1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2014 by Chunwei Chen. All rights reserved. 23 * Copyright (c) 2019 by Delphix. All rights reserved. 24 */ 25 26 /* 27 * ARC buffer data (ABD). 28 * 29 * ABDs are an abstract data structure for the ARC which can use two 30 * different ways of storing the underlying data: 31 * 32 * (a) Linear buffer. In this case, all the data in the ABD is stored in one 33 * contiguous buffer in memory (from a zio_[data_]buf_* kmem cache). 34 * 35 * +-------------------+ 36 * | ABD (linear) | 37 * | abd_flags = ... | 38 * | abd_size = ... | +--------------------------------+ 39 * | abd_buf ------------->| raw buffer of size abd_size | 40 * +-------------------+ +--------------------------------+ 41 * no abd_chunks 42 * 43 * (b) Scattered buffer. In this case, the data in the ABD is split into 44 * equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers 45 * to the chunks recorded in an array at the end of the ABD structure. 46 * 47 * +-------------------+ 48 * | ABD (scattered) | 49 * | abd_flags = ... | 50 * | abd_size = ... | 51 * | abd_offset = 0 | +-----------+ 52 * | abd_chunks[0] ----------------------------->| chunk 0 | 53 * | abd_chunks[1] ---------------------+ +-----------+ 54 * | ... | | +-----------+ 55 * | abd_chunks[N-1] ---------+ +------->| chunk 1 | 56 * +-------------------+ | +-----------+ 57 * | ... 58 * | +-----------+ 59 * +----------------->| chunk N-1 | 60 * +-----------+ 61 * 62 * In addition to directly allocating a linear or scattered ABD, it is also 63 * possible to create an ABD by requesting the "sub-ABD" starting at an offset 64 * within an existing ABD. In linear buffers this is simple (set abd_buf of 65 * the new ABD to the starting point within the original raw buffer), but 66 * scattered ABDs are a little more complex. The new ABD makes a copy of the 67 * relevant abd_chunks pointers (but not the underlying data). However, to 68 * provide arbitrary rather than only chunk-aligned starting offsets, it also 69 * tracks an abd_offset field which represents the starting point of the data 70 * within the first chunk in abd_chunks. For both linear and scattered ABDs, 71 * creating an offset ABD marks the original ABD as the offset's parent, and the 72 * original ABD's abd_children refcount is incremented. This data allows us to 73 * ensure the root ABD isn't deleted before its children. 74 * 75 * Most consumers should never need to know what type of ABD they're using -- 76 * the ABD public API ensures that it's possible to transparently switch from 77 * using a linear ABD to a scattered one when doing so would be beneficial. 78 * 79 * If you need to use the data within an ABD directly, if you know it's linear 80 * (because you allocated it) you can use abd_to_buf() to access the underlying 81 * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions 82 * which will allocate a raw buffer if necessary. Use the abd_return_buf* 83 * functions to return any raw buffers that are no longer necessary when you're 84 * done using them. 85 * 86 * There are a variety of ABD APIs that implement basic buffer operations: 87 * compare, copy, read, write, and fill with zeroes. If you need a custom 88 * function which progressively accesses the whole ABD, use the abd_iterate_* 89 * functions. 90 * 91 * As an additional feature, linear and scatter ABD's can be stitched together 92 * by using the gang ABD type (abd_alloc_gang_abd()). This allows for 93 * multiple ABDs to be viewed as a singular ABD. 94 * 95 * It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to 96 * B_FALSE. 97 */ 98 99 #include <sys/abd_impl.h> 100 #include <sys/param.h> 101 #include <sys/zio.h> 102 #include <sys/zfs_context.h> 103 #include <sys/zfs_znode.h> 104 105 /* see block comment above for description */ 106 int zfs_abd_scatter_enabled = B_TRUE; 107 108 void 109 abd_verify(abd_t *abd) 110 { 111 #ifdef ZFS_DEBUG 112 ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE); 113 ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR | 114 ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE | 115 ABD_FLAG_MULTI_CHUNK | ABD_FLAG_LINEAR_PAGE | ABD_FLAG_GANG | 116 ABD_FLAG_GANG_FREE | ABD_FLAG_ZEROS | ABD_FLAG_ALLOCD)); 117 IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER)); 118 IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER); 119 if (abd_is_linear(abd)) { 120 ASSERT3U(abd->abd_size, >, 0); 121 ASSERT3P(ABD_LINEAR_BUF(abd), !