1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2016, 2017, Intel Corporation. 26 * Copyright (c) 2017 Open-E, Inc. All Rights Reserved. 27 * Copyright (c) 2023, Klara Inc. 28 */ 29 30 /* 31 * ZFS syseventd module. 32 * 33 * file origin: openzfs/usr/src/cmd/syseventd/modules/zfs_mod/zfs_mod.c 34 * 35 * The purpose of this module is to identify when devices are added to the 36 * system, and appropriately online or replace the affected vdevs. 37 * 38 * When a device is added to the system: 39 * 40 * 1. Search for any vdevs whose devid matches that of the newly added 41 * device. 42 * 43 * 2. If no vdevs are found, then search for any vdevs whose udev path 44 * matches that of the new device. 45 * 46 * 3. If no vdevs match by either method, then ignore the event. 47 * 48 * 4. Attempt to online the device with a flag to indicate that it should 49 * be unspared when resilvering completes. If this succeeds, then the 50 * same device was inserted and we should continue normally. 51 * 52 * 5. If the pool does not have the 'autoreplace' property set, attempt to 53 * online the device again without the unspare flag, which will 54 * generate a FMA fault. 55 * 56 * 6. If the pool has the 'autoreplace' property set, and the matching vdev 57 * is a whole disk, then label the new disk and attempt a 'zpool 58 * replace'. 59 * 60 * The module responds to EC_DEV_ADD events. The special ESC_ZFS_VDEV_CHECK 61 * event indicates that a device failed to open during pool load, but the 62 * autoreplace property was set. In this case, we deferred the associated 63 * FMA fault until our module had a chance to process the autoreplace logic. 64 * If the device could not be replaced, then the second online attempt will 65 * trigger the FMA fault that we skipped earlier. 66 * 67 * On Linux udev provides a disk insert for both the disk and the partition. 68 */ 69 70 #include <ctype.h> 71 #include <fcntl.h> 72 #include <libnvpair.h> 73 #include <libzfs.h> 74 #include <libzutil.h> 75 #include <limits.h> 76 #include <stddef.h> 77 #include <stdlib.h> 78 #include <string.h> 79 #include <syslog.h> 80 #include <sys/list.h> 81 #include <sys/sunddi.h> 82 #include <sys/sysevent/eventdefs.h> 83 #include <sys/sysevent/dev.h> 84 #include <thread_pool.h> 85 #include <pthread.h> 86 #include <unistd.h> 87 #include <errno.h> 88 #include "zfs_agents.h" 89 #include "../zed_log.h" 90 91 #define DEV_BYID_PATH "/dev/disk/by-id/" 92 #define DEV_BYPATH_PATH "/dev/disk/by-path/" 93 #define DEV_BYVDEV_PATH "/dev/disk/by-vdev/" 94 95 typedef void (*zfs_process_func_t)(zpool_handle_t *, nvlist_t *, boolean_t); 96 97 libzfs_handle_t *g_zfshdl; 98 list_t g_pool_list; /* list of unavailable pools at initialization */ 99 list_t g_device_list; /* list of disks with asynchronous label request */ 100 tpool_t *g_tpool; 101 boolean_t g_enumeration_done; 102 pthread_t g_zfs_tid; /* zfs_enum_pools() thread */ 103 104 typedef struct unavailpool { 105 zpool_handle_t *uap_zhp; 106 list_node_t uap_node; 107 } unavailpool_t; 108 109 typedef struct pendingdev { 110 char pd_physpath[128]; 111 list_node_t pd_node; 112 } pendingdev_t; 113 114 static int 115 zfs_toplevel_state(zpool_handle_t *zhp) 116 { 117 nvlist_t *nvroot; 118 vdev_stat_t *vs; 119 unsigned int c; 120 121 verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL), 122 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 123 verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS, 124 (uint64_t **)&vs, &c) == 0); 125 return (vs->vs_state); 126 } 127 128 static int 129 zfs_unavail_pool(zpool_handle_t *zhp, void *data) 130 { 131 zed_log_msg(LOG_INFO, "zfs_unavail_pool: examining '%s' (state %d)", 132 zpool_get_name(zhp), (int)zfs_toplevel_state(zhp)); 133 134 if (zfs_toplevel_state(zhp) < VDEV_STATE_DEGRADED) { 135 unavailpool_t *uap; 136 uap = malloc(sizeof (unavailpool_t)); 137 if (uap == NULL) { 138 perror("malloc"); 139 exit(EXIT_FAILURE); 140 } 141 142 uap->uap_zhp = zhp; 143 