1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 23 */ 24 25 #include <sys/dataset_kstats.h> 26 #include <sys/dbuf.h> 27 #include <sys/dmu_traverse.h> 28 #include <sys/dsl_dataset.h> 29 #include <sys/dsl_prop.h> 30 #include <sys/dsl_dir.h> 31 #include <sys/zap.h> 32 #include <sys/zfeature.h> 33 #include <sys/zil_impl.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/zio.h> 36 #include <sys/zfs_rlock.h> 37 #include <sys/spa_impl.h> 38 #include <sys/zvol.h> 39 #include <sys/zvol_impl.h> 40 41 #include <linux/blkdev_compat.h> 42 #include <linux/task_io_accounting_ops.h> 43 44 #ifdef HAVE_BLK_MQ 45 #include <linux/blk-mq.h> 46 #endif 47 48 static void zvol_request_impl(zvol_state_t *zv, struct bio *bio, 49 struct request *rq, boolean_t force_sync); 50 51 static unsigned int zvol_major = ZVOL_MAJOR; 52 static unsigned int zvol_request_sync = 0; 53 static unsigned int zvol_prefetch_bytes = (128 * 1024); 54 static unsigned long zvol_max_discard_blocks = 16384; 55 56 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS 57 static unsigned int zvol_open_timeout_ms = 1000; 58 #endif 59 60 static unsigned int zvol_threads = 0; 61 #ifdef HAVE_BLK_MQ 62 static unsigned int zvol_blk_mq_threads = 0; 63 static unsigned int zvol_blk_mq_actual_threads; 64 static boolean_t zvol_use_blk_mq = B_FALSE; 65 66 /* 67 * The maximum number of volblocksize blocks to process per thread. Typically, 68 * write heavy workloads preform better with higher values here, and read 69 * heavy workloads preform better with lower values, but that's not a hard 70 * and fast rule. It's basically a knob to tune between "less overhead with 71 * less parallelism" and "more overhead, but more parallelism". 72 * 73 * '8' was chosen as a reasonable, balanced, default based off of sequential 74 * read and write tests to a zvol in an NVMe pool (with 16 CPUs). 75 */ 76 static unsigned int zvol_blk_mq_blocks_per_thread = 8; 77 #endif 78 79 #ifndef BLKDEV_DEFAULT_RQ 80 /* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */ 81 #define BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ 82 #endif 83 84 /* 85 * Finalize our BIO or request. 86 */ 87 #ifdef HAVE_BLK_MQ 88 #define END_IO(zv, bio, rq, error) do { \ 89 if (bio) { \ 90 BIO_END_IO(bio, error); \ 91 } else { \ 92 blk_mq_end_request(rq, errno_to_bi_status(error)); \ 93 } \ 94 } while (0) 95 #else 96 #define END_IO(zv, bio, rq, error) BIO_END_IO(bio, error) 97 #endif 98 99 #ifdef HAVE_BLK_MQ 100 static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ; 101 static unsigned int zvol_actual_blk_mq_queue_depth; 102 #endif 103 104 struct zvol_state_os { 105 struct gendisk *zvo_disk; /* generic disk */ 106 struct request_queue *zvo_queue; /* request queue */ 107 dev_t zvo_dev; /* device id */ 108 109 #ifdef HAVE_BLK_MQ 110 struct blk_mq_tag_set tag_set; 111 #endif 112 113 /* Set from the global 'zvol_use_blk_mq' at zvol load */ 114 boolean_t use_blk_mq; 115 }; 116 117 static taskq_t *zvol_taskq; 118 static struct ida zvol_ida; 119 120 typedef struct zv_request_stack { 121 zvol_state_t *zv; 122 struct bio *bio; 123 struct request *rq; 124 } zv_request_t; 125 126 typedef struct zv_work { 127 struct request *rq; 128 struct work_struct work; 129 } zv_work_t; 130 131 typedef struct zv_request_task { 132 zv_request_t zvr; 133 taskq_ent_t ent; 134 } zv_request_task_t; 135 136 static zv_request_task_t * 137 zv_request_task_create(zv_request_t zvr) 138 { 139 zv_request_task_t *task; 140 task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP); 141 taskq_init_ent(&task->ent); 142 task->zvr = zvr; 143 return (task); 144 } 145 146 static void 147 zv_request_task_free(zv_request_task_t *task) 148 { 149 kmem_free(task, sizeof (*task)); 150 } 151 152 #ifdef HAVE_BLK_MQ 153 154 /* 155 * This is called when a new block multiqueue request comes in. A request 156 * contains one or more BIOs. 157 */ 158 static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx, 159 const struct blk_mq_queue_data *bd) 160 { 161 struct request *rq = bd->rq; 162 zvol_state_t *zv = rq->q->queuedata; 163 164 /* Tell the kernel that we are starting to process this request */ 165 blk_mq_start_request(rq); 166 167 if (blk_rq_is_passthrough(rq)) { 168 /* Skip non filesystem request */ 169 blk_mq_end_request(rq, BLK_STS_IOERR); 170 return (BLK_STS_IOERR); 171 } 172 173 zvol_request_impl(zv, NULL, rq, 0); 174 175 /* Acknowledge to the kernel that we got this request */ 176 return (BLK_STS_OK); 177 } 178 179 static struct blk_mq_ops zvol_blk_mq_queue_ops = { 180 .queue_rq = zvol_mq_queue_rq, 181 }; 182 183 /* Initialize our blk-mq struct */ 184 static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv) 185 { 186 struct zvol_state_os *zso = zv->zv_zso; 187 188 memset(&zso->tag_set, 0, sizeof (zso->tag_set)); 189 190 /* Initialize tag set. */ 191 zso->tag_set.ops = &zvol_blk_mq_queue_ops; 192 zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads; 193 zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth; 194 zso->tag_set.numa_node = NUMA_NO_NODE; 195 zso->tag_set.cmd_size = 0; 196 197 /* 198 * We need BLK_MQ_F_BLOCKING here since we do blocking calls in 199 * zvol_request_impl() 200 */ 201 zso->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; 202 zso->tag_set.driver_data = zv; 203 204 return (blk_mq_alloc_tag_set(&zso->tag_set)); 205 } 206 #endif /* HAVE_BLK_MQ */ 207 208 /* 209 * Given a path, return TRUE if path is a ZVOL. 210 */ 211 boolean_t 212 zvol_os_is_zvol(const char *path) 213 { 214 dev_t dev = 0; 215 216 if (vdev_lookup_bdev(path, &dev) != 0) 217 return (B_FALSE); 218 219 if (MAJOR(dev) == zvol_major) 220 return (B_TRUE); 221 222 return (B_FALSE); 223 } 224 225 static void 226 zvol_write(zv_request_t *zvr) 227 { 228 struct bio *bio = zvr->bio; 229 struct request *rq = zvr->rq; 230 int error = 0; 231 zfs_uio_t uio; 232 zvol_state_t *zv = zvr->zv; 233 struct request_queue *q; 234 struct gendisk *disk; 235 unsigned long start_time = 0; 236 boolean_t acct = B_FALSE; 237 238 ASSERT3P(zv, !