=, NULL); 122 } else if (abd_is_gang(abd)) { 123 uint_t child_sizes = 0; 124 for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain); 125 cabd != NULL; 126 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { 127 ASSERT(list_link_active(&cabd->abd_gang_link)); 128 child_sizes += cabd->abd_size; 129 abd_verify(cabd); 130 } 131 ASSERT3U(abd->abd_size, ==, child_sizes); 132 } else { 133 ASSERT3U(abd->abd_size, >, 0); 134 abd_verify_scatter(abd); 135 } 136 #endif 137 } 138 139 static void 140 abd_init_struct(abd_t *abd) 141 { 142 list_link_init(&abd->abd_gang_link); 143 mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL); 144 abd->abd_flags = 0; 145 #ifdef ZFS_DEBUG 146 zfs_refcount_create(&abd->abd_children); 147 abd->abd_parent = NULL; 148 #endif 149 abd->abd_size = 0; 150 } 151 152 static void 153 abd_fini_struct(abd_t *abd) 154 { 155 mutex_destroy(&abd->abd_mtx); 156 ASSERT(!list_link_active(&abd->abd_gang_link)); 157 #ifdef ZFS_DEBUG 158 zfs_refcount_destroy(&abd->abd_children); 159 #endif 160 } 161 162 abd_t * 163 abd_alloc_struct(size_t size) 164 { 165 abd_t *abd = abd_alloc_struct_impl(size); 166 abd_init_struct(abd); 167 abd->abd_flags |= ABD_FLAG_ALLOCD; 168 return (abd); 169 } 170 171 void 172 abd_free_struct(abd_t *abd) 173 { 174 abd_fini_struct(abd); 175 abd_free_struct_impl(abd); 176 } 177 178 /* 179 * Allocate an ABD, along with its own underlying data buffers. Use this if you 180 * don't care whether the ABD is linear or not. 181 */ 182 abd_t * 183 abd_alloc(size_t size, boolean_t is_metadata) 184 { 185 if (abd_size_alloc_linear(size)) 186 return (abd_alloc_linear(size, is_metadata)); 187 188 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 189 190 abd_t *abd = abd_alloc_struct(size); 191 abd->abd_flags |= ABD_FLAG_OWNER; 192 abd->abd_u.abd_scatter.abd_offset = 0; 193 abd_alloc_chunks(abd, size); 194 195 if (is_metadata) { 196 abd->abd_flags |= ABD_FLAG_META; 197 } 198 abd->abd_size = size; 199 200 abd_update_scatter_stats(abd, ABDSTAT_INCR); 201 202 return (abd); 203 } 204 205 /* 206 * Allocate an ABD that must be linear, along with its own underlying data 207 * buffer. Only use this when it would be very annoying to write your ABD 208 * consumer with a scattered ABD. 209 */ 210 abd_t * 211 abd_alloc_linear(size_t size, boolean_t is_metadata) 212 { 213 abd_t *abd = abd_alloc_struct(0); 214 215 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 216 217 abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_OWNER; 218 if (is_metadata) { 219 abd->abd_flags |= ABD_FLAG_META; 220 } 221 abd->abd_size = size; 222 223 if (is_metadata) { 224 ABD_LINEAR_BUF(abd) = zio_buf_alloc(size); 225 } else { 226 ABD_LINEAR_BUF(abd) = zio_data_buf_alloc(size); 227 } 228 229 abd_update_linear_stats(abd, ABDSTAT_INCR); 230 231 return (abd); 232 } 233 234 static void 235 abd_free_linear(abd_t *abd) 236 { 237 if (abd_is_linear_page(abd)) { 238 abd_free_linear_page(abd); 239 return; 240 } 241 if (abd->abd_flags & ABD_FLAG_META) { 242 zio_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size); 243 } else { 244 zio_data_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size); 245 } 246 247 abd_update_linear_stats(abd, ABDSTAT_DECR); 248 } 249 250 static void 251 abd_free_gang(abd_t *abd) 252 { 253 ASSERT(abd_is_gang(abd)); 254 abd_t *cabd; 255 256 while ((cabd = list_head(&ABD_GANG(abd).abd_gang_chain)) != NULL) { 257 /* 258 * We must acquire the child ABDs mutex to ensure that if it 259 * is being added to another gang ABD we will set the link 260 * as inactive when removing it from this gang ABD and before 261 * adding it to the other gang ABD. 262 */ 263 mutex_enter(&cabd->abd_mtx); 264 ASSERT(list_link_active(&cabd->abd_gang_link)); 265 list_remove(&ABD_GANG(abd).abd_gang_chain, cabd); 266 mutex_exit(&cabd->abd_mtx); 267 if (cabd->abd_flags & ABD_FLAG_GANG_FREE) 268 abd_free(cabd); 269 } 270 list_destroy(&ABD_GANG(abd).abd_gang_chain); 271 } 272 273 static void 274 abd_free_scatter(abd_t *abd) 275 { 276 abd_free_chunks(abd); 277 abd_update_scatter_stats(abd, ABDSTAT_DECR); 278 } 279 280 /* 281 * Free an ABD. Use with any kind of abd: those created with abd_alloc_*() 282 * and abd_get_*(), including abd_get_offset_struct(). 