1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2019, Delphix. All rights reserved. 25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2020, The FreeBSD Foundation [1] 32 * 33 * [1] Portions of this software were developed by Allan Jude 34 * under sponsorship from the FreeBSD Foundation. 35 */ 36 37 /* 38 * DVA-based Adjustable Replacement Cache 39 * 40 * While much of the theory of operation used here is 41 * based on the self-tuning, low overhead replacement cache 42 * presented by Megiddo and Modha at FAST 2003, there are some 43 * significant differences: 44 * 45 * 1. The Megiddo and Modha model assumes any page is evictable. 46 * Pages in its cache cannot be "locked" into memory. This makes 47 * the eviction algorithm simple: evict the last page in the list. 48 * This also make the performance characteristics easy to reason 49 * about. Our cache is not so simple. At any given moment, some 50 * subset of the blocks in the cache are un-evictable because we 51 * have handed out a reference to them. Blocks are only evictable 52 * when there are no external references active. This makes 53 * eviction far more problematic: we choose to evict the evictable 54 * blocks that are the "lowest" in the list. 55 * 56 * There are times when it is not possible to evict the requested 57 * space. In these circumstances we are unable to adjust the cache 58 * size. To prevent the cache growing unbounded at these times we 59 * implement a "cache throttle" that slows the flow of new data 60 * into the cache until we can make space available. 61 * 62 * 2. The Megiddo and Modha model assumes a fixed cache size. 63 * Pages are evicted when the cache is full and there is a cache 64 * miss. Our model has a variable sized cache. It grows with 65 * high use, but also tries to react to memory pressure from the 66 * operating system: decreasing its size when system memory is 67 * tight. 68 * 69 * 3. The Megiddo and Modha model assumes a fixed page size. All 70 * elements of the cache are therefore exactly the same size. So 71 * when adjusting the cache size following a cache miss, its simply 72 * a matter of choosing a single page to evict. In our model, we 73 * have variable sized cache blocks (ranging from 512 bytes to 74 * 128K bytes). We therefore choose a set of blocks to evict to make 75 * space for a cache miss that approximates as closely as possible 76 * the space used by the new block. 77 * 78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 79 * by N. Megiddo & D. Modha, FAST 2003 80 */ 81 82 /* 83 * The locking model: 84 * 85 * A new reference to a cache buffer can be obtained in two 86 * ways: 1) via a hash table lookup using the DVA as a key, 87 * or 2) via one of the ARC lists. The arc_read() interface 88 * uses method 1, while the internal ARC algorithms for 89 * adjusting the cache use method 2. We therefore provide two 90 * types of locks: 1) the hash table lock array, and 2) the 91 * ARC list locks. 92 * 93 * Buffers do not have their own mutexes, rather they rely on the 94 * hash table mutexes for the bulk of their protection (i.e. most 95 * fields in the arc_buf_hdr_t are protected by these mutexes). 96 * 97 * buf_hash_find() returns the appropriate mutex (held) when it 98 * locates the requested buffer in the hash table. It returns 99 * NULL for the mutex if the buffer was not in the table. 100 * 101 * buf_hash_remove() expects the appropriate hash mutex to be 102 * already held before it is invoked. 103 * 104 * Each ARC state also has a mutex which is used to protect the 105 * buffer list associated with the state. When attempting to 106 * obtain a hash table lock while holding an ARC list lock you 107 * must use: mutex_tryenter() to avoid deadlock. Also note that 108 * the active state mutex must be held before the ghost state mutex. 109 * 110 * It as also possible to register a callback which is run when the 111 * arc_meta_limit is reached and no buffers can be safely evicted. In 112 * this case the arc user should drop a reference on some arc buffers so 113 * they can be reclaimed and the arc_meta_limit honored. For example, 114 * when using the ZPL each dentry holds a references on a znode. These 115 * dentries must be pruned before the arc buffer holding the znode can 116 * be safely evicted. 117 * 118 * Note that the majority of the performance stats are manipulated 119 * with atomic operations. 120 * 121 * The L2ARC uses the l2ad_mtx on each vdev for the following: 122 * 123 * - L2ARC buflist creation 124 * - L2ARC buflist eviction 125 * - L2ARC write completion, which walks L2ARC buflists 126 * - ARC header destruction, as it removes from L2ARC buflists 127 * - ARC header release, as it removes from L2ARC buflists 128 */ 129 130 /* 131 * ARC operation: 132 * 133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 134 * This structure can point either to a block that is still in the cache or to 135 * one that is only accessible in an L2 ARC device, or it can provide 136 * information about a block that was recently evicted. If a block is 137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 138 * information to retrieve it from the L2ARC device. This information is 139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 140 * that is in this state cannot access the data directly. 141 * 142 * Blocks that are actively being referenced or have not been evicted 143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 144 * the arc_buf_hdr_t that will point to the data block in memory. A block can 145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 148 * 149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 150 * ability to store the physical data (b_pabd) associated with the DVA of the 151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 152 * it will match its on-disk compression characteristics. This behavior can be 153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 154 * compressed ARC functionality is disabled, the b_pabd will point to an 155 * uncompressed version of the on-disk data. 156 * 157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 160 * consumer. The ARC will provide references to this data and will keep it 161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 162 * data block and will evict any arc_buf_t that is no longer referenced. The 163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 164 * "overhead_size" kstat. 165 * 166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 167 * compressed form. The typical case is that consumers will want uncompressed 168 * data, and when that happens a new data buffer is allocated where the data is 169 * decompressed for them to use. Currently the only consumer who wants 170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 172 * with the arc_buf_hdr_t. 173 * 174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 175 * first one is owned by a compressed send consumer (and therefore references 176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 177 * used by any other consumer (and has its own uncompressed copy of the data 178 * buffer). 179 * 180 * arc_buf_hdr_t 181 * +-----------+ 182 * | fields | 183 * | common to | 184 * | L1- and | 185 * | L2ARC | 186 * +-----------+ 187 * | l2arc_buf_hdr_t 188 * | | 189 * +-----------+ 190 * | l1arc_buf_hdr_t 191 * | | arc_buf_t 192 * | b_buf +------------>+-----------+ arc_buf_t 193 * | b_pabd +-+ |b_next +---->+-----------+ 194 * +-----------+ | |-----------| |b_next +-->NULL 195 * | |b_comp = T | +-----------+ 196 * | |b_data +-+ |b_comp = F | 197 * | +-----------+ | |b_data +-+ 198 * +->+------+ | +-----------+ | 199 * compressed | | | | 200 * data | |<--------------+ | uncompressed 201 * +------+ compressed, | data 202 * shared +-->+------+ 203 * data | | 204 * | | 205 * +------+ 206 * 207 * When a consumer reads a block, the ARC must first look to see if the 208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 209 * arc_buf_t and either copies uncompressed data into a new data buffer from an 210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 212 * hdr is compressed and the desired compression characteristics of the 213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 216 * be anywhere in the hdr's list. 217 * 218 * The diagram below shows an example of an uncompressed ARC hdr that is 219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 220 * the last element in the buf list): 221 * 222 * arc_buf_hdr_t 223 * +-----------+ 224 * | | 225 * | | 226 * | | 227 * +-----------+ 228 * l2arc_buf_hdr_t| | 229 * | | 230 * +-----------+ 231 * l1arc_buf_hdr_t| | 232 * | | arc_buf_t (shared) 233 * | b_buf +------------>+---------+ arc_buf_t 234 * | | |b_next +---->+---------+ 235 * | b_pabd +-+ |---------| |b_next +-->NULL 236 * +-----------+ | | | +---------+ 237 * | |b_data +-+ | | 238 * | +---------+ | |b_data +-+ 239 * +->+------+ | +---------+ | 240 * | | | | 241 * uncompressed | | | | 242 * data +------+ | | 243 * ^ +->+------+ | 244 * | uncompressed | | | 245 * | data | | | 246 * | +------+ | 247 * +---------------------------------+ 248 * 249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 250 * since the physical block is about to be rewritten. The new data contents 251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 252 * it may compress the data before writing it to disk. The ARC will be called 253 * with the transformed data and will bcopy the transformed on-disk block into 254 * a newly allocated b_pabd. Writes are always done into buffers which have 255 * either been loaned (and hence are new and don't have other readers) or 256 * buffers which have been released (and hence have their own hdr, if there 257 * were originally other readers of the buf's original hdr). This ensures that 258 * the ARC only needs to update a single buf and its hdr after a write occurs. 259 * 260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 262 * that when compressed ARC is enabled that the L2ARC blocks are identical 263 * to the on-disk block in the main data pool. This provides a significant 264 * advantage since the ARC can leverage the bp's checksum when reading from the 265 * L2ARC to determine if the contents are valid. However, if the compressed 266 * ARC is disabled, then the L2ARC's block must be transformed to look 267 * like the physical block in the main data pool before comparing the 268 * checksum and determining its validity. 269 * 270 * The L1ARC has a slightly different system for storing encrypted data. 271 * Raw (encrypted + possibly compressed) data has a few subtle differences from 272 * data that is just compressed. The biggest difference is that it is not 273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. 274 * The other difference is that encryption cannot be treated as a suggestion. 275 * If a caller would prefer compressed data, but they actually wind up with 276 * uncompressed data the worst thing that could happen is there might be a 277 * performance hit. If the caller requests encrypted data, however, we must be 278 * sure they actually get it or else secret information could be leaked. Raw 279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 280 * may have both an encrypted version and a decrypted version of its data at 281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 282 * copied out of this header. To avoid complications with b_pabd, raw buffers 283 * cannot be shared. 284 */ 285 286 #include <sys/spa.h> 287 #include <sys/zio.h> 288 #include <sys/spa_impl.h> 289 #include <sys/zio_compress.h> 290 #include <sys/zio_checksum.h> 291 #include <sys/zfs_context.h> 292 #include <sys/arc.h> 293 #include <sys/zfs_refcount.h> 294 #include <sys/vdev.h> 295 #include <sys/vdev_impl.h> 296 #include <sys/dsl_pool.h> 297 #include <sys/zio_checksum.h> 298 #include <sys/multilist.h> 299 #include <sys/abd.h> 300 #include <sys/zil.h> 301 #include <sys/fm/fs/zfs.h> 302 #include <sys/callb.h> 303 #include <sys/kstat.h> 304 #include <sys/zthr.h> 305 #include <zfs_fletcher.h> 306 #include <sys/arc_impl.h> 307 #include <sys/trace_zfs.h> 308 #include <sys/aggsum.h> 309 #include <cityhash.h> 310 #include <sys/vdev_trim.h> 311 312 #ifndef _KERNEL 313 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 314 boolean_t arc_watch = B_FALSE; 315 #endif 316 317 /* 318 * This thread's job is to keep enough free memory in the system, by 319 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves 320 * arc_available_memory(). 321 */ 322 static zthr_t *arc_reap_zthr; 323 324 /* 325 * This thread's job is to keep arc_size under arc_c, by calling 326 * arc_evict(), which improves arc_is_overflowing(). 327 */ 328 static zthr_t *arc_evict_zthr; 329 330 static kmutex_t arc_evict_lock; 331 static boolean_t arc_evict_needed = B_FALSE; 332 333 /* 334 * Count of bytes evicted since boot. 335 */ 336 static uint64_t arc_evict_count; 337 338 /* 339 * List of arc_evict_waiter_t's, representing threads waiting for the 340 * arc_evict_count to reach specific values. 341 */ 342 static list_t arc_evict_waiters; 343 344 /* 345 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of 346 * the requested amount of data to be evicted. For example, by default for 347 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. 348 * Since this is above 100%, it ensures that progress is made towards getting 349 * arc_size under arc_c. Since this is finite, it ensures that allocations 350 * can still happen, even during the potentially long time that arc_size is 351 * more than arc_c. 352 */ 353 int zfs_arc_eviction_pct = 200; 354 355 /* 356 * The number of headers to evict in arc_evict_state_impl() before 357 * dropping the sublist lock and evicting from another sublist. A lower 358 * value means we're more likely to evict the "correct" header (i.e. the 359 * oldest header in the arc state), but comes with higher overhead 360 * (i.e. more invocations of arc_evict_state_impl()). 361 */ 362 int zfs_arc_evict_batch_limit = 10; 363 364 /* number of seconds before growing cache again */ 365 int arc_grow_retry = 5; 366 367 /* 368 * Minimum time between calls to arc_kmem_reap_soon(). 369 */ 370 int arc_kmem_cache_reap_retry_ms = 1000; 371 372 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 373 int zfs_arc_overflow_shift = 8; 374 375 /* shift of arc_c for calculating both min and max arc_p */ 376 int arc_p_min_shift = 4; 377 378 /* log2(fraction of arc to reclaim) */ 379 int arc_shrink_shift = 7; 380 381 /* percent of pagecache to reclaim arc to */ 382 #ifdef _KERNEL 383 uint_t zfs_arc_pc_percent = 0; 384 #endif 385 386 /* 387 * log2(fraction of ARC which must be free to allow growing). 388 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 389 * when reading a new block into the ARC, we will evict an equal-sized block 390 * from the ARC. 391 * 392 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 393 * we will still not allow it to grow. 394 */ 395 int arc_no_grow_shift = 5; 396 397 398 /* 399 * minimum lifespan of a prefetch block in clock ticks 400 * (initialized in arc_init()) 401 */ 402 static int arc_min_prefetch_ms; 403 static int arc_min_prescient_prefetch_ms; 404 405 /* 406 * If this percent of memory is free, don't throttle. 407 */ 408 int arc_lotsfree_percent = 10; 409 410 /* 411 * The arc has filled available memory and has now warmed up. 412 */ 413 boolean_t arc_warm; 414 415 /* 416 * These tunables are for performance analysis. 417 */ 418 unsigned long zfs_arc_max = 0; 419 unsigned long zfs_arc_min = 0; 420 unsigned long zfs_arc_meta_limit = 0; 421 unsigned long zfs_arc_meta_min = 0; 422 unsigned long zfs_arc_dnode_limit = 0; 423 unsigned long zfs_arc_dnode_reduce_percent = 10; 424 int zfs_arc_grow_retry = 0; 425 int zfs_arc_shrink_shift = 0; 426 int zfs_arc_p_min_shift = 0; 427 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 428 429 /* 430 * ARC dirty data constraints for arc_tempreserve_space() throttle. 431 */ 432 unsigned long zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */ 433 unsigned long zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */ 434 unsigned long zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */ 435 436 /* 437 * Enable or disable compressed arc buffers. 438 */ 439 int zfs_compressed_arc_enabled = B_TRUE; 440 441 /* 442 * ARC will evict meta buffers that exceed arc_meta_limit. This 443 * tunable make arc_meta_limit adjustable for different workloads. 444 */ 445 unsigned long zfs_arc_meta_limit_percent = 75; 446 447 /* 448 * Percentage that can be consumed by dnodes of ARC meta buffers. 449 */ 450 unsigned long zfs_arc_dnode_limit_percent = 10; 451 452 /* 453 * These tunables are Linux specific 454 */ 455 unsigned long zfs_arc_sys_free = 0; 456 int zfs_arc_min_prefetch_ms = 0; 457 int zfs_arc_min_prescient_prefetch_ms = 0; 458 int zfs_arc_p_dampener_disable = 1; 459 int zfs_arc_meta_prune = 10000; 460 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED; 461 int zfs_arc_meta_adjust_restarts = 4096; 462 int zfs_arc_lotsfree_percent = 10; 463 464 /* The 6 states: */ 465 arc_state_t ARC_anon; 466 arc_state_t ARC_mru; 467 arc_state_t ARC_mru_ghost; 468 arc_state_t ARC_mfu; 469 arc_state_t ARC_mfu_ghost; 470 arc_state_t ARC_l2c_only; 471 472 arc_stats_t arc_stats = { 473 { "hits", KSTAT_DATA_UINT64 }, 474 { "misses", KSTAT_DATA_UINT64 }, 475 { "demand_data_hits", KSTAT_DATA_UINT64 }, 476 { "demand_data_misses", KSTAT_DATA_UINT64 }, 477 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 478 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 479 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 480 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 481 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 482 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 483 { "mru_hits", KSTAT_DATA_UINT64 }, 484 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 485 { "mfu_hits", KSTAT_DATA_UINT64 }, 486 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 487 { "deleted", KSTAT_DATA_UINT64 }, 488 { "mutex_miss", KSTAT_DATA_UINT64 }, 489 { "access_skip", KSTAT_DATA_UINT64 }, 490 { "evict_skip", KSTAT_DATA_UINT64 }, 491 { "evict_not_enough", KSTAT_DATA_UINT64 }, 492 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 493 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 494 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 495 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 496 { "hash_elements", KSTAT_DATA_UINT64 }, 497 { "hash_elements_max", KSTAT_DATA_UINT64 }, 498 { "hash_collisions", KSTAT_DATA_UINT64 }, 499 { "hash_chains", KSTAT_DATA_UINT64 }, 500 { "hash_chain_max", KSTAT_DATA_UINT64 }, 501 { "p", KSTAT_DATA_UINT64 }, 502 { "c", KSTAT_DATA_UINT64 }, 503 { "c_min", KSTAT_DATA_UINT64 }, 504 { "c_max", KSTAT_DATA_UINT64 }, 505 { "size", KSTAT_DATA_UINT64 }, 506 { "compressed_size", KSTAT_DATA_UINT64 }, 507 { "uncompressed_size", KSTAT_DATA_UINT64 }, 508 { "overhead_size", KSTAT_DATA_UINT64 }, 509 { "hdr_size", KSTAT_DATA_UINT64 }, 510 { "data_size", KSTAT_DATA_UINT64 }, 511 { "metadata_size", KSTAT_DATA_UINT64 }, 512 { "dbuf_size", KSTAT_DATA_UINT64 }, 513 { "dnode_size", KSTAT_DATA_UINT64 }, 514 { "bonus_size", KSTAT_DATA_UINT64 }, 515 #if defined(COMPAT_FREEBSD11) 516 { "other_size", KSTAT_DATA_UINT64 }, 517 #endif 518 { "anon_size", KSTAT_DATA_UINT64 }, 519 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 520 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 521 { "mru_size", KSTAT_DATA_UINT64 }, 522 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 523 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 524 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 525 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 526 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 527 { "mfu_size", KSTAT_DATA_UINT64 }, 528 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 529 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 530 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 531 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 532 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 533 { "l2_hits", KSTAT_DATA_UINT64 }, 534 { "l2_misses", KSTAT_DATA_UINT64 }, 535 { "l2_feeds", KSTAT_DATA_UINT64 }, 536 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 537 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 538 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 539 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 540 { "l2_writes_done", KSTAT_DATA_UINT64 }, 541 { "l2_writes_error", KSTAT_DATA_UINT64 }, 542 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 543 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 544 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 545 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 546 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 547 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 548 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 549 { "l2_io_error", KSTAT_DATA_UINT64 }, 550 { "l2_size", KSTAT_DATA_UINT64 }, 551 { "l2_asize", KSTAT_DATA_UINT64 }, 552 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 553 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 554 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 555 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 556 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 557 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 558 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 559 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 560 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 561 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 562 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 563 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 564 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 565 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 566 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 567 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 568 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 569 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 570 { "memory_direct_count", KSTAT_DATA_UINT64 }, 571 { "memory_indirect_count", KSTAT_DATA_UINT64 }, 572 { "memory_all_bytes", KSTAT_DATA_UINT64 }, 573 { "memory_free_bytes", KSTAT_DATA_UINT64 }, 574 { "memory_available_bytes", KSTAT_DATA_INT64 }, 575 { "arc_no_grow", KSTAT_DATA_UINT64 }, 576 { "arc_tempreserve", KSTAT_DATA_UINT64 }, 577 { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, 578 { "arc_prune", KSTAT_DATA_UINT64 }, 579 { "arc_meta_used", KSTAT_DATA_UINT64 }, 580 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 581 { "arc_dnode_limit", KSTAT_DATA_UINT64 }, 582 { "arc_meta_max", KSTAT_DATA_UINT64 }, 583 { "arc_meta_min", KSTAT_DATA_UINT64 }, 584 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 585 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 586 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 587 { "arc_need_free", KSTAT_DATA_UINT64 }, 588 { "arc_sys_free", KSTAT_DATA_UINT64 }, 589 { "arc_raw_size", KSTAT_DATA_UINT64 }, 590 { "cached_only_in_progress", KSTAT_DATA_UINT64 }, 591 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, 592 }; 593 594 #define ARCSTAT_MAX(stat, val) { \ 595 uint64_t m; \ 596 while ((val) > (m = arc_stats.stat.value.ui64) && \ 597 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 598 continue; \ 599 } 600 601 #define ARCSTAT_MAXSTAT(stat) \ 602 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 603 604 /* 605 * We define a macro to allow ARC hits/misses to be easily broken down by 606 * two separate conditions, giving a total of four different subtypes for 607 * each of hits and misses (so eight statistics total). 608 */ 609 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 610 if (cond1) { \ 611 if (cond2) { \ 612 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 613 } else { \ 614 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 615 } \ 616 } else { \ 617 if (cond2) { \ 618 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 619 } else { \ 620 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 621 } \ 622 } 623 624 /* 625 * This macro allows us to use kstats as floating averages. Each time we 626 * update this kstat, we first factor it and the update value by 627 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 628 * average. This macro assumes that integer loads and stores are atomic, but 629 * is not safe for multiple writers updating the kstat in parallel (only the 630 * last writer's update will remain). 631 */ 632 #define ARCSTAT_F_AVG_FACTOR 3 633 #define ARCSTAT_F_AVG(stat, value) \ 634 do { \ 635 uint64_t x = ARCSTAT(stat); \ 636 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 637 (value) / ARCSTAT_F_AVG_FACTOR; \ 638 ARCSTAT(stat) = x; \ 639 _NOTE(CONSTCOND) \ 640 } while (0) 641 642 kstat_t *arc_ksp; 643 static arc_state_t *arc_anon; 644 static arc_state_t *arc_mru_ghost; 645 static arc_state_t *arc_mfu_ghost; 646 static arc_state_t *arc_l2c_only; 647 648 arc_state_t *arc_mru; 649 arc_state_t *arc_mfu; 650 651 /* 652 * There are several ARC variables that are critical to export as kstats -- 653 * but we don't want to have to grovel around in the kstat whenever we wish to 654 * manipulate them. For these variables, we therefore define them to be in 655 * terms of the statistic variable. This assures that we are not introducing 656 * the possibility of inconsistency by having shadow copies of the variables, 657 * while still allowing the code to be readable. 658 */ 659 #define arc_tempreserve ARCSTAT(arcstat_tempreserve) 660 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) 661 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 662 /* max size for dnodes */ 663 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit) 664 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 665 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 666 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ 667 668 /* size of all b_rabd's in entire arc */ 669 #define arc_raw_size ARCSTAT(arcstat_raw_size) 670 /* compressed size of entire arc */ 671 #define arc_compressed_size ARCSTAT(arcstat_compressed_size) 672 /* uncompressed size of entire arc */ 673 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size) 674 /* number of bytes in the arc from arc_buf_t's */ 675 #define arc_overhead_size ARCSTAT(arcstat_overhead_size) 676 677 /* 678 * There are also some ARC variables that we want to export, but that are 679 * updated so often that having the canonical representation be the statistic 680 * variable causes a performance bottleneck. We want to use aggsum_t's for these 681 * instead, but still be able to export the kstat in the same way as before. 682 * The solution is to always use the aggsum version, except in the kstat update 683 * callback. 684 */ 685 aggsum_t arc_size; 686 aggsum_t arc_meta_used; 687 aggsum_t astat_data_size; 688 aggsum_t astat_metadata_size; 689 aggsum_t astat_dbuf_size; 690 aggsum_t astat_dnode_size; 691 aggsum_t astat_bonus_size; 692 aggsum_t astat_hdr_size; 693 aggsum_t astat_l2_hdr_size; 694 aggsum_t astat_abd_chunk_waste_size; 695 696 hrtime_t arc_growtime; 697 list_t arc_prune_list; 698 kmutex_t arc_prune_mtx; 699 taskq_t *arc_prune_taskq; 700 701 #define GHOST_STATE(state) \ 702 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 703 (state) == arc_l2c_only) 704 705 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 706 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 707 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 708 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 709 #define HDR_PRESCIENT_PREFETCH(hdr) \ 710 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 711 #define HDR_COMPRESSION_ENABLED(hdr) \ 712 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 713 714 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 715 #define HDR_L2_READING(hdr) \ 716 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 717 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 718 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 719 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 720 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 721 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 722 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 723 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 724 725 #define HDR_ISTYPE_METADATA(hdr) \ 726 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 727 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 728 729 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 730 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 731 #define HDR_HAS_RABD(hdr) \ 732 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 733 (hdr)->b_crypt_hdr.b_rabd != NULL) 734 #define HDR_ENCRYPTED(hdr) \ 735 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 736 #define HDR_AUTHENTICATED(hdr) \ 737 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 738 739 /* For storing compression mode in b_flags */ 740 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 741 742 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 743 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 744 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 745 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 746 747 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 748 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 749 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 750 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 751 752 /* 753 * Other sizes 754 */ 755 756 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 757 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr)) 758 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 759 760 /* 761 * Hash table routines 762 */ 763 764 #define HT_LOCK_ALIGN 64 765 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN))) 766 767 struct ht_lock { 768 kmutex_t ht_lock; 769 #ifdef _KERNEL 770 unsigned char pad[HT_LOCK_PAD]; 771 #endif 772 }; 773 774 #define BUF_LOCKS 8192 775 typedef struct buf_hash_table { 776 uint64_t ht_mask; 777 arc_buf_hdr_t **ht_table; 778 struct ht_lock ht_locks[BUF_LOCKS]; 779 } buf_hash_table_t; 780 781 static buf_hash_table_t buf_hash_table; 782 783 #define BUF_HASH_INDEX(spa, dva, birth) \ 784 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 785 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 786 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 787 #define HDR_LOCK(hdr) \ 788 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 789 790 uint64_t zfs_crc64_table[256]; 791 792 /* 793 * Level 2 ARC 794 */ 795 796 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 797 #define L2ARC_HEADROOM 2 /* num of writes */ 798 799 /* 800 * If we discover during ARC scan any buffers to be compressed, we boost 801 * our headroom for the next scanning cycle by this percentage multiple. 802 */ 803 #define L2ARC_HEADROOM_BOOST 200 804 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 805 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 806 807 /* 808 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 809 * and each of the state has two types: data and metadata. 810 */ 811 #define L2ARC_FEED_TYPES 4 812 813 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 814 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 815 816 /* L2ARC Performance Tunables */ 817 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ 818 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ 819 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ 820 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 821 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 822 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ 823 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 824 int l2arc_feed_again = B_TRUE; /* turbo warmup */ 825 int l2arc_norw = B_FALSE; /* no reads during writes */ 826 827 /* 828 * L2ARC Internals 829 */ 830 static list_t L2ARC_dev_list; /* device list */ 831 static list_t *l2arc_dev_list; /* device list pointer */ 832 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 833 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 834 static list_t L2ARC_free_on_write; /* free after write buf list */ 835 static list_t *l2arc_free_on_write; /* free after write list ptr */ 836 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 837 static uint64_t l2arc_ndev; /* number of devices */ 838 839 typedef struct l2arc_read_callback { 840 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 841 blkptr_t l2rcb_bp; /* original blkptr */ 842 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 843 int l2rcb_flags; /* original flags */ 844 abd_t *l2rcb_abd; /* temporary buffer */ 845 } l2arc_read_callback_t; 846 847 typedef struct l2arc_data_free { 848 /* protected by l2arc_free_on_write_mtx */ 849 abd_t *l2df_abd; 850 size_t l2df_size; 851 arc_buf_contents_t l2df_type; 852 list_node_t l2df_list_node; 853 } l2arc_data_free_t; 854 855 typedef enum arc_fill_flags { 856 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 857 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 858 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 859 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 860 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 861 } arc_fill_flags_t; 862 863 static kmutex_t l2arc_feed_thr_lock; 864 static kcondvar_t l2arc_feed_thr_cv; 865 static uint8_t l2arc_thread_exit; 866 867 static kmutex_t l2arc_rebuild_thr_lock; 868 static kcondvar_t l2arc_rebuild_thr_cv; 869 870 enum arc_hdr_alloc_flags { 871 ARC_HDR_ALLOC_RDATA = 0x1, 872 ARC_HDR_DO_ADAPT = 0x2, 873 }; 874 875 876 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 877 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 878 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 879 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 880 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 881 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 882 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); 883 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); 884 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 885 static void arc_buf_watch(arc_buf_t *); 886 887 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 888 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 889 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 890 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 891 892 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 893 static void l2arc_read_done(zio_t *); 894 static void l2arc_do_free_on_write(void); 895 896 /* 897 * L2ARC TRIM 898 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of 899 * the current write size (l2arc_write_max) we should TRIM if we 900 * have filled the device. It is defined as a percentage of the 901 * write size. If set to 100 we trim twice the space required to 902 * accommodate upcoming writes. A minimum of 64MB will be trimmed. 903 * It also enables TRIM of the whole L2ARC device upon creation or 904 * addition to an existing pool or if the header of the device is 905 * invalid upon importing a pool or onlining a cache device. The 906 * default is 0, which disables TRIM on L2ARC altogether as it can 907 * put significant stress on the underlying storage devices. This 908 * will vary depending of how well the specific device handles 909 * these commands. 910 */ 911 unsigned long l2arc_trim_ahead = 0; 912 913 /* 914 * Performance tuning of L2ARC persistence: 915 * 916 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 917 * an L2ARC device (either at pool import or later) will attempt 918 * to rebuild L2ARC buffer contents. 919 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 920 * whether log blocks are written to the L2ARC device. If the L2ARC 921 * device is less than 1GB, the amount of data l2arc_evict() 922 * evicts is significant compared to the amount of restored L2ARC 923 * data. In this case do not write log blocks in L2ARC in order 924 * not to waste space. 925 */ 926 int l2arc_rebuild_enabled = B_TRUE; 927 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 928 929 /* L2ARC persistence rebuild control routines. */ 930 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 931 static void l2arc_dev_rebuild_thread(void *arg); 932 static int l2arc_rebuild(l2arc_dev_t *dev); 933 934 /* L2ARC persistence read I/O routines. */ 935 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 936 static int l2arc_log_blk_read(l2arc_dev_t *dev, 937 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 938 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 939 zio_t *this_io, zio_t **next_io); 940 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 941 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 942 static void l2arc_log_blk_fetch_abort(zio_t *zio); 943 944 /* L2ARC persistence block restoration routines. */ 945 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 946 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize, uint64_t lb_daddr); 947 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 948 l2arc_dev_t *dev); 949 950 /* L2ARC persistence write I/O routines. */ 951 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 952 l2arc_write_callback_t *cb); 953 954 /* L2ARC persistence auxiliary routines. */ 955 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 956 const l2arc_log_blkptr_t *lbp); 957 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 958 const arc_buf_hdr_t *ab); 959 boolean_t l2arc_range_check_overlap(uint64_t bottom, 960 uint64_t top, uint64_t check); 961 static void l2arc_blk_fetch_done(zio_t *zio); 962 static inline uint64_t 963 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 964 965 /* 966 * We use Cityhash for this. It's fast, and has good hash properties without 967 * requiring any large static buffers. 968 */ 969 static uint64_t 970 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 971 { 972 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 973 } 974 975 #define HDR_EMPTY(hdr) \ 976 ((hdr)->b_dva.dva_word[0] == 0 && \ 977 (hdr)->b_dva.dva_word[1] == 0) 978 979 #define HDR_EMPTY_OR_LOCKED(hdr) \ 980 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 981 982 #define HDR_EQUAL(spa, dva, birth, hdr) \ 983 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 984 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 985 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 986 987 static void 988 buf_discard_identity(arc_buf_hdr_t *hdr) 989 { 990 hdr->b_dva.dva_word[0] = 0; 991 hdr->b_dva.dva_word[1] = 0; 992 hdr->b_birth = 0; 993 } 994 995 static arc_buf_hdr_t * 996 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 997 { 998 const dva_t *dva = BP_IDENTITY(bp); 999 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 1000 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1001 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1002 arc_buf_hdr_t *hdr; 1003 1004 mutex_enter(hash_lock); 1005 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1006 hdr = hdr->b_hash_next) { 1007 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1008 *lockp = hash_lock; 1009 return (hdr); 1010 } 1011 } 1012 mutex_exit(hash_lock); 1013 *lockp = NULL; 1014 return (NULL); 1015 } 1016 1017 /* 1018 * Insert an entry into the hash table. If there is already an element 1019 * equal to elem in the hash table, then the already existing element 1020 * will be returned and the new element will not be inserted. 1021 * Otherwise returns NULL. 1022 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1023 */ 1024 static arc_buf_hdr_t * 1025 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1026 { 1027 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1028 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1029 arc_buf_hdr_t *fhdr; 1030 uint32_t i; 1031 1032 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1033 ASSERT(hdr->b_birth != 0); 1034 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1035 1036 if (lockp != NULL) { 1037 *lockp = hash_lock; 1038 mutex_enter(hash_lock); 1039 } else { 1040 ASSERT(MUTEX_HELD(hash_lock)); 1041 } 1042 1043 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1044 fhdr = fhdr->b_hash_next, i++) { 1045 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1046 return (fhdr); 1047 } 1048 1049 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1050 buf_hash_table.ht_table[idx] = hdr; 1051 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1052 1053 /* collect some hash table performance data */ 1054 if (i > 0) { 1055 ARCSTAT_BUMP(arcstat_hash_collisions); 1056 if (i == 1) 1057 ARCSTAT_BUMP(arcstat_hash_chains); 1058 1059 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1060 } 1061 1062 ARCSTAT_BUMP(arcstat_hash_elements); 1063 ARCSTAT_MAXSTAT(arcstat_hash_elements); 1064 1065 return (NULL); 1066 } 1067 1068 static void 1069 buf_hash_remove(arc_buf_hdr_t *hdr) 1070 { 1071 arc_buf_hdr_t *fhdr, **hdrp; 1072 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1073 1074 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1075 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1076 1077 hdrp = &buf_hash_table.ht_table[idx]; 1078 while ((fhdr = *hdrp) != hdr) { 1079 ASSERT3P(fhdr, !=, NULL); 1080 hdrp = &fhdr->b_hash_next; 1081 } 1082 *hdrp = hdr->b_hash_next; 1083 hdr->b_hash_next = NULL; 1084 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1085 1086 /* collect some hash table performance data */ 1087 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 1088 1089 if (buf_hash_table.ht_table[idx] && 1090 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1091 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1092 } 1093 1094 /* 1095 * Global data structures and functions for the buf kmem cache. 1096 */ 1097 1098 static kmem_cache_t *hdr_full_cache; 1099 static kmem_cache_t *hdr_full_crypt_cache; 1100 static kmem_cache_t *hdr_l2only_cache; 1101 static kmem_cache_t *buf_cache; 1102 1103 static void 1104 buf_fini(void) 1105 { 1106 int i; 1107 1108 #if defined(_KERNEL) 1109 /* 1110 * Large allocations which do not require contiguous pages 1111 * should be using vmem_free() in the linux kernel\ 1112 */ 1113 vmem_free(buf_hash_table.ht_table, 1114 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1115 #else 1116 kmem_free(buf_hash_table.ht_table, 1117 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1118 #endif 1119 for (i = 0; i < BUF_LOCKS; i++) 1120 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 1121 kmem_cache_destroy(hdr_full_cache); 1122 kmem_cache_destroy(hdr_full_crypt_cache); 1123 kmem_cache_destroy(hdr_l2only_cache); 1124 kmem_cache_destroy(buf_cache); 1125 } 1126 1127 /* 1128 * Constructor callback - called when the cache is empty 1129 * and a new buf is requested. 1130 */ 1131 /* ARGSUSED */ 1132 static int 1133 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1134 { 1135 arc_buf_hdr_t *hdr = vbuf; 1136 1137 bzero(hdr, HDR_FULL_SIZE); 1138 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1139 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1140 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1141 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1142 list_link_init(&hdr->b_l1hdr.b_arc_node); 1143 list_link_init(&hdr->b_l2hdr.b_l2node); 1144 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1145 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1146 1147 return (0); 1148 } 1149 1150 /* ARGSUSED */ 1151 static int 1152 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag) 1153 { 1154 arc_buf_hdr_t *hdr = vbuf; 1155 1156 hdr_full_cons(vbuf, unused, kmflag); 1157 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr)); 1158 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1159 1160 return (0); 1161 } 1162 1163 /* ARGSUSED */ 1164 static int 1165 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1166 { 1167 arc_buf_hdr_t *hdr = vbuf; 1168 1169 bzero(hdr, HDR_L2ONLY_SIZE); 1170 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1171 1172 return (0); 1173 } 1174 1175 /* ARGSUSED */ 1176 static int 1177 buf_cons(void *vbuf, void *unused, int kmflag) 1178 { 1179 arc_buf_t *buf = vbuf; 1180 1181 bzero(buf, sizeof (arc_buf_t)); 1182 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1183 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1184 1185 return (0); 1186 } 1187 1188 /* 1189 * Destructor callback - called when a cached buf is 1190 * no longer required. 