1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2017 Joyent, Inc. 28 * Copyright (c) 2017, Intel Corporation. 29 */ 30 31 /* 32 * The objective of this program is to provide a DMU/ZAP/SPA stress test 33 * that runs entirely in userland, is easy to use, and easy to extend. 34 * 35 * The overall design of the ztest program is as follows: 36 * 37 * (1) For each major functional area (e.g. adding vdevs to a pool, 38 * creating and destroying datasets, reading and writing objects, etc) 39 * we have a simple routine to test that functionality. These 40 * individual routines do not have to do anything "stressful". 41 * 42 * (2) We turn these simple functionality tests into a stress test by 43 * running them all in parallel, with as many threads as desired, 44 * and spread across as many datasets, objects, and vdevs as desired. 45 * 46 * (3) While all this is happening, we inject faults into the pool to 47 * verify that self-healing data really works. 48 * 49 * (4) Every time we open a dataset, we change its checksum and compression 50 * functions. Thus even individual objects vary from block to block 51 * in which checksum they use and whether they're compressed. 52 * 53 * (5) To verify that we never lose on-disk consistency after a crash, 54 * we run the entire test in a child of the main process. 55 * At random times, the child self-immolates with a SIGKILL. 56 * This is the software equivalent of pulling the power cord. 57 * The parent then runs the test again, using the existing 58 * storage pool, as many times as desired. If backwards compatibility 59 * testing is enabled ztest will sometimes run the "older" version 60 * of ztest after a SIGKILL. 61 * 62 * (6) To verify that we don't have future leaks or temporal incursions, 63 * many of the functional tests record the transaction group number 64 * as part of their data. When reading old data, they verify that 65 * the transaction group number is less than the current, open txg. 66 * If you add a new test, please do this if applicable. 67 * 68 * (7) Threads are created with a reduced stack size, for sanity checking. 69 * Therefore, it's important not to allocate huge buffers on the stack. 70 * 71 * When run with no arguments, ztest runs for about five minutes and 72 * produces no output if successful. To get a little bit of information, 73 * specify -V. To get more information, specify -VV, and so on. 74 * 75 * To turn this into an overnight stress test, use -T to specify run time. 76 * 77 * You can ask more vdevs [-v], datasets [-d], or threads [-t] 78 * to increase the pool capacity, fanout, and overall stress level. 79 * 80 * Use the -k option to set the desired frequency of kills. 81 * 82 * When ztest invokes itself it passes all relevant information through a 83 * temporary file which is mmap-ed in the child process. This allows shared 84 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 85 * stored at offset 0 of this file and contains information on the size and 86 * number of shared structures in the file. The information stored in this file 87 * must remain backwards compatible with older versions of ztest so that 88 * ztest can invoke them during backwards compatibility testing (-B). 89 */ 90 91 #include <sys/zfs_context.h> 92 #include <sys/spa.h> 93 #include <sys/dmu.h> 94 #include <sys/txg.h> 95 #include <sys/dbuf.h> 96 #include <sys/zap.h> 97 #include <sys/dmu_objset.h> 98 #include <sys/poll.h> 99 #include <sys/stat.h> 100 #include <sys/time.h> 101 #include <sys/wait.h> 102 #include <sys/mman.h> 103 #include <sys/resource.h> 104 #include <sys/zio.h> 105 #include <sys/zil.h> 106 #include <sys/zil_impl.h> 107 #include <sys/vdev_draid.h> 108 #include <sys/vdev_impl.h> 109 #include <sys/vdev_file.h> 110 #include <sys/vdev_initialize.h> 111 #include <sys/vdev_raidz.h> 112 #include <sys/vdev_trim.h> 113 #include <sys/spa_impl.h> 114 #include <sys/metaslab_impl.h> 115 #include <sys/dsl_prop.h> 116 #include <sys/dsl_dataset.h> 117 #include <sys/dsl_destroy.h> 118 #include <sys/dsl_scan.h> 119 #include <sys/zio_checksum.h> 120 #include <sys/zfs_refcount.h> 121 #include <sys/zfeature.h> 122 #include <sys/dsl_userhold.h> 123 #include <sys/abd.h> 124 #include <sys/blake3.h> 125 #include <stdio.h> 126 #include <stdlib.h> 127 #include <unistd.h> 128 #include <getopt.h> 129 #include <signal.h> 130 #include <umem.h> 131 #include <ctype.h> 132 #include <math.h> 133 #include <sys/fs/zfs.h> 134 #include <zfs_fletcher.h> 135 #include <libnvpair.h> 136 #include <libzutil.h> 137 #include <sys/crypto/icp.h> 138 #if (__GLIBC__ && !__UCLIBC__) 139 #include <execinfo.h> /* for backtrace() */ 140 #endif 141 142 static int ztest_fd_data = -1; 143 static int ztest_fd_rand = -1; 144 145 typedef struct ztest_shared_hdr { 146 uint64_t zh_hdr_size; 147 uint64_t zh_opts_size; 148 uint64_t zh_size; 149 uint64_t zh_stats_size; 150 uint64_t zh_stats_count; 151 uint64_t zh_ds_size; 152 uint64_t zh_ds_count; 153 } ztest_shared_hdr_t; 154 155 static ztest_shared_hdr_t *ztest_shared_hdr; 156 157 enum ztest_class_state { 158 ZTEST_VDEV_CLASS_OFF, 159 ZTEST_VDEV_CLASS_ON, 160 ZTEST_VDEV_CLASS_RND 161 }; 162 163 #define ZO_GVARS_MAX_ARGLEN ((size_t)64) 164 #define ZO_GVARS_MAX_COUNT ((size_t)10) 165 166 typedef struct ztest_shared_opts { 167 char zo_pool[ZFS_MAX_DATASET_NAME_LEN]; 168 char zo_dir[ZFS_MAX_DATASET_NAME_LEN]; 169 char zo_alt_ztest[MAXNAMELEN]; 170 char zo_alt_libpath[MAXNAMELEN]; 171 uint64_t zo_vdevs; 172 uint64_t zo_vdevtime; 173 size_t zo_vdev_size; 174 int zo_ashift; 175 int zo_mirrors; 176 int zo_raid_children; 177 int zo_raid_parity; 178 char zo_raid_type[8]; 179 int zo_draid_data; 180 int zo_draid_spares; 181 int zo_datasets; 182 int zo_threads; 183 uint64_t zo_passtime; 184 uint64_t zo_killrate; 185 int zo_verbose; 186 int zo_init; 187 uint64_t zo_time; 188 uint64_t zo_maxloops; 189 uint64_t zo_metaslab_force_ganging; 190 int zo_mmp_test; 191 int zo_special_vdevs; 192 int zo_dump_dbgmsg; 193 int zo_gvars_count; 194 char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN]; 195 } ztest_shared_opts_t; 196 197 /* Default values for command line options. */ 198 #define DEFAULT_POOL "ztest" 199 #define DEFAULT_VDEV_DIR "/tmp" 200 #define DEFAULT_VDEV_COUNT 5 201 #define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */ 202 #define DEFAULT_VDEV_SIZE_STR "256M" 203 #define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT 204 #define DEFAULT_MIRRORS 2 205 #define DEFAULT_RAID_CHILDREN 4 206 #define DEFAULT_RAID_PARITY 1 207 #define DEFAULT_DRAID_DATA 4 208 #define DEFAULT_DRAID_SPARES 1 209 #define DEFAULT_DATASETS_COUNT 7 210 #define DEFAULT_THREADS 23 211 #define DEFAULT_RUN_TIME 300 /* 300 seconds */ 212 #define DEFAULT_RUN_TIME_STR "300 sec" 213 #define DEFAULT_PASS_TIME 60 /* 60 seconds */ 214 #define DEFAULT_PASS_TIME_STR "60 sec" 215 #define DEFAULT_KILL_RATE 70 /* 70% kill rate */ 216 #define DEFAULT_KILLRATE_STR "70%" 217 #define DEFAULT_INITS 1 218 #define DEFAULT_MAX_LOOPS 50 /* 5 minutes */ 219 #define DEFAULT_FORCE_GANGING (64 << 10) 220 #define DEFAULT_FORCE_GANGING_STR "64K" 221 222 /* Simplifying assumption: -1 is not a valid default. */ 223 #define NO_DEFAULT -1 224 225 static const ztest_shared_opts_t ztest_opts_defaults = { 226 .zo_pool = DEFAULT_POOL, 227 .zo_dir = DEFAULT_VDEV_DIR, 228 .zo_alt_ztest = { '\0' }, 229 .zo_alt_libpath = { '\0' }, 230 .zo_vdevs = DEFAULT_VDEV_COUNT, 231 .zo_ashift = DEFAULT_ASHIFT, 232 .zo_mirrors = DEFAULT_MIRRORS, 233 .zo_raid_children = DEFAULT_RAID_CHILDREN, 234 .zo_raid_parity = DEFAULT_RAID_PARITY, 235 .zo_raid_type = VDEV_TYPE_RAIDZ, 236 .zo_vdev_size = DEFAULT_VDEV_SIZE, 237 .zo_draid_data = DEFAULT_DRAID_DATA, /* data drives */ 238 .zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */ 239 .zo_datasets = DEFAULT_DATASETS_COUNT, 240 .zo_threads = DEFAULT_THREADS, 241 .zo_passtime = DEFAULT_PASS_TIME, 242 .zo_killrate = DEFAULT_KILL_RATE, 243 .zo_verbose = 0, 244 .zo_mmp_test = 0, 245 .zo_init = DEFAULT_INITS, 246 .zo_time = DEFAULT_RUN_TIME, 247 .zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */ 248 .zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING, 249 .zo_special_vdevs = ZTEST_VDEV_CLASS_RND, 250 .zo_gvars_count = 0, 251 }; 252 253 extern uint64_t metaslab_force_ganging; 254 extern uint64_t metaslab_df_alloc_threshold; 255 extern uint64_t zfs_deadman_synctime_ms; 256 extern uint_t metaslab_preload_limit; 257 extern int zfs_compressed_arc_enabled; 258 extern int zfs_abd_scatter_enabled; 259 extern uint_t dmu_object_alloc_chunk_shift; 260 extern boolean_t zfs_force_some_double_word_sm_entries; 261 extern unsigned long zio_decompress_fail_fraction; 262 extern unsigned long zfs_reconstruct_indirect_damage_fraction; 263 264 265 static ztest_shared_opts_t *ztest_shared_opts; 266 static ztest_shared_opts_t ztest_opts; 267 static const char *const ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345"; 268 269 typedef struct ztest_shared_ds { 270 uint64_t zd_seq; 271 } ztest_shared_ds_t; 272 273 static ztest_shared_ds_t *ztest_shared_ds; 274 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 275 276 #define BT_MAGIC 0x123456789abcdefULL 277 #define MAXFAULTS(zs) \ 278 (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1) 279 280 enum ztest_io_type { 281 ZTEST_IO_WRITE_TAG, 282 ZTEST_IO_WRITE_PATTERN, 283 ZTEST_IO_WRITE_ZEROES, 284 ZTEST_IO_TRUNCATE, 285 ZTEST_IO_SETATTR, 286 ZTEST_IO_REWRITE, 287 ZTEST_IO_TYPES 288 }; 289 290 typedef struct ztest_block_tag { 291 uint64_t bt_magic; 292 uint64_t bt_objset; 293 uint64_t bt_object; 294 uint64_t bt_dnodesize; 295 uint64_t bt_offset; 296 uint64_t bt_gen; 297 uint64_t bt_txg; 298 uint64_t bt_crtxg; 299 } ztest_block_tag_t; 300 301 typedef struct bufwad { 302 uint64_t bw_index; 303 uint64_t bw_txg; 304 uint64_t bw_data; 305 } bufwad_t; 306 307 /* 308 * It would be better to use a rangelock_t per object. Unfortunately 309 * the rangelock_t is not a drop-in replacement for rl_t, because we 310 * still need to map from object ID to rangelock_t. 311 */ 312 typedef enum { 313 RL_READER, 314 RL_WRITER, 315 RL_APPEND 316 } rl_type_t; 317 318 typedef struct rll { 319 void *rll_writer; 320 int rll_readers; 321 kmutex_t rll_lock; 322 kcondvar_t rll_cv; 323 } rll_t; 324 325 typedef struct rl { 326 uint64_t rl_object; 327 uint64_t rl_offset; 328 uint64_t rl_size; 329 rll_t *rl_lock; 330 } rl_t; 331 332 #define ZTEST_RANGE_LOCKS 64 333 #define ZTEST_OBJECT_LOCKS 64 334 335 /* 336 * Object descriptor. Used as a template for object lookup/create/remove. 337 */ 338 typedef struct ztest_od { 339 uint64_t od_dir; 340 uint64_t od_object; 341 dmu_object_type_t od_type; 342 dmu_object_type_t od_crtype; 343 uint64_t od_blocksize; 344 uint64_t od_crblocksize; 345 uint64_t od_crdnodesize; 346 uint64_t od_gen; 347 uint64_t od_crgen; 348 char od_name[ZFS_MAX_DATASET_NAME_LEN]; 349 } ztest_od_t; 350 351 /* 352 * Per-dataset state. 353 */ 354 typedef struct ztest_ds { 355 ztest_shared_ds_t *zd_shared; 356 objset_t *zd_os; 357 pthread_rwlock_t zd_zilog_lock; 358 zilog_t *zd_zilog; 359 ztest_od_t *zd_od; /* debugging aid */ 360 char zd_name[ZFS_MAX_DATASET_NAME_LEN]; 361 kmutex_t zd_dirobj_lock; 362 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 363 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 364 } ztest_ds_t; 365 366 /* 367 * Per-iteration state. 368 */ 369 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 370 371 typedef struct ztest_info { 372 ztest_func_t *zi_func; /* test function */ 373 uint64_t zi_iters; /* iterations per execution */ 374 uint64_t *zi_interval; /* execute every <interval> seconds */ 375 const char *zi_funcname; /* name of test function */ 376 } ztest_info_t; 377 378 typedef struct ztest_shared_callstate { 379 uint64_t zc_count; /* per-pass count */ 380 uint64_t zc_time; /* per-pass time */ 381 uint64_t zc_next; /* next time to call this function */ 382 } ztest_shared_callstate_t; 383 384 static ztest_shared_callstate_t *ztest_shared_callstate; 385 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 386 387 ztest_func_t ztest_dmu_read_write; 388 ztest_func_t ztest_dmu_write_parallel; 389 ztest_func_t ztest_dmu_object_alloc_free; 390 ztest_func_t ztest_dmu_object_next_chunk; 391 ztest_func_t ztest_dmu_commit_callbacks; 392 ztest_func_t ztest_zap; 393 ztest_func_t ztest_zap_parallel; 394 ztest_func_t ztest_zil_commit; 395 ztest_func_t ztest_zil_remount; 396 ztest_func_t ztest_dmu_read_write_zcopy; 397 ztest_func_t ztest_dmu_objset_create_destroy; 398 ztest_func_t ztest_dmu_prealloc; 399 ztest_func_t ztest_fzap; 400 ztest_func_t ztest_dmu_snapshot_create_destroy; 401 ztest_func_t ztest_dsl_prop_get_set; 402 ztest_func_t ztest_spa_prop_get_set; 403 ztest_func_t ztest_spa_create_destroy; 404 ztest_func_t ztest_fault_inject; 405 ztest_func_t ztest_dmu_snapshot_hold; 406 ztest_func_t ztest_mmp_enable_disable; 407 ztest_func_t ztest_scrub; 408 ztest_func_t ztest_dsl_dataset_promote_busy; 409 ztest_func_t ztest_vdev_attach_detach; 410 ztest_func_t ztest_vdev_LUN_growth; 411 ztest_func_t ztest_vdev_add_remove; 412 ztest_func_t ztest_vdev_class_add; 413 ztest_func_t ztest_vdev_aux_add_remove; 414 ztest_func_t ztest_split_pool; 415 ztest_func_t ztest_reguid; 416 ztest_func_t ztest_spa_upgrade; 417 ztest_func_t ztest_device_removal; 418 ztest_func_t ztest_spa_checkpoint_create_discard; 419 ztest_func_t ztest_initialize; 420 ztest_func_t ztest_trim; 421 ztest_func_t ztest_blake3; 422 ztest_func_t ztest_fletcher; 423 ztest_func_t ztest_fletcher_incr; 424 ztest_func_t ztest_verify_dnode_bt; 425 426 static uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 427 static uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 428 static uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 429 static uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 430 static uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 431 432 #define ZTI_INIT(func, iters, interval) \ 433 { .zi_func = (func), \ 434 .zi_iters = (iters), \ 435 .zi_interval = (interval), \ 436 .zi_funcname = # func } 437 438 static ztest_info_t ztest_info[] = { 439 ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always), 440 ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always), 441 ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always), 442 ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes), 443 ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always), 444 ZTI_INIT(ztest_zap, 30, &zopt_always), 445 ZTI_INIT(ztest_zap_parallel, 100, &zopt_always), 446 ZTI_INIT(ztest_split_pool, 1, &zopt_sometimes), 447 ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant), 448 ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes), 449 ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often), 450 ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often), 451 ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often), 452 ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes), 453 #if 0 454 ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes), 455 #endif 456 ZTI_INIT(ztest_fzap, 1, &zopt_sometimes), 457 ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes), 458 ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes), 459 ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes), 460 ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes), 461 ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes), 462 ZTI_INIT(ztest_reguid, 1, &zopt_rarely), 463 ZTI_INIT(ztest_scrub, 1, &zopt_rarely), 464 ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely), 465 ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely), 466 ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes), 467 ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely), 468 ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime), 469 ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime), 470 ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime), 471 ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes), 472 ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely), 473 ZTI_INIT(ztest_initialize, 1, &zopt_sometimes), 474 ZTI_INIT(ztest_trim, 1, &zopt_sometimes), 475 ZTI_INIT(ztest_blake3, 1, &zopt_rarely), 476 ZTI_INIT(ztest_fletcher, 1, &zopt_rarely), 477 ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely), 478 ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes), 479 }; 480 481 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 482 483 /* 484 * The following struct is used to hold a list of uncalled commit callbacks. 485 * The callbacks are ordered by txg number. 486 */ 487 typedef struct ztest_cb_list { 488 kmutex_t zcl_callbacks_lock; 489 list_t zcl_callbacks; 490 } ztest_cb_list_t; 491 492 /* 493 * Stuff we need to share writably between parent and child. 494 */ 495 typedef struct ztest_shared { 496 boolean_t zs_do_init; 497 hrtime_t zs_proc_start; 498 hrtime_t zs_proc_stop; 499 hrtime_t zs_thread_start; 500 hrtime_t zs_thread_stop; 501 hrtime_t zs_thread_kill; 502 uint64_t zs_enospc_count; 503 uint64_t zs_vdev_next_leaf; 504 uint64_t zs_vdev_aux; 505 uint64_t zs_alloc; 506 uint64_t zs_space; 507 uint64_t zs_splits; 508 uint64_t zs_mirrors; 509 uint64_t zs_metaslab_sz; 510 uint64_t zs_metaslab_df_alloc_threshold; 511 uint64_t zs_guid; 512 } ztest_shared_t; 513 514 #define ID_PARALLEL -1ULL 515 516 static char ztest_dev_template[] = "%s/%s.%llua"; 517 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 518 static ztest_shared_t *ztest_shared; 519 520 static spa_t *ztest_spa = NULL; 521 static ztest_ds_t *ztest_ds; 522 523 static kmutex_t ztest_vdev_lock; 524 static boolean_t ztest_device_removal_active = B_FALSE; 525 static boolean_t ztest_pool_scrubbed = B_FALSE; 526 static kmutex_t ztest_checkpoint_lock; 527 528 /* 529 * The ztest_name_lock protects the pool and dataset namespace used by 530 * the individual tests. To modify the namespace, consumers must grab 531 * this lock as writer. Grabbing the lock as reader will ensure that the 532 * namespace does not change while the lock is held. 533 */ 534 static pthread_rwlock_t ztest_name_lock; 535 536 static boolean_t ztest_dump_core = B_TRUE; 537 static boolean_t ztest_exiting; 538 539 /* Global commit callback list */ 540 static ztest_cb_list_t zcl; 541 /* Commit cb delay */ 542 static uint64_t zc_min_txg_delay = UINT64_MAX; 543 static int zc_cb_counter = 0; 544 545 /* 546 * Minimum number of commit callbacks that need to be registered for us to check 547 * whether the minimum txg delay is acceptable. 548 */ 549 #define ZTEST_COMMIT_CB_MIN_REG 100 550 551 /* 552 * If a number of txgs equal to this threshold have been created after a commit 553 * callback has been registered but not called, then we assume there is an 554 * implementation bug. 555 */ 556 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000) 557 558 enum ztest_object { 559 ZTEST_META_DNODE = 0, 560 ZTEST_DIROBJ, 561 ZTEST_OBJECTS 562 }; 563 564 static __attribute__((noreturn)) void usage(boolean_t requested); 565 static int ztest_scrub_impl(spa_t *spa); 566 567 /* 568 * These libumem hooks provide a reasonable set of defaults for the allocator's 569 * debugging facilities. 570 */ 571 const char * 572 _umem_debug_init(void) 573 { 574 return ("default,verbose"); /* $UMEM_DEBUG setting */ 575 } 576 577 const char * 578 _umem_logging_init(void) 579 { 580 return ("fail,contents"); /* $UMEM_LOGGING setting */ 581 } 582 583 static void 584 dump_debug_buffer(void) 585 { 586 ssize_t ret __attribute__((unused)); 587 588 if (!ztest_opts.zo_dump_dbgmsg) 589 return; 590 591 /* 592 * We use write() instead of printf() so that this function 593 * is safe to call from a signal handler. 594 */ 595 ret = write(STDOUT_FILENO, "\n", 1); 596 zfs_dbgmsg_print("ztest"); 597 } 598 599 #define BACKTRACE_SZ 100 600 601 static void sig_handler(int signo) 602 { 603 struct sigaction action; 604 #if (__GLIBC__ && !__UCLIBC__) /* backtrace() is a GNU extension */ 605 int nptrs; 606 void *buffer[BACKTRACE_SZ]; 607 608 nptrs = backtrace(buffer, BACKTRACE_SZ); 609 backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO); 610 #endif 611 dump_debug_buffer(); 612 613 /* 614 * Restore default action and re-raise signal so SIGSEGV and 615 * SIGABRT can trigger a core dump. 616 */ 617 action.sa_handler = SIG_DFL; 618 sigemptyset(&action.sa_mask); 619 action.sa_flags = 0; 620 (void) sigaction(signo, &action, NULL); 621 raise(signo); 622 } 623 624 #define FATAL_MSG_SZ 1024 625 626 static const char *fatal_msg; 627 628 static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void 629 fatal(int do_perror, const char *message, ...) 630 { 631 va_list args; 632 int save_errno = errno; 633 char *buf; 634 635 (void) fflush(stdout); 636 buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL); 637 if (buf == NULL) 638 goto out; 639 640 va_start(args, message); 641 (void) sprintf(buf, "ztest: "); 642 /* LINTED */ 643 (void) vsprintf(buf + strlen(buf), message, args); 644 va_end(args); 645 if (do_perror) { 646 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 647 ": %s", strerror(save_errno)); 648 } 649 (void) fprintf(stderr, "%s\n", buf); 650 fatal_msg = buf; /* to ease debugging */ 651 652 out: 653 if (ztest_dump_core) 654 abort(); 655 else 656 dump_debug_buffer(); 657 658 exit(3); 659 } 660 661 static int 662 str2shift(const char *buf) 663 { 664 const char *ends = "BKMGTPEZ"; 665 int i; 666 667 if (buf[0] == '\0') 668 return (0); 669 for (i = 0; i < strlen(ends); i++) { 670 if (toupper(buf[0]) == ends[i]) 671 break; 672 } 673 if (i == strlen(ends)) { 674 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 675 buf); 676 usage(B_FALSE); 677 } 678 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 679 return (10*i); 680 } 681 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 682 usage(B_FALSE); 683 } 684 685 static uint64_t 686 nicenumtoull(const char *buf) 687 { 688 char *end; 689 uint64_t val; 690 691 val = strtoull(buf, &end, 0); 692 if (end == buf) { 693 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 694 usage(B_FALSE); 695 } else if (end[0] == '.') { 696 double fval = strtod(buf, &end); 697 fval *= pow(2, str2shift(end)); 698 /* 699 * UINT64_MAX is not exactly representable as a double. 700 * The closest representation is UINT64_MAX + 1, so we 701 * use a >= comparison instead of > for the bounds check. 702 */ 703 if (fval >= (double)UINT64_MAX) { 704 (void) fprintf(stderr, "ztest: value too large: %s\n", 705 buf); 706 usage(B_FALSE); 707 } 708 val = (uint64_t)fval; 709 } else { 710 int shift = str2shift(end); 711 if (shift >= 64 || (val << shift) >> shift != val) { 712 (void) fprintf(stderr, "ztest: value too large: %s\n", 713 buf); 714 usage(B_FALSE); 715 } 716 val <<= shift; 717 } 718 return (val); 719 } 720 721 typedef struct ztest_option { 722 const char short_opt; 723 const char *long_opt; 724 const char *long_opt_param; 725 const char *comment; 726 unsigned int default_int; 727 const char *default_str; 728 } ztest_option_t; 729 730 /* 731 * The following option_table is used for generating the usage info as well as 732 * the long and short option information for calling getopt_long(). 733 */ 734 static ztest_option_t option_table[] = { 735 { 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT, 736 NULL}, 737 { 's', "vdev-size", "INTEGER", "Size of each vdev", 738 NO_DEFAULT, DEFAULT_VDEV_SIZE_STR}, 739 { 'a', "alignment-shift", "INTEGER", 740 "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL}, 741 { 'm', "mirror-copies", "INTEGER", "Number of mirror copies", 742 DEFAULT_MIRRORS, NULL}, 743 { 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks", 744 DEFAULT_RAID_CHILDREN, NULL}, 745 { 'R', "raid-parity", "INTEGER", "Raid parity", 746 DEFAULT_RAID_PARITY, NULL}, 747 { 'K', "raid-kind", "raidz|draid|random", "Raid kind", 748 NO_DEFAULT, "random"}, 749 { 'D', "draid-data", "INTEGER", "Number of draid data drives", 750 DEFAULT_DRAID_DATA, NULL}, 751 { 'S', "draid-spares", "INTEGER", "Number of draid spares", 752 DEFAULT_DRAID_SPARES, NULL}, 753 { 'd', "datasets", "INTEGER", "Number of datasets", 754 DEFAULT_DATASETS_COUNT, NULL}, 755 { 't', "threads", "INTEGER", "Number of ztest threads", 756 DEFAULT_THREADS, NULL}, 757 { 'g', "gang-block-threshold", "INTEGER", 758 "Metaslab gang block threshold", 759 NO_DEFAULT, DEFAULT_FORCE_GANGING_STR}, 760 { 'i', "init-count", "INTEGER", "Number of times to initialize pool", 761 DEFAULT_INITS, NULL}, 762 { 'k', "kill-percentage", "INTEGER", "Kill percentage", 763 NO_DEFAULT, DEFAULT_KILLRATE_STR}, 764 { 'p', "pool-name", "STRING", "Pool name", 765 NO_DEFAULT, DEFAULT_POOL}, 766 { 'f', "vdev-file-directory", "PATH", "File directory for vdev files", 767 NO_DEFAULT, DEFAULT_VDEV_DIR}, 768 { 'M', "multi-host", NULL, 769 "Multi-host; simulate pool imported on remote host", 770 NO_DEFAULT, NULL}, 771 { 'E', "use-existing-pool", NULL, 772 "Use existing pool instead of creating new one", NO_DEFAULT, NULL}, 773 { 'T', "run-time", "INTEGER", "Total run time", 774 NO_DEFAULT, DEFAULT_RUN_TIME_STR}, 775 { 'P', "pass-time", "INTEGER", "Time per pass", 776 NO_DEFAULT, DEFAULT_PASS_TIME_STR}, 777 { 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()", 778 DEFAULT_MAX_LOOPS, NULL}, 779 { 'B', "alt-ztest", "PATH", "Alternate ztest path", 780 NO_DEFAULT, NULL}, 781 { 'C', "vdev-class-state", "on|off|random", "vdev class state", 782 NO_DEFAULT, "random"}, 783 { 'o', "option", "\"OPTION=INTEGER\"", 784 "Set global variable to an unsigned 32-bit integer value", 785 NO_DEFAULT, NULL}, 786 { 'G', "dump-debug-msg", NULL, 787 "Dump zfs_dbgmsg buffer before exiting due to an error", 788 NO_DEFAULT, NULL}, 789 { 'V', "verbose", NULL, 790 "Verbose (use multiple times for ever more verbosity)", 791 NO_DEFAULT, NULL}, 792 { 'h', "help", NULL, "Show this help", 793 NO_DEFAULT, NULL}, 794 {0, 0, 0, 0, 0, 0} 795 }; 796 797 static struct option *long_opts = NULL; 798 static char *short_opts = NULL; 799 800 static void 801 init_options(void) 802 { 803 ASSERT3P(long_opts, ==, NULL); 804 ASSERT3P(short_opts, ==, NULL); 805 806 int count = sizeof (option_table) / sizeof (option_table[0]); 807 long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL); 808 809 short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL); 810 int short_opt_index = 0; 811 812 for (int i = 0; i < count; i++) { 813 long_opts[i].val = option_table[i].short_opt; 814 long_opts[i].name = option_table[i].long_opt; 815 long_opts[i].has_arg = option_table[i].long_opt_param != NULL 816 ? required_argument : no_argument; 817 long_opts[i].flag = NULL; 818 short_opts[short_opt_index++] = option_table[i].short_opt; 819 if (option_table[i].long_opt_param != NULL) { 820 short_opts[short_opt_index++] = ':'; 821 } 822 } 823 } 824 825 static void 826 fini_options(void) 827 { 828 int count = sizeof (option_table) / sizeof (option_table[0]); 829 830 umem_free(long_opts, sizeof (struct option) * count); 831 umem_free(short_opts, sizeof (char) * 2 * count); 832 833 long_opts = NULL; 834 short_opts = NULL; 835 } 836 837 static __attribute__((noreturn)) void 838 usage(boolean_t requested) 839 { 840 char option[80]; 841 FILE *fp = requested ? stdout : stderr; 842 843 (void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL); 844 for (int i = 0; option_table[i].short_opt != 0; i++) { 845 if (option_table[i].long_opt_param != NULL) { 846 (void) sprintf(option, " -%c --%s=%s", 847 option_table[i].short_opt, 848 option_table[i].long_opt, 849 option_table[i].long_opt_param); 850 } else { 851 (void) sprintf(option, " -%c --%s", 852 option_table[i].short_opt, 853 option_table[i].long_opt); 854 } 855 (void) fprintf(fp, " %-40s%s", option, 856 option_table[i].comment); 857 858 if (option_table[i].long_opt_param != NULL) { 859 if (option_table[i].default_str != NULL) { 860 (void) fprintf(fp, " (default: %s)", 861 option_table[i].default_str); 862 } else if (option_table[i].default_int != NO_DEFAULT) { 863 (void) fprintf(fp, " (default: %u)", 864 option_table[i].default_int); 865 } 866 } 867 (void) fprintf(fp, "\n"); 868 } 869 exit(requested ? 