283 * 284 * If the ABD was created with abd_alloc_*(), the underlying data 285 * (scatterlist or linear buffer) will also be freed. (Subject to ownership 286 * changes via abd_*_ownership_of_buf().) 287 * 288 * Unless the ABD was created with abd_get_offset_struct(), the abd_t will 289 * also be freed. 290 */ 291 void 292 abd_free(abd_t *abd) 293 { 294 if (abd == NULL) 295 return; 296 297 abd_verify(abd); 298 #ifdef ZFS_DEBUG 299 IMPLY(abd->abd_flags & ABD_FLAG_OWNER, abd->abd_parent == NULL); 300 #endif 301 302 if (abd_is_gang(abd)) { 303 abd_free_gang(abd); 304 } else if (abd_is_linear(abd)) { 305 if (abd->abd_flags & ABD_FLAG_OWNER) 306 abd_free_linear(abd); 307 } else { 308 if (abd->abd_flags & ABD_FLAG_OWNER) 309 abd_free_scatter(abd); 310 } 311 312 #ifdef ZFS_DEBUG 313 if (abd->abd_parent != NULL) { 314 (void) zfs_refcount_remove_many(&abd->abd_parent->abd_children, 315 abd->abd_size, abd); 316 } 317 #endif 318 319 abd_fini_struct(abd); 320 if (abd->abd_flags & ABD_FLAG_ALLOCD) 321 abd_free_struct_impl(abd); 322 } 323 324 /* 325 * Allocate an ABD of the same format (same metadata flag, same scatterize 326 * setting) as another ABD. 327 */ 328 abd_t * 329 abd_alloc_sametype(abd_t *sabd, size_t size) 330 { 331 boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0; 332 if (abd_is_linear(sabd) && 333 !abd_is_linear_page(sabd)) { 334 return (abd_alloc_linear(size, is_metadata)); 335 } else { 336 return (abd_alloc(size, is_metadata)); 337 } 338 } 339 340 /* 341 * Create gang ABD that will be the head of a list of ABD's. This is used 342 * to "chain" scatter/gather lists together when constructing aggregated 343 * IO's. To free this abd, abd_free() must be called. 344 */ 345 abd_t * 346 abd_alloc_gang(void) 347 { 348 abd_t *abd = abd_alloc_struct(0); 349 abd->abd_flags |= ABD_FLAG_GANG | ABD_FLAG_OWNER; 350 list_create(&ABD_GANG(abd).abd_gang_chain, 351 sizeof (abd_t), offsetof(abd_t, abd_gang_link)); 352 return (abd); 353 } 354 355 /* 356 * Add a child gang ABD to a parent gang ABDs chained list. 357 */ 358 static void 359 abd_gang_add_gang(abd_t *pabd, abd_t *cabd, boolean_t free_on_free) 360 { 361 ASSERT(abd_is_gang(pabd)); 362 ASSERT(abd_is_gang(cabd)); 363 364 if (free_on_free) { 365 /* 366 * If the parent is responsible for freeing the child gang 367 * ABD we will just splice the child's children ABD list to 368 * the parent's list and immediately free the child gang ABD 369 * struct. The parent gang ABDs children from the child gang 370 * will retain all the free_on_free settings after being 371 * added to the parents list. 372 */ 373 #ifdef ZFS_DEBUG 374 /* 375 * If cabd had abd_parent, we have to drop it here. We can't 376 * transfer it to pabd, nor we can clear abd_size leaving it. 377 */ 378 if (cabd->abd_parent != NULL) { 379 (void) zfs_refcount_remove_many( 380 &cabd->abd_parent->abd_children, 381 cabd->abd_size, cabd); 382 cabd->abd_parent = NULL; 383 } 384 #endif 385 pabd->abd_size += cabd->abd_size; 386 cabd->abd_size = 0; 387 list_move_tail(&ABD_GANG(pabd).abd_gang_chain, 388 &ABD_GANG(cabd).abd_gang_chain); 389 ASSERT(list_is_empty(&ABD_GANG(cabd).abd_gang_chain)); 390 abd_verify(pabd); 391 abd_free(cabd); 392 } else { 393 for (abd_t *child = list_head(&ABD_GANG(cabd).abd_gang_chain); 394 child != NULL; 395 child = list_next(&ABD_GANG(cabd).abd_gang_chain, child)) { 396 /* 397 * We always pass B_FALSE for free_on_free as it is the 398 * original child gang ABDs responsibility to determine 399 * if any of its child ABDs should be free'd on the call 400 * to abd_free(). 