list_insert_tail((list_t *)data, uap); 144 } else { 145 zpool_close(zhp); 146 } 147 return (0); 148 } 149 150 /* 151 * Write an array of strings to the zed log 152 */ 153 static void lines_to_zed_log_msg(char **lines, int lines_cnt) 154 { 155 int i; 156 for (i = 0; i < lines_cnt; i++) { 157 zed_log_msg(LOG_INFO, "%s", lines[i]); 158 } 159 } 160 161 /* 162 * Two stage replace on Linux 163 * since we get disk notifications 164 * we can wait for partitioned disk slice to show up! 165 * 166 * First stage tags the disk, initiates async partitioning, and returns 167 * Second stage finds the tag and proceeds to ZFS labeling/replace 168 * 169 * disk-add --> label-disk + tag-disk --> partition-add --> zpool_vdev_attach 170 * 171 * 1. physical match with no fs, no partition 172 * tag it top, partition disk 173 * 174 * 2. physical match again, see partition and tag 175 * 176 */ 177 178 /* 179 * The device associated with the given vdev (either by devid or physical path) 180 * has been added to the system. If 'isdisk' is set, then we only attempt a 181 * replacement if it's a whole disk. This also implies that we should label the 182 * disk first. 183 * 184 * First, we attempt to online the device (making sure to undo any spare 185 * operation when finished). If this succeeds, then we're done. If it fails, 186 * and the new state is VDEV_CANT_OPEN, it indicates that the device was opened, 187 * but that the label was not what we expected. If the 'autoreplace' property 188 * is enabled, then we relabel the disk (if specified), and attempt a 'zpool 189 * replace'. If the online is successful, but the new state is something else 190 * (REMOVED or FAULTED), it indicates that we're out of sync or in some sort of 191 * race, and we should avoid attempting to relabel the disk. 192 * 193 * Also can arrive here from a ESC_ZFS_VDEV_CHECK event 194 */ 195 static void 196 zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t labeled) 197 { 198 const char *path; 199 vdev_state_t newstate; 200 nvlist_t *nvroot, *newvd; 201 pendingdev_t *device; 202 uint64_t wholedisk = 0ULL; 203 uint64_t offline = 0ULL, faulted = 0ULL; 204 uint64_t guid = 0ULL; 205 uint64_t is_spare = 0; 206 const char *physpath = NULL, *new_devid = NULL, *enc_sysfs_path = NULL; 207 char rawpath[PATH_MAX], fullpath[PATH_MAX]; 208 char pathbuf[PATH_MAX]; 209 int ret; 210 int online_flag = ZFS_ONLINE_CHECKREMOVE | ZFS_ONLINE_UNSPARE; 211 boolean_t is_sd = B_FALSE; 212 boolean_t is_mpath_wholedisk = B_FALSE; 213 uint_t c; 214 vdev_stat_t *vs; 215 char **lines = NULL; 216 int lines_cnt = 0; 217 218 /* 219 * Get the persistent path, typically under the '/dev/disk/by-id' or 220 * '/dev/disk/by-vdev' directories. Note that this path can change 221 * when a vdev is replaced with a new disk. 222 */ 223 if (nvlist_lookup_string(vdev, ZPOOL_CONFIG_PATH, &path) != 0) 224 return; 225 226 /* Skip healthy disks */ 227 verify(nvlist_lookup_uint64_array(vdev, ZPOOL_CONFIG_VDEV_STATS, 228 (uint64_t **)&vs, &c) == 0); 229 if (vs->vs_state == VDEV_STATE_HEALTHY) { 230 zed_log_msg(LOG_INFO, "%s: %s is already healthy, skip it.", 231 __func__, path); 232 return; 233 } 234 235 (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_PHYS_PATH, &physpath); 236 237 update_vdev_config_dev_sysfs_path(vdev, path, 238 ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH); 239 (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 240 &enc_sysfs_path); 241 242 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); 243 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_OFFLINE, &offline); 244 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_FAULTED, &faulted); 245 246 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_GUID, &guid); 247 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_IS_SPARE, &is_spare); 248 249 /* 250 * Special case: 251 * 252 * We've seen times where a disk won't have a ZPOOL_CONFIG_PHYS_PATH 253 * entry in their config. For example, on this