0 : 1); 870 } 871 872 static uint64_t 873 ztest_random(uint64_t range) 874 { 875 uint64_t r; 876 877 ASSERT3S(ztest_fd_rand, >=, 0); 878 879 if (range == 0) 880 return (0); 881 882 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 883 fatal(B_TRUE, "short read from /dev/urandom"); 884 885 return (r % range); 886 } 887 888 static void 889 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo) 890 { 891 char name[32]; 892 char *value; 893 int state = ZTEST_VDEV_CLASS_RND; 894 895 (void) strlcpy(name, input, sizeof (name)); 896 897 value = strchr(name, '='); 898 if (value == NULL) { 899 (void) fprintf(stderr, "missing value in property=value " 900 "'-C' argument (%s)\n", input); 901 usage(B_FALSE); 902 } 903 *(value) = '\0'; 904 value++; 905 906 if (strcmp(value, "on") == 0) { 907 state = ZTEST_VDEV_CLASS_ON; 908 } else if (strcmp(value, "off") == 0) { 909 state = ZTEST_VDEV_CLASS_OFF; 910 } else if (strcmp(value, "random") == 0) { 911 state = ZTEST_VDEV_CLASS_RND; 912 } else { 913 (void) fprintf(stderr, "invalid property value '%s'\n", value); 914 usage(B_FALSE); 915 } 916 917 if (strcmp(name, "special") == 0) { 918 zo->zo_special_vdevs = state; 919 } else { 920 (void) fprintf(stderr, "invalid property name '%s'\n", name); 921 usage(B_FALSE); 922 } 923 if (zo->zo_verbose >= 3) 924 (void) printf("%s vdev state is '%s'\n", name, value); 925 } 926 927 static void 928 process_options(int argc, char **argv) 929 { 930 char *path; 931 ztest_shared_opts_t *zo = &ztest_opts; 932 933 int opt; 934 uint64_t value; 935 const char *raid_kind = "random"; 936 937 memcpy(zo, &ztest_opts_defaults, sizeof (*zo)); 938 939 init_options(); 940 941 while ((opt = getopt_long(argc, argv, short_opts, long_opts, 942 NULL)) != EOF) { 943 value = 0; 944 switch (opt) { 945 case 'v': 946 case 's': 947 case 'a': 948 case 'm': 949 case 'r': 950 case 'R': 951 case 'D': 952 case 'S': 953 case 'd': 954 case 't': 955 case 'g': 956 case 'i': 957 case 'k': 958 case 'T': 959 case 'P': 960 case 'F': 961 value = nicenumtoull(optarg); 962 } 963 switch (opt) { 964 case 'v': 965 zo->zo_vdevs = value; 966 break; 967 case 's': 968 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 969 break; 970 case 'a': 971 zo->zo_ashift = value; 972 break; 973 case 'm': 974 zo->zo_mirrors = value; 975 break; 976 case 'r': 977 zo->zo_raid_children = MAX(1, value); 978 break; 979 case 'R': 980 zo->zo_raid_parity = MIN(MAX(value, 1), 3); 981 break; 982 case 'K': 983 raid_kind = optarg; 984 break; 985 case 'D': 986 zo->zo_draid_data = MAX(1, value); 987 break; 988 case 'S': 989 zo->zo_draid_spares = MAX(1, value); 990 break; 991 case 'd': 992 zo->zo_datasets = MAX(1, value); 993 break; 994 case 't': 995 zo->zo_threads = MAX(1, value); 996 break; 997 case 'g': 998 zo->zo_metaslab_force_ganging = 999 MAX(SPA_MINBLOCKSIZE << 1, value); 1000 break; 1001 case 'i': 1002 zo->zo_init = value; 1003 break; 1004 case 'k': 1005 zo->zo_killrate = value; 1006 break; 1007 case 'p': 1008 (void) strlcpy(zo->zo_pool, optarg, 1009 sizeof (zo->zo_pool)); 1010 break; 1011 case 'f': 1012 path = realpath(optarg, NULL); 1013 if (path == NULL) { 1014 (void) fprintf(stderr, "error: %s: %s\n", 1015 optarg, strerror(errno)); 1016 usage(B_FALSE); 1017 } else { 1018 (void) strlcpy(zo->zo_dir, path, 1019 sizeof (zo->zo_dir)); 1020 free(path); 1021 } 1022 break; 1023 case 'M': 1024 zo->zo_mmp_test = 1; 1025 break; 1026 case 'V': 1027 zo->zo_verbose++; 1028 break; 1029 case 'E': 1030 zo->zo_init = 0; 1031 break; 1032 case 'T': 1033 zo->zo_time = value; 1034 break; 1035 case 'P': 1036 zo->zo_passtime = MAX(1, value); 1037 break; 1038 case 'F': 1039 zo->zo_maxloops = MAX(1, value); 1040 break; 1041 case 'B': 1042 (void) strlcpy(zo->zo_alt_ztest, optarg, 1043 sizeof (zo->zo_alt_ztest)); 1044 break; 1045 case 'C': 1046 ztest_parse_name_value(optarg, zo); 1047 break; 1048 case 'o': 1049 if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) { 1050 (void) fprintf(stderr, 1051 "max global var count (%zu) exceeded\n", 1052 ZO_GVARS_MAX_COUNT); 1053 usage(B_FALSE); 1054 } 1055 char *v = zo->zo_gvars[zo->zo_gvars_count]; 1056 if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >= 1057 ZO_GVARS_MAX_ARGLEN) { 1058 (void) fprintf(stderr, 1059 "global var option '%s' is too long\n", 1060 optarg); 1061 usage(B_FALSE); 1062 } 1063 zo->zo_gvars_count++; 1064 break; 1065 case 'G': 1066 zo->zo_dump_dbgmsg = 1; 1067 break; 1068 case 'h': 1069 usage(B_TRUE); 1070 break; 1071 case '?': 1072 default: 1073 usage(B_FALSE); 1074 break; 1075 } 1076 } 1077 1078 fini_options(); 1079 1080 /* When raid choice is 'random' add a draid pool 50% of the time */ 1081 if (strcmp(raid_kind, "random") == 0) { 1082 raid_kind = (ztest_random(2) == 0) ? "draid" : "raidz"; 1083 1084 if (ztest_opts.zo_verbose >= 3) 1085 (void) printf("choosing RAID type '%s'\n", raid_kind); 1086 } 1087 1088 if (strcmp(raid_kind, "draid") == 0) { 1089 uint64_t min_devsize; 1090 1091 /* With fewer disk use 256M, otherwise 128M is OK */ 1092 min_devsize = (ztest_opts.zo_raid_children < 16) ? 1093 (256ULL << 20) : (128ULL << 20); 1094 1095 /* No top-level mirrors with dRAID for now */ 1096 zo->zo_mirrors = 0; 1097 1098 /* Use more appropriate defaults for dRAID */ 1099 if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs) 1100 zo->zo_vdevs = 1; 1101 if (zo->zo_raid_children == 1102 ztest_opts_defaults.zo_raid_children) 1103 zo->zo_raid_children = 16; 1104 if (zo->zo_ashift < 12) 1105 zo->zo_ashift = 12; 1106 if (zo->zo_vdev_size < min_devsize) 1107 zo->zo_vdev_size = min_devsize; 1108 1109 if (zo->zo_draid_data + zo->zo_raid_parity > 1110 zo->zo_raid_children - zo->zo_draid_spares) { 1111 (void) fprintf(stderr, "error: too few draid " 1112 "children (%d) for stripe width (%d)\n", 1113 zo->zo_raid_children, 1114 zo->zo_draid_data + zo->zo_raid_parity); 1115 usage(B_FALSE); 1116 } 1117 1118 (void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID, 1119 sizeof (zo->zo_raid_type)); 1120 1121 } else /* using raidz */ { 1122 ASSERT0(strcmp(raid_kind, "raidz")); 1123 1124 zo->zo_raid_parity = MIN(zo->zo_raid_parity, 1125 zo->zo_raid_children - 1); 1126 } 1127 1128 zo->zo_vdevtime = 1129 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 1130 UINT64_MAX >> 2); 1131 1132 if (*zo->zo_alt_ztest) { 1133 const char *invalid_what = "ztest"; 1134 char *val = zo->zo_alt_ztest; 1135 if (0 != access(val, X_OK) || 1136 (strrchr(val, '/') == NULL && (errno == EINVAL))) 1137 goto invalid; 1138 1139 int dirlen = strrchr(val, '/') - val; 1140 strlcpy(zo->zo_alt_libpath, val, 1141 MIN(sizeof (zo->zo_alt_libpath), dirlen + 1)); 1142 invalid_what = "library path", val = zo->zo_alt_libpath; 1143 if (strrchr(val, '/') == NULL && (errno == EINVAL)) 1144 goto invalid; 1145 *strrchr(val, '/') = '\0'; 1146 strlcat(val, "/lib", sizeof (zo->zo_alt_libpath)); 1147 1148 if (0 != access(zo->zo_alt_libpath, X_OK)) 1149 goto invalid; 1150 return; 1151 1152 invalid: 1153 ztest_dump_core = B_FALSE; 1154 fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val); 1155 } 1156 } 1157 1158 static void 1159 ztest_kill(ztest_shared_t *zs) 1160 { 1161 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 1162 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 1163 1164 /* 1165 * Before we kill ourselves, make sure that the config is updated. 1166 * See comment above spa_write_cachefile(). 1167 */ 1168 mutex_enter(&spa_namespace_lock); 1169 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE, B_FALSE); 1170 mutex_exit(&spa_namespace_lock); 1171 1172 (void) raise(SIGKILL); 1173 } 1174 1175 static void 1176 ztest_record_enospc(const char *s) 1177 { 1178 (void) s; 1179 ztest_shared->zs_enospc_count++; 1180 } 1181 1182 static uint64_t 1183 ztest_get_ashift(void) 1184 { 1185 if (ztest_opts.zo_ashift == 0) 1186 return (SPA_MINBLOCKSHIFT + ztest_random(5)); 1187 return (ztest_opts.zo_ashift); 1188 } 1189 1190 static boolean_t 1191 ztest_is_draid_spare(const char *name) 1192 { 1193 uint64_t spare_id = 0, parity = 0, vdev_id = 0; 1194 1195 if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"", 1196 &parity, &vdev_id, &spare_id) == 3) { 1197 return (B_TRUE); 1198 } 1199 1200 return (B_FALSE); 1201 } 1202 1203 static nvlist_t * 1204 make_vdev_file(const char *path, const char *aux, const char *pool, 1205 size_t size, uint64_t ashift) 1206 { 1207 char *pathbuf = NULL; 1208 uint64_t vdev; 1209 nvlist_t *file; 1210 boolean_t draid_spare = B_FALSE; 1211 1212 1213 if (ashift == 0) 1214 ashift = ztest_get_ashift(); 1215 1216 if (path == NULL) { 1217 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 1218 path = pathbuf; 1219 1220 if (aux != NULL) { 1221 vdev = ztest_shared->zs_vdev_aux; 1222 (void) snprintf(pathbuf, MAXPATHLEN, 1223 ztest_aux_template, ztest_opts.zo_dir, 1224 pool == NULL ? ztest_opts.zo_pool : pool, 1225 aux, vdev); 1226 } else { 1227 vdev = ztest_shared->zs_vdev_next_leaf++; 1228 (void) snprintf(pathbuf, MAXPATHLEN, 1229 ztest_dev_template, ztest_opts.zo_dir, 1230 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 1231 } 1232 } else { 1233 draid_spare = ztest_is_draid_spare(path); 1234 } 1235 1236 if (size != 0 && !draid_spare) { 1237 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 1238 if (fd == -1) 1239 fatal(B_TRUE, "can't open %s", path); 1240 if (ftruncate(fd, size) != 0) 1241 fatal(B_TRUE, "can't ftruncate %s", path); 1242 (void) close(fd); 1243 } 1244 1245 file = fnvlist_alloc(); 1246 fnvlist_add_string(file, ZPOOL_CONFIG_TYPE, 1247 draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE); 1248 fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path); 1249 fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift); 1250 umem_free(pathbuf, MAXPATHLEN); 1251 1252 return (file); 1253 } 1254 1255 static nvlist_t * 1256 make_vdev_raid(const char *path, const char *aux, const char *pool, size_t size, 1257 uint64_t ashift, int r) 1258 { 1259 nvlist_t *raid, **child; 1260 int c; 1261 1262 if (r < 2) 1263 return (make_vdev_file(path, aux, pool, size, ashift)); 1264 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 1265 1266 for (c = 0; c < r; c++) 1267 child[c] = make_vdev_file(path, aux, pool, size, ashift); 1268 1269 raid = fnvlist_alloc(); 1270 fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE, 1271 ztest_opts.zo_raid_type); 1272 fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY, 1273 ztest_opts.zo_raid_parity); 1274 fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN, 1275 (const nvlist_t **)child, r); 1276 1277 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) { 1278 uint64_t ndata = ztest_opts.zo_draid_data; 1279 uint64_t nparity = ztest_opts.zo_raid_parity; 1280 uint64_t nspares = ztest_opts.zo_draid_spares; 1281 uint64_t children = ztest_opts.zo_raid_children; 1282 uint64_t ngroups = 1; 1283 1284 /* 1285 * Calculate the minimum number of groups required to fill a 1286 * slice. This is the LCM of the stripe width (data + parity) 1287 * and the number of data drives (children - spares). 1288 */ 1289 while (ngroups * (ndata + nparity) % (children - nspares) != 0) 1290 ngroups++; 1291 1292 /* Store the basic dRAID configuration. */ 1293 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata); 1294 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares); 1295 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups); 1296 } 1297 1298 for (c = 0; c < r; c++) 1299 fnvlist_free(child[c]); 1300 1301 umem_free(child, r * sizeof (nvlist_t *)); 1302 1303 return (raid); 1304 } 1305 1306 static nvlist_t * 1307 make_vdev_mirror(const char *path, const char *aux, const char *pool, 1308 size_t size, uint64_t ashift, int r, int m) 1309 { 1310 nvlist_t *mirror, **child; 1311 int c; 1312 1313 if (m < 1) 1314 return (make_vdev_raid(path, aux, pool, size, ashift, r)); 1315 1316 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 1317 1318 for (c = 0; c < m; c++) 1319 child[c] = make_vdev_raid(path, aux, pool, size, ashift, r); 1320 1321 mirror = fnvlist_alloc(); 1322 fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR); 1323 fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 1324 (const nvlist_t **)child, m); 1325 1326 for (c = 0; c < m; c++) 1327 fnvlist_free(child[c]); 1328 1329 umem_free(child, m * sizeof (nvlist_t *)); 1330 1331 return (mirror); 1332 } 1333 1334 static nvlist_t * 1335 make_vdev_root(const char *path, const char *aux, const char *pool, size_t size, 1336 uint64_t ashift, const char *class, int r, int m, int t) 1337 { 1338 nvlist_t *root, **child; 1339 int c; 1340 boolean_t log; 1341 1342 ASSERT3S(t, >, 0); 1343 1344 log = (class != NULL && strcmp(class, "log") == 0); 1345 1346 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 1347 1348 for (c = 0; c < t; c++) { 1349 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 1350 r, m); 1351 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log); 1352 1353 if (class != NULL && class[0] != '\0') { 1354 ASSERT(m > 1 || log); /* expecting a mirror */ 1355 fnvlist_add_string(child[c], 1356 ZPOOL_CONFIG_ALLOCATION_BIAS, class); 1357 } 1358 } 1359 1360 root = fnvlist_alloc(); 1361 fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT); 1362 fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 1363 (const nvlist_t **)child, t); 1364 1365 for (c = 0; c < t; c++) 1366 fnvlist_free(child[c]); 1367 1368 umem_free(child, t * sizeof (nvlist_t *)); 1369 1370 return (root); 1371 } 1372 1373 /* 1374 * Find a random spa version. Returns back a random spa version in the 1375 * range [initial_version, SPA_VERSION_FEATURES]. 1376 */ 1377 static uint64_t 1378 ztest_random_spa_version(uint64_t initial_version) 1379 { 1380 uint64_t version = initial_version; 1381 1382 if (version <= SPA_VERSION_BEFORE_FEATURES) { 1383 version = version + 1384 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 1385 } 1386 1387 if (version > SPA_VERSION_BEFORE_FEATURES) 1388 version = SPA_VERSION_FEATURES; 1389 1390 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 1391 return (version); 1392 } 1393 1394 static int 1395 ztest_random_blocksize(void) 1396 { 1397 ASSERT3U(ztest_spa->spa_max_ashift, !=, 0); 1398 1399 /* 1400 * Choose a block size >= the ashift. 1401 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. 1402 */ 1403 int maxbs = SPA_OLD_MAXBLOCKSHIFT; 1404 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) 1405 maxbs = 20; 1406 uint64_t block_shift = 1407 ztest_random(maxbs - ztest_spa->spa_max_ashift + 1); 1408 return (1 << (SPA_MINBLOCKSHIFT + block_shift)); 1409 } 1410 1411 static int 1412 ztest_random_dnodesize(void) 1413 { 1414 int slots; 1415 int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT; 1416 1417 if (max_slots == DNODE_MIN_SLOTS) 1418 return (DNODE_MIN_SIZE); 1419 1420 /* 1421 * Weight the random distribution more heavily toward smaller 1422 * dnode sizes since that is more likely to reflect real-world 1423 * usage. 1424 */ 1425 ASSERT3U(max_slots, >, 4); 1426 switch (ztest_random(10)) { 1427 case 0: 1428 slots = 5 + ztest_random(max_slots - 4); 1429 break; 1430 case 1 ... 4: 1431 slots = 2 + ztest_random(3); 1432 break; 1433 default: 1434 slots = 1; 1435 break; 1436 } 1437 1438 return (slots << DNODE_SHIFT); 1439 } 1440 1441 static int 1442 ztest_random_ibshift(void) 1443 { 1444 return (DN_MIN_INDBLKSHIFT + 1445 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 1446 } 1447 1448 static uint64_t 1449 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 1450 { 1451 uint64_t top; 1452 vdev_t *rvd = spa->spa_root_vdev; 1453 vdev_t *tvd; 1454 1455 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 1456 1457 do { 1458 top = ztest_random(rvd->vdev_children); 1459 tvd = rvd->vdev_child[top]; 1460 } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) || 1461 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 1462 1463 return (top); 1464 } 1465 1466 static uint64_t 1467 ztest_random_dsl_prop(zfs_prop_t prop) 1468 { 1469 uint64_t value; 1470 1471 do { 1472 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 1473 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 1474 1475 return (value); 1476 } 1477 1478 static int 1479 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1480 boolean_t inherit) 1481 { 1482 const char *propname = zfs_prop_to_name(prop); 1483 const char *valname; 1484 char *setpoint; 1485 uint64_t curval; 1486 int error; 1487 1488 error = dsl_prop_set_int(osname, propname, 1489 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1490 1491 if (error == ENOSPC) { 1492 ztest_record_enospc(FTAG); 1493 return (error); 1494 } 1495 ASSERT0(error); 1496 1497 setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 1498 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1499 1500 if (ztest_opts.zo_verbose >= 6) { 1501 int err; 1502 1503 err = zfs_prop_index_to_string(prop, curval, &valname); 1504 if (err) 1505 (void) printf("%s %s = %llu at '%s'\n", osname, 1506 propname, (unsigned long long)curval, setpoint); 1507 else 1508 (void) printf("%s %s = %s at '%s'\n", 1509 osname, propname, valname, setpoint); 1510 } 1511 umem_free(setpoint, MAXPATHLEN); 1512 1513 return (error); 1514 } 1515 1516 static int 1517 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1518 { 1519 spa_t *spa = ztest_spa; 1520 nvlist_t *props = NULL; 1521 int error; 1522 1523 props = fnvlist_alloc(); 1524 fnvlist_add_uint64(props, zpool_prop_to_name(prop), value); 1525 1526 error = spa_prop_set(spa, props); 1527 1528 fnvlist_free(props); 1529 1530 if (error == ENOSPC) { 1531 ztest_record_enospc(FTAG); 1532 return (error); 1533 } 1534 ASSERT0(error); 1535 1536 return (error); 1537 } 1538 1539 static int 1540 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type, 1541 boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp) 1542 { 1543 int err; 1544 char *cp = NULL; 1545 char ddname[ZFS_MAX_DATASET_NAME_LEN]; 1546 1547 strlcpy(ddname, name, sizeof (ddname)); 1548 cp = strchr(ddname, '@'); 1549 if (cp != NULL) 1550 *cp = '\0'; 1551 1552 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp); 1553 while (decrypt && err == EACCES) { 1554 dsl_crypto_params_t *dcp; 1555 nvlist_t *crypto_args = fnvlist_alloc(); 1556 1557 fnvlist_add_uint8_array(crypto_args, "wkeydata", 1558 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN); 1559 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL, 1560 crypto_args, &dcp)); 1561 err = spa_keystore_load_wkey(ddname, dcp, B_FALSE); 1562 /* 1563 * Note: if there was an error loading, the wkey was not 1564 * consumed, and needs to be freed. 1565 */ 1566 dsl_crypto_params_free(dcp, (err != 0)); 1567 fnvlist_free(crypto_args); 1568 1569 if (err == EINVAL) { 1570 /* 1571 * We couldn't load a key for this dataset so try 1572 * the parent. This loop will eventually hit the 1573 * encryption root since ztest only makes clones 1574 * as children of their origin datasets. 1575 */ 1576 cp = strrchr(ddname, '/'); 1577 if (cp == NULL) 1578 return (err); 1579 1580 *cp = '\0'; 1581 err = EACCES; 1582 continue; 1583 } else if (err != 0) { 1584 break; 1585 } 1586 1587 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp); 1588 break; 1589 } 1590 1591 return (err); 1592 } 1593 1594 static void 1595 ztest_rll_init(rll_t *rll) 1596 { 1597 rll->rll_writer = NULL; 1598 rll->rll_readers = 0; 1599 mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL); 1600 cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL); 1601 } 1602 1603 static void 1604 ztest_rll_destroy(rll_t *rll) 1605 { 1606 ASSERT3P(rll->rll_writer, ==, NULL); 1607 ASSERT0(rll->rll_readers); 1608 mutex_destroy(&rll->rll_lock); 1609 cv_destroy(&rll->rll_cv); 1610 } 1611 1612 static void 1613 ztest_rll_lock(rll_t *rll, rl_type_t type) 1614 { 1615 mutex_enter(&rll->rll_lock); 1616 1617 if (type == RL_READER) { 1618 while (rll->rll_writer != NULL) 1619 (void) cv_wait(&rll->rll_cv, &rll->rll_lock); 1620 rll->rll_readers++; 1621 } else { 1622 while (rll->rll_writer != NULL || rll->rll_readers) 1623 (void) cv_wait(&rll->rll_cv, &rll->rll_lock); 1624 rll->rll_writer = curthread; 1625 } 1626 1627 mutex_exit(&rll->rll_lock); 1628 } 1629 1630 static void 1631 ztest_rll_unlock(rll_t *rll) 1632 { 1633 mutex_enter(&rll->rll_lock); 1634 1635 if (rll->rll_writer) { 1636 ASSERT0(rll->rll_readers); 1637 rll->rll_writer = NULL; 1638 } else { 1639 ASSERT3S(rll->rll_readers, >, 0); 1640 ASSERT3P(rll->rll_writer, ==, NULL); 1641 rll->rll_readers--; 1642 } 1643 1644 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1645 cv_broadcast(&rll->rll_cv); 1646 1647 mutex_exit(&rll->rll_lock); 1648 } 1649 1650 static void 1651 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1652 { 1653 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1654 1655 ztest_rll_lock(rll, type); 1656 } 1657 1658 static void 1659 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1660 { 1661 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1662 1663 ztest_rll_unlock(rll); 1664 } 1665 1666 static rl_t * 1667 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1668 uint64_t size, rl_type_t type) 1669 { 1670 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1671 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1672 rl_t *rl; 1673 1674 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1675 rl->rl_object = object; 1676 rl->rl_offset = offset; 1677 rl->rl_size = size; 1678 rl->rl_lock = rll; 1679 1680 ztest_rll_lock(rll, type); 1681 1682 return (rl); 1683 } 1684 1685 static void 1686 ztest_range_unlock(rl_t *rl) 1687 { 1688 rll_t *rll = rl->rl_lock; 1689 1690 ztest_rll_unlock(rll); 1691 1692 umem_free(rl, sizeof (*rl)); 1693 } 1694 1695 static void 1696 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1697 { 1698 zd->zd_os = os; 1699 zd->zd_zilog = dmu_objset_zil(os); 1700 zd->zd_shared = szd; 1701 dmu_objset_name(os, zd->zd_name); 1702 int l; 1703 1704 if (zd->zd_shared != NULL) 1705 zd->zd_shared->zd_seq = 0; 1706 1707 VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL)); 1708 mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL); 1709 1710 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1711 ztest_rll_init(&zd->zd_object_lock[l]); 1712 1713 for (l = 0; l < ZTEST_RANGE_LOCKS; l++) 1714 ztest_rll_init(&zd->zd_range_lock[l]); 1715 } 1716 1717 static void 1718 ztest_zd_fini(ztest_ds_t *zd) 1719 { 1720 int l; 1721 1722 mutex_destroy(&zd->zd_dirobj_lock); 1723 (void) pthread_rwlock_destroy(&zd->zd_zilog_lock); 1724 1725 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1726 ztest_rll_destroy(&zd->zd_object_lock[l]); 1727 1728 for (l = 0; l < ZTEST_RANGE_LOCKS; l++) 1729 ztest_rll_destroy(&zd->zd_range_lock[l]); 1730 } 1731 1732 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1733 1734 static uint64_t 1735 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1736 { 1737 uint64_t txg; 1738 int error; 1739 1740 /* 1741 * Attempt to assign tx to some transaction group. 1742 */ 1743 error = dmu_tx_assign(tx, txg_how); 1744 if (error) { 1745 if (error == ERESTART) { 1746 ASSERT3U(txg_how, ==, TXG_NOWAIT); 1747 dmu_tx_wait(tx); 1748 } else { 1749 ASSERT3U(error, ==, ENOSPC); 1750 ztest_record_enospc(tag); 1751 } 1752 dmu_tx_abort(tx); 1753 return (0); 1754 } 1755 txg = dmu_tx_get_txg(tx); 1756 ASSERT3U(txg, !=, 0); 1757 return (txg); 1758 } 1759 1760 static void 1761 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1762 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg, 1763 uint64_t crtxg) 1764 { 1765 bt->bt_magic = BT_MAGIC; 1766 bt->bt_objset = dmu_objset_id(os); 1767 bt->bt_object = object; 1768 bt->bt_dnodesize = dnodesize; 1769 bt->bt_offset = offset; 1770 bt->bt_gen = gen; 1771 bt->bt_txg = txg; 1772 bt->bt_crtxg = crtxg; 1773 } 1774 1775 static void 1776 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1777 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg, 1778 uint64_t crtxg) 1779 { 1780 ASSERT3U(bt->bt_magic, ==, BT_MAGIC); 1781 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1782 ASSERT3U(bt->bt_object, ==, object); 1783 ASSERT3U(bt->bt_dnodesize, ==, dnodesize); 1784 ASSERT3U(bt->bt_offset, ==, offset); 1785 ASSERT3U(bt->bt_gen, <=, gen); 1786 ASSERT3U(bt->bt_txg, <=, txg); 1787 ASSERT3U(bt->bt_crtxg, ==, crtxg); 1788 } 1789 1790 static ztest_block_tag_t * 1791 ztest_bt_bonus(dmu_buf_t *db) 1792 { 1793 dmu_object_info_t doi; 1794 ztest_block_tag_t *bt; 1795 1796 dmu_object_info_from_db(db, &doi); 1797 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1798 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1799 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1800 1801 return (bt); 1802 } 1803 1804 /* 1805 * Generate a token to fill up unused bonus buffer space. Try to make 1806 * it unique to the object, generation, and offset to verify that data 1807 * is not getting overwritten by data from other dnodes. 1808 */ 1809 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \ 1810 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset)) 1811 1812 /* 1813 * Fill up the unused bonus buffer region before the block tag with a 1814 * verifiable pattern. Filling the whole bonus area with non-zero data 1815 * helps ensure that all dnode traversal code properly skips the 1816 * interior regions of large dnodes. 1817 */ 1818 static void 1819 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj, 1820 objset_t *os, uint64_t gen) 1821 { 1822 uint64_t *bonusp; 1823 1824 ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8)); 1825 1826 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) { 1827 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os), 1828 gen, bonusp - (uint64_t *)db->db_data); 1829 *bonusp = token; 1830 } 1831 } 1832 1833 /* 1834 * Verify that the unused area of a bonus buffer is filled with the 1835 * expected tokens. 1836 */ 1837 static void 1838 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj, 1839 objset_t *os, uint64_t gen) 1840 { 1841 uint64_t *bonusp; 1842 1843 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) { 1844 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os), 1845 gen, bonusp - (uint64_t *)db->db_data); 1846 VERIFY3U(*bonusp, ==, token); 1847 } 1848 } 1849 1850 /* 1851 * ZIL logging ops 1852 */ 1853 1854 #define lrz_type lr_mode 1855 #define lrz_blocksize lr_uid 1856 #define lrz_ibshift lr_gid 1857 #define lrz_bonustype lr_rdev 1858 #define lrz_dnodesize lr_crtime[1] 1859 1860 static void 1861 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1862 { 1863 char *name = (void *)(lr + 1); /* name follows lr */ 1864 size_t namesize = strlen(name) + 1; 1865 itx_t *itx; 1866 1867 if (zil_replaying(zd->zd_zilog, tx)) 1868 return; 1869 1870 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1871 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1, 1872 sizeof (*lr) + namesize - sizeof (lr_t)); 1873 1874 zil_itx_assign(zd->zd_zilog, itx, tx); 1875 } 1876 1877 static void 1878 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1879 { 1880 char *name = (void *)(lr + 1); /* name follows lr */ 1881 size_t namesize = strlen(name) + 1; 1882 itx_t *itx; 1883 1884 if (zil_replaying(zd->zd_zilog, tx)) 1885 return; 1886 1887 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1888 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1, 1889 sizeof (*lr) + namesize - sizeof (lr_t)); 1890 1891 itx->itx_oid = object; 1892 zil_itx_assign(zd->zd_zilog, itx, tx); 1893 } 1894 1895 static void 1896 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1897 { 1898 itx_t *itx; 1899 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1900 1901 if (zil_replaying(zd->zd_zilog, tx)) 1902 return; 1903 1904 if (lr->lr_length > zil_max_log_data(zd->zd_zilog)) 1905 write_state = WR_INDIRECT; 1906 1907 itx = zil_itx_create(TX_WRITE, 1908 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1909 1910 if (write_state == WR_COPIED && 1911 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1912 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1913 zil_itx_destroy(itx); 1914 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1915 write_state = WR_NEED_COPY; 1916 } 1917 itx->itx_private = zd; 1918 itx->itx_wr_state = write_state; 1919 itx->itx_sync = (ztest_random(8) == 0); 1920 1921 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1, 1922 sizeof (*lr) - sizeof (lr_t)); 1923 1924 zil_itx_assign(zd->zd_zilog, itx, tx); 1925 } 1926 1927 static void 1928 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1929 { 1930 itx_t *itx; 1931 1932 if (zil_replaying(zd->zd_zilog, tx)) 1933 return; 1934 1935 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1936 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1, 1937 sizeof (*lr) - sizeof (lr_t)); 1938 1939 itx->itx_sync = B_FALSE; 1940 zil_itx_assign(zd->zd_zilog, itx, tx); 1941 } 1942 1943 static void 1944 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1945 { 1946 itx_t *itx; 1947 1948 if (zil_replaying(zd->zd_zilog, tx)) 1949 return; 1950 1951 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1952 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1, 1953 sizeof (*lr) - sizeof (lr_t)); 1954 1955 itx->itx_sync = B_FALSE; 1956 zil_itx_assign(zd->zd_zilog, itx, tx); 1957 } 1958 1959 /* 1960 * ZIL replay ops 1961 */ 1962 static int 1963 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap) 1964 { 1965 ztest_ds_t *zd = arg1; 1966 lr_create_t *lr = arg2; 1967 char *name = (void *)(lr + 1); /* name follows lr */ 1968 objset_t *os = zd->zd_os; 1969 ztest_block_tag_t *bbt; 1970 dmu_buf_t *db; 1971 dmu_tx_t *tx; 1972 uint64_t txg; 1973 int error = 0; 1974 int bonuslen; 1975 1976 if (byteswap) 1977 byteswap_uint64_array(lr, sizeof (*lr)); 1978 1979 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ); 1980 ASSERT3S(name[0], !=, '\0'); 1981 1982 tx = dmu_tx_create(os); 1983 1984 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1985 1986 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1987 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1988 } else { 1989 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1990 } 1991 1992 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1993 if (txg == 0) 1994 return (ENOSPC); 1995 1996 ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid); 1997 bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize); 1998 1999 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 2000 if (lr->lr_foid == 0) { 2001 lr->lr_foid = zap_create_dnsize(os, 2002 lr->lrz_type, lr->lrz_bonustype, 2003 bonuslen, lr->lrz_dnodesize, tx); 2004 } else { 2005 error = zap_create_claim_dnsize(os, lr->lr_foid, 2006 lr->lrz_type, lr->lrz_bonustype, 2007 bonuslen, lr->lrz_dnodesize, tx); 2008 } 2009 } else { 2010 if (lr->lr_foid == 0) { 2011 lr->lr_foid = dmu_object_alloc_dnsize(os, 2012 lr->lrz_type, 0, lr->lrz_bonustype, 2013 bonuslen, lr->lrz_dnodesize, tx); 2014 } else { 2015 error = dmu_object_claim_dnsize(os, lr->lr_foid, 2016 lr->lrz_type, 0, lr->lrz_bonustype, 2017 bonuslen, lr->lrz_dnodesize, tx); 2018 } 2019 } 2020 2021 if (error) { 2022 ASSERT3U(error, ==, EEXIST); 2023 ASSERT(zd->zd_zilog->zl_replay); 2024 dmu_tx_commit(tx); 2025 return (error); 2026 } 2027 2028 ASSERT3U(lr->lr_foid, !=, 0); 2029 2030 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 2031 VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid, 2032 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 2033 2034 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 2035 bbt = ztest_bt_bonus(db); 2036 dmu_buf_will_dirty(db, tx); 2037 ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL, 2038 lr->lr_gen, txg, txg); 2039 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen); 2040 dmu_buf_rele(db, FTAG); 2041 2042 VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 2043 &lr->lr_foid, tx)); 2044 2045 (void) ztest_log_create(zd, tx, lr); 2046 2047 dmu_tx_commit(tx); 2048 2049 return (0); 2050 } 2051 2052 static int 2053 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap) 2054 { 2055 ztest_ds_t *zd = arg1; 2056 lr_remove_t *lr = arg2; 2057 char *name = (void *)(lr + 1); /* name follows lr */ 2058 objset_t *os = zd->zd_os; 2059 dmu_object_info_t doi; 2060 dmu_tx_t *tx; 2061 uint64_t object, txg; 2062 2063 if (byteswap) 2064 byteswap_uint64_array(lr, sizeof (*lr)); 2065 2066 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ); 2067 ASSERT3S(name[0], !=, '\0'); 2068 2069 VERIFY0( 2070 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 2071 ASSERT3U(object, !