1191 */ 1192 /* ARGSUSED */ 1193 static void 1194 hdr_full_dest(void *vbuf, void *unused) 1195 { 1196 arc_buf_hdr_t *hdr = vbuf; 1197 1198 ASSERT(HDR_EMPTY(hdr)); 1199 cv_destroy(&hdr->b_l1hdr.b_cv); 1200 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1201 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1202 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1203 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1204 } 1205 1206 /* ARGSUSED */ 1207 static void 1208 hdr_full_crypt_dest(void *vbuf, void *unused) 1209 { 1210 arc_buf_hdr_t *hdr = vbuf; 1211 1212 hdr_full_dest(vbuf, unused); 1213 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1214 } 1215 1216 /* ARGSUSED */ 1217 static void 1218 hdr_l2only_dest(void *vbuf, void *unused) 1219 { 1220 arc_buf_hdr_t *hdr __maybe_unused = vbuf; 1221 1222 ASSERT(HDR_EMPTY(hdr)); 1223 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1224 } 1225 1226 /* ARGSUSED */ 1227 static void 1228 buf_dest(void *vbuf, void *unused) 1229 { 1230 arc_buf_t *buf = vbuf; 1231 1232 mutex_destroy(&buf->b_evict_lock); 1233 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1234 } 1235 1236 static void 1237 buf_init(void) 1238 { 1239 uint64_t *ct = NULL; 1240 uint64_t hsize = 1ULL << 12; 1241 int i, j; 1242 1243 /* 1244 * The hash table is big enough to fill all of physical memory 1245 * with an average block size of zfs_arc_average_blocksize (default 8K). 1246 * By default, the table will take up 1247 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1248 */ 1249 while (hsize * zfs_arc_average_blocksize < arc_all_memory()) 1250 hsize <<= 1; 1251 retry: 1252 buf_hash_table.ht_mask = hsize - 1; 1253 #if defined(_KERNEL) 1254 /* 1255 * Large allocations which do not require contiguous pages 1256 * should be using vmem_alloc() in the linux kernel 1257 */ 1258 buf_hash_table.ht_table = 1259 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 1260 #else 1261 buf_hash_table.ht_table = 1262 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1263 #endif 1264 if (buf_hash_table.ht_table == NULL) { 1265 ASSERT(hsize > (1ULL << 8)); 1266 hsize >>= 1; 1267 goto retry; 1268 } 1269 1270 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1271 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0); 1272 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt", 1273 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest, 1274 NULL, NULL, NULL, 0); 1275 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1276 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, 1277 NULL, NULL, 0); 1278 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1279 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1280 1281 for (i = 0; i < 256; i++) 1282 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1283 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1284 1285 for (i = 0; i < BUF_LOCKS; i++) { 1286 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1287 NULL, MUTEX_DEFAULT, NULL); 1288 } 1289 } 1290 1291 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1292 1293 /* 1294 * This is the size that the buf occupies in memory. If the buf is compressed, 1295 * it will correspond to the compressed size. You should use this method of 1296 * getting the buf size unless you explicitly need the logical size. 1297 */ 1298 uint64_t 1299 arc_buf_size(arc_buf_t *buf) 1300 { 1301 return (ARC_BUF_COMPRESSED(buf) ? 1302 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1303 } 1304 1305 uint64_t 1306 arc_buf_lsize(arc_buf_t *buf) 1307 { 1308 return (HDR_GET_LSIZE(buf->b_hdr)); 1309 } 1310 1311 /* 1312 * This function will return B_TRUE if the buffer is encrypted in memory. 1313 * This buffer can be decrypted by calling arc_untransform(). 1314 */ 1315 boolean_t 1316 arc_is_encrypted(arc_buf_t *buf) 1317 { 1318 return (ARC_BUF_ENCRYPTED(buf) != 0); 1319 } 1320 1321 /* 1322 * Returns B_TRUE if the buffer represents data that has not had its MAC 1323 * verified yet. 1324 */ 1325 boolean_t 1326 arc_is_unauthenticated(arc_buf_t *buf) 1327 { 1328 return (HDR_NOAUTH(buf->b_hdr) != 0); 1329 } 1330 1331 void 1332 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1333 uint8_t *iv, uint8_t *mac) 1334 { 1335 arc_buf_hdr_t *hdr = buf->b_hdr; 1336 1337 ASSERT(HDR_PROTECTED(hdr)); 1338 1339 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 1340 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 1341 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 1342 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1343 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1344 } 1345 1346 /* 1347 * Indicates how this buffer is compressed in memory. If it is not compressed 1348 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1349 * arc_untransform() as long as it is also unencrypted. 1350 */ 1351 enum zio_compress 1352 arc_get_compression(arc_buf_t *buf) 1353 { 1354 return (ARC_BUF_COMPRESSED(buf) ? 1355 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1356 } 1357 1358 /* 1359 * Return the compression algorithm used to store this data in the ARC. If ARC 1360 * compression is enabled or this is an encrypted block, this will be the same 1361 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1362 */ 1363 static inline enum zio_compress 1364 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1365 { 1366 return (HDR_COMPRESSION_ENABLED(hdr) ? 1367 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1368 } 1369 1370 uint8_t 1371 arc_get_complevel(arc_buf_t *buf) 1372 { 1373 return (buf->b_hdr->b_complevel); 1374 } 1375 1376 static inline boolean_t 1377 arc_buf_is_shared(arc_buf_t *buf) 1378 { 1379 boolean_t shared = (buf->b_data != NULL && 1380 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1381 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1382 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1383 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1384 IMPLY(shared, ARC_BUF_SHARED(buf)); 1385 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1386 1387 /* 1388 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1389 * already being shared" requirement prevents us from doing that. 1390 */ 1391 1392 return (shared); 1393 } 1394 1395 /* 1396 * Free the checksum associated with this header. If there is no checksum, this 1397 * is a no-op. 1398 */ 1399 static inline void 1400 arc_cksum_free(arc_buf_hdr_t *hdr) 1401 { 1402 ASSERT(HDR_HAS_L1HDR(hdr)); 1403 1404 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1405 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1406 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1407 hdr->b_l1hdr.b_freeze_cksum = NULL; 1408 } 1409 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1410 } 1411 1412 /* 1413 * Return true iff at least one of the bufs on hdr is not compressed. 1414 * Encrypted buffers count as compressed. 1415 */ 1416 static boolean_t 1417 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1418 { 1419 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1420 1421 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1422 if (!ARC_BUF_COMPRESSED(b)) { 1423 return (B_TRUE); 1424 } 1425 } 1426 return (B_FALSE); 1427 } 1428 1429 1430 /* 1431 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1432 * matches the checksum that is stored in the hdr. If there is no checksum, 1433 * or if the buf is compressed, this is a no-op. 1434 */ 1435 static void 1436 arc_cksum_verify(arc_buf_t *buf) 1437 { 1438 arc_buf_hdr_t *hdr = buf->b_hdr; 1439 zio_cksum_t zc; 1440 1441 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1442 return; 1443 1444 if (ARC_BUF_COMPRESSED(buf)) 1445 return; 1446 1447 ASSERT(HDR_HAS_L1HDR(hdr)); 1448 1449 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1450 1451 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1452 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1453 return; 1454 } 1455 1456 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1457 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1458 panic("buffer modified while frozen!"); 1459 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1460 } 1461 1462 /* 1463 * This function makes the assumption that data stored in the L2ARC 1464 * will be transformed exactly as it is in the main pool. Because of 1465 * this we can verify the checksum against the reading process's bp. 1466 */ 1467 static boolean_t 1468 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1469 { 1470 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1471 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1472 1473 /* 1474 * Block pointers always store the checksum for the logical data. 1475 * If the block pointer has the gang bit set, then the checksum 1476 * it represents is for the reconstituted data and not for an 1477 * individual gang member. The zio pipeline, however, must be able to 1478 * determine the checksum of each of the gang constituents so it 1479 * treats the checksum comparison differently than what we need 1480 * for l2arc blocks. This prevents us from using the 1481 * zio_checksum_error() interface directly. Instead we must call the 1482 * zio_checksum_error_impl() so that we can ensure the checksum is 1483 * generated using the correct checksum algorithm and accounts for the 1484 * logical I/O size and not just a gang fragment. 1485 */ 1486 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1487 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1488 zio->io_offset, NULL) == 0); 1489 } 1490 1491 /* 1492 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1493 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1494 * isn't modified later on. If buf is compressed or there is already a checksum 1495 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1496 */ 1497 static void 1498 arc_cksum_compute(arc_buf_t *buf) 1499 { 1500 arc_buf_hdr_t *hdr = buf->b_hdr; 1501 1502 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1503 return; 1504 1505 ASSERT(HDR_HAS_L1HDR(hdr)); 1506 1507 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1508 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1509 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1510 return; 1511 } 1512 1513 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1514 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1515 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1516 KM_SLEEP); 1517 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1518 hdr->b_l1hdr.b_freeze_cksum); 1519 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1520 arc_buf_watch(buf); 1521 } 1522 1523 #ifndef _KERNEL 1524 void 1525 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) 1526 { 1527 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); 1528 } 1529 #endif 1530 1531 /* ARGSUSED */ 1532 static void 1533 arc_buf_unwatch(arc_buf_t *buf) 1534 { 1535 #ifndef _KERNEL 1536 if (arc_watch) { 1537 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1538 PROT_READ | PROT_WRITE)); 1539 } 1540 #endif 1541 } 1542 1543 /* ARGSUSED */ 1544 static void 1545 arc_buf_watch(arc_buf_t *buf) 1546 { 1547 #ifndef _KERNEL 1548 if (arc_watch) 1549 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1550 PROT_READ)); 1551 #endif 1552 } 1553 1554 static arc_buf_contents_t 1555 arc_buf_type(arc_buf_hdr_t *hdr) 1556 { 1557 arc_buf_contents_t type; 1558 if (HDR_ISTYPE_METADATA(hdr)) { 1559 type = ARC_BUFC_METADATA; 1560 } else { 1561 type = ARC_BUFC_DATA; 1562 } 1563 VERIFY3U(hdr->b_type, ==, type); 1564 return (type); 1565 } 1566 1567 boolean_t 1568 arc_is_metadata(arc_buf_t *buf) 1569 { 1570 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1571 } 1572 1573 static uint32_t 1574 arc_bufc_to_flags(arc_buf_contents_t type) 1575 { 1576 switch (type) { 1577 case ARC_BUFC_DATA: 1578 /* metadata field is 0 if buffer contains normal data */ 1579 return (0); 1580 case ARC_BUFC_METADATA: 1581 return (ARC_FLAG_BUFC_METADATA); 1582 default: 1583 break; 1584 } 1585 panic("undefined ARC buffer type!"); 1586 return ((uint32_t)-1); 1587 } 1588 1589 void 1590 arc_buf_thaw(arc_buf_t *buf) 1591 { 1592 arc_buf_hdr_t *hdr = buf->b_hdr; 1593 1594 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1595 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1596 1597 arc_cksum_verify(buf); 1598 1599 /* 1600 * Compressed buffers do not manipulate the b_freeze_cksum. 1601 */ 1602 if (ARC_BUF_COMPRESSED(buf)) 1603 return; 1604 1605 ASSERT(HDR_HAS_L1HDR(hdr)); 1606 arc_cksum_free(hdr); 1607 arc_buf_unwatch(buf); 1608 } 1609 1610 void 1611 arc_buf_freeze(arc_buf_t *buf) 1612 { 1613 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1614 return; 1615 1616 if (ARC_BUF_COMPRESSED(buf)) 1617 return; 1618 1619 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1620 arc_cksum_compute(buf); 1621 } 1622 1623 /* 1624 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1625 * the following functions should be used to ensure that the flags are 1626 * updated in a thread-safe way. When manipulating the flags either 1627 * the hash_lock must be held or the hdr must be undiscoverable. This 1628 * ensures that we're not racing with any other threads when updating 1629 * the flags. 1630 */ 1631 static inline void 1632 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1633 { 1634 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1635 hdr->b_flags |= flags; 1636 } 1637 1638 static inline void 1639 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1640 { 1641 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1642 hdr->b_flags &= ~flags; 1643 } 1644 1645 /* 1646 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1647 * done in a special way since we have to clear and set bits 1648 * at the same time. Consumers that wish to set the compression bits 1649 * must use this function to ensure that the flags are updated in 1650 * thread-safe manner. 1651 */ 1652 static void 1653 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1654 { 1655 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1656 1657 /* 1658 * Holes and embedded blocks will always have a psize = 0 so 1659 * we ignore the compression of the blkptr and set the 1660 * want to uncompress them. Mark them as uncompressed. 1661 */ 1662 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1663 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1664 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1665 } else { 1666 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1667 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1668 } 1669 1670 HDR_SET_COMPRESS(hdr, cmp); 1671 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1672 } 1673 1674 /* 1675 * Looks for another buf on the same hdr which has the data decompressed, copies 1676 * from it, and returns true. If no such buf exists, returns false. 1677 */ 1678 static boolean_t 1679 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1680 { 1681 arc_buf_hdr_t *hdr = buf->b_hdr; 1682 boolean_t copied = B_FALSE; 1683 1684 ASSERT(HDR_HAS_L1HDR(hdr)); 1685 ASSERT3P(buf->b_data, !=, NULL); 1686 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1687 1688 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1689 from = from->b_next) { 1690 /* can't use our own data buffer */ 1691 if (from == buf) { 1692 continue; 1693 } 1694 1695 if (!ARC_BUF_COMPRESSED(from)) { 1696 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1697 copied = B_TRUE; 1698 break; 1699 } 1700 } 1701 1702 /* 1703 * There were no decompressed bufs, so there should not be a 1704 * checksum on the hdr either. 1705 */ 1706 if (zfs_flags & ZFS_DEBUG_MODIFY) 1707 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1708 1709 return (copied); 1710 } 1711 1712 /* 1713 * Allocates an ARC buf header that's in an evicted & L2-cached state. 1714 * This is used during l2arc reconstruction to make empty ARC buffers 1715 * which circumvent the regular disk->arc->l2arc path and instead come 1716 * into being in the reverse order, i.e. l2arc->arc. 1717 */ 1718 static arc_buf_hdr_t * 1719 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 1720 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 1721 enum zio_compress compress, uint8_t complevel, boolean_t protected, 1722 boolean_t prefetch) 1723 { 1724 arc_buf_hdr_t *hdr; 1725 1726 ASSERT(size != 0); 1727 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 1728 hdr->b_birth = birth; 1729 hdr->b_type = type; 1730 hdr->b_flags = 0; 1731 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 1732 HDR_SET_LSIZE(hdr, size); 1733 HDR_SET_PSIZE(hdr, psize); 1734 arc_hdr_set_compress(hdr, compress); 1735 hdr->b_complevel = complevel; 1736 if (protected) 1737 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 1738 if (prefetch) 1739 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 1740 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 1741 1742 hdr->b_dva = dva; 1743 1744 hdr->b_l2hdr.b_dev = dev; 1745 hdr->b_l2hdr.b_daddr = daddr; 1746 1747 return (hdr); 1748 } 1749 1750 /* 1751 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1752 */ 1753 static uint64_t 1754 arc_hdr_size(arc_buf_hdr_t *hdr) 1755 { 1756 uint64_t size; 1757 1758 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1759 HDR_GET_PSIZE(hdr) > 0) { 1760 size = HDR_GET_PSIZE(hdr); 1761 } else { 1762 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1763 size = HDR_GET_LSIZE(hdr); 1764 } 1765 return (size); 1766 } 1767 1768 static int 1769 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1770 { 1771 int ret; 1772 uint64_t csize; 1773 uint64_t lsize = HDR_GET_LSIZE(hdr); 1774 uint64_t psize = HDR_GET_PSIZE(hdr); 1775 void *tmpbuf = NULL; 1776 abd_t *abd = hdr->b_l1hdr.b_pabd; 1777 1778 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1779 ASSERT(HDR_AUTHENTICATED(hdr)); 1780 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1781 1782 /* 1783 * The MAC is calculated on the compressed data that is stored on disk. 1784 * However, if compressed arc is disabled we will only have the 1785 * decompressed data available to us now. Compress it into a temporary 1786 * abd so we can verify the MAC. The performance overhead of this will 1787 * be relatively low, since most objects in an encrypted objset will 1788 * be encrypted (instead of authenticated) anyway. 1789 */ 1790 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1791 !HDR_COMPRESSION_ENABLED(hdr)) { 1792 tmpbuf = zio_buf_alloc(lsize); 1793 abd = abd_get_from_buf(tmpbuf, lsize); 1794 abd_take_ownership_of_buf(abd, B_TRUE); 1795 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1796 hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel); 1797 ASSERT3U(csize, <=, psize); 1798 abd_zero_off(abd, csize, psize - csize); 1799 } 1800 1801 /* 1802 * Authentication is best effort. We authenticate whenever the key is 1803 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1804 */ 1805 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1806 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1807 ASSERT3U(lsize, ==, psize); 1808 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1809 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1810 } else { 1811 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1812 hdr->b_crypt_hdr.b_mac); 1813 } 1814 1815 if (ret == 0) 1816 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1817 else if (ret != ENOENT) 1818 goto error; 1819 1820 if (tmpbuf != NULL) 1821 abd_free(abd); 1822 1823 return (0); 1824 1825 error: 1826 if (tmpbuf != NULL) 1827 abd_free(abd); 1828 1829 return (ret); 1830 } 1831 1832 /* 1833 * This function will take a header that only has raw encrypted data in 1834 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1835 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1836 * also decompress the data. 1837 */ 1838 static int 1839 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1840 { 1841 int ret; 1842 abd_t *cabd = NULL; 1843 void *tmp = NULL; 1844 boolean_t no_crypt = B_FALSE; 1845 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1846 1847 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1848 ASSERT(HDR_ENCRYPTED(hdr)); 1849 1850 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 1851 1852 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1853 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1854 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1855 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1856 if (ret != 0) 1857 goto error; 1858 1859 if (no_crypt) { 1860 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1861 HDR_GET_PSIZE(hdr)); 1862 } 1863 1864 /* 1865 * If this header has disabled arc compression but the b_pabd is 1866 * compressed after decrypting it, we need to decompress the newly 1867 * decrypted data. 1868 */ 1869 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1870 !HDR_COMPRESSION_ENABLED(hdr)) { 1871 /* 1872 * We want to make sure that we are correctly honoring the 1873 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1874 * and then loan a buffer from it, rather than allocating a 1875 * linear buffer and wrapping it in an abd later. 1876 */ 1877 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, B_TRUE); 1878 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 1879 1880 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1881 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 1882 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 1883 if (ret != 0) { 1884 abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); 1885 goto error; 1886 } 1887 1888 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 1889 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1890 arc_hdr_size(hdr), hdr); 1891 hdr->b_l1hdr.b_pabd = cabd; 1892 } 1893 1894 return (0); 1895 1896 error: 1897 arc_hdr_free_abd(hdr, B_FALSE); 1898 if (cabd != NULL) 1899 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1900 1901 return (ret); 1902 } 1903 1904 /* 1905 * This function is called during arc_buf_fill() to prepare the header's 1906 * abd plaintext pointer for use. This involves authenticated protected 1907 * data and decrypting encrypted data into the plaintext abd. 1908 */ 1909 static int 1910 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1911 const zbookmark_phys_t *zb, boolean_t noauth) 1912 { 1913 int ret; 1914 1915 ASSERT(HDR_PROTECTED(hdr)); 1916 1917 if (hash_lock != NULL) 1918 mutex_enter(hash_lock); 1919 1920 if (HDR_NOAUTH(hdr) && !noauth) { 1921 /* 1922 * The caller requested authenticated data but our data has 1923 * not been authenticated yet. Verify the MAC now if we can. 1924 */ 1925 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1926 if (ret != 0) 1927 goto error; 1928 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1929 /* 1930 * If we only have the encrypted version of the data, but the 1931 * unencrypted version was requested we take this opportunity 1932 * to store the decrypted version in the header for future use. 1933 */ 1934 ret = arc_hdr_decrypt(hdr, spa, zb); 1935 if (ret != 0) 1936 goto error; 1937 } 1938 1939 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1940 1941 if (hash_lock != NULL) 1942 mutex_exit(hash_lock); 1943 1944 return (0); 1945 1946 error: 1947 if (hash_lock != NULL) 1948 mutex_exit(hash_lock); 1949 1950 return (ret); 1951 } 1952 1953 /* 1954 * This function is used by the dbuf code to decrypt bonus buffers in place. 1955 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1956 * block, so we use the hash lock here to protect against concurrent calls to 1957 * arc_buf_fill(). 1958 */ 1959 static void 1960 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock) 1961 { 1962 arc_buf_hdr_t *hdr = buf->b_hdr; 1963 1964 ASSERT(HDR_ENCRYPTED(hdr)); 1965 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1966 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1967 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1968 1969 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1970 arc_buf_size(buf)); 1971 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1972 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1973 hdr->b_crypt_hdr.b_ebufcnt -= 1; 1974 } 1975 1976 /* 1977 * Given a buf that has a data buffer attached to it, this function will 1978 * efficiently fill the buf with data of the specified compression setting from 1979 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1980 * are already sharing a data buf, no copy is performed. 1981 * 1982 * If the buf is marked as compressed but uncompressed data was requested, this 1983 * will allocate a new data buffer for the buf, remove that flag, and fill the 1984 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1985 * uncompressed data, and (since we haven't added support for it yet) if you 1986 * want compressed data your buf must already be marked as compressed and have 1987 * the correct-sized data buffer. 1988 */ 1989 static int 1990 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 1991 arc_fill_flags_t flags) 1992 { 1993 int error = 0; 1994 arc_buf_hdr_t *hdr = buf->b_hdr; 1995 boolean_t hdr_compressed = 1996 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 1997 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 1998 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 1999 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 2000 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 2001 2002 ASSERT3P(buf->b_data, !=, NULL); 2003 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 2004 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 2005 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 2006 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 2007 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 2008 IMPLY(encrypted, !ARC_BUF_SHARED(buf)); 2009 2010 /* 2011 * If the caller wanted encrypted data we just need to copy it from 2012 * b_rabd and potentially byteswap it. We won't be able to do any 2013 * further transforms on it. 2014 */ 2015 if (encrypted) { 2016 ASSERT(HDR_HAS_RABD(hdr)); 2017 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 2018 HDR_GET_PSIZE(hdr)); 2019 goto byteswap; 2020 } 2021 2022 /* 2023 * Adjust encrypted and authenticated headers to accommodate 2024 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 2025 * allowed to fail decryption due to keys not being loaded 2026 * without being marked as an IO error. 2027 */ 2028 if (HDR_PROTECTED(hdr)) { 2029 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 2030 zb, !!(flags & ARC_FILL_NOAUTH)); 2031 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 2032 return (error); 2033 } else if (error != 0) { 2034 if (hash_lock != NULL) 2035 mutex_enter(hash_lock); 2036 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2037 if (hash_lock != NULL) 2038 mutex_exit(hash_lock); 2039 return (error); 2040 } 2041 } 2042 2043 /* 2044 * There is a special case here for dnode blocks which are 2045 * decrypting their bonus buffers. These blocks may request to 2046 * be decrypted in-place. This is necessary because there may 2047 * be many dnodes pointing into this buffer and there is 2048 * currently no method to synchronize replacing the backing 2049 * b_data buffer and updating all of the pointers. Here we use 2050 * the hash lock to ensure there are no races. If the need 2051 * arises for other types to be decrypted in-place, they must 2052 * add handling here as well. 2053 */ 2054 if ((flags & ARC_FILL_IN_PLACE) != 0) { 2055 ASSERT(!hdr_compressed); 2056 ASSERT(!compressed); 2057 ASSERT(!encrypted); 2058 2059 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 2060 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 2061 2062 if (hash_lock != NULL) 2063 mutex_enter(hash_lock); 2064 arc_buf_untransform_in_place(buf, hash_lock); 2065 if (hash_lock != NULL) 2066 mutex_exit(hash_lock); 2067 2068 /* Compute the hdr's checksum if necessary */ 2069 arc_cksum_compute(buf); 2070 } 2071 2072 return (0); 2073 } 2074 2075 if (hdr_compressed == compressed) { 2076 if (!arc_buf_is_shared(buf)) { 2077 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 2078 arc_buf_size(buf)); 2079 } 2080 } else { 2081 ASSERT(hdr_compressed); 2082 ASSERT(!compressed); 2083 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 2084 2085 /* 2086 * If the buf is sharing its data with the hdr, unlink it and 2087 * allocate a new data buffer for the buf. 2088 */ 2089 if (arc_buf_is_shared(buf)) { 2090 ASSERT(ARC_BUF_COMPRESSED(buf)); 2091 2092 /* We need to give the buf its own b_data */ 2093 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2094 buf->b_data = 2095 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2096 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2097 2098 /* Previously overhead was 0; just add new overhead */ 2099 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2100 } else if (ARC_BUF_COMPRESSED(buf)) { 2101 /* We need to reallocate the buf's b_data */ 2102 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2103 buf); 2104 buf->b_data = 2105 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2106 2107 /* We increased the size of b_data; update overhead */ 2108 ARCSTAT_INCR(arcstat_overhead_size, 2109 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2110 } 2111 2112 /* 2113 * Regardless of the buf's previous compression settings, it 2114 * should not be compressed at the end of this function. 2115 */ 2116 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2117 2118 /* 2119 * Try copying the data from another buf which already has a 2120 * decompressed version. If that's not possible, it's time to 2121 * bite the bullet and decompress the data from the hdr. 2122 */ 2123 if (arc_buf_try_copy_decompressed_data(buf)) { 2124 /* Skip byteswapping and checksumming (already done) */ 2125 return (0); 2126 } else { 2127 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2128 hdr->b_l1hdr.b_pabd, buf->b_data, 2129 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), 2130 &hdr->b_complevel); 2131 2132 /* 2133 * Absent hardware errors or software bugs, this should 2134 * be impossible, but log it anyway so we can debug it. 2135 */ 2136 if (error != 0) { 2137 zfs_dbgmsg( 2138 "hdr %px, compress %d, psize %d, lsize %d", 2139 hdr, arc_hdr_get_compress(hdr), 2140 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2141 if (hash_lock != NULL) 2142 mutex_enter(hash_lock); 2143 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2144 if (hash_lock != NULL) 2145 mutex_exit(hash_lock); 2146 return (SET_ERROR(EIO)); 2147 } 2148 } 2149 } 2150 2151 byteswap: 2152 /* Byteswap the buf's data if necessary */ 2153 if (bswap != DMU_BSWAP_NUMFUNCS) { 2154 ASSERT(!HDR_SHARED_DATA(hdr)); 2155 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2156 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2157 } 2158 2159 /* Compute the hdr's checksum if necessary */ 2160 arc_cksum_compute(buf); 2161 2162 return (0); 2163 } 2164 2165 /* 2166 * If this function is being called to decrypt an encrypted buffer or verify an 2167 * authenticated one, the key must be loaded and a mapping must be made 2168 * available in the keystore via spa_keystore_create_mapping() or one of its 2169 * callers. 2170 */ 2171 int 2172 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2173 boolean_t in_place) 2174 { 2175 int ret; 2176 arc_fill_flags_t flags = 0; 2177 2178 if (in_place) 2179 flags |= ARC_FILL_IN_PLACE; 2180 2181 ret = arc_buf_fill(buf, spa, zb, flags); 2182 if (ret == ECKSUM) { 2183 /* 2184 * Convert authentication and decryption errors to EIO 2185 * (and generate an ereport) before leaving the ARC. 2186 */ 2187 ret = SET_ERROR(EIO); 2188 spa_log_error(spa, zb); 2189 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2190 spa, NULL, zb, NULL, 0, 0); 2191 } 2192 2193 return (ret); 2194 } 2195 2196 /* 2197 * Increment the amount of evictable space in the arc_state_t's refcount. 2198 * We account for the space used by the hdr and the arc buf individually 2199 * so that we can add and remove them from the refcount individually. 2200 */ 2201 static void 2202 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2203 { 2204 arc_buf_contents_t type = arc_buf_type(hdr); 2205 2206 ASSERT(HDR_HAS_L1HDR(hdr)); 2207 2208 if (GHOST_STATE(state)) { 2209 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2210 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2211 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2212 ASSERT(!HDR_HAS_RABD(hdr)); 2213 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2214 HDR_GET_LSIZE(hdr), hdr); 2215 return; 2216 } 2217 2218 ASSERT(!GHOST_STATE(state)); 2219 if (hdr->b_l1hdr.b_pabd != NULL) { 2220 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2221 arc_hdr_size(hdr), hdr); 2222 } 2223 if (HDR_HAS_RABD(hdr)) { 2224 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2225 HDR_GET_PSIZE(hdr), hdr); 2226 } 2227 2228 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2229 buf = buf->b_next) { 2230 if (arc_buf_is_shared(buf)) 2231 continue; 2232 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2233 arc_buf_size(buf), buf); 2234 } 2235 } 2236 2237 /* 2238 * Decrement the amount of evictable space in the arc_state_t's refcount. 2239 * We account for the space used by the hdr and the arc buf individually 2240 * so that we can add and remove them from the refcount individually. 2241 */ 2242 static void 2243 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2244 { 2245 arc_buf_contents_t type = arc_buf_type(hdr); 2246 2247 ASSERT(HDR_HAS_L1HDR(hdr)); 2248 2249 if (GHOST_STATE(state)) { 2250 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2251 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2252 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2253 ASSERT(!HDR_HAS_RABD(hdr)); 2254 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2255 HDR_GET_LSIZE(hdr), hdr); 2256 return; 2257 } 2258 2259 ASSERT(!GHOST_STATE(state)); 2260 if (hdr->b_l1hdr.b_pabd != NULL) { 2261 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2262 arc_hdr_size(hdr), hdr); 2263 } 2264 if (HDR_HAS_RABD(hdr)) { 2265 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2266 HDR_GET_PSIZE(hdr), hdr); 2267 } 2268 2269 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2270 buf = buf->b_next) { 2271 if (arc_buf_is_shared(buf)) 2272 continue; 2273 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2274 arc_buf_size(buf), buf); 2275 } 2276 } 2277 2278 /* 2279 * Add a reference to this hdr indicating that someone is actively 2280 * referencing that memory. When the refcount transitions from 0 to 1, 2281 * we remove it from the respective arc_state_t list to indicate that 2282 * it is not evictable. 2283 */ 2284 static void 2285 add_reference(arc_buf_hdr_t *hdr, void *tag) 2286 { 2287 arc_state_t *state; 2288 2289 ASSERT(HDR_HAS_L1HDR(hdr)); 2290 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2291 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2292 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2293 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2294 } 2295 2296 state = hdr->b_l1hdr.b_state; 2297 2298 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2299 (state != arc_anon)) { 2300 /* We don't use the L2-only state list. */ 2301 if (state != arc_l2c_only) { 2302 multilist_remove(state->arcs_list[arc_buf_type(hdr)], 2303 hdr); 2304 arc_evictable_space_decrement(hdr, state); 2305 } 2306 /* remove the prefetch flag if we get a reference */ 2307 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2308 } 2309 } 2310 2311 /* 2312 * Remove a reference from this hdr. When the reference transitions from 2313 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2314 * list making it eligible for eviction. 2315 */ 2316 static int 2317 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2318 { 2319 int cnt; 2320 arc_state_t *state = hdr->b_l1hdr.b_state; 2321 2322 ASSERT(HDR_HAS_L1HDR(hdr)); 2323 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2324 ASSERT(!GHOST_STATE(state)); 2325 2326 /* 2327 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2328 * check to prevent usage of the arc_l2c_only list. 2329 */ 2330 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2331 (state != arc_anon)) { 2332 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr); 2333 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2334 arc_evictable_space_increment(hdr, state); 2335 } 2336 return (cnt); 2337 } 2338 2339 /* 2340 * Returns detailed information about a specific arc buffer. When the 2341 * state_index argument is set the function will calculate the arc header 2342 * list position for its arc state. Since this requires a linear traversal 2343 * callers are strongly encourage not to do this. However, it can be helpful 2344 * for targeted analysis so the functionality is provided. 2345 */ 2346 void 2347 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) 2348 { 2349 arc_buf_hdr_t *hdr = ab->b_hdr; 2350 l1arc_buf_hdr_t *l1hdr = NULL; 2351 l2arc_buf_hdr_t *l2hdr = NULL; 2352 arc_state_t *state = NULL; 2353 2354 memset(abi, 0, sizeof (arc_buf_info_t)); 2355 2356 if (hdr == NULL) 2357 return; 2358 2359 abi->abi_flags = hdr->b_flags; 2360 2361 if (HDR_HAS_L1HDR(hdr)) { 2362 l1hdr = &hdr->b_l1hdr; 2363 state = l1hdr->b_state; 2364 } 2365 if (HDR_HAS_L2HDR(hdr)) 2366 l2hdr = &hdr->b_l2hdr; 2367 2368 if (l1hdr) { 2369 abi->abi_bufcnt = l1hdr->b_bufcnt; 2370 abi->abi_access = l1hdr->b_arc_access; 2371 abi->abi_mru_hits = l1hdr->b_mru_hits; 2372 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; 2373 abi->abi_mfu_hits = l1hdr->b_mfu_hits; 2374 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; 2375 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); 2376 } 2377 2378 if (l2hdr) { 2379 abi->abi_l2arc_dattr = l2hdr->b_daddr; 2380 abi->abi_l2arc_hits = l2hdr->b_hits; 2381 } 2382 2383 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; 2384 abi->abi_state_contents = arc_buf_type(hdr); 2385 abi->abi_size = arc_hdr_size(hdr); 2386 } 2387 2388 /* 2389 * Move the supplied buffer to the indicated state. The hash lock 2390 * for the buffer must be held by the caller. 2391 */ 2392 static void 2393 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2394 kmutex_t *hash_lock) 2395 { 2396 arc_state_t *old_state; 2397 int64_t refcnt; 2398 uint32_t bufcnt; 2399 boolean_t update_old, update_new; 2400 arc_buf_contents_t buftype = arc_buf_type(hdr); 2401 2402 /* 2403 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2404 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2405 * L1 hdr doesn't always exist when we change state to arc_anon before 2406 * destroying a header, in which case reallocating to add the L1 hdr is 2407 * pointless. 2408 */ 2409 if (HDR_HAS_L1HDR(hdr)) { 2410 old_state = hdr->b_l1hdr.b_state; 2411 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2412 bufcnt = hdr->b_l1hdr.b_bufcnt; 2413 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL || 2414 HDR_HAS_RABD(hdr)); 2415 } else { 2416 old_state = arc_l2c_only; 2417 refcnt = 0; 2418 bufcnt = 0; 2419 update_old = B_FALSE; 2420 } 2421 update_new = update_old; 2422 2423 ASSERT(MUTEX_HELD(hash_lock)); 2424 ASSERT3P(new_state, !=, old_state); 2425 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2426 ASSERT(old_state != arc_anon || bufcnt <= 1); 2427 2428 /* 2429 * If this buffer is evictable, transfer it from the 2430 * old state list to the new state list. 2431 */ 2432 if (refcnt == 0) { 2433 if (old_state != arc_anon && old_state != arc_l2c_only) { 2434 ASSERT(HDR_HAS_L1HDR(hdr)); 2435 multilist_remove(old_state->arcs_list[buftype], hdr); 2436 2437 if (GHOST_STATE(old_state)) { 2438 ASSERT0(bufcnt); 2439 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2440 update_old = B_TRUE; 2441 } 2442 arc_evictable_space_decrement(hdr, old_state); 2443 } 2444 if (new_state != arc_anon && new_state != arc_l2c_only) { 2445 /* 2446 * An L1 header always exists here, since if we're 2447 * moving to some L1-cached state (i.e. not l2c_only or 2448 * anonymous), we realloc the header to add an L1hdr 2449 * beforehand. 2450 */ 2451 ASSERT(HDR_HAS_L1HDR(hdr)); 2452 multilist_insert(new_state->arcs_list[buftype], hdr); 2453 2454 if (GHOST_STATE(new_state)) { 2455 ASSERT0(bufcnt); 2456 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2457 update_new = B_TRUE; 2458 } 2459 arc_evictable_space_increment(hdr, new_state); 2460 } 2461 } 2462 2463 ASSERT(!HDR_EMPTY(hdr)); 2464 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2465 buf_hash_remove(hdr); 2466 2467 /* adjust state sizes (ignore arc_l2c_only) */ 2468 2469 if (update_new && new_state != arc_l2c_only) { 2470 ASSERT(HDR_HAS_L1HDR(hdr)); 2471 if (GHOST_STATE(new_state)) { 2472 ASSERT0(bufcnt); 2473 2474 /* 2475 * When moving a header to a ghost state, we first 2476 * remove all arc buffers. Thus, we'll have a 2477 * bufcnt of zero, and no arc buffer to use for 2478 * the reference. As a result, we use the arc 2479 * header pointer for the reference. 2480 */ 2481 (void) zfs_refcount_add_many(&new_state->arcs_size, 2482 HDR_GET_LSIZE(hdr), hdr); 2483 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2484 ASSERT(!HDR_HAS_RABD(hdr)); 2485 } else { 2486 uint32_t buffers = 0; 2487 2488 /* 2489 * Each individual buffer holds a unique reference, 2490 * thus we must remove each of these references one 2491 * at a time. 2492 */ 2493 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2494 buf = buf->b_next) { 2495 ASSERT3U(bufcnt, !=, 0); 2496 buffers++; 2497 2498 /* 2499 * When the arc_buf_t is sharing the data 2500 * block with the hdr, the owner of the 2501 * reference belongs to the hdr. Only 2502 * add to the refcount if the arc_buf_t is 2503 * not shared. 2504 */ 2505 if (arc_buf_is_shared(buf)) 2506 continue; 2507 2508 (void) zfs_refcount_add_many( 2509 &new_state->arcs_size, 2510 arc_buf_size(buf), buf); 2511 } 2512 ASSERT3U(bufcnt, ==, buffers); 2513 2514 if (hdr->b_l1hdr.b_pabd != NULL) { 2515 (void) zfs_refcount_add_many( 2516 &new_state->arcs_size, 2517 arc_hdr_size(hdr), hdr); 2518 } 2519 2520 if (HDR_HAS_RABD(hdr)) { 2521 (void) zfs_refcount_add_many( 2522 &new_state->arcs_size, 2523 HDR_GET_PSIZE(hdr), hdr); 2524 } 2525 } 2526 } 2527 2528 if (update_old && old_state != arc_l2c_only) { 2529 ASSERT(HDR_HAS_L1HDR(hdr)); 2530 if (GHOST_STATE(old_state)) { 2531 ASSERT0(bufcnt); 2532 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2533 ASSERT(!HDR_HAS_RABD(hdr)); 2534 2535 /* 2536 * When moving a header off of a ghost state, 2537 * the header will not contain any arc buffers. 2538 * We use the arc header pointer for the reference 2539 * which is exactly what we did when we put the 2540 * header on the ghost state. 2541 */ 2542 2543 (void) zfs_refcount_remove_many(&old_state->arcs_size, 2544 HDR_GET_LSIZE(hdr), hdr); 2545 } else { 2546 uint32_t buffers = 0; 2547 2548 /* 2549 * Each individual buffer holds a unique reference, 2550 * thus we must remove each of these references one 2551 * at a time. 2552 */ 2553 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2554 buf = buf->b_next) { 2555 ASSERT3U(bufcnt, !=, 0); 2556 buffers++; 2557 2558 /* 2559 * When the arc_buf_t is sharing the data 2560 * block with the hdr, the owner of the 2561 * reference belongs to the hdr. Only 2562 * add to the refcount if the arc_buf_t is 2563 * not shared. 2564 */ 2565 if (arc_buf_is_shared(buf)) 2566 continue; 2567 2568 (void) zfs_refcount_remove_many( 2569 &old_state->arcs_size, arc_buf_size(buf), 2570 buf); 2571 } 2572 ASSERT3U(bufcnt, ==, buffers); 2573 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2574 HDR_HAS_RABD(hdr)); 2575 2576 if (hdr->b_l1hdr.b_pabd != NULL) { 2577 (void) zfs_refcount_remove_many( 2578 &old_state->arcs_size, arc_hdr_size(hdr), 2579 hdr); 2580 } 2581 2582 if (HDR_HAS_RABD(hdr)) { 2583 (void) zfs_refcount_remove_many( 2584 &old_state->arcs_size, HDR_GET_PSIZE(hdr), 2585 hdr); 2586 } 2587 } 2588 } 2589 2590 if (HDR_HAS_L1HDR(hdr)) 2591 hdr->b_l1hdr.b_state = new_state; 2592 2593 /* 2594 * L2 headers should never be on the L2 state list since they don't 2595 * have L1 headers allocated. 2596 */ 2597 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2598 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2599 } 2600 2601 void 2602 arc_space_consume(uint64_t space, arc_space_type_t type) 2603 { 2604 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2605 2606 switch (type) { 2607 default: 2608 break; 2609 case ARC_SPACE_DATA: 2610 aggsum_add(&astat_data_size, space); 2611 break; 2612 case ARC_SPACE_META: 2613 aggsum_add(&astat_metadata_size, space); 2614 break; 2615 case ARC_SPACE_BONUS: 2616 aggsum_add(&astat_bonus_size, space); 2617 break; 2618 case ARC_SPACE_DNODE: 2619 aggsum_add(&astat_dnode_size, space); 2620 break; 2621 case ARC_SPACE_DBUF: 2622 aggsum_add(&astat_dbuf_size, space); 2623 break; 2624 case ARC_SPACE_HDRS: 2625 aggsum_add(&astat_hdr_size, space); 2626 break; 2627 case ARC_SPACE_L2HDRS: 2628 aggsum_add(&astat_l2_hdr_size, space); 2629 break; 2630 case ARC_SPACE_ABD_CHUNK_WASTE: 2631 /* 2632 * Note: this includes space wasted by all scatter ABD's, not 2633 * just those allocated by the ARC. But the vast majority of 2634 * scatter ABD's come from the ARC, because other users are 2635 * very short-lived. 