force-faulted disk: 254 * 255 * children[0]: 256 * type: 'disk' 257 * id: 0 258 * guid: 14309659774640089719 259 * path: '/dev/disk/by-vdev/L28' 260 * whole_disk: 0 261 * DTL: 654 262 * create_txg: 4 263 * com.delphix:vdev_zap_leaf: 1161 264 * faulted: 1 265 * aux_state: 'external' 266 * children[1]: 267 * type: 'disk' 268 * id: 1 269 * guid: 16002508084177980912 270 * path: '/dev/disk/by-vdev/L29' 271 * devid: 'dm-uuid-mpath-35000c500a61d68a3' 272 * phys_path: 'L29' 273 * vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32' 274 * whole_disk: 0 275 * DTL: 1028 276 * create_txg: 4 277 * com.delphix:vdev_zap_leaf: 131 278 * 279 * If the disk's path is a /dev/disk/by-vdev/ path, then we can infer 280 * the ZPOOL_CONFIG_PHYS_PATH from the by-vdev disk name. 281 */ 282 if (physpath == NULL && path != NULL) { 283 /* If path begins with "/dev/disk/by-vdev/" ... */ 284 if (strncmp(path, DEV_BYVDEV_PATH, 285 strlen(DEV_BYVDEV_PATH)) == 0) { 286 /* Set physpath to the char after "/dev/disk/by-vdev" */ 287 physpath = &path[strlen(DEV_BYVDEV_PATH)]; 288 } 289 } 290 291 /* 292 * We don't want to autoreplace offlined disks. However, we do want to 293 * replace force-faulted disks (`zpool offline -f`). Force-faulted 294 * disks have both offline=1 and faulted=1 in the nvlist. 295 */ 296 if (offline && !faulted) { 297 zed_log_msg(LOG_INFO, "%s: %s is offline, skip autoreplace", 298 __func__, path); 299 return; 300 } 301 302 is_mpath_wholedisk = is_mpath_whole_disk(path); 303 zed_log_msg(LOG_INFO, "zfs_process_add: pool '%s' vdev '%s', phys '%s'" 304 " %s blank disk, %s mpath blank disk, %s labeled, enc sysfs '%s', " 305 "(guid %llu)", 306 zpool_get_name(zhp), path, 307 physpath ? physpath : "NULL", 308 wholedisk ? "is" : "not", 309 is_mpath_wholedisk? "is" : "not", 310 labeled ? "is" : "not", 311 enc_sysfs_path, 312 (long long unsigned int)guid); 313 314 /* 315 * The VDEV guid is preferred for identification (gets passed in path) 316 */ 317 if (guid != 0) { 318 (void) snprintf(fullpath, sizeof (fullpath), "%llu", 319 (long long unsigned int)guid); 320 } else { 321 /* 322 * otherwise use path sans partition suffix for whole disks 323 */ 324 (void) strlcpy(fullpath, path, sizeof (fullpath)); 325 if (wholedisk) { 326 char *spath = zfs_strip_partition(fullpath); 327 if (!spath) { 328 zed_log_msg(LOG_INFO, "%s: Can't alloc", 329 __func__); 330 return; 331 } 332 333 (void) strlcpy(fullpath, spath, sizeof (fullpath)); 334 free(spath); 335 } 336 } 337 338 if (is_spare) 339 online_flag |= ZFS_ONLINE_SPARE; 340 341 /* 342 * Attempt to online the device. 343 */ 344 if (zpool_vdev_online(zhp, fullpath, online_flag, &newstate) == 0 && 345 (newstate == VDEV_STATE_HEALTHY || 346 newstate == VDEV_STATE_DEGRADED)) { 347 zed_log_msg(LOG_INFO, 348 " zpool_vdev_online: vdev '%s' ('%s') is " 349 "%s", fullpath, physpath, (newstate == VDEV_STATE_HEALTHY) ? 350 "HEALTHY" : "DEGRADED"); 351 return; 352 } 353 354 /* 355 * vdev_id alias rule for using scsi_debug devices (FMA automated 356 * testing) 357 */ 358 if (physpath != NULL && strcmp("scsidebug", physpath) == 0) 359 is_sd = B_TRUE; 360 361 /* 362 * If the pool doesn't have the autoreplace property set, then use 363 * vdev online to trigger a FMA fault by posting an ereport. 364 */ 365 if (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL) || 366 !(wholedisk || is_mpath_wholedisk) || (physpath == NULL)) { 367 (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, 368 &newstate); 369 zed_log_msg(LOG_INFO, "Pool's autoreplace is not enabled or " 370 "not a blank disk for '%s' ('%s')", fullpath, 371 physpath); 372 return; 373 } 374 375 /* 376 * Convert physical path into its current device node. Rawpath 377 * needs to be /dev/disk/by-vdev for a scsi_debug device since 378 * /dev/disk/by-path will not be present. 