=, 0); 2072 2073 ztest_object_lock(zd, object, RL_WRITER); 2074 2075 VERIFY0(dmu_object_info(os, object, &doi)); 2076 2077 tx = dmu_tx_create(os); 2078 2079 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 2080 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 2081 2082 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2083 if (txg == 0) { 2084 ztest_object_unlock(zd, object); 2085 return (ENOSPC); 2086 } 2087 2088 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 2089 VERIFY0(zap_destroy(os, object, tx)); 2090 } else { 2091 VERIFY0(dmu_object_free(os, object, tx)); 2092 } 2093 2094 VERIFY0(zap_remove(os, lr->lr_doid, name, tx)); 2095 2096 (void) ztest_log_remove(zd, tx, lr, object); 2097 2098 dmu_tx_commit(tx); 2099 2100 ztest_object_unlock(zd, object); 2101 2102 return (0); 2103 } 2104 2105 static int 2106 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap) 2107 { 2108 ztest_ds_t *zd = arg1; 2109 lr_write_t *lr = arg2; 2110 objset_t *os = zd->zd_os; 2111 void *data = lr + 1; /* data follows lr */ 2112 uint64_t offset, length; 2113 ztest_block_tag_t *bt = data; 2114 ztest_block_tag_t *bbt; 2115 uint64_t gen, txg, lrtxg, crtxg; 2116 dmu_object_info_t doi; 2117 dmu_tx_t *tx; 2118 dmu_buf_t *db; 2119 arc_buf_t *abuf = NULL; 2120 rl_t *rl; 2121 2122 if (byteswap) 2123 byteswap_uint64_array(lr, sizeof (*lr)); 2124 2125 offset = lr->lr_offset; 2126 length = lr->lr_length; 2127 2128 /* If it's a dmu_sync() block, write the whole block */ 2129 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 2130 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 2131 if (length < blocksize) { 2132 offset -= offset % blocksize; 2133 length = blocksize; 2134 } 2135 } 2136 2137 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 2138 byteswap_uint64_array(bt, sizeof (*bt)); 2139 2140 if (bt->bt_magic != BT_MAGIC) 2141 bt = NULL; 2142 2143 ztest_object_lock(zd, lr->lr_foid, RL_READER); 2144 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 2145 2146 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 2147 2148 dmu_object_info_from_db(db, &doi); 2149 2150 bbt = ztest_bt_bonus(db); 2151 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 2152 gen = bbt->bt_gen; 2153 crtxg = bbt->bt_crtxg; 2154 lrtxg = lr->lr_common.lrc_txg; 2155 2156 tx = dmu_tx_create(os); 2157 2158 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 2159 2160 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 2161 P2PHASE(offset, length) == 0) 2162 abuf = dmu_request_arcbuf(db, length); 2163 2164 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2165 if (txg == 0) { 2166 if (abuf != NULL) 2167 dmu_return_arcbuf(abuf); 2168 dmu_buf_rele(db, FTAG); 2169 ztest_range_unlock(rl); 2170 ztest_object_unlock(zd, lr->lr_foid); 2171 return (ENOSPC); 2172 } 2173 2174 if (bt != NULL) { 2175 /* 2176 * Usually, verify the old data before writing new data -- 2177 * but not always, because we also want to verify correct 2178 * behavior when the data was not recently read into cache. 2179 */ 2180 ASSERT(doi.doi_data_block_size); 2181 ASSERT0(offset % doi.doi_data_block_size); 2182 if (ztest_random(4) != 0) { 2183 int prefetch = ztest_random(2) ? 2184 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 2185 ztest_block_tag_t rbt; 2186 2187 VERIFY(dmu_read(os, lr->lr_foid, offset, 2188 sizeof (rbt), &rbt, prefetch) == 0); 2189 if (rbt.bt_magic == BT_MAGIC) { 2190 ztest_bt_verify(&rbt, os, lr->lr_foid, 0, 2191 offset, gen, txg, crtxg); 2192 } 2193 } 2194 2195 /* 2196 * Writes can appear to be newer than the bonus buffer because 2197 * the ztest_get_data() callback does a dmu_read() of the 2198 * open-context data, which may be different than the data 2199 * as it was when the write was generated. 2200 */ 2201 if (zd->zd_zilog->zl_replay) { 2202 ztest_bt_verify(bt, os, lr->lr_foid, 0, offset, 2203 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 2204 bt->bt_crtxg); 2205 } 2206 2207 /* 2208 * Set the bt's gen/txg to the bonus buffer's gen/txg 2209 * so that all of the usual ASSERTs will work. 2210 */ 2211 ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg, 2212 crtxg); 2213 } 2214 2215 if (abuf == NULL) { 2216 dmu_write(os, lr->lr_foid, offset, length, data, tx); 2217 } else { 2218 memcpy(abuf->b_data, data, length); 2219 VERIFY0(dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx)); 2220 } 2221 2222 (void) ztest_log_write(zd, tx, lr); 2223 2224 dmu_buf_rele(db, FTAG); 2225 2226 dmu_tx_commit(tx); 2227 2228 ztest_range_unlock(rl); 2229 ztest_object_unlock(zd, lr->lr_foid); 2230 2231 return (0); 2232 } 2233 2234 static int 2235 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) 2236 { 2237 ztest_ds_t *zd = arg1; 2238 lr_truncate_t *lr = arg2; 2239 objset_t *os = zd->zd_os; 2240 dmu_tx_t *tx; 2241 uint64_t txg; 2242 rl_t *rl; 2243 2244 if (byteswap) 2245 byteswap_uint64_array(lr, sizeof (*lr)); 2246 2247 ztest_object_lock(zd, lr->lr_foid, RL_READER); 2248 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 2249 RL_WRITER); 2250 2251 tx = dmu_tx_create(os); 2252 2253 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 2254 2255 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2256 if (txg == 0) { 2257 ztest_range_unlock(rl); 2258 ztest_object_unlock(zd, lr->lr_foid); 2259 return (ENOSPC); 2260 } 2261 2262 VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 2263 lr->lr_length, tx)); 2264 2265 (void) ztest_log_truncate(zd, tx, lr); 2266 2267 dmu_tx_commit(tx); 2268 2269 ztest_range_unlock(rl); 2270 ztest_object_unlock(zd, lr->lr_foid); 2271 2272 return (0); 2273 } 2274 2275 static int 2276 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap) 2277 { 2278 ztest_ds_t *zd = arg1; 2279 lr_setattr_t *lr = arg2; 2280 objset_t *os = zd->zd_os; 2281 dmu_tx_t *tx; 2282 dmu_buf_t *db; 2283 ztest_block_tag_t *bbt; 2284 uint64_t txg, lrtxg, crtxg, dnodesize; 2285 2286 if (byteswap) 2287 byteswap_uint64_array(lr, sizeof (*lr)); 2288 2289 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 2290 2291 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 2292 2293 tx = dmu_tx_create(os); 2294 dmu_tx_hold_bonus(tx, lr->lr_foid); 2295 2296 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2297 if (txg == 0) { 2298 dmu_buf_rele(db, FTAG); 2299 ztest_object_unlock(zd, lr->lr_foid); 2300 return (ENOSPC); 2301 } 2302 2303 bbt = ztest_bt_bonus(db); 2304 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 2305 crtxg = bbt->bt_crtxg; 2306 lrtxg = lr->lr_common.lrc_txg; 2307 dnodesize = bbt->bt_dnodesize; 2308 2309 if (zd->zd_zilog->zl_replay) { 2310 ASSERT3U(lr->lr_size, !=, 0); 2311 ASSERT3U(lr->lr_mode, !=, 0); 2312 ASSERT3U(lrtxg, !=, 0); 2313 } else { 2314 /* 2315 * Randomly change the size and increment the generation. 2316 */ 2317 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 2318 sizeof (*bbt); 2319 lr->lr_mode = bbt->bt_gen + 1; 2320 ASSERT0(lrtxg); 2321 } 2322 2323 /* 2324 * Verify that the current bonus buffer is not newer than our txg. 2325 */ 2326 ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode, 2327 MAX(txg, lrtxg), crtxg); 2328 2329 dmu_buf_will_dirty(db, tx); 2330 2331 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 2332 ASSERT3U(lr->lr_size, <=, db->db_size); 2333 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 2334 bbt = ztest_bt_bonus(db); 2335 2336 ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode, 2337 txg, crtxg); 2338 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen); 2339 dmu_buf_rele(db, FTAG); 2340 2341 (void) ztest_log_setattr(zd, tx, lr); 2342 2343 dmu_tx_commit(tx); 2344 2345 ztest_object_unlock(zd, lr->lr_foid); 2346 2347 return (0); 2348 } 2349 2350 static zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 2351 NULL, /* 0 no such transaction type */ 2352 ztest_replay_create, /* TX_CREATE */ 2353 NULL, /* TX_MKDIR */ 2354 NULL, /* TX_MKXATTR */ 2355 NULL, /* TX_SYMLINK */ 2356 ztest_replay_remove, /* TX_REMOVE */ 2357 NULL, /* TX_RMDIR */ 2358 NULL, /* TX_LINK */ 2359 NULL, /* TX_RENAME */ 2360 ztest_replay_write, /* TX_WRITE */ 2361 ztest_replay_truncate, /* TX_TRUNCATE */ 2362 ztest_replay_setattr, /* TX_SETATTR */ 2363 NULL, /* TX_ACL */ 2364 NULL, /* TX_CREATE_ACL */ 2365 NULL, /* TX_CREATE_ATTR */ 2366 NULL, /* TX_CREATE_ACL_ATTR */ 2367 NULL, /* TX_MKDIR_ACL */ 2368 NULL, /* TX_MKDIR_ATTR */ 2369 NULL, /* TX_MKDIR_ACL_ATTR */ 2370 NULL, /* TX_WRITE2 */ 2371 NULL, /* TX_SETSAXATTR */ 2372 NULL, /* TX_RENAME_EXCHANGE */ 2373 NULL, /* TX_RENAME_WHITEOUT */ 2374 }; 2375 2376 /* 2377 * ZIL get_data callbacks 2378 */ 2379 2380 static void 2381 ztest_get_done(zgd_t *zgd, int error) 2382 { 2383 (void) error; 2384 ztest_ds_t *zd = zgd->zgd_private; 2385 uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object; 2386 2387 if (zgd->zgd_db) 2388 dmu_buf_rele(zgd->zgd_db, zgd); 2389 2390 ztest_range_unlock((rl_t *)zgd->zgd_lr); 2391 ztest_object_unlock(zd, object); 2392 2393 umem_free(zgd, sizeof (*zgd)); 2394 } 2395 2396 static int 2397 ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf, 2398 struct lwb *lwb, zio_t *zio) 2399 { 2400 (void) arg2; 2401 ztest_ds_t *zd = arg; 2402 objset_t *os = zd->zd_os; 2403 uint64_t object = lr->lr_foid; 2404 uint64_t offset = lr->lr_offset; 2405 uint64_t size = lr->lr_length; 2406 uint64_t txg = lr->lr_common.lrc_txg; 2407 uint64_t crtxg; 2408 dmu_object_info_t doi; 2409 dmu_buf_t *db; 2410 zgd_t *zgd; 2411 int error; 2412 2413 ASSERT3P(lwb, !=, NULL); 2414 ASSERT3P(zio, !=, NULL); 2415 ASSERT3U(size, !=, 0); 2416 2417 ztest_object_lock(zd, object, RL_READER); 2418 error = dmu_bonus_hold(os, object, FTAG, &db); 2419 if (error) { 2420 ztest_object_unlock(zd, object); 2421 return (error); 2422 } 2423 2424 crtxg = ztest_bt_bonus(db)->bt_crtxg; 2425 2426 if (crtxg == 0 || crtxg > txg) { 2427 dmu_buf_rele(db, FTAG); 2428 ztest_object_unlock(zd, object); 2429 return (ENOENT); 2430 } 2431 2432 dmu_object_info_from_db(db, &doi); 2433 dmu_buf_rele(db, FTAG); 2434 db = NULL; 2435 2436 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 2437 zgd->zgd_lwb = lwb; 2438 zgd->zgd_private = zd; 2439 2440 if (buf != NULL) { /* immediate write */ 2441 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd, 2442 object, offset, size, RL_READER); 2443 2444 error = dmu_read(os, object, offset, size, buf, 2445 DMU_READ_NO_PREFETCH); 2446 ASSERT0(error); 2447 } else { 2448 size = doi.doi_data_block_size; 2449 if (ISP2(size)) { 2450 offset = P2ALIGN(offset, size); 2451 } else { 2452 ASSERT3U(offset, <, size); 2453 offset = 0; 2454 } 2455 2456 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd, 2457 object, offset, size, RL_READER); 2458 2459 error = dmu_buf_hold(os, object, offset, zgd, &db, 2460 DMU_READ_NO_PREFETCH); 2461 2462 if (error == 0) { 2463 blkptr_t *bp = &lr->lr_blkptr; 2464 2465 zgd->zgd_db = db; 2466 zgd->zgd_bp = bp; 2467 2468 ASSERT3U(db->db_offset, ==, offset); 2469 ASSERT3U(db->db_size, ==, size); 2470 2471 error = dmu_sync(zio, lr->lr_common.lrc_txg, 2472 ztest_get_done, zgd); 2473 2474 if (error == 0) 2475 return (0); 2476 } 2477 } 2478 2479 ztest_get_done(zgd, error); 2480 2481 return (error); 2482 } 2483 2484 static void * 2485 ztest_lr_alloc(size_t lrsize, char *name) 2486 { 2487 char *lr; 2488 size_t namesize = name ? strlen(name) + 1 : 0; 2489 2490 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 2491 2492 if (name) 2493 memcpy(lr + lrsize, name, namesize); 2494 2495 return (lr); 2496 } 2497 2498 static void 2499 ztest_lr_free(void *lr, size_t lrsize, char *name) 2500 { 2501 size_t namesize = name ? strlen(name) + 1 : 0; 2502 2503 umem_free(lr, lrsize + namesize); 2504 } 2505 2506 /* 2507 * Lookup a bunch of objects. Returns the number of objects not found. 2508 */ 2509 static int 2510 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 2511 { 2512 int missing = 0; 2513 int error; 2514 int i; 2515 2516 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 2517 2518 for (i = 0; i < count; i++, od++) { 2519 od->od_object = 0; 2520 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 2521 sizeof (uint64_t), 1, &od->od_object); 2522 if (error) { 2523 ASSERT3S(error, ==, ENOENT); 2524 ASSERT0(od->od_object); 2525 missing++; 2526 } else { 2527 dmu_buf_t *db; 2528 ztest_block_tag_t *bbt; 2529 dmu_object_info_t doi; 2530 2531 ASSERT3U(od->od_object, !=, 0); 2532 ASSERT0(missing); /* there should be no gaps */ 2533 2534 ztest_object_lock(zd, od->od_object, RL_READER); 2535 VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object, 2536 FTAG, &db)); 2537 dmu_object_info_from_db(db, &doi); 2538 bbt = ztest_bt_bonus(db); 2539 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 2540 od->od_type = doi.doi_type; 2541 od->od_blocksize = doi.doi_data_block_size; 2542 od->od_gen = bbt->bt_gen; 2543 dmu_buf_rele(db, FTAG); 2544 ztest_object_unlock(zd, od->od_object); 2545 } 2546 } 2547 2548 return (missing); 2549 } 2550 2551 static int 2552 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 2553 { 2554 int missing = 0; 2555 int i; 2556 2557 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 2558 2559 for (i = 0; i < count; i++, od++) { 2560 if (missing) { 2561 od->od_object = 0; 2562 missing++; 2563 continue; 2564 } 2565 2566 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2567 2568 lr->lr_doid = od->od_dir; 2569 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 2570 lr->lrz_type = od->od_crtype; 2571 lr->lrz_blocksize = od->od_crblocksize; 2572 lr->lrz_ibshift = ztest_random_ibshift(); 2573 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 2574 lr->lrz_dnodesize = od->od_crdnodesize; 2575 lr->lr_gen = od->od_crgen; 2576 lr->lr_crtime[0] = time(NULL); 2577 2578 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 2579 ASSERT0(missing); 2580 od->od_object = 0; 2581 missing++; 2582 } else { 2583 od->od_object = lr->lr_foid; 2584 od->od_type = od->od_crtype; 2585 od->od_blocksize = od->od_crblocksize; 2586 od->od_gen = od->od_crgen; 2587 ASSERT3U(od->od_object, !=, 0); 2588 } 2589 2590 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2591 } 2592 2593 return (missing); 2594 } 2595 2596 static int 2597 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2598 { 2599 int missing = 0; 2600 int error; 2601 int i; 2602 2603 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 2604 2605 od += count - 1; 2606 2607 for (i = count - 1; i >= 0; i--, od--) { 2608 if (missing) { 2609 missing++; 2610 continue; 2611 } 2612 2613 /* 2614 * No object was found. 2615 */ 2616 if (od->od_object == 0) 2617 continue; 2618 2619 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2620 2621 lr->lr_doid = od->od_dir; 2622 2623 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2624 ASSERT3U(error, ==, ENOSPC); 2625 missing++; 2626 } else { 2627 od->od_object = 0; 2628 } 2629 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2630 } 2631 2632 return (missing); 2633 } 2634 2635 static int 2636 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2637 void *data) 2638 { 2639 lr_write_t *lr; 2640 int error; 2641 2642 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2643 2644 lr->lr_foid = object; 2645 lr->lr_offset = offset; 2646 lr->lr_length = size; 2647 lr->lr_blkoff = 0; 2648 BP_ZERO(&lr->lr_blkptr); 2649 2650 memcpy(lr + 1, data, size); 2651 2652 error = ztest_replay_write(zd, lr, B_FALSE); 2653 2654 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2655 2656 return (error); 2657 } 2658 2659 static int 2660 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2661 { 2662 lr_truncate_t *lr; 2663 int error; 2664 2665 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2666 2667 lr->lr_foid = object; 2668 lr->lr_offset = offset; 2669 lr->lr_length = size; 2670 2671 error = ztest_replay_truncate(zd, lr, B_FALSE); 2672 2673 ztest_lr_free(lr, sizeof (*lr), NULL); 2674 2675 return (error); 2676 } 2677 2678 static int 2679 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2680 { 2681 lr_setattr_t *lr; 2682 int error; 2683 2684 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2685 2686 lr->lr_foid = object; 2687 lr->lr_size = 0; 2688 lr->lr_mode = 0; 2689 2690 error = ztest_replay_setattr(zd, lr, B_FALSE); 2691 2692 ztest_lr_free(lr, sizeof (*lr), NULL); 2693 2694 return (error); 2695 } 2696 2697 static void 2698 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2699 { 2700 objset_t *os = zd->zd_os; 2701 dmu_tx_t *tx; 2702 uint64_t txg; 2703 rl_t *rl; 2704 2705 txg_wait_synced(dmu_objset_pool(os), 0); 2706 2707 ztest_object_lock(zd, object, RL_READER); 2708 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2709 2710 tx = dmu_tx_create(os); 2711 2712 dmu_tx_hold_write(tx, object, offset, size); 2713 2714 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2715 2716 if (txg != 0) { 2717 dmu_prealloc(os, object, offset, size, tx); 2718 dmu_tx_commit(tx); 2719 txg_wait_synced(dmu_objset_pool(os), txg); 2720 } else { 2721 (void) dmu_free_long_range(os, object, offset, size); 2722 } 2723 2724 ztest_range_unlock(rl); 2725 ztest_object_unlock(zd, object); 2726 } 2727 2728 static void 2729 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2730 { 2731 int err; 2732 ztest_block_tag_t wbt; 2733 dmu_object_info_t doi; 2734 enum ztest_io_type io_type; 2735 uint64_t blocksize; 2736 void *data; 2737 2738 VERIFY0(dmu_object_info(zd->zd_os, object, &doi)); 2739 blocksize = doi.doi_data_block_size; 2740 data = umem_alloc(blocksize, UMEM_NOFAIL); 2741 2742 /* 2743 * Pick an i/o type at random, biased toward writing block tags. 2744 */ 2745 io_type = ztest_random(ZTEST_IO_TYPES); 2746 if (ztest_random(2) == 0) 2747 io_type = ZTEST_IO_WRITE_TAG; 2748 2749 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock); 2750 2751 switch (io_type) { 2752 2753 case ZTEST_IO_WRITE_TAG: 2754 ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize, 2755 offset, 0, 0, 0); 2756 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2757 break; 2758 2759 case ZTEST_IO_WRITE_PATTERN: 2760 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2761 if (ztest_random(2) == 0) { 2762 /* 2763 * Induce fletcher2 collisions to ensure that 2764 * zio_ddt_collision() detects and resolves them 2765 * when using fletcher2-verify for deduplication. 2766 */ 2767 ((uint64_t *)data)[0] ^= 1ULL << 63; 2768 ((uint64_t *)data)[4] ^= 1ULL << 63; 2769 } 2770 (void) ztest_write(zd, object, offset, blocksize, data); 2771 break; 2772 2773 case ZTEST_IO_WRITE_ZEROES: 2774 memset(data, 0, blocksize); 2775 (void) ztest_write(zd, object, offset, blocksize, data); 2776 break; 2777 2778 case ZTEST_IO_TRUNCATE: 2779 (void) ztest_truncate(zd, object, offset, blocksize); 2780 break; 2781 2782 case ZTEST_IO_SETATTR: 2783 (void) ztest_setattr(zd, object); 2784 break; 2785 default: 2786 break; 2787 2788 case ZTEST_IO_REWRITE: 2789 (void) pthread_rwlock_rdlock(&ztest_name_lock); 2790 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2791 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2792 B_FALSE); 2793 ASSERT(err == 0 || err == ENOSPC); 2794 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2795 ZFS_PROP_COMPRESSION, 2796 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2797 B_FALSE); 2798 ASSERT(err == 0 || err == ENOSPC); 2799 (void) pthread_rwlock_unlock(&ztest_name_lock); 2800 2801 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2802 DMU_READ_NO_PREFETCH)); 2803 2804 (void) ztest_write(zd, object, offset, blocksize, data); 2805 break; 2806 } 2807 2808 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock); 2809 2810 umem_free(data, blocksize); 2811 } 2812 2813 /* 2814 * Initialize an object description template. 2815 */ 2816 static void 2817 ztest_od_init(ztest_od_t *od, uint64_t id, const char *tag, uint64_t index, 2818 dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize, 2819 uint64_t gen) 2820 { 2821 od->od_dir = ZTEST_DIROBJ; 2822 od->od_object = 0; 2823 2824 od->od_crtype = type; 2825 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2826 od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize(); 2827 od->od_crgen = gen; 2828 2829 od->od_type = DMU_OT_NONE; 2830 od->od_blocksize = 0; 2831 od->od_gen = 0; 2832 2833 (void) snprintf(od->od_name, sizeof (od->od_name), 2834 "%s(%"PRId64")[%"PRIu64"]", 2835 tag, id, index); 2836 } 2837 2838 /* 2839 * Lookup or create the objects for a test using the od template. 2840 * If the objects do not all exist, or if 'remove' is specified, 2841 * remove any existing objects and create new ones. Otherwise, 2842 * use the existing objects. 2843 */ 2844 static int 2845 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2846 { 2847 int count = size / sizeof (*od); 2848 int rv = 0; 2849 2850 mutex_enter(&zd->zd_dirobj_lock); 2851 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2852 (ztest_remove(zd, od, count) != 0 || 2853 ztest_create(zd, od, count) != 0)) 2854 rv = -1; 2855 zd->zd_od = od; 2856 mutex_exit(&zd->zd_dirobj_lock); 2857 2858 return (rv); 2859 } 2860 2861 void 2862 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2863 { 2864 (void) id; 2865 zilog_t *zilog = zd->zd_zilog; 2866 2867 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock); 2868 2869 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2870 2871 /* 2872 * Remember the committed values in zd, which is in parent/child 2873 * shared memory. If we die, the next iteration of ztest_run() 2874 * will verify that the log really does contain this record. 2875 */ 2876 mutex_enter(&zilog->zl_lock); 2877 ASSERT3P(zd->zd_shared, !=, NULL); 2878 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2879 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2880 mutex_exit(&zilog->zl_lock); 2881 2882 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock); 2883 } 2884 2885 /* 2886 * This function is designed to simulate the operations that occur during a 2887 * mount/unmount operation. We hold the dataset across these operations in an 2888 * attempt to expose any implicit assumptions about ZIL management. 2889 */ 2890 void 2891 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2892 { 2893 (void) id; 2894 objset_t *os = zd->zd_os; 2895 2896 /* 2897 * We hold the ztest_vdev_lock so we don't cause problems with 2898 * other threads that wish to remove a log device, such as 2899 * ztest_device_removal(). 2900 */ 2901 mutex_enter(&ztest_vdev_lock); 2902 2903 /* 2904 * We grab the zd_dirobj_lock to ensure that no other thread is 2905 * updating the zil (i.e. adding in-memory log records) and the 2906 * zd_zilog_lock to block any I/O. 2907 */ 2908 mutex_enter(&zd->zd_dirobj_lock); 2909 (void) pthread_rwlock_wrlock(&zd->zd_zilog_lock); 2910 2911 /* zfsvfs_teardown() */ 2912 zil_close(zd->zd_zilog); 2913 2914 /* zfsvfs_setup() */ 2915 VERIFY3P(zil_open(os, ztest_get_data, NULL), ==, zd->zd_zilog); 2916 zil_replay(os, zd, ztest_replay_vector); 2917 2918 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock); 2919 mutex_exit(&zd->zd_dirobj_lock); 2920 mutex_exit(&ztest_vdev_lock); 2921 } 2922 2923 /* 2924 * Verify that we can't destroy an active pool, create an existing pool, 2925 * or create a pool with a bad vdev spec. 2926 */ 2927 void 2928 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2929 { 2930 (void) zd, (void) id; 2931 ztest_shared_opts_t *zo = &ztest_opts; 2932 spa_t *spa; 2933 nvlist_t *nvroot; 2934 2935 if (zo->zo_mmp_test) 2936 return; 2937 2938 /* 2939 * Attempt to create using a bad file. 2940 */ 2941 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1); 2942 VERIFY3U(ENOENT, ==, 2943 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL)); 2944 fnvlist_free(nvroot); 2945 2946 /* 2947 * Attempt to create using a bad mirror. 2948 */ 2949 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1); 2950 VERIFY3U(ENOENT, ==, 2951 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL)); 2952 fnvlist_free(nvroot); 2953 2954 /* 2955 * Attempt to create an existing pool. It shouldn't matter 2956 * what's in the nvroot; we should fail with EEXIST. 2957 */ 2958 (void) pthread_rwlock_rdlock(&ztest_name_lock); 2959 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1); 2960 VERIFY3U(EEXIST, ==, 2961 spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL)); 2962 fnvlist_free(nvroot); 2963 2964 /* 2965 * We open a reference to the spa and then we try to export it 2966 * expecting one of the following errors: 2967 * 2968 * EBUSY 2969 * Because of the reference we just opened. 2970 * 2971 * ZFS_ERR_EXPORT_IN_PROGRESS 2972 * For the case that there is another ztest thread doing 2973 * an export concurrently. 2974 */ 2975 VERIFY0(spa_open(zo->zo_pool, &spa, FTAG)); 2976 int error = spa_destroy(zo->zo_pool); 2977 if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) { 2978 fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d", 2979 spa->spa_name, error); 2980 } 2981 spa_close(spa, FTAG); 2982 2983 (void) pthread_rwlock_unlock(&ztest_name_lock); 2984 } 2985 2986 /* 2987 * Start and then stop the MMP threads to ensure the startup and shutdown code 2988 * works properly. Actual protection and property-related code tested via ZTS. 2989 */ 2990 void 2991 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id) 2992 { 2993 (void) zd, (void) id; 2994 ztest_shared_opts_t *zo = &ztest_opts; 2995 spa_t *spa = ztest_spa; 2996 2997 if (zo->zo_mmp_test) 2998 return; 2999 3000 /* 3001 * Since enabling MMP involves setting a property, it could not be done 3002 * while the pool is suspended. 3003 */ 3004 if (spa_suspended(spa)) 3005 return; 3006 3007 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3008 mutex_enter(&spa->spa_props_lock); 3009 3010 zfs_multihost_fail_intervals = 0; 3011 3012 if (!spa_multihost(spa)) { 3013 spa->spa_multihost = B_TRUE; 3014 mmp_thread_start(spa); 3015 } 3016 3017 mutex_exit(&spa->spa_props_lock); 3018 spa_config_exit(spa, SCL_CONFIG, FTAG); 3019 3020 txg_wait_synced(spa_get_dsl(spa), 0); 3021 mmp_signal_all_threads(); 3022 txg_wait_synced(spa_get_dsl(spa), 0); 3023 3024 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3025 mutex_enter(&spa->spa_props_lock); 3026 3027 if (spa_multihost(spa)) { 3028 mmp_thread_stop(spa); 3029 spa->spa_multihost = B_FALSE; 3030 } 3031 3032 mutex_exit(&spa->spa_props_lock); 3033 spa_config_exit(spa, SCL_CONFIG, FTAG); 3034 } 3035 3036 void 3037 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 3038 { 3039 (void) zd, (void) id; 3040 spa_t *spa; 3041 uint64_t initial_version = SPA_VERSION_INITIAL; 3042 uint64_t version, newversion; 3043 nvlist_t *nvroot, *props; 3044 char *name; 3045 3046 if (ztest_opts.zo_mmp_test) 3047 return; 3048 3049 /* dRAID added after feature flags, skip upgrade test. */ 3050 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) 3051 return; 3052 3053 mutex_enter(&ztest_vdev_lock); 3054 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 3055 3056 /* 3057 * Clean up from previous runs. 3058 */ 3059 (void) spa_destroy(name); 3060 3061 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 3062 NULL, ztest_opts.zo_raid_children, ztest_opts.zo_mirrors, 1); 3063 3064 /* 3065 * If we're configuring a RAIDZ device then make sure that the 3066 * initial version is capable of supporting that feature. 3067 */ 3068 switch (ztest_opts.zo_raid_parity) { 3069 case 0: 3070 case 1: 3071 initial_version = SPA_VERSION_INITIAL; 3072 break; 3073 case 2: 3074 initial_version = SPA_VERSION_RAIDZ2; 3075 break; 3076 case 3: 3077 initial_version = SPA_VERSION_RAIDZ3; 3078 break; 3079 } 3080 3081 /* 3082 * Create a pool with a spa version that can be upgraded. Pick 3083 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 3084 */ 3085 do { 3086 version = ztest_random_spa_version(initial_version); 3087 } while (version > SPA_VERSION_BEFORE_FEATURES); 3088 3089 props = fnvlist_alloc(); 3090 fnvlist_add_uint64(props, 3091 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 3092 VERIFY0(spa_create(name, nvroot, props, NULL, NULL)); 3093 fnvlist_free(nvroot); 3094 fnvlist_free(props); 3095 3096 VERIFY0(spa_open(name, &spa, FTAG)); 3097 VERIFY3U(spa_version(spa), ==, version); 3098 newversion = ztest_random_spa_version(version + 1); 3099 3100 if (ztest_opts.zo_verbose >= 4) { 3101 (void) printf("upgrading spa version from " 3102 "%"PRIu64" to %"PRIu64"\n", 3103 version, newversion); 3104 } 3105 3106 spa_upgrade(spa, newversion); 3107 VERIFY3U(spa_version(spa), >, version); 3108 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 3109 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 3110 spa_close(spa, FTAG); 3111 3112 kmem_strfree(name); 3113 mutex_exit(&ztest_vdev_lock); 3114 } 3115 3116 static void 3117 ztest_spa_checkpoint(spa_t *spa) 3118 { 3119 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock)); 3120 3121 int error = spa_checkpoint(spa->spa_name); 3122 3123 switch (error) { 3124 case 0: 3125 case ZFS_ERR_DEVRM_IN_PROGRESS: 3126 case ZFS_ERR_DISCARDING_CHECKPOINT: 3127 case ZFS_ERR_CHECKPOINT_EXISTS: 3128 break; 3129 case ENOSPC: 3130 ztest_record_enospc(FTAG); 3131 break; 3132 default: 3133 fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error); 3134 } 3135 } 3136 3137 static void 3138 ztest_spa_discard_checkpoint(spa_t *spa) 3139 { 3140 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock)); 3141 3142 int error = spa_checkpoint_discard(spa->spa_name); 3143 3144 switch (error) { 3145 case 0: 3146 case ZFS_ERR_DISCARDING_CHECKPOINT: 3147 case ZFS_ERR_NO_CHECKPOINT: 3148 break; 3149 default: 3150 fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d", 3151 spa->spa_name, error); 3152 } 3153 3154 } 3155 3156 void 3157 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id) 3158 { 3159 (void) zd, (void) id; 3160 spa_t *spa = ztest_spa; 3161 3162 mutex_enter(&ztest_checkpoint_lock); 3163 if (ztest_random(2) == 0) { 3164 ztest_spa_checkpoint(spa); 3165 } else { 3166 ztest_spa_discard_checkpoint(spa); 3167 } 3168 mutex_exit(&ztest_checkpoint_lock); 3169 } 3170 3171 3172 static vdev_t * 3173 vdev_lookup_by_path(vdev_t *vd, const char *path) 3174 { 3175 vdev_t *mvd; 3176 int c; 3177 3178 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 3179 return (vd); 3180 3181 for (c = 0; c < vd->vdev_children; c++) 3182 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 3183 NULL) 3184 return (mvd); 3185 3186 return (NULL); 3187 } 3188 3189 static int 3190 spa_num_top_vdevs(spa_t *spa) 3191 { 3192 vdev_t *rvd = spa->spa_root_vdev; 3193 ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV); 3194 return (rvd->vdev_children); 3195 } 3196 3197 /* 3198 * Verify that vdev_add() works as expected. 