2636 */ 2637 aggsum_add(&astat_abd_chunk_waste_size, space); 2638 break; 2639 } 2640 2641 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2642 aggsum_add(&arc_meta_used, space); 2643 2644 aggsum_add(&arc_size, space); 2645 } 2646 2647 void 2648 arc_space_return(uint64_t space, arc_space_type_t type) 2649 { 2650 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2651 2652 switch (type) { 2653 default: 2654 break; 2655 case ARC_SPACE_DATA: 2656 aggsum_add(&astat_data_size, -space); 2657 break; 2658 case ARC_SPACE_META: 2659 aggsum_add(&astat_metadata_size, -space); 2660 break; 2661 case ARC_SPACE_BONUS: 2662 aggsum_add(&astat_bonus_size, -space); 2663 break; 2664 case ARC_SPACE_DNODE: 2665 aggsum_add(&astat_dnode_size, -space); 2666 break; 2667 case ARC_SPACE_DBUF: 2668 aggsum_add(&astat_dbuf_size, -space); 2669 break; 2670 case ARC_SPACE_HDRS: 2671 aggsum_add(&astat_hdr_size, -space); 2672 break; 2673 case ARC_SPACE_L2HDRS: 2674 aggsum_add(&astat_l2_hdr_size, -space); 2675 break; 2676 case ARC_SPACE_ABD_CHUNK_WASTE: 2677 aggsum_add(&astat_abd_chunk_waste_size, -space); 2678 break; 2679 } 2680 2681 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) { 2682 ASSERT(aggsum_compare(&arc_meta_used, space) >= 0); 2683 /* 2684 * We use the upper bound here rather than the precise value 2685 * because the arc_meta_max value doesn't need to be 2686 * precise. It's only consumed by humans via arcstats. 2687 */ 2688 if (arc_meta_max < aggsum_upper_bound(&arc_meta_used)) 2689 arc_meta_max = aggsum_upper_bound(&arc_meta_used); 2690 aggsum_add(&arc_meta_used, -space); 2691 } 2692 2693 ASSERT(aggsum_compare(&arc_size, space) >= 0); 2694 aggsum_add(&arc_size, -space); 2695 } 2696 2697 /* 2698 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2699 * with the hdr's b_pabd. 2700 */ 2701 static boolean_t 2702 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2703 { 2704 /* 2705 * The criteria for sharing a hdr's data are: 2706 * 1. the buffer is not encrypted 2707 * 2. the hdr's compression matches the buf's compression 2708 * 3. the hdr doesn't need to be byteswapped 2709 * 4. the hdr isn't already being shared 2710 * 5. the buf is either compressed or it is the last buf in the hdr list 2711 * 2712 * Criterion #5 maintains the invariant that shared uncompressed 2713 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2714 * might ask, "if a compressed buf is allocated first, won't that be the 2715 * last thing in the list?", but in that case it's impossible to create 2716 * a shared uncompressed buf anyway (because the hdr must be compressed 2717 * to have the compressed buf). You might also think that #3 is 2718 * sufficient to make this guarantee, however it's possible 2719 * (specifically in the rare L2ARC write race mentioned in 2720 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2721 * is shareable, but wasn't at the time of its allocation. Rather than 2722 * allow a new shared uncompressed buf to be created and then shuffle 2723 * the list around to make it the last element, this simply disallows 2724 * sharing if the new buf isn't the first to be added. 2725 */ 2726 ASSERT3P(buf->b_hdr, ==, hdr); 2727 boolean_t hdr_compressed = 2728 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; 2729 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2730 return (!ARC_BUF_ENCRYPTED(buf) && 2731 buf_compressed == hdr_compressed && 2732 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2733 !HDR_SHARED_DATA(hdr) && 2734 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2735 } 2736 2737 /* 2738 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2739 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2740 * copy was made successfully, or an error code otherwise. 2741 */ 2742 static int 2743 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2744 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth, 2745 boolean_t fill, arc_buf_t **ret) 2746 { 2747 arc_buf_t *buf; 2748 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2749 2750 ASSERT(HDR_HAS_L1HDR(hdr)); 2751 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2752 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2753 hdr->b_type == ARC_BUFC_METADATA); 2754 ASSERT3P(ret, !=, NULL); 2755 ASSERT3P(*ret, ==, NULL); 2756 IMPLY(encrypted, compressed); 2757 2758 hdr->b_l1hdr.b_mru_hits = 0; 2759 hdr->b_l1hdr.b_mru_ghost_hits = 0; 2760 hdr->b_l1hdr.b_mfu_hits = 0; 2761 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 2762 hdr->b_l1hdr.b_l2_hits = 0; 2763 2764 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2765 buf->b_hdr = hdr; 2766 buf->b_data = NULL; 2767 buf->b_next = hdr->b_l1hdr.b_buf; 2768 buf->b_flags = 0; 2769 2770 add_reference(hdr, tag); 2771 2772 /* 2773 * We're about to change the hdr's b_flags. We must either 2774 * hold the hash_lock or be undiscoverable. 2775 */ 2776 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2777 2778 /* 2779 * Only honor requests for compressed bufs if the hdr is actually 2780 * compressed. This must be overridden if the buffer is encrypted since 2781 * encrypted buffers cannot be decompressed. 2782 */ 2783 if (encrypted) { 2784 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2785 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2786 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2787 } else if (compressed && 2788 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2789 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2790 flags |= ARC_FILL_COMPRESSED; 2791 } 2792 2793 if (noauth) { 2794 ASSERT0(encrypted); 2795 flags |= ARC_FILL_NOAUTH; 2796 } 2797 2798 /* 2799 * If the hdr's data can be shared then we share the data buffer and 2800 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2801 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2802 * buffer to store the buf's data. 2803 * 2804 * There are two additional restrictions here because we're sharing 2805 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2806 * actively involved in an L2ARC write, because if this buf is used by 2807 * an arc_write() then the hdr's data buffer will be released when the 2808 * write completes, even though the L2ARC write might still be using it. 2809 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2810 * need to be ABD-aware. It must be allocated via 2811 * zio_[data_]buf_alloc(), not as a page, because we need to be able 2812 * to abd_release_ownership_of_buf(), which isn't allowed on "linear 2813 * page" buffers because the ABD code needs to handle freeing them 2814 * specially. 2815 */ 2816 boolean_t can_share = arc_can_share(hdr, buf) && 2817 !HDR_L2_WRITING(hdr) && 2818 hdr->b_l1hdr.b_pabd != NULL && 2819 abd_is_linear(hdr->b_l1hdr.b_pabd) && 2820 !abd_is_linear_page(hdr->b_l1hdr.b_pabd); 2821 2822 /* Set up b_data and sharing */ 2823 if (can_share) { 2824 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2825 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2826 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2827 } else { 2828 buf->b_data = 2829 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2830 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2831 } 2832 VERIFY3P(buf->b_data, !=, NULL); 2833 2834 hdr->b_l1hdr.b_buf = buf; 2835 hdr->b_l1hdr.b_bufcnt += 1; 2836 if (encrypted) 2837 hdr->b_crypt_hdr.b_ebufcnt += 1; 2838 2839 /* 2840 * If the user wants the data from the hdr, we need to either copy or 2841 * decompress the data. 2842 */ 2843 if (fill) { 2844 ASSERT3P(zb, !=, NULL); 2845 return (arc_buf_fill(buf, spa, zb, flags)); 2846 } 2847 2848 return (0); 2849 } 2850 2851 static char *arc_onloan_tag = "onloan"; 2852 2853 static inline void 2854 arc_loaned_bytes_update(int64_t delta) 2855 { 2856 atomic_add_64(&arc_loaned_bytes, delta); 2857 2858 /* assert that it did not wrap around */ 2859 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2860 } 2861 2862 /* 2863 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2864 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2865 * buffers must be returned to the arc before they can be used by the DMU or 2866 * freed. 2867 */ 2868 arc_buf_t * 2869 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2870 { 2871 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2872 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2873 2874 arc_loaned_bytes_update(arc_buf_size(buf)); 2875 2876 return (buf); 2877 } 2878 2879 arc_buf_t * 2880 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2881 enum zio_compress compression_type, uint8_t complevel) 2882 { 2883 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2884 psize, lsize, compression_type, complevel); 2885 2886 arc_loaned_bytes_update(arc_buf_size(buf)); 2887 2888 return (buf); 2889 } 2890 2891 arc_buf_t * 2892 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2893 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2894 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2895 enum zio_compress compression_type, uint8_t complevel) 2896 { 2897 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2898 byteorder, salt, iv, mac, ot, psize, lsize, compression_type, 2899 complevel); 2900 2901 atomic_add_64(&arc_loaned_bytes, psize); 2902 return (buf); 2903 } 2904 2905 2906 /* 2907 * Return a loaned arc buffer to the arc. 2908 */ 2909 void 2910 arc_return_buf(arc_buf_t *buf, void *tag) 2911 { 2912 arc_buf_hdr_t *hdr = buf->b_hdr; 2913 2914 ASSERT3P(buf->b_data, !=, NULL); 2915 ASSERT(HDR_HAS_L1HDR(hdr)); 2916 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2917 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2918 2919 arc_loaned_bytes_update(-arc_buf_size(buf)); 2920 } 2921 2922 /* Detach an arc_buf from a dbuf (tag) */ 2923 void 2924 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2925 { 2926 arc_buf_hdr_t *hdr = buf->b_hdr; 2927 2928 ASSERT3P(buf->b_data, !=, NULL); 2929 ASSERT(HDR_HAS_L1HDR(hdr)); 2930 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2931 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2932 2933 arc_loaned_bytes_update(arc_buf_size(buf)); 2934 } 2935 2936 static void 2937 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2938 { 2939 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2940 2941 df->l2df_abd = abd; 2942 df->l2df_size = size; 2943 df->l2df_type = type; 2944 mutex_enter(&l2arc_free_on_write_mtx); 2945 list_insert_head(l2arc_free_on_write, df); 2946 mutex_exit(&l2arc_free_on_write_mtx); 2947 } 2948 2949 static void 2950 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2951 { 2952 arc_state_t *state = hdr->b_l1hdr.b_state; 2953 arc_buf_contents_t type = arc_buf_type(hdr); 2954 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2955 2956 /* protected by hash lock, if in the hash table */ 2957 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2958 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2959 ASSERT(state != arc_anon && state != arc_l2c_only); 2960 2961 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2962 size, hdr); 2963 } 2964 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr); 2965 if (type == ARC_BUFC_METADATA) { 2966 arc_space_return(size, ARC_SPACE_META); 2967 } else { 2968 ASSERT(type == ARC_BUFC_DATA); 2969 arc_space_return(size, ARC_SPACE_DATA); 2970 } 2971 2972 if (free_rdata) { 2973 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2974 } else { 2975 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2976 } 2977 } 2978 2979 /* 2980 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2981 * data buffer, we transfer the refcount ownership to the hdr and update 2982 * the appropriate kstats. 2983 */ 2984 static void 2985 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2986 { 2987 ASSERT(arc_can_share(hdr, buf)); 2988 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2989 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2990 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2991 2992 /* 2993 * Start sharing the data buffer. We transfer the 2994 * refcount ownership to the hdr since it always owns 2995 * the refcount whenever an arc_buf_t is shared. 2996 */ 2997 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 2998 arc_hdr_size(hdr), buf, hdr); 2999 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 3000 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 3001 HDR_ISTYPE_METADATA(hdr)); 3002 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 3003 buf->b_flags |= ARC_BUF_FLAG_SHARED; 3004 3005 /* 3006 * Since we've transferred ownership to the hdr we need 3007 * to increment its compressed and uncompressed kstats and 3008 * decrement the overhead size. 3009 */ 3010 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 3011 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3012 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 3013 } 3014 3015 static void 3016 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3017 { 3018 ASSERT(arc_buf_is_shared(buf)); 3019 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3020 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3021 3022 /* 3023 * We are no longer sharing this buffer so we need 3024 * to transfer its ownership to the rightful owner. 3025 */ 3026 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 3027 arc_hdr_size(hdr), hdr, buf); 3028 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3029 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 3030 abd_put(hdr->b_l1hdr.b_pabd); 3031 hdr->b_l1hdr.b_pabd = NULL; 3032 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 3033 3034 /* 3035 * Since the buffer is no longer shared between 3036 * the arc buf and the hdr, count it as overhead. 3037 */ 3038 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 3039 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3040 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 3041 } 3042 3043 /* 3044 * Remove an arc_buf_t from the hdr's buf list and return the last 3045 * arc_buf_t on the list. If no buffers remain on the list then return 3046 * NULL. 3047 */ 3048 static arc_buf_t * 3049 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3050 { 3051 ASSERT(HDR_HAS_L1HDR(hdr)); 3052 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3053 3054 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 3055 arc_buf_t *lastbuf = NULL; 3056 3057 /* 3058 * Remove the buf from the hdr list and locate the last 3059 * remaining buffer on the list. 3060 */ 3061 while (*bufp != NULL) { 3062 if (*bufp == buf) 3063 *bufp = buf->b_next; 3064 3065 /* 3066 * If we've removed a buffer in the middle of 3067 * the list then update the lastbuf and update 3068 * bufp. 3069 */ 3070 if (*bufp != NULL) { 3071 lastbuf = *bufp; 3072 bufp = &(*bufp)->b_next; 3073 } 3074 } 3075 buf->b_next = NULL; 3076 ASSERT3P(lastbuf, !=, buf); 3077 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 3078 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 3079 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 3080 3081 return (lastbuf); 3082 } 3083 3084 /* 3085 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's 3086 * list and free it. 3087 */ 3088 static void 3089 arc_buf_destroy_impl(arc_buf_t *buf) 3090 { 3091 arc_buf_hdr_t *hdr = buf->b_hdr; 3092 3093 /* 3094 * Free up the data associated with the buf but only if we're not 3095 * sharing this with the hdr. If we are sharing it with the hdr, the 3096 * hdr is responsible for doing the free. 3097 */ 3098 if (buf->b_data != NULL) { 3099 /* 3100 * We're about to change the hdr's b_flags. We must either 3101 * hold the hash_lock or be undiscoverable. 3102 */ 3103 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3104 3105 arc_cksum_verify(buf); 3106 arc_buf_unwatch(buf); 3107 3108 if (arc_buf_is_shared(buf)) { 3109 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3110 } else { 3111 uint64_t size = arc_buf_size(buf); 3112 arc_free_data_buf(hdr, buf->b_data, size, buf); 3113 ARCSTAT_INCR(arcstat_overhead_size, -size); 3114 } 3115 buf->b_data = NULL; 3116 3117 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3118 hdr->b_l1hdr.b_bufcnt -= 1; 3119 3120 if (ARC_BUF_ENCRYPTED(buf)) { 3121 hdr->b_crypt_hdr.b_ebufcnt -= 1; 3122 3123 /* 3124 * If we have no more encrypted buffers and we've 3125 * already gotten a copy of the decrypted data we can 3126 * free b_rabd to save some space. 3127 */ 3128 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && 3129 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL && 3130 !HDR_IO_IN_PROGRESS(hdr)) { 3131 arc_hdr_free_abd(hdr, B_TRUE); 3132 } 3133 } 3134 } 3135 3136 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3137 3138 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3139 /* 3140 * If the current arc_buf_t is sharing its data buffer with the 3141 * hdr, then reassign the hdr's b_pabd to share it with the new 3142 * buffer at the end of the list. The shared buffer is always 3143 * the last one on the hdr's buffer list. 3144 * 3145 * There is an equivalent case for compressed bufs, but since 3146 * they aren't guaranteed to be the last buf in the list and 3147 * that is an exceedingly rare case, we just allow that space be 3148 * wasted temporarily. We must also be careful not to share 3149 * encrypted buffers, since they cannot be shared. 3150 */ 3151 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3152 /* Only one buf can be shared at once */ 3153 VERIFY(!arc_buf_is_shared(lastbuf)); 3154 /* hdr is uncompressed so can't have compressed buf */ 3155 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 3156 3157 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3158 arc_hdr_free_abd(hdr, B_FALSE); 3159 3160 /* 3161 * We must setup a new shared block between the 3162 * last buffer and the hdr. The data would have 3163 * been allocated by the arc buf so we need to transfer 3164 * ownership to the hdr since it's now being shared. 3165 */ 3166 arc_share_buf(hdr, lastbuf); 3167 } 3168 } else if (HDR_SHARED_DATA(hdr)) { 3169 /* 3170 * Uncompressed shared buffers are always at the end 3171 * of the list. Compressed buffers don't have the 3172 * same requirements. This makes it hard to 3173 * simply assert that the lastbuf is shared so 3174 * we rely on the hdr's compression flags to determine 3175 * if we have a compressed, shared buffer. 3176 */ 3177 ASSERT3P(lastbuf, !=, NULL); 3178 ASSERT(arc_buf_is_shared(lastbuf) || 3179 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3180 } 3181 3182 /* 3183 * Free the checksum if we're removing the last uncompressed buf from 3184 * this hdr. 3185 */ 3186 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3187 arc_cksum_free(hdr); 3188 } 3189 3190 /* clean up the buf */ 3191 buf->b_hdr = NULL; 3192 kmem_cache_free(buf_cache, buf); 3193 } 3194 3195 static void 3196 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) 3197 { 3198 uint64_t size; 3199 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3200 boolean_t do_adapt = ((alloc_flags & ARC_HDR_DO_ADAPT) != 0); 3201 3202 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3203 ASSERT(HDR_HAS_L1HDR(hdr)); 3204 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3205 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3206 3207 if (alloc_rdata) { 3208 size = HDR_GET_PSIZE(hdr); 3209 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3210 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3211 do_adapt); 3212 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3213 ARCSTAT_INCR(arcstat_raw_size, size); 3214 } else { 3215 size = arc_hdr_size(hdr); 3216 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3217 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3218 do_adapt); 3219 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3220 } 3221 3222 ARCSTAT_INCR(arcstat_compressed_size, size); 3223 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3224 } 3225 3226 static void 3227 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3228 { 3229 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3230 3231 ASSERT(HDR_HAS_L1HDR(hdr)); 3232 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3233 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3234 3235 /* 3236 * If the hdr is currently being written to the l2arc then 3237 * we defer freeing the data by adding it to the l2arc_free_on_write 3238 * list. The l2arc will free the data once it's finished 3239 * writing it to the l2arc device. 3240 */ 3241 if (HDR_L2_WRITING(hdr)) { 3242 arc_hdr_free_on_write(hdr, free_rdata); 3243 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3244 } else if (free_rdata) { 3245 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3246 } else { 3247 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); 3248 } 3249 3250 if (free_rdata) { 3251 hdr->b_crypt_hdr.b_rabd = NULL; 3252 ARCSTAT_INCR(arcstat_raw_size, -size); 3253 } else { 3254 hdr->b_l1hdr.b_pabd = NULL; 3255 } 3256 3257 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3258 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3259 3260 ARCSTAT_INCR(arcstat_compressed_size, -size); 3261 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3262 } 3263 3264 static arc_buf_hdr_t * 3265 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3266 boolean_t protected, enum zio_compress compression_type, uint8_t complevel, 3267 arc_buf_contents_t type, boolean_t alloc_rdata) 3268 { 3269 arc_buf_hdr_t *hdr; 3270 int flags = ARC_HDR_DO_ADAPT; 3271 3272 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3273 if (protected) { 3274 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE); 3275 } else { 3276 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3277 } 3278 flags |= alloc_rdata ? ARC_HDR_ALLOC_RDATA : 0; 3279 3280 ASSERT(HDR_EMPTY(hdr)); 3281 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3282 HDR_SET_PSIZE(hdr, psize); 3283 HDR_SET_LSIZE(hdr, lsize); 3284 hdr->b_spa = spa; 3285 hdr->b_type = type; 3286 hdr->b_flags = 0; 3287 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3288 arc_hdr_set_compress(hdr, compression_type); 3289 hdr->b_complevel = complevel; 3290 if (protected) 3291 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3292 3293 hdr->b_l1hdr.b_state = arc_anon; 3294 hdr->b_l1hdr.b_arc_access = 0; 3295 hdr->b_l1hdr.b_bufcnt = 0; 3296 hdr->b_l1hdr.b_buf = NULL; 3297 3298 /* 3299 * Allocate the hdr's buffer. This will contain either 3300 * the compressed or uncompressed data depending on the block 3301 * it references and compressed arc enablement. 3302 */ 3303 arc_hdr_alloc_abd(hdr, flags); 3304 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3305 3306 return (hdr); 3307 } 3308 3309 /* 3310 * Transition between the two allocation states for the arc_buf_hdr struct. 3311 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3312 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3313 * version is used when a cache buffer is only in the L2ARC in order to reduce 3314 * memory usage. 3315 */ 3316 static arc_buf_hdr_t * 3317 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3318 { 3319 ASSERT(HDR_HAS_L2HDR(hdr)); 3320 3321 arc_buf_hdr_t *nhdr; 3322 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3323 3324 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3325 (old == hdr_l2only_cache && new == hdr_full_cache)); 3326 3327 /* 3328 * if the caller wanted a new full header and the header is to be 3329 * encrypted we will actually allocate the header from the full crypt 3330 * cache instead. The same applies to freeing from the old cache. 3331 */ 3332 if (HDR_PROTECTED(hdr) && new == hdr_full_cache) 3333 new = hdr_full_crypt_cache; 3334 if (HDR_PROTECTED(hdr) && old == hdr_full_cache) 3335 old = hdr_full_crypt_cache; 3336 3337 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3338 3339 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3340 buf_hash_remove(hdr); 3341 3342 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 3343 3344 if (new == hdr_full_cache || new == hdr_full_crypt_cache) { 3345 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3346 /* 3347 * arc_access and arc_change_state need to be aware that a 3348 * header has just come out of L2ARC, so we set its state to 3349 * l2c_only even though it's about to change. 3350 */ 3351 nhdr->b_l1hdr.b_state = arc_l2c_only; 3352 3353 /* Verify previous threads set to NULL before freeing */ 3354 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3355 ASSERT(!HDR_HAS_RABD(hdr)); 3356 } else { 3357 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3358 ASSERT0(hdr->b_l1hdr.b_bufcnt); 3359 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3360 3361 /* 3362 * If we've reached here, We must have been called from 3363 * arc_evict_hdr(), as such we should have already been 3364 * removed from any ghost list we were previously on 3365 * (which protects us from racing with arc_evict_state), 3366 * thus no locking is needed during this check. 3367 */ 3368 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3369 3370 /* 3371 * A buffer must not be moved into the arc_l2c_only 3372 * state if it's not finished being written out to the 3373 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3374 * might try to be accessed, even though it was removed. 3375 */ 3376 VERIFY(!HDR_L2_WRITING(hdr)); 3377 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3378 ASSERT(!HDR_HAS_RABD(hdr)); 3379 3380 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3381 } 3382 /* 3383 * The header has been reallocated so we need to re-insert it into any 3384 * lists it was on. 3385 */ 3386 (void) buf_hash_insert(nhdr, NULL); 3387 3388 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3389 3390 mutex_enter(&dev->l2ad_mtx); 3391 3392 /* 3393 * We must place the realloc'ed header back into the list at 3394 * the same spot. Otherwise, if it's placed earlier in the list, 3395 * l2arc_write_buffers() could find it during the function's 3396 * write phase, and try to write it out to the l2arc. 3397 */ 3398 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3399 list_remove(&dev->l2ad_buflist, hdr); 3400 3401 mutex_exit(&dev->l2ad_mtx); 3402 3403 /* 3404 * Since we're using the pointer address as the tag when 3405 * incrementing and decrementing the l2ad_alloc refcount, we 3406 * must remove the old pointer (that we're about to destroy) and 3407 * add the new pointer to the refcount. Otherwise we'd remove 3408 * the wrong pointer address when calling arc_hdr_destroy() later. 3409 */ 3410 3411 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 3412 arc_hdr_size(hdr), hdr); 3413 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 3414 arc_hdr_size(nhdr), nhdr); 3415 3416 buf_discard_identity(hdr); 3417 kmem_cache_free(old, hdr); 3418 3419 return (nhdr); 3420 } 3421 3422 /* 3423 * This function allows an L1 header to be reallocated as a crypt 3424 * header and vice versa. If we are going to a crypt header, the 3425 * new fields will be zeroed out. 3426 */ 3427 static arc_buf_hdr_t * 3428 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt) 3429 { 3430 arc_buf_hdr_t *nhdr; 3431 arc_buf_t *buf; 3432 kmem_cache_t *ncache, *ocache; 3433 unsigned nsize, osize; 3434 3435 /* 3436 * This function requires that hdr is in the arc_anon state. 3437 * Therefore it won't have any L2ARC data for us to worry 3438 * about copying. 3439 */ 3440 ASSERT(HDR_HAS_L1HDR(hdr)); 3441 ASSERT(!HDR_HAS_L2HDR(hdr)); 3442 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt); 3443 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3444 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3445 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node)); 3446 ASSERT3P(hdr->b_hash_next, ==, NULL); 3447 3448 if (need_crypt) { 3449 ncache = hdr_full_crypt_cache; 3450 nsize = sizeof (hdr->b_crypt_hdr); 3451 ocache = hdr_full_cache; 3452 osize = HDR_FULL_SIZE; 3453 } else { 3454 ncache = hdr_full_cache; 3455 nsize = HDR_FULL_SIZE; 3456 ocache = hdr_full_crypt_cache; 3457 osize = sizeof (hdr->b_crypt_hdr); 3458 } 3459 3460 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE); 3461 3462 /* 3463 * Copy all members that aren't locks or condvars to the new header. 3464 * No lists are pointing to us (as we asserted above), so we don't 3465 * need to worry about the list nodes. 3466 */ 3467 nhdr->b_dva = hdr->b_dva; 3468 nhdr->b_birth = hdr->b_birth; 3469 nhdr->b_type = hdr->b_type; 3470 nhdr->b_flags = hdr->b_flags; 3471 nhdr->b_psize = hdr->b_psize; 3472 nhdr->b_lsize = hdr->b_lsize; 3473 nhdr->b_spa = hdr->b_spa; 3474 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum; 3475 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt; 3476 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap; 3477 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state; 3478 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access; 3479 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits; 3480 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits; 3481 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits; 3482 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits; 3483 nhdr->b_l1hdr.b_l2_hits = hdr->b_l1hdr.b_l2_hits; 3484 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb; 3485 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd; 3486 3487 /* 3488 * This zfs_refcount_add() exists only to ensure that the individual 3489 * arc buffers always point to a header that is referenced, avoiding 3490 * a small race condition that could trigger ASSERTs. 3491 */ 3492 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG); 3493 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf; 3494 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { 3495 mutex_enter(&buf->b_evict_lock); 3496 buf->b_hdr = nhdr; 3497 mutex_exit(&buf->b_evict_lock); 3498 } 3499 3500 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt); 3501 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG); 3502 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3503 3504 if (need_crypt) { 3505 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED); 3506 } else { 3507 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED); 3508 } 3509 3510 /* unset all members of the original hdr */ 3511 bzero(&hdr->b_dva, sizeof (dva_t)); 3512 hdr->b_birth = 0; 3513 hdr->b_type = ARC_BUFC_INVALID; 3514 hdr->b_flags = 0; 3515 hdr->b_psize = 0; 3516 hdr->b_lsize = 0; 3517 hdr->b_spa = 0; 3518 hdr->b_l1hdr.b_freeze_cksum = NULL; 3519 hdr->b_l1hdr.b_buf = NULL; 3520 hdr->b_l1hdr.b_bufcnt = 0; 3521 hdr->b_l1hdr.b_byteswap = 0; 3522 hdr->b_l1hdr.b_state = NULL; 3523 hdr->b_l1hdr.b_arc_access = 0; 3524 hdr->b_l1hdr.b_mru_hits = 0; 3525 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3526 hdr->b_l1hdr.b_mfu_hits = 0; 3527 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3528 hdr->b_l1hdr.b_l2_hits = 0; 3529 hdr->b_l1hdr.b_acb = NULL; 3530 hdr->b_l1hdr.b_pabd = NULL; 3531 3532 if (ocache == hdr_full_crypt_cache) { 3533 ASSERT(!HDR_HAS_RABD(hdr)); 3534 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE; 3535 hdr->b_crypt_hdr.b_ebufcnt = 0; 3536 hdr->b_crypt_hdr.b_dsobj = 0; 3537 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3538 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3539 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3540 } 3541 3542 buf_discard_identity(hdr); 3543 kmem_cache_free(ocache, hdr); 3544 3545 return (nhdr); 3546 } 3547 3548 /* 3549 * This function is used by the send / receive code to convert a newly 3550 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3551 * is also used to allow the root objset block to be updated without altering 3552 * its embedded MACs. Both block types will always be uncompressed so we do not 3553 * have to worry about compression type or psize. 3554 */ 3555 void 3556 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3557 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3558 const uint8_t *mac) 3559 { 3560 arc_buf_hdr_t *hdr = buf->b_hdr; 3561 3562 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3563 ASSERT(HDR_HAS_L1HDR(hdr)); 3564 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3565 3566 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3567 if (!HDR_PROTECTED(hdr)) 3568 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE); 3569 hdr->b_crypt_hdr.b_dsobj = dsobj; 3570 hdr->b_crypt_hdr.b_ot = ot; 3571 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3572 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3573 if (!arc_hdr_has_uncompressed_buf(hdr)) 3574 arc_cksum_free(hdr); 3575 3576 if (salt != NULL) 3577 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3578 if (iv != NULL) 3579 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3580 if (mac != NULL) 3581 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3582 } 3583 3584 /* 3585 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3586 * The buf is returned thawed since we expect the consumer to modify it. 3587 */ 3588 arc_buf_t * 3589 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3590 { 3591 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3592 B_FALSE, ZIO_COMPRESS_OFF, 0, type, B_FALSE); 3593 3594 arc_buf_t *buf = NULL; 3595 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3596 B_FALSE, B_FALSE, &buf)); 3597 arc_buf_thaw(buf); 3598 3599 return (buf); 3600 } 3601 3602 /* 3603 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3604 * for bufs containing metadata. 3605 */ 3606 arc_buf_t * 3607 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3608 enum zio_compress compression_type, uint8_t complevel) 3609 { 3610 ASSERT3U(lsize, >, 0); 3611 ASSERT3U(lsize, >=, psize); 3612 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3613 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3614 3615 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3616 B_FALSE, compression_type, complevel, ARC_BUFC_DATA, B_FALSE); 3617 3618 arc_buf_t *buf = NULL; 3619 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3620 B_TRUE, B_FALSE, B_FALSE, &buf)); 3621 arc_buf_thaw(buf); 3622 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3623 3624 if (!arc_buf_is_shared(buf)) { 3625 /* 3626 * To ensure that the hdr has the correct data in it if we call 3627 * arc_untransform() on this buf before it's been written to 3628 * disk, it's easiest if we just set up sharing between the 3629 * buf and the hdr. 3630 */ 3631 arc_hdr_free_abd(hdr, B_FALSE); 3632 arc_share_buf(hdr, buf); 3633 } 3634 3635 return (buf); 3636 } 3637 3638 arc_buf_t * 3639 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder, 3640 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 3641 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3642 enum zio_compress compression_type, uint8_t complevel) 3643 { 3644 arc_buf_hdr_t *hdr; 3645 arc_buf_t *buf; 3646 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3647 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3648 3649 ASSERT3U(lsize, >, 0); 3650 ASSERT3U(lsize, >=, psize); 3651 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3652 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3653 3654 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3655 compression_type, complevel, type, B_TRUE); 3656 3657 hdr->b_crypt_hdr.b_dsobj = dsobj; 3658 hdr->b_crypt_hdr.b_ot = ot; 3659 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3660 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3661 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3662 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3663 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3664 3665 /* 3666 * This buffer will be considered encrypted even if the ot is not an 3667 * encrypted type. It will become authenticated instead in 3668 * arc_write_ready(). 3669 */ 3670 buf = NULL; 3671 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3672 B_FALSE, B_FALSE, &buf)); 3673 arc_buf_thaw(buf); 3674 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3675 3676 return (buf); 3677 } 3678 3679 static void 3680 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3681 { 3682 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3683 l2arc_dev_t *dev = l2hdr->b_dev; 3684 uint64_t psize = HDR_GET_PSIZE(hdr); 3685 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3686 3687 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3688 ASSERT(HDR_HAS_L2HDR(hdr)); 3689 3690 list_remove(&dev->l2ad_buflist, hdr); 3691 3692 ARCSTAT_INCR(arcstat_l2_psize, -psize); 3693 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr)); 3694 3695 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3696 3697 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3698 hdr); 3699 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3700 } 3701 3702 static void 3703 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3704 { 3705 if (HDR_HAS_L1HDR(hdr)) { 3706 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3707 hdr->b_l1hdr.b_bufcnt > 0); 3708 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3709 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3710 } 3711 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3712 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3713 3714 if (HDR_HAS_L2HDR(hdr)) { 3715 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3716 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3717 3718 if (!buflist_held) 3719 mutex_enter(&dev->l2ad_mtx); 3720 3721 /* 3722 * Even though we checked this conditional above, we 3723 * need to check this again now that we have the 3724 * l2ad_mtx. This is because we could be racing with 3725 * another thread calling l2arc_evict() which might have 3726 * destroyed this header's L2 portion as we were waiting 3727 * to acquire the l2ad_mtx. If that happens, we don't 3728 * want to re-destroy the header's L2 portion. 3729 */ 3730 if (HDR_HAS_L2HDR(hdr)) 3731 arc_hdr_l2hdr_destroy(hdr); 3732 3733 if (!buflist_held) 3734 mutex_exit(&dev->l2ad_mtx); 3735 } 3736 3737 /* 3738 * The header's identify can only be safely discarded once it is no 3739 * longer discoverable. This requires removing it from the hash table 3740 * and the l2arc header list. After this point the hash lock can not 3741 * be used to protect the header. 3742 */ 3743 if (!HDR_EMPTY(hdr)) 3744 buf_discard_identity(hdr); 3745 3746 if (HDR_HAS_L1HDR(hdr)) { 3747 arc_cksum_free(hdr); 3748 3749 while (hdr->b_l1hdr.b_buf != NULL) 3750 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3751 3752 if (hdr->b_l1hdr.b_pabd != NULL) 3753 arc_hdr_free_abd(hdr, B_FALSE); 3754 3755 if (HDR_HAS_RABD(hdr)) 3756 arc_hdr_free_abd(hdr, B_TRUE); 3757 } 3758 3759 ASSERT3P(hdr->b_hash_next, ==, NULL); 3760 if (HDR_HAS_L1HDR(hdr)) { 3761 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3762 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3763 3764 if (!HDR_PROTECTED(hdr)) { 3765 kmem_cache_free(hdr_full_cache, hdr); 3766 } else { 3767 kmem_cache_free(hdr_full_crypt_cache, hdr); 3768 } 3769 } else { 3770 kmem_cache_free(hdr_l2only_cache, hdr); 3771 } 3772 } 3773 3774 void 3775 arc_buf_destroy(arc_buf_t *buf, void* tag) 3776 { 3777 arc_buf_hdr_t *hdr = buf->b_hdr; 3778 3779 if (hdr->b_l1hdr.b_state == arc_anon) { 3780 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3781 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3782 VERIFY0(remove_reference(hdr, NULL, tag)); 3783 arc_hdr_destroy(hdr); 3784 return; 3785 } 3786 3787 kmutex_t *hash_lock = HDR_LOCK(hdr); 3788 mutex_enter(hash_lock); 3789 3790 ASSERT3P(hdr, ==, buf->b_hdr); 3791 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3792 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3793 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3794 ASSERT3P(buf->b_data, !=, NULL); 3795 3796 (void) remove_reference(hdr, hash_lock, tag); 3797 arc_buf_destroy_impl(buf); 3798 mutex_exit(hash_lock); 3799 } 3800 3801 /* 3802 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3803 * state of the header is dependent on its state prior to entering this 3804 * function. The following transitions are possible: 3805 * 3806 * - arc_mru -> arc_mru_ghost 3807 * - arc_mfu -> arc_mfu_ghost 3808 * - arc_mru_ghost -> arc_l2c_only 3809 * - arc_mru_ghost -> deleted 3810 * - arc_mfu_ghost -> arc_l2c_only 3811 * - arc_mfu_ghost -> deleted 3812 */ 3813 static int64_t 3814 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3815 { 3816 arc_state_t *evicted_state, *state; 3817 int64_t bytes_evicted = 0; 3818 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3819 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; 3820 3821 ASSERT(MUTEX_HELD(hash_lock)); 3822 ASSERT(HDR_HAS_L1HDR(hdr)); 3823 3824 state = hdr->b_l1hdr.b_state; 3825 if (GHOST_STATE(state)) { 3826 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3827 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3828 3829 /* 3830 * l2arc_write_buffers() relies on a header's L1 portion 3831 * (i.e. its b_pabd field) during it's write phase. 3832 * Thus, we cannot push a header onto the arc_l2c_only 3833 * state (removing its L1 piece) until the header is 3834 * done being written to the l2arc. 3835 */ 3836 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3837 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3838 return (bytes_evicted); 3839 } 3840 3841 ARCSTAT_BUMP(arcstat_deleted); 3842 bytes_evicted += HDR_GET_LSIZE(hdr); 3843 3844 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3845 3846 if (HDR_HAS_L2HDR(hdr)) { 3847 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3848 ASSERT(!HDR_HAS_RABD(hdr)); 3849 /* 3850 * This buffer is cached on the 2nd Level ARC; 3851 * don't destroy the header. 3852 */ 3853 arc_change_state(arc_l2c_only, hdr, hash_lock); 3854 /* 3855 * dropping from L1+L2 cached to L2-only, 3856 * realloc to remove the L1 header. 3857 */ 3858 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3859 hdr_l2only_cache); 3860 } else { 3861 arc_change_state(arc_anon, hdr, hash_lock); 3862 arc_hdr_destroy(hdr); 3863 } 3864 return (bytes_evicted); 3865 } 3866 3867 ASSERT(state == arc_mru || state == arc_mfu); 3868 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3869 3870 /* prefetch buffers have a minimum lifespan */ 3871 if (HDR_IO_IN_PROGRESS(hdr) || 3872 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3873 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3874 MSEC_TO_TICK(min_lifetime))) { 3875 ARCSTAT_BUMP(arcstat_evict_skip); 3876 return (bytes_evicted); 3877 } 3878 3879 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3880 while (hdr->b_l1hdr.b_buf) { 3881 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3882 if (!mutex_tryenter(&buf->b_evict_lock)) { 3883 ARCSTAT_BUMP(arcstat_mutex_miss); 3884 break; 3885 } 3886 if (buf->b_data != NULL) 3887 bytes_evicted += HDR_GET_LSIZE(hdr); 3888 mutex_exit(&buf->b_evict_lock); 3889 arc_buf_destroy_impl(buf); 3890 } 3891 3892 if (HDR_HAS_L2HDR(hdr)) { 3893 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3894 } else { 3895 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3896 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3897 HDR_GET_LSIZE(hdr)); 3898 } else { 3899 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3900 HDR_GET_LSIZE(hdr)); 3901 } 3902 } 3903 3904 if (hdr->b_l1hdr.b_bufcnt == 0) { 3905 arc_cksum_free(hdr); 3906 3907 bytes_evicted += arc_hdr_size(hdr); 3908 3909 /* 3910 * If this hdr is being evicted and has a compressed 3911 * buffer then we discard it here before we change states. 3912 * This ensures that the accounting is updated correctly 3913 * in arc_free_data_impl(). 3914 */ 3915 if (hdr->b_l1hdr.b_pabd != NULL) 3916 arc_hdr_free_abd(hdr, B_FALSE); 3917 3918 if (HDR_HAS_RABD(hdr)) 3919 arc_hdr_free_abd(hdr, B_TRUE); 3920 3921 arc_change_state(evicted_state, hdr, hash_lock); 3922 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3923 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 3924 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3925 } 3926 3927 return (bytes_evicted); 3928 } 3929 3930 static void 3931 arc_set_need_free(void) 3932 { 3933 ASSERT(MUTEX_HELD(&arc_evict_lock)); 3934 int64_t remaining = arc_free_memory() - arc_sys_free / 2; 3935 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); 3936 if (aw == NULL) { 3937 arc_need_free = MAX(-remaining, 0); 3938 } else { 3939 arc_need_free = 3940 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); 3941 } 3942 } 3943 3944 static uint64_t 3945 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3946 uint64_t spa, int64_t bytes) 3947 { 3948 multilist_sublist_t *mls; 3949 uint64_t bytes_evicted = 0; 3950 arc_buf_hdr_t *hdr; 3951 kmutex_t *hash_lock; 3952 int evict_count = 0; 3953 3954 ASSERT3P(marker, !=, NULL); 3955 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3956 3957 mls = multilist_sublist_lock(ml, idx); 3958 3959 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 3960 hdr = multilist_sublist_prev(mls, marker)) { 3961 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 3962 (evict_count >= zfs_arc_evict_batch_limit)) 3963 break; 3964 3965 /* 3966 * To keep our iteration location, move the marker 3967 * forward. Since we're not holding hdr's hash lock, we 3968 * must be very careful and not remove 'hdr' from the 3969 * sublist. Otherwise, other consumers might mistake the 3970 * 'hdr' as not being on a sublist when they call the 3971 * multilist_link_active() function (they all rely on 3972 * the hash lock protecting concurrent insertions and 3973 * removals). multilist_sublist_move_forward() was 3974 * specifically implemented to ensure this is the case 3975 * (only 'marker' will be removed and re-inserted). 