401 */ 402 abd_gang_add(pabd, child, B_FALSE); 403 } 404 abd_verify(pabd); 405 } 406 } 407 408 /* 409 * Add a child ABD to a gang ABD's chained list. 410 */ 411 void 412 abd_gang_add(abd_t *pabd, abd_t *cabd, boolean_t free_on_free) 413 { 414 ASSERT(abd_is_gang(pabd)); 415 abd_t *child_abd = NULL; 416 417 /* 418 * If the child being added is a gang ABD, we will add the 419 * child's ABDs to the parent gang ABD. This allows us to account 420 * for the offset correctly in the parent gang ABD. 421 */ 422 if (abd_is_gang(cabd)) { 423 ASSERT(!list_link_active(&cabd->abd_gang_link)); 424 return (abd_gang_add_gang(pabd, cabd, free_on_free)); 425 } 426 ASSERT(!abd_is_gang(cabd)); 427 428 /* 429 * In order to verify that an ABD is not already part of 430 * another gang ABD, we must lock the child ABD's abd_mtx 431 * to check its abd_gang_link status. We unlock the abd_mtx 432 * only after it is has been added to a gang ABD, which 433 * will update the abd_gang_link's status. See comment below 434 * for how an ABD can be in multiple gang ABD's simultaneously. 435 */ 436 mutex_enter(&cabd->abd_mtx); 437 if (list_link_active(&cabd->abd_gang_link)) { 438 /* 439 * If the child ABD is already part of another 440 * gang ABD then we must allocate a new 441 * ABD to use a separate link. We mark the newly 442 * allocated ABD with ABD_FLAG_GANG_FREE, before 443 * adding it to the gang ABD's list, to make the 444 * gang ABD aware that it is responsible to call 445 * abd_free(). We use abd_get_offset() in order 446 * to just allocate a new ABD but avoid copying the 447 * data over into the newly allocated ABD. 448 * 449 * An ABD may become part of multiple gang ABD's. For 450 * example, when writing ditto bocks, the same ABD 451 * is used to write 2 or 3 locations with 2 or 3 452 * zio_t's. Each of the zio's may be aggregated with 453 * different adjacent zio's. zio aggregation uses gang 454 * zio's, so the single ABD can become part of multiple 455 * gang zio's. 456 * 457 * The ASSERT below is to make sure that if 458 * free_on_free is passed as B_TRUE, the ABD can 459 * not be in multiple gang ABD's. The gang ABD 460 * can not be responsible for cleaning up the child 461 * ABD memory allocation if the ABD can be in 462 * multiple gang ABD's at one time. 463 */ 464 ASSERT3B(free_on_free, ==, B_FALSE); 465 child_abd = abd_get_offset(cabd, 0); 466 child_abd->abd_flags |= ABD_FLAG_GANG_FREE; 467 } else { 468 child_abd = cabd; 469 if (free_on_free) 470 child_abd->abd_flags |= ABD_FLAG_GANG_FREE; 471 } 472 ASSERT3P(child_abd, !=, NULL); 473 474 list_insert_tail(&ABD_GANG(pabd).abd_gang_chain, child_abd); 475 mutex_exit(&cabd->abd_mtx); 476 pabd->abd_size += child_abd->abd_size; 477 } 478 479 /* 480 * Locate the ABD for the supplied offset in the gang ABD. 481 * Return a new offset relative to the returned ABD. 482 */ 483 abd_t * 484 abd_gang_get_offset(abd_t *abd, size_t *off) 485 { 486 abd_t *cabd; 487 488 ASSERT(abd_is_gang(abd)); 489 ASSERT3U(*off, <, abd->abd_size); 490 for (cabd = list_head(&ABD_GANG(abd).abd_gang_chain); cabd != NULL; 491 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { 492 if (*off >= cabd->abd_size) 493 *off -= cabd->abd_size; 494 else 495 return (cabd); 496 } 497 VERIFY3P(cabd, !=, NULL); 498 return (cabd); 499 } 500 501 /* 502 * Allocate a new ABD, using the provided struct (if non-NULL, and if 503 * circumstances allow - otherwise allocate the struct). The returned ABD will 504 * point to offset off of sabd. It shares the underlying buffer data with sabd. 505 * Use abd_free() to free. sabd must not be freed while any derived ABDs exist. 506 */ 507 static abd_t * 508 abd_get_offset_impl(abd_t *abd, abd_t *sabd, size_t off, size_t size) 509 { 510 abd_verify(sabd); 511 ASSERT3U(off + size, <=, sabd->abd_size); 512 513 if (abd_is_linear(sabd)) { 514 if (abd == NULL) 515 abd = abd_alloc_struct(0); 516 /* 517 * Even if this buf is filesystem metadata, we only track that 518 * if we own the underlying data buffer, which is not true in 519 * this case. Therefore, we don't ever use ABD_FLAG_META here. 520 */ 521 abd->abd_flags |= ABD_FLAG_LINEAR; 522 523 ABD_LINEAR_BUF(abd) = (char *)ABD_LINEAR_BUF(sabd) + off; 524 } else if (abd_is_gang(sabd)) { 525 size_t left = size; 526 if (abd == NULL) { 527 abd = abd_alloc_gang(); 528 } else { 529 abd->abd_flags |= ABD_FLAG_GANG; 530 list_create(&ABD_GANG(abd).abd_gang_chain, 531 sizeof (abd_t), offsetof(abd_t, abd_gang_link)); 532 } 533 534 abd->abd_flags &= ~ABD_FLAG_OWNER; 535 for (abd_t *cabd = abd_gang_get_offset(sabd, &off); 536 cabd != NULL && left > 0; 537 cabd = list_next(&ABD_GANG(sabd).abd_gang_chain, cabd)) { 538 int csize = MIN(left, cabd->abd_size - off); 539 540 abd_t *nabd = abd_get_offset_size(cabd, off, csize); 541 abd_gang_add(abd, nabd, B_TRUE); 542 left -= csize; 543 off = 0; 544 } 545 ASSERT3U(left, ==, 0); 546 } else { 547 abd = abd_get_offset_scatter(abd, sabd, off, size); 548 } 549 550 ASSERT3P(abd, !