3199 */ 3200 void 3201 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 3202 { 3203 (void) zd, (void) id; 3204 ztest_shared_t *zs = ztest_shared; 3205 spa_t *spa = ztest_spa; 3206 uint64_t leaves; 3207 uint64_t guid; 3208 nvlist_t *nvroot; 3209 int error; 3210 3211 if (ztest_opts.zo_mmp_test) 3212 return; 3213 3214 mutex_enter(&ztest_vdev_lock); 3215 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * 3216 ztest_opts.zo_raid_children; 3217 3218 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3219 3220 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves; 3221 3222 /* 3223 * If we have slogs then remove them 1/4 of the time. 3224 */ 3225 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 3226 metaslab_group_t *mg; 3227 3228 /* 3229 * find the first real slog in log allocation class 3230 */ 3231 mg = spa_log_class(spa)->mc_allocator[0].mca_rotor; 3232 while (!mg->mg_vd->vdev_islog) 3233 mg = mg->mg_next; 3234 3235 guid = mg->mg_vd->vdev_guid; 3236 3237 spa_config_exit(spa, SCL_VDEV, FTAG); 3238 3239 /* 3240 * We have to grab the zs_name_lock as writer to 3241 * prevent a race between removing a slog (dmu_objset_find) 3242 * and destroying a dataset. Removing the slog will 3243 * grab a reference on the dataset which may cause 3244 * dsl_destroy_head() to fail with EBUSY thus 3245 * leaving the dataset in an inconsistent state. 3246 */ 3247 pthread_rwlock_wrlock(&ztest_name_lock); 3248 error = spa_vdev_remove(spa, guid, B_FALSE); 3249 pthread_rwlock_unlock(&ztest_name_lock); 3250 3251 switch (error) { 3252 case 0: 3253 case EEXIST: /* Generic zil_reset() error */ 3254 case EBUSY: /* Replay required */ 3255 case EACCES: /* Crypto key not loaded */ 3256 case ZFS_ERR_CHECKPOINT_EXISTS: 3257 case ZFS_ERR_DISCARDING_CHECKPOINT: 3258 break; 3259 default: 3260 fatal(B_FALSE, "spa_vdev_remove() = %d", error); 3261 } 3262 } else { 3263 spa_config_exit(spa, SCL_VDEV, FTAG); 3264 3265 /* 3266 * Make 1/4 of the devices be log devices 3267 */ 3268 nvroot = make_vdev_root(NULL, NULL, NULL, 3269 ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ? 3270 "log" : NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 3271 1); 3272 3273 error = spa_vdev_add(spa, nvroot); 3274 fnvlist_free(nvroot); 3275 3276 switch (error) { 3277 case 0: 3278 break; 3279 case ENOSPC: 3280 ztest_record_enospc("spa_vdev_add"); 3281 break; 3282 default: 3283 fatal(B_FALSE, "spa_vdev_add() = %d", error); 3284 } 3285 } 3286 3287 mutex_exit(&ztest_vdev_lock); 3288 } 3289 3290 void 3291 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id) 3292 { 3293 (void) zd, (void) id; 3294 ztest_shared_t *zs = ztest_shared; 3295 spa_t *spa = ztest_spa; 3296 uint64_t leaves; 3297 nvlist_t *nvroot; 3298 const char *class = (ztest_random(2) == 0) ? 3299 VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP; 3300 int error; 3301 3302 /* 3303 * By default add a special vdev 50% of the time 3304 */ 3305 if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) || 3306 (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND && 3307 ztest_random(2) == 0)) { 3308 return; 3309 } 3310 3311 mutex_enter(&ztest_vdev_lock); 3312 3313 /* Only test with mirrors */ 3314 if (zs->zs_mirrors < 2) { 3315 mutex_exit(&ztest_vdev_lock); 3316 return; 3317 } 3318 3319 /* requires feature@allocation_classes */ 3320 if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) { 3321 mutex_exit(&ztest_vdev_lock); 3322 return; 3323 } 3324 3325 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * 3326 ztest_opts.zo_raid_children; 3327 3328 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3329 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves; 3330 spa_config_exit(spa, SCL_VDEV, FTAG); 3331 3332 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 3333 class, ztest_opts.zo_raid_children, zs->zs_mirrors, 1); 3334 3335 error = spa_vdev_add(spa, nvroot); 3336 fnvlist_free(nvroot); 3337 3338 if (error == ENOSPC) 3339 ztest_record_enospc("spa_vdev_add"); 3340 else if (error != 0) 3341 fatal(B_FALSE, "spa_vdev_add() = %d", error); 3342 3343 /* 3344 * 50% of the time allow small blocks in the special class 3345 */ 3346 if (error == 0 && 3347 spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) { 3348 if (ztest_opts.zo_verbose >= 3) 3349 (void) printf("Enabling special VDEV small blocks\n"); 3350 error = ztest_dsl_prop_set_uint64(zd->zd_name, 3351 ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE); 3352 ASSERT(error == 0 || error == ENOSPC); 3353 } 3354 3355 mutex_exit(&ztest_vdev_lock); 3356 3357 if (ztest_opts.zo_verbose >= 3) { 3358 metaslab_class_t *mc; 3359 3360 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0) 3361 mc = spa_special_class(spa); 3362 else 3363 mc = spa_dedup_class(spa); 3364 (void) printf("Added a %s mirrored vdev (of %d)\n", 3365 class, (int)mc->mc_groups); 3366 } 3367 } 3368 3369 /* 3370 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 3371 */ 3372 void 3373 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 3374 { 3375 (void) zd, (void) id; 3376 ztest_shared_t *zs = ztest_shared; 3377 spa_t *spa = ztest_spa; 3378 vdev_t *rvd = spa->spa_root_vdev; 3379 spa_aux_vdev_t *sav; 3380 const char *aux; 3381 char *path; 3382 uint64_t guid = 0; 3383 int error, ignore_err = 0; 3384 3385 if (ztest_opts.zo_mmp_test) 3386 return; 3387 3388 path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 3389 3390 if (ztest_random(2) == 0) { 3391 sav = &spa->spa_spares; 3392 aux = ZPOOL_CONFIG_SPARES; 3393 } else { 3394 sav = &spa->spa_l2cache; 3395 aux = ZPOOL_CONFIG_L2CACHE; 3396 } 3397 3398 mutex_enter(&ztest_vdev_lock); 3399 3400 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3401 3402 if (sav->sav_count != 0 && ztest_random(4) == 0) { 3403 /* 3404 * Pick a random device to remove. 3405 */ 3406 vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 3407 3408 /* dRAID spares cannot be removed; try anyways to see ENOTSUP */ 3409 if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL) 3410 ignore_err = ENOTSUP; 3411 3412 guid = svd->vdev_guid; 3413 } else { 3414 /* 3415 * Find an unused device we can add. 3416 */ 3417 zs->zs_vdev_aux = 0; 3418 for (;;) { 3419 int c; 3420 (void) snprintf(path, MAXPATHLEN, ztest_aux_template, 3421 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 3422 zs->zs_vdev_aux); 3423 for (c = 0; c < sav->sav_count; c++) 3424 if (strcmp(sav->sav_vdevs[c]->vdev_path, 3425 path) == 0) 3426 break; 3427 if (c == sav->sav_count && 3428 vdev_lookup_by_path(rvd, path) == NULL) 3429 break; 3430 zs->zs_vdev_aux++; 3431 } 3432 } 3433 3434 spa_config_exit(spa, SCL_VDEV, FTAG); 3435 3436 if (guid == 0) { 3437 /* 3438 * Add a new device. 3439 */ 3440 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 3441 (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1); 3442 error = spa_vdev_add(spa, nvroot); 3443 3444 switch (error) { 3445 case 0: 3446 break; 3447 default: 3448 fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error); 3449 } 3450 fnvlist_free(nvroot); 3451 } else { 3452 /* 3453 * Remove an existing device. Sometimes, dirty its 3454 * vdev state first to make sure we handle removal 3455 * of devices that have pending state changes. 3456 */ 3457 if (ztest_random(2) == 0) 3458 (void) vdev_online(spa, guid, 0, NULL); 3459 3460 error = spa_vdev_remove(spa, guid, B_FALSE); 3461 3462 switch (error) { 3463 case 0: 3464 case EBUSY: 3465 case ZFS_ERR_CHECKPOINT_EXISTS: 3466 case ZFS_ERR_DISCARDING_CHECKPOINT: 3467 break; 3468 default: 3469 if (error != ignore_err) 3470 fatal(B_FALSE, 3471 "spa_vdev_remove(%"PRIu64") = %d", 3472 guid, error); 3473 } 3474 } 3475 3476 mutex_exit(&ztest_vdev_lock); 3477 3478 umem_free(path, MAXPATHLEN); 3479 } 3480 3481 /* 3482 * split a pool if it has mirror tlvdevs 3483 */ 3484 void 3485 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 3486 { 3487 (void) zd, (void) id; 3488 ztest_shared_t *zs = ztest_shared; 3489 spa_t *spa = ztest_spa; 3490 vdev_t *rvd = spa->spa_root_vdev; 3491 nvlist_t *tree, **child, *config, *split, **schild; 3492 uint_t c, children, schildren = 0, lastlogid = 0; 3493 int error = 0; 3494 3495 if (ztest_opts.zo_mmp_test) 3496 return; 3497 3498 mutex_enter(&ztest_vdev_lock); 3499 3500 /* ensure we have a usable config; mirrors of raidz aren't supported */ 3501 if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) { 3502 mutex_exit(&ztest_vdev_lock); 3503 return; 3504 } 3505 3506 /* clean up the old pool, if any */ 3507 (void) spa_destroy("splitp"); 3508 3509 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3510 3511 /* generate a config from the existing config */ 3512 mutex_enter(&spa->spa_props_lock); 3513 tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE); 3514 mutex_exit(&spa->spa_props_lock); 3515 3516 VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, 3517 &child, &children)); 3518 3519 schild = umem_alloc(rvd->vdev_children * sizeof (nvlist_t *), 3520 UMEM_NOFAIL); 3521 for (c = 0; c < children; c++) { 3522 vdev_t *tvd = rvd->vdev_child[c]; 3523 nvlist_t **mchild; 3524 uint_t mchildren; 3525 3526 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 3527 schild[schildren] = fnvlist_alloc(); 3528 fnvlist_add_string(schild[schildren], 3529 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE); 3530 fnvlist_add_uint64(schild[schildren], 3531 ZPOOL_CONFIG_IS_HOLE, 1); 3532 if (lastlogid == 0) 3533 lastlogid = schildren; 3534 ++schildren; 3535 continue; 3536 } 3537 lastlogid = 0; 3538 VERIFY0(nvlist_lookup_nvlist_array(child[c], 3539 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren)); 3540 schild[schildren++] = fnvlist_dup(mchild[0]); 3541 } 3542 3543 /* OK, create a config that can be used to split */ 3544 split = fnvlist_alloc(); 3545 fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT); 3546 fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, 3547 (const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren); 3548 3549 config = fnvlist_alloc(); 3550 fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split); 3551 3552 for (c = 0; c < schildren; c++) 3553 fnvlist_free(schild[c]); 3554 umem_free(schild, rvd->vdev_children * sizeof (nvlist_t *)); 3555 fnvlist_free(split); 3556 3557 spa_config_exit(spa, SCL_VDEV, FTAG); 3558 3559 (void) pthread_rwlock_wrlock(&ztest_name_lock); 3560 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 3561 (void) pthread_rwlock_unlock(&ztest_name_lock); 3562 3563 fnvlist_free(config); 3564 3565 if (error == 0) { 3566 (void) printf("successful split - results:\n"); 3567 mutex_enter(&spa_namespace_lock); 3568 show_pool_stats(spa); 3569 show_pool_stats(spa_lookup("splitp")); 3570 mutex_exit(&spa_namespace_lock); 3571 ++zs->zs_splits; 3572 --zs->zs_mirrors; 3573 } 3574 mutex_exit(&ztest_vdev_lock); 3575 } 3576 3577 /* 3578 * Verify that we can attach and detach devices. 3579 */ 3580 void 3581 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 3582 { 3583 (void) zd, (void) id; 3584 ztest_shared_t *zs = ztest_shared; 3585 spa_t *spa = ztest_spa; 3586 spa_aux_vdev_t *sav = &spa->spa_spares; 3587 vdev_t *rvd = spa->spa_root_vdev; 3588 vdev_t *oldvd, *newvd, *pvd; 3589 nvlist_t *root; 3590 uint64_t leaves; 3591 uint64_t leaf, top; 3592 uint64_t ashift = ztest_get_ashift(); 3593 uint64_t oldguid, pguid; 3594 uint64_t oldsize, newsize; 3595 char *oldpath, *newpath; 3596 int replacing; 3597 int oldvd_has_siblings = B_FALSE; 3598 int newvd_is_spare = B_FALSE; 3599 int newvd_is_dspare = B_FALSE; 3600 int oldvd_is_log; 3601 int oldvd_is_special; 3602 int error, expected_error; 3603 3604 if (ztest_opts.zo_mmp_test) 3605 return; 3606 3607 oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 3608 newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 3609 3610 mutex_enter(&ztest_vdev_lock); 3611 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children; 3612 3613 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3614 3615 /* 3616 * If a vdev is in the process of being removed, its removal may 3617 * finish while we are in progress, leading to an unexpected error 3618 * value. Don't bother trying to attach while we are in the middle 3619 * of removal. 3620 */ 3621 if (ztest_device_removal_active) { 3622 spa_config_exit(spa, SCL_ALL, FTAG); 3623 goto out; 3624 } 3625 3626 /* 3627 * Decide whether to do an attach or a replace. 3628 */ 3629 replacing = ztest_random(2); 3630 3631 /* 3632 * Pick a random top-level vdev. 3633 */ 3634 top = ztest_random_vdev_top(spa, B_TRUE); 3635 3636 /* 3637 * Pick a random leaf within it. 3638 */ 3639 leaf = ztest_random(leaves); 3640 3641 /* 3642 * Locate this vdev. 3643 */ 3644 oldvd = rvd->vdev_child[top]; 3645 3646 /* pick a child from the mirror */ 3647 if (zs->zs_mirrors >= 1) { 3648 ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops); 3649 ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors); 3650 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raid_children]; 3651 } 3652 3653 /* pick a child out of the raidz group */ 3654 if (ztest_opts.zo_raid_children > 1) { 3655 if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0) 3656 ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops); 3657 else 3658 ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops); 3659 ASSERT3U(oldvd->vdev_children, ==, ztest_opts.zo_raid_children); 3660 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raid_children]; 3661 } 3662 3663 /* 3664 * If we're already doing an attach or replace, oldvd may be a 3665 * mirror vdev -- in which case, pick a random child. 3666 */ 3667 while (oldvd->vdev_children != 0) { 3668 oldvd_has_siblings = B_TRUE; 3669 ASSERT3U(oldvd->vdev_children, >=, 2); 3670 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 3671 } 3672 3673 oldguid = oldvd->vdev_guid; 3674 oldsize = vdev_get_min_asize(oldvd); 3675 oldvd_is_log = oldvd->vdev_top->vdev_islog; 3676 oldvd_is_special = 3677 oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_SPECIAL || 3678 oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_DEDUP; 3679 (void) strlcpy(oldpath, oldvd->vdev_path, MAXPATHLEN); 3680 pvd = oldvd->vdev_parent; 3681 pguid = pvd->vdev_guid; 3682 3683 /* 3684 * If oldvd has siblings, then half of the time, detach it. Prior 3685 * to the detach the pool is scrubbed in order to prevent creating 3686 * unrepairable blocks as a result of the data corruption injection. 3687 */ 3688 if (oldvd_has_siblings && ztest_random(2) == 0) { 3689 spa_config_exit(spa, SCL_ALL, FTAG); 3690 3691 error = ztest_scrub_impl(spa); 3692 if (error) 3693 goto out; 3694 3695 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 3696 if (error != 0 && error != ENODEV && error != EBUSY && 3697 error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS && 3698 error != ZFS_ERR_DISCARDING_CHECKPOINT) 3699 fatal(B_FALSE, "detach (%s) returned %d", 3700 oldpath, error); 3701 goto out; 3702 } 3703 3704 /* 3705 * For the new vdev, choose with equal probability between the two 3706 * standard paths (ending in either 'a' or 'b') or a random hot spare. 3707 */ 3708 if (sav->sav_count != 0 && ztest_random(3) == 0) { 3709 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 3710 newvd_is_spare = B_TRUE; 3711 3712 if (newvd->vdev_ops == &vdev_draid_spare_ops) 3713 newvd_is_dspare = B_TRUE; 3714 3715 (void) strlcpy(newpath, newvd->vdev_path, MAXPATHLEN); 3716 } else { 3717 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template, 3718 ztest_opts.zo_dir, ztest_opts.zo_pool, 3719 top * leaves + leaf); 3720 if (ztest_random(2) == 0) 3721 newpath[strlen(newpath) - 1] = 'b'; 3722 newvd = vdev_lookup_by_path(rvd, newpath); 3723 } 3724 3725 if (newvd) { 3726 /* 3727 * Reopen to ensure the vdev's asize field isn't stale. 3728 */ 3729 vdev_reopen(newvd); 3730 newsize = vdev_get_min_asize(newvd); 3731 } else { 3732 /* 3733 * Make newsize a little bigger or smaller than oldsize. 3734 * If it's smaller, the attach should fail. 3735 * If it's larger, and we're doing a replace, 3736 * we should get dynamic LUN growth when we're done. 3737 */ 3738 newsize = 10 * oldsize / (9 + ztest_random(3)); 3739 } 3740 3741 /* 3742 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 3743 * unless it's a replace; in that case any non-replacing parent is OK. 3744 * 3745 * If newvd is already part of the pool, it should fail with EBUSY. 3746 * 3747 * If newvd is too small, it should fail with EOVERFLOW. 3748 * 3749 * If newvd is a distributed spare and it's being attached to a 3750 * dRAID which is not its parent it should fail with EINVAL. 3751 */ 3752 if (pvd->vdev_ops != &vdev_mirror_ops && 3753 pvd->vdev_ops != &vdev_root_ops && (!replacing || 3754 pvd->vdev_ops == &vdev_replacing_ops || 3755 pvd->vdev_ops == &vdev_spare_ops)) 3756 expected_error = ENOTSUP; 3757 else if (newvd_is_spare && 3758 (!replacing || oldvd_is_log || oldvd_is_special)) 3759 expected_error = ENOTSUP; 3760 else if (newvd == oldvd) 3761 expected_error = replacing ? 0 : EBUSY; 3762 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 3763 expected_error = EBUSY; 3764 else if (!newvd_is_dspare && newsize < oldsize) 3765 expected_error = EOVERFLOW; 3766 else if (ashift > oldvd->vdev_top->vdev_ashift) 3767 expected_error = EDOM; 3768 else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd)) 3769 expected_error = ENOTSUP; 3770 else 3771 expected_error = 0; 3772 3773 spa_config_exit(spa, SCL_ALL, FTAG); 3774 3775 /* 3776 * Build the nvlist describing newpath. 3777 */ 3778 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 3779 ashift, NULL, 0, 0, 1); 3780 3781 /* 3782 * When supported select either a healing or sequential resilver. 3783 */ 3784 boolean_t rebuilding = B_FALSE; 3785 if (pvd->vdev_ops == &vdev_mirror_ops || 3786 pvd->vdev_ops == &vdev_root_ops) { 3787 rebuilding = !!ztest_random(2); 3788 } 3789 3790 error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding); 3791 3792 fnvlist_free(root); 3793 3794 /* 3795 * If our parent was the replacing vdev, but the replace completed, 3796 * then instead of failing with ENOTSUP we may either succeed, 3797 * fail with ENODEV, or fail with EOVERFLOW. 3798 */ 3799 if (expected_error == ENOTSUP && 3800 (error == 0 || error == ENODEV || error == EOVERFLOW)) 3801 expected_error = error; 3802 3803 /* 3804 * If someone grew the LUN, the replacement may be too small. 3805 */ 3806 if (error == EOVERFLOW || error == EBUSY) 3807 expected_error = error; 3808 3809 if (error == ZFS_ERR_CHECKPOINT_EXISTS || 3810 error == ZFS_ERR_DISCARDING_CHECKPOINT || 3811 error == ZFS_ERR_RESILVER_IN_PROGRESS || 3812 error == ZFS_ERR_REBUILD_IN_PROGRESS) 3813 expected_error = error; 3814 3815 if (error != expected_error && expected_error != EBUSY) { 3816 fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) " 3817 "returned %d, expected %d", 3818 oldpath, oldsize, newpath, 3819 newsize, replacing, error, expected_error); 3820 } 3821 out: 3822 mutex_exit(&ztest_vdev_lock); 3823 3824 umem_free(oldpath, MAXPATHLEN); 3825 umem_free(newpath, MAXPATHLEN); 3826 } 3827 3828 void 3829 ztest_device_removal(ztest_ds_t *zd, uint64_t id) 3830 { 3831 (void) zd, (void) id; 3832 spa_t *spa = ztest_spa; 3833 vdev_t *vd; 3834 uint64_t guid; 3835 int error; 3836 3837 mutex_enter(&ztest_vdev_lock); 3838 3839 if (ztest_device_removal_active) { 3840 mutex_exit(&ztest_vdev_lock); 3841 return; 3842 } 3843 3844 /* 3845 * Remove a random top-level vdev and wait for removal to finish. 3846 */ 3847 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3848 vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE)); 3849 guid = vd->vdev_guid; 3850 spa_config_exit(spa, SCL_VDEV, FTAG); 3851 3852 error = spa_vdev_remove(spa, guid, B_FALSE); 3853 if (error == 0) { 3854 ztest_device_removal_active = B_TRUE; 3855 mutex_exit(&ztest_vdev_lock); 3856 3857 /* 3858 * spa->spa_vdev_removal is created in a sync task that 3859 * is initiated via dsl_sync_task_nowait(). Since the 3860 * task may not run before spa_vdev_remove() returns, we 3861 * must wait at least 1 txg to ensure that the removal 3862 * struct has been created. 3863 */ 3864 txg_wait_synced(spa_get_dsl(spa), 0); 3865 3866 while (spa->spa_removing_phys.sr_state == DSS_SCANNING) 3867 txg_wait_synced(spa_get_dsl(spa), 0); 3868 } else { 3869 mutex_exit(&ztest_vdev_lock); 3870 return; 3871 } 3872 3873 /* 3874 * The pool needs to be scrubbed after completing device removal. 3875 * Failure to do so may result in checksum errors due to the 3876 * strategy employed by ztest_fault_inject() when selecting which 3877 * offset are redundant and can be damaged. 3878 */ 3879 error = spa_scan(spa, POOL_SCAN_SCRUB); 3880 if (error == 0) { 3881 while (dsl_scan_scrubbing(spa_get_dsl(spa))) 3882 txg_wait_synced(spa_get_dsl(spa), 0); 3883 } 3884 3885 mutex_enter(&ztest_vdev_lock); 3886 ztest_device_removal_active = B_FALSE; 3887 mutex_exit(&ztest_vdev_lock); 3888 } 3889 3890 /* 3891 * Callback function which expands the physical size of the vdev. 3892 */ 3893 static vdev_t * 3894 grow_vdev(vdev_t *vd, void *arg) 3895 { 3896 spa_t *spa __maybe_unused = vd->vdev_spa; 3897 size_t *newsize = arg; 3898 size_t fsize; 3899 int fd; 3900 3901 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE); 3902 ASSERT(vd->vdev_ops->vdev_op_leaf); 3903 3904 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 3905 return (vd); 3906 3907 fsize = lseek(fd, 0, SEEK_END); 3908 VERIFY0(ftruncate(fd, *newsize)); 3909 3910 if (ztest_opts.zo_verbose >= 6) { 3911 (void) printf("%s grew from %lu to %lu bytes\n", 3912 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 3913 } 3914 (void) close(fd); 3915 return (NULL); 3916 } 3917 3918 /* 3919 * Callback function which expands a given vdev by calling vdev_online(). 3920 */ 3921 static vdev_t * 3922 online_vdev(vdev_t *vd, void *arg) 3923 { 3924 (void) arg; 3925 spa_t *spa = vd->vdev_spa; 3926 vdev_t *tvd = vd->vdev_top; 3927 uint64_t guid = vd->vdev_guid; 3928 uint64_t generation = spa->spa_config_generation + 1; 3929 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 3930 int error; 3931 3932 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE); 3933 ASSERT(vd->vdev_ops->vdev_op_leaf); 3934 3935 /* Calling vdev_online will initialize the new metaslabs */ 3936 spa_config_exit(spa, SCL_STATE, spa); 3937 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 3938 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3939 3940 /* 3941 * If vdev_online returned an error or the underlying vdev_open 3942 * failed then we abort the expand. The only way to know that 3943 * vdev_open fails is by checking the returned newstate. 3944 */ 3945 if (error || newstate != VDEV_STATE_HEALTHY) { 3946 if (ztest_opts.zo_verbose >= 5) { 3947 (void) printf("Unable to expand vdev, state %u, " 3948 "error %d\n", newstate, error); 3949 } 3950 return (vd); 3951 } 3952 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 3953 3954 /* 3955 * Since we dropped the lock we need to ensure that we're 3956 * still talking to the original vdev. It's possible this 3957 * vdev may have been detached/replaced while we were 3958 * trying to online it. 3959 */ 3960 if (generation != spa->spa_config_generation) { 3961 if (ztest_opts.zo_verbose >= 5) { 3962 (void) printf("vdev configuration has changed, " 3963 "guid %"PRIu64", state %"PRIu64", " 3964 "expected gen %"PRIu64", got gen %"PRIu64"\n", 3965 guid, 3966 tvd->vdev_state, 3967 generation, 3968 spa->spa_config_generation); 3969 } 3970 return (vd); 3971 } 3972 return (NULL); 3973 } 3974 3975 /* 3976 * Traverse the vdev tree calling the supplied function. 3977 * We continue to walk the tree until we either have walked all 3978 * children or we receive a non-NULL return from the callback. 3979 * If a NULL callback is passed, then we just return back the first 3980 * leaf vdev we encounter. 3981 */ 3982 static vdev_t * 3983 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 3984 { 3985 uint_t c; 3986 3987 if (vd->vdev_ops->vdev_op_leaf) { 3988 if (func == NULL) 3989 return (vd); 3990 else 3991 return (func(vd, arg)); 3992 } 3993 3994 for (c = 0; c < vd->vdev_children; c++) { 3995 vdev_t *cvd = vd->vdev_child[c]; 3996 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3997 return (cvd); 3998 } 3999 return (NULL); 4000 } 4001 4002 /* 4003 * Verify that dynamic LUN growth works as expected. 4004 */ 4005 void 4006 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 4007 { 4008 (void) zd, (void) id; 4009 spa_t *spa = ztest_spa; 4010 vdev_t *vd, *tvd; 4011 metaslab_class_t *mc; 4012 metaslab_group_t *mg; 4013 size_t psize, newsize; 4014 uint64_t top; 4015 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 4016 4017 mutex_enter(&ztest_checkpoint_lock); 4018 mutex_enter(&ztest_vdev_lock); 4019 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 4020 4021 /* 4022 * If there is a vdev removal in progress, it could complete while 4023 * we are running, in which case we would not be able to verify 4024 * that the metaslab_class space increased (because it decreases 4025 * when the device removal completes). 4026 */ 4027 if (ztest_device_removal_active) { 4028 spa_config_exit(spa, SCL_STATE, spa); 4029 mutex_exit(&ztest_vdev_lock); 4030 mutex_exit(&ztest_checkpoint_lock); 4031 return; 4032 } 4033 4034 top = ztest_random_vdev_top(spa, B_TRUE); 4035 4036 tvd = spa->spa_root_vdev->vdev_child[top]; 4037 mg = tvd->vdev_mg; 4038 mc = mg->mg_class; 4039 old_ms_count = tvd->vdev_ms_count; 4040 old_class_space = metaslab_class_get_space(mc); 4041 4042 /* 4043 * Determine the size of the first leaf vdev associated with 4044 * our top-level device. 4045 */ 4046 vd = vdev_walk_tree(tvd, NULL, NULL); 4047 ASSERT3P(vd, !=, NULL); 4048 ASSERT(vd->vdev_ops->vdev_op_leaf); 4049 4050 psize = vd->vdev_psize; 4051 4052 /* 4053 * We only try to expand the vdev if it's healthy, less than 4x its 4054 * original size, and it has a valid psize. 4055 */ 4056 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 4057 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 4058 spa_config_exit(spa, SCL_STATE, spa); 4059 mutex_exit(&ztest_vdev_lock); 4060 mutex_exit(&ztest_checkpoint_lock); 4061 return; 4062 } 4063 ASSERT3U(psize, >, 0); 4064 newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE); 4065 ASSERT3U(newsize, >, psize); 4066 4067 if (ztest_opts.zo_verbose >= 6) { 4068 (void) printf("Expanding LUN %s from %lu to %lu\n", 4069 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 4070 } 4071 4072 /* 4073 * Growing the vdev is a two step process: 4074 * 1). expand the physical size (i.e. relabel) 4075 * 2). online the vdev to create the new metaslabs 4076 */ 4077 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 4078 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 4079 tvd->vdev_state != VDEV_STATE_HEALTHY) { 4080 if (ztest_opts.zo_verbose >= 5) { 4081 (void) printf("Could not expand LUN because " 4082 "the vdev configuration changed.\n"); 4083 } 4084 spa_config_exit(spa, SCL_STATE, spa); 4085 mutex_exit(&ztest_vdev_lock); 4086 mutex_exit(&ztest_checkpoint_lock); 4087 return; 4088 } 4089 4090 spa_config_exit(spa, SCL_STATE, spa); 4091 4092 /* 4093 * Expanding the LUN will update the config asynchronously, 4094 * thus we must wait for the async thread to complete any 4095 * pending tasks before proceeding. 4096 */ 4097 for (;;) { 4098 boolean_t done; 4099 mutex_enter(&spa->spa_async_lock); 4100 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 4101 mutex_exit(&spa->spa_async_lock); 4102 if (done) 4103 break; 4104 txg_wait_synced(spa_get_dsl(spa), 0); 4105 (void) poll(NULL, 0, 100); 4106 } 4107 4108 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 4109 4110 tvd = spa->spa_root_vdev->vdev_child[top]; 4111 new_ms_count = tvd->vdev_ms_count; 4112 new_class_space = metaslab_class_get_space(mc); 4113 4114 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 4115 if (ztest_opts.zo_verbose >= 5) { 4116 (void) printf("Could not verify LUN expansion due to " 4117 "intervening vdev offline or remove.\n"); 4118 } 4119 spa_config_exit(spa, SCL_STATE, spa); 4120 mutex_exit(&ztest_vdev_lock); 4121 mutex_exit(&ztest_checkpoint_lock); 4122 return; 4123 } 4124 4125 /* 4126 * Make sure we were able to grow the vdev. 4127 */ 4128 if (new_ms_count <= old_ms_count) { 4129 fatal(B_FALSE, 4130 "LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n", 4131 old_ms_count, new_ms_count); 4132 } 4133 4134 /* 4135 * Make sure we were able to grow the pool. 4136 */ 4137 if (new_class_space <= old_class_space) { 4138 fatal(B_FALSE, 4139 "LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n", 4140 old_class_space, new_class_space); 4141 } 4142 4143 if (ztest_opts.zo_verbose >= 5) { 4144 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ]; 4145 4146 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf)); 4147 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf)); 4148 (void) printf("%s grew from %s to %s\n", 4149 spa->spa_name, oldnumbuf, newnumbuf); 4150 } 4151 4152 spa_config_exit(spa, SCL_STATE, spa); 4153 mutex_exit(&ztest_vdev_lock); 4154 mutex_exit(&ztest_checkpoint_lock); 4155 } 4156 4157 /* 4158 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 4159 */ 4160 static void 4161 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 4162 { 4163 (void) arg, (void) cr; 4164 4165 /* 4166 * Create the objects common to all ztest datasets. 4167 */ 4168 VERIFY0(zap_create_claim(os, ZTEST_DIROBJ, 4169 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx)); 4170 } 4171 4172 static int 4173 ztest_dataset_create(char *dsname) 4174 { 4175 int err; 4176 uint64_t rand; 4177 dsl_crypto_params_t *dcp = NULL; 4178 4179 /* 4180 * 50% of the time, we create encrypted datasets 4181 * using a random cipher suite and a hard-coded 4182 * wrapping key. 4183 */ 4184 rand = ztest_random(2); 4185 if (rand != 0) { 4186 nvlist_t *crypto_args = fnvlist_alloc(); 4187 nvlist_t *props = fnvlist_alloc(); 4188 4189 /* slight bias towards the default cipher suite */ 4190 rand = ztest_random(ZIO_CRYPT_FUNCTIONS); 4191 if (rand < ZIO_CRYPT_AES_128_CCM) 4192 rand = ZIO_CRYPT_ON; 4193 4194 fnvlist_add_uint64(props, 4195 zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand); 4196 fnvlist_add_uint8_array(crypto_args, "wkeydata", 4197 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN); 4198 4199 /* 4200 * These parameters aren't really used by the kernel. They 4201 * are simply stored so that userspace knows how to load 4202 * the wrapping key. 4203 */ 4204 fnvlist_add_uint64(props, 4205 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW); 4206 fnvlist_add_string(props, 4207 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt"); 4208 fnvlist_add_uint64(props, 4209 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL); 4210 fnvlist_add_uint64(props, 4211 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL); 4212 4213 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props, 4214 crypto_args, &dcp)); 4215 4216 /* 4217 * Cycle through all available encryption implementations 4218 * to verify interoperability. 