3976 */ 3977 multilist_sublist_move_forward(mls, marker); 3978 3979 /* 3980 * The only case where the b_spa field should ever be 3981 * zero, is the marker headers inserted by 3982 * arc_evict_state(). It's possible for multiple threads 3983 * to be calling arc_evict_state() concurrently (e.g. 3984 * dsl_pool_close() and zio_inject_fault()), so we must 3985 * skip any markers we see from these other threads. 3986 */ 3987 if (hdr->b_spa == 0) 3988 continue; 3989 3990 /* we're only interested in evicting buffers of a certain spa */ 3991 if (spa != 0 && hdr->b_spa != spa) { 3992 ARCSTAT_BUMP(arcstat_evict_skip); 3993 continue; 3994 } 3995 3996 hash_lock = HDR_LOCK(hdr); 3997 3998 /* 3999 * We aren't calling this function from any code path 4000 * that would already be holding a hash lock, so we're 4001 * asserting on this assumption to be defensive in case 4002 * this ever changes. Without this check, it would be 4003 * possible to incorrectly increment arcstat_mutex_miss 4004 * below (e.g. if the code changed such that we called 4005 * this function with a hash lock held). 4006 */ 4007 ASSERT(!MUTEX_HELD(hash_lock)); 4008 4009 if (mutex_tryenter(hash_lock)) { 4010 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 4011 mutex_exit(hash_lock); 4012 4013 bytes_evicted += evicted; 4014 4015 /* 4016 * If evicted is zero, arc_evict_hdr() must have 4017 * decided to skip this header, don't increment 4018 * evict_count in this case. 4019 */ 4020 if (evicted != 0) 4021 evict_count++; 4022 4023 } else { 4024 ARCSTAT_BUMP(arcstat_mutex_miss); 4025 } 4026 } 4027 4028 multilist_sublist_unlock(mls); 4029 4030 /* 4031 * Increment the count of evicted bytes, and wake up any threads that 4032 * are waiting for the count to reach this value. Since the list is 4033 * ordered by ascending aew_count, we pop off the beginning of the 4034 * list until we reach the end, or a waiter that's past the current 4035 * "count". Doing this outside the loop reduces the number of times 4036 * we need to acquire the global arc_evict_lock. 4037 * 4038 * Only wake when there's sufficient free memory in the system 4039 * (specifically, arc_sys_free/2, which by default is a bit more than 4040 * 1/64th of RAM). See the comments in arc_wait_for_eviction(). 4041 */ 4042 mutex_enter(&arc_evict_lock); 4043 arc_evict_count += bytes_evicted; 4044 4045 if ((int64_t)(arc_free_memory() - arc_sys_free / 2) > 0) { 4046 arc_evict_waiter_t *aw; 4047 while ((aw = list_head(&arc_evict_waiters)) != NULL && 4048 aw->aew_count <= arc_evict_count) { 4049 list_remove(&arc_evict_waiters, aw); 4050 cv_broadcast(&aw->aew_cv); 4051 } 4052 } 4053 arc_set_need_free(); 4054 mutex_exit(&arc_evict_lock); 4055 4056 /* 4057 * If the ARC size is reduced from arc_c_max to arc_c_min (especially 4058 * if the average cached block is small), eviction can be on-CPU for 4059 * many seconds. To ensure that other threads that may be bound to 4060 * this CPU are able to make progress, make a voluntary preemption 4061 * call here. 4062 */ 4063 cond_resched(); 4064 4065 return (bytes_evicted); 4066 } 4067 4068 /* 4069 * Evict buffers from the given arc state, until we've removed the 4070 * specified number of bytes. Move the removed buffers to the 4071 * appropriate evict state. 4072 * 4073 * This function makes a "best effort". It skips over any buffers 4074 * it can't get a hash_lock on, and so, may not catch all candidates. 4075 * It may also return without evicting as much space as requested. 4076 * 4077 * If bytes is specified using the special value ARC_EVICT_ALL, this 4078 * will evict all available (i.e. unlocked and evictable) buffers from 4079 * the given arc state; which is used by arc_flush(). 4080 */ 4081 static uint64_t 4082 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 4083 arc_buf_contents_t type) 4084 { 4085 uint64_t total_evicted = 0; 4086 multilist_t *ml = state->arcs_list[type]; 4087 int num_sublists; 4088 arc_buf_hdr_t **markers; 4089 4090 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 4091 4092 num_sublists = multilist_get_num_sublists(ml); 4093 4094 /* 4095 * If we've tried to evict from each sublist, made some 4096 * progress, but still have not hit the target number of bytes 4097 * to evict, we want to keep trying. The markers allow us to 4098 * pick up where we left off for each individual sublist, rather 4099 * than starting from the tail each time. 4100 */ 4101 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 4102 for (int i = 0; i < num_sublists; i++) { 4103 multilist_sublist_t *mls; 4104 4105 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4106 4107 /* 4108 * A b_spa of 0 is used to indicate that this header is 4109 * a marker. This fact is used in arc_evict_type() and 4110 * arc_evict_state_impl(). 4111 */ 4112 markers[i]->b_spa = 0; 4113 4114 mls = multilist_sublist_lock(ml, i); 4115 multilist_sublist_insert_tail(mls, markers[i]); 4116 multilist_sublist_unlock(mls); 4117 } 4118 4119 /* 4120 * While we haven't hit our target number of bytes to evict, or 4121 * we're evicting all available buffers. 4122 */ 4123 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 4124 int sublist_idx = multilist_get_random_index(ml); 4125 uint64_t scan_evicted = 0; 4126 4127 /* 4128 * Try to reduce pinned dnodes with a floor of arc_dnode_limit. 4129 * Request that 10% of the LRUs be scanned by the superblock 4130 * shrinker. 4131 */ 4132 if (type == ARC_BUFC_DATA && aggsum_compare(&astat_dnode_size, 4133 arc_dnode_size_limit) > 0) { 4134 arc_prune_async((aggsum_upper_bound(&astat_dnode_size) - 4135 arc_dnode_size_limit) / sizeof (dnode_t) / 4136 zfs_arc_dnode_reduce_percent); 4137 } 4138 4139 /* 4140 * Start eviction using a randomly selected sublist, 4141 * this is to try and evenly balance eviction across all 4142 * sublists. Always starting at the same sublist 4143 * (e.g. index 0) would cause evictions to favor certain 4144 * sublists over others. 4145 */ 4146 for (int i = 0; i < num_sublists; i++) { 4147 uint64_t bytes_remaining; 4148 uint64_t bytes_evicted; 4149 4150 if (bytes == ARC_EVICT_ALL) 4151 bytes_remaining = ARC_EVICT_ALL; 4152 else if (total_evicted < bytes) 4153 bytes_remaining = bytes - total_evicted; 4154 else 4155 break; 4156 4157 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4158 markers[sublist_idx], spa, bytes_remaining); 4159 4160 scan_evicted += bytes_evicted; 4161 total_evicted += bytes_evicted; 4162 4163 /* we've reached the end, wrap to the beginning */ 4164 if (++sublist_idx >= num_sublists) 4165 sublist_idx = 0; 4166 } 4167 4168 /* 4169 * If we didn't evict anything during this scan, we have 4170 * no reason to believe we'll evict more during another 4171 * scan, so break the loop. 4172 */ 4173 if (scan_evicted == 0) { 4174 /* This isn't possible, let's make that obvious */ 4175 ASSERT3S(bytes, !=, 0); 4176 4177 /* 4178 * When bytes is ARC_EVICT_ALL, the only way to 4179 * break the loop is when scan_evicted is zero. 4180 * In that case, we actually have evicted enough, 4181 * so we don't want to increment the kstat. 4182 */ 4183 if (bytes != ARC_EVICT_ALL) { 4184 ASSERT3S(total_evicted, <, bytes); 4185 ARCSTAT_BUMP(arcstat_evict_not_enough); 4186 } 4187 4188 break; 4189 } 4190 } 4191 4192 for (int i = 0; i < num_sublists; i++) { 4193 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4194 multilist_sublist_remove(mls, markers[i]); 4195 multilist_sublist_unlock(mls); 4196 4197 kmem_cache_free(hdr_full_cache, markers[i]); 4198 } 4199 kmem_free(markers, sizeof (*markers) * num_sublists); 4200 4201 return (total_evicted); 4202 } 4203 4204 /* 4205 * Flush all "evictable" data of the given type from the arc state 4206 * specified. This will not evict any "active" buffers (i.e. referenced). 4207 * 4208 * When 'retry' is set to B_FALSE, the function will make a single pass 4209 * over the state and evict any buffers that it can. Since it doesn't 4210 * continually retry the eviction, it might end up leaving some buffers 4211 * in the ARC due to lock misses. 4212 * 4213 * When 'retry' is set to B_TRUE, the function will continually retry the 4214 * eviction until *all* evictable buffers have been removed from the 4215 * state. As a result, if concurrent insertions into the state are 4216 * allowed (e.g. if the ARC isn't shutting down), this function might 4217 * wind up in an infinite loop, continually trying to evict buffers. 4218 */ 4219 static uint64_t 4220 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4221 boolean_t retry) 4222 { 4223 uint64_t evicted = 0; 4224 4225 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4226 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 4227 4228 if (!retry) 4229 break; 4230 } 4231 4232 return (evicted); 4233 } 4234 4235 /* 4236 * Evict the specified number of bytes from the state specified, 4237 * restricting eviction to the spa and type given. This function 4238 * prevents us from trying to evict more from a state's list than 4239 * is "evictable", and to skip evicting altogether when passed a 4240 * negative value for "bytes". In contrast, arc_evict_state() will 4241 * evict everything it can, when passed a negative value for "bytes". 4242 */ 4243 static uint64_t 4244 arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 4245 arc_buf_contents_t type) 4246 { 4247 int64_t delta; 4248 4249 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4250 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4251 bytes); 4252 return (arc_evict_state(state, spa, delta, type)); 4253 } 4254 4255 return (0); 4256 } 4257 4258 /* 4259 * The goal of this function is to evict enough meta data buffers from the 4260 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly 4261 * more complicated than it appears because it is common for data buffers 4262 * to have holds on meta data buffers. In addition, dnode meta data buffers 4263 * will be held by the dnodes in the block preventing them from being freed. 4264 * This means we can't simply traverse the ARC and expect to always find 4265 * enough unheld meta data buffer to release. 4266 * 4267 * Therefore, this function has been updated to make alternating passes 4268 * over the ARC releasing data buffers and then newly unheld meta data 4269 * buffers. This ensures forward progress is maintained and meta_used 4270 * will decrease. Normally this is sufficient, but if required the ARC 4271 * will call the registered prune callbacks causing dentry and inodes to 4272 * be dropped from the VFS cache. This will make dnode meta data buffers 4273 * available for reclaim. 4274 */ 4275 static uint64_t 4276 arc_evict_meta_balanced(uint64_t meta_used) 4277 { 4278 int64_t delta, prune = 0, adjustmnt; 4279 uint64_t total_evicted = 0; 4280 arc_buf_contents_t type = ARC_BUFC_DATA; 4281 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0); 4282 4283 restart: 4284 /* 4285 * This slightly differs than the way we evict from the mru in 4286 * arc_evict because we don't have a "target" value (i.e. no 4287 * "meta" arc_p). As a result, I think we can completely 4288 * cannibalize the metadata in the MRU before we evict the 4289 * metadata from the MFU. I think we probably need to implement a 4290 * "metadata arc_p" value to do this properly. 4291 */ 4292 adjustmnt = meta_used - arc_meta_limit; 4293 4294 if (adjustmnt > 0 && 4295 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) { 4296 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]), 4297 adjustmnt); 4298 total_evicted += arc_evict_impl(arc_mru, 0, delta, type); 4299 adjustmnt -= delta; 4300 } 4301 4302 /* 4303 * We can't afford to recalculate adjustmnt here. If we do, 4304 * new metadata buffers can sneak into the MRU or ANON lists, 4305 * thus penalize the MFU metadata. Although the fudge factor is 4306 * small, it has been empirically shown to be significant for 4307 * certain workloads (e.g. creating many empty directories). As 4308 * such, we use the original calculation for adjustmnt, and 4309 * simply decrement the amount of data evicted from the MRU. 4310 */ 4311 4312 if (adjustmnt > 0 && 4313 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) { 4314 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]), 4315 adjustmnt); 4316 total_evicted += arc_evict_impl(arc_mfu, 0, delta, type); 4317 } 4318 4319 adjustmnt = meta_used - arc_meta_limit; 4320 4321 if (adjustmnt > 0 && 4322 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) { 4323 delta = MIN(adjustmnt, 4324 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type])); 4325 total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type); 4326 adjustmnt -= delta; 4327 } 4328 4329 if (adjustmnt > 0 && 4330 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) { 4331 delta = MIN(adjustmnt, 4332 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type])); 4333 total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type); 4334 } 4335 4336 /* 4337 * If after attempting to make the requested adjustment to the ARC 4338 * the meta limit is still being exceeded then request that the 4339 * higher layers drop some cached objects which have holds on ARC 4340 * meta buffers. Requests to the upper layers will be made with 4341 * increasingly large scan sizes until the ARC is below the limit. 4342 */ 4343 if (meta_used > arc_meta_limit) { 4344 if (type == ARC_BUFC_DATA) { 4345 type = ARC_BUFC_METADATA; 4346 } else { 4347 type = ARC_BUFC_DATA; 4348 4349 if (zfs_arc_meta_prune) { 4350 prune += zfs_arc_meta_prune; 4351 arc_prune_async(prune); 4352 } 4353 } 4354 4355 if (restarts > 0) { 4356 restarts--; 4357 goto restart; 4358 } 4359 } 4360 return (total_evicted); 4361 } 4362 4363 /* 4364 * Evict metadata buffers from the cache, such that arc_meta_used is 4365 * capped by the arc_meta_limit tunable. 4366 */ 4367 static uint64_t 4368 arc_evict_meta_only(uint64_t meta_used) 4369 { 4370 uint64_t total_evicted = 0; 4371 int64_t target; 4372 4373 /* 4374 * If we're over the meta limit, we want to evict enough 4375 * metadata to get back under the meta limit. We don't want to 4376 * evict so much that we drop the MRU below arc_p, though. If 4377 * we're over the meta limit more than we're over arc_p, we 4378 * evict some from the MRU here, and some from the MFU below. 4379 */ 4380 target = MIN((int64_t)(meta_used - arc_meta_limit), 4381 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4382 zfs_refcount_count(&arc_mru->arcs_size) - arc_p)); 4383 4384 total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4385 4386 /* 4387 * Similar to the above, we want to evict enough bytes to get us 4388 * below the meta limit, but not so much as to drop us below the 4389 * space allotted to the MFU (which is defined as arc_c - arc_p). 4390 */ 4391 target = MIN((int64_t)(meta_used - arc_meta_limit), 4392 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) - 4393 (arc_c - arc_p))); 4394 4395 total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4396 4397 return (total_evicted); 4398 } 4399 4400 static uint64_t 4401 arc_evict_meta(uint64_t meta_used) 4402 { 4403 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY) 4404 return (arc_evict_meta_only(meta_used)); 4405 else 4406 return (arc_evict_meta_balanced(meta_used)); 4407 } 4408 4409 /* 4410 * Return the type of the oldest buffer in the given arc state 4411 * 4412 * This function will select a random sublist of type ARC_BUFC_DATA and 4413 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 4414 * is compared, and the type which contains the "older" buffer will be 4415 * returned. 4416 */ 4417 static arc_buf_contents_t 4418 arc_evict_type(arc_state_t *state) 4419 { 4420 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA]; 4421 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA]; 4422 int data_idx = multilist_get_random_index(data_ml); 4423 int meta_idx = multilist_get_random_index(meta_ml); 4424 multilist_sublist_t *data_mls; 4425 multilist_sublist_t *meta_mls; 4426 arc_buf_contents_t type; 4427 arc_buf_hdr_t *data_hdr; 4428 arc_buf_hdr_t *meta_hdr; 4429 4430 /* 4431 * We keep the sublist lock until we're finished, to prevent 4432 * the headers from being destroyed via arc_evict_state(). 4433 */ 4434 data_mls = multilist_sublist_lock(data_ml, data_idx); 4435 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 4436 4437 /* 4438 * These two loops are to ensure we skip any markers that 4439 * might be at the tail of the lists due to arc_evict_state(). 4440 */ 4441 4442 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 4443 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 4444 if (data_hdr->b_spa != 0) 4445 break; 4446 } 4447 4448 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 4449 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 4450 if (meta_hdr->b_spa != 0) 4451 break; 4452 } 4453 4454 if (data_hdr == NULL && meta_hdr == NULL) { 4455 type = ARC_BUFC_DATA; 4456 } else if (data_hdr == NULL) { 4457 ASSERT3P(meta_hdr, !=, NULL); 4458 type = ARC_BUFC_METADATA; 4459 } else if (meta_hdr == NULL) { 4460 ASSERT3P(data_hdr, !=, NULL); 4461 type = ARC_BUFC_DATA; 4462 } else { 4463 ASSERT3P(data_hdr, !=, NULL); 4464 ASSERT3P(meta_hdr, !=, NULL); 4465 4466 /* The headers can't be on the sublist without an L1 header */ 4467 ASSERT(HDR_HAS_L1HDR(data_hdr)); 4468 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 4469 4470 if (data_hdr->b_l1hdr.b_arc_access < 4471 meta_hdr->b_l1hdr.b_arc_access) { 4472 type = ARC_BUFC_DATA; 4473 } else { 4474 type = ARC_BUFC_METADATA; 4475 } 4476 } 4477 4478 multilist_sublist_unlock(meta_mls); 4479 multilist_sublist_unlock(data_mls); 4480 4481 return (type); 4482 } 4483 4484 /* 4485 * Evict buffers from the cache, such that arc_size is capped by arc_c. 4486 */ 4487 static uint64_t 4488 arc_evict(void) 4489 { 4490 uint64_t total_evicted = 0; 4491 uint64_t bytes; 4492 int64_t target; 4493 uint64_t asize = aggsum_value(&arc_size); 4494 uint64_t ameta = aggsum_value(&arc_meta_used); 4495 4496 /* 4497 * If we're over arc_meta_limit, we want to correct that before 4498 * potentially evicting data buffers below. 4499 */ 4500 total_evicted += arc_evict_meta(ameta); 4501 4502 /* 4503 * Adjust MRU size 4504 * 4505 * If we're over the target cache size, we want to evict enough 4506 * from the list to get back to our target size. We don't want 4507 * to evict too much from the MRU, such that it drops below 4508 * arc_p. So, if we're over our target cache size more than 4509 * the MRU is over arc_p, we'll evict enough to get back to 4510 * arc_p here, and then evict more from the MFU below. 4511 */ 4512 target = MIN((int64_t)(asize - arc_c), 4513 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4514 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 4515 4516 /* 4517 * If we're below arc_meta_min, always prefer to evict data. 4518 * Otherwise, try to satisfy the requested number of bytes to 4519 * evict from the type which contains older buffers; in an 4520 * effort to keep newer buffers in the cache regardless of their 4521 * type. If we cannot satisfy the number of bytes from this 4522 * type, spill over into the next type. 4523 */ 4524 if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA && 4525 ameta > arc_meta_min) { 4526 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4527 total_evicted += bytes; 4528 4529 /* 4530 * If we couldn't evict our target number of bytes from 4531 * metadata, we try to get the rest from data. 4532 */ 4533 target -= bytes; 4534 4535 total_evicted += 4536 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4537 } else { 4538 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4539 total_evicted += bytes; 4540 4541 /* 4542 * If we couldn't evict our target number of bytes from 4543 * data, we try to get the rest from metadata. 4544 */ 4545 target -= bytes; 4546 4547 total_evicted += 4548 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4549 } 4550 4551 /* 4552 * Re-sum ARC stats after the first round of evictions. 4553 */ 4554 asize = aggsum_value(&arc_size); 4555 ameta = aggsum_value(&arc_meta_used); 4556 4557 4558 /* 4559 * Adjust MFU size 4560 * 4561 * Now that we've tried to evict enough from the MRU to get its 4562 * size back to arc_p, if we're still above the target cache 4563 * size, we evict the rest from the MFU. 4564 */ 4565 target = asize - arc_c; 4566 4567 if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA && 4568 ameta > arc_meta_min) { 4569 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4570 total_evicted += bytes; 4571 4572 /* 4573 * If we couldn't evict our target number of bytes from 4574 * metadata, we try to get the rest from data. 4575 */ 4576 target -= bytes; 4577 4578 total_evicted += 4579 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4580 } else { 4581 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4582 total_evicted += bytes; 4583 4584 /* 4585 * If we couldn't evict our target number of bytes from 4586 * data, we try to get the rest from data. 4587 */ 4588 target -= bytes; 4589 4590 total_evicted += 4591 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4592 } 4593 4594 /* 4595 * Adjust ghost lists 4596 * 4597 * In addition to the above, the ARC also defines target values 4598 * for the ghost lists. The sum of the mru list and mru ghost 4599 * list should never exceed the target size of the cache, and 4600 * the sum of the mru list, mfu list, mru ghost list, and mfu 4601 * ghost list should never exceed twice the target size of the 4602 * cache. The following logic enforces these limits on the ghost 4603 * caches, and evicts from them as needed. 4604 */ 4605 target = zfs_refcount_count(&arc_mru->arcs_size) + 4606 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 4607 4608 bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 4609 total_evicted += bytes; 4610 4611 target -= bytes; 4612 4613 total_evicted += 4614 arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 4615 4616 /* 4617 * We assume the sum of the mru list and mfu list is less than 4618 * or equal to arc_c (we enforced this above), which means we 4619 * can use the simpler of the two equations below: 4620 * 4621 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 4622 * mru ghost + mfu ghost <= arc_c 4623 */ 4624 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) + 4625 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 4626 4627 bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 4628 total_evicted += bytes; 4629 4630 target -= bytes; 4631 4632 total_evicted += 4633 arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 4634 4635 return (total_evicted); 4636 } 4637 4638 void 4639 arc_flush(spa_t *spa, boolean_t retry) 4640 { 4641 uint64_t guid = 0; 4642 4643 /* 4644 * If retry is B_TRUE, a spa must not be specified since we have 4645 * no good way to determine if all of a spa's buffers have been 4646 * evicted from an arc state. 4647 */ 4648 ASSERT(!retry || spa == 0); 4649 4650 if (spa != NULL) 4651 guid = spa_load_guid(spa); 4652 4653 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4654 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4655 4656 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4657 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4658 4659 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4660 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4661 4662 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4663 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4664 } 4665 4666 void 4667 arc_reduce_target_size(int64_t to_free) 4668 { 4669 uint64_t asize = aggsum_value(&arc_size); 4670 4671 /* 4672 * All callers want the ARC to actually evict (at least) this much 4673 * memory. Therefore we reduce from the lower of the current size and 4674 * the target size. This way, even if arc_c is much higher than 4675 * arc_size (as can be the case after many calls to arc_freed(), we will 4676 * immediately have arc_c < arc_size and therefore the arc_evict_zthr 4677 * will evict. 4678 */ 4679 uint64_t c = MIN(arc_c, asize); 4680 4681 if (c > to_free && c - to_free > arc_c_min) { 4682 arc_c = c - to_free; 4683 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 4684 if (arc_p > arc_c) 4685 arc_p = (arc_c >> 1); 4686 ASSERT(arc_c >= arc_c_min); 4687 ASSERT((int64_t)arc_p >= 0); 4688 } else { 4689 arc_c = arc_c_min; 4690 } 4691 4692 if (asize > arc_c) { 4693 /* See comment in arc_evict_cb_check() on why lock+flag */ 4694 mutex_enter(&arc_evict_lock); 4695 arc_evict_needed = B_TRUE; 4696 mutex_exit(&arc_evict_lock); 4697 zthr_wakeup(arc_evict_zthr); 4698 } 4699 } 4700 4701 /* 4702 * Determine if the system is under memory pressure and is asking 4703 * to reclaim memory. A return value of B_TRUE indicates that the system 4704 * is under memory pressure and that the arc should adjust accordingly. 4705 */ 4706 boolean_t 4707 arc_reclaim_needed(void) 4708 { 4709 return (arc_available_memory() < 0); 4710 } 4711 4712 void 4713 arc_kmem_reap_soon(void) 4714 { 4715 size_t i; 4716 kmem_cache_t *prev_cache = NULL; 4717 kmem_cache_t *prev_data_cache = NULL; 4718 extern kmem_cache_t *zio_buf_cache[]; 4719 extern kmem_cache_t *zio_data_buf_cache[]; 4720 4721 #ifdef _KERNEL 4722 if ((aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) && 4723 zfs_arc_meta_prune) { 4724 /* 4725 * We are exceeding our meta-data cache limit. 4726 * Prune some entries to release holds on meta-data. 4727 */ 4728 arc_prune_async(zfs_arc_meta_prune); 4729 } 4730 #if defined(_ILP32) 4731 /* 4732 * Reclaim unused memory from all kmem caches. 4733 */ 4734 kmem_reap(); 4735 #endif 4736 #endif 4737 4738 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4739 #if defined(_ILP32) 4740 /* reach upper limit of cache size on 32-bit */ 4741 if (zio_buf_cache[i] == NULL) 4742 break; 4743 #endif 4744 if (zio_buf_cache[i] != prev_cache) { 4745 prev_cache = zio_buf_cache[i]; 4746 kmem_cache_reap_now(zio_buf_cache[i]); 4747 } 4748 if (zio_data_buf_cache[i] != prev_data_cache) { 4749 prev_data_cache = zio_data_buf_cache[i]; 4750 kmem_cache_reap_now(zio_data_buf_cache[i]); 4751 } 4752 } 4753 kmem_cache_reap_now(buf_cache); 4754 kmem_cache_reap_now(hdr_full_cache); 4755 kmem_cache_reap_now(hdr_l2only_cache); 4756 kmem_cache_reap_now(zfs_btree_leaf_cache); 4757 abd_cache_reap_now(); 4758 } 4759 4760 /* ARGSUSED */ 4761 static boolean_t 4762 arc_evict_cb_check(void *arg, zthr_t *zthr) 4763 { 4764 /* 4765 * This is necessary so that any changes which may have been made to 4766 * many of the zfs_arc_* module parameters will be propagated to 4767 * their actual internal variable counterparts. Without this, 4768 * changing those module params at runtime would have no effect. 4769 */ 4770 arc_tuning_update(B_FALSE); 4771 4772 /* 4773 * This is necessary in order to keep the kstat information 4774 * up to date for tools that display kstat data such as the 4775 * mdb ::arc dcmd and the Linux crash utility. These tools 4776 * typically do not call kstat's update function, but simply 4777 * dump out stats from the most recent update. Without 4778 * this call, these commands may show stale stats for the 4779 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4780 * with this change, the data might be up to 1 second 4781 * out of date(the arc_evict_zthr has a maximum sleep 4782 * time of 1 second); but that should suffice. The 4783 * arc_state_t structures can be queried directly if more 4784 * accurate information is needed. 4785 */ 4786 if (arc_ksp != NULL) 4787 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4788 4789 /* 4790 * We have to rely on arc_wait_for_eviction() to tell us when to 4791 * evict, rather than checking if we are overflowing here, so that we 4792 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. 4793 * If we have become "not overflowing" since arc_wait_for_eviction() 4794 * checked, we need to wake it up. We could broadcast the CV here, 4795 * but arc_wait_for_eviction() may have not yet gone to sleep. We 4796 * would need to use a mutex to ensure that this function doesn't 4797 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. 4798 * the arc_evict_lock). However, the lock ordering of such a lock 4799 * would necessarily be incorrect with respect to the zthr_lock, 4800 * which is held before this function is called, and is held by 4801 * arc_wait_for_eviction() when it calls zthr_wakeup(). 4802 */ 4803 return (arc_evict_needed); 4804 } 4805 4806 /* 4807 * Keep arc_size under arc_c by running arc_evict which evicts data 4808 * from the ARC. 4809 */ 4810 /* ARGSUSED */ 4811 static void 4812 arc_evict_cb(void *arg, zthr_t *zthr) 4813 { 4814 uint64_t evicted = 0; 4815 fstrans_cookie_t cookie = spl_fstrans_mark(); 4816 4817 /* Evict from cache */ 4818 evicted = arc_evict(); 4819 4820 /* 4821 * If evicted is zero, we couldn't evict anything 4822 * via arc_evict(). This could be due to hash lock 4823 * collisions, but more likely due to the majority of 4824 * arc buffers being unevictable. Therefore, even if 4825 * arc_size is above arc_c, another pass is unlikely to 4826 * be helpful and could potentially cause us to enter an 4827 * infinite loop. Additionally, zthr_iscancelled() is 4828 * checked here so that if the arc is shutting down, the 4829 * broadcast will wake any remaining arc evict waiters. 4830 */ 4831 mutex_enter(&arc_evict_lock); 4832 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) && 4833 evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0; 4834 if (!arc_evict_needed) { 4835 /* 4836 * We're either no longer overflowing, or we 4837 * can't evict anything more, so we should wake 4838 * arc_get_data_impl() sooner. 4839 */ 4840 arc_evict_waiter_t *aw; 4841 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { 4842 cv_broadcast(&aw->aew_cv); 4843 } 4844 arc_set_need_free(); 4845 } 4846 mutex_exit(&arc_evict_lock); 4847 spl_fstrans_unmark(cookie); 4848 } 4849 4850 /* ARGSUSED */ 4851 static boolean_t 4852 arc_reap_cb_check(void *arg, zthr_t *zthr) 4853 { 4854 int64_t free_memory = arc_available_memory(); 4855 4856 /* 4857 * If a kmem reap is already active, don't schedule more. We must 4858 * check for this because kmem_cache_reap_soon() won't actually 4859 * block on the cache being reaped (this is to prevent callers from 4860 * becoming implicitly blocked by a system-wide kmem reap -- which, 4861 * on a system with many, many full magazines, can take minutes). 4862 */ 4863 if (!kmem_cache_reap_active() && free_memory < 0) { 4864 4865 arc_no_grow = B_TRUE; 4866 arc_warm = B_TRUE; 4867 /* 4868 * Wait at least zfs_grow_retry (default 5) seconds 4869 * before considering growing. 4870 */ 4871 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4872 return (B_TRUE); 4873 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4874 arc_no_grow = B_TRUE; 4875 } else if (gethrtime() >= arc_growtime) { 4876 arc_no_grow = B_FALSE; 4877 } 4878 4879 return (B_FALSE); 4880 } 4881 4882 /* 4883 * Keep enough free memory in the system by reaping the ARC's kmem 4884 * caches. To cause more slabs to be reapable, we may reduce the 4885 * target size of the cache (arc_c), causing the arc_evict_cb() 4886 * to free more buffers. 4887 */ 4888 /* ARGSUSED */ 4889 static void 4890 arc_reap_cb(void *arg, zthr_t *zthr) 4891 { 4892 int64_t free_memory; 4893 fstrans_cookie_t cookie = spl_fstrans_mark(); 4894 4895 /* 4896 * Kick off asynchronous kmem_reap()'s of all our caches. 4897 */ 4898 arc_kmem_reap_soon(); 4899 4900 /* 4901 * Wait at least arc_kmem_cache_reap_retry_ms between 4902 * arc_kmem_reap_soon() calls. Without this check it is possible to 4903 * end up in a situation where we spend lots of time reaping 4904 * caches, while we're near arc_c_min. Waiting here also gives the 4905 * subsequent free memory check a chance of finding that the 4906 * asynchronous reap has already freed enough memory, and we don't 4907 * need to call arc_reduce_target_size(). 4908 */ 4909 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 4910 4911 /* 4912 * Reduce the target size as needed to maintain the amount of free 4913 * memory in the system at a fraction of the arc_size (1/128th by 4914 * default). If oversubscribed (free_memory < 0) then reduce the 4915 * target arc_size by the deficit amount plus the fractional 4916 * amount. If free memory is positive but less then the fractional 4917 * amount, reduce by what is needed to hit the fractional amount. 4918 */ 4919 free_memory = arc_available_memory(); 4920 4921 int64_t to_free = 4922 (arc_c >> arc_shrink_shift) - free_memory; 4923 if (to_free > 0) { 4924 arc_reduce_target_size(to_free); 4925 } 4926 spl_fstrans_unmark(cookie); 4927 } 4928 4929 #ifdef _KERNEL 4930 /* 4931 * Determine the amount of memory eligible for eviction contained in the 4932 * ARC. All clean data reported by the ghost lists can always be safely 4933 * evicted. Due to arc_c_min, the same does not hold for all clean data 4934 * contained by the regular mru and mfu lists. 4935 * 4936 * In the case of the regular mru and mfu lists, we need to report as 4937 * much clean data as possible, such that evicting that same reported 4938 * data will not bring arc_size below arc_c_min. Thus, in certain 4939 * circumstances, the total amount of clean data in the mru and mfu 4940 * lists might not actually be evictable. 4941 * 4942 * The following two distinct cases are accounted for: 4943 * 4944 * 1. The sum of the amount of dirty data contained by both the mru and 4945 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 4946 * is greater than or equal to arc_c_min. 4947 * (i.e. amount of dirty data >= arc_c_min) 4948 * 4949 * This is the easy case; all clean data contained by the mru and mfu 4950 * lists is evictable. Evicting all clean data can only drop arc_size 4951 * to the amount of dirty data, which is greater than arc_c_min. 4952 * 4953 * 2. The sum of the amount of dirty data contained by both the mru and 4954 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 4955 * is less than arc_c_min. 4956 * (i.e. arc_c_min > amount of dirty data) 4957 * 4958 * 2.1. arc_size is greater than or equal arc_c_min. 4959 * (i.e. arc_size >= arc_c_min > amount of dirty data) 4960 * 4961 * In this case, not all clean data from the regular mru and mfu 4962 * lists is actually evictable; we must leave enough clean data 4963 * to keep arc_size above arc_c_min. Thus, the maximum amount of 4964 * evictable data from the two lists combined, is exactly the 4965 * difference between arc_size and arc_c_min. 4966 * 4967 * 2.2. arc_size is less than arc_c_min 4968 * (i.e. arc_c_min > arc_size > amount of dirty data) 4969 * 4970 * In this case, none of the data contained in the mru and mfu 4971 * lists is evictable, even if it's clean. Since arc_size is 4972 * already below arc_c_min, evicting any more would only 4973 * increase this negative difference. 4974 */ 4975 4976 #endif /* _KERNEL */ 4977 4978 /* 4979 * Adapt arc info given the number of bytes we are trying to add and 4980 * the state that we are coming from. This function is only called 4981 * when we are adding new content to the cache. 4982 */ 4983 static void 4984 arc_adapt(int bytes, arc_state_t *state) 4985 { 4986 int mult; 4987 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 4988 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size); 4989 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size); 4990 4991 if (state == arc_l2c_only) 4992 return; 4993 4994 ASSERT(bytes > 0); 4995 /* 4996 * Adapt the target size of the MRU list: 4997 * - if we just hit in the MRU ghost list, then increase 4998 * the target size of the MRU list. 4999 * - if we just hit in the MFU ghost list, then increase 5000 * the target size of the MFU list by decreasing the 5001 * target size of the MRU list. 5002 */ 5003 if (state == arc_mru_ghost) { 5004 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 5005 if (!zfs_arc_p_dampener_disable) 5006 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 5007 5008 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 5009 } else if (state == arc_mfu_ghost) { 5010 uint64_t delta; 5011 5012 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 5013 if (!zfs_arc_p_dampener_disable) 5014 mult = MIN(mult, 10); 5015 5016 delta = MIN(bytes * mult, arc_p); 5017 arc_p = MAX(arc_p_min, arc_p - delta); 5018 } 5019 ASSERT((int64_t)arc_p >= 0); 5020 5021 /* 5022 * Wake reap thread if we do not have any available memory 5023 */ 5024 if (arc_reclaim_needed()) { 5025 zthr_wakeup(arc_reap_zthr); 5026 return; 5027 } 5028 5029 if (arc_no_grow) 5030 return; 5031 5032 if (arc_c >= arc_c_max) 5033 return; 5034 5035 /* 5036 * If we're within (2 * maxblocksize) bytes of the target 5037 * cache size, increment the target cache size 5038 */ 5039 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT); 5040 if (aggsum_upper_bound(&arc_size) >= 5041 arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 5042 atomic_add_64(&arc_c, (int64_t)bytes); 5043 if (arc_c > arc_c_max) 5044 arc_c = arc_c_max; 5045 else if (state == arc_anon) 5046 atomic_add_64(&arc_p, (int64_t)bytes); 5047 if (arc_p > arc_c) 5048 arc_p = arc_c; 5049 } 5050 ASSERT((int64_t)arc_p >= 0); 5051 } 5052 5053 /* 5054 * Check if arc_size has grown past our upper threshold, determined by 5055 * zfs_arc_overflow_shift. 5056 */ 5057 boolean_t 5058 arc_is_overflowing(void) 5059 { 5060 /* Always allow at least one block of overflow */ 5061 int64_t overflow = MAX(SPA_MAXBLOCKSIZE, 5062 arc_c >> zfs_arc_overflow_shift); 5063 5064 /* 5065 * We just compare the lower bound here for performance reasons. Our 5066 * primary goals are to make sure that the arc never grows without 5067 * bound, and that it can reach its maximum size. This check 5068 * accomplishes both goals. The maximum amount we could run over by is 5069 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 5070 * in the ARC. In practice, that's in the tens of MB, which is low 5071 * enough to be safe. 5072 */ 5073 return (aggsum_lower_bound(&arc_size) >= (int64_t)arc_c + overflow); 5074 } 5075 5076 static abd_t * 5077 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5078 boolean_t do_adapt) 5079 { 5080 arc_buf_contents_t type = arc_buf_type(hdr); 5081 5082 arc_get_data_impl(hdr, size, tag, do_adapt); 5083 if (type == ARC_BUFC_METADATA) { 5084 return (abd_alloc(size, B_TRUE)); 5085 } else { 5086 ASSERT(type == ARC_BUFC_DATA); 5087 return (abd_alloc(size, B_FALSE)); 5088 } 5089 } 5090 5091 static void * 5092 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5093 { 5094 arc_buf_contents_t type = arc_buf_type(hdr); 5095 5096 arc_get_data_impl(hdr, size, tag, B_TRUE); 5097 if (type == ARC_BUFC_METADATA) { 5098 return (zio_buf_alloc(size)); 5099 } else { 5100 ASSERT(type == ARC_BUFC_DATA); 5101 return (zio_data_buf_alloc(size)); 5102 } 5103 } 5104 5105 /* 5106 * Wait for the specified amount of data (in bytes) to be evicted from the 5107 * ARC, and for there to be sufficient free memory in the system. Waiting for 5108 * eviction ensures that the memory used by the ARC decreases. Waiting for 5109 * free memory ensures that the system won't run out of free pages, regardless 5110 * of ARC behavior and settings. See arc_lowmem_init(). 5111 */ 5112 void 5113 arc_wait_for_eviction(uint64_t amount) 5114 { 5115 mutex_enter(&arc_evict_lock); 5116 if (arc_is_overflowing()) { 5117 arc_evict_needed = B_TRUE; 5118 zthr_wakeup(arc_evict_zthr); 5119 5120 if (amount != 0) { 5121 arc_evict_waiter_t aw; 5122 list_link_init(&aw.aew_node); 5123 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); 5124 5125 arc_evict_waiter_t *last = 5126 list_tail(&arc_evict_waiters); 5127 if (last != NULL) { 5128 ASSERT3U(last->aew_count, >, arc_evict_count); 5129 aw.aew_count = last->aew_count + amount; 5130 } else { 5131 aw.aew_count = arc_evict_count + amount; 5132 } 5133 5134 list_insert_tail(&arc_evict_waiters, &aw); 5135 5136 arc_set_need_free(); 5137 5138 DTRACE_PROBE3(arc__wait__for__eviction, 5139 uint64_t, amount, 5140 uint64_t, arc_evict_count, 5141 uint64_t, aw.aew_count); 5142 5143 /* 5144 * We will be woken up either when arc_evict_count 5145 * reaches aew_count, or when the ARC is no longer 5146 * overflowing and eviction completes. 5147 */ 5148 cv_wait(&aw.aew_cv, &arc_evict_lock); 5149 5150 /* 5151 * In case of "false" wakeup, we will still be on the 5152 * list. 5153 */ 5154 if (list_link_active(&aw.aew_node)) 5155 list_remove(&arc_evict_waiters, &aw); 5156 5157 cv_destroy(&aw.aew_cv); 5158 } 5159 } 5160 mutex_exit(&arc_evict_lock); 5161 } 5162 5163 /* 5164 * Allocate a block and return it to the caller. If we are hitting the 5165 * hard limit for the cache size, we must sleep, waiting for the eviction 5166 * thread to catch up. If we're past the target size but below the hard 5167 * limit, we'll only signal the reclaim thread and continue on. 5168 */ 5169 static void 5170 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5171 boolean_t do_adapt) 5172 { 5173 arc_state_t *state = hdr->b_l1hdr.b_state; 5174 arc_buf_contents_t type = arc_buf_type(hdr); 5175 5176 if (do_adapt) 5177 arc_adapt(size, state); 5178 5179 /* 5180 * If arc_size is currently overflowing, we must be adding data 5181 * faster than we are evicting. To ensure we don't compound the 5182 * problem by adding more data and forcing arc_size to grow even 5183 * further past it's target size, we wait for the eviction thread to 5184 * make some progress. We also wait for there to be sufficient free 5185 * memory in the system, as measured by arc_free_memory(). 5186 * 5187 * Specifically, we wait for zfs_arc_eviction_pct percent of the 5188 * requested size to be evicted. This should be more than 100%, to 5189 * ensure that that progress is also made towards getting arc_size 5190 * under arc_c. See the comment above zfs_arc_eviction_pct. 5191 * 5192 * We do the overflowing check without holding the arc_evict_lock to 5193 * reduce lock contention in this hot path. Note that 5194 * arc_wait_for_eviction() will acquire the lock and check again to 5195 * ensure we are truly overflowing before blocking. 5196 */ 5197 if (arc_is_overflowing()) { 5198 arc_wait_for_eviction(size * 5199 zfs_arc_eviction_pct / 100); 5200 } 5201 5202 VERIFY3U(hdr->b_type, ==, type); 5203 if (type == ARC_BUFC_METADATA) { 5204 arc_space_consume(size, ARC_SPACE_META); 5205 } else { 5206 arc_space_consume(size, ARC_SPACE_DATA); 5207 } 5208 5209 /* 5210 * Update the state size. Note that ghost states have a 5211 * "ghost size" and so don't need to be updated. 5212 */ 5213 if (!GHOST_STATE(state)) { 5214 5215 (void) zfs_refcount_add_many(&state->arcs_size, size, tag); 5216 5217 /* 5218 * If this is reached via arc_read, the link is 5219 * protected by the hash lock. If reached via 5220 * arc_buf_alloc, the header should not be accessed by 5221 * any other thread. And, if reached via arc_read_done, 5222 * the hash lock will protect it if it's found in the 5223 * hash table; otherwise no other thread should be 5224 * trying to [add|remove]_reference it. 5225 */ 5226 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5227 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5228 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5229 size, tag); 5230 } 5231 5232 /* 5233 * If we are growing the cache, and we are adding anonymous 5234 * data, and we have outgrown arc_p, update arc_p 5235 */ 5236 if (aggsum_upper_bound(&arc_size) < arc_c && 5237 hdr->b_l1hdr.b_state == arc_anon && 5238 (zfs_refcount_count(&arc_anon->arcs_size) + 5239 zfs_refcount_count(&arc_mru->arcs_size) > arc_p)) 5240 arc_p = MIN(arc_c, arc_p + size); 5241 } 5242 } 5243 5244 static void 5245 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 5246 { 5247 arc_free_data_impl(hdr, size, tag); 5248 abd_free(abd); 5249 } 5250 5251 static void 5252 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 5253 { 5254 arc_buf_contents_t type = arc_buf_type(hdr); 5255 5256 arc_free_data_impl(hdr, size, tag); 5257 if (type == ARC_BUFC_METADATA) { 5258 zio_buf_free(buf, size); 5259 } else { 5260 ASSERT(type == ARC_BUFC_DATA); 5261 zio_data_buf_free(buf, size); 5262 } 5263 } 5264 5265 /* 5266 * Free the arc data buffer. 5267 */ 5268 static void 5269 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5270 { 5271 arc_state_t *state = hdr->b_l1hdr.b_state; 5272 arc_buf_contents_t type = arc_buf_type(hdr); 5273 5274 /* protected by hash lock, if in the hash table */ 5275 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5276 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5277 ASSERT(state != arc_anon && state != arc_l2c_only); 5278 5279 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5280 size, tag); 5281 } 5282 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag); 5283 5284 VERIFY3U(hdr->b_type, ==, type); 5285 if (type == ARC_BUFC_METADATA) { 5286 arc_space_return(size, ARC_SPACE_META); 5287 } else { 5288 ASSERT(type == ARC_BUFC_DATA); 5289 arc_space_return(size, ARC_SPACE_DATA); 5290 } 5291 } 5292 5293 /* 5294 * This routine is called whenever a buffer is accessed. 5295 * NOTE: the hash lock is dropped in this function. 5296 */ 5297 static void 5298 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 5299 { 5300 clock_t now; 5301 5302 ASSERT(MUTEX_HELD(hash_lock)); 5303 ASSERT(HDR_HAS_L1HDR(hdr)); 5304 5305 if (hdr->b_l1hdr.b_state == arc_anon) { 5306 /* 5307 * This buffer is not in the cache, and does not 5308 * appear in our "ghost" list. Add the new buffer 5309 * to the MRU state. 