379 */ 380 (void) snprintf(rawpath, sizeof (rawpath), "%s%s", 381 is_sd ? DEV_BYVDEV_PATH : DEV_BYPATH_PATH, physpath); 382 383 if (realpath(rawpath, pathbuf) == NULL && !is_mpath_wholedisk) { 384 zed_log_msg(LOG_INFO, " realpath: %s failed (%s)", 385 rawpath, strerror(errno)); 386 387 int err = zpool_vdev_online(zhp, fullpath, 388 ZFS_ONLINE_FORCEFAULT, &newstate); 389 390 zed_log_msg(LOG_INFO, " zpool_vdev_online: %s FORCEFAULT (%s) " 391 "err %d, new state %d", 392 fullpath, libzfs_error_description(g_zfshdl), err, 393 err ? (int)newstate : 0); 394 return; 395 } 396 397 /* Only autoreplace bad disks */ 398 if ((vs->vs_state != VDEV_STATE_DEGRADED) && 399 (vs->vs_state != VDEV_STATE_FAULTED) && 400 (vs->vs_state != VDEV_STATE_REMOVED) && 401 (vs->vs_state != VDEV_STATE_CANT_OPEN)) { 402 zed_log_msg(LOG_INFO, " not autoreplacing since disk isn't in " 403 "a bad state (currently %llu)", vs->vs_state); 404 return; 405 } 406 407 nvlist_lookup_string(vdev, "new_devid", &new_devid); 408 409 if (is_mpath_wholedisk) { 410 /* Don't label device mapper or multipath disks. */ 411 zed_log_msg(LOG_INFO, 412 " it's a multipath wholedisk, don't label"); 413 if (zpool_prepare_disk(zhp, vdev, "autoreplace", &lines, 414 &lines_cnt) != 0) { 415 zed_log_msg(LOG_INFO, 416 " zpool_prepare_disk: could not " 417 "prepare '%s' (%s)", fullpath, 418 libzfs_error_description(g_zfshdl)); 419 if (lines_cnt > 0) { 420 zed_log_msg(LOG_INFO, 421 " zfs_prepare_disk output:"); 422 lines_to_zed_log_msg(lines, lines_cnt); 423 } 424 libzfs_free_str_array(lines, lines_cnt); 425 return; 426 } 427 } else if (!labeled) { 428 /* 429 * we're auto-replacing a raw disk, so label it first 430 */ 431 char *leafname; 432 433 /* 434 * If this is a request to label a whole disk, then attempt to 435 * write out the label. Before we can label the disk, we need 436 * to map the physical string that was matched on to the under 437 * lying device node. 438 * 439 * If any part of this process fails, then do a force online 440 * to trigger a ZFS fault for the device (and any hot spare 441 * replacement). 442 */ 443 leafname = strrchr(pathbuf, '/') + 1; 444 445 /* 446 * If this is a request to label a whole disk, then attempt to 447 * write out the label. 448 */ 449 if (zpool_prepare_and_label_disk(g_zfshdl, zhp, leafname, 450 vdev, "autoreplace", &lines, &lines_cnt) != 0) { 451 zed_log_msg(LOG_WARNING, 452 " zpool_prepare_and_label_disk: could not " 453 "label '%s' (%s)", leafname, 454 libzfs_error_description(g_zfshdl)); 455 if (lines_cnt > 0) { 456 zed_log_msg(LOG_INFO, 457 " zfs_prepare_disk output:"); 458 lines_to_zed_log_msg(lines, lines_cnt); 459 } 460 libzfs_free_str_array(lines, lines_cnt); 461 462 (void) zpool_vdev_online(zhp, fullpath, 463 ZFS_ONLINE_FORCEFAULT, &newstate); 464 return; 465 } 466 467 /* 468 * The disk labeling is asynchronous on Linux. Just record 469 * this label request and return as there will be another 470 * disk add event for the partition after the labeling is 471 * completed. 472 */ 473 device = malloc(sizeof (pendingdev_t)); 474 if (device == NULL) { 475 perror("malloc"); 476 exit(EXIT_FAILURE); 477 } 478 479 (void) strlcpy(device->pd_physpath, physpath, 480 sizeof (device->pd_physpath)); 481 list_insert_tail(&g_device_list, device); 482 483 zed_log_msg(LOG_NOTICE, " zpool_label_disk: async '%s' (%llu)", 484 leafname, (u_longlong_t)guid); 485 486 return; /* resumes at EC_DEV_ADD.ESC_DISK for partition */ 487 488 } else /* labeled */ { 489 boolean_t found = B_FALSE; 490 /* 491 * match up with request above to label the disk 492 */ 493 for (device = list_head(&g_device_list); device != NULL; 494 device = list_next(&g_device_list, device)) { 495 if (strcmp(physpath, device->pd_physpath) == 0) { 496 list_remove(&g_device_list, device); 497 free(device); 498 found = B_TRUE; 499 break; 500 } 501 zed_log_msg(LOG_INFO, "zpool_label_disk: %s != %s", 502 physpath, device->pd_physpath); 503 } 504 if (!found) { 505 /* unexpected partition slice encountered */ 506 zed_log_msg(LOG_WARNING, "labeled disk %s was " 507 "unexpected here", fullpath); 508 (void) zpool_vdev_online(zhp, fullpath, 509 ZFS_ONLINE_FORCEFAULT, &newstate); 510 return; 511 } 512 513 zed_log_msg(LOG_INFO, " zpool_label_disk: resume '%s' (%llu)", 514 physpath, (u_longlong_t)guid); 515 516 /* 517 * Paths that begin with '/dev/disk/by-id/' will change and so 518 * they must be updated before calling zpool_vdev_attach(). 