4219 */ 4220 VERIFY0(gcm_impl_set("cycle")); 4221 VERIFY0(aes_impl_set("cycle")); 4222 4223 fnvlist_free(crypto_args); 4224 fnvlist_free(props); 4225 } 4226 4227 err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp, 4228 ztest_objset_create_cb, NULL); 4229 dsl_crypto_params_free(dcp, !!err); 4230 4231 rand = ztest_random(100); 4232 if (err || rand < 80) 4233 return (err); 4234 4235 if (ztest_opts.zo_verbose >= 5) 4236 (void) printf("Setting dataset %s to sync always\n", dsname); 4237 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 4238 ZFS_SYNC_ALWAYS, B_FALSE)); 4239 } 4240 4241 static int 4242 ztest_objset_destroy_cb(const char *name, void *arg) 4243 { 4244 (void) arg; 4245 objset_t *os; 4246 dmu_object_info_t doi; 4247 int error; 4248 4249 /* 4250 * Verify that the dataset contains a directory object. 4251 */ 4252 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 4253 B_TRUE, FTAG, &os)); 4254 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 4255 if (error != ENOENT) { 4256 /* We could have crashed in the middle of destroying it */ 4257 ASSERT0(error); 4258 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 4259 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 4260 } 4261 dmu_objset_disown(os, B_TRUE, FTAG); 4262 4263 /* 4264 * Destroy the dataset. 4265 */ 4266 if (strchr(name, '@') != NULL) { 4267 error = dsl_destroy_snapshot(name, B_TRUE); 4268 if (error != ECHRNG) { 4269 /* 4270 * The program was executed, but encountered a runtime 4271 * error, such as insufficient slop, or a hold on the 4272 * dataset. 4273 */ 4274 ASSERT0(error); 4275 } 4276 } else { 4277 error = dsl_destroy_head(name); 4278 if (error == ENOSPC) { 4279 /* There could be checkpoint or insufficient slop */ 4280 ztest_record_enospc(FTAG); 4281 } else if (error != EBUSY) { 4282 /* There could be a hold on this dataset */ 4283 ASSERT0(error); 4284 } 4285 } 4286 return (0); 4287 } 4288 4289 static boolean_t 4290 ztest_snapshot_create(char *osname, uint64_t id) 4291 { 4292 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 4293 int error; 4294 4295 (void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id); 4296 4297 error = dmu_objset_snapshot_one(osname, snapname); 4298 if (error == ENOSPC) { 4299 ztest_record_enospc(FTAG); 4300 return (B_FALSE); 4301 } 4302 if (error != 0 && error != EEXIST && error != ECHRNG) { 4303 fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname, 4304 snapname, error); 4305 } 4306 return (B_TRUE); 4307 } 4308 4309 static boolean_t 4310 ztest_snapshot_destroy(char *osname, uint64_t id) 4311 { 4312 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 4313 int error; 4314 4315 (void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"", 4316 osname, id); 4317 4318 error = dsl_destroy_snapshot(snapname, B_FALSE); 4319 if (error != 0 && error != ENOENT && error != ECHRNG) 4320 fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d", 4321 snapname, error); 4322 return (B_TRUE); 4323 } 4324 4325 void 4326 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 4327 { 4328 (void) zd; 4329 ztest_ds_t *zdtmp; 4330 int iters; 4331 int error; 4332 objset_t *os, *os2; 4333 char name[ZFS_MAX_DATASET_NAME_LEN]; 4334 zilog_t *zilog; 4335 int i; 4336 4337 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL); 4338 4339 (void) pthread_rwlock_rdlock(&ztest_name_lock); 4340 4341 (void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"", 4342 ztest_opts.zo_pool, id); 4343 4344 /* 4345 * If this dataset exists from a previous run, process its replay log 4346 * half of the time. If we don't replay it, then dsl_destroy_head() 4347 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 4348 */ 4349 if (ztest_random(2) == 0 && 4350 ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, 4351 B_TRUE, FTAG, &os) == 0) { 4352 ztest_zd_init(zdtmp, NULL, os); 4353 zil_replay(os, zdtmp, ztest_replay_vector); 4354 ztest_zd_fini(zdtmp); 4355 dmu_objset_disown(os, B_TRUE, FTAG); 4356 } 4357 4358 /* 4359 * There may be an old instance of the dataset we're about to 4360 * create lying around from a previous run. If so, destroy it 4361 * and all of its snapshots. 4362 */ 4363 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 4364 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 4365 4366 /* 4367 * Verify that the destroyed dataset is no longer in the namespace. 4368 * It may still be present if the destroy above fails with ENOSPC. 4369 */ 4370 error = ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, B_TRUE, 4371 FTAG, &os); 4372 if (error == 0) { 4373 dmu_objset_disown(os, B_TRUE, FTAG); 4374 ztest_record_enospc(FTAG); 4375 goto out; 4376 } 4377 VERIFY3U(ENOENT, ==, error); 4378 4379 /* 4380 * Verify that we can create a new dataset. 4381 */ 4382 error = ztest_dataset_create(name); 4383 if (error) { 4384 if (error == ENOSPC) { 4385 ztest_record_enospc(FTAG); 4386 goto out; 4387 } 4388 fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error); 4389 } 4390 4391 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE, 4392 FTAG, &os)); 4393 4394 ztest_zd_init(zdtmp, NULL, os); 4395 4396 /* 4397 * Open the intent log for it. 4398 */ 4399 zilog = zil_open(os, ztest_get_data, NULL); 4400 4401 /* 4402 * Put some objects in there, do a little I/O to them, 4403 * and randomly take a couple of snapshots along the way. 4404 */ 4405 iters = ztest_random(5); 4406 for (i = 0; i < iters; i++) { 4407 ztest_dmu_object_alloc_free(zdtmp, id); 4408 if (ztest_random(iters) == 0) 4409 (void) ztest_snapshot_create(name, i); 4410 } 4411 4412 /* 4413 * Verify that we cannot create an existing dataset. 4414 */ 4415 VERIFY3U(EEXIST, ==, 4416 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL)); 4417 4418 /* 4419 * Verify that we can hold an objset that is also owned. 4420 */ 4421 VERIFY0(dmu_objset_hold(name, FTAG, &os2)); 4422 dmu_objset_rele(os2, FTAG); 4423 4424 /* 4425 * Verify that we cannot own an objset that is already owned. 4426 */ 4427 VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, 4428 B_FALSE, B_TRUE, FTAG, &os2)); 4429 4430 zil_close(zilog); 4431 dmu_objset_disown(os, B_TRUE, FTAG); 4432 ztest_zd_fini(zdtmp); 4433 out: 4434 (void) pthread_rwlock_unlock(&ztest_name_lock); 4435 4436 umem_free(zdtmp, sizeof (ztest_ds_t)); 4437 } 4438 4439 /* 4440 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 4441 */ 4442 void 4443 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 4444 { 4445 (void) pthread_rwlock_rdlock(&ztest_name_lock); 4446 (void) ztest_snapshot_destroy(zd->zd_name, id); 4447 (void) ztest_snapshot_create(zd->zd_name, id); 4448 (void) pthread_rwlock_unlock(&ztest_name_lock); 4449 } 4450 4451 /* 4452 * Cleanup non-standard snapshots and clones. 4453 */ 4454 static void 4455 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 4456 { 4457 char *snap1name; 4458 char *clone1name; 4459 char *snap2name; 4460 char *clone2name; 4461 char *snap3name; 4462 int error; 4463 4464 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); 4465 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); 4466 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); 4467 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); 4468 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); 4469 4470 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"", 4471 osname, id); 4472 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"", 4473 osname, id); 4474 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"", 4475 clone1name, id); 4476 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"", 4477 osname, id); 4478 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"", 4479 clone1name, id); 4480 4481 error = dsl_destroy_head(clone2name); 4482 if (error && error != ENOENT) 4483 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error); 4484 error = dsl_destroy_snapshot(snap3name, B_FALSE); 4485 if (error && error != ENOENT) 4486 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d", 4487 snap3name, error); 4488 error = dsl_destroy_snapshot(snap2name, B_FALSE); 4489 if (error && error != ENOENT) 4490 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d", 4491 snap2name, error); 4492 error = dsl_destroy_head(clone1name); 4493 if (error && error != ENOENT) 4494 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error); 4495 error = dsl_destroy_snapshot(snap1name, B_FALSE); 4496 if (error && error != ENOENT) 4497 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d", 4498 snap1name, error); 4499 4500 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN); 4501 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN); 4502 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN); 4503 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN); 4504 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN); 4505 } 4506 4507 /* 4508 * Verify dsl_dataset_promote handles EBUSY 4509 */ 4510 void 4511 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 4512 { 4513 objset_t *os; 4514 char *snap1name; 4515 char *clone1name; 4516 char *snap2name; 4517 char *clone2name; 4518 char *snap3name; 4519 char *osname = zd->zd_name; 4520 int error; 4521 4522 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); 4523 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); 4524 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); 4525 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); 4526 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL); 4527 4528 (void) pthread_rwlock_rdlock(&ztest_name_lock); 4529 4530 ztest_dsl_dataset_cleanup(osname, id); 4531 4532 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"", 4533 osname, id); 4534 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"", 4535 osname, id); 4536 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"", 4537 clone1name, id); 4538 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"", 4539 osname, id); 4540 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"", 4541 clone1name, id); 4542 4543 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 4544 if (error && error != EEXIST) { 4545 if (error == ENOSPC) { 4546 ztest_record_enospc(FTAG); 4547 goto out; 4548 } 4549 fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error); 4550 } 4551 4552 error = dmu_objset_clone(clone1name, snap1name); 4553 if (error) { 4554 if (error == ENOSPC) { 4555 ztest_record_enospc(FTAG); 4556 goto out; 4557 } 4558 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error); 4559 } 4560 4561 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 4562 if (error && error != EEXIST) { 4563 if (error == ENOSPC) { 4564 ztest_record_enospc(FTAG); 4565 goto out; 4566 } 4567 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error); 4568 } 4569 4570 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 4571 if (error && error != EEXIST) { 4572 if (error == ENOSPC) { 4573 ztest_record_enospc(FTAG); 4574 goto out; 4575 } 4576 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error); 4577 } 4578 4579 error = dmu_objset_clone(clone2name, snap3name); 4580 if (error) { 4581 if (error == ENOSPC) { 4582 ztest_record_enospc(FTAG); 4583 goto out; 4584 } 4585 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error); 4586 } 4587 4588 error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE, 4589 FTAG, &os); 4590 if (error) 4591 fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error); 4592 error = dsl_dataset_promote(clone2name, NULL); 4593 if (error == ENOSPC) { 4594 dmu_objset_disown(os, B_TRUE, FTAG); 4595 ztest_record_enospc(FTAG); 4596 goto out; 4597 } 4598 if (error != EBUSY) 4599 fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY", 4600 clone2name, error); 4601 dmu_objset_disown(os, B_TRUE, FTAG); 4602 4603 out: 4604 ztest_dsl_dataset_cleanup(osname, id); 4605 4606 (void) pthread_rwlock_unlock(&ztest_name_lock); 4607 4608 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN); 4609 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN); 4610 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN); 4611 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN); 4612 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN); 4613 } 4614 4615 #undef OD_ARRAY_SIZE 4616 #define OD_ARRAY_SIZE 4 4617 4618 /* 4619 * Verify that dmu_object_{alloc,free} work as expected. 4620 */ 4621 void 4622 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 4623 { 4624 ztest_od_t *od; 4625 int batchsize; 4626 int size; 4627 int b; 4628 4629 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE; 4630 od = umem_alloc(size, UMEM_NOFAIL); 4631 batchsize = OD_ARRAY_SIZE; 4632 4633 for (b = 0; b < batchsize; b++) 4634 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER, 4635 0, 0, 0); 4636 4637 /* 4638 * Destroy the previous batch of objects, create a new batch, 4639 * and do some I/O on the new objects. 4640 */ 4641 if (ztest_object_init(zd, od, size, B_TRUE) != 0) 4642 return; 4643 4644 while (ztest_random(4 * batchsize) != 0) 4645 ztest_io(zd, od[ztest_random(batchsize)].od_object, 4646 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4647 4648 umem_free(od, size); 4649 } 4650 4651 /* 4652 * Rewind the global allocator to verify object allocation backfilling. 4653 */ 4654 void 4655 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id) 4656 { 4657 (void) id; 4658 objset_t *os = zd->zd_os; 4659 uint_t dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift; 4660 uint64_t object; 4661 4662 /* 4663 * Rewind the global allocator randomly back to a lower object number 4664 * to force backfilling and reclamation of recently freed dnodes. 4665 */ 4666 mutex_enter(&os->os_obj_lock); 4667 object = ztest_random(os->os_obj_next_chunk); 4668 os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk); 4669 mutex_exit(&os->os_obj_lock); 4670 } 4671 4672 #undef OD_ARRAY_SIZE 4673 #define OD_ARRAY_SIZE 2 4674 4675 /* 4676 * Verify that dmu_{read,write} work as expected. 4677 */ 4678 void 4679 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 4680 { 4681 int size; 4682 ztest_od_t *od; 4683 4684 objset_t *os = zd->zd_os; 4685 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE; 4686 od = umem_alloc(size, UMEM_NOFAIL); 4687 dmu_tx_t *tx; 4688 int freeit, error; 4689 uint64_t i, n, s, txg; 4690 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 4691 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 4692 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 4693 uint64_t regions = 997; 4694 uint64_t stride = 123456789ULL; 4695 uint64_t width = 40; 4696 int free_percent = 5; 4697 4698 /* 4699 * This test uses two objects, packobj and bigobj, that are always 4700 * updated together (i.e. in the same tx) so that their contents are 4701 * in sync and can be compared. Their contents relate to each other 4702 * in a simple way: packobj is a dense array of 'bufwad' structures, 4703 * while bigobj is a sparse array of the same bufwads. Specifically, 4704 * for any index n, there are three bufwads that should be identical: 4705 * 4706 * packobj, at offset n * sizeof (bufwad_t) 4707 * bigobj, at the head of the nth chunk 4708 * bigobj, at the tail of the nth chunk 4709 * 4710 * The chunk size is arbitrary. It doesn't have to be a power of two, 4711 * and it doesn't have any relation to the object blocksize. 4712 * The only requirement is that it can hold at least two bufwads. 4713 * 4714 * Normally, we write the bufwad to each of these locations. 4715 * However, free_percent of the time we instead write zeroes to 4716 * packobj and perform a dmu_free_range() on bigobj. By comparing 4717 * bigobj to packobj, we can verify that the DMU is correctly 4718 * tracking which parts of an object are allocated and free, 4719 * and that the contents of the allocated blocks are correct. 4720 */ 4721 4722 /* 4723 * Read the directory info. If it's the first time, set things up. 4724 */ 4725 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize); 4726 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0, 4727 chunksize); 4728 4729 if (ztest_object_init(zd, od, size, B_FALSE) != 0) { 4730 umem_free(od, size); 4731 return; 4732 } 4733 4734 bigobj = od[0].od_object; 4735 packobj = od[1].od_object; 4736 chunksize = od[0].od_gen; 4737 ASSERT3U(chunksize, ==, od[1].od_gen); 4738 4739 /* 4740 * Prefetch a random chunk of the big object. 4741 * Our aim here is to get some async reads in flight 4742 * for blocks that we may free below; the DMU should 4743 * handle this race correctly. 4744 */ 4745 n = ztest_random(regions) * stride + ztest_random(width); 4746 s = 1 + ztest_random(2 * width - 1); 4747 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize, 4748 ZIO_PRIORITY_SYNC_READ); 4749 4750 /* 4751 * Pick a random index and compute the offsets into packobj and bigobj. 4752 */ 4753 n = ztest_random(regions) * stride + ztest_random(width); 4754 s = 1 + ztest_random(width - 1); 4755 4756 packoff = n * sizeof (bufwad_t); 4757 packsize = s * sizeof (bufwad_t); 4758 4759 bigoff = n * chunksize; 4760 bigsize = s * chunksize; 4761 4762 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 4763 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 4764 4765 /* 4766 * free_percent of the time, free a range of bigobj rather than 4767 * overwriting it. 4768 */ 4769 freeit = (ztest_random(100) < free_percent); 4770 4771 /* 4772 * Read the current contents of our objects. 4773 */ 4774 error = dmu_read(os, packobj, packoff, packsize, packbuf, 4775 DMU_READ_PREFETCH); 4776 ASSERT0(error); 4777 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 4778 DMU_READ_PREFETCH); 4779 ASSERT0(error); 4780 4781 /* 4782 * Get a tx for the mods to both packobj and bigobj. 4783 */ 4784 tx = dmu_tx_create(os); 4785 4786 dmu_tx_hold_write(tx, packobj, packoff, packsize); 4787 4788 if (freeit) 4789 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 4790 else 4791 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 4792 4793 /* This accounts for setting the checksum/compression. */ 4794 dmu_tx_hold_bonus(tx, bigobj); 4795 4796 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4797 if (txg == 0) { 4798 umem_free(packbuf, packsize); 4799 umem_free(bigbuf, bigsize); 4800 umem_free(od, size); 4801 return; 4802 } 4803 4804 enum zio_checksum cksum; 4805 do { 4806 cksum = (enum zio_checksum) 4807 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); 4808 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); 4809 dmu_object_set_checksum(os, bigobj, cksum, tx); 4810 4811 enum zio_compress comp; 4812 do { 4813 comp = (enum zio_compress) 4814 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); 4815 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); 4816 dmu_object_set_compress(os, bigobj, comp, tx); 4817 4818 /* 4819 * For each index from n to n + s, verify that the existing bufwad 4820 * in packobj matches the bufwads at the head and tail of the 4821 * corresponding chunk in bigobj. Then update all three bufwads 4822 * with the new values we want to write out. 4823 */ 4824 for (i = 0; i < s; i++) { 4825 /* LINTED */ 4826 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 4827 /* LINTED */ 4828 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 4829 /* LINTED */ 4830 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 4831 4832 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize); 4833 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize); 4834 4835 if (pack->bw_txg > txg) 4836 fatal(B_FALSE, 4837 "future leak: got %"PRIx64", open txg is %"PRIx64"", 4838 pack->bw_txg, txg); 4839 4840 if (pack->bw_data != 0 && pack->bw_index != n + i) 4841 fatal(B_FALSE, "wrong index: " 4842 "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"", 4843 pack->bw_index, n, i); 4844 4845 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0) 4846 fatal(B_FALSE, "pack/bigH mismatch in %p/%p", 4847 pack, bigH); 4848 4849 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0) 4850 fatal(B_FALSE, "pack/bigT mismatch in %p/%p", 4851 pack, bigT); 4852 4853 if (freeit) { 4854 memset(pack, 0, sizeof (bufwad_t)); 4855 } else { 4856 pack->bw_index = n + i; 4857 pack->bw_txg = txg; 4858 pack->bw_data = 1 + ztest_random(-2ULL); 4859 } 4860 *bigH = *pack; 4861 *bigT = *pack; 4862 } 4863 4864 /* 4865 * We've verified all the old bufwads, and made new ones. 4866 * Now write them out. 4867 */ 4868 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 4869 4870 if (freeit) { 4871 if (ztest_opts.zo_verbose >= 7) { 4872 (void) printf("freeing offset %"PRIx64" size %"PRIx64"" 4873 " txg %"PRIx64"\n", 4874 bigoff, bigsize, txg); 4875 } 4876 VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 4877 } else { 4878 if (ztest_opts.zo_verbose >= 7) { 4879 (void) printf("writing offset %"PRIx64" size %"PRIx64"" 4880 " txg %"PRIx64"\n", 4881 bigoff, bigsize, txg); 4882 } 4883 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 4884 } 4885 4886 dmu_tx_commit(tx); 4887 4888 /* 4889 * Sanity check the stuff we just wrote. 4890 */ 4891 { 4892 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 4893 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 4894 4895 VERIFY0(dmu_read(os, packobj, packoff, 4896 packsize, packcheck, DMU_READ_PREFETCH)); 4897 VERIFY0(dmu_read(os, bigobj, bigoff, 4898 bigsize, bigcheck, DMU_READ_PREFETCH)); 4899 4900 ASSERT0(memcmp(packbuf, packcheck, packsize)); 4901 ASSERT0(memcmp(bigbuf, bigcheck, bigsize)); 4902 4903 umem_free(packcheck, packsize); 4904 umem_free(bigcheck, bigsize); 4905 } 4906 4907 umem_free(packbuf, packsize); 4908 umem_free(bigbuf, bigsize); 4909 umem_free(od, size); 4910 } 4911 4912 static void 4913 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 4914 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 4915 { 4916 uint64_t i; 4917 bufwad_t *pack; 4918 bufwad_t *bigH; 4919 bufwad_t *bigT; 4920 4921 /* 4922 * For each index from n to n + s, verify that the existing bufwad 4923 * in packobj matches the bufwads at the head and tail of the 4924 * corresponding chunk in bigobj. Then update all three bufwads 4925 * with the new values we want to write out. 4926 */ 4927 for (i = 0; i < s; i++) { 4928 /* LINTED */ 4929 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 4930 /* LINTED */ 4931 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 4932 /* LINTED */ 4933 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 4934 4935 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize); 4936 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize); 4937 4938 if (pack->bw_txg > txg) 4939 fatal(B_FALSE, 4940 "future leak: got %"PRIx64", open txg is %"PRIx64"", 4941 pack->bw_txg, txg); 4942 4943 if (pack->bw_data != 0 && pack->bw_index != n + i) 4944 fatal(B_FALSE, "wrong index: " 4945 "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"", 4946 pack->bw_index, n, i); 4947 4948 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0) 4949 fatal(B_FALSE, "pack/bigH mismatch in %p/%p", 4950 pack, bigH); 4951 4952 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0) 4953 fatal(B_FALSE, "pack/bigT mismatch in %p/%p", 4954 pack, bigT); 4955 4956 pack->bw_index = n + i; 4957 pack->bw_txg = txg; 4958 pack->bw_data = 1 + ztest_random(-2ULL); 4959 4960 *bigH = *pack; 4961 *bigT = *pack; 4962 } 4963 } 4964 4965 #undef OD_ARRAY_SIZE 4966 #define OD_ARRAY_SIZE 2 4967 4968 void 4969 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 4970 { 4971 objset_t *os = zd->zd_os; 4972 ztest_od_t *od; 4973 dmu_tx_t *tx; 4974 uint64_t i; 4975 int error; 4976 int size; 4977 uint64_t n, s, txg; 4978 bufwad_t *packbuf, *bigbuf; 4979 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 4980 uint64_t blocksize = ztest_random_blocksize(); 4981 uint64_t chunksize = blocksize; 4982 uint64_t regions = 997; 4983 uint64_t stride = 123456789ULL; 4984 uint64_t width = 9; 4985 dmu_buf_t *bonus_db; 4986 arc_buf_t **bigbuf_arcbufs; 4987 dmu_object_info_t doi; 4988 4989 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE; 4990 od = umem_alloc(size, UMEM_NOFAIL); 4991 4992 /* 4993 * This test uses two objects, packobj and bigobj, that are always 4994 * updated together (i.e. in the same tx) so that their contents are 4995 * in sync and can be compared. Their contents relate to each other 4996 * in a simple way: packobj is a dense array of 'bufwad' structures, 4997 * while bigobj is a sparse array of the same bufwads. Specifically, 4998 * for any index n, there are three bufwads that should be identical: 4999 * 5000 * packobj, at offset n * sizeof (bufwad_t) 5001 * bigobj, at the head of the nth chunk 5002 * bigobj, at the tail of the nth chunk 5003 * 5004 * The chunk size is set equal to bigobj block size so that 5005 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates. 5006 */ 5007 5008 /* 5009 * Read the directory info. If it's the first time, set things up. 5010 */ 5011 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0); 5012 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0, 5013 chunksize); 5014 5015 5016 if (ztest_object_init(zd, od, size, B_FALSE) != 0) { 5017 umem_free(od, size); 5018 return; 5019 } 5020 5021 bigobj = od[0].od_object; 5022 packobj = od[1].od_object; 5023 blocksize = od[0].od_blocksize; 5024 chunksize = blocksize; 5025 ASSERT3U(chunksize, ==, od[1].od_gen); 5026 5027 VERIFY0(dmu_object_info(os, bigobj, &doi)); 5028 VERIFY(ISP2(doi.doi_data_block_size)); 5029 VERIFY3U(chunksize, ==, doi.doi_data_block_size); 5030 VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t)); 5031 5032 /* 5033 * Pick a random index and compute the offsets into packobj and bigobj. 5034 */ 5035 n = ztest_random(regions) * stride + ztest_random(width); 5036 s = 1 + ztest_random(width - 1); 5037 5038 packoff = n * sizeof (bufwad_t); 5039 packsize = s * sizeof (bufwad_t); 5040 5041 bigoff = n * chunksize; 5042 bigsize = s * chunksize; 5043 5044 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 5045 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 5046 5047 VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 5048 5049 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 5050 5051 /* 5052 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 5053 * Iteration 1 test zcopy to already referenced dbufs. 5054 * Iteration 2 test zcopy to dirty dbuf in the same txg. 5055 * Iteration 3 test zcopy to dbuf dirty in previous txg. 5056 * Iteration 4 test zcopy when dbuf is no longer dirty. 5057 * Iteration 5 test zcopy when it can't be done. 5058 * Iteration 6 one more zcopy write. 5059 */ 5060 for (i = 0; i < 7; i++) { 5061 uint64_t j; 5062 uint64_t off; 5063 5064 /* 5065 * In iteration 5 (i == 5) use arcbufs 5066 * that don't match bigobj blksz to test 5067 * dmu_assign_arcbuf_by_dbuf() when it can't directly 5068 * assign an arcbuf to a dbuf. 5069 */ 5070 for (j = 0; j < s; j++) { 5071 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 5072 bigbuf_arcbufs[j] = 5073 dmu_request_arcbuf(bonus_db, chunksize); 5074 } else { 5075 bigbuf_arcbufs[2 * j] = 5076 dmu_request_arcbuf(bonus_db, chunksize / 2); 5077 bigbuf_arcbufs[2 * j + 1] = 5078 dmu_request_arcbuf(bonus_db, chunksize / 2); 5079 } 5080 } 5081 5082 /* 5083 * Get a tx for the mods to both packobj and bigobj. 5084 */ 5085 tx = dmu_tx_create(os); 5086 5087 dmu_tx_hold_write(tx, packobj, packoff, packsize); 5088 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 5089 5090 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 5091 if (txg == 0) { 5092 umem_free(packbuf, packsize); 5093 umem_free(bigbuf, bigsize); 5094 for (j = 0; j < s; j++) { 5095 if (i != 5 || 5096 chunksize < (SPA_MINBLOCKSIZE * 2)) { 5097 dmu_return_arcbuf(bigbuf_arcbufs[j]); 5098 } else { 5099 dmu_return_arcbuf( 5100 bigbuf_arcbufs[2 * j]); 5101 dmu_return_arcbuf( 5102 bigbuf_arcbufs[2 * j + 1]); 5103 } 5104 } 5105 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 5106 umem_free(od, size); 5107 dmu_buf_rele(bonus_db, FTAG); 5108 return; 5109 } 5110 5111 /* 5112 * 50% of the time don't read objects in the 1st iteration to 5113 * test dmu_assign_arcbuf_by_dbuf() for the case when there are 5114 * no existing dbufs for the specified offsets. 5115 */ 5116 if (i != 0 || ztest_random(2) != 0) { 5117 error = dmu_read(os, packobj, packoff, 5118 packsize, packbuf, DMU_READ_PREFETCH); 5119 ASSERT0(error); 5120 error = dmu_read(os, bigobj, bigoff, bigsize, 5121 bigbuf, DMU_READ_PREFETCH); 5122 ASSERT0(error); 5123 } 5124 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 5125 n, chunksize, txg); 5126 5127 /* 5128 * We've verified all the old bufwads, and made new ones. 5129 * Now write them out. 5130 */ 5131 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 5132 if (ztest_opts.zo_verbose >= 7) { 5133 (void) printf("writing offset %"PRIx64" size %"PRIx64"" 5134 " txg %"PRIx64"\n", 5135 bigoff, bigsize, txg); 5136 } 5137 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 5138 dmu_buf_t *dbt; 5139 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 5140 memcpy(bigbuf_arcbufs[j]->b_data, 5141 (caddr_t)bigbuf + (off - bigoff), 5142 chunksize); 5143 } else { 5144 memcpy(bigbuf_arcbufs[2 * j]->b_data, 5145 (caddr_t)bigbuf + (off - bigoff), 5146 chunksize / 2); 5147 memcpy(bigbuf_arcbufs[2 * j + 1]->b_data, 5148 (caddr_t)bigbuf + (off - bigoff) + 5149 chunksize / 2, 5150 chunksize / 2); 5151 } 5152 5153 if (i == 1) { 5154 VERIFY(dmu_buf_hold(os, bigobj, off, 5155 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 5156 } 5157 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 5158 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db, 5159 off, bigbuf_arcbufs[j], tx)); 5160 } else { 5161 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db, 5162 off, bigbuf_arcbufs[2 * j], tx)); 5163 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db, 5164 off + chunksize / 2, 5165 bigbuf_arcbufs[2 * j + 1], tx)); 5166 } 5167 if (i == 1) { 5168 dmu_buf_rele(dbt, FTAG); 5169 } 5170 } 5171 dmu_tx_commit(tx); 5172 5173 /* 5174 * Sanity check the stuff we just wrote. 