=, NULL); 239 ASSERT3U(zv->zv_open_count, >, 0); 240 ASSERT3P(zv->zv_zilog, !=, NULL); 241 242 q = zv->zv_zso->zvo_queue; 243 disk = zv->zv_zso->zvo_disk; 244 245 /* bio marked as FLUSH need to flush before write */ 246 if (io_is_flush(bio, rq)) 247 zil_commit(zv->zv_zilog, ZVOL_OBJ); 248 249 /* Some requests are just for flush and nothing else. */ 250 if (io_size(bio, rq) == 0) { 251 rw_exit(&zv->zv_suspend_lock); 252 END_IO(zv, bio, rq, 0); 253 return; 254 } 255 256 zfs_uio_bvec_init(&uio, bio, rq); 257 258 ssize_t start_resid = uio.uio_resid; 259 260 /* 261 * With use_blk_mq, accounting is done by blk_mq_start_request() 262 * and blk_mq_end_request(), so we can skip it here. 263 */ 264 if (bio) { 265 acct = blk_queue_io_stat(q); 266 if (acct) { 267 start_time = blk_generic_start_io_acct(q, disk, WRITE, 268 bio); 269 } 270 } 271 272 boolean_t sync = 273 io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS; 274 275 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock, 276 uio.uio_loffset, uio.uio_resid, RL_WRITER); 277 278 uint64_t volsize = zv->zv_volsize; 279 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) { 280 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1); 281 uint64_t off = uio.uio_loffset; 282 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset); 283 284 if (bytes > volsize - off) /* don't write past the end */ 285 bytes = volsize - off; 286 287 dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes); 288 289 /* This will only fail for ENOSPC */ 290 error = dmu_tx_assign(tx, TXG_WAIT); 291 if (error) { 292 dmu_tx_abort(tx); 293 break; 294 } 295 error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx); 296 if (error == 0) { 297 zvol_log_write(zv, tx, off, bytes, sync); 298 } 299 dmu_tx_commit(tx); 300 301 if (error) 302 break; 303 } 304 zfs_rangelock_exit(lr); 305 306 int64_t nwritten = start_resid - uio.uio_resid; 307 dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten); 308 task_io_account_write(nwritten); 309 310 if (sync) 311 zil_commit(zv->zv_zilog, ZVOL_OBJ); 312 313 rw_exit(&zv->zv_suspend_lock); 314 315 if (bio && acct) { 316 blk_generic_end_io_acct(q, disk, WRITE, bio, start_time); 317 } 318 319 END_IO(zv, bio, rq, -error); 320 } 321 322 static void 323 zvol_write_task(void *arg) 324 { 325 zv_request_task_t *task = arg; 326 zvol_write(&task->zvr); 327 zv_request_task_free(task); 328 } 329 330 static void 331 zvol_discard(zv_request_t *zvr) 332 { 333 struct bio *bio = zvr->bio; 334 struct request *rq = zvr->rq; 335 zvol_state_t *zv = zvr->zv; 336 uint64_t start = io_offset(bio, rq); 337 uint64_t size = io_size(bio, rq); 338 uint64_t end = start + size; 339 boolean_t sync; 340 int error = 0; 341 dmu_tx_t *tx; 342 struct request_queue *q = zv->zv_zso->zvo_queue; 343 struct gendisk *disk = zv->zv_zso->zvo_disk; 344 unsigned long start_time = 0; 345 boolean_t acct = B_FALSE; 346 347 ASSERT3P(zv, !=, NULL); 348 ASSERT3U(zv->zv_open_count, >, 0); 349 ASSERT3P(zv->zv_zilog, !=, NULL); 350 351 if (bio) { 352 acct = blk_queue_io_stat(q); 353 if (acct) { 354 start_time = blk_generic_start_io_acct(q, disk, WRITE, 355 bio); 356 } 357 } 358 359 sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS; 360 361 if (end > zv->zv_volsize) { 362 error = SET_ERROR(EIO); 363 goto unlock; 364 } 365 366 /* 367 * Align the request to volume block boundaries when a secure erase is 368 * not required. This will prevent dnode_free_range() from zeroing out 369 * the unaligned parts which is slow (read-modify-write) and useless 370 * since we are not freeing any space by doing so. 371 */ 372 if (!io_is_secure_erase(bio, rq)) { 373 start = P2ROUNDUP(start, zv->zv_volblocksize); 374 end = P2ALIGN(end, zv->zv_volblocksize); 375 size = end - start; 376 } 377 378 if (start >= end) 379 goto unlock; 380 381 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock, 382 start, size, RL_WRITER); 383 384 tx = dmu_tx_create(zv->zv_objset); 385 dmu_tx_mark_netfree(tx); 386 error = dmu_tx_assign(tx, TXG_WAIT); 387 if (error != 0) { 388 dmu_tx_abort(tx); 389 } else { 390 zvol_log_truncate(zv, tx, start, size, B_TRUE); 391 dmu_tx_commit(tx); 392 error = dmu_free_long_range(zv->zv_objset, 393 ZVOL_OBJ, start, size); 394 } 395 zfs_rangelock_exit(lr); 396 397 if (error == 0 && sync) 398 zil_commit(zv->zv_zilog, ZVOL_OBJ); 399 400 unlock: 401 rw_exit(&zv->zv_suspend_lock); 402 403 if (bio && acct) { 404 blk_generic_end_io_acct(q, disk, WRITE, bio, 405 start_time); 406 } 407 408 END_IO(zv, bio, rq, -error); 409 } 410 411 static void 412 zvol_discard_task(void *arg) 413 { 414 zv_request_task_t *task = arg; 415 zvol_discard(&task->zvr); 416 zv_request_task_free(task); 417 } 418 419 static void 420 zvol_read(zv_request_t *zvr) 421 { 422 struct bio *bio = zvr->bio; 423 struct request *rq = zvr->rq; 424 int error = 0; 425 zfs_uio_t uio; 426 boolean_t acct = B_FALSE; 427 zvol_state_t *zv = zvr->zv; 428 struct request_queue *q; 429 struct gendisk *disk; 430 unsigned long start_time = 0; 431 432 ASSERT3P(zv, !=, NULL); 433 ASSERT3U(zv->zv_open_count, >, 0); 434 435 zfs_uio_bvec_init(&uio, bio, rq); 436 437 q = zv->zv_zso->zvo_queue; 438 disk = zv->zv_zso->zvo_disk; 439 440 ssize_t start_resid = uio.uio_resid; 441 442 /* 443 * When blk-mq is being used, accounting is done by 444 * blk_mq_start_request() and blk_mq_end_request(). 