5310 */ 5311 5312 ASSERT0(hdr->b_l1hdr.b_arc_access); 5313 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5314 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5315 arc_change_state(arc_mru, hdr, hash_lock); 5316 5317 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5318 now = ddi_get_lbolt(); 5319 5320 /* 5321 * If this buffer is here because of a prefetch, then either: 5322 * - clear the flag if this is a "referencing" read 5323 * (any subsequent access will bump this into the MFU state). 5324 * or 5325 * - move the buffer to the head of the list if this is 5326 * another prefetch (to make it less likely to be evicted). 5327 */ 5328 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5329 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5330 /* link protected by hash lock */ 5331 ASSERT(multilist_link_active( 5332 &hdr->b_l1hdr.b_arc_node)); 5333 } else { 5334 arc_hdr_clear_flags(hdr, 5335 ARC_FLAG_PREFETCH | 5336 ARC_FLAG_PRESCIENT_PREFETCH); 5337 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits); 5338 ARCSTAT_BUMP(arcstat_mru_hits); 5339 } 5340 hdr->b_l1hdr.b_arc_access = now; 5341 return; 5342 } 5343 5344 /* 5345 * This buffer has been "accessed" only once so far, 5346 * but it is still in the cache. Move it to the MFU 5347 * state. 5348 */ 5349 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + 5350 ARC_MINTIME)) { 5351 /* 5352 * More than 125ms have passed since we 5353 * instantiated this buffer. Move it to the 5354 * most frequently used state. 5355 */ 5356 hdr->b_l1hdr.b_arc_access = now; 5357 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5358 arc_change_state(arc_mfu, hdr, hash_lock); 5359 } 5360 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits); 5361 ARCSTAT_BUMP(arcstat_mru_hits); 5362 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5363 arc_state_t *new_state; 5364 /* 5365 * This buffer has been "accessed" recently, but 5366 * was evicted from the cache. Move it to the 5367 * MFU state. 5368 */ 5369 5370 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5371 new_state = arc_mru; 5372 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) { 5373 arc_hdr_clear_flags(hdr, 5374 ARC_FLAG_PREFETCH | 5375 ARC_FLAG_PRESCIENT_PREFETCH); 5376 } 5377 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5378 } else { 5379 new_state = arc_mfu; 5380 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5381 } 5382 5383 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5384 arc_change_state(new_state, hdr, hash_lock); 5385 5386 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits); 5387 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5388 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5389 /* 5390 * This buffer has been accessed more than once and is 5391 * still in the cache. Keep it in the MFU state. 5392 * 5393 * NOTE: an add_reference() that occurred when we did 5394 * the arc_read() will have kicked this off the list. 5395 * If it was a prefetch, we will explicitly move it to 5396 * the head of the list now. 5397 */ 5398 5399 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits); 5400 ARCSTAT_BUMP(arcstat_mfu_hits); 5401 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5402 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5403 arc_state_t *new_state = arc_mfu; 5404 /* 5405 * This buffer has been accessed more than once but has 5406 * been evicted from the cache. Move it back to the 5407 * MFU state. 5408 */ 5409 5410 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5411 /* 5412 * This is a prefetch access... 5413 * move this block back to the MRU state. 5414 */ 5415 new_state = arc_mru; 5416 } 5417 5418 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5419 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5420 arc_change_state(new_state, hdr, hash_lock); 5421 5422 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits); 5423 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5424 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5425 /* 5426 * This buffer is on the 2nd Level ARC. 5427 */ 5428 5429 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5430 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5431 arc_change_state(arc_mfu, hdr, hash_lock); 5432 } else { 5433 cmn_err(CE_PANIC, "invalid arc state 0x%p", 5434 hdr->b_l1hdr.b_state); 5435 } 5436 } 5437 5438 /* 5439 * This routine is called by dbuf_hold() to update the arc_access() state 5440 * which otherwise would be skipped for entries in the dbuf cache. 5441 */ 5442 void 5443 arc_buf_access(arc_buf_t *buf) 5444 { 5445 mutex_enter(&buf->b_evict_lock); 5446 arc_buf_hdr_t *hdr = buf->b_hdr; 5447 5448 /* 5449 * Avoid taking the hash_lock when possible as an optimization. 5450 * The header must be checked again under the hash_lock in order 5451 * to handle the case where it is concurrently being released. 5452 */ 5453 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5454 mutex_exit(&buf->b_evict_lock); 5455 return; 5456 } 5457 5458 kmutex_t *hash_lock = HDR_LOCK(hdr); 5459 mutex_enter(hash_lock); 5460 5461 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5462 mutex_exit(hash_lock); 5463 mutex_exit(&buf->b_evict_lock); 5464 ARCSTAT_BUMP(arcstat_access_skip); 5465 return; 5466 } 5467 5468 mutex_exit(&buf->b_evict_lock); 5469 5470 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5471 hdr->b_l1hdr.b_state == arc_mfu); 5472 5473 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5474 arc_access(hdr, hash_lock); 5475 mutex_exit(hash_lock); 5476 5477 ARCSTAT_BUMP(arcstat_hits); 5478 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr), 5479 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5480 } 5481 5482 /* a generic arc_read_done_func_t which you can use */ 5483 /* ARGSUSED */ 5484 void 5485 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5486 arc_buf_t *buf, void *arg) 5487 { 5488 if (buf == NULL) 5489 return; 5490 5491 bcopy(buf->b_data, arg, arc_buf_size(buf)); 5492 arc_buf_destroy(buf, arg); 5493 } 5494 5495 /* a generic arc_read_done_func_t */ 5496 /* ARGSUSED */ 5497 void 5498 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5499 arc_buf_t *buf, void *arg) 5500 { 5501 arc_buf_t **bufp = arg; 5502 5503 if (buf == NULL) { 5504 ASSERT(zio == NULL || zio->io_error != 0); 5505 *bufp = NULL; 5506 } else { 5507 ASSERT(zio == NULL || zio->io_error == 0); 5508 *bufp = buf; 5509 ASSERT(buf->b_data != NULL); 5510 } 5511 } 5512 5513 static void 5514 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 5515 { 5516 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5517 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5518 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5519 } else { 5520 if (HDR_COMPRESSION_ENABLED(hdr)) { 5521 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5522 BP_GET_COMPRESS(bp)); 5523 } 5524 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5525 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5526 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5527 } 5528 } 5529 5530 static void 5531 arc_read_done(zio_t *zio) 5532 { 5533 blkptr_t *bp = zio->io_bp; 5534 arc_buf_hdr_t *hdr = zio->io_private; 5535 kmutex_t *hash_lock = NULL; 5536 arc_callback_t *callback_list; 5537 arc_callback_t *acb; 5538 boolean_t freeable = B_FALSE; 5539 5540 /* 5541 * The hdr was inserted into hash-table and removed from lists 5542 * prior to starting I/O. We should find this header, since 5543 * it's in the hash table, and it should be legit since it's 5544 * not possible to evict it during the I/O. The only possible 5545 * reason for it not to be found is if we were freed during the 5546 * read. 5547 */ 5548 if (HDR_IN_HASH_TABLE(hdr)) { 5549 arc_buf_hdr_t *found; 5550 5551 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 5552 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5553 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5554 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5555 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5556 5557 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); 5558 5559 ASSERT((found == hdr && 5560 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5561 (found == hdr && HDR_L2_READING(hdr))); 5562 ASSERT3P(hash_lock, !=, NULL); 5563 } 5564 5565 if (BP_IS_PROTECTED(bp)) { 5566 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5567 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5568 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5569 hdr->b_crypt_hdr.b_iv); 5570 5571 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5572 void *tmpbuf; 5573 5574 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5575 sizeof (zil_chain_t)); 5576 zio_crypt_decode_mac_zil(tmpbuf, 5577 hdr->b_crypt_hdr.b_mac); 5578 abd_return_buf(zio->io_abd, tmpbuf, 5579 sizeof (zil_chain_t)); 5580 } else { 5581 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 5582 } 5583 } 5584 5585 if (zio->io_error == 0) { 5586 /* byteswap if necessary */ 5587 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5588 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5589 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5590 } else { 5591 hdr->b_l1hdr.b_byteswap = 5592 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5593 } 5594 } else { 5595 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5596 } 5597 if (!HDR_L2_READING(hdr)) { 5598 hdr->b_complevel = zio->io_prop.zp_complevel; 5599 } 5600 } 5601 5602 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5603 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 5604 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 5605 5606 callback_list = hdr->b_l1hdr.b_acb; 5607 ASSERT3P(callback_list, !=, NULL); 5608 5609 if (hash_lock && zio->io_error == 0 && 5610 hdr->b_l1hdr.b_state == arc_anon) { 5611 /* 5612 * Only call arc_access on anonymous buffers. This is because 5613 * if we've issued an I/O for an evicted buffer, we've already 5614 * called arc_access (to prevent any simultaneous readers from 5615 * getting confused). 5616 */ 5617 arc_access(hdr, hash_lock); 5618 } 5619 5620 /* 5621 * If a read request has a callback (i.e. acb_done is not NULL), then we 5622 * make a buf containing the data according to the parameters which were 5623 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5624 * aren't needlessly decompressing the data multiple times. 5625 */ 5626 int callback_cnt = 0; 5627 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5628 if (!acb->acb_done) 5629 continue; 5630 5631 callback_cnt++; 5632 5633 if (zio->io_error != 0) 5634 continue; 5635 5636 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5637 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5638 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5639 &acb->acb_buf); 5640 5641 /* 5642 * Assert non-speculative zios didn't fail because an 5643 * encryption key wasn't loaded 5644 */ 5645 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5646 error != EACCES); 5647 5648 /* 5649 * If we failed to decrypt, report an error now (as the zio 5650 * layer would have done if it had done the transforms). 5651 */ 5652 if (error == ECKSUM) { 5653 ASSERT(BP_IS_PROTECTED(bp)); 5654 error = SET_ERROR(EIO); 5655 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5656 spa_log_error(zio->io_spa, &acb->acb_zb); 5657 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 5658 zio->io_spa, NULL, &acb->acb_zb, zio, 0, 0); 5659 } 5660 } 5661 5662 if (error != 0) { 5663 /* 5664 * Decompression or decryption failed. Set 5665 * io_error so that when we call acb_done 5666 * (below), we will indicate that the read 5667 * failed. Note that in the unusual case 5668 * where one callback is compressed and another 5669 * uncompressed, we will mark all of them 5670 * as failed, even though the uncompressed 5671 * one can't actually fail. In this case, 5672 * the hdr will not be anonymous, because 5673 * if there are multiple callbacks, it's 5674 * because multiple threads found the same 5675 * arc buf in the hash table. 5676 */ 5677 zio->io_error = error; 5678 } 5679 } 5680 5681 /* 5682 * If there are multiple callbacks, we must have the hash lock, 5683 * because the only way for multiple threads to find this hdr is 5684 * in the hash table. This ensures that if there are multiple 5685 * callbacks, the hdr is not anonymous. If it were anonymous, 5686 * we couldn't use arc_buf_destroy() in the error case below. 5687 */ 5688 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5689 5690 hdr->b_l1hdr.b_acb = NULL; 5691 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5692 if (callback_cnt == 0) 5693 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 5694 5695 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 5696 callback_list != NULL); 5697 5698 if (zio->io_error == 0) { 5699 arc_hdr_verify(hdr, zio->io_bp); 5700 } else { 5701 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5702 if (hdr->b_l1hdr.b_state != arc_anon) 5703 arc_change_state(arc_anon, hdr, hash_lock); 5704 if (HDR_IN_HASH_TABLE(hdr)) 5705 buf_hash_remove(hdr); 5706 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5707 } 5708 5709 /* 5710 * Broadcast before we drop the hash_lock to avoid the possibility 5711 * that the hdr (and hence the cv) might be freed before we get to 5712 * the cv_broadcast(). 5713 */ 5714 cv_broadcast(&hdr->b_l1hdr.b_cv); 5715 5716 if (hash_lock != NULL) { 5717 mutex_exit(hash_lock); 5718 } else { 5719 /* 5720 * This block was freed while we waited for the read to 5721 * complete. It has been removed from the hash table and 5722 * moved to the anonymous state (so that it won't show up 5723 * in the cache). 5724 */ 5725 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 5726 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5727 } 5728 5729 /* execute each callback and free its structure */ 5730 while ((acb = callback_list) != NULL) { 5731 if (acb->acb_done != NULL) { 5732 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5733 /* 5734 * If arc_buf_alloc_impl() fails during 5735 * decompression, the buf will still be 5736 * allocated, and needs to be freed here. 5737 */ 5738 arc_buf_destroy(acb->acb_buf, 5739 acb->acb_private); 5740 acb->acb_buf = NULL; 5741 } 5742 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5743 acb->acb_buf, acb->acb_private); 5744 } 5745 5746 if (acb->acb_zio_dummy != NULL) { 5747 acb->acb_zio_dummy->io_error = zio->io_error; 5748 zio_nowait(acb->acb_zio_dummy); 5749 } 5750 5751 callback_list = acb->acb_next; 5752 kmem_free(acb, sizeof (arc_callback_t)); 5753 } 5754 5755 if (freeable) 5756 arc_hdr_destroy(hdr); 5757 } 5758 5759 /* 5760 * "Read" the block at the specified DVA (in bp) via the 5761 * cache. If the block is found in the cache, invoke the provided 5762 * callback immediately and return. Note that the `zio' parameter 5763 * in the callback will be NULL in this case, since no IO was 5764 * required. If the block is not in the cache pass the read request 5765 * on to the spa with a substitute callback function, so that the 5766 * requested block will be added to the cache. 5767 * 5768 * If a read request arrives for a block that has a read in-progress, 5769 * either wait for the in-progress read to complete (and return the 5770 * results); or, if this is a read with a "done" func, add a record 5771 * to the read to invoke the "done" func when the read completes, 5772 * and return; or just return. 5773 * 5774 * arc_read_done() will invoke all the requested "done" functions 5775 * for readers of this block. 5776 */ 5777 int 5778 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 5779 arc_read_done_func_t *done, void *private, zio_priority_t priority, 5780 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5781 { 5782 arc_buf_hdr_t *hdr = NULL; 5783 kmutex_t *hash_lock = NULL; 5784 zio_t *rzio; 5785 uint64_t guid = spa_load_guid(spa); 5786 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5787 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5788 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5789 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5790 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5791 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); 5792 int rc = 0; 5793 5794 ASSERT(!embedded_bp || 5795 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5796 ASSERT(!BP_IS_HOLE(bp)); 5797 ASSERT(!BP_IS_REDACTED(bp)); 5798 5799 /* 5800 * Normally SPL_FSTRANS will already be set since kernel threads which 5801 * expect to call the DMU interfaces will set it when created. System 5802 * calls are similarly handled by setting/cleaning the bit in the 5803 * registered callback (module/os/.../zfs/zpl_*). 5804 * 5805 * External consumers such as Lustre which call the exported DMU 5806 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock 5807 * on the hash_lock always set and clear the bit. 5808 */ 5809 fstrans_cookie_t cookie = spl_fstrans_mark(); 5810 top: 5811 if (!embedded_bp) { 5812 /* 5813 * Embedded BP's have no DVA and require no I/O to "read". 5814 * Create an anonymous arc buf to back it. 5815 */ 5816 hdr = buf_hash_find(guid, bp, &hash_lock); 5817 } 5818 5819 /* 5820 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5821 * we maintain encrypted data separately from compressed / uncompressed 5822 * data. If the user is requesting raw encrypted data and we don't have 5823 * that in the header we will read from disk to guarantee that we can 5824 * get it even if the encryption keys aren't loaded. 5825 */ 5826 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5827 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5828 arc_buf_t *buf = NULL; 5829 *arc_flags |= ARC_FLAG_CACHED; 5830 5831 if (HDR_IO_IN_PROGRESS(hdr)) { 5832 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5833 5834 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5835 mutex_exit(hash_lock); 5836 ARCSTAT_BUMP(arcstat_cached_only_in_progress); 5837 rc = SET_ERROR(ENOENT); 5838 goto out; 5839 } 5840 5841 ASSERT3P(head_zio, !=, NULL); 5842 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5843 priority == ZIO_PRIORITY_SYNC_READ) { 5844 /* 5845 * This is a sync read that needs to wait for 5846 * an in-flight async read. Request that the 5847 * zio have its priority upgraded. 5848 */ 5849 zio_change_priority(head_zio, priority); 5850 DTRACE_PROBE1(arc__async__upgrade__sync, 5851 arc_buf_hdr_t *, hdr); 5852 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5853 } 5854 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5855 arc_hdr_clear_flags(hdr, 5856 ARC_FLAG_PREDICTIVE_PREFETCH); 5857 } 5858 5859 if (*arc_flags & ARC_FLAG_WAIT) { 5860 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5861 mutex_exit(hash_lock); 5862 goto top; 5863 } 5864 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5865 5866 if (done) { 5867 arc_callback_t *acb = NULL; 5868 5869 acb = kmem_zalloc(sizeof (arc_callback_t), 5870 KM_SLEEP); 5871 acb->acb_done = done; 5872 acb->acb_private = private; 5873 acb->acb_compressed = compressed_read; 5874 acb->acb_encrypted = encrypted_read; 5875 acb->acb_noauth = noauth_read; 5876 acb->acb_zb = *zb; 5877 if (pio != NULL) 5878 acb->acb_zio_dummy = zio_null(pio, 5879 spa, NULL, NULL, NULL, zio_flags); 5880 5881 ASSERT3P(acb->acb_done, !=, NULL); 5882 acb->acb_zio_head = head_zio; 5883 acb->acb_next = hdr->b_l1hdr.b_acb; 5884 hdr->b_l1hdr.b_acb = acb; 5885 mutex_exit(hash_lock); 5886 goto out; 5887 } 5888 mutex_exit(hash_lock); 5889 goto out; 5890 } 5891 5892 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5893 hdr->b_l1hdr.b_state == arc_mfu); 5894 5895 if (done) { 5896 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5897 /* 5898 * This is a demand read which does not have to 5899 * wait for i/o because we did a predictive 5900 * prefetch i/o for it, which has completed. 5901 */ 5902 DTRACE_PROBE1( 5903 arc__demand__hit__predictive__prefetch, 5904 arc_buf_hdr_t *, hdr); 5905 ARCSTAT_BUMP( 5906 arcstat_demand_hit_predictive_prefetch); 5907 arc_hdr_clear_flags(hdr, 5908 ARC_FLAG_PREDICTIVE_PREFETCH); 5909 } 5910 5911 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 5912 ARCSTAT_BUMP( 5913 arcstat_demand_hit_prescient_prefetch); 5914 arc_hdr_clear_flags(hdr, 5915 ARC_FLAG_PRESCIENT_PREFETCH); 5916 } 5917 5918 ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); 5919 5920 /* Get a buf with the desired data in it. */ 5921 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 5922 encrypted_read, compressed_read, noauth_read, 5923 B_TRUE, &buf); 5924 if (rc == ECKSUM) { 5925 /* 5926 * Convert authentication and decryption errors 5927 * to EIO (and generate an ereport if needed) 5928 * before leaving the ARC. 5929 */ 5930 rc = SET_ERROR(EIO); 5931 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5932 spa_log_error(spa, zb); 5933 zfs_ereport_post( 5934 FM_EREPORT_ZFS_AUTHENTICATION, 5935 spa, NULL, zb, NULL, 0, 0); 5936 } 5937 } 5938 if (rc != 0) { 5939 (void) remove_reference(hdr, hash_lock, 5940 private); 5941 arc_buf_destroy_impl(buf); 5942 buf = NULL; 5943 } 5944 5945 /* assert any errors weren't due to unloaded keys */ 5946 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 5947 rc != EACCES); 5948 } else if (*arc_flags & ARC_FLAG_PREFETCH && 5949 zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5950 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5951 } 5952 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5953 arc_access(hdr, hash_lock); 5954 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 5955 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 5956 if (*arc_flags & ARC_FLAG_L2CACHE) 5957 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5958 mutex_exit(hash_lock); 5959 ARCSTAT_BUMP(arcstat_hits); 5960 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5961 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5962 data, metadata, hits); 5963 5964 if (done) 5965 done(NULL, zb, bp, buf, private); 5966 } else { 5967 uint64_t lsize = BP_GET_LSIZE(bp); 5968 uint64_t psize = BP_GET_PSIZE(bp); 5969 arc_callback_t *acb; 5970 vdev_t *vd = NULL; 5971 uint64_t addr = 0; 5972 boolean_t devw = B_FALSE; 5973 uint64_t size; 5974 abd_t *hdr_abd; 5975 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 5976 5977 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5978 rc = SET_ERROR(ENOENT); 5979 if (hash_lock != NULL) 5980 mutex_exit(hash_lock); 5981 goto out; 5982 } 5983 5984 /* 5985 * Gracefully handle a damaged logical block size as a 5986 * checksum error. 5987 */ 5988 if (lsize > spa_maxblocksize(spa)) { 5989 rc = SET_ERROR(ECKSUM); 5990 if (hash_lock != NULL) 5991 mutex_exit(hash_lock); 5992 goto out; 5993 } 5994 5995 if (hdr == NULL) { 5996 /* 5997 * This block is not in the cache or it has 5998 * embedded data. 5999 */ 6000 arc_buf_hdr_t *exists = NULL; 6001 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 6002 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 6003 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type, 6004 encrypted_read); 6005 6006 if (!embedded_bp) { 6007 hdr->b_dva = *BP_IDENTITY(bp); 6008 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 6009 exists = buf_hash_insert(hdr, &hash_lock); 6010 } 6011 if (exists != NULL) { 6012 /* somebody beat us to the hash insert */ 6013 mutex_exit(hash_lock); 6014 buf_discard_identity(hdr); 6015 arc_hdr_destroy(hdr); 6016 goto top; /* restart the IO request */ 6017 } 6018 } else { 6019 /* 6020 * This block is in the ghost cache or encrypted data 6021 * was requested and we didn't have it. If it was 6022 * L2-only (and thus didn't have an L1 hdr), 6023 * we realloc the header to add an L1 hdr. 6024 */ 6025 if (!HDR_HAS_L1HDR(hdr)) { 6026 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 6027 hdr_full_cache); 6028 } 6029 6030 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 6031 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6032 ASSERT(!HDR_HAS_RABD(hdr)); 6033 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6034 ASSERT0(zfs_refcount_count( 6035 &hdr->b_l1hdr.b_refcnt)); 6036 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 6037 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 6038 } else if (HDR_IO_IN_PROGRESS(hdr)) { 6039 /* 6040 * If this header already had an IO in progress 6041 * and we are performing another IO to fetch 6042 * encrypted data we must wait until the first 6043 * IO completes so as not to confuse 6044 * arc_read_done(). This should be very rare 6045 * and so the performance impact shouldn't 6046 * matter. 6047 */ 6048 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 6049 mutex_exit(hash_lock); 6050 goto top; 6051 } 6052 6053 /* 6054 * This is a delicate dance that we play here. 6055 * This hdr might be in the ghost list so we access 6056 * it to move it out of the ghost list before we 6057 * initiate the read. If it's a prefetch then 6058 * it won't have a callback so we'll remove the 6059 * reference that arc_buf_alloc_impl() created. We 6060 * do this after we've called arc_access() to 6061 * avoid hitting an assert in remove_reference(). 6062 */ 6063 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state); 6064 arc_access(hdr, hash_lock); 6065 arc_hdr_alloc_abd(hdr, alloc_flags); 6066 } 6067 6068 if (encrypted_read) { 6069 ASSERT(HDR_HAS_RABD(hdr)); 6070 size = HDR_GET_PSIZE(hdr); 6071 hdr_abd = hdr->b_crypt_hdr.b_rabd; 6072 zio_flags |= ZIO_FLAG_RAW; 6073 } else { 6074 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6075 size = arc_hdr_size(hdr); 6076 hdr_abd = hdr->b_l1hdr.b_pabd; 6077 6078 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 6079 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6080 } 6081 6082 /* 6083 * For authenticated bp's, we do not ask the ZIO layer 6084 * to authenticate them since this will cause the entire 6085 * IO to fail if the key isn't loaded. Instead, we 6086 * defer authentication until arc_buf_fill(), which will 6087 * verify the data when the key is available. 6088 */ 6089 if (BP_IS_AUTHENTICATED(bp)) 6090 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 6091 } 6092 6093 if (*arc_flags & ARC_FLAG_PREFETCH && 6094 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) 6095 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6096 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6097 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6098 if (*arc_flags & ARC_FLAG_L2CACHE) 6099 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6100 if (BP_IS_AUTHENTICATED(bp)) 6101 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6102 if (BP_GET_LEVEL(bp) > 0) 6103 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 6104 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 6105 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 6106 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 6107 6108 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 6109 acb->acb_done = done; 6110 acb->acb_private = private; 6111 acb->acb_compressed = compressed_read; 6112 acb->acb_encrypted = encrypted_read; 6113 acb->acb_noauth = noauth_read; 6114 acb->acb_zb = *zb; 6115 6116 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6117 hdr->b_l1hdr.b_acb = acb; 6118 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6119 6120 if (HDR_HAS_L2HDR(hdr) && 6121 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 6122 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 6123 addr = hdr->b_l2hdr.b_daddr; 6124 /* 6125 * Lock out L2ARC device removal. 6126 */ 6127 if (vdev_is_dead(vd) || 6128 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 6129 vd = NULL; 6130 } 6131 6132 /* 6133 * We count both async reads and scrub IOs as asynchronous so 6134 * that both can be upgraded in the event of a cache hit while 6135 * the read IO is still in-flight. 6136 */ 6137 if (priority == ZIO_PRIORITY_ASYNC_READ || 6138 priority == ZIO_PRIORITY_SCRUB) 6139 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6140 else 6141 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6142 6143 /* 6144 * At this point, we have a level 1 cache miss or a blkptr 6145 * with embedded data. Try again in L2ARC if possible. 6146 */ 6147 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 6148 6149 /* 6150 * Skip ARC stat bump for block pointers with embedded 6151 * data. The data are read from the blkptr itself via 6152 * decode_embedded_bp_compressed(). 6153 */ 6154 if (!embedded_bp) { 6155 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, 6156 blkptr_t *, bp, uint64_t, lsize, 6157 zbookmark_phys_t *, zb); 6158 ARCSTAT_BUMP(arcstat_misses); 6159 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6160 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, 6161 metadata, misses); 6162 } 6163 6164 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 6165 /* 6166 * Read from the L2ARC if the following are true: 6167 * 1. The L2ARC vdev was previously cached. 6168 * 2. This buffer still has L2ARC metadata. 6169 * 3. This buffer isn't currently writing to the L2ARC. 6170 * 4. The L2ARC entry wasn't evicted, which may 6171 * also have invalidated the vdev. 6172 * 5. This isn't prefetch and l2arc_noprefetch is set. 6173 */ 6174 if (HDR_HAS_L2HDR(hdr) && 6175 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 6176 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 6177 l2arc_read_callback_t *cb; 6178 abd_t *abd; 6179 uint64_t asize; 6180 6181 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 6182 ARCSTAT_BUMP(arcstat_l2_hits); 6183 atomic_inc_32(&hdr->b_l2hdr.b_hits); 6184 6185 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 6186 KM_SLEEP); 6187 cb->l2rcb_hdr = hdr; 6188 cb->l2rcb_bp = *bp; 6189 cb->l2rcb_zb = *zb; 6190 cb->l2rcb_flags = zio_flags; 6191 6192 /* 6193 * When Compressed ARC is disabled, but the 6194 * L2ARC block is compressed, arc_hdr_size() 6195 * will have returned LSIZE rather than PSIZE. 6196 */ 6197 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6198 !HDR_COMPRESSION_ENABLED(hdr) && 6199 HDR_GET_PSIZE(hdr) != 0) { 6200 size = HDR_GET_PSIZE(hdr); 6201 } 6202 6203 asize = vdev_psize_to_asize(vd, size); 6204 if (asize != size) { 6205 abd = abd_alloc_for_io(asize, 6206 HDR_ISTYPE_METADATA(hdr)); 6207 cb->l2rcb_abd = abd; 6208 } else { 6209 abd = hdr_abd; 6210 } 6211 6212 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6213 addr + asize <= vd->vdev_psize - 6214 VDEV_LABEL_END_SIZE); 6215 6216 /* 6217 * l2arc read. The SCL_L2ARC lock will be 6218 * released by l2arc_read_done(). 6219 * Issue a null zio if the underlying buffer 6220 * was squashed to zero size by compression. 6221 */ 6222 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6223 ZIO_COMPRESS_EMPTY); 6224 rzio = zio_read_phys(pio, vd, addr, 6225 asize, abd, 6226 ZIO_CHECKSUM_OFF, 6227 l2arc_read_done, cb, priority, 6228 zio_flags | ZIO_FLAG_DONT_CACHE | 6229 ZIO_FLAG_CANFAIL | 6230 ZIO_FLAG_DONT_PROPAGATE | 6231 ZIO_FLAG_DONT_RETRY, B_FALSE); 6232 acb->acb_zio_head = rzio; 6233 6234 if (hash_lock != NULL) 6235 mutex_exit(hash_lock); 6236 6237 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6238 zio_t *, rzio); 6239 ARCSTAT_INCR(arcstat_l2_read_bytes, 6240 HDR_GET_PSIZE(hdr)); 6241 6242 if (*arc_flags & ARC_FLAG_NOWAIT) { 6243 zio_nowait(rzio); 6244 goto out; 6245 } 6246 6247 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6248 if (zio_wait(rzio) == 0) 6249 goto out; 6250 6251 /* l2arc read error; goto zio_read() */ 6252 if (hash_lock != NULL) 6253 mutex_enter(hash_lock); 6254 } else { 6255 DTRACE_PROBE1(l2arc__miss, 6256 arc_buf_hdr_t *, hdr); 6257 ARCSTAT_BUMP(arcstat_l2_misses); 6258 if (HDR_L2_WRITING(hdr)) 6259 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6260 spa_config_exit(spa, SCL_L2ARC, vd); 6261 } 6262 } else { 6263 if (vd != NULL) 6264 spa_config_exit(spa, SCL_L2ARC, vd); 6265 /* 6266 * Skip ARC stat bump for block pointers with 6267 * embedded data. The data are read from the blkptr 6268 * itself via decode_embedded_bp_compressed(). 6269 */ 6270 if (l2arc_ndev != 0 && !embedded_bp) { 6271 DTRACE_PROBE1(l2arc__miss, 6272 arc_buf_hdr_t *, hdr); 6273 ARCSTAT_BUMP(arcstat_l2_misses); 6274 } 6275 } 6276 6277 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6278 arc_read_done, hdr, priority, zio_flags, zb); 6279 acb->acb_zio_head = rzio; 6280 6281 if (hash_lock != NULL) 6282 mutex_exit(hash_lock); 6283 6284 if (*arc_flags & ARC_FLAG_WAIT) { 6285 rc = zio_wait(rzio); 6286 goto out; 6287 } 6288 6289 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6290 zio_nowait(rzio); 6291 } 6292 6293 out: 6294 /* embedded bps don't actually go to disk */ 6295 if (!embedded_bp) 6296 spa_read_history_add(spa, zb, *arc_flags); 6297 spl_fstrans_unmark(cookie); 6298 return (rc); 6299 } 6300 6301 arc_prune_t * 6302 arc_add_prune_callback(arc_prune_func_t *func, void *private) 6303 { 6304 arc_prune_t *p; 6305 6306 p = kmem_alloc(sizeof (*p), KM_SLEEP); 6307 p->p_pfunc = func; 6308 p->p_private = private; 6309 list_link_init(&p->p_node); 6310 zfs_refcount_create(&p->p_refcnt); 6311 6312 mutex_enter(&arc_prune_mtx); 6313 zfs_refcount_add(&p->p_refcnt, &arc_prune_list); 6314 list_insert_head(&arc_prune_list, p); 6315 mutex_exit(&arc_prune_mtx); 6316 6317 return (p); 6318 } 6319 6320 void 6321 arc_remove_prune_callback(arc_prune_t *p) 6322 { 6323 boolean_t wait = B_FALSE; 6324 mutex_enter(&arc_prune_mtx); 6325 list_remove(&arc_prune_list, p); 6326 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) 6327 wait = B_TRUE; 6328 mutex_exit(&arc_prune_mtx); 6329 6330 /* wait for arc_prune_task to finish */ 6331 if (wait) 6332 taskq_wait_outstanding(arc_prune_taskq, 0); 6333 ASSERT0(zfs_refcount_count(&p->p_refcnt)); 6334 zfs_refcount_destroy(&p->p_refcnt); 6335 kmem_free(p, sizeof (*p)); 6336 } 6337 6338 /* 6339 * Notify the arc that a block was freed, and thus will never be used again. 6340 */ 6341 void 6342 arc_freed(spa_t *spa, const blkptr_t *bp) 6343 { 6344 arc_buf_hdr_t *hdr; 6345 kmutex_t *hash_lock; 6346 uint64_t guid = spa_load_guid(spa); 6347 6348 ASSERT(!BP_IS_EMBEDDED(bp)); 6349 6350 hdr = buf_hash_find(guid, bp, &hash_lock); 6351 if (hdr == NULL) 6352 return; 6353 6354 /* 6355 * We might be trying to free a block that is still doing I/O 6356 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 6357 * dmu_sync-ed block). If this block is being prefetched, then it 6358 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 6359 * until the I/O completes. A block may also have a reference if it is 6360 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6361 * have written the new block to its final resting place on disk but 6362 * without the dedup flag set. This would have left the hdr in the MRU 6363 * state and discoverable. When the txg finally syncs it detects that 6364 * the block was overridden in open context and issues an override I/O. 6365 * Since this is a dedup block, the override I/O will determine if the 6366 * block is already in the DDT. If so, then it will replace the io_bp 6367 * with the bp from the DDT and allow the I/O to finish. When the I/O 6368 * reaches the done callback, dbuf_write_override_done, it will 6369 * check to see if the io_bp and io_bp_override are identical. 6370 * If they are not, then it indicates that the bp was replaced with 6371 * the bp in the DDT and the override bp is freed. This allows 6372 * us to arrive here with a reference on a block that is being 6373 * freed. So if we have an I/O in progress, or a reference to 6374 * this hdr, then we don't destroy the hdr. 6375 */ 6376 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 6377 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 6378 arc_change_state(arc_anon, hdr, hash_lock); 6379 arc_hdr_destroy(hdr); 6380 mutex_exit(hash_lock); 6381 } else { 6382 mutex_exit(hash_lock); 6383 } 6384 6385 } 6386 6387 /* 6388 * Release this buffer from the cache, making it an anonymous buffer. This 6389 * must be done after a read and prior to modifying the buffer contents. 6390 * If the buffer has more than one reference, we must make 6391 * a new hdr for the buffer. 6392 */ 6393 void 6394 arc_release(arc_buf_t *buf, void *tag) 6395 { 6396 arc_buf_hdr_t *hdr = buf->b_hdr; 6397 6398 /* 6399 * It would be nice to assert that if its DMU metadata (level > 6400 * 0 || it's the dnode file), then it must be syncing context. 6401 * But we don't know that information at this level. 6402 */ 6403 6404 mutex_enter(&buf->b_evict_lock); 6405 6406 ASSERT(HDR_HAS_L1HDR(hdr)); 6407 6408 /* 6409 * We don't grab the hash lock prior to this check, because if 6410 * the buffer's header is in the arc_anon state, it won't be 6411 * linked into the hash table. 6412 */ 6413 if (hdr->b_l1hdr.b_state == arc_anon) { 6414 mutex_exit(&buf->b_evict_lock); 6415 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6416 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6417 ASSERT(!HDR_HAS_L2HDR(hdr)); 6418 ASSERT(HDR_EMPTY(hdr)); 6419 6420 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6421 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6422 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 6423 6424 hdr->b_l1hdr.b_arc_access = 0; 6425 6426 /* 6427 * If the buf is being overridden then it may already 6428 * have a hdr that is not empty. 6429 */ 6430 buf_discard_identity(hdr); 6431 arc_buf_thaw(buf); 6432 6433 return; 6434 } 6435 6436 kmutex_t *hash_lock = HDR_LOCK(hdr); 6437 mutex_enter(hash_lock); 6438 6439 /* 6440 * This assignment is only valid as long as the hash_lock is 6441 * held, we must be careful not to reference state or the 6442 * b_state field after dropping the lock. 6443 */ 6444 arc_state_t *state = hdr->b_l1hdr.b_state; 6445 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6446 ASSERT3P(state, !=, arc_anon); 6447 6448 /* this buffer is not on any list */ 6449 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6450 6451 if (HDR_HAS_L2HDR(hdr)) { 6452 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6453 6454 /* 6455 * We have to recheck this conditional again now that 6456 * we're holding the l2ad_mtx to prevent a race with 6457 * another thread which might be concurrently calling 6458 * l2arc_evict(). In that case, l2arc_evict() might have 6459 * destroyed the header's L2 portion as we were waiting 6460 * to acquire the l2ad_mtx. 6461 */ 6462 if (HDR_HAS_L2HDR(hdr)) 6463 arc_hdr_l2hdr_destroy(hdr); 6464 6465 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6466 } 6467 6468 /* 6469 * Do we have more than one buf? 6470 */ 6471 if (hdr->b_l1hdr.b_bufcnt > 1) { 6472 arc_buf_hdr_t *nhdr; 6473 uint64_t spa = hdr->b_spa; 6474 uint64_t psize = HDR_GET_PSIZE(hdr); 6475 uint64_t lsize = HDR_GET_LSIZE(hdr); 6476 boolean_t protected = HDR_PROTECTED(hdr); 6477 enum zio_compress compress = arc_hdr_get_compress(hdr); 6478 arc_buf_contents_t type = arc_buf_type(hdr); 6479 VERIFY3U(hdr->b_type, ==, type); 6480 6481 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6482 (void) remove_reference(hdr, hash_lock, tag); 6483 6484 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 6485 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6486 ASSERT(ARC_BUF_LAST(buf)); 6487 } 6488 6489 /* 6490 * Pull the data off of this hdr and attach it to 6491 * a new anonymous hdr. Also find the last buffer 6492 * in the hdr's buffer list. 6493 */ 6494 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6495 ASSERT3P(lastbuf, !=, NULL); 6496 6497 /* 6498 * If the current arc_buf_t and the hdr are sharing their data 6499 * buffer, then we must stop sharing that block. 6500 */ 6501 if (arc_buf_is_shared(buf)) { 6502 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6503 VERIFY(!arc_buf_is_shared(lastbuf)); 6504 6505 /* 6506 * First, sever the block sharing relationship between 6507 * buf and the arc_buf_hdr_t. 6508 */ 6509 arc_unshare_buf(hdr, buf); 6510 6511 /* 6512 * Now we need to recreate the hdr's b_pabd. Since we 6513 * have lastbuf handy, we try to share with it, but if 6514 * we can't then we allocate a new b_pabd and copy the 6515 * data from buf into it. 6516 */ 6517 if (arc_can_share(hdr, lastbuf)) { 6518 arc_share_buf(hdr, lastbuf); 6519 } else { 6520 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6521 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6522 buf->b_data, psize); 6523 } 6524 VERIFY3P(lastbuf->b_data, !=, NULL); 6525 } else if (HDR_SHARED_DATA(hdr)) { 6526 /* 6527 * Uncompressed shared buffers are always at the end 6528 * of the list. Compressed buffers don't have the 6529 * same requirements. This makes it hard to 6530 * simply assert that the lastbuf is shared so 6531 * we rely on the hdr's compression flags to determine 6532 * if we have a compressed, shared buffer. 6533 */ 6534 ASSERT(arc_buf_is_shared(lastbuf) || 6535 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6536 ASSERT(!ARC_BUF_SHARED(buf)); 6537 } 6538 6539 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6540 ASSERT3P(state, !=, arc_l2c_only); 6541 6542 (void) zfs_refcount_remove_many(&state->arcs_size, 6543 arc_buf_size(buf), buf); 6544 6545 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6546 ASSERT3P(state, !=, arc_l2c_only); 6547 (void) zfs_refcount_remove_many( 6548 &state->arcs_esize[type], 6549 arc_buf_size(buf), buf); 6550 } 6551 6552 hdr->b_l1hdr.b_bufcnt -= 1; 6553 if (ARC_BUF_ENCRYPTED(buf)) 6554 hdr->b_crypt_hdr.b_ebufcnt -= 1; 6555 6556 arc_cksum_verify(buf); 6557 arc_buf_unwatch(buf); 6558 6559 /* if this is the last uncompressed buf free the checksum */ 6560 if (!arc_hdr_has_uncompressed_buf(hdr)) 6561 arc_cksum_free(hdr); 6562 6563 mutex_exit(hash_lock); 6564 6565 /* 6566 * Allocate a new hdr. The new hdr will contain a b_pabd 6567 * buffer which will be freed in arc_write(). 6568 */ 6569 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6570 compress, hdr->b_complevel, type, HDR_HAS_RABD(hdr)); 6571 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6572 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 6573 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6574 VERIFY3U(nhdr->b_type, ==, type); 6575 ASSERT(!HDR_SHARED_DATA(nhdr)); 6576 6577 nhdr->b_l1hdr.b_buf = buf; 6578 nhdr->b_l1hdr.b_bufcnt = 1; 6579 if (ARC_BUF_ENCRYPTED(buf)) 6580 nhdr->b_crypt_hdr.b_ebufcnt = 1; 6581 nhdr->b_l1hdr.b_mru_hits = 0; 6582 nhdr->b_l1hdr.b_mru_ghost_hits = 0; 6583 nhdr->b_l1hdr.b_mfu_hits = 0; 6584 nhdr->b_l1hdr.b_mfu_ghost_hits = 0; 6585 nhdr->b_l1hdr.b_l2_hits = 0; 6586 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6587 buf->b_hdr = nhdr; 6588 6589 mutex_exit(&buf->b_evict_lock); 6590 (void) zfs_refcount_add_many(&arc_anon->arcs_size, 6591 arc_buf_size(buf), buf); 6592 } else { 6593 mutex_exit(&buf->b_evict_lock); 6594 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6595 /* protected by hash lock, or hdr is on arc_anon */ 6596 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6597 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6598 hdr->b_l1hdr.b_mru_hits = 0; 6599 hdr->b_l1hdr.b_mru_ghost_hits = 0; 6600 hdr->b_l1hdr.b_mfu_hits = 0; 6601 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 6602 hdr->b_l1hdr.b_l2_hits = 0; 6603 arc_change_state(arc_anon, hdr, hash_lock); 6604 hdr->b_l1hdr.b_arc_access = 0; 6605 6606 mutex_exit(hash_lock); 6607 buf_discard_identity(hdr); 6608 arc_buf_thaw(buf); 6609 } 6610 } 6611 6612 int 6613 arc_released(arc_buf_t *buf) 6614 { 6615 int released; 6616 6617 mutex_enter(&buf->b_evict_lock); 6618 released = (buf->b_data != NULL && 6619 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6620 mutex_exit(&buf->b_evict_lock); 6621 return (released); 6622 } 6623 6624 #ifdef ZFS_DEBUG 6625 int 6626 arc_referenced(arc_buf_t *buf) 6627 { 6628 int referenced; 6629 6630 mutex_enter(&buf->b_evict_lock); 6631 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6632 mutex_exit(&buf->b_evict_lock); 6633 return (referenced); 6634 } 6635 #endif 6636 6637 static void 6638 arc_write_ready(zio_t *zio) 6639 { 6640 arc_write_callback_t *callback = zio->io_private; 6641 arc_buf_t *buf = callback->awcb_buf; 6642 arc_buf_hdr_t *hdr = buf->b_hdr; 6643 blkptr_t *bp = zio->io_bp; 6644 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6645 fstrans_cookie_t cookie = spl_fstrans_mark(); 6646 6647 ASSERT(HDR_HAS_L1HDR(hdr)); 6648 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6649 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 6650 6651 /* 6652 * If we're reexecuting this zio because the pool suspended, then 6653 * cleanup any state that was previously set the first time the 6654 * callback was invoked. 