5175 */ 5176 { 5177 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 5178 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 5179 5180 VERIFY0(dmu_read(os, packobj, packoff, 5181 packsize, packcheck, DMU_READ_PREFETCH)); 5182 VERIFY0(dmu_read(os, bigobj, bigoff, 5183 bigsize, bigcheck, DMU_READ_PREFETCH)); 5184 5185 ASSERT0(memcmp(packbuf, packcheck, packsize)); 5186 ASSERT0(memcmp(bigbuf, bigcheck, bigsize)); 5187 5188 umem_free(packcheck, packsize); 5189 umem_free(bigcheck, bigsize); 5190 } 5191 if (i == 2) { 5192 txg_wait_open(dmu_objset_pool(os), 0, B_TRUE); 5193 } else if (i == 3) { 5194 txg_wait_synced(dmu_objset_pool(os), 0); 5195 } 5196 } 5197 5198 dmu_buf_rele(bonus_db, FTAG); 5199 umem_free(packbuf, packsize); 5200 umem_free(bigbuf, bigsize); 5201 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 5202 umem_free(od, size); 5203 } 5204 5205 void 5206 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 5207 { 5208 (void) id; 5209 ztest_od_t *od; 5210 5211 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); 5212 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 5213 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 5214 5215 /* 5216 * Have multiple threads write to large offsets in an object 5217 * to verify that parallel writes to an object -- even to the 5218 * same blocks within the object -- doesn't cause any trouble. 5219 */ 5220 ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); 5221 5222 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) 5223 return; 5224 5225 while (ztest_random(10) != 0) 5226 ztest_io(zd, od->od_object, offset); 5227 5228 umem_free(od, sizeof (ztest_od_t)); 5229 } 5230 5231 void 5232 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 5233 { 5234 ztest_od_t *od; 5235 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 5236 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 5237 uint64_t count = ztest_random(20) + 1; 5238 uint64_t blocksize = ztest_random_blocksize(); 5239 void *data; 5240 5241 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); 5242 5243 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0); 5244 5245 if (ztest_object_init(zd, od, sizeof (ztest_od_t), 5246 !ztest_random(2)) != 0) { 5247 umem_free(od, sizeof (ztest_od_t)); 5248 return; 5249 } 5250 5251 if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) { 5252 umem_free(od, sizeof (ztest_od_t)); 5253 return; 5254 } 5255 5256 ztest_prealloc(zd, od->od_object, offset, count * blocksize); 5257 5258 data = umem_zalloc(blocksize, UMEM_NOFAIL); 5259 5260 while (ztest_random(count) != 0) { 5261 uint64_t randoff = offset + (ztest_random(count) * blocksize); 5262 if (ztest_write(zd, od->od_object, randoff, blocksize, 5263 data) != 0) 5264 break; 5265 while (ztest_random(4) != 0) 5266 ztest_io(zd, od->od_object, randoff); 5267 } 5268 5269 umem_free(data, blocksize); 5270 umem_free(od, sizeof (ztest_od_t)); 5271 } 5272 5273 /* 5274 * Verify that zap_{create,destroy,add,remove,update} work as expected. 5275 */ 5276 #define ZTEST_ZAP_MIN_INTS 1 5277 #define ZTEST_ZAP_MAX_INTS 4 5278 #define ZTEST_ZAP_MAX_PROPS 1000 5279 5280 void 5281 ztest_zap(ztest_ds_t *zd, uint64_t id) 5282 { 5283 objset_t *os = zd->zd_os; 5284 ztest_od_t *od; 5285 uint64_t object; 5286 uint64_t txg, last_txg; 5287 uint64_t value[ZTEST_ZAP_MAX_INTS]; 5288 uint64_t zl_ints, zl_intsize, prop; 5289 int i, ints; 5290 dmu_tx_t *tx; 5291 char propname[100], txgname[100]; 5292 int error; 5293 const char *const hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 5294 5295 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); 5296 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0); 5297 5298 if (ztest_object_init(zd, od, sizeof (ztest_od_t), 5299 !ztest_random(2)) != 0) 5300 goto out; 5301 5302 object = od->od_object; 5303 5304 /* 5305 * Generate a known hash collision, and verify that 5306 * we can lookup and remove both entries. 5307 */ 5308 tx = dmu_tx_create(os); 5309 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 5310 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 5311 if (txg == 0) 5312 goto out; 5313 for (i = 0; i < 2; i++) { 5314 value[i] = i; 5315 VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t), 5316 1, &value[i], tx)); 5317 } 5318 for (i = 0; i < 2; i++) { 5319 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 5320 sizeof (uint64_t), 1, &value[i], tx)); 5321 VERIFY0( 5322 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 5323 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 5324 ASSERT3U(zl_ints, ==, 1); 5325 } 5326 for (i = 0; i < 2; i++) { 5327 VERIFY0(zap_remove(os, object, hc[i], tx)); 5328 } 5329 dmu_tx_commit(tx); 5330 5331 /* 5332 * Generate a bunch of random entries. 5333 */ 5334 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 5335 5336 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 5337 (void) sprintf(propname, "prop_%"PRIu64"", prop); 5338 (void) sprintf(txgname, "txg_%"PRIu64"", prop); 5339 memset(value, 0, sizeof (value)); 5340 last_txg = 0; 5341 5342 /* 5343 * If these zap entries already exist, validate their contents. 5344 */ 5345 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 5346 if (error == 0) { 5347 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 5348 ASSERT3U(zl_ints, ==, 1); 5349 5350 VERIFY0(zap_lookup(os, object, txgname, zl_intsize, 5351 zl_ints, &last_txg)); 5352 5353 VERIFY0(zap_length(os, object, propname, &zl_intsize, 5354 &zl_ints)); 5355 5356 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 5357 ASSERT3U(zl_ints, ==, ints); 5358 5359 VERIFY0(zap_lookup(os, object, propname, zl_intsize, 5360 zl_ints, value)); 5361 5362 for (i = 0; i < ints; i++) { 5363 ASSERT3U(value[i], ==, last_txg + object + i); 5364 } 5365 } else { 5366 ASSERT3U(error, ==, ENOENT); 5367 } 5368 5369 /* 5370 * Atomically update two entries in our zap object. 5371 * The first is named txg_%llu, and contains the txg 5372 * in which the property was last updated. The second 5373 * is named prop_%llu, and the nth element of its value 5374 * should be txg + object + n. 5375 */ 5376 tx = dmu_tx_create(os); 5377 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 5378 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 5379 if (txg == 0) 5380 goto out; 5381 5382 if (last_txg > txg) 5383 fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"", 5384 last_txg, txg); 5385 5386 for (i = 0; i < ints; i++) 5387 value[i] = txg + object + i; 5388 5389 VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t), 5390 1, &txg, tx)); 5391 VERIFY0(zap_update(os, object, propname, sizeof (uint64_t), 5392 ints, value, tx)); 5393 5394 dmu_tx_commit(tx); 5395 5396 /* 5397 * Remove a random pair of entries. 5398 */ 5399 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 5400 (void) sprintf(propname, "prop_%"PRIu64"", prop); 5401 (void) sprintf(txgname, "txg_%"PRIu64"", prop); 5402 5403 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 5404 5405 if (error == ENOENT) 5406 goto out; 5407 5408 ASSERT0(error); 5409 5410 tx = dmu_tx_create(os); 5411 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 5412 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 5413 if (txg == 0) 5414 goto out; 5415 VERIFY0(zap_remove(os, object, txgname, tx)); 5416 VERIFY0(zap_remove(os, object, propname, tx)); 5417 dmu_tx_commit(tx); 5418 out: 5419 umem_free(od, sizeof (ztest_od_t)); 5420 } 5421 5422 /* 5423 * Test case to test the upgrading of a microzap to fatzap. 5424 */ 5425 void 5426 ztest_fzap(ztest_ds_t *zd, uint64_t id) 5427 { 5428 objset_t *os = zd->zd_os; 5429 ztest_od_t *od; 5430 uint64_t object, txg, value; 5431 5432 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); 5433 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0); 5434 5435 if (ztest_object_init(zd, od, sizeof (ztest_od_t), 5436 !ztest_random(2)) != 0) 5437 goto out; 5438 object = od->od_object; 5439 5440 /* 5441 * Add entries to this ZAP and make sure it spills over 5442 * and gets upgraded to a fatzap. Also, since we are adding 5443 * 2050 entries we should see ptrtbl growth and leaf-block split. 5444 */ 5445 for (value = 0; value < 2050; value++) { 5446 char name[ZFS_MAX_DATASET_NAME_LEN]; 5447 dmu_tx_t *tx; 5448 int error; 5449 5450 (void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"", 5451 id, value); 5452 5453 tx = dmu_tx_create(os); 5454 dmu_tx_hold_zap(tx, object, B_TRUE, name); 5455 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 5456 if (txg == 0) 5457 goto out; 5458 error = zap_add(os, object, name, sizeof (uint64_t), 1, 5459 &value, tx); 5460 ASSERT(error == 0 || error == EEXIST); 5461 dmu_tx_commit(tx); 5462 } 5463 out: 5464 umem_free(od, sizeof (ztest_od_t)); 5465 } 5466 5467 void 5468 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 5469 { 5470 (void) id; 5471 objset_t *os = zd->zd_os; 5472 ztest_od_t *od; 5473 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 5474 dmu_tx_t *tx; 5475 int i, namelen, error; 5476 int micro = ztest_random(2); 5477 char name[20], string_value[20]; 5478 void *data; 5479 5480 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); 5481 ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0); 5482 5483 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) { 5484 umem_free(od, sizeof (ztest_od_t)); 5485 return; 5486 } 5487 5488 object = od->od_object; 5489 5490 /* 5491 * Generate a random name of the form 'xxx.....' where each 5492 * x is a random printable character and the dots are dots. 5493 * There are 94 such characters, and the name length goes from 5494 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 5495 */ 5496 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 5497 5498 for (i = 0; i < 3; i++) 5499 name[i] = '!' + ztest_random('~' - '!' + 1); 5500 for (; i < namelen - 1; i++) 5501 name[i] = '.'; 5502 name[i] = '\0'; 5503 5504 if ((namelen & 1) || micro) { 5505 wsize = sizeof (txg); 5506 wc = 1; 5507 data = &txg; 5508 } else { 5509 wsize = 1; 5510 wc = namelen; 5511 data = string_value; 5512 } 5513 5514 count = -1ULL; 5515 VERIFY0(zap_count(os, object, &count)); 5516 ASSERT3S(count, !=, -1ULL); 5517 5518 /* 5519 * Select an operation: length, lookup, add, update, remove. 5520 */ 5521 i = ztest_random(5); 5522 5523 if (i >= 2) { 5524 tx = dmu_tx_create(os); 5525 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 5526 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 5527 if (txg == 0) { 5528 umem_free(od, sizeof (ztest_od_t)); 5529 return; 5530 } 5531 memcpy(string_value, name, namelen); 5532 } else { 5533 tx = NULL; 5534 txg = 0; 5535 memset(string_value, 0, namelen); 5536 } 5537 5538 switch (i) { 5539 5540 case 0: 5541 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 5542 if (error == 0) { 5543 ASSERT3U(wsize, ==, zl_wsize); 5544 ASSERT3U(wc, ==, zl_wc); 5545 } else { 5546 ASSERT3U(error, ==, ENOENT); 5547 } 5548 break; 5549 5550 case 1: 5551 error = zap_lookup(os, object, name, wsize, wc, data); 5552 if (error == 0) { 5553 if (data == string_value && 5554 memcmp(name, data, namelen) != 0) 5555 fatal(B_FALSE, "name '%s' != val '%s' len %d", 5556 name, (char *)data, namelen); 5557 } else { 5558 ASSERT3U(error, ==, ENOENT); 5559 } 5560 break; 5561 5562 case 2: 5563 error = zap_add(os, object, name, wsize, wc, data, tx); 5564 ASSERT(error == 0 || error == EEXIST); 5565 break; 5566 5567 case 3: 5568 VERIFY0(zap_update(os, object, name, wsize, wc, data, tx)); 5569 break; 5570 5571 case 4: 5572 error = zap_remove(os, object, name, tx); 5573 ASSERT(error == 0 || error == ENOENT); 5574 break; 5575 } 5576 5577 if (tx != NULL) 5578 dmu_tx_commit(tx); 5579 5580 umem_free(od, sizeof (ztest_od_t)); 5581 } 5582 5583 /* 5584 * Commit callback data. 5585 */ 5586 typedef struct ztest_cb_data { 5587 list_node_t zcd_node; 5588 uint64_t zcd_txg; 5589 int zcd_expected_err; 5590 boolean_t zcd_added; 5591 boolean_t zcd_called; 5592 spa_t *zcd_spa; 5593 } ztest_cb_data_t; 5594 5595 /* This is the actual commit callback function */ 5596 static void 5597 ztest_commit_callback(void *arg, int error) 5598 { 5599 ztest_cb_data_t *data = arg; 5600 uint64_t synced_txg; 5601 5602 VERIFY3P(data, !=, NULL); 5603 VERIFY3S(data->zcd_expected_err, ==, error); 5604 VERIFY(!data->zcd_called); 5605 5606 synced_txg = spa_last_synced_txg(data->zcd_spa); 5607 if (data->zcd_txg > synced_txg) 5608 fatal(B_FALSE, 5609 "commit callback of txg %"PRIu64" called prematurely, " 5610 "last synced txg = %"PRIu64"\n", 5611 data->zcd_txg, synced_txg); 5612 5613 data->zcd_called = B_TRUE; 5614 5615 if (error == ECANCELED) { 5616 ASSERT0(data->zcd_txg); 5617 ASSERT(!data->zcd_added); 5618 5619 /* 5620 * The private callback data should be destroyed here, but 5621 * since we are going to check the zcd_called field after 5622 * dmu_tx_abort(), we will destroy it there. 5623 */ 5624 return; 5625 } 5626 5627 ASSERT(data->zcd_added); 5628 ASSERT3U(data->zcd_txg, !=, 0); 5629 5630 (void) mutex_enter(&zcl.zcl_callbacks_lock); 5631 5632 /* See if this cb was called more quickly */ 5633 if ((synced_txg - data->zcd_txg) < zc_min_txg_delay) 5634 zc_min_txg_delay = synced_txg - data->zcd_txg; 5635 5636 /* Remove our callback from the list */ 5637 list_remove(&zcl.zcl_callbacks, data); 5638 5639 (void) mutex_exit(&zcl.zcl_callbacks_lock); 5640 5641 umem_free(data, sizeof (ztest_cb_data_t)); 5642 } 5643 5644 /* Allocate and initialize callback data structure */ 5645 static ztest_cb_data_t * 5646 ztest_create_cb_data(objset_t *os, uint64_t txg) 5647 { 5648 ztest_cb_data_t *cb_data; 5649 5650 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 5651 5652 cb_data->zcd_txg = txg; 5653 cb_data->zcd_spa = dmu_objset_spa(os); 5654 list_link_init(&cb_data->zcd_node); 5655 5656 return (cb_data); 5657 } 5658 5659 /* 5660 * Commit callback test. 5661 */ 5662 void 5663 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 5664 { 5665 objset_t *os = zd->zd_os; 5666 ztest_od_t *od; 5667 dmu_tx_t *tx; 5668 ztest_cb_data_t *cb_data[3], *tmp_cb; 5669 uint64_t old_txg, txg; 5670 int i, error = 0; 5671 5672 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL); 5673 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); 5674 5675 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) { 5676 umem_free(od, sizeof (ztest_od_t)); 5677 return; 5678 } 5679 5680 tx = dmu_tx_create(os); 5681 5682 cb_data[0] = ztest_create_cb_data(os, 0); 5683 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 5684 5685 dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t)); 5686 5687 /* Every once in a while, abort the transaction on purpose */ 5688 if (ztest_random(100) == 0) 5689 error = -1; 5690 5691 if (!error) 5692 error = dmu_tx_assign(tx, TXG_NOWAIT); 5693 5694 txg = error ? 0 : dmu_tx_get_txg(tx); 5695 5696 cb_data[0]->zcd_txg = txg; 5697 cb_data[1] = ztest_create_cb_data(os, txg); 5698 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 5699 5700 if (error) { 5701 /* 5702 * It's not a strict requirement to call the registered 5703 * callbacks from inside dmu_tx_abort(), but that's what 5704 * it's supposed to happen in the current implementation 5705 * so we will check for that. 5706 */ 5707 for (i = 0; i < 2; i++) { 5708 cb_data[i]->zcd_expected_err = ECANCELED; 5709 VERIFY(!cb_data[i]->zcd_called); 5710 } 5711 5712 dmu_tx_abort(tx); 5713 5714 for (i = 0; i < 2; i++) { 5715 VERIFY(cb_data[i]->zcd_called); 5716 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 5717 } 5718 5719 umem_free(od, sizeof (ztest_od_t)); 5720 return; 5721 } 5722 5723 cb_data[2] = ztest_create_cb_data(os, txg); 5724 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 5725 5726 /* 5727 * Read existing data to make sure there isn't a future leak. 5728 */ 5729 VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t), 5730 &old_txg, DMU_READ_PREFETCH)); 5731 5732 if (old_txg > txg) 5733 fatal(B_FALSE, 5734 "future leak: got %"PRIu64", open txg is %"PRIu64"", 5735 old_txg, txg); 5736 5737 dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx); 5738 5739 (void) mutex_enter(&zcl.zcl_callbacks_lock); 5740 5741 /* 5742 * Since commit callbacks don't have any ordering requirement and since 5743 * it is theoretically possible for a commit callback to be called 5744 * after an arbitrary amount of time has elapsed since its txg has been 5745 * synced, it is difficult to reliably determine whether a commit 5746 * callback hasn't been called due to high load or due to a flawed 5747 * implementation. 5748 * 5749 * In practice, we will assume that if after a certain number of txgs a 5750 * commit callback hasn't been called, then most likely there's an 5751 * implementation bug.. 5752 */ 5753 tmp_cb = list_head(&zcl.zcl_callbacks); 5754 if (tmp_cb != NULL && 5755 tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) { 5756 fatal(B_FALSE, 5757 "Commit callback threshold exceeded, " 5758 "oldest txg: %"PRIu64", open txg: %"PRIu64"\n", 5759 tmp_cb->zcd_txg, txg); 5760 } 5761 5762 /* 5763 * Let's find the place to insert our callbacks. 5764 * 5765 * Even though the list is ordered by txg, it is possible for the 5766 * insertion point to not be the end because our txg may already be 5767 * quiescing at this point and other callbacks in the open txg 5768 * (from other objsets) may have sneaked in. 5769 */ 5770 tmp_cb = list_tail(&zcl.zcl_callbacks); 5771 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 5772 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 5773 5774 /* Add the 3 callbacks to the list */ 5775 for (i = 0; i < 3; i++) { 5776 if (tmp_cb == NULL) 5777 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 5778 else 5779 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 5780 cb_data[i]); 5781 5782 cb_data[i]->zcd_added = B_TRUE; 5783 VERIFY(!cb_data[i]->zcd_called); 5784 5785 tmp_cb = cb_data[i]; 5786 } 5787 5788 zc_cb_counter += 3; 5789 5790 (void) mutex_exit(&zcl.zcl_callbacks_lock); 5791 5792 dmu_tx_commit(tx); 5793 5794 umem_free(od, sizeof (ztest_od_t)); 5795 } 5796 5797 /* 5798 * Visit each object in the dataset. Verify that its properties 5799 * are consistent what was stored in the block tag when it was created, 5800 * and that its unused bonus buffer space has not been overwritten. 5801 */ 5802 void 5803 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id) 5804 { 5805 (void) id; 5806 objset_t *os = zd->zd_os; 5807 uint64_t obj; 5808 int err = 0; 5809 5810 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) { 5811 ztest_block_tag_t *bt = NULL; 5812 dmu_object_info_t doi; 5813 dmu_buf_t *db; 5814 5815 ztest_object_lock(zd, obj, RL_READER); 5816 if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) { 5817 ztest_object_unlock(zd, obj); 5818 continue; 5819 } 5820 5821 dmu_object_info_from_db(db, &doi); 5822 if (doi.doi_bonus_size >= sizeof (*bt)) 5823 bt = ztest_bt_bonus(db); 5824 5825 if (bt && bt->bt_magic == BT_MAGIC) { 5826 ztest_bt_verify(bt, os, obj, doi.doi_dnodesize, 5827 bt->bt_offset, bt->bt_gen, bt->bt_txg, 5828 bt->bt_crtxg); 5829 ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen); 5830 } 5831 5832 dmu_buf_rele(db, FTAG); 5833 ztest_object_unlock(zd, obj); 5834 } 5835 } 5836 5837 void 5838 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 5839 { 5840 (void) id; 5841 zfs_prop_t proplist[] = { 5842 ZFS_PROP_CHECKSUM, 5843 ZFS_PROP_COMPRESSION, 5844 ZFS_PROP_COPIES, 5845 ZFS_PROP_DEDUP 5846 }; 5847 5848 (void) pthread_rwlock_rdlock(&ztest_name_lock); 5849 5850 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) { 5851 int error = ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 5852 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 5853 ASSERT(error == 0 || error == ENOSPC); 5854 } 5855 5856 int error = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE, 5857 ztest_random_blocksize(), (int)ztest_random(2)); 5858 ASSERT(error == 0 || error == ENOSPC); 5859 5860 (void) pthread_rwlock_unlock(&ztest_name_lock); 5861 } 5862 5863 void 5864 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 5865 { 5866 (void) zd, (void) id; 5867 nvlist_t *props = NULL; 5868 5869 (void) pthread_rwlock_rdlock(&ztest_name_lock); 5870 5871 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2)); 5872 5873 VERIFY0(spa_prop_get(ztest_spa, &props)); 5874 5875 if (ztest_opts.zo_verbose >= 6) 5876 dump_nvlist(props, 4); 5877 5878 fnvlist_free(props); 5879 5880 (void) pthread_rwlock_unlock(&ztest_name_lock); 5881 } 5882 5883 static int 5884 user_release_one(const char *snapname, const char *holdname) 5885 { 5886 nvlist_t *snaps, *holds; 5887 int error; 5888 5889 snaps = fnvlist_alloc(); 5890 holds = fnvlist_alloc(); 5891 fnvlist_add_boolean(holds, holdname); 5892 fnvlist_add_nvlist(snaps, snapname, holds); 5893 fnvlist_free(holds); 5894 error = dsl_dataset_user_release(snaps, NULL); 5895 fnvlist_free(snaps); 5896 return (error); 5897 } 5898 5899 /* 5900 * Test snapshot hold/release and deferred destroy. 5901 */ 5902 void 5903 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 5904 { 5905 int error; 5906 objset_t *os = zd->zd_os; 5907 objset_t *origin; 5908 char snapname[100]; 5909 char fullname[100]; 5910 char clonename[100]; 5911 char tag[100]; 5912 char osname[ZFS_MAX_DATASET_NAME_LEN]; 5913 nvlist_t *holds; 5914 5915 (void) pthread_rwlock_rdlock(&ztest_name_lock); 5916 5917 dmu_objset_name(os, osname); 5918 5919 (void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id); 5920 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 5921 (void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"", 5922 osname, id); 5923 (void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id); 5924 5925 /* 5926 * Clean up from any previous run. 5927 */ 5928 error = dsl_destroy_head(clonename); 5929 if (error != ENOENT) 5930 ASSERT0(error); 5931 error = user_release_one(fullname, tag); 5932 if (error != ESRCH && error != ENOENT) 5933 ASSERT0(error); 5934 error = dsl_destroy_snapshot(fullname, B_FALSE); 5935 if (error != ENOENT) 5936 ASSERT0(error); 5937 5938 /* 5939 * Create snapshot, clone it, mark snap for deferred destroy, 5940 * destroy clone, verify snap was also destroyed. 5941 */ 5942 error = dmu_objset_snapshot_one(osname, snapname); 5943 if (error) { 5944 if (error == ENOSPC) { 5945 ztest_record_enospc("dmu_objset_snapshot"); 5946 goto out; 5947 } 5948 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error); 5949 } 5950 5951 error = dmu_objset_clone(clonename, fullname); 5952 if (error) { 5953 if (error == ENOSPC) { 5954 ztest_record_enospc("dmu_objset_clone"); 5955 goto out; 5956 } 5957 fatal(B_FALSE, "dmu_objset_clone(%s) = %d", clonename, error); 5958 } 5959 5960 error = dsl_destroy_snapshot(fullname, B_TRUE); 5961 if (error) { 5962 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 5963 fullname, error); 5964 } 5965 5966 error = dsl_destroy_head(clonename); 5967 if (error) 5968 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error); 5969 5970 error = dmu_objset_hold(fullname, FTAG, &origin); 5971 if (error != ENOENT) 5972 fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error); 5973 5974 /* 5975 * Create snapshot, add temporary hold, verify that we can't 5976 * destroy a held snapshot, mark for deferred destroy, 5977 * release hold, verify snapshot was destroyed. 5978 */ 5979 error = dmu_objset_snapshot_one(osname, snapname); 5980 if (error) { 5981 if (error == ENOSPC) { 5982 ztest_record_enospc("dmu_objset_snapshot"); 5983 goto out; 5984 } 5985 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error); 5986 } 5987 5988 holds = fnvlist_alloc(); 5989 fnvlist_add_string(holds, fullname, tag); 5990 error = dsl_dataset_user_hold(holds, 0, NULL); 5991 fnvlist_free(holds); 5992 5993 if (error == ENOSPC) { 5994 ztest_record_enospc("dsl_dataset_user_hold"); 5995 goto out; 5996 } else if (error) { 5997 fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u", 5998 fullname, tag, error); 5999 } 6000 6001 error = dsl_destroy_snapshot(fullname, B_FALSE); 6002 if (error != EBUSY) { 6003 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 6004 fullname, error); 6005 } 6006 6007 error = dsl_destroy_snapshot(fullname, B_TRUE); 6008 if (error) { 6009 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 6010 fullname, error); 6011 } 6012 6013 error = user_release_one(fullname, tag); 6014 if (error) 6015 fatal(B_FALSE, "user_release_one(%s, %s) = %d", 6016 fullname, tag, error); 6017 6018 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 6019 6020 out: 6021 (void) pthread_rwlock_unlock(&ztest_name_lock); 6022 } 6023 6024 /* 6025 * Inject random faults into the on-disk data. 6026 */ 6027 void 6028 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 6029 { 6030 (void) zd, (void) id; 6031 ztest_shared_t *zs = ztest_shared; 6032 spa_t *spa = ztest_spa; 6033 int fd; 6034 uint64_t offset; 6035 uint64_t leaves; 6036 uint64_t bad = 0x1990c0ffeedecadeull; 6037 uint64_t top, leaf; 6038 char *path0; 6039 char *pathrand; 6040 size_t fsize; 6041 int bshift = SPA_MAXBLOCKSHIFT + 2; 6042 int iters = 1000; 6043 int maxfaults; 6044 int mirror_save; 6045 vdev_t *vd0 = NULL; 6046 uint64_t guid0 = 0; 6047 boolean_t islog = B_FALSE; 6048 6049 path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 6050 pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 6051 6052 mutex_enter(&ztest_vdev_lock); 6053 6054 /* 6055 * Device removal is in progress, fault injection must be disabled 6056 * until it completes and the pool is scrubbed. The fault injection 6057 * strategy for damaging blocks does not take in to account evacuated 6058 * blocks which may have already been damaged. 6059 */ 6060 if (ztest_device_removal_active) { 6061 mutex_exit(&ztest_vdev_lock); 6062 goto out; 6063 } 6064 6065 maxfaults = MAXFAULTS(zs); 6066 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children; 6067 mirror_save = zs->zs_mirrors; 6068 mutex_exit(&ztest_vdev_lock); 6069 6070 ASSERT3U(leaves, >=, 1); 6071 6072 /* 6073 * While ztest is running the number of leaves will not change. This 6074 * is critical for the fault injection logic as it determines where 6075 * errors can be safely injected such that they are always repairable. 6076 * 6077 * When restarting ztest a different number of leaves may be requested 6078 * which will shift the regions to be damaged. This is fine as long 6079 * as the pool has been scrubbed prior to using the new mapping. 6080 * Failure to do can result in non-repairable damage being injected. 6081 */ 6082 if (ztest_pool_scrubbed == B_FALSE) 6083 goto out; 6084 6085 /* 6086 * Grab the name lock as reader. There are some operations 6087 * which don't like to have their vdevs changed while 6088 * they are in progress (i.e. spa_change_guid). Those 6089 * operations will have grabbed the name lock as writer. 6090 */ 6091 (void) pthread_rwlock_rdlock(&ztest_name_lock); 6092 6093 /* 6094 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 6095 */ 6096 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6097 6098 if (ztest_random(2) == 0) { 6099 /* 6100 * Inject errors on a normal data device or slog device. 6101 */ 6102 top = ztest_random_vdev_top(spa, B_TRUE); 6103 leaf = ztest_random(leaves) + zs->zs_splits; 6104 6105 /* 6106 * Generate paths to the first leaf in this top-level vdev, 6107 * and to the random leaf we selected. We'll induce transient 6108 * write failures and random online/offline activity on leaf 0, 6109 * and we'll write random garbage to the randomly chosen leaf. 6110 */ 6111 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template, 6112 ztest_opts.zo_dir, ztest_opts.zo_pool, 6113 top * leaves + zs->zs_splits); 6114 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template, 6115 ztest_opts.zo_dir, ztest_opts.zo_pool, 6116 top * leaves + leaf); 6117 6118 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 6119 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 6120 islog = B_TRUE; 6121 6122 /* 6123 * If the top-level vdev needs to be resilvered 6124 * then we only allow faults on the device that is 6125 * resilvering. 6126 */ 6127 if (vd0 != NULL && maxfaults != 1 && 6128 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || 6129 vd0->vdev_resilver_txg != 0)) { 6130 /* 6131 * Make vd0 explicitly claim to be unreadable, 6132 * or unwritable, or reach behind its back 6133 * and close the underlying fd. We can do this if 6134 * maxfaults == 0 because we'll fail and reexecute, 6135 * and we can do it if maxfaults >= 2 because we'll 6136 * have enough redundancy. If maxfaults == 1, the 6137 * combination of this with injection of random data 6138 * corruption below exceeds the pool's fault tolerance. 6139 */ 6140 vdev_file_t *vf = vd0->vdev_tsd; 6141 6142 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d", 6143 (long long)vd0->vdev_id, (int)maxfaults); 6144 6145 if (vf != NULL && ztest_random(3) == 0) { 6146 (void) close(vf->vf_file->f_fd); 6147 vf->vf_file->f_fd = -1; 6148 } else if (ztest_random(2) == 0) { 6149 vd0->vdev_cant_read = B_TRUE; 6150 } else { 6151 vd0->vdev_cant_write = B_TRUE; 6152 } 6153 guid0 = vd0->vdev_guid; 6154 } 6155 } else { 6156 /* 6157 * Inject errors on an l2cache device. 6158 */ 6159 spa_aux_vdev_t *sav = &spa->spa_l2cache; 6160 6161 if (sav->sav_count == 0) { 6162 spa_config_exit(spa, SCL_STATE, FTAG); 6163 (void) pthread_rwlock_unlock(&ztest_name_lock); 6164 goto out; 6165 } 6166 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 6167 guid0 = vd0->vdev_guid; 6168 (void) strlcpy(path0, vd0->vdev_path, MAXPATHLEN); 6169 (void) strlcpy(pathrand, vd0->vdev_path, MAXPATHLEN); 6170 6171 leaf = 0; 6172 leaves = 1; 6173 maxfaults = INT_MAX; /* no limit on cache devices */ 6174 } 6175 6176 spa_config_exit(spa, SCL_STATE, FTAG); 6177 (void) pthread_rwlock_unlock(&ztest_name_lock); 6178 6179 /* 6180 * If we can tolerate two or more faults, or we're dealing 6181 * with a slog, randomly online/offline vd0. 6182 */ 6183 if ((maxfaults >= 2 || islog) && guid0 != 0) { 6184 if (ztest_random(10) < 6) { 6185 int flags = (ztest_random(2) == 0 ? 6186 ZFS_OFFLINE_TEMPORARY : 0); 6187 6188 /* 6189 * We have to grab the zs_name_lock as writer to 6190 * prevent a race between offlining a slog and 6191 * destroying a dataset. Offlining the slog will 6192 * grab a reference on the dataset which may cause 6193 * dsl_destroy_head() to fail with EBUSY thus 6194 * leaving the dataset in an inconsistent state. 6195 */ 6196 if (islog) 6197 (void) pthread_rwlock_wrlock(&ztest_name_lock); 6198 6199 VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY); 6200 6201 if (islog) 6202 (void) pthread_rwlock_unlock(&ztest_name_lock); 6203 } else { 6204 /* 6205 * Ideally we would like to be able to randomly 6206 * call vdev_[on|off]line without holding locks 6207 * to force unpredictable failures but the side 6208 * effects of vdev_[on|off]line prevent us from 6209 * doing so. We grab the ztest_vdev_lock here to 6210 * prevent a race between injection testing and 6211 * aux_vdev removal. 6212 */ 6213 mutex_enter(&ztest_vdev_lock); 6214 (void) vdev_online(spa, guid0, 0, NULL); 6215 mutex_exit(&ztest_vdev_lock); 6216 } 6217 } 6218 6219 if (maxfaults == 0) 6220 goto out; 6221 6222 /* 6223 * We have at least single-fault tolerance, so inject data corruption. 