445 */ 446 if (bio) { 447 acct = blk_queue_io_stat(q); 448 if (acct) 449 start_time = blk_generic_start_io_acct(q, disk, READ, 450 bio); 451 } 452 453 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock, 454 uio.uio_loffset, uio.uio_resid, RL_READER); 455 456 uint64_t volsize = zv->zv_volsize; 457 458 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) { 459 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1); 460 461 /* don't read past the end */ 462 if (bytes > volsize - uio.uio_loffset) 463 bytes = volsize - uio.uio_loffset; 464 465 error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes); 466 if (error) { 467 /* convert checksum errors into IO errors */ 468 if (error == ECKSUM) 469 error = SET_ERROR(EIO); 470 break; 471 } 472 } 473 zfs_rangelock_exit(lr); 474 475 int64_t nread = start_resid - uio.uio_resid; 476 dataset_kstats_update_read_kstats(&zv->zv_kstat, nread); 477 task_io_account_read(nread); 478 479 rw_exit(&zv->zv_suspend_lock); 480 481 if (bio && acct) { 482 blk_generic_end_io_acct(q, disk, READ, bio, start_time); 483 } 484 485 END_IO(zv, bio, rq, -error); 486 } 487 488 static void 489 zvol_read_task(void *arg) 490 { 491 zv_request_task_t *task = arg; 492 zvol_read(&task->zvr); 493 zv_request_task_free(task); 494 } 495 496 497 /* 498 * Process a BIO or request 499 * 500 * Either 'bio' or 'rq' should be set depending on if we are processing a 501 * bio or a request (both should not be set). 502 * 503 * force_sync: Set to 0 to defer processing to a background taskq 504 * Set to 1 to process data synchronously 505 */ 506 static void 507 zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq, 508 boolean_t force_sync) 509 { 510 fstrans_cookie_t cookie = spl_fstrans_mark(); 511 uint64_t offset = io_offset(bio, rq); 512 uint64_t size = io_size(bio, rq); 513 int rw = io_data_dir(bio, rq); 514 515 if (zvol_request_sync) 516 force_sync = 1; 517 518 zv_request_t zvr = { 519 .zv = zv, 520 .bio = bio, 521 .rq = rq, 522 }; 523 524 if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) { 525 printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n", 526 zv->zv_zso->zvo_disk->disk_name, 527 (long long unsigned)offset, 528 (long unsigned)size); 529 530 END_IO(zv, bio, rq, -SET_ERROR(EIO)); 531 goto out; 532 } 533 534 zv_request_task_t *task; 535 536 if (rw == WRITE) { 537 if (unlikely(zv->zv_flags & ZVOL_RDONLY)) { 538 END_IO(zv, bio, rq, -SET_ERROR(EROFS)); 539 goto out; 540 } 541 542 /* 543 * Prevents the zvol from being suspended, or the ZIL being 544 * concurrently opened. Will be released after the i/o 545 * completes. 546 */ 547 rw_enter(&zv->zv_suspend_lock, RW_READER); 548 549 /* 550 * Open a ZIL if this is the first time we have written to this 551 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather 552 * than zv_state_lock so that we don't need to acquire an 553 * additional lock in this path. 554 */ 555 if (zv->zv_zilog == NULL) { 556 rw_exit(&zv->zv_suspend_lock); 557 rw_enter(&zv->zv_suspend_lock, RW_WRITER); 558 if (zv->zv_zilog == NULL) { 559 zv->zv_zilog = zil_open(zv->zv_objset, 560 zvol_get_data, &zv->zv_kstat.dk_zil_sums); 561 zv->zv_flags |= ZVOL_WRITTEN_TO; 562 /* replay / destroy done in zvol_create_minor */ 563 VERIFY0((zv->zv_zilog->zl_header->zh_flags & 564 ZIL_REPLAY_NEEDED)); 565 } 566 rw_downgrade(&zv->zv_suspend_lock); 567 } 568 569 /* 570 * We don't want this thread to be blocked waiting for i/o to 571 * complete, so we instead wait from a taskq callback. The 572 * i/o may be a ZIL write (via zil_commit()), or a read of an 573 * indirect block, or a read of a data block (if this is a 574 * partial-block write). We will indicate that the i/o is 575 * complete by calling END_IO() from the taskq callback. 576 * 577 * This design allows the calling thread to continue and 578 * initiate more concurrent operations by calling 579 * zvol_request() again. There are typically only a small 580 * number of threads available to call zvol_request() (e.g. 581 * one per iSCSI target), so keeping the latency of 582 * zvol_request() low is important for performance. 583 * 584 * The zvol_request_sync module parameter allows this 585 * behavior to be altered, for performance evaluation 586 * purposes. If the callback blocks, setting 587 * zvol_request_sync=1 will result in much worse performance. 588 * 589 * We can have up to zvol_threads concurrent i/o's being 590 * processed for all zvols on the system. This is typically 591 * a vast improvement over the zvol_request_sync=1 behavior 592 * of one i/o at a time per zvol. However, an even better 593 * design would be for zvol_request() to initiate the zio 594 * directly, and then be notified by the zio_done callback, 595 * which would call END_IO(). Unfortunately, the DMU/ZIL 596 * interfaces lack this functionality (they block waiting for 597 * the i/o to complete). 598 */ 599 if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) { 600 if (force_sync) { 601 zvol_discard(&zvr); 602 } else { 603 task = zv_request_task_create(zvr); 604 taskq_dispatch_ent(zvol_taskq, 605 zvol_discard_task, task, 0, &task->ent); 606 } 607 } else { 608 if (force_sync) { 609 zvol_write(&zvr); 610 } else { 611 task = zv_request_task_create(zvr); 612 taskq_dispatch_ent(zvol_taskq, 613 zvol_write_task, task, 0, &task->ent); 614 } 615 } 616 } else { 617 /* 618 * The SCST driver, and possibly others, may issue READ I/Os 619 * with a length of zero bytes. These empty I/Os contain no 620 * data and require no additional handling. 621 */ 622 if (size == 0) { 623 END_IO(zv, bio, rq, 0); 624 goto out; 625 } 626 627 rw_enter(&zv->zv_suspend_lock, RW_READER); 628 629 /* See comment in WRITE case above. */ 630 if (force_sync) { 631 zvol_read(&zvr); 632 } else { 633 task = zv_request_task_create(zvr); 634 taskq_dispatch_ent(zvol_taskq, 635 zvol_read_task, task, 0, &task->ent); 636 } 637 } 638 639 out: 640 spl_fstrans_unmark(cookie); 641 } 642 643 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS 644 #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID 645 static void 646 zvol_submit_bio(struct bio *bio) 647 #else 648 static blk_qc_t 649 zvol_submit_bio(struct bio *bio) 650 #endif 651 #else 652 static MAKE_REQUEST_FN_RET 653 zvol_request(struct request_queue *q, struct bio *bio) 654 #endif 655 { 656 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS 657 #if defined(HAVE_BIO_BDEV_DISK) 658 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 659 #else 660 struct request_queue *q = bio->bi_disk->queue; 661 #endif 662 #endif 663 zvol_state_t *zv = q->queuedata; 664 665 zvol_request_impl(zv, bio, NULL, 0); 666 #if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \ 667 defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \ 668 !defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID) 669 return (BLK_QC_T_NONE); 670 #endif 671 } 672 673 static int 674 zvol_open(struct block_device *bdev, fmode_t flag) 675 { 676 zvol_state_t *zv; 677 int error = 0; 678 boolean_t drop_suspend = B_FALSE; 679 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS 680 hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms); 681 hrtime_t start = gethrtime(); 682 683 retry: 684 #endif 685 rw_enter(&zvol_state_lock, RW_READER); 686 /* 687 * Obtain a copy of private_data under the zvol_state_lock to make 688 * sure that either the result of zvol free code path setting 689 * bdev->bd_disk->private_data to NULL is observed, or zvol_os_free() 690 * is not called on this zv because of the positive zv_open_count. 691 */ 692 zv = bdev->bd_disk->private_data; 693 if (zv == NULL) { 694 rw_exit(&zvol_state_lock); 695 return (SET_ERROR(-ENXIO)); 696 } 697 698 mutex_enter(&zv->zv_state_lock); 699 /* 700 * Make sure zvol is not suspended during first open 701 * (hold zv_suspend_lock) and respect proper lock acquisition 702 * ordering - zv_suspend_lock before zv_state_lock 703 */ 704 if (zv->zv_open_count == 0) { 705 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) { 706 mutex_exit(&zv->zv_state_lock); 707 rw_enter(&zv->zv_suspend_lock, RW_READER); 708 mutex_enter(&zv->zv_state_lock); 709 /* check to see if zv_suspend_lock is needed */ 710 if (zv->zv_open_count != 0) { 711 rw_exit(&zv->zv_suspend_lock); 712 } else { 713 drop_suspend = B_TRUE; 714 } 715 } else { 716 drop_suspend = B_TRUE; 717 } 718 } 719 rw_exit(&zvol_state_lock); 720 721 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 722 723 if (zv->zv_open_count == 0) { 724 boolean_t drop_namespace = B_FALSE; 725 726 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); 727 728 /* 729 * In all other call paths the spa_namespace_lock is taken 730 * before the bdev->bd_mutex lock. However, on open(2) 731 * the __blkdev_get() function calls fops->open() with the 732 * bdev->bd_mutex lock held. This can result in a deadlock 733 * when zvols from one pool are used as vdevs in another. 734 * 735 * To prevent a lock inversion deadlock we preemptively 736 * take the spa_namespace_lock. Normally the lock will not 737 * be contended and this is safe because spa_open_common() 738 * handles the case where the caller already holds the 739 * spa_namespace_lock. 740 * 741 * When the lock cannot be aquired after multiple retries 742 * this must be the vdev on zvol deadlock case and we have 743 * no choice but to return an error. For 5.12 and older 744 * kernels returning -ERESTARTSYS will result in the 745 * bdev->bd_mutex being dropped, then reacquired, and 746 * fops->open() being called again. This process can be 747 * repeated safely until both locks are acquired. For 5.13 748 * and newer the -ERESTARTSYS retry logic was removed from 749 * the kernel so the only option is to return the error for 750 * the caller to handle it. 751 */ 752 if (!mutex_owned(&spa_namespace_lock)) { 753 if (!mutex_tryenter(&spa_namespace_lock)) { 754 mutex_exit(&zv->zv_state_lock); 755 rw_exit(&zv->zv_suspend_lock); 756 757 #ifdef HAVE_BLKDEV_GET_ERESTARTSYS 758 schedule(); 759 return (SET_ERROR(-ERESTARTSYS)); 760 #else 761 if ((gethrtime() - start) > timeout) 762 return (SET_ERROR(-ERESTARTSYS)); 763 764 schedule_timeout(MSEC_TO_TICK(10)); 765 goto retry; 766 #endif 767 } else { 768 drop_namespace = B_TRUE; 769 } 770 } 771 772 error = -zvol_first_open(zv, !(flag & FMODE_WRITE)); 773 774 if (drop_namespace) 775 mutex_exit(&spa_namespace_lock); 776 } 777 778 if (error == 0) { 779 if ((flag & FMODE_WRITE) && (zv->zv_flags & ZVOL_RDONLY)) { 780 if (zv->zv_open_count == 0) 781 zvol_last_close(zv); 782 783 error = SET_ERROR(-EROFS); 784 } else { 785 zv->zv_open_count++; 786 } 787 } 788 789 mutex_exit(&zv->zv_state_lock); 790 if (drop_suspend) 791 rw_exit(&zv->zv_suspend_lock); 792 793 if (error == 0) 794 zfs_check_media_change(bdev); 795 796 return (error); 797 } 798 799 static void 800 zvol_release(struct gendisk *disk, fmode_t mode) 801 { 802 zvol_state_t *zv; 803 boolean_t drop_suspend = B_TRUE; 804 805 rw_enter(&zvol_state_lock, RW_READER); 806 zv = disk->private_data; 807 808 mutex_enter(&zv->zv_state_lock); 809 ASSERT3U(zv->zv_open_count, >, 0); 810 /* 811 * make sure zvol is not suspended during last close 812 * (hold zv_suspend_lock) and respect proper lock acquisition 813 * ordering - zv_suspend_lock before zv_state_lock 814 */ 815 if (zv->zv_open_count == 1) { 816 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) { 817 mutex_exit(&zv->zv_state_lock); 818 rw_enter(&zv->zv_suspend_lock, RW_READER); 819 mutex_enter(&zv->zv_state_lock); 820 /* check to see if zv_suspend_lock is needed */ 821 if (zv->zv_open_count != 1) { 822 rw_exit(&zv->zv_suspend_lock); 823 drop_suspend = B_FALSE; 824 } 825 } 826 } else { 827 drop_suspend = B_FALSE; 828 } 829 rw_exit(&zvol_state_lock); 830 831 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 832 833 zv->zv_open_count--; 834 if (zv->zv_open_count == 0) { 835 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); 836 zvol_last_close(zv); 837 } 838 839 mutex_exit(&zv->zv_state_lock); 840 841 if (drop_suspend) 842 rw_exit(&zv->zv_suspend_lock); 843 } 844 845 static int 846 zvol_ioctl(struct block_device *bdev, fmode_t mode, 847 unsigned int cmd, unsigned long arg) 848 { 849 zvol_state_t *zv = bdev->bd_disk->private_data; 850 int error = 0; 851 852 ASSERT3U(zv->zv_open_count, >, 0); 853 854 switch (cmd) { 855 case BLKFLSBUF: 856 fsync_bdev(bdev); 857 invalidate_bdev(bdev); 858 rw_enter(&zv->zv_suspend_lock, RW_READER); 859 860 if (!