519 */ 520 if (strncmp(path, DEV_BYID_PATH, strlen(DEV_BYID_PATH)) == 0) { 521 (void) snprintf(pathbuf, sizeof (pathbuf), "%s%s", 522 DEV_BYID_PATH, new_devid); 523 zed_log_msg(LOG_INFO, " zpool_label_disk: path '%s' " 524 "replaced by '%s'", path, pathbuf); 525 path = pathbuf; 526 } 527 } 528 529 libzfs_free_str_array(lines, lines_cnt); 530 531 /* 532 * Construct the root vdev to pass to zpool_vdev_attach(). While adding 533 * the entire vdev structure is harmless, we construct a reduced set of 534 * path/physpath/wholedisk to keep it simple. 535 */ 536 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) { 537 zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory"); 538 return; 539 } 540 if (nvlist_alloc(&newvd, NV_UNIQUE_NAME, 0) != 0) { 541 zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory"); 542 nvlist_free(nvroot); 543 return; 544 } 545 546 if (nvlist_add_string(newvd, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK) != 0 || 547 nvlist_add_string(newvd, ZPOOL_CONFIG_PATH, path) != 0 || 548 nvlist_add_string(newvd, ZPOOL_CONFIG_DEVID, new_devid) != 0 || 549 (physpath != NULL && nvlist_add_string(newvd, 550 ZPOOL_CONFIG_PHYS_PATH, physpath) != 0) || 551 (enc_sysfs_path != NULL && nvlist_add_string(newvd, 552 ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, enc_sysfs_path) != 0) || 553 nvlist_add_uint64(newvd, ZPOOL_CONFIG_WHOLE_DISK, wholedisk) != 0 || 554 nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 || 555 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 556 (const nvlist_t **)&newvd, 1) != 0) { 557 zed_log_msg(LOG_WARNING, "zfs_mod: unable to add nvlist pairs"); 558 nvlist_free(newvd); 559 nvlist_free(nvroot); 560 return; 561 } 562 563 nvlist_free(newvd); 564 565 /* 566 * Wait for udev to verify the links exist, then auto-replace 567 * the leaf disk at same physical location. 568 */ 569 if (zpool_label_disk_wait(path, DISK_LABEL_WAIT) != 0) { 570 zed_log_msg(LOG_WARNING, "zfs_mod: pool '%s', after labeling " 571 "replacement disk, the expected disk partition link '%s' " 572 "is missing after waiting %u ms", 573 zpool_get_name(zhp), path, DISK_LABEL_WAIT); 574 nvlist_free(nvroot); 575 return; 576 } 577 578 /* 579 * Prefer sequential resilvering when supported (mirrors and dRAID), 580 * otherwise fallback to a traditional healing resilver. 581 */ 582 ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE, B_TRUE); 583 if (ret != 0) { 584 ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, 585 B_TRUE, B_FALSE); 586 } 587 588 zed_log_msg(LOG_WARNING, " zpool_vdev_replace: %s with %s (%s)", 589 fullpath, path, (ret == 0) ? "no errors" : 590 libzfs_error_description(g_zfshdl)); 591 592 nvlist_free(nvroot); 593 } 594 595 /* 596 * Utility functions to find a vdev matching given criteria. 597 */ 598 typedef struct dev_data { 599 const char *dd_compare; 600 const char *dd_prop; 601 zfs_process_func_t dd_func; 602 boolean_t dd_found; 603 boolean_t dd_islabeled; 604 uint64_t dd_pool_guid; 605 uint64_t dd_vdev_guid; 606 uint64_t dd_new_vdev_guid; 607 const char *dd_new_devid; 608 uint64_t dd_num_spares; 609 } dev_data_t; 610 611 static void 612 zfs_iter_vdev(zpool_handle_t *zhp, nvlist_t *nvl, void *data) 613 { 614 dev_data_t *dp = data; 615 const char *path = NULL; 616 uint_t c, children; 617 nvlist_t **child; 618 uint64_t guid = 0; 619 uint64_t isspare = 0; 620 621 /* 622 * First iterate over any children. 