6224 */ 6225 fd = open(pathrand, O_RDWR); 6226 6227 if (fd == -1) /* we hit a gap in the device namespace */ 6228 goto out; 6229 6230 fsize = lseek(fd, 0, SEEK_END); 6231 6232 while (--iters != 0) { 6233 /* 6234 * The offset must be chosen carefully to ensure that 6235 * we do not inject a given logical block with errors 6236 * on two different leaf devices, because ZFS can not 6237 * tolerate that (if maxfaults==1). 6238 * 6239 * To achieve this we divide each leaf device into 6240 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4). 6241 * Each chunk is further divided into error-injection 6242 * ranges (can accept errors) and clear ranges (we do 6243 * not inject errors in those). Each error-injection 6244 * range can accept errors only for a single leaf vdev. 6245 * Error-injection ranges are separated by clear ranges. 6246 * 6247 * For example, with 3 leaves, each chunk looks like: 6248 * 0 to 32M: injection range for leaf 0 6249 * 32M to 64M: clear range - no injection allowed 6250 * 64M to 96M: injection range for leaf 1 6251 * 96M to 128M: clear range - no injection allowed 6252 * 128M to 160M: injection range for leaf 2 6253 * 160M to 192M: clear range - no injection allowed 6254 * 6255 * Each clear range must be large enough such that a 6256 * single block cannot straddle it. This way a block 6257 * can't be a target in two different injection ranges 6258 * (on different leaf vdevs). 6259 */ 6260 offset = ztest_random(fsize / (leaves << bshift)) * 6261 (leaves << bshift) + (leaf << bshift) + 6262 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 6263 6264 /* 6265 * Only allow damage to the labels at one end of the vdev. 6266 * 6267 * If all labels are damaged, the device will be totally 6268 * inaccessible, which will result in loss of data, 6269 * because we also damage (parts of) the other side of 6270 * the mirror/raidz. 6271 * 6272 * Additionally, we will always have both an even and an 6273 * odd label, so that we can handle crashes in the 6274 * middle of vdev_config_sync(). 6275 */ 6276 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE) 6277 continue; 6278 6279 /* 6280 * The two end labels are stored at the "end" of the disk, but 6281 * the end of the disk (vdev_psize) is aligned to 6282 * sizeof (vdev_label_t). 6283 */ 6284 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t)); 6285 if ((leaf & 1) == 1 && 6286 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE) 6287 continue; 6288 6289 mutex_enter(&ztest_vdev_lock); 6290 if (mirror_save != zs->zs_mirrors) { 6291 mutex_exit(&ztest_vdev_lock); 6292 (void) close(fd); 6293 goto out; 6294 } 6295 6296 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 6297 fatal(B_TRUE, 6298 "can't inject bad word at 0x%"PRIx64" in %s", 6299 offset, pathrand); 6300 6301 mutex_exit(&ztest_vdev_lock); 6302 6303 if (ztest_opts.zo_verbose >= 7) 6304 (void) printf("injected bad word into %s," 6305 " offset 0x%"PRIx64"\n", pathrand, offset); 6306 } 6307 6308 (void) close(fd); 6309 out: 6310 umem_free(path0, MAXPATHLEN); 6311 umem_free(pathrand, MAXPATHLEN); 6312 } 6313 6314 /* 6315 * By design ztest will never inject uncorrectable damage in to the pool. 6316 * Issue a scrub, wait for it to complete, and verify there is never any 6317 * persistent damage. 6318 * 6319 * Only after a full scrub has been completed is it safe to start injecting 6320 * data corruption. See the comment in zfs_fault_inject(). 6321 */ 6322 static int 6323 ztest_scrub_impl(spa_t *spa) 6324 { 6325 int error = spa_scan(spa, POOL_SCAN_SCRUB); 6326 if (error) 6327 return (error); 6328 6329 while (dsl_scan_scrubbing(spa_get_dsl(spa))) 6330 txg_wait_synced(spa_get_dsl(spa), 0); 6331 6332 if (spa_approx_errlog_size(spa) > 0) 6333 return (ECKSUM); 6334 6335 ztest_pool_scrubbed = B_TRUE; 6336 6337 return (0); 6338 } 6339 6340 /* 6341 * Scrub the pool. 6342 */ 6343 void 6344 ztest_scrub(ztest_ds_t *zd, uint64_t id) 6345 { 6346 (void) zd, (void) id; 6347 spa_t *spa = ztest_spa; 6348 int error; 6349 6350 /* 6351 * Scrub in progress by device removal. 6352 */ 6353 if (ztest_device_removal_active) 6354 return; 6355 6356 /* 6357 * Start a scrub, wait a moment, then force a restart. 6358 */ 6359 (void) spa_scan(spa, POOL_SCAN_SCRUB); 6360 (void) poll(NULL, 0, 100); 6361 6362 error = ztest_scrub_impl(spa); 6363 if (error == EBUSY) 6364 error = 0; 6365 ASSERT0(error); 6366 } 6367 6368 /* 6369 * Change the guid for the pool. 6370 */ 6371 void 6372 ztest_reguid(ztest_ds_t *zd, uint64_t id) 6373 { 6374 (void) zd, (void) id; 6375 spa_t *spa = ztest_spa; 6376 uint64_t orig, load; 6377 int error; 6378 6379 if (ztest_opts.zo_mmp_test) 6380 return; 6381 6382 orig = spa_guid(spa); 6383 load = spa_load_guid(spa); 6384 6385 (void) pthread_rwlock_wrlock(&ztest_name_lock); 6386 error = spa_change_guid(spa); 6387 (void) pthread_rwlock_unlock(&ztest_name_lock); 6388 6389 if (error != 0) 6390 return; 6391 6392 if (ztest_opts.zo_verbose >= 4) { 6393 (void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n", 6394 orig, spa_guid(spa)); 6395 } 6396 6397 VERIFY3U(orig, !=, spa_guid(spa)); 6398 VERIFY3U(load, ==, spa_load_guid(spa)); 6399 } 6400 6401 void 6402 ztest_blake3(ztest_ds_t *zd, uint64_t id) 6403 { 6404 (void) zd, (void) id; 6405 hrtime_t end = gethrtime() + NANOSEC; 6406 zio_cksum_salt_t salt; 6407 void *salt_ptr = &salt.zcs_bytes; 6408 struct abd *abd_data, *abd_meta; 6409 void *buf, *templ; 6410 int i, *ptr; 6411 uint32_t size; 6412 BLAKE3_CTX ctx; 6413 6414 size = ztest_random_blocksize(); 6415 buf = umem_alloc(size, UMEM_NOFAIL); 6416 abd_data = abd_alloc(size, B_FALSE); 6417 abd_meta = abd_alloc(size, B_TRUE); 6418 6419 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++) 6420 *ptr = ztest_random(UINT_MAX); 6421 memset(salt_ptr, 'A', 32); 6422 6423 abd_copy_from_buf_off(abd_data, buf, 0, size); 6424 abd_copy_from_buf_off(abd_meta, buf, 0, size); 6425 6426 while (gethrtime() <= end) { 6427 int run_count = 100; 6428 zio_cksum_t zc_ref1, zc_ref2; 6429 zio_cksum_t zc_res1, zc_res2; 6430 6431 void *ref1 = &zc_ref1; 6432 void *ref2 = &zc_ref2; 6433 void *res1 = &zc_res1; 6434 void *res2 = &zc_res2; 6435 6436 /* BLAKE3_KEY_LEN = 32 */ 6437 VERIFY0(blake3_impl_setname("generic")); 6438 templ = abd_checksum_blake3_tmpl_init(&salt); 6439 Blake3_InitKeyed(&ctx, salt_ptr); 6440 Blake3_Update(&ctx, buf, size); 6441 Blake3_Final(&ctx, ref1); 6442 zc_ref2 = zc_ref1; 6443 ZIO_CHECKSUM_BSWAP(&zc_ref2); 6444 abd_checksum_blake3_tmpl_free(templ); 6445 6446 VERIFY0(blake3_impl_setname("cycle")); 6447 while (run_count-- > 0) { 6448 6449 /* Test current implementation */ 6450 Blake3_InitKeyed(&ctx, salt_ptr); 6451 Blake3_Update(&ctx, buf, size); 6452 Blake3_Final(&ctx, res1); 6453 zc_res2 = zc_res1; 6454 ZIO_CHECKSUM_BSWAP(&zc_res2); 6455 6456 VERIFY0(memcmp(ref1, res1, 32)); 6457 VERIFY0(memcmp(ref2, res2, 32)); 6458 6459 /* Test ABD - data */ 6460 templ = abd_checksum_blake3_tmpl_init(&salt); 6461 abd_checksum_blake3_native(abd_data, size, 6462 templ, &zc_res1); 6463 abd_checksum_blake3_byteswap(abd_data, size, 6464 templ, &zc_res2); 6465 6466 VERIFY0(memcmp(ref1, res1, 32)); 6467 VERIFY0(memcmp(ref2, res2, 32)); 6468 6469 /* Test ABD - metadata */ 6470 abd_checksum_blake3_native(abd_meta, size, 6471 templ, &zc_res1); 6472 abd_checksum_blake3_byteswap(abd_meta, size, 6473 templ, &zc_res2); 6474 abd_checksum_blake3_tmpl_free(templ); 6475 6476 VERIFY0(memcmp(ref1, res1, 32)); 6477 VERIFY0(memcmp(ref2, res2, 32)); 6478 6479 } 6480 } 6481 6482 abd_free(abd_data); 6483 abd_free(abd_meta); 6484 umem_free(buf, size); 6485 } 6486 6487 void 6488 ztest_fletcher(ztest_ds_t *zd, uint64_t id) 6489 { 6490 (void) zd, (void) id; 6491 hrtime_t end = gethrtime() + NANOSEC; 6492 6493 while (gethrtime() <= end) { 6494 int run_count = 100; 6495 void *buf; 6496 struct abd *abd_data, *abd_meta; 6497 uint32_t size; 6498 int *ptr; 6499 int i; 6500 zio_cksum_t zc_ref; 6501 zio_cksum_t zc_ref_byteswap; 6502 6503 size = ztest_random_blocksize(); 6504 6505 buf = umem_alloc(size, UMEM_NOFAIL); 6506 abd_data = abd_alloc(size, B_FALSE); 6507 abd_meta = abd_alloc(size, B_TRUE); 6508 6509 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++) 6510 *ptr = ztest_random(UINT_MAX); 6511 6512 abd_copy_from_buf_off(abd_data, buf, 0, size); 6513 abd_copy_from_buf_off(abd_meta, buf, 0, size); 6514 6515 VERIFY0(fletcher_4_impl_set("scalar")); 6516 fletcher_4_native(buf, size, NULL, &zc_ref); 6517 fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap); 6518 6519 VERIFY0(fletcher_4_impl_set("cycle")); 6520 while (run_count-- > 0) { 6521 zio_cksum_t zc; 6522 zio_cksum_t zc_byteswap; 6523 6524 fletcher_4_byteswap(buf, size, NULL, &zc_byteswap); 6525 fletcher_4_native(buf, size, NULL, &zc); 6526 6527 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc))); 6528 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap, 6529 sizeof (zc_byteswap))); 6530 6531 /* Test ABD - data */ 6532 abd_fletcher_4_byteswap(abd_data, size, NULL, 6533 &zc_byteswap); 6534 abd_fletcher_4_native(abd_data, size, NULL, &zc); 6535 6536 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc))); 6537 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap, 6538 sizeof (zc_byteswap))); 6539 6540 /* Test ABD - metadata */ 6541 abd_fletcher_4_byteswap(abd_meta, size, NULL, 6542 &zc_byteswap); 6543 abd_fletcher_4_native(abd_meta, size, NULL, &zc); 6544 6545 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc))); 6546 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap, 6547 sizeof (zc_byteswap))); 6548 6549 } 6550 6551 umem_free(buf, size); 6552 abd_free(abd_data); 6553 abd_free(abd_meta); 6554 } 6555 } 6556 6557 void 6558 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id) 6559 { 6560 (void) zd, (void) id; 6561 void *buf; 6562 size_t size; 6563 int *ptr; 6564 int i; 6565 zio_cksum_t zc_ref; 6566 zio_cksum_t zc_ref_bswap; 6567 6568 hrtime_t end = gethrtime() + NANOSEC; 6569 6570 while (gethrtime() <= end) { 6571 int run_count = 100; 6572 6573 size = ztest_random_blocksize(); 6574 buf = umem_alloc(size, UMEM_NOFAIL); 6575 6576 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++) 6577 *ptr = ztest_random(UINT_MAX); 6578 6579 VERIFY0(fletcher_4_impl_set("scalar")); 6580 fletcher_4_native(buf, size, NULL, &zc_ref); 6581 fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap); 6582 6583 VERIFY0(fletcher_4_impl_set("cycle")); 6584 6585 while (run_count-- > 0) { 6586 zio_cksum_t zc; 6587 zio_cksum_t zc_bswap; 6588 size_t pos = 0; 6589 6590 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0); 6591 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0); 6592 6593 while (pos < size) { 6594 size_t inc = 64 * ztest_random(size / 67); 6595 /* sometimes add few bytes to test non-simd */ 6596 if (ztest_random(100) < 10) 6597 inc += P2ALIGN(ztest_random(64), 6598 sizeof (uint32_t)); 6599 6600 if (inc > (size - pos)) 6601 inc = size - pos; 6602 6603 fletcher_4_incremental_native(buf + pos, inc, 6604 &zc); 6605 fletcher_4_incremental_byteswap(buf + pos, inc, 6606 &zc_bswap); 6607 6608 pos += inc; 6609 } 6610 6611 VERIFY3U(pos, ==, size); 6612 6613 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref)); 6614 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap)); 6615 6616 /* 6617 * verify if incremental on the whole buffer is 6618 * equivalent to non-incremental version 6619 */ 6620 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0); 6621 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0); 6622 6623 fletcher_4_incremental_native(buf, size, &zc); 6624 fletcher_4_incremental_byteswap(buf, size, &zc_bswap); 6625 6626 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref)); 6627 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap)); 6628 } 6629 6630 umem_free(buf, size); 6631 } 6632 } 6633 6634 static int 6635 ztest_set_global_vars(void) 6636 { 6637 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) { 6638 char *kv = ztest_opts.zo_gvars[i]; 6639 VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN); 6640 VERIFY3U(strlen(kv), >, 0); 6641 int err = set_global_var(kv); 6642 if (ztest_opts.zo_verbose > 0) { 6643 (void) printf("setting global var %s ... %s\n", kv, 6644 err ? "failed" : "ok"); 6645 } 6646 if (err != 0) { 6647 (void) fprintf(stderr, 6648 "failed to set global var '%s'\n", kv); 6649 return (err); 6650 } 6651 } 6652 return (0); 6653 } 6654 6655 static char ** 6656 ztest_global_vars_to_zdb_args(void) 6657 { 6658 char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *)); 6659 char **cur = args; 6660 if (args == NULL) 6661 return (NULL); 6662 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) { 6663 *cur++ = (char *)"-o"; 6664 *cur++ = ztest_opts.zo_gvars[i]; 6665 } 6666 ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]); 6667 *cur = NULL; 6668 return (args); 6669 } 6670 6671 /* The end of strings is indicated by a NULL element */ 6672 static char * 6673 join_strings(char **strings, const char *sep) 6674 { 6675 size_t totallen = 0; 6676 for (char **sp = strings; *sp != NULL; sp++) { 6677 totallen += strlen(*sp); 6678 totallen += strlen(sep); 6679 } 6680 if (totallen > 0) { 6681 ASSERT(totallen >= strlen(sep)); 6682 totallen -= strlen(sep); 6683 } 6684 6685 size_t buflen = totallen + 1; 6686 char *o = umem_alloc(buflen, UMEM_NOFAIL); /* trailing 0 byte */ 6687 o[0] = '\0'; 6688 for (char **sp = strings; *sp != NULL; sp++) { 6689 size_t would; 6690 would = strlcat(o, *sp, buflen); 6691 VERIFY3U(would, <, buflen); 6692 if (*(sp+1) == NULL) { 6693 break; 6694 } 6695 would = strlcat(o, sep, buflen); 6696 VERIFY3U(would, <, buflen); 6697 } 6698 ASSERT3S(strlen(o), ==, totallen); 6699 return (o); 6700 } 6701 6702 static int 6703 ztest_check_path(char *path) 6704 { 6705 struct stat s; 6706 /* return true on success */ 6707 return (!stat(path, &s)); 6708 } 6709 6710 static void 6711 ztest_get_zdb_bin(char *bin, int len) 6712 { 6713 char *zdb_path; 6714 /* 6715 * Try to use $ZDB and in-tree zdb path. If not successful, just 6716 * let popen to search through PATH. 6717 */ 6718 if ((zdb_path = getenv("ZDB"))) { 6719 strlcpy(bin, zdb_path, len); /* In env */ 6720 if (!ztest_check_path(bin)) { 6721 ztest_dump_core = 0; 6722 fatal(B_TRUE, "invalid ZDB '%s'", bin); 6723 } 6724 return; 6725 } 6726 6727 VERIFY3P(realpath(getexecname(), bin), !=, NULL); 6728 if (strstr(bin, ".libs/ztest")) { 6729 strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */ 6730 strcat(bin, "zdb"); 6731 if (ztest_check_path(bin)) 6732 return; 6733 } 6734 strcpy(bin, "zdb"); 6735 } 6736 6737 static vdev_t * 6738 ztest_random_concrete_vdev_leaf(vdev_t *vd) 6739 { 6740 if (vd == NULL) 6741 return (NULL); 6742 6743 if (vd->vdev_children == 0) 6744 return (vd); 6745 6746 vdev_t *eligible[vd->vdev_children]; 6747 int eligible_idx = 0, i; 6748 for (i = 0; i < vd->vdev_children; i++) { 6749 vdev_t *cvd = vd->vdev_child[i]; 6750 if (cvd->vdev_top->vdev_removing) 6751 continue; 6752 if (cvd->vdev_children > 0 || 6753 (vdev_is_concrete(cvd) && !cvd->vdev_detached)) { 6754 eligible[eligible_idx++] = cvd; 6755 } 6756 } 6757 VERIFY3S(eligible_idx, >, 0); 6758 6759 uint64_t child_no = ztest_random(eligible_idx); 6760 return (ztest_random_concrete_vdev_leaf(eligible[child_no])); 6761 } 6762 6763 void 6764 ztest_initialize(ztest_ds_t *zd, uint64_t id) 6765 { 6766 (void) zd, (void) id; 6767 spa_t *spa = ztest_spa; 6768 int error = 0; 6769 6770 mutex_enter(&ztest_vdev_lock); 6771 6772 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6773 6774 /* Random leaf vdev */ 6775 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev); 6776 if (rand_vd == NULL) { 6777 spa_config_exit(spa, SCL_VDEV, FTAG); 6778 mutex_exit(&ztest_vdev_lock); 6779 return; 6780 } 6781 6782 /* 6783 * The random vdev we've selected may change as soon as we 6784 * drop the spa_config_lock. We create local copies of things 6785 * we're interested in. 6786 */ 6787 uint64_t guid = rand_vd->vdev_guid; 6788 char *path = strdup(rand_vd->vdev_path); 6789 boolean_t active = rand_vd->vdev_initialize_thread != NULL; 6790 6791 zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid); 6792 spa_config_exit(spa, SCL_VDEV, FTAG); 6793 6794 uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS); 6795 6796 nvlist_t *vdev_guids = fnvlist_alloc(); 6797 nvlist_t *vdev_errlist = fnvlist_alloc(); 6798 fnvlist_add_uint64(vdev_guids, path, guid); 6799 error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist); 6800 fnvlist_free(vdev_guids); 6801 fnvlist_free(vdev_errlist); 6802 6803 switch (cmd) { 6804 case POOL_INITIALIZE_CANCEL: 6805 if (ztest_opts.zo_verbose >= 4) { 6806 (void) printf("Cancel initialize %s", path); 6807 if (!active) 6808 (void) printf(" failed (no initialize active)"); 6809 (void) printf("\n"); 6810 } 6811 break; 6812 case POOL_INITIALIZE_START: 6813 if (ztest_opts.zo_verbose >= 4) { 6814 (void) printf("Start initialize %s", path); 6815 if (active && error == 0) 6816 (void) printf(" failed (already active)"); 6817 else if (error != 0) 6818 (void) printf(" failed (error %d)", error); 6819 (void) printf("\n"); 6820 } 6821 break; 6822 case POOL_INITIALIZE_SUSPEND: 6823 if (ztest_opts.zo_verbose >= 4) { 6824 (void) printf("Suspend initialize %s", path); 6825 if (!active) 6826 (void) printf(" failed (no initialize active)"); 6827 (void) printf("\n"); 6828 } 6829 break; 6830 } 6831 free(path); 6832 mutex_exit(&ztest_vdev_lock); 6833 } 6834 6835 void 6836 ztest_trim(ztest_ds_t *zd, uint64_t id) 6837 { 6838 (void) zd, (void) id; 6839 spa_t *spa = ztest_spa; 6840 int error = 0; 6841 6842 mutex_enter(&ztest_vdev_lock); 6843 6844 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6845 6846 /* Random leaf vdev */ 6847 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev); 6848 if (rand_vd == NULL) { 6849 spa_config_exit(spa, SCL_VDEV, FTAG); 6850 mutex_exit(&ztest_vdev_lock); 6851 return; 6852 } 6853 6854 /* 6855 * The random vdev we've selected may change as soon as we 6856 * drop the spa_config_lock. We create local copies of things 6857 * we're interested in. 6858 */ 6859 uint64_t guid = rand_vd->vdev_guid; 6860 char *path = strdup(rand_vd->vdev_path); 6861 boolean_t active = rand_vd->vdev_trim_thread != NULL; 6862 6863 zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid); 6864 spa_config_exit(spa, SCL_VDEV, FTAG); 6865 6866 uint64_t cmd = ztest_random(POOL_TRIM_FUNCS); 6867 uint64_t rate = 1 << ztest_random(30); 6868 boolean_t partial = (ztest_random(5) > 0); 6869 boolean_t secure = (ztest_random(5) > 0); 6870 6871 nvlist_t *vdev_guids = fnvlist_alloc(); 6872 nvlist_t *vdev_errlist = fnvlist_alloc(); 6873 fnvlist_add_uint64(vdev_guids, path, guid); 6874 error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial, 6875 secure, vdev_errlist); 6876 fnvlist_free(vdev_guids); 6877 fnvlist_free(vdev_errlist); 6878 6879 switch (cmd) { 6880 case POOL_TRIM_CANCEL: 6881 if (ztest_opts.zo_verbose >= 4) { 6882 (void) printf("Cancel TRIM %s", path); 6883 if (!active) 6884 (void) printf(" failed (no TRIM active)"); 6885 (void) printf("\n"); 6886 } 6887 break; 6888 case POOL_TRIM_START: 6889 if (ztest_opts.zo_verbose >= 4) { 6890 (void) printf("Start TRIM %s", path); 6891 if (active && error == 0) 6892 (void) printf(" failed (already active)"); 6893 else if (error != 0) 6894 (void) printf(" failed (error %d)", error); 6895 (void) printf("\n"); 6896 } 6897 break; 6898 case POOL_TRIM_SUSPEND: 6899 if (ztest_opts.zo_verbose >= 4) { 6900 (void) printf("Suspend TRIM %s", path); 6901 if (!active) 6902 (void) printf(" failed (no TRIM active)"); 6903 (void) printf("\n"); 6904 } 6905 break; 6906 } 6907 free(path); 6908 mutex_exit(&ztest_vdev_lock); 6909 } 6910 6911 /* 6912 * Verify pool integrity by running zdb. 6913 */ 6914 static void 6915 ztest_run_zdb(const char *pool) 6916 { 6917 int status; 6918 char *bin; 6919 char *zdb; 6920 char *zbuf; 6921 const int len = MAXPATHLEN + MAXNAMELEN + 20; 6922 FILE *fp; 6923 6924 bin = umem_alloc(len, UMEM_NOFAIL); 6925 zdb = umem_alloc(len, UMEM_NOFAIL); 6926 zbuf = umem_alloc(1024, UMEM_NOFAIL); 6927 6928 ztest_get_zdb_bin(bin, len); 6929 6930 char **set_gvars_args = ztest_global_vars_to_zdb_args(); 6931 if (set_gvars_args == NULL) { 6932 fatal(B_FALSE, "Failed to allocate memory in " 6933 "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n"); 6934 } 6935 char *set_gvars_args_joined = join_strings(set_gvars_args, " "); 6936 free(set_gvars_args); 6937 6938 size_t would = snprintf(zdb, len, 6939 "%s -bcc%s%s -G -d -Y -e -y %s -p %s %s", 6940 bin, 6941 ztest_opts.zo_verbose >= 3 ? "s" : "", 6942 ztest_opts.zo_verbose >= 4 ? "v" : "", 6943 set_gvars_args_joined, 6944 ztest_opts.zo_dir, 6945 pool); 6946 ASSERT3U(would, <, len); 6947 6948 umem_free(set_gvars_args_joined, strlen(set_gvars_args_joined) + 1); 6949 6950 if (ztest_opts.zo_verbose >= 5) 6951 (void) printf("Executing %s\n", zdb); 6952 6953 fp = popen(zdb, "r"); 6954 6955 while (fgets(zbuf, 1024, fp) != NULL) 6956 if (ztest_opts.zo_verbose >= 3) 6957 (void) printf("%s", zbuf); 6958 6959 status = pclose(fp); 6960 6961 if (status == 0) 6962 goto out; 6963 6964 ztest_dump_core = 0; 6965 if (WIFEXITED(status)) 6966 fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 6967 else 6968 fatal(B_FALSE, "'%s' died with signal %d", 6969 zdb, WTERMSIG(status)); 6970 out: 6971 umem_free(bin, len); 6972 umem_free(zdb, len); 6973 umem_free(zbuf, 1024); 6974 } 6975 6976 static void 6977 ztest_walk_pool_directory(const char *header) 6978 { 6979 spa_t *spa = NULL; 6980 6981 if (ztest_opts.zo_verbose >= 6) 6982 (void) puts(header); 6983 6984 mutex_enter(&spa_namespace_lock); 6985 while ((spa = spa_next(spa)) != NULL) 6986 if (ztest_opts.zo_verbose >= 6) 6987 (void) printf("\t%s\n", spa_name(spa)); 6988 mutex_exit(&spa_namespace_lock); 6989 } 6990 6991 static void 6992 ztest_spa_import_export(char *oldname, char *newname) 6993 { 6994 nvlist_t *config, *newconfig; 6995 uint64_t pool_guid; 6996 spa_t *spa; 6997 int error; 6998 6999 if (ztest_opts.zo_verbose >= 4) { 7000 (void) printf("import/export: old = %s, new = %s\n", 7001 oldname, newname); 7002 } 7003 7004 /* 7005 * Clean up from previous runs. 7006 */ 7007 (void) spa_destroy(newname); 7008 7009 /* 7010 * Get the pool's configuration and guid. 7011 */ 7012 VERIFY0(spa_open(oldname, &spa, FTAG)); 7013 7014 /* 7015 * Kick off a scrub to tickle scrub/export races. 7016 */ 7017 if (ztest_random(2) == 0) 7018 (void) spa_scan(spa, POOL_SCAN_SCRUB); 7019 7020 pool_guid = spa_guid(spa); 7021 spa_close(spa, FTAG); 7022 7023 ztest_walk_pool_directory("pools before export"); 7024 7025 /* 7026 * Export it. 7027 */ 7028 VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE)); 7029 7030 ztest_walk_pool_directory("pools after export"); 7031 7032 /* 7033 * Try to import it. 7034 */ 7035 newconfig = spa_tryimport(config); 7036 ASSERT3P(newconfig, !=, NULL); 7037 fnvlist_free(newconfig); 7038 7039 /* 7040 * Import it under the new name. 7041 */ 7042 error = spa_import(newname, config, NULL, 0); 7043 if (error != 0) { 7044 dump_nvlist(config, 0); 7045 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 7046 oldname, newname, error); 7047 } 7048 7049 ztest_walk_pool_directory("pools after import"); 7050 7051 /* 7052 * Try to import it again -- should fail with EEXIST. 7053 */ 7054 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 7055 7056 /* 7057 * Try to import it under a different name -- should fail with EEXIST. 7058 */ 7059 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 7060 7061 /* 7062 * Verify that the pool is no longer visible under the old name. 7063 */ 7064 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 7065 7066 /* 7067 * Verify that we can open and close the pool using the new name. 7068 */ 7069 VERIFY0(spa_open(newname, &spa, FTAG)); 7070 ASSERT3U(pool_guid, ==, spa_guid(spa)); 7071 spa_close(spa, FTAG); 7072 7073 fnvlist_free(config); 7074 } 7075 7076 static void 7077 ztest_resume(spa_t *spa) 7078 { 7079 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 7080 (void) printf("resuming from suspended state\n"); 7081 spa_vdev_state_enter(spa, SCL_NONE); 7082 vdev_clear(spa, NULL); 7083 (void) spa_vdev_state_exit(spa, NULL, 0); 7084 (void) zio_resume(spa); 7085 } 7086 7087 static __attribute__((noreturn)) void 7088 ztest_resume_thread(void *arg) 7089 { 7090 spa_t *spa = arg; 7091 7092 while (!ztest_exiting) { 7093 if (spa_suspended(spa)) 7094 ztest_resume(spa); 7095 (void) poll(NULL, 0, 100); 7096 7097 /* 7098 * Periodically change the zfs_compressed_arc_enabled setting. 7099 */ 7100 if (ztest_random(10) == 0) 7101 zfs_compressed_arc_enabled = ztest_random(2); 7102 7103 /* 7104 * Periodically change the zfs_abd_scatter_enabled setting. 7105 */ 7106 if (ztest_random(10) == 0) 7107 zfs_abd_scatter_enabled = ztest_random(2); 7108 } 7109 7110 thread_exit(); 7111 } 7112 7113 static __attribute__((noreturn)) void 7114 ztest_deadman_thread(void *arg) 7115 { 7116 ztest_shared_t *zs = arg; 7117 spa_t *spa = ztest_spa; 7118 hrtime_t delay, overdue, last_run = gethrtime(); 7119 7120 delay = (zs->zs_thread_stop - zs->zs_thread_start) + 7121 MSEC2NSEC(zfs_deadman_synctime_ms); 7122 7123 while (!ztest_exiting) { 7124 /* 7125 * Wait for the delay timer while checking occasionally 7126 * if we should stop. 7127 */ 7128 if (gethrtime() < last_run + delay) { 7129 (void) poll(NULL, 0, 1000); 7130 continue; 7131 } 7132 7133 /* 7134 * If the pool is suspended then fail immediately. Otherwise, 7135 * check to see if the pool is making any progress. If 7136 * vdev_deadman() discovers that there hasn't been any recent 7137 * I/Os then it will end up aborting the tests. 7138 */ 7139 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { 7140 fatal(B_FALSE, 7141 "aborting test after %llu seconds because " 7142 "pool has transitioned to a suspended state.", 7143 (u_longlong_t)zfs_deadman_synctime_ms / 1000); 7144 } 7145 vdev_deadman(spa->spa_root_vdev, FTAG); 7146 7147 /* 7148 * If the process doesn't complete within a grace period of 7149 * zfs_deadman_synctime_ms over the expected finish time, 7150 * then it may be hung and is terminated. 7151 */ 7152 overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms); 7153 if (gethrtime() > overdue) { 7154 fatal(B_FALSE, 7155 "aborting test after %llu seconds because " 7156 "the process is overdue for termination.", 7157 (gethrtime() - zs->zs_proc_start) / NANOSEC); 7158 } 7159 7160 (void) printf("ztest has been running for %lld seconds\n", 7161 (gethrtime() - zs->zs_proc_start) / NANOSEC); 7162 7163 last_run = gethrtime(); 7164 delay = MSEC2NSEC(zfs_deadman_checktime_ms); 7165 } 7166 7167 thread_exit(); 7168 } 7169 7170 static void 7171 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 7172 { 7173 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 7174 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 7175 hrtime_t functime = gethrtime(); 7176 int i; 7177 7178 for (i = 0; i < zi->zi_iters; i++) 7179 zi->zi_func(zd, id); 7180 7181 functime = gethrtime() - functime; 7182 7183 atomic_add_64(&zc->zc_count, 1); 7184 atomic_add_64(&zc->zc_time, functime); 7185 7186 if (ztest_opts.zo_verbose >= 4) 7187 (void) printf("%6.2f sec in %s\n", 7188 (double)functime / NANOSEC, zi->zi_funcname); 7189 } 7190 7191 static __attribute__((noreturn)) void 7192 ztest_thread(void *arg) 7193 { 7194 int rand; 7195 uint64_t id = (uintptr_t)arg; 7196 ztest_shared_t *zs = ztest_shared; 7197 uint64_t call_next; 7198 hrtime_t now; 7199 ztest_info_t *zi; 7200 ztest_shared_callstate_t *zc; 7201 7202 while ((now = gethrtime()) < zs->zs_thread_stop) { 7203 /* 7204 * See if it's time to force a crash. 7205 */ 7206 if (now > zs->zs_thread_kill) 7207 ztest_kill(zs); 7208 7209 /* 7210 * If we're getting ENOSPC with some regularity, stop. 7211 */ 7212 if (zs->zs_enospc_count > 10) 7213 break; 7214 7215 /* 7216 * Pick a random function to execute. 7217 */ 7218 rand = ztest_random(ZTEST_FUNCS); 7219 zi = &ztest_info[rand]; 7220 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 7221 call_next = zc->zc_next; 7222 7223 if (now >= call_next && 7224 atomic_cas_64(&zc->zc_next, call_next, call_next + 7225 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 7226 ztest_execute(rand, zi, id); 7227 } 7228 } 7229 7230 thread_exit(); 7231 } 7232 7233 static void 7234 ztest_dataset_name(char *dsname, const char *pool, int d) 7235 { 7236 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d); 7237 } 7238 7239 static void 7240 ztest_dataset_destroy(int d) 7241 { 7242 char name[ZFS_MAX_DATASET_NAME_LEN]; 7243 int t; 7244 7245 ztest_dataset_name(name, ztest_opts.zo_pool, d); 7246 7247 if (ztest_opts.zo_verbose >= 3) 7248 (void) printf("Destroying %s to free up space\n", name); 7249 7250 /* 7251 * Cleanup any non-standard clones and snapshots. In general, 7252 * ztest thread t operates on dataset (t % zopt_datasets), 7253 * so there may be more than one thing to clean up. 7254 */ 7255 for (t = d; t < ztest_opts.zo_threads; 7256 t += ztest_opts.zo_datasets) 7257 ztest_dsl_dataset_cleanup(name, t); 7258 7259 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 7260 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 7261 } 7262 7263 static void 7264 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 7265 { 7266 uint64_t usedobjs, dirobjs, scratch; 7267 7268 /* 7269 * ZTEST_DIROBJ is the object directory for the entire dataset. 7270 * Therefore, the number of objects in use should equal the 7271 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 7272 * If not, we have an object leak. 7273 * 7274 * Note that we can only check this in ztest_dataset_open(), 7275 * when the open-context and syncing-context values agree. 7276 * That's because zap_count() returns the open-context value, 7277 * while dmu_objset_space() returns the rootbp fill count. 