6655 */ 6656 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6657 arc_cksum_free(hdr); 6658 arc_buf_unwatch(buf); 6659 if (hdr->b_l1hdr.b_pabd != NULL) { 6660 if (arc_buf_is_shared(buf)) { 6661 arc_unshare_buf(hdr, buf); 6662 } else { 6663 arc_hdr_free_abd(hdr, B_FALSE); 6664 } 6665 } 6666 6667 if (HDR_HAS_RABD(hdr)) 6668 arc_hdr_free_abd(hdr, B_TRUE); 6669 } 6670 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6671 ASSERT(!HDR_HAS_RABD(hdr)); 6672 ASSERT(!HDR_SHARED_DATA(hdr)); 6673 ASSERT(!arc_buf_is_shared(buf)); 6674 6675 callback->awcb_ready(zio, buf, callback->awcb_private); 6676 6677 if (HDR_IO_IN_PROGRESS(hdr)) 6678 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6679 6680 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6681 6682 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr)) 6683 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp)); 6684 6685 if (BP_IS_PROTECTED(bp)) { 6686 /* ZIL blocks are written through zio_rewrite */ 6687 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6688 ASSERT(HDR_PROTECTED(hdr)); 6689 6690 if (BP_SHOULD_BYTESWAP(bp)) { 6691 if (BP_GET_LEVEL(bp) > 0) { 6692 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6693 } else { 6694 hdr->b_l1hdr.b_byteswap = 6695 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6696 } 6697 } else { 6698 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6699 } 6700 6701 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6702 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6703 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6704 hdr->b_crypt_hdr.b_iv); 6705 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6706 } 6707 6708 /* 6709 * If this block was written for raw encryption but the zio layer 6710 * ended up only authenticating it, adjust the buffer flags now. 6711 */ 6712 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6713 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6714 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6715 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6716 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6717 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6718 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6719 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6720 } 6721 6722 /* this must be done after the buffer flags are adjusted */ 6723 arc_cksum_compute(buf); 6724 6725 enum zio_compress compress; 6726 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6727 compress = ZIO_COMPRESS_OFF; 6728 } else { 6729 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6730 compress = BP_GET_COMPRESS(bp); 6731 } 6732 HDR_SET_PSIZE(hdr, psize); 6733 arc_hdr_set_compress(hdr, compress); 6734 hdr->b_complevel = zio->io_prop.zp_complevel; 6735 6736 if (zio->io_error != 0 || psize == 0) 6737 goto out; 6738 6739 /* 6740 * Fill the hdr with data. If the buffer is encrypted we have no choice 6741 * but to copy the data into b_radb. If the hdr is compressed, the data 6742 * we want is available from the zio, otherwise we can take it from 6743 * the buf. 6744 * 6745 * We might be able to share the buf's data with the hdr here. However, 6746 * doing so would cause the ARC to be full of linear ABDs if we write a 6747 * lot of shareable data. As a compromise, we check whether scattered 6748 * ABDs are allowed, and assume that if they are then the user wants 6749 * the ARC to be primarily filled with them regardless of the data being 6750 * written. Therefore, if they're allowed then we allocate one and copy 6751 * the data into it; otherwise, we share the data directly if we can. 6752 */ 6753 if (ARC_BUF_ENCRYPTED(buf)) { 6754 ASSERT3U(psize, >, 0); 6755 ASSERT(ARC_BUF_COMPRESSED(buf)); 6756 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6757 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6758 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) { 6759 /* 6760 * Ideally, we would always copy the io_abd into b_pabd, but the 6761 * user may have disabled compressed ARC, thus we must check the 6762 * hdr's compression setting rather than the io_bp's. 6763 */ 6764 if (BP_IS_ENCRYPTED(bp)) { 6765 ASSERT3U(psize, >, 0); 6766 arc_hdr_alloc_abd(hdr, 6767 ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6768 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6769 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6770 !ARC_BUF_COMPRESSED(buf)) { 6771 ASSERT3U(psize, >, 0); 6772 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6773 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6774 } else { 6775 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6776 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6777 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6778 arc_buf_size(buf)); 6779 } 6780 } else { 6781 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6782 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6783 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6784 6785 arc_share_buf(hdr, buf); 6786 } 6787 6788 out: 6789 arc_hdr_verify(hdr, bp); 6790 spl_fstrans_unmark(cookie); 6791 } 6792 6793 static void 6794 arc_write_children_ready(zio_t *zio) 6795 { 6796 arc_write_callback_t *callback = zio->io_private; 6797 arc_buf_t *buf = callback->awcb_buf; 6798 6799 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6800 } 6801 6802 /* 6803 * The SPA calls this callback for each physical write that happens on behalf 6804 * of a logical write. See the comment in dbuf_write_physdone() for details. 6805 */ 6806 static void 6807 arc_write_physdone(zio_t *zio) 6808 { 6809 arc_write_callback_t *cb = zio->io_private; 6810 if (cb->awcb_physdone != NULL) 6811 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 6812 } 6813 6814 static void 6815 arc_write_done(zio_t *zio) 6816 { 6817 arc_write_callback_t *callback = zio->io_private; 6818 arc_buf_t *buf = callback->awcb_buf; 6819 arc_buf_hdr_t *hdr = buf->b_hdr; 6820 6821 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6822 6823 if (zio->io_error == 0) { 6824 arc_hdr_verify(hdr, zio->io_bp); 6825 6826 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6827 buf_discard_identity(hdr); 6828 } else { 6829 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6830 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 6831 } 6832 } else { 6833 ASSERT(HDR_EMPTY(hdr)); 6834 } 6835 6836 /* 6837 * If the block to be written was all-zero or compressed enough to be 6838 * embedded in the BP, no write was performed so there will be no 6839 * dva/birth/checksum. The buffer must therefore remain anonymous 6840 * (and uncached). 6841 */ 6842 if (!HDR_EMPTY(hdr)) { 6843 arc_buf_hdr_t *exists; 6844 kmutex_t *hash_lock; 6845 6846 ASSERT3U(zio->io_error, ==, 0); 6847 6848 arc_cksum_verify(buf); 6849 6850 exists = buf_hash_insert(hdr, &hash_lock); 6851 if (exists != NULL) { 6852 /* 6853 * This can only happen if we overwrite for 6854 * sync-to-convergence, because we remove 6855 * buffers from the hash table when we arc_free(). 6856 */ 6857 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 6858 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6859 panic("bad overwrite, hdr=%p exists=%p", 6860 (void *)hdr, (void *)exists); 6861 ASSERT(zfs_refcount_is_zero( 6862 &exists->b_l1hdr.b_refcnt)); 6863 arc_change_state(arc_anon, exists, hash_lock); 6864 arc_hdr_destroy(exists); 6865 mutex_exit(hash_lock); 6866 exists = buf_hash_insert(hdr, &hash_lock); 6867 ASSERT3P(exists, ==, NULL); 6868 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 6869 /* nopwrite */ 6870 ASSERT(zio->io_prop.zp_nopwrite); 6871 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6872 panic("bad nopwrite, hdr=%p exists=%p", 6873 (void *)hdr, (void *)exists); 6874 } else { 6875 /* Dedup */ 6876 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 6877 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 6878 ASSERT(BP_GET_DEDUP(zio->io_bp)); 6879 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 6880 } 6881 } 6882 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6883 /* if it's not anon, we are doing a scrub */ 6884 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 6885 arc_access(hdr, hash_lock); 6886 mutex_exit(hash_lock); 6887 } else { 6888 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6889 } 6890 6891 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 6892 callback->awcb_done(zio, buf, callback->awcb_private); 6893 6894 abd_put(zio->io_abd); 6895 kmem_free(callback, sizeof (arc_write_callback_t)); 6896 } 6897 6898 zio_t * 6899 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 6900 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, 6901 const zio_prop_t *zp, arc_write_done_func_t *ready, 6902 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone, 6903 arc_write_done_func_t *done, void *private, zio_priority_t priority, 6904 int zio_flags, const zbookmark_phys_t *zb) 6905 { 6906 arc_buf_hdr_t *hdr = buf->b_hdr; 6907 arc_write_callback_t *callback; 6908 zio_t *zio; 6909 zio_prop_t localprop = *zp; 6910 6911 ASSERT3P(ready, !=, NULL); 6912 ASSERT3P(done, !=, NULL); 6913 ASSERT(!HDR_IO_ERROR(hdr)); 6914 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6915 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6916 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 6917 if (l2arc) 6918 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6919 6920 if (ARC_BUF_ENCRYPTED(buf)) { 6921 ASSERT(ARC_BUF_COMPRESSED(buf)); 6922 localprop.zp_encrypt = B_TRUE; 6923 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6924 localprop.zp_complevel = hdr->b_complevel; 6925 localprop.zp_byteorder = 6926 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 6927 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 6928 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt, 6929 ZIO_DATA_SALT_LEN); 6930 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv, 6931 ZIO_DATA_IV_LEN); 6932 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac, 6933 ZIO_DATA_MAC_LEN); 6934 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 6935 localprop.zp_nopwrite = B_FALSE; 6936 localprop.zp_copies = 6937 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 6938 } 6939 zio_flags |= ZIO_FLAG_RAW; 6940 } else if (ARC_BUF_COMPRESSED(buf)) { 6941 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 6942 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6943 localprop.zp_complevel = hdr->b_complevel; 6944 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6945 } 6946 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 6947 callback->awcb_ready = ready; 6948 callback->awcb_children_ready = children_ready; 6949 callback->awcb_physdone = physdone; 6950 callback->awcb_done = done; 6951 callback->awcb_private = private; 6952 callback->awcb_buf = buf; 6953 6954 /* 6955 * The hdr's b_pabd is now stale, free it now. A new data block 6956 * will be allocated when the zio pipeline calls arc_write_ready(). 6957 */ 6958 if (hdr->b_l1hdr.b_pabd != NULL) { 6959 /* 6960 * If the buf is currently sharing the data block with 6961 * the hdr then we need to break that relationship here. 6962 * The hdr will remain with a NULL data pointer and the 6963 * buf will take sole ownership of the block. 6964 */ 6965 if (arc_buf_is_shared(buf)) { 6966 arc_unshare_buf(hdr, buf); 6967 } else { 6968 arc_hdr_free_abd(hdr, B_FALSE); 6969 } 6970 VERIFY3P(buf->b_data, !=, NULL); 6971 } 6972 6973 if (HDR_HAS_RABD(hdr)) 6974 arc_hdr_free_abd(hdr, B_TRUE); 6975 6976 if (!(zio_flags & ZIO_FLAG_RAW)) 6977 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 6978 6979 ASSERT(!arc_buf_is_shared(buf)); 6980 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6981 6982 zio = zio_write(pio, spa, txg, bp, 6983 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 6984 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 6985 (children_ready != NULL) ? arc_write_children_ready : NULL, 6986 arc_write_physdone, arc_write_done, callback, 6987 priority, zio_flags, zb); 6988 6989 return (zio); 6990 } 6991 6992 void 6993 arc_tempreserve_clear(uint64_t reserve) 6994 { 6995 atomic_add_64(&arc_tempreserve, -reserve); 6996 ASSERT((int64_t)arc_tempreserve >= 0); 6997 } 6998 6999 int 7000 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 7001 { 7002 int error; 7003 uint64_t anon_size; 7004 7005 if (!arc_no_grow && 7006 reserve > arc_c/4 && 7007 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) 7008 arc_c = MIN(arc_c_max, reserve * 4); 7009 7010 /* 7011 * Throttle when the calculated memory footprint for the TXG 7012 * exceeds the target ARC size. 7013 */ 7014 if (reserve > arc_c) { 7015 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); 7016 return (SET_ERROR(ERESTART)); 7017 } 7018 7019 /* 7020 * Don't count loaned bufs as in flight dirty data to prevent long 7021 * network delays from blocking transactions that are ready to be 7022 * assigned to a txg. 7023 */ 7024 7025 /* assert that it has not wrapped around */ 7026 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 7027 7028 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) - 7029 arc_loaned_bytes), 0); 7030 7031 /* 7032 * Writes will, almost always, require additional memory allocations 7033 * in order to compress/encrypt/etc the data. We therefore need to 7034 * make sure that there is sufficient available memory for this. 7035 */ 7036 error = arc_memory_throttle(spa, reserve, txg); 7037 if (error != 0) 7038 return (error); 7039 7040 /* 7041 * Throttle writes when the amount of dirty data in the cache 7042 * gets too large. We try to keep the cache less than half full 7043 * of dirty blocks so that our sync times don't grow too large. 7044 * 7045 * In the case of one pool being built on another pool, we want 7046 * to make sure we don't end up throttling the lower (backing) 7047 * pool when the upper pool is the majority contributor to dirty 7048 * data. To insure we make forward progress during throttling, we 7049 * also check the current pool's net dirty data and only throttle 7050 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 7051 * data in the cache. 7052 * 7053 * Note: if two requests come in concurrently, we might let them 7054 * both succeed, when one of them should fail. Not a huge deal. 7055 */ 7056 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 7057 uint64_t spa_dirty_anon = spa_dirty_data(spa); 7058 7059 if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 && 7060 anon_size > arc_c * zfs_arc_anon_limit_percent / 100 && 7061 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 7062 #ifdef ZFS_DEBUG 7063 uint64_t meta_esize = zfs_refcount_count( 7064 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7065 uint64_t data_esize = 7066 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7067 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 7068 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 7069 arc_tempreserve >> 10, meta_esize >> 10, 7070 data_esize >> 10, reserve >> 10, arc_c >> 10); 7071 #endif 7072 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); 7073 return (SET_ERROR(ERESTART)); 7074 } 7075 atomic_add_64(&arc_tempreserve, reserve); 7076 return (0); 7077 } 7078 7079 static void 7080 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 7081 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 7082 { 7083 size->value.ui64 = zfs_refcount_count(&state->arcs_size); 7084 evict_data->value.ui64 = 7085 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 7086 evict_metadata->value.ui64 = 7087 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 7088 } 7089 7090 static int 7091 arc_kstat_update(kstat_t *ksp, int rw) 7092 { 7093 arc_stats_t *as = ksp->ks_data; 7094 7095 if (rw == KSTAT_WRITE) { 7096 return (SET_ERROR(EACCES)); 7097 } else { 7098 arc_kstat_update_state(arc_anon, 7099 &as->arcstat_anon_size, 7100 &as->arcstat_anon_evictable_data, 7101 &as->arcstat_anon_evictable_metadata); 7102 arc_kstat_update_state(arc_mru, 7103 &as->arcstat_mru_size, 7104 &as->arcstat_mru_evictable_data, 7105 &as->arcstat_mru_evictable_metadata); 7106 arc_kstat_update_state(arc_mru_ghost, 7107 &as->arcstat_mru_ghost_size, 7108 &as->arcstat_mru_ghost_evictable_data, 7109 &as->arcstat_mru_ghost_evictable_metadata); 7110 arc_kstat_update_state(arc_mfu, 7111 &as->arcstat_mfu_size, 7112 &as->arcstat_mfu_evictable_data, 7113 &as->arcstat_mfu_evictable_metadata); 7114 arc_kstat_update_state(arc_mfu_ghost, 7115 &as->arcstat_mfu_ghost_size, 7116 &as->arcstat_mfu_ghost_evictable_data, 7117 &as->arcstat_mfu_ghost_evictable_metadata); 7118 7119 ARCSTAT(arcstat_size) = aggsum_value(&arc_size); 7120 ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used); 7121 ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size); 7122 ARCSTAT(arcstat_metadata_size) = 7123 aggsum_value(&astat_metadata_size); 7124 ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size); 7125 ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size); 7126 ARCSTAT(arcstat_dbuf_size) = aggsum_value(&astat_dbuf_size); 7127 #if defined(COMPAT_FREEBSD11) 7128 ARCSTAT(arcstat_other_size) = aggsum_value(&astat_bonus_size) + 7129 aggsum_value(&astat_dnode_size) + 7130 aggsum_value(&astat_dbuf_size); 7131 #endif 7132 ARCSTAT(arcstat_dnode_size) = aggsum_value(&astat_dnode_size); 7133 ARCSTAT(arcstat_bonus_size) = aggsum_value(&astat_bonus_size); 7134 ARCSTAT(arcstat_abd_chunk_waste_size) = 7135 aggsum_value(&astat_abd_chunk_waste_size); 7136 7137 as->arcstat_memory_all_bytes.value.ui64 = 7138 arc_all_memory(); 7139 as->arcstat_memory_free_bytes.value.ui64 = 7140 arc_free_memory(); 7141 as->arcstat_memory_available_bytes.value.i64 = 7142 arc_available_memory(); 7143 } 7144 7145 return (0); 7146 } 7147 7148 /* 7149 * This function *must* return indices evenly distributed between all 7150 * sublists of the multilist. This is needed due to how the ARC eviction 7151 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 7152 * distributed between all sublists and uses this assumption when 7153 * deciding which sublist to evict from and how much to evict from it. 7154 */ 7155 static unsigned int 7156 arc_state_multilist_index_func(multilist_t *ml, void *obj) 7157 { 7158 arc_buf_hdr_t *hdr = obj; 7159 7160 /* 7161 * We rely on b_dva to generate evenly distributed index 7162 * numbers using buf_hash below. So, as an added precaution, 7163 * let's make sure we never add empty buffers to the arc lists. 7164 */ 7165 ASSERT(!HDR_EMPTY(hdr)); 7166 7167 /* 7168 * The assumption here, is the hash value for a given 7169 * arc_buf_hdr_t will remain constant throughout its lifetime 7170 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 7171 * Thus, we don't need to store the header's sublist index 7172 * on insertion, as this index can be recalculated on removal. 7173 * 7174 * Also, the low order bits of the hash value are thought to be 7175 * distributed evenly. Otherwise, in the case that the multilist 7176 * has a power of two number of sublists, each sublists' usage 7177 * would not be evenly distributed. 7178 */ 7179 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 7180 multilist_get_num_sublists(ml)); 7181 } 7182 7183 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ 7184 if ((do_warn) && (tuning) && ((tuning) != (value))) { \ 7185 cmn_err(CE_WARN, \ 7186 "ignoring tunable %s (using %llu instead)", \ 7187 (#tuning), (value)); \ 7188 } \ 7189 } while (0) 7190 7191 /* 7192 * Called during module initialization and periodically thereafter to 7193 * apply reasonable changes to the exposed performance tunings. Can also be 7194 * called explicitly by param_set_arc_*() functions when ARC tunables are 7195 * updated manually. Non-zero zfs_* values which differ from the currently set 7196 * values will be applied. 7197 */ 7198 void 7199 arc_tuning_update(boolean_t verbose) 7200 { 7201 uint64_t allmem = arc_all_memory(); 7202 unsigned long limit; 7203 7204 /* Valid range: 32M - <arc_c_max> */ 7205 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && 7206 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && 7207 (zfs_arc_min <= arc_c_max)) { 7208 arc_c_min = zfs_arc_min; 7209 arc_c = MAX(arc_c, arc_c_min); 7210 } 7211 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); 7212 7213 /* Valid range: 64M - <all physical memory> */ 7214 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && 7215 (zfs_arc_max >= 64 << 20) && (zfs_arc_max < allmem) && 7216 (zfs_arc_max > arc_c_min)) { 7217 arc_c_max = zfs_arc_max; 7218 arc_c = MIN(arc_c, arc_c_max); 7219 arc_p = (arc_c >> 1); 7220 if (arc_meta_limit > arc_c_max) 7221 arc_meta_limit = arc_c_max; 7222 if (arc_dnode_size_limit > arc_meta_limit) 7223 arc_dnode_size_limit = arc_meta_limit; 7224 } 7225 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); 7226 7227 /* Valid range: 16M - <arc_c_max> */ 7228 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) && 7229 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) && 7230 (zfs_arc_meta_min <= arc_c_max)) { 7231 arc_meta_min = zfs_arc_meta_min; 7232 if (arc_meta_limit < arc_meta_min) 7233 arc_meta_limit = arc_meta_min; 7234 if (arc_dnode_size_limit < arc_meta_min) 7235 arc_dnode_size_limit = arc_meta_min; 7236 } 7237 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose); 7238 7239 /* Valid range: <arc_meta_min> - <arc_c_max> */ 7240 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit : 7241 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100; 7242 if ((limit != arc_meta_limit) && 7243 (limit >= arc_meta_min) && 7244 (limit <= arc_c_max)) 7245 arc_meta_limit = limit; 7246 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose); 7247 7248 /* Valid range: <arc_meta_min> - <arc_meta_limit> */ 7249 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : 7250 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100; 7251 if ((limit != arc_dnode_size_limit) && 7252 (limit >= arc_meta_min) && 7253 (limit <= arc_meta_limit)) 7254 arc_dnode_size_limit = limit; 7255 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit, 7256 verbose); 7257 7258 /* Valid range: 1 - N */ 7259 if (zfs_arc_grow_retry) 7260 arc_grow_retry = zfs_arc_grow_retry; 7261 7262 /* Valid range: 1 - N */ 7263 if (zfs_arc_shrink_shift) { 7264 arc_shrink_shift = zfs_arc_shrink_shift; 7265 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); 7266 } 7267 7268 /* Valid range: 1 - N */ 7269 if (zfs_arc_p_min_shift) 7270 arc_p_min_shift = zfs_arc_p_min_shift; 7271 7272 /* Valid range: 1 - N ms */ 7273 if (zfs_arc_min_prefetch_ms) 7274 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; 7275 7276 /* Valid range: 1 - N ms */ 7277 if (zfs_arc_min_prescient_prefetch_ms) { 7278 arc_min_prescient_prefetch_ms = 7279 zfs_arc_min_prescient_prefetch_ms; 7280 } 7281 7282 /* Valid range: 0 - 100 */ 7283 if ((zfs_arc_lotsfree_percent >= 0) && 7284 (zfs_arc_lotsfree_percent <= 100)) 7285 arc_lotsfree_percent = zfs_arc_lotsfree_percent; 7286 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, 7287 verbose); 7288 7289 /* Valid range: 0 - <all physical memory> */ 7290 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) 7291 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem); 7292 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); 7293 } 7294 7295 static void 7296 arc_state_init(void) 7297 { 7298 arc_anon = &ARC_anon; 7299 arc_mru = &ARC_mru; 7300 arc_mru_ghost = &ARC_mru_ghost; 7301 arc_mfu = &ARC_mfu; 7302 arc_mfu_ghost = &ARC_mfu_ghost; 7303 arc_l2c_only = &ARC_l2c_only; 7304 7305 arc_mru->arcs_list[ARC_BUFC_METADATA] = 7306 multilist_create(sizeof (arc_buf_hdr_t), 7307 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7308 arc_state_multilist_index_func); 7309 arc_mru->arcs_list[ARC_BUFC_DATA] = 7310 multilist_create(sizeof (arc_buf_hdr_t), 7311 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7312 arc_state_multilist_index_func); 7313 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] = 7314 multilist_create(sizeof (arc_buf_hdr_t), 7315 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7316 arc_state_multilist_index_func); 7317 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] = 7318 multilist_create(sizeof (arc_buf_hdr_t), 7319 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7320 arc_state_multilist_index_func); 7321 arc_mfu->arcs_list[ARC_BUFC_METADATA] = 7322 multilist_create(sizeof (arc_buf_hdr_t), 7323 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7324 arc_state_multilist_index_func); 7325 arc_mfu->arcs_list[ARC_BUFC_DATA] = 7326 multilist_create(sizeof (arc_buf_hdr_t), 7327 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7328 arc_state_multilist_index_func); 7329 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] = 7330 multilist_create(sizeof (arc_buf_hdr_t), 7331 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7332 arc_state_multilist_index_func); 7333 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] = 7334 multilist_create(sizeof (arc_buf_hdr_t), 7335 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7336 arc_state_multilist_index_func); 7337 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] = 7338 multilist_create(sizeof (arc_buf_hdr_t), 7339 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7340 arc_state_multilist_index_func); 7341 arc_l2c_only->arcs_list[ARC_BUFC_DATA] = 7342 multilist_create(sizeof (arc_buf_hdr_t), 7343 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7344 arc_state_multilist_index_func); 7345 7346 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7347 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7348 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7349 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7350 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7351 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7352 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7353 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7354 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7355 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7356 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7357 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7358 7359 zfs_refcount_create(&arc_anon->arcs_size); 7360 zfs_refcount_create(&arc_mru->arcs_size); 7361 zfs_refcount_create(&arc_mru_ghost->arcs_size); 7362 zfs_refcount_create(&arc_mfu->arcs_size); 7363 zfs_refcount_create(&arc_mfu_ghost->arcs_size); 7364 zfs_refcount_create(&arc_l2c_only->arcs_size); 7365 7366 aggsum_init(&arc_meta_used, 0); 7367 aggsum_init(&arc_size, 0); 7368 aggsum_init(&astat_data_size, 0); 7369 aggsum_init(&astat_metadata_size, 0); 7370 aggsum_init(&astat_hdr_size, 0); 7371 aggsum_init(&astat_l2_hdr_size, 0); 7372 aggsum_init(&astat_bonus_size, 0); 7373 aggsum_init(&astat_dnode_size, 0); 7374 aggsum_init(&astat_dbuf_size, 0); 7375 aggsum_init(&astat_abd_chunk_waste_size, 0); 7376 7377 arc_anon->arcs_state = ARC_STATE_ANON; 7378 arc_mru->arcs_state = ARC_STATE_MRU; 7379 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7380 arc_mfu->arcs_state = ARC_STATE_MFU; 7381 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7382 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7383 } 7384 7385 static void 7386 arc_state_fini(void) 7387 { 7388 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7389 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7390 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7391 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7392 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7393 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7394 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7395 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7396 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7397 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7398 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7399 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7400 7401 zfs_refcount_destroy(&arc_anon->arcs_size); 7402 zfs_refcount_destroy(&arc_mru->arcs_size); 7403 zfs_refcount_destroy(&arc_mru_ghost->arcs_size); 7404 zfs_refcount_destroy(&arc_mfu->arcs_size); 7405 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size); 7406 zfs_refcount_destroy(&arc_l2c_only->arcs_size); 7407 7408 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]); 7409 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7410 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7411 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7412 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]); 7413 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7414 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]); 7415 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7416 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7417 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7418 7419 aggsum_fini(&arc_meta_used); 7420 aggsum_fini(&arc_size); 7421 aggsum_fini(&astat_data_size); 7422 aggsum_fini(&astat_metadata_size); 7423 aggsum_fini(&astat_hdr_size); 7424 aggsum_fini(&astat_l2_hdr_size); 7425 aggsum_fini(&astat_bonus_size); 7426 aggsum_fini(&astat_dnode_size); 7427 aggsum_fini(&astat_dbuf_size); 7428 aggsum_fini(&astat_abd_chunk_waste_size); 7429 } 7430 7431 uint64_t 7432 arc_target_bytes(void) 7433 { 7434 return (arc_c); 7435 } 7436 7437 void 7438 arc_init(void) 7439 { 7440 uint64_t percent, allmem = arc_all_memory(); 7441 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); 7442 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), 7443 offsetof(arc_evict_waiter_t, aew_node)); 7444 7445 arc_min_prefetch_ms = 1000; 7446 arc_min_prescient_prefetch_ms = 6000; 7447 7448 #if defined(_KERNEL) 7449 arc_lowmem_init(); 7450 #endif 7451 7452 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ 7453 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); 7454 7455 /* How to set default max varies by platform. */ 7456 arc_c_max = arc_default_max(arc_c_min, allmem); 7457 7458 #ifndef _KERNEL 7459 /* 7460 * In userland, there's only the memory pressure that we artificially 7461 * create (see arc_available_memory()). Don't let arc_c get too 7462 * small, because it can cause transactions to be larger than 7463 * arc_c, causing arc_tempreserve_space() to fail. 7464 */ 7465 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); 7466 #endif 7467 7468 arc_c = arc_c_min; 7469 arc_p = (arc_c >> 1); 7470 7471 /* Set min to 1/2 of arc_c_min */ 7472 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT; 7473 /* Initialize maximum observed usage to zero */ 7474 arc_meta_max = 0; 7475 /* 7476 * Set arc_meta_limit to a percent of arc_c_max with a floor of 7477 * arc_meta_min, and a ceiling of arc_c_max. 7478 */ 7479 percent = MIN(zfs_arc_meta_limit_percent, 100); 7480 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100); 7481 percent = MIN(zfs_arc_dnode_limit_percent, 100); 7482 arc_dnode_size_limit = (percent * arc_meta_limit) / 100; 7483 7484 /* Apply user specified tunings */ 7485 arc_tuning_update(B_TRUE); 7486 7487 /* if kmem_flags are set, lets try to use less memory */ 7488 if (kmem_debugging()) 7489 arc_c = arc_c / 2; 7490 if (arc_c < arc_c_min) 7491 arc_c = arc_c_min; 7492 7493 arc_state_init(); 7494 7495 buf_init(); 7496 7497 list_create(&arc_prune_list, sizeof (arc_prune_t), 7498 offsetof(arc_prune_t, p_node)); 7499 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); 7500 7501 arc_prune_taskq = taskq_create("arc_prune", boot_ncpus, defclsyspri, 7502 boot_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 7503 7504 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7505 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7506 7507 if (arc_ksp != NULL) { 7508 arc_ksp->ks_data = &arc_stats; 7509 arc_ksp->ks_update = arc_kstat_update; 7510 kstat_install(arc_ksp); 7511 } 7512 7513 arc_evict_zthr = zthr_create_timer("arc_evict", 7514 arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1)); 7515 arc_reap_zthr = zthr_create_timer("arc_reap", 7516 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1)); 7517 7518 arc_warm = B_FALSE; 7519 7520 /* 7521 * Calculate maximum amount of dirty data per pool. 7522 * 7523 * If it has been set by a module parameter, take that. 7524 * Otherwise, use a percentage of physical memory defined by 7525 * zfs_dirty_data_max_percent (default 10%) with a cap at 7526 * zfs_dirty_data_max_max (default 4G or 25% of physical memory). 7527 */ 7528 #ifdef __LP64__ 7529 if (zfs_dirty_data_max_max == 0) 7530 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, 7531 allmem * zfs_dirty_data_max_max_percent / 100); 7532 #else 7533 if (zfs_dirty_data_max_max == 0) 7534 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, 7535 allmem * zfs_dirty_data_max_max_percent / 100); 7536 #endif 7537 7538 if (zfs_dirty_data_max == 0) { 7539 zfs_dirty_data_max = allmem * 7540 zfs_dirty_data_max_percent / 100; 7541 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 7542 zfs_dirty_data_max_max); 7543 } 7544 } 7545 7546 void 7547 arc_fini(void) 7548 { 7549 arc_prune_t *p; 7550 7551 #ifdef _KERNEL 7552 arc_lowmem_fini(); 7553 #endif /* _KERNEL */ 7554 7555 /* Use B_TRUE to ensure *all* buffers are evicted */ 7556 arc_flush(NULL, B_TRUE); 7557 7558 if (arc_ksp != NULL) { 7559 kstat_delete(arc_ksp); 7560 arc_ksp = NULL; 7561 } 7562 7563 taskq_wait(arc_prune_taskq); 7564 taskq_destroy(arc_prune_taskq); 7565 7566 mutex_enter(&arc_prune_mtx); 7567 while ((p = list_head(&arc_prune_list)) != NULL) { 7568 list_remove(&arc_prune_list, p); 7569 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); 7570 zfs_refcount_destroy(&p->p_refcnt); 7571 kmem_free(p, sizeof (*p)); 7572 } 7573 mutex_exit(&arc_prune_mtx); 7574 7575 list_destroy(&arc_prune_list); 7576 mutex_destroy(&arc_prune_mtx); 7577 7578 (void) zthr_cancel(arc_evict_zthr); 7579 (void) zthr_cancel(arc_reap_zthr); 7580 7581 mutex_destroy(&arc_evict_lock); 7582 list_destroy(&arc_evict_waiters); 7583 7584 /* 7585 * Free any buffers that were tagged for destruction. This needs 7586 * to occur before arc_state_fini() runs and destroys the aggsum 7587 * values which are updated when freeing scatter ABDs. 7588 */ 7589 l2arc_do_free_on_write(); 7590 7591 /* 7592 * buf_fini() must proceed arc_state_fini() because buf_fin() may 7593 * trigger the release of kmem magazines, which can callback to 7594 * arc_space_return() which accesses aggsums freed in act_state_fini(). 7595 */ 7596 buf_fini(); 7597 arc_state_fini(); 7598 7599 /* 7600 * We destroy the zthrs after all the ARC state has been 7601 * torn down to avoid the case of them receiving any 7602 * wakeup() signals after they are destroyed. 7603 */ 7604 zthr_destroy(arc_evict_zthr); 7605 zthr_destroy(arc_reap_zthr); 7606 7607 ASSERT0(arc_loaned_bytes); 7608 } 7609 7610 /* 7611 * Level 2 ARC 7612 * 7613 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 7614 * It uses dedicated storage devices to hold cached data, which are populated 7615 * using large infrequent writes. The main role of this cache is to boost 7616 * the performance of random read workloads. The intended L2ARC devices 7617 * include short-stroked disks, solid state disks, and other media with 7618 * substantially faster read latency than disk. 7619 * 7620 * +-----------------------+ 7621 * | ARC | 7622 * +-----------------------+ 7623 * | ^ ^ 7624 * | | | 7625 * l2arc_feed_thread() arc_read() 7626 * | | | 7627 * | l2arc read | 7628 * V | | 7629 * +---------------+ | 7630 * | L2ARC | | 7631 * +---------------+ | 7632 * | ^ | 7633 * l2arc_write() | | 7634 * | | | 7635 * V | | 7636 * +-------+ +-------+ 7637 * | vdev | | vdev | 7638 * | cache | | cache | 7639 * +-------+ +-------+ 7640 * +=========+ .-----. 7641 * : L2ARC : |-_____-| 7642 * : devices : | Disks | 7643 * +=========+ `-_____-' 7644 * 7645 * Read requests are satisfied from the following sources, in order: 7646 * 7647 * 1) ARC 7648 * 2) vdev cache of L2ARC devices 7649 * 3) L2ARC devices 7650 * 4) vdev cache of disks 7651 * 5) disks 7652 * 7653 * Some L2ARC device types exhibit extremely slow write performance. 7654 * To accommodate for this there are some significant differences between 7655 * the L2ARC and traditional cache design: 7656 * 7657 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 7658 * the ARC behave as usual, freeing buffers and placing headers on ghost 7659 * lists. The ARC does not send buffers to the L2ARC during eviction as 7660 * this would add inflated write latencies for all ARC memory pressure. 7661 * 7662 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 7663 * It does this by periodically scanning buffers from the eviction-end of 7664 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 7665 * not already there. It scans until a headroom of buffers is satisfied, 7666 * which itself is a buffer for ARC eviction. If a compressible buffer is 7667 * found during scanning and selected for writing to an L2ARC device, we 7668 * temporarily boost scanning headroom during the next scan cycle to make 7669 * sure we adapt to compression effects (which might significantly reduce 7670 * the data volume we write to L2ARC). The thread that does this is 7671 * l2arc_feed_thread(), illustrated below; example sizes are included to 7672 * provide a better sense of ratio than this diagram: 7673 * 7674 * head --> tail 7675 * +---------------------+----------+ 7676 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 7677 * +---------------------+----------+ | o L2ARC eligible 7678 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 7679 * +---------------------+----------+ | 7680 * 15.9 Gbytes ^ 32 Mbytes | 7681 * headroom | 7682 * l2arc_feed_thread() 7683 * | 7684 * l2arc write hand <--[oooo]--' 7685 * | 8 Mbyte 7686 * | write max 7687 * V 7688 * +==============================+ 7689 * L2ARC dev |####|#|###|###| |####| ... | 7690 * +==============================+ 7691 * 32 Gbytes 7692 * 7693 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 7694 * evicted, then the L2ARC has cached a buffer much sooner than it probably 7695 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 7696 * safe to say that this is an uncommon case, since buffers at the end of 7697 * the ARC lists have moved there due to inactivity. 7698 * 7699 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 7700 * then the L2ARC simply misses copying some buffers. This serves as a 7701 * pressure valve to prevent heavy read workloads from both stalling the ARC 7702 * with waits and clogging the L2ARC with writes. This also helps prevent 7703 * the potential for the L2ARC to churn if it attempts to cache content too 7704 * quickly, such as during backups of the entire pool. 7705 * 7706 * 5. After system boot and before the ARC has filled main memory, there are 7707 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 7708 * lists can remain mostly static. Instead of searching from tail of these 7709 * lists as pictured, the l2arc_feed_thread() will search from the list heads 7710 * for eligible buffers, greatly increasing its chance of finding them. 7711 * 7712 * The L2ARC device write speed is also boosted during this time so that 7713 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 7714 * there are no L2ARC reads, and no fear of degrading read performance 7715 * through increased writes. 7716 * 7717 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 7718 * the vdev queue can aggregate them into larger and fewer writes. Each 7719 * device is written to in a rotor fashion, sweeping writes through 7720 * available space then repeating. 7721 * 7722 * 7. The L2ARC does not store dirty content. It never needs to flush 7723 * write buffers back to disk based storage. 7724 * 7725 * 8. If an ARC buffer is written (and dirtied) which also exists in the 7726 * L2ARC, the now stale L2ARC buffer is immediately dropped. 7727 * 7728 * The performance of the L2ARC can be tweaked by a number of tunables, which 7729 * may be necessary for different workloads: 7730 * 7731 * l2arc_write_max max write bytes per interval 7732 * l2arc_write_boost extra write bytes during device warmup 7733 * l2arc_noprefetch skip caching prefetched buffers 7734 * l2arc_headroom number of max device writes to precache 7735 * l2arc_headroom_boost when we find compressed buffers during ARC 7736 * scanning, we multiply headroom by this 7737 * percentage factor for the next scan cycle, 7738 * since more compressed buffers are likely to 7739 * be present 7740 * l2arc_feed_secs seconds between L2ARC writing 7741 * 7742 * Tunables may be removed or added as future performance improvements are 7743 * integrated, and also may become zpool properties. 7744 * 7745 * There are three key functions that control how the L2ARC warms up: 7746 * 7747 * l2arc_write_eligible() check if a buffer is eligible to cache 7748 * l2arc_write_size() calculate how much to write 7749 * l2arc_write_interval() calculate sleep delay between writes 7750 * 7751 * These three functions determine what to write, how much, and how quickly 7752 * to send writes. 7753 * 7754 * L2ARC persistence: 7755 * 7756 * When writing buffers to L2ARC, we periodically add some metadata to 7757 * make sure we can pick them up after reboot, thus dramatically reducing 7758 * the impact that any downtime has on the performance of storage systems 7759 * with large caches. 7760 * 7761 * The implementation works fairly simply by integrating the following two 7762 * modifications: 7763 * 7764 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 7765 * which is an additional piece of metadata which describes what's been 7766 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 7767 * main ARC buffers. There are 2 linked-lists of log blocks headed by 7768 * dh_start_lbps[2]. We alternate which chain we append to, so they are 7769 * time-wise and offset-wise interleaved, but that is an optimization rather 7770 * than for correctness. The log block also includes a pointer to the 7771 * previous block in its chain. 7772 * 7773 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 7774 * for our header bookkeeping purposes. This contains a device header, 7775 * which contains our top-level reference structures. We update it each 7776 * time we write a new log block, so that we're able to locate it in the 7777 * L2ARC device. If this write results in an inconsistent device header 7778 * (e.g. due to power failure), we detect this by verifying the header's 7779 * checksum and simply fail to reconstruct the L2ARC after reboot. 7780 * 7781 * Implementation diagram: 7782 * 7783 * +=== L2ARC device (not to scale) ======================================+ 7784 * | ___two newest log block pointers__.__________ | 7785 * | / \dh_start_lbps[1] | 7786 * | / \ \dh_start_lbps[0]| 7787 * |.___/__. V V | 7788 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 7789 * || hdr| ^ /^ /^ / / | 7790 * |+------+ ...--\-------/ \-----/--\------/ / | 7791 * | \--------------/ \--------------/ | 7792 * +======================================================================+ 7793 * 7794 * As can be seen on the diagram, rather than using a simple linked list, 7795 * we use a pair of linked lists with alternating elements. This is a 7796 * performance enhancement due to the fact that we only find out the 7797 * address of the next log block access once the current block has been 7798 * completely read in. Obviously, this hurts performance, because we'd be 7799 * keeping the device's I/O queue at only a 1 operation deep, thus 7800 * incurring a large amount of I/O round-trip latency. Having two lists 7801 * allows us to fetch two log blocks ahead of where we are currently 7802 * rebuilding L2ARC buffers. 7803 * 7804 * On-device data structures: 7805 * 7806 * L2ARC device header: l2arc_dev_hdr_phys_t 7807 * L2ARC log block: l2arc_log_blk_phys_t 7808 * 7809 * L2ARC reconstruction: 7810 * 7811 * When writing data, we simply write in the standard rotary fashion, 7812 * evicting buffers as we go and simply writing new data over them (writing 7813 * a new log block every now and then). This obviously means that once we 7814 * loop around the end of the device, we will start cutting into an already 7815 * committed log block (and its referenced data buffers), like so: 7816 * 7817 * current write head__ __old tail 7818 * \ / 7819 * V V 7820 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 7821 * ^ ^^^^^^^^^___________________________________ 7822 * | \ 7823 * <<nextwrite>> may overwrite this blk and/or its bufs --' 7824 * 7825 * When importing the pool, we detect this situation and use it to stop 7826 * our scanning process (see l2arc_rebuild). 7827 * 7828 * There is one significant caveat to consider when rebuilding ARC contents 7829 * from an L2ARC device: what about invalidated buffers? Given the above 7830 * construction, we cannot update blocks which we've already written to amend 7831 * them to remove buffers which were invalidated. Thus, during reconstruction, 7832 * we might be populating the cache with buffers for data that's not on the 7833 * main pool anymore, or may have been overwritten! 7834 * 7835 * As it turns out, this isn't a problem. Every arc_read request includes 7836 * both the DVA and, crucially, the birth TXG of the BP the caller is 7837 * looking for. So even if the cache were populated by completely rotten 7838 * blocks for data that had been long deleted and/or overwritten, we'll 7839 * never actually return bad data from the cache, since the DVA with the 7840 * birth TXG uniquely identify a block in space and time - once created, 7841 * a block is immutable on disk. The worst thing we have done is wasted 7842 * some time and memory at l2arc rebuild to reconstruct outdated ARC 7843 * entries that will get dropped from the l2arc as it is being updated 7844 * with new blocks. 