx);
10309 	vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10310 
10311 	/* bump the kstats */
10312 	ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
10313 	ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
10314 	ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
10315 	ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
10316 	    dev->l2ad_log_blk_payload_asize / asize);
10317 
10318 	/* start a new log block */
10319 	dev->l2ad_log_ent_idx = 0;
10320 	dev->l2ad_log_blk_payload_asize = 0;
10321 	dev->l2ad_log_blk_payload_start = 0;
10322 }
10323 
10324 /*
10325  * Validates an L2ARC log block address to make sure that it can be read
10326  * from the provided L2ARC device.
10327  */
10328 boolean_t
10329 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
10330 {
10331 	/* L2BLK_GET_PSIZE returns aligned size for log blocks */
10332 	uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10333 	uint64_t end = lbp->lbp_daddr + asize - 1;
10334 	uint64_t start = lbp->lbp_payload_start;
10335 	boolean_t evicted = B_FALSE;
10336 
10337 	/*
10338 	 * A log block is valid if all of the following conditions are true:
10339 	 * - it fits entirely (including its payload) between l2ad_start and
10340 	 *   l2ad_end
10341 	 * - it has a valid size
10342 	 * - neither the log block itself nor part of its payload was evicted
10343 	 *   by l2arc_evict():
10344 	 *
10345 	 *		l2ad_hand          l2ad_evict
10346 	 *		|			 |	lbp_daddr
10347 	 *		|     start		 |	|  end
10348 	 *		|     |			 |	|  |
10349 	 *		V     V		         V	V  V
10350 	 *   l2ad_start ============================================ l2ad_end
10351 	 *                    --------------------------||||
10352 	 *				^		 ^
10353 	 *				|		log block
10354 	 *				payload
10355 	 */
10356 
10357 	evicted =
10358 	    l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
10359 	    l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
10360 	    l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
10361 	    l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
10362 
10363 	return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
10364 	    asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
10365 	    (!evicted || dev->l2ad_first));
10366 }
10367 
10368 /*
10369  * Inserts ARC buffer header `hdr' into the current L2ARC log block on
10370  * the device. The buffer being inserted must be present in L2ARC.
10371  * Returns B_TRUE if the L2ARC log block is full and needs to be committed
10372  * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
10373  */
10374 static boolean_t
10375 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
10376 {
10377 	l2arc_log_blk_phys_t	*lb = &dev->l2ad_log_blk;
10378 	l2arc_log_ent_phys_t	*le;
10379 
10380 	if (dev->l2ad_log_entries == 0)
10381 		return (B_FALSE);
10382 
10383 	int index = dev->l2ad_log_ent_idx++;
10384 
10385 	ASSERT3S(index, <, dev->l2ad_log_entries);
10386 	ASSERT(HDR_HAS_L2HDR(hdr));
10387 
10388 	le = &lb->lb_entries[index];
10389 	bzero(le, sizeof (*le));
10390 	le->le_dva = hdr->b_dva;
10391 	le->le_birth = hdr->b_birth;
10392 	le->le_daddr = hdr->b_l2hdr.b_daddr;
10393 	if (index == 0)
10394 		dev->l2ad_log_blk_payload_start = le->le_daddr;
10395 	L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
10396 	L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
10397 	L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
10398 	le->le_complevel = hdr->b_complevel;
10399 	L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
10400 	L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
10401 	L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
10402 
10403 	dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
10404 	    HDR_GET_PSIZE(hdr));
10405 
10406 	return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
10407 }
10408 
10409 /*
10410  * Checks whether a given L2ARC device address sits in a time-sequential
10411  * range. The trick here is that the L2ARC is a rotary buffer, so we can't
10412  * just do a range comparison, we need to handle the situation in which the
10413  * range wraps around the end of the L2ARC device. Arguments:
10414  *	bottom -- Lower end of the range to check (written to earlier).
10415  *	top    -- Upper end of the range to check (written to later).
10416  *	check  -- The address for which we want to determine if it sits in
10417  *		  between the top and bottom.
10418  *
10419  * The 3-way conditional below represents the following cases:
10420  *
10421  *	bottom < top : Sequentially ordered case:
10422  *	  <check>--------+-------------------+
10423  *	                 |  (overlap here?)  |
10424  *	 L2ARC dev       V                   V
10425  *	 |---------------<bottom>============<top>--------------|
10426  *
10427  *	bottom > top: Looped-around case:
10428  *	                      <check>--------+------------------+
10429  *	                                     |  (overlap here?) |
10430  *	 L2ARC dev                           V                  V
10431  *	 |===============<top>---------------<bottom>===========|
10432  *	 ^               ^
10433  *	 |  (or here?)   |
10434  *	 +---------------+---------<check>
10435  *
10436  *	top == bottom : Just a single address comparison.