(zv->zv_flags & ZVOL_RDONLY)) 861 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); 862 863 rw_exit(&zv->zv_suspend_lock); 864 break; 865 866 case BLKZNAME: 867 mutex_enter(&zv->zv_state_lock); 868 error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN); 869 mutex_exit(&zv->zv_state_lock); 870 break; 871 872 default: 873 error = -ENOTTY; 874 break; 875 } 876 877 return (SET_ERROR(error)); 878 } 879 880 #ifdef CONFIG_COMPAT 881 static int 882 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode, 883 unsigned cmd, unsigned long arg) 884 { 885 return (zvol_ioctl(bdev, mode, cmd, arg)); 886 } 887 #else 888 #define zvol_compat_ioctl NULL 889 #endif 890 891 static unsigned int 892 zvol_check_events(struct gendisk *disk, unsigned int clearing) 893 { 894 unsigned int mask = 0; 895 896 rw_enter(&zvol_state_lock, RW_READER); 897 898 zvol_state_t *zv = disk->private_data; 899 if (zv != NULL) { 900 mutex_enter(&zv->zv_state_lock); 901 mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 902 zv->zv_changed = 0; 903 mutex_exit(&zv->zv_state_lock); 904 } 905 906 rw_exit(&zvol_state_lock); 907 908 return (mask); 909 } 910 911 static int 912 zvol_revalidate_disk(struct gendisk *disk) 913 { 914 rw_enter(&zvol_state_lock, RW_READER); 915 916 zvol_state_t *zv = disk->private_data; 917 if (zv != NULL) { 918 mutex_enter(&zv->zv_state_lock); 919 set_capacity(zv->zv_zso->zvo_disk, 920 zv->zv_volsize >> SECTOR_BITS); 921 mutex_exit(&zv->zv_state_lock); 922 } 923 924 rw_exit(&zvol_state_lock); 925 926 return (0); 927 } 928 929 int 930 zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize) 931 { 932 struct gendisk *disk = zv->zv_zso->zvo_disk; 933 934 #if defined(HAVE_REVALIDATE_DISK_SIZE) 935 revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0); 936 #elif defined(HAVE_REVALIDATE_DISK) 937 revalidate_disk(disk); 938 #else 939 zvol_revalidate_disk(disk); 940 #endif 941 return (0); 942 } 943 944 void 945 zvol_os_clear_private(zvol_state_t *zv) 946 { 947 /* 948 * Cleared while holding zvol_state_lock as a writer 949 * which will prevent zvol_open() from opening it. 950 */ 951 zv->zv_zso->zvo_disk->private_data = NULL; 952 } 953 954 /* 955 * Provide a simple virtual geometry for legacy compatibility. For devices 956 * smaller than 1 MiB a small head and sector count is used to allow very 957 * tiny devices. For devices over 1 Mib a standard head and sector count 958 * is used to keep the cylinders count reasonable. 959 */ 960 static int 961 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo) 962 { 963 zvol_state_t *zv = bdev->bd_disk->private_data; 964 sector_t sectors; 965 966 ASSERT3U(zv->zv_open_count, >, 0); 967 968 sectors = get_capacity(zv->zv_zso->zvo_disk); 969 970 if (sectors > 2048) { 971 geo->heads = 16; 972 geo->sectors = 63; 973 } else { 974 geo->heads = 2; 975 geo->sectors = 4; 976 } 977 978 geo->start = 0; 979 geo->cylinders = sectors / (geo->heads * geo->sectors); 980 981 return (0); 982 } 983 984 /* 985 * Why have two separate block_device_operations structs? 986 * 987 * Normally we'd just have one, and assign 'submit_bio' as needed. However, 988 * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we 989 * can't just change submit_bio dynamically at runtime. So just create two 990 * separate structs to get around this. 991 */ 992 static const struct block_device_operations zvol_ops_blk_mq = { 993 .open = zvol_open, 994 .release = zvol_release, 995 .ioctl = zvol_ioctl, 996 .compat_ioctl = zvol_compat_ioctl, 997 .check_events = zvol_check_events, 998 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK 999 .revalidate_disk = zvol_revalidate_disk, 1000 #endif 1001 .getgeo = zvol_getgeo, 1002 .owner = THIS_MODULE, 1003 }; 1004 1005 static const struct block_device_operations zvol_ops = { 1006 .open = zvol_open, 1007 .release = zvol_release, 1008 .ioctl = zvol_ioctl, 1009 .compat_ioctl = zvol_compat_ioctl, 1010 .check_events = zvol_check_events, 1011 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK 1012 .revalidate_disk = zvol_revalidate_disk, 1013 #endif 1014 .getgeo = zvol_getgeo, 1015 .owner = THIS_MODULE, 1016 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS 1017 .submit_bio = zvol_submit_bio, 1018 #endif 1019 }; 1020 1021 static int 1022 zvol_alloc_non_blk_mq(struct zvol_state_os *zso) 1023 { 1024 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) 1025 #if defined(HAVE_BLK_ALLOC_DISK) 1026 zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE); 1027 if (zso->zvo_disk == NULL) 1028 return (1); 1029 1030 zso->zvo_disk->minors = ZVOL_MINORS; 1031 zso->zvo_queue = zso->zvo_disk->queue; 1032 #else 1033 zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE); 1034 if (zso->zvo_queue == NULL) 1035 return (1); 1036 1037 zso->zvo_disk = alloc_disk(ZVOL_MINORS); 1038 if (zso->zvo_disk == NULL) { 1039 blk_cleanup_queue(zso->zvo_queue); 1040 return (1); 1041 } 1042 1043 zso->zvo_disk->queue = zso->zvo_queue; 1044 #endif /* HAVE_BLK_ALLOC_DISK */ 1045 #else 1046 zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE); 1047 if (zso->zvo_queue == NULL) 1048 return (1); 1049 1050 zso->zvo_disk = alloc_disk(ZVOL_MINORS); 1051 if (zso->zvo_disk == NULL) { 1052 blk_cleanup_queue(zso->zvo_queue); 1053 return (1); 1054 } 1055 1056 zso->zvo_disk->queue = zso->zvo_queue; 1057 #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */ 1058 return (0); 1059 1060 } 1061 1062 static int 1063 zvol_alloc_blk_mq(zvol_state_t *zv) 1064 { 1065 #ifdef HAVE_BLK_MQ 1066 struct zvol_state_os *zso = zv->zv_zso; 1067 1068 /* Allocate our blk-mq tag_set */ 1069 if (zvol_blk_mq_alloc_tag_set(zv) != 0) 1070 return (1); 1071 1072 #if defined(HAVE_BLK_ALLOC_DISK) 1073 zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv); 1074 if (zso->zvo_disk == NULL) { 1075 blk_mq_free_tag_set(&zso->tag_set); 1076 return (1); 1077 } 1078 zso->zvo_queue = zso->zvo_disk->queue; 1079 zso->zvo_disk->minors = ZVOL_MINORS; 1080 #else 1081 zso->zvo_disk = alloc_disk(ZVOL_MINORS); 1082 if (zso->zvo_disk == NULL) { 1083 blk_cleanup_queue(zso->zvo_queue); 1084 blk_mq_free_tag_set(&zso->tag_set); 1085 return (1); 1086 } 1087 /* Allocate queue */ 1088 zso->zvo_queue = blk_mq_init_queue(&zso->tag_set); 1089 if (IS_ERR(zso->zvo_queue)) { 1090 blk_mq_free_tag_set(&zso->tag_set); 1091 return (1); 1092 } 1093 1094 /* Our queue is now created, assign it to our disk */ 1095 zso->zvo_disk->queue = zso->zvo_queue; 1096 1097 #endif 1098 #endif 1099 return (0); 1100 } 1101 1102 /* 1103 * Allocate memory for a new zvol_state_t and setup the required 1104 * request queue and generic disk structures for the block device. 