7845 * 7846 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 7847 * hand are not restored. This is done by saving the offset (in bytes) 7848 * l2arc_evict() has evicted to in the L2ARC device header and taking it 7849 * into account when restoring buffers. 7850 */ 7851 7852 static boolean_t 7853 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 7854 { 7855 /* 7856 * A buffer is *not* eligible for the L2ARC if it: 7857 * 1. belongs to a different spa. 7858 * 2. is already cached on the L2ARC. 7859 * 3. has an I/O in progress (it may be an incomplete read). 7860 * 4. is flagged not eligible (zfs property). 7861 */ 7862 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 7863 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 7864 return (B_FALSE); 7865 7866 return (B_TRUE); 7867 } 7868 7869 static uint64_t 7870 l2arc_write_size(l2arc_dev_t *dev) 7871 { 7872 uint64_t size, dev_size, tsize; 7873 7874 /* 7875 * Make sure our globals have meaningful values in case the user 7876 * altered them. 7877 */ 7878 size = l2arc_write_max; 7879 if (size == 0) { 7880 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 7881 "be greater than zero, resetting it to the default (%d)", 7882 L2ARC_WRITE_SIZE); 7883 size = l2arc_write_max = L2ARC_WRITE_SIZE; 7884 } 7885 7886 if (arc_warm == B_FALSE) 7887 size += l2arc_write_boost; 7888 7889 /* 7890 * Make sure the write size does not exceed the size of the cache 7891 * device. This is important in l2arc_evict(), otherwise infinite 7892 * iteration can occur. 7893 */ 7894 dev_size = dev->l2ad_end - dev->l2ad_start; 7895 tsize = size + l2arc_log_blk_overhead(size, dev); 7896 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) 7897 tsize += MAX(64 * 1024 * 1024, 7898 (tsize * l2arc_trim_ahead) / 100); 7899 7900 if (tsize >= dev_size) { 7901 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " 7902 "plus the overhead of log blocks (persistent L2ARC, " 7903 "%llu bytes) exceeds the size of the cache device " 7904 "(guid %llu), resetting them to the default (%d)", 7905 l2arc_log_blk_overhead(size, dev), 7906 dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); 7907 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; 7908 7909 if (arc_warm == B_FALSE) 7910 size += l2arc_write_boost; 7911 } 7912 7913 return (size); 7914 7915 } 7916 7917 static clock_t 7918 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 7919 { 7920 clock_t interval, next, now; 7921 7922 /* 7923 * If the ARC lists are busy, increase our write rate; if the 7924 * lists are stale, idle back. This is achieved by checking 7925 * how much we previously wrote - if it was more than half of 7926 * what we wanted, schedule the next write much sooner. 7927 */ 7928 if (l2arc_feed_again && wrote > (wanted / 2)) 7929 interval = (hz * l2arc_feed_min_ms) / 1000; 7930 else 7931 interval = hz * l2arc_feed_secs; 7932 7933 now = ddi_get_lbolt(); 7934 next = MAX(now, MIN(now + interval, began + interval)); 7935 7936 return (next); 7937 } 7938 7939 /* 7940 * Cycle through L2ARC devices. This is how L2ARC load balances. 7941 * If a device is returned, this also returns holding the spa config lock. 7942 */ 7943 static l2arc_dev_t * 7944 l2arc_dev_get_next(void) 7945 { 7946 l2arc_dev_t *first, *next = NULL; 7947 7948 /* 7949 * Lock out the removal of spas (spa_namespace_lock), then removal 7950 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 7951 * both locks will be dropped and a spa config lock held instead. 7952 */ 7953 mutex_enter(&spa_namespace_lock); 7954 mutex_enter(&l2arc_dev_mtx); 7955 7956 /* if there are no vdevs, there is nothing to do */ 7957 if (l2arc_ndev == 0) 7958 goto out; 7959 7960 first = NULL; 7961 next = l2arc_dev_last; 7962 do { 7963 /* loop around the list looking for a non-faulted vdev */ 7964 if (next == NULL) { 7965 next = list_head(l2arc_dev_list); 7966 } else { 7967 next = list_next(l2arc_dev_list, next); 7968 if (next == NULL) 7969 next = list_head(l2arc_dev_list); 7970 } 7971 7972 /* if we have come back to the start, bail out */ 7973 if (first == NULL) 7974 first = next; 7975 else if (next == first) 7976 break; 7977 7978 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 7979 next->l2ad_trim_all); 7980 7981 /* if we were unable to find any usable vdevs, return NULL */ 7982 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 7983 next->l2ad_trim_all) 7984 next = NULL; 7985 7986 l2arc_dev_last = next; 7987 7988 out: 7989 mutex_exit(&l2arc_dev_mtx); 7990 7991 /* 7992 * Grab the config lock to prevent the 'next' device from being 7993 * removed while we are writing to it. 7994 */ 7995 if (next != NULL) 7996 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 7997 mutex_exit(&spa_namespace_lock); 7998 7999 return (next); 8000 } 8001 8002 /* 8003 * Free buffers that were tagged for destruction. 8004 */ 8005 static void 8006 l2arc_do_free_on_write(void) 8007 { 8008 list_t *buflist; 8009 l2arc_data_free_t *df, *df_prev; 8010 8011 mutex_enter(&l2arc_free_on_write_mtx); 8012 buflist = l2arc_free_on_write; 8013 8014 for (df = list_tail(buflist); df; df = df_prev) { 8015 df_prev = list_prev(buflist, df); 8016 ASSERT3P(df->l2df_abd, !=, NULL); 8017 abd_free(df->l2df_abd); 8018 list_remove(buflist, df); 8019 kmem_free(df, sizeof (l2arc_data_free_t)); 8020 } 8021 8022 mutex_exit(&l2arc_free_on_write_mtx); 8023 } 8024 8025 /* 8026 * A write to a cache device has completed. Update all headers to allow 8027 * reads from these buffers to begin. 8028 */ 8029 static void 8030 l2arc_write_done(zio_t *zio) 8031 { 8032 l2arc_write_callback_t *cb; 8033 l2arc_lb_abd_buf_t *abd_buf; 8034 l2arc_lb_ptr_buf_t *lb_ptr_buf; 8035 l2arc_dev_t *dev; 8036 l2arc_dev_hdr_phys_t *l2dhdr; 8037 list_t *buflist; 8038 arc_buf_hdr_t *head, *hdr, *hdr_prev; 8039 kmutex_t *hash_lock; 8040 int64_t bytes_dropped = 0; 8041 8042 cb = zio->io_private; 8043 ASSERT3P(cb, !=, NULL); 8044 dev = cb->l2wcb_dev; 8045 l2dhdr = dev->l2ad_dev_hdr; 8046 ASSERT3P(dev, !=, NULL); 8047 head = cb->l2wcb_head; 8048 ASSERT3P(head, !=, NULL); 8049 buflist = &dev->l2ad_buflist; 8050 ASSERT3P(buflist, !=, NULL); 8051 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 8052 l2arc_write_callback_t *, cb); 8053 8054 if (zio->io_error != 0) 8055 ARCSTAT_BUMP(arcstat_l2_writes_error); 8056 8057 /* 8058 * All writes completed, or an error was hit. 8059 */ 8060 top: 8061 mutex_enter(&dev->l2ad_mtx); 8062 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 8063 hdr_prev = list_prev(buflist, hdr); 8064 8065 hash_lock = HDR_LOCK(hdr); 8066 8067 /* 8068 * We cannot use mutex_enter or else we can deadlock 8069 * with l2arc_write_buffers (due to swapping the order 8070 * the hash lock and l2ad_mtx are taken). 8071 */ 8072 if (!mutex_tryenter(hash_lock)) { 8073 /* 8074 * Missed the hash lock. We must retry so we 8075 * don't leave the ARC_FLAG_L2_WRITING bit set. 8076 */ 8077 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 8078 8079 /* 8080 * We don't want to rescan the headers we've 8081 * already marked as having been written out, so 8082 * we reinsert the head node so we can pick up 8083 * where we left off. 8084 */ 8085 list_remove(buflist, head); 8086 list_insert_after(buflist, hdr, head); 8087 8088 mutex_exit(&dev->l2ad_mtx); 8089 8090 /* 8091 * We wait for the hash lock to become available 8092 * to try and prevent busy waiting, and increase 8093 * the chance we'll be able to acquire the lock 8094 * the next time around. 8095 */ 8096 mutex_enter(hash_lock); 8097 mutex_exit(hash_lock); 8098 goto top; 8099 } 8100 8101 /* 8102 * We could not have been moved into the arc_l2c_only 8103 * state while in-flight due to our ARC_FLAG_L2_WRITING 8104 * bit being set. Let's just ensure that's being enforced. 8105 */ 8106 ASSERT(HDR_HAS_L1HDR(hdr)); 8107 8108 /* 8109 * Skipped - drop L2ARC entry and mark the header as no 8110 * longer L2 eligibile. 8111 */ 8112 if (zio->io_error != 0) { 8113 /* 8114 * Error - drop L2ARC entry. 8115 */ 8116 list_remove(buflist, hdr); 8117 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 8118 8119 uint64_t psize = HDR_GET_PSIZE(hdr); 8120 ARCSTAT_INCR(arcstat_l2_psize, -psize); 8121 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr)); 8122 8123 bytes_dropped += 8124 vdev_psize_to_asize(dev->l2ad_vdev, psize); 8125 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 8126 arc_hdr_size(hdr), hdr); 8127 } 8128 8129 /* 8130 * Allow ARC to begin reads and ghost list evictions to 8131 * this L2ARC entry. 8132 */ 8133 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 8134 8135 mutex_exit(hash_lock); 8136 } 8137 8138 /* 8139 * Free the allocated abd buffers for writing the log blocks. 8140 * If the zio failed reclaim the allocated space and remove the 8141 * pointers to these log blocks from the log block pointer list 8142 * of the L2ARC device. 8143 */ 8144 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 8145 abd_free(abd_buf->abd); 8146 zio_buf_free(abd_buf, sizeof (*abd_buf)); 8147 if (zio->io_error != 0) { 8148 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 8149 /* 8150 * L2BLK_GET_PSIZE returns aligned size for log 8151 * blocks. 8152 */ 8153 uint64_t asize = 8154 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 8155 bytes_dropped += asize; 8156 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8157 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8158 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8159 lb_ptr_buf); 8160 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8161 kmem_free(lb_ptr_buf->lb_ptr, 8162 sizeof (l2arc_log_blkptr_t)); 8163 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8164 } 8165 } 8166 list_destroy(&cb->l2wcb_abd_list); 8167 8168 if (zio->io_error != 0) { 8169 /* 8170 * Restore the lbps array in the header to its previous state. 8171 * If the list of log block pointers is empty, zero out the 8172 * log block pointers in the device header. 8173 */ 8174 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 8175 for (int i = 0; i < 2; i++) { 8176 if (lb_ptr_buf == NULL) { 8177 /* 8178 * If the list is empty zero out the device 8179 * header. Otherwise zero out the second log 8180 * block pointer in the header. 8181 */ 8182 if (i == 0) { 8183 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 8184 } else { 8185 bzero(&l2dhdr->dh_start_lbps[i], 8186 sizeof (l2arc_log_blkptr_t)); 8187 } 8188 break; 8189 } 8190 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i], 8191 sizeof (l2arc_log_blkptr_t)); 8192 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 8193 lb_ptr_buf); 8194 } 8195 } 8196 8197 atomic_inc_64(&l2arc_writes_done); 8198 list_remove(buflist, head); 8199 ASSERT(!HDR_HAS_L1HDR(head)); 8200 kmem_cache_free(hdr_l2only_cache, head); 8201 mutex_exit(&dev->l2ad_mtx); 8202 8203 ASSERT(dev->l2ad_vdev != NULL); 8204 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 8205 8206 l2arc_do_free_on_write(); 8207 8208 kmem_free(cb, sizeof (l2arc_write_callback_t)); 8209 } 8210 8211 static int 8212 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 8213 { 8214 int ret; 8215 spa_t *spa = zio->io_spa; 8216 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 8217 blkptr_t *bp = zio->io_bp; 8218 uint8_t salt[ZIO_DATA_SALT_LEN]; 8219 uint8_t iv[ZIO_DATA_IV_LEN]; 8220 uint8_t mac[ZIO_DATA_MAC_LEN]; 8221 boolean_t no_crypt = B_FALSE; 8222 8223 /* 8224 * ZIL data is never be written to the L2ARC, so we don't need 8225 * special handling for its unique MAC storage. 8226 */ 8227 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 8228 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 8229 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8230 8231 /* 8232 * If the data was encrypted, decrypt it now. Note that 8233 * we must check the bp here and not the hdr, since the 8234 * hdr does not have its encryption parameters updated 8235 * until arc_read_done(). 8236 */ 8237 if (BP_IS_ENCRYPTED(bp)) { 8238 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8239 B_TRUE); 8240 8241 zio_crypt_decode_params_bp(bp, salt, iv); 8242 zio_crypt_decode_mac_bp(bp, mac); 8243 8244 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 8245 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 8246 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 8247 hdr->b_l1hdr.b_pabd, &no_crypt); 8248 if (ret != 0) { 8249 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8250 goto error; 8251 } 8252 8253 /* 8254 * If we actually performed decryption, replace b_pabd 8255 * with the decrypted data. Otherwise we can just throw 8256 * our decryption buffer away. 8257 */ 8258 if (!no_crypt) { 8259 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8260 arc_hdr_size(hdr), hdr); 8261 hdr->b_l1hdr.b_pabd = eabd; 8262 zio->io_abd = eabd; 8263 } else { 8264 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8265 } 8266 } 8267 8268 /* 8269 * If the L2ARC block was compressed, but ARC compression 8270 * is disabled we decompress the data into a new buffer and 8271 * replace the existing data. 8272 */ 8273 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8274 !HDR_COMPRESSION_ENABLED(hdr)) { 8275 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8276 B_TRUE); 8277 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 8278 8279 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 8280 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 8281 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 8282 if (ret != 0) { 8283 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8284 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 8285 goto error; 8286 } 8287 8288 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8289 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8290 arc_hdr_size(hdr), hdr); 8291 hdr->b_l1hdr.b_pabd = cabd; 8292 zio->io_abd = cabd; 8293 zio->io_size = HDR_GET_LSIZE(hdr); 8294 } 8295 8296 return (0); 8297 8298 error: 8299 return (ret); 8300 } 8301 8302 8303 /* 8304 * A read to a cache device completed. Validate buffer contents before 8305 * handing over to the regular ARC routines. 8306 */ 8307 static void 8308 l2arc_read_done(zio_t *zio) 8309 { 8310 int tfm_error = 0; 8311 l2arc_read_callback_t *cb = zio->io_private; 8312 arc_buf_hdr_t *hdr; 8313 kmutex_t *hash_lock; 8314 boolean_t valid_cksum; 8315 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 8316 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 8317 8318 ASSERT3P(zio->io_vd, !=, NULL); 8319 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 8320 8321 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 8322 8323 ASSERT3P(cb, !=, NULL); 8324 hdr = cb->l2rcb_hdr; 8325 ASSERT3P(hdr, !=, NULL); 8326 8327 hash_lock = HDR_LOCK(hdr); 8328 mutex_enter(hash_lock); 8329 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 8330 8331 /* 8332 * If the data was read into a temporary buffer, 8333 * move it and free the buffer. 8334 */ 8335 if (cb->l2rcb_abd != NULL) { 8336 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 8337 if (zio->io_error == 0) { 8338 if (using_rdata) { 8339 abd_copy(hdr->b_crypt_hdr.b_rabd, 8340 cb->l2rcb_abd, arc_hdr_size(hdr)); 8341 } else { 8342 abd_copy(hdr->b_l1hdr.b_pabd, 8343 cb->l2rcb_abd, arc_hdr_size(hdr)); 8344 } 8345 } 8346 8347 /* 8348 * The following must be done regardless of whether 8349 * there was an error: 8350 * - free the temporary buffer 8351 * - point zio to the real ARC buffer 8352 * - set zio size accordingly 8353 * These are required because zio is either re-used for 8354 * an I/O of the block in the case of the error 8355 * or the zio is passed to arc_read_done() and it 8356 * needs real data. 8357 */ 8358 abd_free(cb->l2rcb_abd); 8359 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8360 8361 if (using_rdata) { 8362 ASSERT(HDR_HAS_RABD(hdr)); 8363 zio->io_abd = zio->io_orig_abd = 8364 hdr->b_crypt_hdr.b_rabd; 8365 } else { 8366 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8367 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8368 } 8369 } 8370 8371 ASSERT3P(zio->io_abd, !=, NULL); 8372 8373 /* 8374 * Check this survived the L2ARC journey. 8375 */ 8376 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8377 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8378 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8379 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8380 zio->io_prop.zp_complevel = hdr->b_complevel; 8381 8382 valid_cksum = arc_cksum_is_equal(hdr, zio); 8383 8384 /* 8385 * b_rabd will always match the data as it exists on disk if it is 8386 * being used. Therefore if we are reading into b_rabd we do not 8387 * attempt to untransform the data. 8388 */ 8389 if (valid_cksum && !using_rdata) 8390 tfm_error = l2arc_untransform(zio, cb); 8391 8392 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8393 !HDR_L2_EVICTED(hdr)) { 8394 mutex_exit(hash_lock); 8395 zio->io_private = hdr; 8396 arc_read_done(zio); 8397 } else { 8398 /* 8399 * Buffer didn't survive caching. Increment stats and 8400 * reissue to the original storage device. 8401 */ 8402 if (zio->io_error != 0) { 8403 ARCSTAT_BUMP(arcstat_l2_io_error); 8404 } else { 8405 zio->io_error = SET_ERROR(EIO); 8406 } 8407 if (!valid_cksum || tfm_error != 0) 8408 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8409 8410 /* 8411 * If there's no waiter, issue an async i/o to the primary 8412 * storage now. If there *is* a waiter, the caller must 8413 * issue the i/o in a context where it's OK to block. 8414 */ 8415 if (zio->io_waiter == NULL) { 8416 zio_t *pio = zio_unique_parent(zio); 8417 void *abd = (using_rdata) ? 8418 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8419 8420 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8421 8422 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8423 abd, zio->io_size, arc_read_done, 8424 hdr, zio->io_priority, cb->l2rcb_flags, 8425 &cb->l2rcb_zb); 8426 8427 /* 8428 * Original ZIO will be freed, so we need to update 8429 * ARC header with the new ZIO pointer to be used 8430 * by zio_change_priority() in arc_read(). 8431 */ 8432 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8433 acb != NULL; acb = acb->acb_next) 8434 acb->acb_zio_head = zio; 8435 8436 mutex_exit(hash_lock); 8437 zio_nowait(zio); 8438 } else { 8439 mutex_exit(hash_lock); 8440 } 8441 } 8442 8443 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8444 } 8445 8446 /* 8447 * This is the list priority from which the L2ARC will search for pages to 8448 * cache. This is used within loops (0..3) to cycle through lists in the 8449 * desired order. This order can have a significant effect on cache 8450 * performance. 8451 * 8452 * Currently the metadata lists are hit first, MFU then MRU, followed by 8453 * the data lists. This function returns a locked list, and also returns 8454 * the lock pointer. 8455 */ 8456 static multilist_sublist_t * 8457 l2arc_sublist_lock(int list_num) 8458 { 8459 multilist_t *ml = NULL; 8460 unsigned int idx; 8461 8462 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8463 8464 switch (list_num) { 8465 case 0: 8466 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8467 break; 8468 case 1: 8469 ml = arc_mru->arcs_list[ARC_BUFC_METADATA]; 8470 break; 8471 case 2: 8472 ml = arc_mfu->arcs_list[ARC_BUFC_DATA]; 8473 break; 8474 case 3: 8475 ml = arc_mru->arcs_list[ARC_BUFC_DATA]; 8476 break; 8477 default: 8478 return (NULL); 8479 } 8480 8481 /* 8482 * Return a randomly-selected sublist. This is acceptable 8483 * because the caller feeds only a little bit of data for each 8484 * call (8MB). Subsequent calls will result in different 8485 * sublists being selected. 8486 */ 8487 idx = multilist_get_random_index(ml); 8488 return (multilist_sublist_lock(ml, idx)); 8489 } 8490 8491 /* 8492 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8493 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8494 * overhead in processing to make sure there is enough headroom available 8495 * when writing buffers. 8496 */ 8497 static inline uint64_t 8498 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8499 { 8500 if (dev->l2ad_log_entries == 0) { 8501 return (0); 8502 } else { 8503 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 8504 8505 uint64_t log_blocks = (log_entries + 8506 dev->l2ad_log_entries - 1) / 8507 dev->l2ad_log_entries; 8508 8509 return (vdev_psize_to_asize(dev->l2ad_vdev, 8510 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 8511 } 8512 } 8513 8514 /* 8515 * Evict buffers from the device write hand to the distance specified in 8516 * bytes. This distance may span populated buffers, it may span nothing. 8517 * This is clearing a region on the L2ARC device ready for writing. 8518 * If the 'all' boolean is set, every buffer is evicted. 8519 */ 8520 static void 8521 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 8522 { 8523 list_t *buflist; 8524 arc_buf_hdr_t *hdr, *hdr_prev; 8525 kmutex_t *hash_lock; 8526 uint64_t taddr; 8527 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 8528 vdev_t *vd = dev->l2ad_vdev; 8529 boolean_t rerun; 8530 8531 buflist = &dev->l2ad_buflist; 8532 8533 /* 8534 * We need to add in the worst case scenario of log block overhead. 8535 */ 8536 distance += l2arc_log_blk_overhead(distance, dev); 8537 if (vd->vdev_has_trim && l2arc_trim_ahead > 0) { 8538 /* 8539 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) 8540 * times the write size, whichever is greater. 8541 */ 8542 distance += MAX(64 * 1024 * 1024, 8543 (distance * l2arc_trim_ahead) / 100); 8544 } 8545 8546 top: 8547 rerun = B_FALSE; 8548 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) { 8549 /* 8550 * When there is no space to accommodate upcoming writes, 8551 * evict to the end. Then bump the write and evict hands 8552 * to the start and iterate. This iteration does not 8553 * happen indefinitely as we make sure in 8554 * l2arc_write_size() that when the write hand is reset, 8555 * the write size does not exceed the end of the device. 8556 */ 8557 rerun = B_TRUE; 8558 taddr = dev->l2ad_end; 8559 } else { 8560 taddr = dev->l2ad_hand + distance; 8561 } 8562 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 8563 uint64_t, taddr, boolean_t, all); 8564 8565 if (!all) { 8566 /* 8567 * This check has to be placed after deciding whether to 8568 * iterate (rerun). 8569 */ 8570 if (dev->l2ad_first) { 8571 /* 8572 * This is the first sweep through the device. There is 8573 * nothing to evict. We have already trimmmed the 8574 * whole device. 8575 */ 8576 goto out; 8577 } else { 8578 /* 8579 * Trim the space to be evicted. 8580 */ 8581 if (vd->vdev_has_trim && dev->l2ad_evict < taddr && 8582 l2arc_trim_ahead > 0) { 8583 /* 8584 * We have to drop the spa_config lock because 8585 * vdev_trim_range() will acquire it. 8586 * l2ad_evict already accounts for the label 8587 * size. To prevent vdev_trim_ranges() from 8588 * adding it again, we subtract it from 8589 * l2ad_evict. 8590 */ 8591 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); 8592 vdev_trim_simple(vd, 8593 dev->l2ad_evict - VDEV_LABEL_START_SIZE, 8594 taddr - dev->l2ad_evict); 8595 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, 8596 RW_READER); 8597 } 8598 8599 /* 8600 * When rebuilding L2ARC we retrieve the evict hand 8601 * from the header of the device. Of note, l2arc_evict() 8602 * does not actually delete buffers from the cache 8603 * device, but trimming may do so depending on the 8604 * hardware implementation. Thus keeping track of the 8605 * evict hand is useful. 8606 */ 8607 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 8608 } 8609 } 8610 8611 retry: 8612 mutex_enter(&dev->l2ad_mtx); 8613 /* 8614 * We have to account for evicted log blocks. Run vdev_space_update() 8615 * on log blocks whose offset (in bytes) is before the evicted offset 8616 * (in bytes) by searching in the list of pointers to log blocks 8617 * present in the L2ARC device. 8618 */ 8619 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 8620 lb_ptr_buf = lb_ptr_buf_prev) { 8621 8622 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 8623 8624 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 8625 uint64_t asize = L2BLK_GET_PSIZE( 8626 (lb_ptr_buf->lb_ptr)->lbp_prop); 8627 8628 /* 8629 * We don't worry about log blocks left behind (ie 8630 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 8631 * will never write more than l2arc_evict() evicts. 8632 */ 8633 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 8634 break; 8635 } else { 8636 vdev_space_update(vd, -asize, 0, 0); 8637 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8638 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8639 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8640 lb_ptr_buf); 8641 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8642 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 8643 kmem_free(lb_ptr_buf->lb_ptr, 8644 sizeof (l2arc_log_blkptr_t)); 8645 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8646 } 8647 } 8648 8649 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 8650 hdr_prev = list_prev(buflist, hdr); 8651 8652 ASSERT(!HDR_EMPTY(hdr)); 8653 hash_lock = HDR_LOCK(hdr); 8654 8655 /* 8656 * We cannot use mutex_enter or else we can deadlock 8657 * with l2arc_write_buffers (due to swapping the order 8658 * the hash lock and l2ad_mtx are taken). 8659 */ 8660 if (!mutex_tryenter(hash_lock)) { 8661 /* 8662 * Missed the hash lock. Retry. 8663 */ 8664 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 8665 mutex_exit(&dev->l2ad_mtx); 8666 mutex_enter(hash_lock); 8667 mutex_exit(hash_lock); 8668 goto retry; 8669 } 8670 8671 /* 8672 * A header can't be on this list if it doesn't have L2 header. 8673 */ 8674 ASSERT(HDR_HAS_L2HDR(hdr)); 8675 8676 /* Ensure this header has finished being written. */ 8677 ASSERT(!HDR_L2_WRITING(hdr)); 8678 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 8679 8680 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 8681 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 8682 /* 8683 * We've evicted to the target address, 8684 * or the end of the device. 8685 */ 8686 mutex_exit(hash_lock); 8687 break; 8688 } 8689 8690 if (!HDR_HAS_L1HDR(hdr)) { 8691 ASSERT(!HDR_L2_READING(hdr)); 8692 /* 8693 * This doesn't exist in the ARC. Destroy. 8694 * arc_hdr_destroy() will call list_remove() 8695 * and decrement arcstat_l2_lsize. 8696 */ 8697 arc_change_state(arc_anon, hdr, hash_lock); 8698 arc_hdr_destroy(hdr); 8699 } else { 8700 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 8701 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 8702 /* 8703 * Invalidate issued or about to be issued 8704 * reads, since we may be about to write 8705 * over this location. 8706 */ 8707 if (HDR_L2_READING(hdr)) { 8708 ARCSTAT_BUMP(arcstat_l2_evict_reading); 8709 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 8710 } 8711 8712 arc_hdr_l2hdr_destroy(hdr); 8713 } 8714 mutex_exit(hash_lock); 8715 } 8716 mutex_exit(&dev->l2ad_mtx); 8717 8718 out: 8719 /* 8720 * We need to check if we evict all buffers, otherwise we may iterate 8721 * unnecessarily. 8722 */ 8723 if (!all && rerun) { 8724 /* 8725 * Bump device hand to the device start if it is approaching the 8726 * end. l2arc_evict() has already evicted ahead for this case. 8727 */ 8728 dev->l2ad_hand = dev->l2ad_start; 8729 dev->l2ad_evict = dev->l2ad_start; 8730 dev->l2ad_first = B_FALSE; 8731 goto top; 8732 } 8733 8734 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); 8735 if (!dev->l2ad_first) 8736 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict); 8737 } 8738 8739 /* 8740 * Handle any abd transforms that might be required for writing to the L2ARC. 8741 * If successful, this function will always return an abd with the data 8742 * transformed as it is on disk in a new abd of asize bytes. 8743 */ 8744 static int 8745 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 8746 abd_t **abd_out) 8747 { 8748 int ret; 8749 void *tmp = NULL; 8750 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 8751 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 8752 uint64_t psize = HDR_GET_PSIZE(hdr); 8753 uint64_t size = arc_hdr_size(hdr); 8754 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 8755 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 8756 dsl_crypto_key_t *dck = NULL; 8757 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 8758 boolean_t no_crypt = B_FALSE; 8759 8760 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8761 !HDR_COMPRESSION_ENABLED(hdr)) || 8762 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 8763 ASSERT3U(psize, <=, asize); 8764 8765 /* 8766 * If this data simply needs its own buffer, we simply allocate it 8767 * and copy the data. This may be done to eliminate a dependency on a 8768 * shared buffer or to reallocate the buffer to match asize. 8769 */ 8770 if (HDR_HAS_RABD(hdr) && asize != psize) { 8771 ASSERT3U(asize, >=, psize); 8772 to_write = abd_alloc_for_io(asize, ismd); 8773 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 8774 if (psize != asize) 8775 abd_zero_off(to_write, psize, asize - psize); 8776 goto out; 8777 } 8778 8779 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 8780 !HDR_ENCRYPTED(hdr)) { 8781 ASSERT3U(size, ==, psize); 8782 to_write = abd_alloc_for_io(asize, ismd); 8783 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 8784 if (size != asize) 8785 abd_zero_off(to_write, size, asize - size); 8786 goto out; 8787 } 8788 8789 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 8790 cabd = abd_alloc_for_io(asize, ismd); 8791 tmp = abd_borrow_buf(cabd, asize); 8792 8793 psize = zio_compress_data(compress, to_write, tmp, size, 8794 hdr->b_complevel); 8795 8796 if (psize >= size) { 8797 abd_return_buf(cabd, tmp, asize); 8798 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 8799 to_write = cabd; 8800 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 8801 if (size != asize) 8802 abd_zero_off(to_write, size, asize - size); 8803 goto encrypt; 8804 } 8805 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); 8806 if (psize < asize) 8807 bzero((char *)tmp + psize, asize - psize); 8808 psize = HDR_GET_PSIZE(hdr); 8809 abd_return_buf_copy(cabd, tmp, asize); 8810 to_write = cabd; 8811 } 8812 8813 encrypt: 8814 if (HDR_ENCRYPTED(hdr)) { 8815 eabd = abd_alloc_for_io(asize, ismd); 8816 8817 /* 8818 * If the dataset was disowned before the buffer 8819 * made it to this point, the key to re-encrypt 8820 * it won't be available. In this case we simply 8821 * won't write the buffer to the L2ARC. 8822 */ 8823 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 8824 FTAG, &dck); 8825 if (ret != 0) 8826 goto error; 8827 8828 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 8829 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 8830 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 8831 &no_crypt); 8832 if (ret != 0) 8833 goto error; 8834 8835 if (no_crypt) 8836 abd_copy(eabd, to_write, psize); 8837 8838 if (psize != asize) 8839 abd_zero_off(eabd, psize, asize - psize); 8840 8841 /* assert that the MAC we got here matches the one we saved */ 8842 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 8843 spa_keystore_dsl_key_rele(spa, dck, FTAG); 8844 8845 if (to_write == cabd) 8846 abd_free(cabd); 8847 8848 to_write = eabd; 8849 } 8850 8851 out: 8852 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 8853 *abd_out = to_write; 8854 return (0); 8855 8856 error: 8857 if (dck != NULL) 8858 spa_keystore_dsl_key_rele(spa, dck, FTAG); 8859 if (cabd != NULL) 8860 abd_free(cabd); 8861 if (eabd != NULL) 8862 abd_free(eabd); 8863 8864 *abd_out = NULL; 8865 return (ret); 8866 } 8867 8868 static void 8869 l2arc_blk_fetch_done(zio_t *zio) 8870 { 8871 l2arc_read_callback_t *cb; 8872 8873 cb = zio->io_private; 8874 if (cb->l2rcb_abd != NULL) 8875 abd_put(cb->l2rcb_abd); 8876 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8877 } 8878 8879 /* 8880 * Find and write ARC buffers to the L2ARC device. 8881 * 8882 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 8883 * for reading until they have completed writing. 8884 * The headroom_boost is an in-out parameter used to maintain headroom boost 8885 * state between calls to this function. 8886 * 8887 * Returns the number of bytes actually written (which may be smaller than 8888 * the delta by which the device hand has changed due to alignment and the 8889 * writing of log blocks). 8890 */ 8891 static uint64_t 8892 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 8893 { 8894 arc_buf_hdr_t *hdr, *hdr_prev, *head; 8895 uint64_t write_asize, write_psize, write_lsize, headroom; 8896 boolean_t full; 8897 l2arc_write_callback_t *cb = NULL; 8898 zio_t *pio, *wzio; 8899 uint64_t guid = spa_load_guid(spa); 8900 8901 ASSERT3P(dev->l2ad_vdev, !=, NULL); 8902 8903 pio = NULL; 8904 write_lsize = write_asize = write_psize = 0; 8905 full = B_FALSE; 8906 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 8907 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 8908 8909 /* 8910 * Copy buffers for L2ARC writing. 8911 */ 8912 for (int try = 0; try < L2ARC_FEED_TYPES; try++) { 8913 multilist_sublist_t *mls = l2arc_sublist_lock(try); 8914 uint64_t passed_sz = 0; 8915 8916 VERIFY3P(mls, !=, NULL); 8917 8918 /* 8919 * L2ARC fast warmup. 8920 * 8921 * Until the ARC is warm and starts to evict, read from the 8922 * head of the ARC lists rather than the tail. 8923 */ 8924 if (arc_warm == B_FALSE) 8925 hdr = multilist_sublist_head(mls); 8926 else 8927 hdr = multilist_sublist_tail(mls); 8928 8929 headroom = target_sz * l2arc_headroom; 8930 if (zfs_compressed_arc_enabled) 8931 headroom = (headroom * l2arc_headroom_boost) / 100; 8932 8933 for (; hdr; hdr = hdr_prev) { 8934 kmutex_t *hash_lock; 8935 abd_t *to_write = NULL; 8936 8937 if (arc_warm == B_FALSE) 8938 hdr_prev = multilist_sublist_next(mls, hdr); 8939 else 8940 hdr_prev = multilist_sublist_prev(mls, hdr); 8941 8942 hash_lock = HDR_LOCK(hdr); 8943 if (!mutex_tryenter(hash_lock)) { 8944 /* 8945 * Skip this buffer rather than waiting. 8946 */ 8947 continue; 8948 } 8949 8950 passed_sz += HDR_GET_LSIZE(hdr); 8951 if (l2arc_headroom != 0 && passed_sz > headroom) { 8952 /* 8953 * Searched too far. 8954 */ 8955 mutex_exit(hash_lock); 8956 break; 8957 } 8958 8959 if (!l2arc_write_eligible(guid, hdr)) { 8960 mutex_exit(hash_lock); 8961 continue; 8962 } 8963 8964 /* 8965 * We rely on the L1 portion of the header below, so 8966 * it's invalid for this header to have been evicted out 8967 * of the ghost cache, prior to being written out. The 8968 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 8969 */ 8970 ASSERT(HDR_HAS_L1HDR(hdr)); 8971 8972 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 8973 ASSERT3U(arc_hdr_size(hdr), >, 0); 8974 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 8975 HDR_HAS_RABD(hdr)); 8976 uint64_t psize = HDR_GET_PSIZE(hdr); 8977 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 8978 psize); 8979 8980 if ((write_asize + asize) > target_sz) { 8981 full = B_TRUE; 8982 mutex_exit(hash_lock); 8983 break; 8984 } 8985 8986 /* 8987 * We rely on the L1 portion of the header below, so 8988 * it's invalid for this header to have been evicted out 8989 * of the ghost cache, prior to being written out. The 8990 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 8991 */ 8992 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); 8993 ASSERT(HDR_HAS_L1HDR(hdr)); 8994 8995 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 8996 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 8997 HDR_HAS_RABD(hdr)); 8998 ASSERT3U(arc_hdr_size(hdr), >, 0); 8999 9000 /* 9001 * If this header has b_rabd, we can use this since it 9002 * must always match the data exactly as it exists on 9003 * disk. Otherwise, the L2ARC can normally use the 9004 * hdr's data, but if we're sharing data between the 9005 * hdr and one of its bufs, L2ARC needs its own copy of 9006 * the data so that the ZIO below can't race with the 9007 * buf consumer. To ensure that this copy will be 9008 * available for the lifetime of the ZIO and be cleaned 9009 * up afterwards, we add it to the l2arc_free_on_write 9010 * queue. If we need to apply any transforms to the 9011 * data (compression, encryption) we will also need the 9012 * extra buffer. 9013 */ 9014 if (HDR_HAS_RABD(hdr) && psize == asize) { 9015 to_write = hdr->b_crypt_hdr.b_rabd; 9016 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 9017 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 9018 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 9019 psize == asize) { 9020 to_write = hdr->b_l1hdr.b_pabd; 9021 } else { 9022 int ret; 9023 arc_buf_contents_t type = arc_buf_type(hdr); 9024 9025 ret = l2arc_apply_transforms(spa, hdr, asize, 9026 &to_write); 9027 if (ret != 0) { 9028 arc_hdr_clear_flags(hdr, 9029 ARC_FLAG_L2_WRITING); 9030 mutex_exit(hash_lock); 9031 continue; 9032 } 9033 9034 l2arc_free_abd_on_write(to_write, asize, type); 9035 } 9036 9037 if (pio == NULL) { 9038 /* 9039 * Insert a dummy header on the buflist so 9040 * l2arc_write_done() can find where the 9041 * write buffers begin without searching. 9042 */ 9043 mutex_enter(&dev->l2ad_mtx); 9044 list_insert_head(&dev->l2ad_buflist, head); 9045 mutex_exit(&dev->l2ad_mtx); 9046 9047 cb = kmem_alloc( 9048 sizeof (l2arc_write_callback_t), KM_SLEEP); 9049 cb->l2wcb_dev = dev; 9050 cb->l2wcb_head = head; 9051 /* 9052 * Create a list to save allocated abd buffers 9053 * for l2arc_log_blk_commit(). 9054 */ 9055 list_create(&cb->l2wcb_abd_list, 9056 sizeof (l2arc_lb_abd_buf_t), 9057 offsetof(l2arc_lb_abd_buf_t, node)); 9058 pio = zio_root(spa, l2arc_write_done, cb, 9059 ZIO_FLAG_CANFAIL); 9060 } 9061 9062 hdr->b_l2hdr.b_dev = dev; 9063 hdr->b_l2hdr.b_hits = 0; 9064 9065 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 9066 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR); 9067 9068 mutex_enter(&dev->l2ad_mtx); 9069 list_insert_head(&dev->l2ad_buflist, hdr); 9070 mutex_exit(&dev->l2ad_mtx); 9071 9072 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9073 arc_hdr_size(hdr), hdr); 9074 9075 wzio = zio_write_phys(pio, dev->l2ad_vdev, 9076 hdr->b_l2hdr.b_daddr, asize, to_write, 9077 ZIO_CHECKSUM_OFF, NULL, hdr, 9078 ZIO_PRIORITY_ASYNC_WRITE, 9079 ZIO_FLAG_CANFAIL, B_FALSE); 9080 9081 write_lsize += HDR_GET_LSIZE(hdr); 9082 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 9083 zio_t *, wzio); 9084 9085 write_psize += psize; 9086 write_asize += asize; 9087 dev->l2ad_hand += asize; 9088 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9089 9090 mutex_exit(hash_lock); 9091 9092 /* 9093 * Append buf info to current log and commit if full. 9094 * arcstat_l2_{size,asize} kstats are updated 9095 * internally. 9096 */ 9097 if (l2arc_log_blk_insert(dev, hdr)) 9098 l2arc_log_blk_commit(dev, pio, cb); 9099 9100 zio_nowait(wzio); 9101 } 9102 9103 multilist_sublist_unlock(mls); 9104 9105 if (full == B_TRUE) 9106 break; 9107 } 9108 9109 /* No buffers selected for writing? */ 9110 if (pio == NULL) { 9111 ASSERT0(write_lsize); 9112 ASSERT(!HDR_HAS_L1HDR(head)); 9113 kmem_cache_free(hdr_l2only_cache, head); 9114 9115 /* 9116 * Although we did not write any buffers l2ad_evict may 9117 * have advanced. 9118 */ 9119 l2arc_dev_hdr_update(dev); 9120 9121 return (0); 9122 } 9123 9124 if (!dev->l2ad_first) 9125 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9126 9127 ASSERT3U(write_asize, <=, target_sz); 9128 ARCSTAT_BUMP(arcstat_l2_writes_sent); 9129 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 9130 ARCSTAT_INCR(arcstat_l2_lsize, write_lsize); 9131 ARCSTAT_INCR(arcstat_l2_psize, write_psize); 9132 9133 dev->l2ad_writing = B_TRUE; 9134 (void) zio_wait(pio); 9135 dev->l2ad_writing = B_FALSE; 9136 9137 /* 9138 * Update the device header after the zio completes as 9139 * l2arc_write_done() may have updated the memory holding the log block 9140 * pointers in the device header. 9141 */ 9142 l2arc_dev_hdr_update(dev); 9143 9144 return (write_asize); 9145 } 9146 9147 /* 9148 * This thread feeds the L2ARC at regular intervals. This is the beating 9149 * heart of the L2ARC. 9150 */ 9151 /* ARGSUSED */ 9152 static void 9153 l2arc_feed_thread(void *unused) 9154 { 9155 callb_cpr_t cpr; 9156 l2arc_dev_t *dev; 9157 spa_t *spa; 9158 uint64_t size, wrote; 9159 clock_t begin, next = ddi_get_lbolt(); 9160 fstrans_cookie_t cookie; 9161 9162 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 9163 9164 mutex_enter(&l2arc_feed_thr_lock); 9165 9166 cookie = spl_fstrans_mark(); 9167 while (l2arc_thread_exit == 0) { 9168 CALLB_CPR_SAFE_BEGIN(&cpr); 9169 (void) cv_timedwait_sig(&l2arc_feed_thr_cv, 9170 &l2arc_feed_thr_lock, next); 9171 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 9172 next = ddi_get_lbolt() + hz; 9173 9174 /* 9175 * Quick check for L2ARC devices. 9176 */ 9177 mutex_enter(&l2arc_dev_mtx); 9178 if (l2arc_ndev == 0) { 9179 mutex_exit(&l2arc_dev_mtx); 9180 continue; 9181 } 9182 mutex_exit(&l2arc_dev_mtx); 9183 begin = ddi_get_lbolt(); 9184 9185 /* 9186 * This selects the next l2arc device to write to, and in 9187 * doing so the next spa to feed from: dev->l2ad_spa. This 9188 * will return NULL if there are now no l2arc devices or if 9189 * they are all faulted. 9190 * 9191 * If a device is returned, its spa's config lock is also 9192 * held to prevent device removal. l2arc_dev_get_next() 9193 * will grab and release l2arc_dev_mtx. 9194 */ 9195 if ((dev = l2arc_dev_get_next()) == NULL) 9196 continue; 9197 9198 spa = dev->l2ad_spa; 9199 ASSERT3P(spa, !=, NULL); 9200 9201 /* 9202 * If the pool is read-only then force the feed thread to 9203 * sleep a little longer. 9204 */ 9205 if (!spa_writeable(spa)) { 9206 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 9207 spa_config_exit(spa, SCL_L2ARC, dev); 9208 continue; 9209 } 9210 9211 /* 9212 * Avoid contributing to memory pressure. 9213 */ 9214 if (arc_reclaim_needed()) { 9215 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 9216 spa_config_exit(spa, SCL_L2ARC, dev); 9217 continue; 9218 } 9219 9220 ARCSTAT_BUMP(arcstat_l2_feeds); 9221 9222 size = l2arc_write_size(dev); 9223 9224 /* 9225 * Evict L2ARC buffers that will be overwritten. 9226 */ 9227 l2arc_evict(dev, size, B_FALSE); 9228 9229 /* 9230 * Write ARC buffers. 9231 */ 9232 wrote = l2arc_write_buffers(spa, dev, size); 9233 9234 /* 9235 * Calculate interval between writes. 9236 */ 9237 next = l2arc_write_interval(begin, size, wrote); 9238 spa_config_exit(spa, SCL_L2ARC, dev); 9239 } 9240 spl_fstrans_unmark(cookie); 9241 9242 l2arc_thread_exit = 0; 9243 cv_broadcast(&l2arc_feed_thr_cv); 9244 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 9245 thread_exit(); 9246 } 9247 9248 boolean_t 9249 l2arc_vdev_present(vdev_t *vd) 9250 { 9251 return (l2arc_vdev_get(vd) != NULL); 9252 } 9253 9254 /* 9255 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 9256 * the vdev_t isn't an L2ARC device. 9257 */ 9258 l2arc_dev_t * 9259 l2arc_vdev_get(vdev_t *vd) 9260 { 9261 l2arc_dev_t *dev; 9262 9263 mutex_enter(&l2arc_dev_mtx); 9264 for (dev = list_head(l2arc_dev_list); dev != NULL; 9265 dev = list_next(l2arc_dev_list, dev)) { 9266 if (dev->l2ad_vdev == vd) 9267 break; 9268 } 9269 mutex_exit(&l2arc_dev_mtx); 9270 9271 return (dev); 9272 } 9273 9274 /* 9275 * Add a vdev for use by the L2ARC. By this point the spa has already 9276 * validated the vdev and opened it. 9277 */ 9278 void 9279 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 9280 { 9281 l2arc_dev_t *adddev; 9282 uint64_t l2dhdr_asize; 9283 9284 ASSERT(!l2arc_vdev_present(vd)); 9285 9286 vdev_ashift_optimize(vd); 9287 9288 /* 9289 * Create a new l2arc device entry. 9290 */ 9291 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 9292 adddev->l2ad_spa = spa; 9293 adddev->l2ad_vdev = vd; 9294 /* leave extra size for an l2arc device header */ 9295 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 9296 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 9297 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 9298 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 9299 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 9300 adddev->l2ad_hand = adddev->l2ad_start; 9301 adddev->l2ad_evict = adddev->l2ad_start; 9302 adddev->l2ad_first = B_TRUE; 9303 adddev->l2ad_writing = B_FALSE; 9304 adddev->l2ad_trim_all = B_FALSE; 9305 list_link_init(&adddev->l2ad_node); 9306 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 9307 9308 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 9309 /* 9310 * This is a list of all ARC buffers that are still valid on the 9311 * device. 9312 */ 9313 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 9314 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 9315 9316 /* 9317 * This is a list of pointers to log blocks that are still present 9318 * on the device. 