=, NULL); 551 abd->abd_size = size; 552 #ifdef ZFS_DEBUG 553 abd->abd_parent = sabd; 554 (void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd); 555 #endif 556 return (abd); 557 } 558 559 /* 560 * Like abd_get_offset_size(), but memory for the abd_t is provided by the 561 * caller. Using this routine can improve performance by avoiding the cost 562 * of allocating memory for the abd_t struct, and updating the abd stats. 563 * Usually, the provided abd is returned, but in some circumstances (FreeBSD, 564 * if sabd is scatter and size is more than 2 pages) a new abd_t may need to 565 * be allocated. Therefore callers should be careful to use the returned 566 * abd_t*. 567 */ 568 abd_t * 569 abd_get_offset_struct(abd_t *abd, abd_t *sabd, size_t off, size_t size) 570 { 571 abd_t *result; 572 abd_init_struct(abd); 573 result = abd_get_offset_impl(abd, sabd, off, size); 574 if (result != abd) 575 abd_fini_struct(abd); 576 return (result); 577 } 578 579 abd_t * 580 abd_get_offset(abd_t *sabd, size_t off) 581 { 582 size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0; 583 VERIFY3U(size, >, 0); 584 return (abd_get_offset_impl(NULL, sabd, off, size)); 585 } 586 587 abd_t * 588 abd_get_offset_size(abd_t *sabd, size_t off, size_t size) 589 { 590 ASSERT3U(off + size, <=, sabd->abd_size); 591 return (abd_get_offset_impl(NULL, sabd, off, size)); 592 } 593 594 /* 595 * Return a size scatter ABD containing only zeros. 596 */ 597 abd_t * 598 abd_get_zeros(size_t size) 599 { 600 ASSERT3P(abd_zero_scatter, !=, NULL); 601 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 602 return (abd_get_offset_size(abd_zero_scatter, 0, size)); 603 } 604 605 /* 606 * Allocate a linear ABD structure for buf. 607 */ 608 abd_t * 609 abd_get_from_buf(void *buf, size_t size) 610 { 611 abd_t *abd = abd_alloc_struct(0); 612 613 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 614 615 /* 616 * Even if this buf is filesystem metadata, we only track that if we 617 * own the underlying data buffer, which is not true in this case. 618 * Therefore, we don't ever use ABD_FLAG_META here. 619 */ 620 abd->abd_flags |= ABD_FLAG_LINEAR; 621 abd->abd_size = size; 622 623 ABD_LINEAR_BUF(abd) = buf; 624 625 return (abd); 626 } 627 628 /* 629 * Get the raw buffer associated with a linear ABD. 630 */ 631 void * 632 abd_to_buf(abd_t *abd) 633 { 634 ASSERT(abd_is_linear(abd)); 635 abd_verify(abd); 636 return (ABD_LINEAR_BUF(abd)); 637 } 638 639 /* 640 * Borrow a raw buffer from an ABD without copying the contents of the ABD 641 * into the buffer. If the ABD is scattered, this will allocate a raw buffer 642 * whose contents are undefined. To copy over the existing data in the ABD, use 643 * abd_borrow_buf_copy() instead. 644 */ 645 void * 646 abd_borrow_buf(abd_t *abd, size_t n) 647 { 648 void *buf; 649 abd_verify(abd); 650 ASSERT3U(abd->abd_size, >=, n); 651 if (abd_is_linear(abd)) { 652 buf = abd_to_buf(abd); 653 } else { 654 buf = zio_buf_alloc(n); 655 } 656 #ifdef ZFS_DEBUG 657 (void) zfs_refcount_add_many(&abd->abd_children, n, buf); 658 #endif 659 return (buf); 660 } 661 662 void * 663 abd_borrow_buf_copy(abd_t *abd, size_t n) 664 { 665 void *buf = abd_borrow_buf(abd, n); 666 if (!abd_is_linear(abd)) { 667 abd_copy_to_buf(buf, abd, n); 668 } 669 return (buf); 670 } 671 672 /* 673 * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will 674 * not change the contents of the ABD and will ASSERT that you didn't modify 675 * the buffer since it was borrowed. If you want any changes you made to buf to 676 * be copied back to abd, use abd_return_buf_copy() instead. 