7278 */ 7279 VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 7280 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 7281 ASSERT3U(dirobjs + 1, ==, usedobjs); 7282 } 7283 7284 static int 7285 ztest_dataset_open(int d) 7286 { 7287 ztest_ds_t *zd = &ztest_ds[d]; 7288 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 7289 objset_t *os; 7290 zilog_t *zilog; 7291 char name[ZFS_MAX_DATASET_NAME_LEN]; 7292 int error; 7293 7294 ztest_dataset_name(name, ztest_opts.zo_pool, d); 7295 7296 (void) pthread_rwlock_rdlock(&ztest_name_lock); 7297 7298 error = ztest_dataset_create(name); 7299 if (error == ENOSPC) { 7300 (void) pthread_rwlock_unlock(&ztest_name_lock); 7301 ztest_record_enospc(FTAG); 7302 return (error); 7303 } 7304 ASSERT(error == 0 || error == EEXIST); 7305 7306 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, 7307 B_TRUE, zd, &os)); 7308 (void) pthread_rwlock_unlock(&ztest_name_lock); 7309 7310 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 7311 7312 zilog = zd->zd_zilog; 7313 7314 if (zilog->zl_header->zh_claim_lr_seq != 0 && 7315 zilog->zl_header->zh_claim_lr_seq < committed_seq) 7316 fatal(B_FALSE, "missing log records: " 7317 "claimed %"PRIu64" < committed %"PRIu64"", 7318 zilog->zl_header->zh_claim_lr_seq, committed_seq); 7319 7320 ztest_dataset_dirobj_verify(zd); 7321 7322 zil_replay(os, zd, ztest_replay_vector); 7323 7324 ztest_dataset_dirobj_verify(zd); 7325 7326 if (ztest_opts.zo_verbose >= 6) 7327 (void) printf("%s replay %"PRIu64" blocks, " 7328 "%"PRIu64" records, seq %"PRIu64"\n", 7329 zd->zd_name, 7330 zilog->zl_parse_blk_count, 7331 zilog->zl_parse_lr_count, 7332 zilog->zl_replaying_seq); 7333 7334 zilog = zil_open(os, ztest_get_data, NULL); 7335 7336 if (zilog->zl_replaying_seq != 0 && 7337 zilog->zl_replaying_seq < committed_seq) 7338 fatal(B_FALSE, "missing log records: " 7339 "replayed %"PRIu64" < committed %"PRIu64"", 7340 zilog->zl_replaying_seq, committed_seq); 7341 7342 return (0); 7343 } 7344 7345 static void 7346 ztest_dataset_close(int d) 7347 { 7348 ztest_ds_t *zd = &ztest_ds[d]; 7349 7350 zil_close(zd->zd_zilog); 7351 dmu_objset_disown(zd->zd_os, B_TRUE, zd); 7352 7353 ztest_zd_fini(zd); 7354 } 7355 7356 static int 7357 ztest_replay_zil_cb(const char *name, void *arg) 7358 { 7359 (void) arg; 7360 objset_t *os; 7361 ztest_ds_t *zdtmp; 7362 7363 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE, 7364 B_TRUE, FTAG, &os)); 7365 7366 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL); 7367 7368 ztest_zd_init(zdtmp, NULL, os); 7369 zil_replay(os, zdtmp, ztest_replay_vector); 7370 ztest_zd_fini(zdtmp); 7371 7372 if (dmu_objset_zil(os)->zl_parse_lr_count != 0 && 7373 ztest_opts.zo_verbose >= 6) { 7374 zilog_t *zilog = dmu_objset_zil(os); 7375 7376 (void) printf("%s replay %"PRIu64" blocks, " 7377 "%"PRIu64" records, seq %"PRIu64"\n", 7378 name, 7379 zilog->zl_parse_blk_count, 7380 zilog->zl_parse_lr_count, 7381 zilog->zl_replaying_seq); 7382 } 7383 7384 umem_free(zdtmp, sizeof (ztest_ds_t)); 7385 7386 dmu_objset_disown(os, B_TRUE, FTAG); 7387 return (0); 7388 } 7389 7390 static void 7391 ztest_freeze(void) 7392 { 7393 ztest_ds_t *zd = &ztest_ds[0]; 7394 spa_t *spa; 7395 int numloops = 0; 7396 7397 if (ztest_opts.zo_verbose >= 3) 7398 (void) printf("testing spa_freeze()...\n"); 7399 7400 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE); 7401 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 7402 VERIFY0(ztest_dataset_open(0)); 7403 ztest_spa = spa; 7404 7405 /* 7406 * Force the first log block to be transactionally allocated. 7407 * We have to do this before we freeze the pool -- otherwise 7408 * the log chain won't be anchored. 7409 */ 7410 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 7411 ztest_dmu_object_alloc_free(zd, 0); 7412 zil_commit(zd->zd_zilog, 0); 7413 } 7414 7415 txg_wait_synced(spa_get_dsl(spa), 0); 7416 7417 /* 7418 * Freeze the pool. This stops spa_sync() from doing anything, 7419 * so that the only way to record changes from now on is the ZIL. 7420 */ 7421 spa_freeze(spa); 7422 7423 /* 7424 * Because it is hard to predict how much space a write will actually 7425 * require beforehand, we leave ourselves some fudge space to write over 7426 * capacity. 7427 */ 7428 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; 7429 7430 /* 7431 * Run tests that generate log records but don't alter the pool config 7432 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 7433 * We do a txg_wait_synced() after each iteration to force the txg 7434 * to increase well beyond the last synced value in the uberblock. 7435 * The ZIL should be OK with that. 7436 * 7437 * Run a random number of times less than zo_maxloops and ensure we do 7438 * not run out of space on the pool. 7439 */ 7440 while (ztest_random(10) != 0 && 7441 numloops++ < ztest_opts.zo_maxloops && 7442 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { 7443 ztest_od_t od; 7444 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); 7445 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); 7446 ztest_io(zd, od.od_object, 7447 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 7448 txg_wait_synced(spa_get_dsl(spa), 0); 7449 } 7450 7451 /* 7452 * Commit all of the changes we just generated. 7453 */ 7454 zil_commit(zd->zd_zilog, 0); 7455 txg_wait_synced(spa_get_dsl(spa), 0); 7456 7457 /* 7458 * Close our dataset and close the pool. 7459 */ 7460 ztest_dataset_close(0); 7461 spa_close(spa, FTAG); 7462 kernel_fini(); 7463 7464 /* 7465 * Open and close the pool and dataset to induce log replay. 7466 */ 7467 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE); 7468 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 7469 ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX); 7470 VERIFY0(ztest_dataset_open(0)); 7471 ztest_spa = spa; 7472 txg_wait_synced(spa_get_dsl(spa), 0); 7473 ztest_dataset_close(0); 7474 ztest_reguid(NULL, 0); 7475 7476 spa_close(spa, FTAG); 7477 kernel_fini(); 7478 } 7479 7480 static void 7481 ztest_import_impl(void) 7482 { 7483 importargs_t args = { 0 }; 7484 nvlist_t *cfg = NULL; 7485 int nsearch = 1; 7486 char *searchdirs[nsearch]; 7487 int flags = ZFS_IMPORT_MISSING_LOG; 7488 7489 searchdirs[0] = ztest_opts.zo_dir; 7490 args.paths = nsearch; 7491 args.path = searchdirs; 7492 args.can_be_active = B_FALSE; 7493 7494 libpc_handle_t lpch = { 7495 .lpc_lib_handle = NULL, 7496 .lpc_ops = &libzpool_config_ops, 7497 .lpc_printerr = B_TRUE 7498 }; 7499 VERIFY0(zpool_find_config(&lpch, ztest_opts.zo_pool, &cfg, &args)); 7500 VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags)); 7501 fnvlist_free(cfg); 7502 } 7503 7504 /* 7505 * Import a storage pool with the given name. 7506 */ 7507 static void 7508 ztest_import(ztest_shared_t *zs) 7509 { 7510 spa_t *spa; 7511 7512 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 7513 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL); 7514 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL)); 7515 7516 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE); 7517 7518 ztest_import_impl(); 7519 7520 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 7521 zs->zs_metaslab_sz = 7522 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 7523 spa_close(spa, FTAG); 7524 7525 kernel_fini(); 7526 7527 if (!ztest_opts.zo_mmp_test) { 7528 ztest_run_zdb(ztest_opts.zo_pool); 7529 ztest_freeze(); 7530 ztest_run_zdb(ztest_opts.zo_pool); 7531 } 7532 7533 (void) pthread_rwlock_destroy(&ztest_name_lock); 7534 mutex_destroy(&ztest_vdev_lock); 7535 mutex_destroy(&ztest_checkpoint_lock); 7536 } 7537 7538 /* 7539 * Kick off threads to run tests on all datasets in parallel. 7540 */ 7541 static void 7542 ztest_run(ztest_shared_t *zs) 7543 { 7544 spa_t *spa; 7545 objset_t *os; 7546 kthread_t *resume_thread, *deadman_thread; 7547 kthread_t **run_threads; 7548 uint64_t object; 7549 int error; 7550 int t, d; 7551 7552 ztest_exiting = B_FALSE; 7553 7554 /* 7555 * Initialize parent/child shared state. 7556 */ 7557 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 7558 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL); 7559 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL)); 7560 7561 zs->zs_thread_start = gethrtime(); 7562 zs->zs_thread_stop = 7563 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 7564 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 7565 zs->zs_thread_kill = zs->zs_thread_stop; 7566 if (ztest_random(100) < ztest_opts.zo_killrate) { 7567 zs->zs_thread_kill -= 7568 ztest_random(ztest_opts.zo_passtime * NANOSEC); 7569 } 7570 7571 mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL); 7572 7573 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 7574 offsetof(ztest_cb_data_t, zcd_node)); 7575 7576 /* 7577 * Open our pool. It may need to be imported first depending on 7578 * what tests were running when the previous pass was terminated. 7579 */ 7580 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE); 7581 error = spa_open(ztest_opts.zo_pool, &spa, FTAG); 7582 if (error) { 7583 VERIFY3S(error, ==, ENOENT); 7584 ztest_import_impl(); 7585 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 7586 zs->zs_metaslab_sz = 7587 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 7588 } 7589 7590 metaslab_preload_limit = ztest_random(20) + 1; 7591 ztest_spa = spa; 7592 7593 VERIFY0(vdev_raidz_impl_set("cycle")); 7594 7595 dmu_objset_stats_t dds; 7596 VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool, 7597 DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os)); 7598 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 7599 dmu_objset_fast_stat(os, &dds); 7600 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 7601 zs->zs_guid = dds.dds_guid; 7602 dmu_objset_disown(os, B_TRUE, FTAG); 7603 7604 /* 7605 * Create a thread to periodically resume suspended I/O. 7606 */ 7607 resume_thread = thread_create(NULL, 0, ztest_resume_thread, 7608 spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri); 7609 7610 /* 7611 * Create a deadman thread and set to panic if we hang. 7612 */ 7613 deadman_thread = thread_create(NULL, 0, ztest_deadman_thread, 7614 zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri); 7615 7616 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; 7617 7618 /* 7619 * Verify that we can safely inquire about any object, 7620 * whether it's allocated or not. To make it interesting, 7621 * we probe a 5-wide window around each power of two. 7622 * This hits all edge cases, including zero and the max. 7623 */ 7624 for (t = 0; t < 64; t++) { 7625 for (d = -5; d <= 5; d++) { 7626 error = dmu_object_info(spa->spa_meta_objset, 7627 (1ULL << t) + d, NULL); 7628 ASSERT(error == 0 || error == ENOENT || 7629 error == EINVAL); 7630 } 7631 } 7632 7633 /* 7634 * If we got any ENOSPC errors on the previous run, destroy something. 7635 */ 7636 if (zs->zs_enospc_count != 0) { 7637 int d = ztest_random(ztest_opts.zo_datasets); 7638 ztest_dataset_destroy(d); 7639 } 7640 zs->zs_enospc_count = 0; 7641 7642 /* 7643 * If we were in the middle of ztest_device_removal() and were killed 7644 * we need to ensure the removal and scrub complete before running 7645 * any tests that check ztest_device_removal_active. The removal will 7646 * be restarted automatically when the spa is opened, but we need to 7647 * initiate the scrub manually if it is not already in progress. Note 7648 * that we always run the scrub whenever an indirect vdev exists 7649 * because we have no way of knowing for sure if ztest_device_removal() 7650 * fully completed its scrub before the pool was reimported. 7651 */ 7652 if (spa->spa_removing_phys.sr_state == DSS_SCANNING || 7653 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { 7654 while (spa->spa_removing_phys.sr_state == DSS_SCANNING) 7655 txg_wait_synced(spa_get_dsl(spa), 0); 7656 7657 error = ztest_scrub_impl(spa); 7658 if (error == EBUSY) 7659 error = 0; 7660 ASSERT0(error); 7661 } 7662 7663 run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *), 7664 UMEM_NOFAIL); 7665 7666 if (ztest_opts.zo_verbose >= 4) 7667 (void) printf("starting main threads...\n"); 7668 7669 /* 7670 * Replay all logs of all datasets in the pool. This is primarily for 7671 * temporary datasets which wouldn't otherwise get replayed, which 7672 * can trigger failures when attempting to offline a SLOG in 7673 * ztest_fault_inject(). 7674 */ 7675 (void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb, 7676 NULL, DS_FIND_CHILDREN); 7677 7678 /* 7679 * Kick off all the tests that run in parallel. 7680 */ 7681 for (t = 0; t < ztest_opts.zo_threads; t++) { 7682 if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) { 7683 umem_free(run_threads, ztest_opts.zo_threads * 7684 sizeof (kthread_t *)); 7685 return; 7686 } 7687 7688 run_threads[t] = thread_create(NULL, 0, ztest_thread, 7689 (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE, 7690 defclsyspri); 7691 } 7692 7693 /* 7694 * Wait for all of the tests to complete. 7695 */ 7696 for (t = 0; t < ztest_opts.zo_threads; t++) 7697 VERIFY0(thread_join(run_threads[t])); 7698 7699 /* 7700 * Close all datasets. This must be done after all the threads 7701 * are joined so we can be sure none of the datasets are in-use 7702 * by any of the threads. 7703 */ 7704 for (t = 0; t < ztest_opts.zo_threads; t++) { 7705 if (t < ztest_opts.zo_datasets) 7706 ztest_dataset_close(t); 7707 } 7708 7709 txg_wait_synced(spa_get_dsl(spa), 0); 7710 7711 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 7712 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 7713 7714 umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *)); 7715 7716 /* Kill the resume and deadman threads */ 7717 ztest_exiting = B_TRUE; 7718 VERIFY0(thread_join(resume_thread)); 7719 VERIFY0(thread_join(deadman_thread)); 7720 ztest_resume(spa); 7721 7722 /* 7723 * Right before closing the pool, kick off a bunch of async I/O; 7724 * spa_close() should wait for it to complete. 7725 */ 7726 for (object = 1; object < 50; object++) { 7727 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20, 7728 ZIO_PRIORITY_SYNC_READ); 7729 } 7730 7731 /* Verify that at least one commit cb was called in a timely fashion */ 7732 if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG) 7733 VERIFY0(zc_min_txg_delay); 7734 7735 spa_close(spa, FTAG); 7736 7737 /* 7738 * Verify that we can loop over all pools. 7739 */ 7740 mutex_enter(&spa_namespace_lock); 7741 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 7742 if (ztest_opts.zo_verbose > 3) 7743 (void) printf("spa_next: found %s\n", spa_name(spa)); 7744 mutex_exit(&spa_namespace_lock); 7745 7746 /* 7747 * Verify that we can export the pool and reimport it under a 7748 * different name. 7749 */ 7750 if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) { 7751 char name[ZFS_MAX_DATASET_NAME_LEN]; 7752 (void) snprintf(name, sizeof (name), "%s_import", 7753 ztest_opts.zo_pool); 7754 ztest_spa_import_export(ztest_opts.zo_pool, name); 7755 ztest_spa_import_export(name, ztest_opts.zo_pool); 7756 } 7757 7758 kernel_fini(); 7759 7760 list_destroy(&zcl.zcl_callbacks); 7761 mutex_destroy(&zcl.zcl_callbacks_lock); 7762 (void) pthread_rwlock_destroy(&ztest_name_lock); 7763 mutex_destroy(&ztest_vdev_lock); 7764 mutex_destroy(&ztest_checkpoint_lock); 7765 } 7766 7767 static void 7768 print_time(hrtime_t t, char *timebuf) 7769 { 7770 hrtime_t s = t / NANOSEC; 7771 hrtime_t m = s / 60; 7772 hrtime_t h = m / 60; 7773 hrtime_t d = h / 24; 7774 7775 s -= m * 60; 7776 m -= h * 60; 7777 h -= d * 24; 7778 7779 timebuf[0] = '\0'; 7780 7781 if (d) 7782 (void) sprintf(timebuf, 7783 "%llud%02lluh%02llum%02llus", d, h, m, s); 7784 else if (h) 7785 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 7786 else if (m) 7787 (void) sprintf(timebuf, "%llum%02llus", m, s); 7788 else 7789 (void) sprintf(timebuf, "%llus", s); 7790 } 7791 7792 static nvlist_t * 7793 make_random_props(void) 7794 { 7795 nvlist_t *props; 7796 7797 props = fnvlist_alloc(); 7798 7799 if (ztest_random(2) == 0) 7800 return (props); 7801 7802 fnvlist_add_uint64(props, 7803 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1); 7804 7805 return (props); 7806 } 7807 7808 /* 7809 * Create a storage pool with the given name and initial vdev size. 7810 * Then test spa_freeze() functionality. 7811 */ 7812 static void 7813 ztest_init(ztest_shared_t *zs) 7814 { 7815 spa_t *spa; 7816 nvlist_t *nvroot, *props; 7817 int i; 7818 7819 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 7820 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL); 7821 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL)); 7822 7823 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE); 7824 7825 /* 7826 * Create the storage pool. 7827 */ 7828 (void) spa_destroy(ztest_opts.zo_pool); 7829 ztest_shared->zs_vdev_next_leaf = 0; 7830 zs->zs_splits = 0; 7831 zs->zs_mirrors = ztest_opts.zo_mirrors; 7832 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 7833 NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1); 7834 props = make_random_props(); 7835 7836 /* 7837 * We don't expect the pool to suspend unless maxfaults == 0, 7838 * in which case ztest_fault_inject() temporarily takes away 7839 * the only valid replica. 7840 */ 7841 fnvlist_add_uint64(props, 7842 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE), 7843 MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT); 7844 7845 for (i = 0; i < SPA_FEATURES; i++) { 7846 char *buf; 7847 7848 if (!spa_feature_table[i].fi_zfs_mod_supported) 7849 continue; 7850 7851 /* 7852 * 75% chance of using the log space map feature. We want ztest 7853 * to exercise both the code paths that use the log space map 7854 * feature and the ones that don't. 7855 */ 7856 if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0) 7857 continue; 7858 7859 VERIFY3S(-1, !=, asprintf(&buf, "feature@%s", 7860 spa_feature_table[i].fi_uname)); 7861 fnvlist_add_uint64(props, buf, 0); 7862 free(buf); 7863 } 7864 7865 VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL)); 7866 fnvlist_free(nvroot); 7867 fnvlist_free(props); 7868 7869 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 7870 zs->zs_metaslab_sz = 7871 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 7872 spa_close(spa, FTAG); 7873 7874 kernel_fini(); 7875 7876 if (!ztest_opts.zo_mmp_test) { 7877 ztest_run_zdb(ztest_opts.zo_pool); 7878 ztest_freeze(); 7879 ztest_run_zdb(ztest_opts.zo_pool); 7880 } 7881 7882 (void) pthread_rwlock_destroy(&ztest_name_lock); 7883 mutex_destroy(&ztest_vdev_lock); 7884 mutex_destroy(&ztest_checkpoint_lock); 7885 } 7886 7887 static void 7888 setup_data_fd(void) 7889 { 7890 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 7891 7892 ztest_fd_data = mkstemp(ztest_name_data); 7893 ASSERT3S(ztest_fd_data, >=, 0); 7894 (void) unlink(ztest_name_data); 7895 } 7896 7897 static int 7898 shared_data_size(ztest_shared_hdr_t *hdr) 7899 { 7900 int size; 7901 7902 size = hdr->zh_hdr_size; 7903 size += hdr->zh_opts_size; 7904 size += hdr->zh_size; 7905 size += hdr->zh_stats_size * hdr->zh_stats_count; 7906 size += hdr->zh_ds_size * hdr->zh_ds_count; 7907 7908 return (size); 7909 } 7910 7911 static void 7912 setup_hdr(void) 7913 { 7914 int size; 7915 ztest_shared_hdr_t *hdr; 7916 7917 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 7918 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 7919 ASSERT3P(hdr, !=, MAP_FAILED); 7920 7921 VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 7922 7923 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 7924 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 7925 hdr->zh_size = sizeof (ztest_shared_t); 7926 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 7927 hdr->zh_stats_count = ZTEST_FUNCS; 7928 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 7929 hdr->zh_ds_count = ztest_opts.zo_datasets; 7930 7931 size = shared_data_size(hdr); 7932 VERIFY0(ftruncate(ztest_fd_data, size)); 7933 7934 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 7935 } 7936 7937 static void 7938 setup_data(void) 7939 { 7940 int size, offset; 7941 ztest_shared_hdr_t *hdr; 7942 uint8_t *buf; 7943 7944 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 7945 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 7946 ASSERT3P(hdr, !=, MAP_FAILED); 7947 7948 size = shared_data_size(hdr); 7949 7950 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 7951 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 7952 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 7953 ASSERT3P(hdr, !=, MAP_FAILED); 7954 buf = (uint8_t *)hdr; 7955 7956 offset = hdr->zh_hdr_size; 7957 ztest_shared_opts = (void *)&buf[offset]; 7958 offset += hdr->zh_opts_size; 7959 ztest_shared = (void *)&buf[offset]; 7960 offset += hdr->zh_size; 7961 ztest_shared_callstate = (void *)&buf[offset]; 7962 offset += hdr->zh_stats_size * hdr->zh_stats_count; 7963 ztest_shared_ds = (void *)&buf[offset]; 7964 } 7965 7966 static boolean_t 7967 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 7968 { 7969 pid_t pid; 7970 int status; 7971 char *cmdbuf = NULL; 7972 7973 pid = fork(); 7974 7975 if (cmd == NULL) { 7976 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 7977 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 7978 cmd = cmdbuf; 7979 } 7980 7981 if (pid == -1) 7982 fatal(B_TRUE, "fork failed"); 7983 7984 if (pid == 0) { /* child */ 7985 char fd_data_str[12]; 7986 7987 VERIFY3S(11, >=, 7988 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 7989 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 7990 7991 if (libpath != NULL) { 7992 const char *curlp = getenv("LD_LIBRARY_PATH"); 7993 if (curlp == NULL) 7994 VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1)); 7995 else { 7996 char *newlp = NULL; 7997 VERIFY3S(-1, !=, 7998 asprintf(&newlp, "%s:%s", libpath, curlp)); 7999 VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1)); 8000 free(newlp); 8001 } 8002 } 8003 (void) execl(cmd, cmd, (char *)NULL); 8004 ztest_dump_core = B_FALSE; 8005 fatal(B_TRUE, "exec failed: %s", cmd); 8006 } 8007 8008 if (cmdbuf != NULL) { 8009 umem_free(cmdbuf, MAXPATHLEN); 8010 cmd = NULL; 8011 } 8012 8013 while (waitpid(pid, &status, 0) != pid) 8014 continue; 8015 if (statusp != NULL) 8016 *statusp = status; 8017 8018 if (WIFEXITED(status)) { 8019 if (WEXITSTATUS(status) != 0) { 8020 (void) fprintf(stderr, "child exited with code %d\n", 8021 WEXITSTATUS(status)); 8022 exit(2); 8023 } 8024 return (B_FALSE); 8025 } else if (WIFSIGNALED(status)) { 8026 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 8027 (void) fprintf(stderr, "child died with signal %d\n", 8028 WTERMSIG(status)); 8029 exit(3); 8030 } 8031 return (B_TRUE); 8032 } else { 8033 (void) fprintf(stderr, "something strange happened to child\n"); 8034 exit(4); 8035 } 8036 } 8037 8038 static void 8039 ztest_run_init(void) 8040 { 8041 int i; 8042 8043 ztest_shared_t *zs = ztest_shared; 8044 8045 /* 8046 * Blow away any existing copy of zpool.cache 8047 */ 8048 (void) remove(spa_config_path); 8049 8050 if (ztest_opts.zo_init == 0) { 8051 if (ztest_opts.zo_verbose >= 1) 8052 (void) printf("Importing pool %s\n", 8053 ztest_opts.zo_pool); 8054 ztest_import(zs); 8055 return; 8056 } 8057 8058 /* 8059 * Create and initialize our storage pool. 8060 */ 8061 for (i = 1; i <= ztest_opts.zo_init; i++) { 8062 memset(zs, 0, sizeof (*zs)); 8063 if (ztest_opts.zo_verbose >= 3 && 8064 ztest_opts.zo_init != 1) { 8065 (void) printf("ztest_init(), pass %d\n", i); 8066 } 8067 ztest_init(zs); 8068 } 8069 } 8070 8071 int 8072 main(int argc, char **argv) 8073 { 8074 int kills = 0; 8075 int iters = 0; 8076 int older = 0; 8077 int newer = 0; 8078 ztest_shared_t *zs; 8079 ztest_info_t *zi; 8080 ztest_shared_callstate_t *zc; 8081 char timebuf[100]; 8082 char numbuf[NN_NUMBUF_SZ]; 8083 char *cmd; 8084 boolean_t hasalt; 8085 int f, err; 8086 char *fd_data_str = getenv("ZTEST_FD_DATA"); 8087 struct sigaction action; 8088 8089 (void) setvbuf(stdout, NULL, _IOLBF, 0); 8090 8091 dprintf_setup(&argc, argv); 8092 zfs_deadman_synctime_ms = 300000; 8093 zfs_deadman_checktime_ms = 30000; 8094 /* 8095 * As two-word space map entries may not come up often (especially 8096 * if pool and vdev sizes are small) we want to force at least some 8097 * of them so the feature get tested. 8098 */ 8099 zfs_force_some_double_word_sm_entries = B_TRUE; 8100 8101 /* 8102 * Verify that even extensively damaged split blocks with many 8103 * segments can be reconstructed in a reasonable amount of time 8104 * when reconstruction is known to be possible. 8105 * 8106 * Note: the lower this value is, the more damage we inflict, and 8107 * the more time ztest spends in recovering that damage. We chose 8108 * to induce damage 1/100th of the time so recovery is tested but 8109 * not so frequently that ztest doesn't get to test other code paths. 8110 */ 8111 zfs_reconstruct_indirect_damage_fraction = 100; 8112 8113 action.sa_handler = sig_handler; 8114 sigemptyset(&action.sa_mask); 8115 action.sa_flags = 0; 8116 8117 if (sigaction(SIGSEGV, &action, NULL) < 0) { 8118 (void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n", 8119 strerror(errno)); 8120 exit(EXIT_FAILURE); 8121 } 8122 8123 if (sigaction(SIGABRT, &action, NULL) < 0) { 8124 (void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n", 8125 strerror(errno)); 8126 exit(EXIT_FAILURE); 8127 } 8128 8129 /* 8130 * Force random_get_bytes() to use /dev/urandom in order to prevent 8131 * ztest from needlessly depleting the system entropy pool. 8132 */ 8133 random_path = "/dev/urandom"; 8134 ztest_fd_rand = open(random_path, O_RDONLY | O_CLOEXEC); 8135 ASSERT3S(ztest_fd_rand, >=, 0); 8136 8137 if (!fd_data_str) { 8138 process_options(argc, argv); 8139 8140 setup_data_fd(); 8141 setup_hdr(); 8142 setup_data(); 8143 memcpy(ztest_shared_opts, &ztest_opts, 8144 sizeof (*ztest_shared_opts)); 8145 } else { 8146 ztest_fd_data = atoi(fd_data_str); 8147 setup_data(); 8148 memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts)); 8149 } 8150 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 8151 8152 err = ztest_set_global_vars(); 8153 if (err != 0 && !fd_data_str) { 8154 /* error message done by ztest_set_global_vars */ 8155 exit(EXIT_FAILURE); 8156 } else { 8157 /* children should not be spawned if setting gvars fails */ 8158 VERIFY3S(err, ==, 0); 8159 } 8160 8161 /* Override location of zpool.cache */ 8162 VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache", 8163 ztest_opts.zo_dir), !=, -1); 8164 8165 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 8166 UMEM_NOFAIL); 8167 zs = ztest_shared; 8168 8169 if (fd_data_str) { 8170 metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging; 8171 metaslab_df_alloc_threshold = 8172 zs->zs_metaslab_df_alloc_threshold; 8173 8174 if (zs->zs_do_init) 8175 ztest_run_init(); 8176 else 8177 ztest_run(zs); 8178 exit(0); 8179 } 8180 8181 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 8182 8183 if (ztest_opts.zo_verbose >= 1) { 8184 (void) printf("%"PRIu64" vdevs, %d datasets, %d threads," 8185 "%d %s disks, %"PRIu64" seconds...\n\n", 8186 ztest_opts.zo_vdevs, 8187 ztest_opts.zo_datasets, 8188 ztest_opts.zo_threads, 8189 ztest_opts.zo_raid_children, 8190 ztest_opts.zo_raid_type, 8191 ztest_opts.zo_time); 8192 } 8193 8194 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 8195 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 8196 8197 zs->zs_do_init = B_TRUE; 8198 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 8199 if (ztest_opts.zo_verbose >= 1) { 8200 (void) printf("Executing older ztest for " 8201 "initialization: %s\n", ztest_opts.zo_alt_ztest); 8202 } 8203 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 8204 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 8205 } else { 8206 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 8207 } 8208 zs->zs_do_init = B_FALSE; 8209 8210 zs->zs_proc_start = gethrtime(); 8211 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 8212 8213 for (f = 0; f < ZTEST_FUNCS; f++) { 8214 zi = &ztest_info[f]; 8215 zc = ZTEST_GET_SHARED_CALLSTATE(f); 8216 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 8217 zc->zc_next = UINT64_MAX; 8218 else 8219 zc->zc_next = zs->zs_proc_start + 8220 ztest_random(2 * zi->zi_interval[0] + 1); 8221 } 8222 8223 /* 8224 * Run the tests in a loop. These tests include fault injection 8225 * to verify that self-healing data works, and forced crashes 8226 * to verify that we never lose on-disk consistency. 8227 */ 8228 while (gethrtime() < zs->zs_proc_stop) { 8229 int status; 8230 boolean_t killed; 8231 8232 /* 8233 * Initialize the workload counters for each function. 8234 */ 8235 for (f = 0; f < ZTEST_FUNCS; f++) { 8236 zc = ZTEST_GET_SHARED_CALLSTATE(f); 8237 zc->zc_count = 0; 8238 zc->zc_time = 0; 8239 } 8240 8241 /* Set the allocation switch size */ 8242 zs->zs_metaslab_df_alloc_threshold = 8243 ztest_random(zs->zs_metaslab_sz / 4) + 1; 8244 8245 if (!hasalt || ztest_random(2) == 0) { 8246 if (hasalt && ztest_opts.zo_verbose >= 1) { 8247 (void) printf("Executing newer ztest: %s\n", 8248 cmd); 8249 } 8250 newer++; 8251 killed = exec_child(cmd, NULL, B_TRUE, &status); 8252 } else { 8253 if (hasalt && ztest_opts.zo_verbose >= 1) { 8254 (void) printf("Executing older ztest: %s\n", 8255 ztest_opts.zo_alt_ztest); 8256 } 8257 older++; 8258 killed = exec_child(ztest_opts.zo_alt_ztest, 8259 ztest_opts.zo_alt_libpath, B_TRUE, &status); 8260 } 8261 8262 if (killed) 8263 kills++; 8264 iters++; 8265 8266 if (ztest_opts.zo_verbose >= 1) { 8267 hrtime_t now = gethrtime(); 8268 8269 now = MIN(now, zs->zs_proc_stop); 8270 print_time(zs->zs_proc_stop - now, timebuf); 8271 nicenum(zs->zs_space, numbuf, sizeof (numbuf)); 8272 8273 (void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, " 8274 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 8275 iters, 8276 WIFEXITED(status) ? "Complete" : "SIGKILL", 8277 zs->zs_enospc_count, 8278 100.0 * zs->zs_alloc / zs->zs_space, 8279 numbuf, 8280 100.0 * (now - zs->zs_proc_start) / 8281 (ztest_opts.zo_time * NANOSEC), timebuf); 8282 } 8283 8284 if (ztest_opts.zo_verbose >= 2) { 8285 (void) printf("\nWorkload summary:\n\n"); 8286 (void) printf("%7s %9s %s\n", 8287 "Calls", "Time", "Function"); 8288 (void) printf("%7s %9s %s\n", 8289 "-----", "----", "--------"); 8290 for (f = 0; f < ZTEST_FUNCS; f++) { 8291 zi = &ztest_info[f]; 8292 zc = ZTEST_GET_SHARED_CALLSTATE(f); 8293 print_time(zc->zc_time, timebuf); 8294 (void) printf("%7"PRIu64" %9s %s\n", 8295 zc->zc_count, timebuf, 8296 zi->zi_funcname); 8297 } 8298 (void) printf("\n"); 8299 } 8300 8301 if (!ztest_opts.zo_mmp_test) 8302 ztest_run_zdb(ztest_opts.zo_pool); 8303 } 8304 8305 if (ztest_opts.zo_verbose >= 1) { 8306 if (hasalt) { 8307 (void) printf("%d runs of older ztest: %s\n", older, 8308 ztest_opts.zo_alt_ztest); 8309 (void) printf("%d runs of newer ztest: %s\n", newer, 8310 cmd); 8311 } 8312 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 8313 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 8314 } 8315 8316 umem_free(cmd, MAXNAMELEN); 8317 8318 return (0); 8319 } 8320