1105 */ 1106 static zvol_state_t * 1107 zvol_alloc(dev_t dev, const char *name) 1108 { 1109 zvol_state_t *zv; 1110 struct zvol_state_os *zso; 1111 uint64_t volmode; 1112 int ret; 1113 1114 if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0) 1115 return (NULL); 1116 1117 if (volmode == ZFS_VOLMODE_DEFAULT) 1118 volmode = zvol_volmode; 1119 1120 if (volmode == ZFS_VOLMODE_NONE) 1121 return (NULL); 1122 1123 zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP); 1124 zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP); 1125 zv->zv_zso = zso; 1126 zv->zv_volmode = volmode; 1127 1128 list_link_init(&zv->zv_next); 1129 mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL); 1130 1131 #ifdef HAVE_BLK_MQ 1132 zv->zv_zso->use_blk_mq = zvol_use_blk_mq; 1133 #endif 1134 1135 /* 1136 * The block layer has 3 interfaces for getting BIOs: 1137 * 1138 * 1. blk-mq request queues (new) 1139 * 2. submit_bio() (oldest) 1140 * 3. regular request queues (old). 1141 * 1142 * Each of those interfaces has two permutations: 1143 * 1144 * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates 1145 * both the disk and its queue (5.14 kernel or newer) 1146 * 1147 * b) We don't have blk_*alloc_disk(), and have to allocate the 1148 * disk and the queue separately. (5.13 kernel or older) 1149 */ 1150 if (zv->zv_zso->use_blk_mq) { 1151 ret = zvol_alloc_blk_mq(zv); 1152 zso->zvo_disk->fops = &zvol_ops_blk_mq; 1153 } else { 1154 ret = zvol_alloc_non_blk_mq(zso); 1155 zso->zvo_disk->fops = &zvol_ops; 1156 } 1157 if (ret != 0) 1158 goto out_kmem; 1159 1160 blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE); 1161 1162 /* Limit read-ahead to a single page to prevent over-prefetching. */ 1163 blk_queue_set_read_ahead(zso->zvo_queue, 1); 1164 1165 if (!zv->zv_zso->use_blk_mq) { 1166 /* Disable write merging in favor of the ZIO pipeline. */ 1167 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue); 1168 } 1169 1170 /* Enable /proc/diskstats */ 1171 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, zso->zvo_queue); 1172 1173 zso->zvo_queue->queuedata = zv; 1174 zso->zvo_dev = dev; 1175 zv->zv_open_count = 0; 1176 strlcpy(zv->zv_name, name, MAXNAMELEN); 1177 1178 zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL); 1179 rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL); 1180 1181 zso->zvo_disk->major = zvol_major; 1182 zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE; 1183 1184 /* 1185 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices. 1186 * This is accomplished by limiting the number of minors for the 1187 * device to one and explicitly disabling partition scanning. 1188 */ 1189 if (volmode == ZFS_VOLMODE_DEV) { 1190 zso->zvo_disk->minors = 1; 1191 zso->zvo_disk->flags &= ~ZFS_GENHD_FL_EXT_DEVT; 1192 zso->zvo_disk->flags |= ZFS_GENHD_FL_NO_PART; 1193 } 1194 1195 zso->zvo_disk->first_minor = (dev & MINORMASK); 1196 zso->zvo_disk->private_data = zv; 1197 snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d", 1198 ZVOL_DEV_NAME, (dev & MINORMASK)); 1199 1200 return (zv); 1201 1202 out_kmem: 1203 kmem_free(zso, sizeof (struct zvol_state_os)); 1204 kmem_free(zv, sizeof (zvol_state_t)); 1205 return (NULL); 1206 } 1207 1208 /* 1209 * Cleanup then free a zvol_state_t which was created by zvol_alloc(). 1210 * At this time, the structure is not opened by anyone, is taken off 1211 * the zvol_state_list, and has its private data set to NULL. 1212 * The zvol_state_lock is dropped. 1213 * 1214 * This function may take many milliseconds to complete (e.g. we've seen 1215 * it take over 256ms), due to the calls to "blk_cleanup_queue" and 1216 * "del_gendisk". Thus, consumers need to be careful to account for this 1217 * latency when calling this function. 1218 */ 1219 void 1220 zvol_os_free(zvol_state_t *zv) 1221 { 1222 1223 ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock)); 1224 ASSERT(!MUTEX_HELD(&zv->zv_state_lock)); 1225 ASSERT0(zv->zv_open_count); 1226 ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL); 1227 1228 rw_destroy(&zv->zv_suspend_lock); 1229 zfs_rangelock_fini(&zv->zv_rangelock); 1230 1231 del_gendisk(zv->zv_zso->zvo_disk); 1232 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \ 1233 defined(HAVE_BLK_ALLOC_DISK) 1234 #if defined(HAVE_BLK_CLEANUP_DISK) 1235 blk_cleanup_disk(zv->zv_zso->zvo_disk); 1236 #else 1237 put_disk(zv->zv_zso->zvo_disk); 1238 #endif 1239 #else 1240 blk_cleanup_queue(zv->zv_zso->zvo_queue); 1241 put_disk(zv->zv_zso->zvo_disk); 1242 #endif 1243 1244 #ifdef HAVE_BLK_MQ 1245 if (zv->zv_zso->use_blk_mq) 1246 blk_mq_free_tag_set(&zv->zv_zso->tag_set); 1247 #endif 1248 1249 ida_simple_remove(&zvol_ida, 1250 MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS); 1251 1252 mutex_destroy(&zv->zv_state_lock); 1253 dataset_kstats_destroy(&zv->zv_kstat); 1254 1255 kmem_free(zv->zv_zso, sizeof (struct zvol_state_os)); 1256 kmem_free(zv, sizeof (zvol_state_t)); 1257 } 1258 1259 void 1260 zvol_wait_close(zvol_state_t *zv) 1261 { 1262 } 1263 1264 /* 1265 * Create a block device minor node and setup the linkage between it 1266 * and the specified volume. Once this function returns the block 1267 * device is live and ready for use. 1268 */ 1269 int 1270 zvol_os_create_minor(const char *name) 1271 { 1272 zvol_state_t *zv; 1273 objset_t *os; 1274 