677 */ 678 void 679 abd_return_buf(abd_t *abd, void *buf, size_t n) 680 { 681 abd_verify(abd); 682 ASSERT3U(abd->abd_size, >=, n); 683 #ifdef ZFS_DEBUG 684 (void) zfs_refcount_remove_many(&abd->abd_children, n, buf); 685 #endif 686 if (abd_is_linear(abd)) { 687 ASSERT3P(buf, ==, abd_to_buf(abd)); 688 } else { 689 ASSERT0(abd_cmp_buf(abd, buf, n)); 690 zio_buf_free(buf, n); 691 } 692 } 693 694 void 695 abd_return_buf_copy(abd_t *abd, void *buf, size_t n) 696 { 697 if (!abd_is_linear(abd)) { 698 abd_copy_from_buf(abd, buf, n); 699 } 700 abd_return_buf(abd, buf, n); 701 } 702 703 void 704 abd_release_ownership_of_buf(abd_t *abd) 705 { 706 ASSERT(abd_is_linear(abd)); 707 ASSERT(abd->abd_flags & ABD_FLAG_OWNER); 708 709 /* 710 * abd_free() needs to handle LINEAR_PAGE ABD's specially. 711 * Since that flag does not survive the 712 * abd_release_ownership_of_buf() -> abd_get_from_buf() -> 713 * abd_take_ownership_of_buf() sequence, we don't allow releasing 714 * these "linear but not zio_[data_]buf_alloc()'ed" ABD's. 715 */ 716 ASSERT(!abd_is_linear_page(abd)); 717 718 abd_verify(abd); 719 720 abd->abd_flags &= ~ABD_FLAG_OWNER; 721 /* Disable this flag since we no longer own the data buffer */ 722 abd->abd_flags &= ~ABD_FLAG_META; 723 724 abd_update_linear_stats(abd, ABDSTAT_DECR); 725 } 726 727 728 /* 729 * Give this ABD ownership of the buffer that it's storing. Can only be used on 730 * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated 731 * with abd_alloc_linear() which subsequently released ownership of their buf 732 * with abd_release_ownership_of_buf(). 733 */ 734 void 735 abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata) 736 { 737 ASSERT(abd_is_linear(abd)); 738 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER)); 739 abd_verify(abd); 740 741 abd->abd_flags |= ABD_FLAG_OWNER; 742 if (is_metadata) { 743 abd->abd_flags |= ABD_FLAG_META; 744 } 745 746 abd_update_linear_stats(abd, ABDSTAT_INCR); 747 } 748 749 /* 750 * Initializes an abd_iter based on whether the abd is a gang ABD 751 * or just a single ABD. 752 */ 753 static inline abd_t * 754 abd_init_abd_iter(abd_t *abd, struct abd_iter *aiter, size_t off) 755 { 756 abd_t *cabd = NULL; 757 758 if (abd_is_gang(abd)) { 759 cabd = abd_gang_get_offset(abd, &off); 760 if (cabd) { 761 abd_iter_init(aiter, cabd); 762 abd_iter_advance(aiter, off); 763 } 764 } else { 765 abd_iter_init(aiter, abd); 766 abd_iter_advance(aiter, off); 767 } 768 return (cabd); 769 } 770 771 /* 772 * Advances an abd_iter. We have to be careful with gang ABD as 773 * advancing could mean that we are at the end of a particular ABD and 774 * must grab the ABD in the gang ABD's list. 775 */ 776 static inline abd_t * 777 abd_advance_abd_iter(abd_t *abd, abd_t *cabd, struct abd_iter *aiter, 778 size_t len) 779 { 780 abd_iter_advance(aiter, len); 781 if (abd_is_gang(abd) && abd_iter_at_end(aiter)) { 782 ASSERT3P(cabd, !=, NULL); 783 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd); 784 if (cabd) { 785 abd_iter_init(aiter, cabd); 786 abd_iter_advance(aiter, 0); 787 } 788 } 789 return (cabd); 790 } 791 792 int 793 abd_iterate_func(abd_t *abd, size_t off, size_t size, 794 abd_iter_func_t *func, void *private) 795 { 796 struct abd_iter aiter; 797 int ret = 0; 798 799 if (size == 0) 800 return (0); 801 802 abd_verify(abd); 803 ASSERT3U(off + size, <=, abd->abd_size); 804 805 abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off); 806 807 while (size > 0) { 808 IMPLY(abd_is_gang(abd), c_abd != NULL); 809 810 abd_iter_map(&aiter); 811 812 size_t len = MIN(aiter.iter_mapsize, size); 813 ASSERT3U(len, >, 0); 814 815 ret = func(aiter.iter_mapaddr, len, private); 816 817 abd_iter_unmap(&aiter); 818 819 if (ret != 0) 820 break; 821 822 size -= len; 823 c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len); 824 } 825 826 return (ret); 827 } 828 829 struct buf_arg { 830 void *arg_buf; 831 }; 832 833 static int 834 abd_copy_to_buf_off_cb(void *buf, size_t size, void *private) 835 { 836 struct buf_arg *ba_ptr = private; 837 838 (void) memcpy(ba_ptr->arg_buf, buf, size); 839 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 840 841 return (0); 842 } 843 844 /* 845 * Copy abd to buf. (off is the offset in abd.) 846 */ 847 void 848 abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size) 849 { 850 struct buf_arg ba_ptr = { buf }; 851 852 (void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb, 853 &ba_ptr); 854 } 855 856 static int 857 abd_cmp_buf_off_cb(void *buf, size_t size, void *private) 858 { 859 int ret; 860 struct buf_arg *ba_ptr = private; 861 862 ret = memcmp(buf, ba_ptr->arg_buf, size); 