10437  */
10438 boolean_t
10439 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
10440 {
10441 	if (bottom < top)
10442 		return (bottom <= check && check <= top);
10443 	else if (bottom > top)
10444 		return (check <= top || bottom <= check);
10445 	else
10446 		return (check == top);
10447 }
10448 
10449 EXPORT_SYMBOL(arc_buf_size);
10450 EXPORT_SYMBOL(arc_write);
10451 EXPORT_SYMBOL(arc_read);
10452 EXPORT_SYMBOL(arc_buf_info);
10453 EXPORT_SYMBOL(arc_getbuf_func);
10454 EXPORT_SYMBOL(arc_add_prune_callback);
10455 EXPORT_SYMBOL(arc_remove_prune_callback);
10456 
10457 /* BEGIN CSTYLED */
10458 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_long,
10459 	param_get_long, ZMOD_RW, "Min arc size");
10460 
10461 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_long,
10462 	param_get_long, ZMOD_RW, "Max arc size");
10463 
10464 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long,
10465 	param_get_long, ZMOD_RW, "Metadata limit for arc size");
10466 
10467 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent,
10468 	param_set_arc_long, param_get_long, ZMOD_RW,
10469 	"Percent of arc size for arc meta limit");
10470 
10471 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long,
10472 	param_get_long, ZMOD_RW, "Min arc metadata");
10473 
10474 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW,
10475 	"Meta objects to scan for prune");
10476 
10477 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW,
10478 	"Limit number of restarts in arc_evict_meta");
10479 
10480 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW,
10481 	"Meta reclaim strategy");
10482 
10483 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int,
10484 	param_get_int, ZMOD_RW, "Seconds before growing arc size");
10485 
10486 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW,
10487 	"Disable arc_p adapt dampener");
10488 
10489 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int,
10490 	param_get_int, ZMOD_RW, "log2(fraction of arc to reclaim)");
10491 
10492 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW,
10493 	"Percent of pagecache to reclaim arc to");
10494 
10495 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int,
10496 	param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p");
10497 
10498 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD,
10499 	"Target average block size");
10500 
10501 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW,
10502 	"Disable compressed arc buffers");
10503 
10504 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int,
10505 	param_get_int, ZMOD_RW, "Min life of prefetch block in ms");
10506 
10507 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms,
10508 	param_set_arc_int, param_get_int, ZMOD_RW,
10509 	"Min life of prescient prefetched block in ms");
10510 
10511 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW,
10512 	"Max write bytes per interval");
10513 
10514 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW,
10515 	"Extra write bytes during device warmup");
10516 
10517 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW,
10518 	"Number of max device writes to precache");
10519 
10520 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW,
10521 	"Compressed l2arc_headroom multiplier");
10522 
10523 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW,
10524 	"TRIM ahead L2ARC write size multiplier");
10525 
10526 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW,
10527 	"Seconds between L2ARC writing");
10528 
10529 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW,
10530 	"Min feed interval in milliseconds");
10531 
10532 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW,
10533 	"Skip caching prefetched buffers");
10534 
10535 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW,
10536 	"Turbo L2ARC warmup");
10537 
10538 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW,
10539 	"No reads during writes");
10540 
10541 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW,
10542 	"Rebuild the L2ARC when importing a pool");
10543 
10544 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW,
10545 	"Min size in bytes to write rebuild log blocks in L2ARC");
10546 
10547 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int,
10548 	param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes");
10549 
10550 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long,
10551 	param_get_long, ZMOD_RW, "System free memory target size in bytes");
10552 
10553 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long,
10554 	param_get_long, ZMOD_RW, "Minimum bytes of dnodes in arc");
10555 
10556 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent,
10557 	param_set_arc_long, param_get_long, ZMOD_RW,
10558 	"Percent of ARC meta buffers for dnodes");
10559 
10560 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW,
10561 	"Percentage of excess dnodes to try to unpin");
10562 
10563 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW,
10564        "When full, ARC allocation waits for eviction of this % of alloc size");
10565 /* END CSTYLED */
10566