dmu_object_info_t *doi; 1275 uint64_t volsize; 1276 uint64_t len; 1277 unsigned minor = 0; 1278 int error = 0; 1279 int idx; 1280 uint64_t hash = zvol_name_hash(name); 1281 bool replayed_zil = B_FALSE; 1282 1283 if (zvol_inhibit_dev) 1284 return (0); 1285 1286 idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP)); 1287 if (idx < 0) 1288 return (SET_ERROR(-idx)); 1289 minor = idx << ZVOL_MINOR_BITS; 1290 1291 zv = zvol_find_by_name_hash(name, hash, RW_NONE); 1292 if (zv) { 1293 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 1294 mutex_exit(&zv->zv_state_lock); 1295 ida_simple_remove(&zvol_ida, idx); 1296 return (SET_ERROR(EEXIST)); 1297 } 1298 1299 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP); 1300 1301 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os); 1302 if (error) 1303 goto out_doi; 1304 1305 error = dmu_object_info(os, ZVOL_OBJ, doi); 1306 if (error) 1307 goto out_dmu_objset_disown; 1308 1309 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); 1310 if (error) 1311 goto out_dmu_objset_disown; 1312 1313 zv = zvol_alloc(MKDEV(zvol_major, minor), name); 1314 if (zv == NULL) { 1315 error = SET_ERROR(EAGAIN); 1316 goto out_dmu_objset_disown; 1317 } 1318 zv->zv_hash = hash; 1319 1320 if (dmu_objset_is_snapshot(os)) 1321 zv->zv_flags |= ZVOL_RDONLY; 1322 1323 zv->zv_volblocksize = doi->doi_data_block_size; 1324 zv->zv_volsize = volsize; 1325 zv->zv_objset = os; 1326 1327 set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9); 1328 1329 blk_queue_max_hw_sectors(zv->zv_zso->zvo_queue, 1330 (DMU_MAX_ACCESS / 4) >> 9); 1331 1332 if (zv->zv_zso->use_blk_mq) { 1333 /* 1334 * IO requests can be really big (1MB). When an IO request 1335 * comes in, it is passed off to zvol_read() or zvol_write() 1336 * in a new thread, where it is chunked up into 'volblocksize' 1337 * sized pieces and processed. So for example, if the request 1338 * is a 1MB write and your volblocksize is 128k, one zvol_write 1339 * thread will take that request and sequentially do ten 128k 1340 * IOs. This is due to the fact that the thread needs to lock 1341 * each volblocksize sized block. So you might be wondering: 1342 * "instead of passing the whole 1MB request to one thread, 1343 * why not pass ten individual 128k chunks to ten threads and 1344 * process the whole write in parallel?" The short answer is 1345 * that there's a sweet spot number of chunks that balances 1346 * the greater parallelism with the added overhead of more 1347 * threads. The sweet spot can be different depending on if you 1348 * have a read or write heavy workload. Writes typically want 1349 * high chunk counts while reads typically want lower ones. On 1350 * a test pool with 6 NVMe drives in a 3x 2-disk mirror 1351 * configuration, with volblocksize=8k, the sweet spot for good 1352 * sequential reads and writes was at 8 chunks. 1353 */ 1354 1355 /* 1356 * Below we tell the kernel how big we want our requests 1357 * to be. You would think that blk_queue_io_opt() would be 1358 * used to do this since it is used to "set optimal request 1359 * size for the queue", but that doesn't seem to do 1360 * anything - the kernel still gives you huge requests 1361 * with tons of little PAGE_SIZE segments contained within it. 1362 * 1363 * Knowing that the kernel will just give you PAGE_SIZE segments 1364 * no matter what, you can say "ok, I want PAGE_SIZE byte 1365 * segments, and I want 'N' of them per request", where N is 1366 * the correct number of segments for the volblocksize and 1367 * number of chunks you want. 1368 */ 1369 #ifdef HAVE_BLK_MQ 1370 if (zvol_blk_mq_blocks_per_thread != 0) { 1371 unsigned int chunks; 1372 chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX); 1373 1374 blk_queue_max_segment_size(zv->zv_zso->zvo_queue, 1375 PAGE_SIZE); 1376 blk_queue_max_segments(zv->zv_zso->zvo_queue, 1377 (zv->zv_volblocksize * chunks) / PAGE_SIZE); 1378 } else { 1379 /* 1380 * Special case: zvol_blk_mq_blocks_per_thread = 0 1381 * Max everything out. 1382 */ 1383 blk_queue_max_segments(zv->zv_zso->zvo_queue, 1384 UINT16_MAX); 1385 blk_queue_max_segment_size(zv->zv_zso->zvo_queue, 1386 UINT_MAX); 1387 } 1388 #endif 1389 } else { 1390 blk_queue_max_segments(zv->zv_zso->zvo_queue, UINT16_MAX); 1391 blk_queue_max_segment_size(zv->zv_zso->zvo_queue, UINT_MAX); 1392 } 1393 1394 blk_queue_physical_block_size(zv->zv_zso->zvo_queue, 1395 zv->zv_volblocksize); 1396 blk_queue_io_opt(zv->zv_zso->zvo_queue, zv->zv_volblocksize); 1397 blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue, 1398 (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9); 1399 blk_queue_discard_granularity(zv->zv_zso->zvo_queue, 1400 zv->zv_volblocksize); 1401 #ifdef QUEUE_FLAG_DISCARD 1402 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue); 1403 #endif 1404 #ifdef QUEUE_FLAG_NONROT 1405 blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue); 1406 #endif 1407 #ifdef QUEUE_FLAG_ADD_RANDOM 1408 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue); 1409 #endif 1410 /* This flag was introduced in kernel version 4.12. */ 1411 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH 1412 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue); 1413 #endif 1414 1415 ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL); 1416 error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset); 1417 if (error) 1418 goto out_dmu_objset_disown; 1419 ASSERT3P(zv->zv_zilog, ==, NULL); 1420 zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums); 1421 if (spa_writeable(dmu_objset_spa(os))) { 1422 if (zil_replay_disable) 1423 replayed_zil = zil_destroy(zv->zv_zilog, B_FALSE); 1424 else 1425 replayed_zil = zil_replay(os, zv, zvol_replay_vector); 1426 } 1427 if (replayed_zil) 1428 zil_close(zv->zv_zilog); 1429 zv->zv_zilog = NULL; 1430 1431 /* 1432 * When udev detects the addition of the device it will immediately 1433 * invoke blkid(8) to determine the type of content on the device. 