863 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 864 865 return (ret); 866 } 867 868 /* 869 * Compare the contents of abd to buf. (off is the offset in abd.) 870 */ 871 int 872 abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) 873 { 874 struct buf_arg ba_ptr = { (void *) buf }; 875 876 return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr)); 877 } 878 879 static int 880 abd_copy_from_buf_off_cb(void *buf, size_t size, void *private) 881 { 882 struct buf_arg *ba_ptr = private; 883 884 (void) memcpy(buf, ba_ptr->arg_buf, size); 885 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 886 887 return (0); 888 } 889 890 /* 891 * Copy from buf to abd. (off is the offset in abd.) 892 */ 893 void 894 abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) 895 { 896 struct buf_arg ba_ptr = { (void *) buf }; 897 898 (void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb, 899 &ba_ptr); 900 } 901 902 static int 903 abd_zero_off_cb(void *buf, size_t size, void *private) 904 { 905 (void) private; 906 (void) memset(buf, 0, size); 907 return (0); 908 } 909 910 /* 911 * Zero out the abd from a particular offset to the end. 912 */ 913 void 914 abd_zero_off(abd_t *abd, size_t off, size_t size) 915 { 916 (void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL); 917 } 918 919 /* 920 * Iterate over two ABDs and call func incrementally on the two ABDs' data in 921 * equal-sized chunks (passed to func as raw buffers). func could be called many 922 * times during this iteration. 923 */ 924 int 925 abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, 926 size_t size, abd_iter_func2_t *func, void *private) 927 { 928 int ret = 0; 929 struct abd_iter daiter, saiter; 930 abd_t *c_dabd, *c_sabd; 931 932 if (size == 0) 933 return (0); 934 935 abd_verify(dabd); 936 abd_verify(sabd); 937 938 ASSERT3U(doff + size, <=, dabd->abd_size); 939 ASSERT3U(soff + size, <=, sabd->abd_size); 940 941 c_dabd = abd_init_abd_iter(dabd, &daiter, doff); 942 c_sabd = abd_init_abd_iter(sabd, &saiter, soff); 943 944 while (size > 0) { 945 IMPLY(abd_is_gang(dabd), c_dabd != NULL); 946 IMPLY(abd_is_gang(sabd), c_sabd != NULL); 947 948 abd_iter_map(&daiter); 949 abd_iter_map(&saiter); 950 951 size_t dlen = MIN(daiter.iter_mapsize, size); 952 size_t slen = MIN(saiter.iter_mapsize, size); 953 size_t len = MIN(dlen, slen); 954 ASSERT(dlen > 0 || slen > 0); 955 956 ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len, 957 private); 958 959 abd_iter_unmap(&saiter); 960 abd_iter_unmap(&daiter); 961 962 if (ret != 0) 963 break; 964 965 size -= len; 966 c_dabd = 967 abd_advance_abd_iter(dabd, c_dabd, &daiter, len); 968 c_sabd = 969 abd_advance_abd_iter(sabd, c_sabd, &saiter, len); 970 } 971 972 return (ret); 973 } 974 975 static int 976 abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private) 977 { 978 (void) private; 979 (void) memcpy(dbuf, sbuf, size); 980 return (0); 981 } 982 983 /* 984 * Copy from sabd to dabd starting from soff and doff. 985 */ 986 void 987 abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size) 988 { 989 (void) abd_iterate_func2(dabd, sabd, doff, soff, size, 990 abd_copy_off_cb, NULL); 991 } 992 993 static int 994 abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private) 995 { 996 (void) private; 997 return (memcmp(bufa, bufb, size)); 998 } 999 1000 /* 1001 * Compares the contents of two ABDs. 1002 */ 1003 int 1004 abd_cmp(abd_t *dabd, abd_t *sabd) 1005 { 1006 ASSERT3U(dabd->abd_size, ==, sabd->abd_size); 1007 return (abd_iterate_func2(dabd, sabd, 0, 0, dabd->abd_size, 1008 abd_cmp_cb, NULL)); 1009 } 1010 1011 /* 1012 * Iterate over code ABDs and a data ABD and call @func_raidz_gen. 1013 * 1014 * @cabds parity ABDs, must have equal size 1015 * @dabd data ABD. Can be NULL (in this case @dsize = 0) 1016 * @func_raidz_gen should be implemented so that its behaviour 1017 * is the same when taking linear and when taking scatter 1018 */ 1019 void 1020 abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd, size_t off, 1021 size_t csize, size_t dsize, const unsigned parity, 1022 void (*func_raidz_gen)(void **, const void *, size_t, size_t)) 1023 { 1024 int i; 1025 size_t len, dlen; 1026 struct abd_iter caiters[3]; 1027 