623 */ 624 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, 625 &child, &children) == 0) { 626 for (c = 0; c < children; c++) 627 zfs_iter_vdev(zhp, child[c], data); 628 } 629 630 /* 631 * Iterate over any spares and cache devices 632 */ 633 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_SPARES, 634 &child, &children) == 0) { 635 for (c = 0; c < children; c++) 636 zfs_iter_vdev(zhp, child[c], data); 637 } 638 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_L2CACHE, 639 &child, &children) == 0) { 640 for (c = 0; c < children; c++) 641 zfs_iter_vdev(zhp, child[c], data); 642 } 643 644 /* once a vdev was matched and processed there is nothing left to do */ 645 if (dp->dd_found && dp->dd_num_spares == 0) 646 return; 647 (void) nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_GUID, &guid); 648 649 /* 650 * Match by GUID if available otherwise fallback to devid or physical 651 */ 652 if (dp->dd_vdev_guid != 0) { 653 if (guid != dp->dd_vdev_guid) 654 return; 655 zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched on %llu", guid); 656 dp->dd_found = B_TRUE; 657 658 } else if (dp->dd_compare != NULL) { 659 /* 660 * NOTE: On Linux there is an event for partition, so unlike 661 * illumos, substring matching is not required to accommodate 662 * the partition suffix. An exact match will be present in 663 * the dp->dd_compare value. 664 * If the attached disk already contains a vdev GUID, it means 665 * the disk is not clean. In such a scenario, the physical path 666 * would be a match that makes the disk faulted when trying to 667 * online it. So, we would only want to proceed if either GUID 668 * matches with the last attached disk or the disk is in clean 669 * state. 670 */ 671 if (nvlist_lookup_string(nvl, dp->dd_prop, &path) != 0 || 672 strcmp(dp->dd_compare, path) != 0) { 673 return; 674 } 675 if (dp->dd_new_vdev_guid != 0 && dp->dd_new_vdev_guid != guid) { 676 zed_log_msg(LOG_INFO, " %s: no match (GUID:%llu" 677 " != vdev GUID:%llu)", __func__, 678 dp->dd_new_vdev_guid, guid); 679 return; 680 } 681 682 zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched %s on %s", 683 dp->dd_prop, path); 684 dp->dd_found = B_TRUE; 685 686 /* pass the new devid for use by auto-replacing code */ 687 if (dp->dd_new_devid != NULL) { 688 (void) nvlist_add_string(nvl, "new_devid", 689 dp->dd_new_devid); 690 } 691 } 692 693 if (dp->dd_found == B_TRUE && nvlist_lookup_uint64(nvl, 694 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) 695 dp->dd_num_spares++; 696 697 (dp->dd_func)(zhp, nvl, dp->dd_islabeled); 698 } 699 700 static void 701 zfs_enable_ds(void *arg) 702 { 703 unavailpool_t *pool = (unavailpool_t *)arg; 704 705 (void) zpool_enable_datasets(pool->uap_zhp, NULL, 0); 706 zpool_close(pool->uap_zhp); 707 free(pool); 708 } 709 710 static int 711 zfs_iter_pool(zpool_handle_t *zhp, void *data) 712 { 713 nvlist_t *config, *nvl; 714 dev_data_t *dp = data; 715 uint64_t pool_guid; 716 unavailpool_t *pool; 717 718 zed_log_msg(LOG_INFO, "zfs_iter_pool: evaluating vdevs on %s (by %s)", 719 zpool_get_name(zhp), dp->dd_vdev_guid ? "GUID" : dp->dd_prop); 720 721 /* 722 * For each vdev in this pool, look for a match to apply dd_func 723 */ 724 if ((config = zpool_get_config(zhp, NULL)) != NULL) { 725 if (dp->dd_pool_guid == 0 || 726 (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 727 &pool_guid) == 0 && pool_guid == dp->dd_pool_guid)) { 728 (void) nvlist_lookup_nvlist(config, 729 ZPOOL_CONFIG_VDEV_TREE, &nvl); 730 zfs_iter_vdev(zhp, nvl, data); 731 } 732 } else { 733 zed_log_msg(LOG_INFO, "%s: no config\n", __func__); 734 } 735 736 /* 737 * if this pool was originally unavailable, 738 * then enable its datasets asynchronously 739 */ 740 if (g_enumeration_done) { 741 for (pool = list_head(&g_pool_list); pool != NULL; 742 pool = list_next(&g_pool_list, pool)) { 743 744 if (strcmp(zpool_get_name(zhp), 745 zpool_get_name(pool->uap_zhp))) 746 continue; 747 if (zfs_toplevel_state(zhp) >= VDEV_STATE_DEGRADED) { 748 list_remove(&g_pool_list, pool); 749 (void) tpool_dispatch(g_tpool, zfs_enable_ds, 750 pool); 751 break; 752 } 753 } 754 } 755 756 zpool_close(zhp); 757 758 /* cease iteration after a match */ 759 return (dp->dd_found && dp->dd_num_spares == 0); 760 } 761 762 /* 763 * Given a physical device location, iterate over all 764 * (pool, vdev) pairs which correspond to that location. 