1434 * Prefetching the blocks commonly scanned by blkid(8) will speed 1435 * up this process. 1436 */ 1437 len = MIN(zvol_prefetch_bytes, SPA_MAXBLOCKSIZE); 1438 if (len > 0) { 1439 dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ); 1440 dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len, 1441 ZIO_PRIORITY_SYNC_READ); 1442 } 1443 1444 zv->zv_objset = NULL; 1445 out_dmu_objset_disown: 1446 dmu_objset_disown(os, B_TRUE, FTAG); 1447 out_doi: 1448 kmem_free(doi, sizeof (dmu_object_info_t)); 1449 1450 /* 1451 * Keep in mind that once add_disk() is called, the zvol is 1452 * announced to the world, and zvol_open()/zvol_release() can 1453 * be called at any time. Incidentally, add_disk() itself calls 1454 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close() 1455 * directly as well. 1456 */ 1457 if (error == 0) { 1458 rw_enter(&zvol_state_lock, RW_WRITER); 1459 zvol_insert(zv); 1460 rw_exit(&zvol_state_lock); 1461 #ifdef HAVE_ADD_DISK_RET 1462 error = add_disk(zv->zv_zso->zvo_disk); 1463 #else 1464 add_disk(zv->zv_zso->zvo_disk); 1465 #endif 1466 } else { 1467 ida_simple_remove(&zvol_ida, idx); 1468 } 1469 1470 return (error); 1471 } 1472 1473 void 1474 zvol_os_rename_minor(zvol_state_t *zv, const char *newname) 1475 { 1476 int readonly = get_disk_ro(zv->zv_zso->zvo_disk); 1477 1478 ASSERT(RW_LOCK_HELD(&zvol_state_lock)); 1479 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 1480 1481 strlcpy(zv->zv_name, newname, sizeof (zv->zv_name)); 1482 1483 /* move to new hashtable entry */ 1484 zv->zv_hash = zvol_name_hash(zv->zv_name); 1485 hlist_del(&zv->zv_hlink); 1486 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash)); 1487 1488 /* 1489 * The block device's read-only state is briefly changed causing 1490 * a KOBJ_CHANGE uevent to be issued. This ensures udev detects 1491 * the name change and fixes the symlinks. This does not change 1492 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never 1493 * changes. This would normally be done using kobject_uevent() but 1494 * that is a GPL-only symbol which is why we need this workaround. 1495 */ 1496 set_disk_ro(zv->zv_zso->zvo_disk, !readonly); 1497 set_disk_ro(zv->zv_zso->zvo_disk, readonly); 1498 } 1499 1500 void 1501 zvol_os_set_disk_ro(zvol_state_t *zv, int flags) 1502 { 1503 1504 set_disk_ro(zv->zv_zso->zvo_disk, flags); 1505 } 1506 1507 void 1508 zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity) 1509 { 1510 1511 set_capacity(zv->zv_zso->zvo_disk, capacity); 1512 } 1513 1514 int 1515 zvol_init(void) 1516 { 1517 int error; 1518 1519 /* 1520 * zvol_threads is the module param the user passes in. 1521 * 1522 * zvol_actual_threads is what we use internally, since the user can 1523 * pass zvol_thread = 0 to mean "use all the CPUs" (the default). 1524 */ 1525 static unsigned int zvol_actual_threads; 1526 1527 if (zvol_threads == 0) { 1528 /* 1529 * See dde9380a1 for why 32 was chosen here. This should 1530 * probably be refined to be some multiple of the number 1531 * of CPUs. 1532 */ 1533 zvol_actual_threads = MAX(num_online_cpus(), 32); 1534 } else { 1535 zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024); 1536 } 1537 1538 error = register_blkdev(zvol_major, ZVOL_DRIVER); 1539 if (error) { 1540 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error); 1541 return (error); 1542 } 1543 1544 #ifdef HAVE_BLK_MQ 1545 if (zvol_blk_mq_queue_depth == 0) { 1546 zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ; 1547 } else { 1548 zvol_actual_blk_mq_queue_depth = 1549 MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ); 1550 } 1551 1552 if (zvol_blk_mq_threads == 0) { 1553 zvol_blk_mq_actual_threads = num_online_cpus(); 1554 } else { 1555 zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1), 1556 1024); 1557 } 1558 #endif 1559 zvol_taskq = taskq_create(ZVOL_DRIVER, zvol_actual_threads, maxclsyspri, 1560 zvol_actual_threads, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 1561 if (zvol_taskq == NULL) { 1562 unregister_blkdev(zvol_major, ZVOL_DRIVER); 1563 return (-ENOMEM); 1564 } 1565 1566 zvol_init_impl(); 1567 ida_init(&zvol_ida); 1568 return (0); 1569 } 1570 1571 void 1572 zvol_fini(void) 1573 { 1574 zvol_fini_impl(); 1575 unregister_blkdev(zvol_major, ZVOL_DRIVER); 1576 taskq_destroy(zvol_taskq); 1577 ida_destroy(&zvol_ida); 1578 } 1579 1580 /* BEGIN CSTYLED */ 1581 module_param(zvol_inhibit_dev, uint, 0644); 1582 MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes"); 1583 1584 module_param(zvol_major, uint, 0444); 1585 MODULE_PARM_DESC(zvol_major, "Major number for zvol device"); 1586 1587 module_param(zvol_threads, uint, 0444); 1588 MODULE_PARM_DESC(zvol_threads, "Number of threads to handle I/O requests. Set" 1589 "to 0 to use all active CPUs"); 1590 1591 module_param(zvol_request_sync, uint, 0644); 1592 MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests"); 1593 1594 module_param(zvol_max_discard_blocks, ulong, 0444); 1595 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard"); 1596 1597 module_param(zvol_prefetch_bytes, uint, 0644); 1598 MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end"); 1599 1600 module_param(zvol_volmode, uint, 0644); 1601 MODULE_PARM_DESC(zvol_volmode, "Default volmode property value"); 1602 1603 #ifdef HAVE_BLK_MQ 1604 module_param(zvol_blk_mq_queue_depth, uint, 0644); 1605 MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth"); 1606 1607 module_param(zvol_use_blk_mq, uint, 0644); 1608 MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols"); 1609 1610 module_param(zvol_blk_mq_blocks_per_thread, uint, 0644); 1611 MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread, 1612 "Process volblocksize blocks per thread"); 1613 #endif 1614 1615 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS 1616 module_param(zvol_open_timeout_ms, uint, 0644); 1617 MODULE_PARM_DESC(zvol_open_timeout_ms, "Timeout for ZVOL open retries"); 1618 #endif 1619 1620 /* END CSTYLED */ 1621