9319 */ 9320 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 9321 offsetof(l2arc_lb_ptr_buf_t, node)); 9322 9323 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 9324 zfs_refcount_create(&adddev->l2ad_alloc); 9325 zfs_refcount_create(&adddev->l2ad_lb_asize); 9326 zfs_refcount_create(&adddev->l2ad_lb_count); 9327 9328 /* 9329 * Add device to global list 9330 */ 9331 mutex_enter(&l2arc_dev_mtx); 9332 list_insert_head(l2arc_dev_list, adddev); 9333 atomic_inc_64(&l2arc_ndev); 9334 mutex_exit(&l2arc_dev_mtx); 9335 9336 /* 9337 * Decide if vdev is eligible for L2ARC rebuild 9338 */ 9339 l2arc_rebuild_vdev(adddev->l2ad_vdev, B_FALSE); 9340 } 9341 9342 void 9343 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 9344 { 9345 l2arc_dev_t *dev = NULL; 9346 l2arc_dev_hdr_phys_t *l2dhdr; 9347 uint64_t l2dhdr_asize; 9348 spa_t *spa; 9349 int err; 9350 boolean_t l2dhdr_valid = B_TRUE; 9351 9352 dev = l2arc_vdev_get(vd); 9353 ASSERT3P(dev, !=, NULL); 9354 spa = dev->l2ad_spa; 9355 l2dhdr = dev->l2ad_dev_hdr; 9356 l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9357 9358 /* 9359 * The L2ARC has to hold at least the payload of one log block for 9360 * them to be restored (persistent L2ARC). The payload of a log block 9361 * depends on the amount of its log entries. We always write log blocks 9362 * with 1022 entries. How many of them are committed or restored depends 9363 * on the size of the L2ARC device. Thus the maximum payload of 9364 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 9365 * is less than that, we reduce the amount of committed and restored 9366 * log entries per block so as to enable persistence. 9367 */ 9368 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 9369 dev->l2ad_log_entries = 0; 9370 } else { 9371 dev->l2ad_log_entries = MIN((dev->l2ad_end - 9372 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 9373 L2ARC_LOG_BLK_MAX_ENTRIES); 9374 } 9375 9376 /* 9377 * Read the device header, if an error is returned do not rebuild L2ARC. 9378 */ 9379 if ((err = l2arc_dev_hdr_read(dev)) != 0) 9380 l2dhdr_valid = B_FALSE; 9381 9382 if (l2dhdr_valid && dev->l2ad_log_entries > 0) { 9383 /* 9384 * If we are onlining a cache device (vdev_reopen) that was 9385 * still present (l2arc_vdev_present()) and rebuild is enabled, 9386 * we should evict all ARC buffers and pointers to log blocks 9387 * and reclaim their space before restoring its contents to 9388 * L2ARC. 9389 */ 9390 if (reopen) { 9391 if (!l2arc_rebuild_enabled) { 9392 return; 9393 } else { 9394 l2arc_evict(dev, 0, B_TRUE); 9395 /* start a new log block */ 9396 dev->l2ad_log_ent_idx = 0; 9397 dev->l2ad_log_blk_payload_asize = 0; 9398 dev->l2ad_log_blk_payload_start = 0; 9399 } 9400 } 9401 /* 9402 * Just mark the device as pending for a rebuild. We won't 9403 * be starting a rebuild in line here as it would block pool 9404 * import. Instead spa_load_impl will hand that off to an 9405 * async task which will call l2arc_spa_rebuild_start. 9406 */ 9407 dev->l2ad_rebuild = B_TRUE; 9408 } else if (spa_writeable(spa)) { 9409 /* 9410 * In this case TRIM the whole device if l2arc_trim_ahead > 0, 9411 * otherwise create a new header. We zero out the memory holding 9412 * the header to reset dh_start_lbps. If we TRIM the whole 9413 * device the new header will be written by 9414 * vdev_trim_l2arc_thread() at the end of the TRIM to update the 9415 * trim_state in the header too. When reading the header, if 9416 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 9417 * we opt to TRIM the whole device again. 9418 */ 9419 if (l2arc_trim_ahead > 0) { 9420 dev->l2ad_trim_all = B_TRUE; 9421 } else { 9422 bzero(l2dhdr, l2dhdr_asize); 9423 l2arc_dev_hdr_update(dev); 9424 } 9425 } 9426 } 9427 9428 /* 9429 * Remove a vdev from the L2ARC. 9430 */ 9431 void 9432 l2arc_remove_vdev(vdev_t *vd) 9433 { 9434 l2arc_dev_t *remdev = NULL; 9435 9436 /* 9437 * Find the device by vdev 9438 */ 9439 remdev = l2arc_vdev_get(vd); 9440 ASSERT3P(remdev, !=, NULL); 9441 9442 /* 9443 * Cancel any ongoing or scheduled rebuild. 9444 */ 9445 mutex_enter(&l2arc_rebuild_thr_lock); 9446 if (remdev->l2ad_rebuild_began == B_TRUE) { 9447 remdev->l2ad_rebuild_cancel = B_TRUE; 9448 while (remdev->l2ad_rebuild == B_TRUE) 9449 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9450 } 9451 mutex_exit(&l2arc_rebuild_thr_lock); 9452 9453 /* 9454 * Remove device from global list 9455 */ 9456 mutex_enter(&l2arc_dev_mtx); 9457 list_remove(l2arc_dev_list, remdev); 9458 l2arc_dev_last = NULL; /* may have been invalidated */ 9459 atomic_dec_64(&l2arc_ndev); 9460 mutex_exit(&l2arc_dev_mtx); 9461 9462 /* 9463 * Clear all buflists and ARC references. L2ARC device flush. 9464 */ 9465 l2arc_evict(remdev, 0, B_TRUE); 9466 list_destroy(&remdev->l2ad_buflist); 9467 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 9468 list_destroy(&remdev->l2ad_lbptr_list); 9469 mutex_destroy(&remdev->l2ad_mtx); 9470 zfs_refcount_destroy(&remdev->l2ad_alloc); 9471 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 9472 zfs_refcount_destroy(&remdev->l2ad_lb_count); 9473 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 9474 vmem_free(remdev, sizeof (l2arc_dev_t)); 9475 } 9476 9477 void 9478 l2arc_init(void) 9479 { 9480 l2arc_thread_exit = 0; 9481 l2arc_ndev = 0; 9482 l2arc_writes_sent = 0; 9483 l2arc_writes_done = 0; 9484 9485 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9486 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 9487 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9488 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 9489 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 9490 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 9491 9492 l2arc_dev_list = &L2ARC_dev_list; 9493 l2arc_free_on_write = &L2ARC_free_on_write; 9494 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 9495 offsetof(l2arc_dev_t, l2ad_node)); 9496 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 9497 offsetof(l2arc_data_free_t, l2df_list_node)); 9498 } 9499 9500 void 9501 l2arc_fini(void) 9502 { 9503 mutex_destroy(&l2arc_feed_thr_lock); 9504 cv_destroy(&l2arc_feed_thr_cv); 9505 mutex_destroy(&l2arc_rebuild_thr_lock); 9506 cv_destroy(&l2arc_rebuild_thr_cv); 9507 mutex_destroy(&l2arc_dev_mtx); 9508 mutex_destroy(&l2arc_free_on_write_mtx); 9509 9510 list_destroy(l2arc_dev_list); 9511 list_destroy(l2arc_free_on_write); 9512 } 9513 9514 void 9515 l2arc_start(void) 9516 { 9517 if (!(spa_mode_global & SPA_MODE_WRITE)) 9518 return; 9519 9520 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 9521 TS_RUN, defclsyspri); 9522 } 9523 9524 void 9525 l2arc_stop(void) 9526 { 9527 if (!(spa_mode_global & SPA_MODE_WRITE)) 9528 return; 9529 9530 mutex_enter(&l2arc_feed_thr_lock); 9531 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 9532 l2arc_thread_exit = 1; 9533 while (l2arc_thread_exit != 0) 9534 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 9535 mutex_exit(&l2arc_feed_thr_lock); 9536 } 9537 9538 /* 9539 * Punches out rebuild threads for the L2ARC devices in a spa. This should 9540 * be called after pool import from the spa async thread, since starting 9541 * these threads directly from spa_import() will make them part of the 9542 * "zpool import" context and delay process exit (and thus pool import). 9543 */ 9544 void 9545 l2arc_spa_rebuild_start(spa_t *spa) 9546 { 9547 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 9548 9549 /* 9550 * Locate the spa's l2arc devices and kick off rebuild threads. 9551 */ 9552 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 9553 l2arc_dev_t *dev = 9554 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 9555 if (dev == NULL) { 9556 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 9557 continue; 9558 } 9559 mutex_enter(&l2arc_rebuild_thr_lock); 9560 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 9561 dev->l2ad_rebuild_began = B_TRUE; 9562 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, 9563 dev, 0, &p0, TS_RUN, minclsyspri); 9564 } 9565 mutex_exit(&l2arc_rebuild_thr_lock); 9566 } 9567 } 9568 9569 /* 9570 * Main entry point for L2ARC rebuilding. 9571 */ 9572 static void 9573 l2arc_dev_rebuild_thread(void *arg) 9574 { 9575 l2arc_dev_t *dev = arg; 9576 9577 VERIFY(!dev->l2ad_rebuild_cancel); 9578 VERIFY(dev->l2ad_rebuild); 9579 (void) l2arc_rebuild(dev); 9580 mutex_enter(&l2arc_rebuild_thr_lock); 9581 dev->l2ad_rebuild_began = B_FALSE; 9582 dev->l2ad_rebuild = B_FALSE; 9583 mutex_exit(&l2arc_rebuild_thr_lock); 9584 9585 thread_exit(); 9586 } 9587 9588 /* 9589 * This function implements the actual L2ARC metadata rebuild. It: 9590 * starts reading the log block chain and restores each block's contents 9591 * to memory (reconstructing arc_buf_hdr_t's). 9592 * 9593 * Operation stops under any of the following conditions: 9594 * 9595 * 1) We reach the end of the log block chain. 9596 * 2) We encounter *any* error condition (cksum errors, io errors) 9597 */ 9598 static int 9599 l2arc_rebuild(l2arc_dev_t *dev) 9600 { 9601 vdev_t *vd = dev->l2ad_vdev; 9602 spa_t *spa = vd->vdev_spa; 9603 int err = 0; 9604 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9605 l2arc_log_blk_phys_t *this_lb, *next_lb; 9606 zio_t *this_io = NULL, *next_io = NULL; 9607 l2arc_log_blkptr_t lbps[2]; 9608 l2arc_lb_ptr_buf_t *lb_ptr_buf; 9609 boolean_t lock_held; 9610 9611 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); 9612 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); 9613 9614 /* 9615 * We prevent device removal while issuing reads to the device, 9616 * then during the rebuilding phases we drop this lock again so 9617 * that a spa_unload or device remove can be initiated - this is 9618 * safe, because the spa will signal us to stop before removing 9619 * our device and wait for us to stop. 9620 */ 9621 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 9622 lock_held = B_TRUE; 9623 9624 /* 9625 * Retrieve the persistent L2ARC device state. 9626 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9627 */ 9628 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 9629 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 9630 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 9631 dev->l2ad_start); 9632 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 9633 9634 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; 9635 vd->vdev_trim_state = l2dhdr->dh_trim_state; 9636 9637 /* 9638 * In case the zfs module parameter l2arc_rebuild_enabled is false 9639 * we do not start the rebuild process. 9640 */ 9641 if (!l2arc_rebuild_enabled) 9642 goto out; 9643 9644 /* Prepare the rebuild process */ 9645 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps)); 9646 9647 /* Start the rebuild process */ 9648 for (;;) { 9649 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 9650 break; 9651 9652 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 9653 this_lb, next_lb, this_io, &next_io)) != 0) 9654 goto out; 9655 9656 /* 9657 * Our memory pressure valve. If the system is running low 9658 * on memory, rather than swamping memory with new ARC buf 9659 * hdrs, we opt not to rebuild the L2ARC. At this point, 9660 * however, we have already set up our L2ARC dev to chain in 9661 * new metadata log blocks, so the user may choose to offline/ 9662 * online the L2ARC dev at a later time (or re-import the pool) 9663 * to reconstruct it (when there's less memory pressure). 9664 */ 9665 if (arc_reclaim_needed()) { 9666 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 9667 cmn_err(CE_NOTE, "System running low on memory, " 9668 "aborting L2ARC rebuild."); 9669 err = SET_ERROR(ENOMEM); 9670 goto out; 9671 } 9672 9673 spa_config_exit(spa, SCL_L2ARC, vd); 9674 lock_held = B_FALSE; 9675 9676 /* 9677 * Now that we know that the next_lb checks out alright, we 9678 * can start reconstruction from this log block. 9679 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9680 */ 9681 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 9682 l2arc_log_blk_restore(dev, this_lb, asize, lbps[0].lbp_daddr); 9683 9684 /* 9685 * log block restored, include its pointer in the list of 9686 * pointers to log blocks present in the L2ARC device. 9687 */ 9688 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 9689 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 9690 KM_SLEEP); 9691 bcopy(&lbps[0], lb_ptr_buf->lb_ptr, 9692 sizeof (l2arc_log_blkptr_t)); 9693 mutex_enter(&dev->l2ad_mtx); 9694 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 9695 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 9696 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 9697 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 9698 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 9699 mutex_exit(&dev->l2ad_mtx); 9700 vdev_space_update(vd, asize, 0, 0); 9701 9702 /* 9703 * Protection against loops of log blocks: 9704 * 9705 * l2ad_hand l2ad_evict 9706 * V V 9707 * l2ad_start |=======================================| l2ad_end 9708 * -----|||----|||---|||----||| 9709 * (3) (2) (1) (0) 9710 * ---|||---|||----|||---||| 9711 * (7) (6) (5) (4) 9712 * 9713 * In this situation the pointer of log block (4) passes 9714 * l2arc_log_blkptr_valid() but the log block should not be 9715 * restored as it is overwritten by the payload of log block 9716 * (0). Only log blocks (0)-(3) should be restored. We check 9717 * whether l2ad_evict lies in between the payload starting 9718 * offset of the next log block (lbps[1].lbp_payload_start) 9719 * and the payload starting offset of the present log block 9720 * (lbps[0].lbp_payload_start). If true and this isn't the 9721 * first pass, we are looping from the beginning and we should 9722 * stop. 9723 */ 9724 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 9725 lbps[0].lbp_payload_start, dev->l2ad_evict) && 9726 !dev->l2ad_first) 9727 goto out; 9728 9729 for (;;) { 9730 mutex_enter(&l2arc_rebuild_thr_lock); 9731 if (dev->l2ad_rebuild_cancel) { 9732 dev->l2ad_rebuild = B_FALSE; 9733 cv_signal(&l2arc_rebuild_thr_cv); 9734 mutex_exit(&l2arc_rebuild_thr_lock); 9735 err = SET_ERROR(ECANCELED); 9736 goto out; 9737 } 9738 mutex_exit(&l2arc_rebuild_thr_lock); 9739 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 9740 RW_READER)) { 9741 lock_held = B_TRUE; 9742 break; 9743 } 9744 /* 9745 * L2ARC config lock held by somebody in writer, 9746 * possibly due to them trying to remove us. They'll 9747 * likely to want us to shut down, so after a little 9748 * delay, we check l2ad_rebuild_cancel and retry 9749 * the lock again. 9750 */ 9751 delay(1); 9752 } 9753 9754 /* 9755 * Continue with the next log block. 9756 */ 9757 lbps[0] = lbps[1]; 9758 lbps[1] = this_lb->lb_prev_lbp; 9759 PTR_SWAP(this_lb, next_lb); 9760 this_io = next_io; 9761 next_io = NULL; 9762 } 9763 9764 if (this_io != NULL) 9765 l2arc_log_blk_fetch_abort(this_io); 9766 out: 9767 if (next_io != NULL) 9768 l2arc_log_blk_fetch_abort(next_io); 9769 vmem_free(this_lb, sizeof (*this_lb)); 9770 vmem_free(next_lb, sizeof (*next_lb)); 9771 9772 if (!l2arc_rebuild_enabled) { 9773 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9774 "disabled"); 9775 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 9776 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 9777 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9778 "successful, restored %llu blocks", 9779 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9780 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 9781 /* 9782 * No error but also nothing restored, meaning the lbps array 9783 * in the device header points to invalid/non-present log 9784 * blocks. Reset the header. 9785 */ 9786 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9787 "no valid log blocks"); 9788 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 9789 l2arc_dev_hdr_update(dev); 9790 } else if (err == ECANCELED) { 9791 /* 9792 * In case the rebuild was canceled do not log to spa history 9793 * log as the pool may be in the process of being removed. 9794 */ 9795 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 9796 zfs_refcount_count(&dev->l2ad_lb_count)); 9797 } else if (err != 0) { 9798 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9799 "aborted, restored %llu blocks", 9800 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9801 } 9802 9803 if (lock_held) 9804 spa_config_exit(spa, SCL_L2ARC, vd); 9805 9806 return (err); 9807 } 9808 9809 /* 9810 * Attempts to read the device header on the provided L2ARC device and writes 9811 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 9812 * error code is returned. 9813 */ 9814 static int 9815 l2arc_dev_hdr_read(l2arc_dev_t *dev) 9816 { 9817 int err; 9818 uint64_t guid; 9819 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9820 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9821 abd_t *abd; 9822 9823 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 9824 9825 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 9826 9827 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 9828 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 9829 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_ASYNC_READ, 9830 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 9831 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 9832 ZIO_FLAG_SPECULATIVE, B_FALSE)); 9833 9834 abd_put(abd); 9835 9836 if (err != 0) { 9837 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 9838 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 9839 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid); 9840 return (err); 9841 } 9842 9843 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 9844 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 9845 9846 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 9847 l2dhdr->dh_spa_guid != guid || 9848 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 9849 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 9850 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 9851 l2dhdr->dh_end != dev->l2ad_end || 9852 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 9853 l2dhdr->dh_evict) || 9854 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && 9855 l2arc_trim_ahead > 0)) { 9856 /* 9857 * Attempt to rebuild a device containing no actual dev hdr 9858 * or containing a header from some other pool or from another 9859 * version of persistent L2ARC. 9860 */ 9861 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 9862 return (SET_ERROR(ENOTSUP)); 9863 } 9864 9865 return (0); 9866 } 9867 9868 /* 9869 * Reads L2ARC log blocks from storage and validates their contents. 9870 * 9871 * This function implements a simple fetcher to make sure that while 9872 * we're processing one buffer the L2ARC is already fetching the next 9873 * one in the chain. 9874 * 9875 * The arguments this_lp and next_lp point to the current and next log block 9876 * address in the block chain. Similarly, this_lb and next_lb hold the 9877 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 9878 * 9879 * The `this_io' and `next_io' arguments are used for block fetching. 9880 * When issuing the first blk IO during rebuild, you should pass NULL for 9881 * `this_io'. This function will then issue a sync IO to read the block and 9882 * also issue an async IO to fetch the next block in the block chain. The 9883 * fetched IO is returned in `next_io'. On subsequent calls to this 9884 * function, pass the value returned in `next_io' from the previous call 9885 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 9886 * Prior to the call, you should initialize your `next_io' pointer to be 9887 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 9888 * 9889 * On success, this function returns 0, otherwise it returns an appropriate 9890 * error code. On error the fetching IO is aborted and cleared before 9891 * returning from this function. Therefore, if we return `success', the 9892 * caller can assume that we have taken care of cleanup of fetch IOs. 9893 */ 9894 static int 9895 l2arc_log_blk_read(l2arc_dev_t *dev, 9896 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 9897 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 9898 zio_t *this_io, zio_t **next_io) 9899 { 9900 int err = 0; 9901 zio_cksum_t cksum; 9902 abd_t *abd = NULL; 9903 uint64_t asize; 9904 9905 ASSERT(this_lbp != NULL && next_lbp != NULL); 9906 ASSERT(this_lb != NULL && next_lb != NULL); 9907 ASSERT(next_io != NULL && *next_io == NULL); 9908 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 9909 9910 /* 9911 * Check to see if we have issued the IO for this log block in a 9912 * previous run. If not, this is the first call, so issue it now. 9913 */ 9914 if (this_io == NULL) { 9915 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 9916 this_lb); 9917 } 9918 9919 /* 9920 * Peek to see if we can start issuing the next IO immediately. 9921 */ 9922 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 9923 /* 9924 * Start issuing IO for the next log block early - this 9925 * should help keep the L2ARC device busy while we 9926 * decompress and restore this log block. 9927 */ 9928 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 9929 next_lb); 9930 } 9931 9932 /* Wait for the IO to read this log block to complete */ 9933 if ((err = zio_wait(this_io)) != 0) { 9934 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 9935 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 9936 "offset: %llu, vdev guid: %llu", err, this_lbp->lbp_daddr, 9937 dev->l2ad_vdev->vdev_guid); 9938 goto cleanup; 9939 } 9940 9941 /* 9942 * Make sure the buffer checks out. 9943 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9944 */ 9945 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 9946 fletcher_4_native(this_lb, asize, NULL, &cksum); 9947 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 9948 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 9949 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 9950 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 9951 this_lbp->lbp_daddr, dev->l2ad_vdev->vdev_guid, 9952 dev->l2ad_hand, dev->l2ad_evict); 9953 err = SET_ERROR(ECKSUM); 9954 goto cleanup; 9955 } 9956 9957 /* Now we can take our time decoding this buffer */ 9958 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 9959 case ZIO_COMPRESS_OFF: 9960 break; 9961 case ZIO_COMPRESS_LZ4: 9962 abd = abd_alloc_for_io(asize, B_TRUE); 9963 abd_copy_from_buf_off(abd, this_lb, 0, asize); 9964 if ((err = zio_decompress_data( 9965 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 9966 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) { 9967 err = SET_ERROR(EINVAL); 9968 goto cleanup; 9969 } 9970 break; 9971 default: 9972 err = SET_ERROR(EINVAL); 9973 goto cleanup; 9974 } 9975 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 9976 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 9977 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 9978 err = SET_ERROR(EINVAL); 9979 goto cleanup; 9980 } 9981 cleanup: 9982 /* Abort an in-flight fetch I/O in case of error */ 9983 if (err != 0 && *next_io != NULL) { 9984 l2arc_log_blk_fetch_abort(*next_io); 9985 *next_io = NULL; 9986 } 9987 if (abd != NULL) 9988 abd_free(abd); 9989 return (err); 9990 } 9991 9992 /* 9993 * Restores the payload of a log block to ARC. This creates empty ARC hdr 9994 * entries which only contain an l2arc hdr, essentially restoring the 9995 * buffers to their L2ARC evicted state. This function also updates space 9996 * usage on the L2ARC vdev to make sure it tracks restored buffers. 9997 */ 9998 static void 9999 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 10000 uint64_t lb_asize, uint64_t lb_daddr) 10001 { 10002 uint64_t size = 0, asize = 0; 10003 uint64_t log_entries = dev->l2ad_log_entries; 10004 10005 for (int i = log_entries - 1; i >= 0; i--) { 10006 /* 10007 * Restore goes in the reverse temporal direction to preserve 10008 * correct temporal ordering of buffers in the l2ad_buflist. 10009 * l2arc_hdr_restore also does a list_insert_tail instead of 10010 * list_insert_head on the l2ad_buflist: 10011 * 10012 * LIST l2ad_buflist LIST 10013 * HEAD <------ (time) ------ TAIL 10014 * direction +-----+-----+-----+-----+-----+ direction 10015 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 10016 * fill +-----+-----+-----+-----+-----+ 10017 * ^ ^ 10018 * | | 10019 * | | 10020 * l2arc_feed_thread l2arc_rebuild 10021 * will place new bufs here restores bufs here 10022 * 10023 * During l2arc_rebuild() the device is not used by 10024 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 10025 */ 10026 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 10027 asize += vdev_psize_to_asize(dev->l2ad_vdev, 10028 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 10029 l2arc_hdr_restore(&lb->lb_entries[i], dev); 10030 } 10031 10032 /* 10033 * Record rebuild stats: 10034 * size Logical size of restored buffers in the L2ARC 10035 * asize Aligned size of restored buffers in the L2ARC 10036 */ 10037 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 10038 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 10039 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 10040 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 10041 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 10042 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 10043 } 10044 10045 /* 10046 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 10047 * into a state indicating that it has been evicted to L2ARC. 10048 */ 10049 static void 10050 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 10051 { 10052 arc_buf_hdr_t *hdr, *exists; 10053 kmutex_t *hash_lock; 10054 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 10055 uint64_t asize; 10056 10057 /* 10058 * Do all the allocation before grabbing any locks, this lets us 10059 * sleep if memory is full and we don't have to deal with failed 10060 * allocations. 10061 */ 10062 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 10063 dev, le->le_dva, le->le_daddr, 10064 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 10065 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, 10066 L2BLK_GET_PROTECTED((le)->le_prop), 10067 L2BLK_GET_PREFETCH((le)->le_prop)); 10068 asize = vdev_psize_to_asize(dev->l2ad_vdev, 10069 L2BLK_GET_PSIZE((le)->le_prop)); 10070 10071 /* 10072 * vdev_space_update() has to be called before arc_hdr_destroy() to 10073 * avoid underflow since the latter also calls the former. 10074 */ 10075 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10076 10077 ARCSTAT_INCR(arcstat_l2_lsize, HDR_GET_LSIZE(hdr)); 10078 ARCSTAT_INCR(arcstat_l2_psize, HDR_GET_PSIZE(hdr)); 10079 10080 mutex_enter(&dev->l2ad_mtx); 10081 list_insert_tail(&dev->l2ad_buflist, hdr); 10082 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 10083 mutex_exit(&dev->l2ad_mtx); 10084 10085 exists = buf_hash_insert(hdr, &hash_lock); 10086 if (exists) { 10087 /* Buffer was already cached, no need to restore it. */ 10088 arc_hdr_destroy(hdr); 10089 /* 10090 * If the buffer is already cached, check whether it has 10091 * L2ARC metadata. If not, enter them and update the flag. 10092 * This is important is case of onlining a cache device, since 10093 * we previously evicted all L2ARC metadata from ARC. 10094 */ 10095 if (!HDR_HAS_L2HDR(exists)) { 10096 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 10097 exists->b_l2hdr.b_dev = dev; 10098 exists->b_l2hdr.b_daddr = le->le_daddr; 10099 mutex_enter(&dev->l2ad_mtx); 10100 list_insert_tail(&dev->l2ad_buflist, exists); 10101 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 10102 arc_hdr_size(exists), exists); 10103 mutex_exit(&dev->l2ad_mtx); 10104 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10105 ARCSTAT_INCR(arcstat_l2_lsize, HDR_GET_LSIZE(exists)); 10106 ARCSTAT_INCR(arcstat_l2_psize, HDR_GET_PSIZE(exists)); 10107 } 10108 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 10109 } 10110 10111 mutex_exit(hash_lock); 10112 } 10113 10114 /* 10115 * Starts an asynchronous read IO to read a log block. This is used in log 10116 * block reconstruction to start reading the next block before we are done 10117 * decoding and reconstructing the current block, to keep the l2arc device 10118 * nice and hot with read IO to process. 10119 * The returned zio will contain a newly allocated memory buffers for the IO 10120 * data which should then be freed by the caller once the zio is no longer 10121 * needed (i.e. due to it having completed). If you wish to abort this 10122 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 10123 * care of disposing of the allocated buffers correctly. 10124 */ 10125 static zio_t * 10126 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 10127 l2arc_log_blk_phys_t *lb) 10128 { 10129 uint32_t asize; 10130 zio_t *pio; 10131 l2arc_read_callback_t *cb; 10132 10133 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10134 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10135 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 10136 10137 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 10138 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 10139 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 10140 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 10141 ZIO_FLAG_DONT_RETRY); 10142 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 10143 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10144 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10145 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 10146 10147 return (pio); 10148 } 10149 10150 /* 10151 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 10152 * buffers allocated for it. 10153 */ 10154 static void 10155 l2arc_log_blk_fetch_abort(zio_t *zio) 10156 { 10157 (void) zio_wait(zio); 10158 } 10159 10160 /* 10161 * Creates a zio to update the device header on an l2arc device. 10162 */ 10163 void 10164 l2arc_dev_hdr_update(l2arc_dev_t *dev) 10165 { 10166 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10167 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10168 abd_t *abd; 10169 int err; 10170 10171 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 10172 10173 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 10174 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 10175 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10176 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 10177 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 10178 l2dhdr->dh_evict = dev->l2ad_evict; 10179 l2dhdr->dh_start = dev->l2ad_start; 10180 l2dhdr->dh_end = dev->l2ad_end; 10181 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 10182 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 10183 l2dhdr->dh_flags = 0; 10184 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; 10185 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; 10186 if (dev->l2ad_first) 10187 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 10188 10189 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10190 10191 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 10192 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 10193 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 10194 10195 abd_put(abd); 10196 10197 if (err != 0) { 10198 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 10199 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid); 10200 } 10201 } 10202 10203 /* 10204 * Commits a log block to the L2ARC device. This routine is invoked from 10205 * l2arc_write_buffers when the log block fills up. 10206 * This function allocates some memory to temporarily hold the serialized 10207 * buffer to be written. This is then released in l2arc_write_done. 10208 */ 10209 static void 10210 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 10211 { 10212 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10213 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10214 uint64_t psize, asize; 10215 zio_t *wzio; 10216 l2arc_lb_abd_buf_t *abd_buf; 10217 uint8_t *tmpbuf; 10218 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10219 10220 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 10221 10222 tmpbuf = zio_buf_alloc(sizeof (*lb)); 10223 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 10224 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 10225 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10226 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 10227 10228 /* link the buffer into the block chain */ 10229 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 10230 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 10231 10232 /* 10233 * l2arc_log_blk_commit() may be called multiple times during a single 10234 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 10235 * so we can free them in l2arc_write_done() later on. 10236 */ 10237 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 10238 10239 /* try to compress the buffer */ 10240 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 10241 abd_buf->abd, tmpbuf, sizeof (*lb), 0); 10242 10243 /* a log block is never entirely zero */ 10244 ASSERT(psize != 0); 10245 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 10246 ASSERT(asize <= sizeof (*lb)); 10247 10248 /* 10249 * Update the start log block pointer in the device header to point 10250 * to the log block we're about to write. 10251 */ 10252 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 10253 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 10254 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 10255 dev->l2ad_log_blk_payload_asize; 10256 l2dhdr->dh_start_lbps[0].lbp_payload_start = 10257 dev->l2ad_log_blk_payload_start; 10258 _NOTE(CONSTCOND) 10259 L2BLK_SET_LSIZE( 10260 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 10261 L2BLK_SET_PSIZE( 10262 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 10263 L2BLK_SET_CHECKSUM( 10264 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10265 ZIO_CHECKSUM_FLETCHER_4); 10266 if (asize < sizeof (*lb)) { 10267 /* compression succeeded */ 10268 bzero(tmpbuf + psize, asize - psize); 10269 L2BLK_SET_COMPRESS( 10270 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10271 ZIO_COMPRESS_LZ4); 10272 } else { 10273 /* compression failed */ 10274 bcopy(lb, tmpbuf, sizeof (*lb)); 10275 L2BLK_SET_COMPRESS( 10276 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10277 ZIO_COMPRESS_OFF); 10278 } 10279 10280 /* checksum what we're about to write */ 10281 fletcher_4_native(tmpbuf, asize, NULL, 10282 &l2dhdr->dh_start_lbps[0].lbp_cksum); 10283 10284 abd_put(abd_buf->abd); 10285 10286 /* perform the write itself */ 10287 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); 10288 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); 10289 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 10290 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10291 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 10292 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 10293 (void) zio_nowait(wzio); 10294 10295 dev->l2ad_hand += asize; 10296 /* 10297 * Include the committed log block's pointer in the list of pointers 10298 * to log blocks present in the L2ARC device. 10299 */ 10300 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr, 10301 sizeof (l2arc_log_blkptr_t)); 10302 mutex_enter(&dev->l2ad_mtx); 10303 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 10304 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10305 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10306 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10307 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10308 mutex_exit(&dev->l2ad_mtx); 10309 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10310 10311 /* bump the kstats */ 10312 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 10313 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 10314 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 10315 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 10316 dev->l2ad_log_blk_payload_asize / asize); 10317 10318 /* start a new log block */ 10319 dev->l2ad_log_ent_idx = 0; 10320 dev->l2ad_log_blk_payload_asize = 0; 10321 dev->l2ad_log_blk_payload_start = 0; 10322 } 10323 10324 /* 10325 * Validates an L2ARC log block address to make sure that it can be read 10326 * from the provided L2ARC device. 10327 */ 10328 boolean_t 10329 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 10330 { 10331 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10332 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10333 uint64_t end = lbp->lbp_daddr + asize - 1; 10334 uint64_t start = lbp->lbp_payload_start; 10335 boolean_t evicted = B_FALSE; 10336 10337 /* 10338 * A log block is valid if all of the following conditions are true: 10339 * - it fits entirely (including its payload) between l2ad_start and 10340 * l2ad_end 10341 * - it has a valid size 10342 * - neither the log block itself nor part of its payload was evicted 10343 * by l2arc_evict(): 10344 * 10345 * l2ad_hand l2ad_evict 10346 * | | lbp_daddr 10347 * | start | | end 10348 * | | | | | 10349 * V V V V V 10350 * l2ad_start ============================================ l2ad_end 10351 * --------------------------|||| 10352 * ^ ^ 10353 * | log block 10354 * payload 10355 */ 10356 10357 evicted = 10358 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 10359 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 10360 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 10361 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 10362 10363 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 10364 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 10365 (!evicted || dev->l2ad_first)); 10366 } 10367 10368 /* 10369 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 10370 * the device. The buffer being inserted must be present in L2ARC. 10371 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 10372 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 10373 */ 10374 static boolean_t 10375 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 10376 { 10377 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10378 l2arc_log_ent_phys_t *le; 10379 10380 if (dev->l2ad_log_entries == 0) 10381 return (B_FALSE); 10382 10383 int index = dev->l2ad_log_ent_idx++; 10384 10385 ASSERT3S(index, <, dev->l2ad_log_entries); 10386 ASSERT(HDR_HAS_L2HDR(hdr)); 10387 10388 le = &lb->lb_entries[index]; 10389 bzero(le, sizeof (*le)); 10390 le->le_dva = hdr->b_dva; 10391 le->le_birth = hdr->b_birth; 10392 le->le_daddr = hdr->b_l2hdr.b_daddr; 10393 if (index == 0) 10394 dev->l2ad_log_blk_payload_start = le->le_daddr; 10395 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 10396 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 10397 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 10398 le->le_complevel = hdr->b_complevel; 10399 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 10400 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 10401 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 10402 10403 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 10404 HDR_GET_PSIZE(hdr)); 10405 10406 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 10407 } 10408 10409 /* 10410 * Checks whether a given L2ARC device address sits in a time-sequential 10411 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 10412 * just do a range comparison, we need to handle the situation in which the 10413 * range wraps around the end of the L2ARC device. Arguments: 10414 * bottom -- Lower end of the range to check (written to earlier). 10415 * top -- Upper end of the range to check (written to later). 10416 * check -- The address for which we want to determine if it sits in 10417 * between the top and bottom. 10418 * 10419 * The 3-way conditional below represents the following cases: 10420 * 10421 * bottom < top : Sequentially ordered case: 10422 * <check>--------+-------------------+ 10423 * | (overlap here?) | 10424 * L2ARC dev V V 10425 * |---------------<bottom>============<top>--------------| 10426 * 10427 * bottom > top: Looped-around case: 10428 * <check>--------+------------------+ 10429 * | (overlap here?) | 10430 * L2ARC dev V V 10431 * |===============<top>---------------<bottom>===========| 10432 * ^ ^ 10433 * | (or here?) | 10434 * +---------------+---------<check> 10435 * 10436 * top == bottom : Just a single address comparison. 10437 */ 10438 boolean_t 10439 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10440 { 10441 if (bottom < top) 10442 return (bottom <= check && check <= top); 10443 else if (bottom > top) 10444 return (check <= top || bottom <= check); 10445 else 10446 return (check == top); 10447 } 10448 10449 EXPORT_SYMBOL(arc_buf_size); 10450 EXPORT_SYMBOL(arc_write); 10451 EXPORT_SYMBOL(arc_read); 10452 EXPORT_SYMBOL(arc_buf_info); 10453 EXPORT_SYMBOL(arc_getbuf_func); 10454 EXPORT_SYMBOL(arc_add_prune_callback); 10455 EXPORT_SYMBOL(arc_remove_prune_callback); 10456 10457 /* BEGIN CSTYLED */ 10458 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_long, 10459 param_get_long, ZMOD_RW, "Min arc size"); 10460 10461 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_long, 10462 param_get_long, ZMOD_RW, "Max arc size"); 10463 10464 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long, 10465 param_get_long, ZMOD_RW, "Metadata limit for arc size"); 10466 10467 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent, 10468 param_set_arc_long, param_get_long, ZMOD_RW, 10469 "Percent of arc size for arc meta limit"); 10470 10471 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long, 10472 param_get_long, ZMOD_RW, "Min arc metadata"); 10473 10474 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW, 10475 "Meta objects to scan for prune"); 10476 10477 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW, 10478 "Limit number of restarts in arc_evict_meta"); 10479 10480 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW, 10481 "Meta reclaim strategy"); 10482 10483 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, 10484 param_get_int, ZMOD_RW, "Seconds before growing arc size"); 10485 10486 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW, 10487 "Disable arc_p adapt dampener"); 10488 10489 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, 10490 param_get_int, ZMOD_RW, "log2(fraction of arc to reclaim)"); 10491 10492 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, 10493 "Percent of pagecache to reclaim arc to"); 10494 10495 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int, 10496 param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p"); 10497 10498 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD, 10499 "Target average block size"); 10500 10501 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, 10502 "Disable compressed arc buffers"); 10503 10504 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, 10505 param_get_int, ZMOD_RW, "Min life of prefetch block in ms"); 10506 10507 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, 10508 param_set_arc_int, param_get_int, ZMOD_RW, 10509 "Min life of prescient prefetched block in ms"); 10510 10511 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW, 10512 "Max write bytes per interval"); 10513 10514 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW, 10515 "Extra write bytes during device warmup"); 10516 10517 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW, 10518 "Number of max device writes to precache"); 10519 10520 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW, 10521 "Compressed l2arc_headroom multiplier"); 10522 10523 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW, 10524 "TRIM ahead L2ARC write size multiplier"); 10525 10526 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW, 10527 "Seconds between L2ARC writing"); 10528 10529 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW, 10530 "Min feed interval in milliseconds"); 10531 10532 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, 10533 "Skip caching prefetched buffers"); 10534 10535 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, 10536 "Turbo L2ARC warmup"); 10537 10538 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, 10539 "No reads during writes"); 10540 10541 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, 10542 "Rebuild the L2ARC when importing a pool"); 10543 10544 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW, 10545 "Min size in bytes to write rebuild log blocks in L2ARC"); 10546 10547 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, 10548 param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes"); 10549 10550 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long, 10551 param_get_long, ZMOD_RW, "System free memory target size in bytes"); 10552 10553 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long, 10554 param_get_long, ZMOD_RW, "Minimum bytes of dnodes in arc"); 10555 10556 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, 10557 param_set_arc_long, param_get_long, ZMOD_RW, 10558 "Percent of ARC meta buffers for dnodes"); 10559 10560 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW, 10561 "Percentage of excess dnodes to try to unpin"); 10562 10563 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW, 10564 "When full, ARC allocation waits for eviction of this % of alloc size"); 10565 /* END CSTYLED */ 10566