765 */ 766 static boolean_t 767 devphys_iter(const char *physical, const char *devid, zfs_process_func_t func, 768 boolean_t is_slice, uint64_t new_vdev_guid) 769 { 770 dev_data_t data = { 0 }; 771 772 data.dd_compare = physical; 773 data.dd_func = func; 774 data.dd_prop = ZPOOL_CONFIG_PHYS_PATH; 775 data.dd_found = B_FALSE; 776 data.dd_islabeled = is_slice; 777 data.dd_new_devid = devid; /* used by auto replace code */ 778 data.dd_new_vdev_guid = new_vdev_guid; 779 780 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 781 782 return (data.dd_found); 783 } 784 785 /* 786 * Given a device identifier, find any vdevs with a matching by-vdev 787 * path. Normally we shouldn't need this as the comparison would be 788 * made earlier in the devphys_iter(). For example, if we were replacing 789 * /dev/disk/by-vdev/L28, normally devphys_iter() would match the 790 * ZPOOL_CONFIG_PHYS_PATH of "L28" from the old disk config to "L28" 791 * of the new disk config. However, we've seen cases where 792 * ZPOOL_CONFIG_PHYS_PATH was not in the config for the old disk. Here's 793 * an example of a real 2-disk mirror pool where one disk was force 794 * faulted: 795 * 796 * com.delphix:vdev_zap_top: 129 797 * children[0]: 798 * type: 'disk' 799 * id: 0 800 * guid: 14309659774640089719 801 * path: '/dev/disk/by-vdev/L28' 802 * whole_disk: 0 803 * DTL: 654 804 * create_txg: 4 805 * com.delphix:vdev_zap_leaf: 1161 806 * faulted: 1 807 * aux_state: 'external' 808 * children[1]: 809 * type: 'disk' 810 * id: 1 811 * guid: 16002508084177980912 812 * path: '/dev/disk/by-vdev/L29' 813 * devid: 'dm-uuid-mpath-35000c500a61d68a3' 814 * phys_path: 'L29' 815 * vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32' 816 * whole_disk: 0 817 * DTL: 1028 818 * create_txg: 4 819 * com.delphix:vdev_zap_leaf: 131 820 * 821 * So in the case above, the only thing we could compare is the path. 822 * 823 * We can do this because we assume by-vdev paths are authoritative as physical 824 * paths. We could not assume this for normal paths like /dev/sda since the 825 * physical location /dev/sda points to could change over time. 826 */ 827 static boolean_t 828 by_vdev_path_iter(const char *by_vdev_path, const char *devid, 829 zfs_process_func_t func, boolean_t is_slice) 830 { 831 dev_data_t data = { 0 }; 832 833 data.dd_compare = by_vdev_path; 834 data.dd_func = func; 835 data.dd_prop = ZPOOL_CONFIG_PATH; 836 data.dd_found = B_FALSE; 837 data.dd_islabeled = is_slice; 838 data.dd_new_devid = devid; 839 840 if (strncmp(by_vdev_path, DEV_BYVDEV_PATH, 841 strlen(DEV_BYVDEV_PATH)) != 0) { 842 /* by_vdev_path doesn't start with "/dev/disk/by-vdev/" */ 843 return (B_FALSE); 844 } 845 846 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 847 848 return (data.dd_found); 849 } 850 851 /* 852 * Given a device identifier, find any vdevs with a matching devid. 853 * On Linux we can match devid directly which is always a whole disk. 854 */ 855 static boolean_t 856 devid_iter(const char *devid, zfs_process_func_t func, boolean_t is_slice) 857 { 858 dev_data_t data = { 0 }; 859 860 data.dd_compare = devid; 861 data.dd_func = func; 862 data.dd_prop = ZPOOL_CONFIG_DEVID; 863 data.dd_found = B_FALSE; 864 data.dd_islabeled = is_slice; 865 data.dd_new_devid = devid; 866 867 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 868 869 return (data.dd_found); 870 } 871 872 /* 873 * Given a device guid, find any vdevs with a matching guid. 874 */ 875 static boolean_t 876 guid_iter(uint64_t pool_guid, uint64_t vdev_guid, const char *devid, 877 zfs_process_func_t func, boolean_t is_slice) 878 { 879 dev_data_t data = { 0 }; 880 881 data.dd_func = func; 882 data.dd_found = B_FALSE; 883 data.dd_pool_guid = pool_guid; 884 data.dd_vdev_guid = vdev_guid; 885 data.dd_islabeled = is_slice; 886 data.dd_new_devid = devid; 887 888 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 889 890 return (data.dd_found); 891 } 892 893 /* 894 * Handle a EC_DEV_ADD.ESC_DISK event. 