struct abd_iter daiter; 1028 void *caddrs[3], *daddr; 1029 unsigned long flags __maybe_unused = 0; 1030 abd_t *c_cabds[3]; 1031 abd_t *c_dabd = NULL; 1032 1033 ASSERT3U(parity, <=, 3); 1034 for (i = 0; i < parity; i++) { 1035 abd_verify(cabds[i]); 1036 ASSERT3U(off + csize, <=, cabds[i]->abd_size); 1037 c_cabds[i] = abd_init_abd_iter(cabds[i], &caiters[i], off); 1038 } 1039 1040 if (dsize > 0) { 1041 ASSERT(dabd); 1042 abd_verify(dabd); 1043 ASSERT3U(off + dsize, <=, dabd->abd_size); 1044 c_dabd = abd_init_abd_iter(dabd, &daiter, off); 1045 } 1046 1047 abd_enter_critical(flags); 1048 while (csize > 0) { 1049 len = csize; 1050 for (i = 0; i < parity; i++) { 1051 IMPLY(abd_is_gang(cabds[i]), c_cabds[i] != NULL); 1052 abd_iter_map(&caiters[i]); 1053 caddrs[i] = caiters[i].iter_mapaddr; 1054 len = MIN(caiters[i].iter_mapsize, len); 1055 } 1056 1057 if (dsize > 0) { 1058 IMPLY(abd_is_gang(dabd), c_dabd != NULL); 1059 abd_iter_map(&daiter); 1060 daddr = daiter.iter_mapaddr; 1061 len = MIN(daiter.iter_mapsize, len); 1062 dlen = len; 1063 } else { 1064 daddr = NULL; 1065 dlen = 0; 1066 } 1067 1068 /* must be progressive */ 1069 ASSERT3U(len, >, 0); 1070 /* 1071 * The iterated function likely will not do well if each 1072 * segment except the last one is not multiple of 512 (raidz). 1073 */ 1074 ASSERT3U(((uint64_t)len & 511ULL), ==, 0); 1075 1076 func_raidz_gen(caddrs, daddr, len, dlen); 1077 1078 for (i = parity-1; i >= 0; i--) { 1079 abd_iter_unmap(&caiters[i]); 1080 c_cabds[i] = 1081 abd_advance_abd_iter(cabds[i], c_cabds[i], 1082 &caiters[i], len); 1083 } 1084 1085 if (dsize > 0) { 1086 abd_iter_unmap(&daiter); 1087 c_dabd = 1088 abd_advance_abd_iter(dabd, c_dabd, &daiter, 1089 dlen); 1090 dsize -= dlen; 1091 } 1092 1093 csize -= len; 1094 } 1095 abd_exit_critical(flags); 1096 } 1097 1098 /* 1099 * Iterate over code ABDs and data reconstruction target ABDs and call 1100 * @func_raidz_rec. Function maps at most 6 pages atomically. 1101 * 1102 * @cabds parity ABDs, must have equal size 1103 * @tabds rec target ABDs, at most 3 1104 * @tsize size of data target columns 1105 * @func_raidz_rec expects syndrome data in target columns. Function 1106 * reconstructs data and overwrites target columns. 1107 */ 1108 void 1109 abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds, 1110 size_t tsize, const unsigned parity, 1111 void (*func_raidz_rec)(void **t, const size_t tsize, void **c, 1112 const unsigned *mul), 1113 const unsigned *mul) 1114 { 1115 int i; 1116 size_t len; 1117 struct abd_iter citers[3]; 1118 struct abd_iter xiters[3]; 1119 void *caddrs[3], *xaddrs[3]; 1120 unsigned long flags __maybe_unused = 0; 1121 abd_t *c_cabds[3]; 1122 abd_t *c_tabds[3]; 1123 1124 ASSERT3U(parity, <=, 3); 1125 1126 for (i = 0; i < parity; i++) { 1127 abd_verify(cabds[i]); 1128 abd_verify(tabds[i]); 1129 ASSERT3U(tsize, <=, cabds[i]->abd_size); 1130 ASSERT3U(tsize, <=, tabds[i]->abd_size); 1131 c_cabds[i] = 1132 abd_init_abd_iter(cabds[i], &citers[i], 0); 1133 c_tabds[i] = 1134 abd_init_abd_iter(tabds[i], &xiters[i], 0); 1135 } 1136 1137 abd_enter_critical(flags); 1138 while (tsize > 0) { 1139 len = tsize; 1140 for (i = 0; i < parity; i++) { 1141 IMPLY(abd_is_gang(cabds[i]), c_cabds[i] != NULL); 1142 IMPLY(abd_is_gang(tabds[i]), c_tabds[i] != NULL); 1143 abd_iter_map(&citers[i]); 1144 abd_iter_map(&xiters[i]); 1145 caddrs[i] = citers[i].iter_mapaddr; 1146 xaddrs[i] = xiters[i].iter_mapaddr; 1147 len = MIN(citers[i].iter_mapsize, len); 1148 len = MIN(xiters[i].iter_mapsize, len); 1149 } 1150 1151 /* must be progressive */ 1152 ASSERT3S(len, >, 0); 1153 /* 1154 * The iterated function likely will not do well if each 1155 * segment except the last one is not multiple of 512 (raidz). 1156 */ 1157 ASSERT3U(((uint64_t)len & 511ULL), ==, 0); 1158 1159 func_raidz_rec(xaddrs, len, caddrs, mul); 1160 1161 for (i = parity-1; i >= 0; i--) { 1162 abd_iter_unmap(&xiters[i]); 1163 abd_iter_unmap(&citers[i]); 1164 c_tabds[i] = 1165 abd_advance_abd_iter(tabds[i], c_tabds[i], 1166 &xiters[i], len); 1167 c_cabds[i] = 1168 abd_advance_abd_iter(cabds[i], c_cabds[i], 1169 &citers[i], len); 1170 } 1171 1172 tsize -= len; 1173 ASSERT3S(tsize, >=, 0); 1174 } 1175 abd_exit_critical(flags); 1176 } 1177