895 * 896 * illumos 897 * Expects: DEV_PHYS_PATH string in schema 898 * Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID 899 * 900 * path: '/dev/dsk/c0t1d0s0' (persistent) 901 * devid: 'id1,sd@SATA_____Hitachi_HDS72101______JP2940HZ3H74MC/a' 902 * phys_path: '/pci@0,0/pci103c,1609@11/disk@1,0:a' 903 * 904 * linux 905 * provides: DEV_PHYS_PATH and DEV_IDENTIFIER strings in schema 906 * Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID 907 * 908 * path: '/dev/sdc1' (not persistent) 909 * devid: 'ata-SAMSUNG_HD204UI_S2HGJD2Z805891-part1' 910 * phys_path: 'pci-0000:04:00.0-sas-0x4433221106000000-lun-0' 911 */ 912 static int 913 zfs_deliver_add(nvlist_t *nvl) 914 { 915 const char *devpath = NULL, *devid = NULL; 916 uint64_t pool_guid = 0, vdev_guid = 0; 917 boolean_t is_slice; 918 919 /* 920 * Expecting a devid string and an optional physical location and guid 921 */ 922 if (nvlist_lookup_string(nvl, DEV_IDENTIFIER, &devid) != 0) { 923 zed_log_msg(LOG_INFO, "%s: no dev identifier\n", __func__); 924 return (-1); 925 } 926 927 (void) nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devpath); 928 (void) nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, &pool_guid); 929 (void) nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &vdev_guid); 930 931 is_slice = (nvlist_lookup_boolean(nvl, DEV_IS_PART) == 0); 932 933 zed_log_msg(LOG_INFO, "zfs_deliver_add: adding %s (%s) (is_slice %d)", 934 devid, devpath ? devpath : "NULL", is_slice); 935 936 /* 937 * Iterate over all vdevs looking for a match in the following order: 938 * 1. ZPOOL_CONFIG_DEVID (identifies the unique disk) 939 * 2. ZPOOL_CONFIG_PHYS_PATH (identifies disk physical location). 940 * 3. ZPOOL_CONFIG_GUID (identifies unique vdev). 941 * 4. ZPOOL_CONFIG_PATH for /dev/disk/by-vdev devices only (since 942 * by-vdev paths represent physical paths). 943 */ 944 if (devid_iter(devid, zfs_process_add, is_slice)) 945 return (0); 946 if (devpath != NULL && devphys_iter(devpath, devid, zfs_process_add, 947 is_slice, vdev_guid)) 948 return (0); 949 if (vdev_guid != 0) 950 (void) guid_iter(pool_guid, vdev_guid, devid, zfs_process_add, 951 is_slice); 952 953 if (devpath != NULL) { 954 /* Can we match a /dev/disk/by-vdev/ path? */ 955 char by_vdev_path[MAXPATHLEN]; 956 snprintf(by_vdev_path, sizeof (by_vdev_path), 957 "/dev/disk/by-vdev/%s", devpath); 958 if (by_vdev_path_iter(by_vdev_path, devid, zfs_process_add, 959 is_slice)) 960 return (0); 961 } 962 963 return (0); 964 } 965 966 /* 967 * Called when we receive a VDEV_CHECK event, which indicates a device could not 968 * be opened during initial pool open, but the autoreplace property was set on 969 * the pool. In this case, we treat it as if it were an add event. 970 */ 971 static int 972 zfs_deliver_check(nvlist_t *nvl) 973 { 974 dev_data_t data = { 0 }; 975 976 if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, 977 &data.dd_pool_guid) != 0 || 978 nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, 979 &data.dd_vdev_guid) != 0 || 980 data.dd_vdev_guid == 0) 981 return (0); 982 983 zed_log_msg(LOG_INFO, "zfs_deliver_check: pool '%llu', vdev %llu", 984 data.dd_pool_guid, data.dd_vdev_guid); 985 986 data.dd_func = zfs_process_add; 987 988 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 989 990 return (0); 991 } 992 993 /* 994 * Given a path to a vdev, lookup the vdev's physical size from its 995 * config nvlist. 996 * 997 * Returns the vdev's physical size in bytes on success, 0 on error. 998 */ 999 static uint64_t 1000 vdev_size_from_config(zpool_handle_t *zhp, const char *vdev_path) 1001 { 1002 nvlist_t *nvl = NULL; 1003 boolean_t avail_spare, l2cache, log; 1004 vdev_stat_t *vs = NULL; 1005 uint_t c; 1006 1007 nvl = zpool_find_vdev(zhp, vdev_path, &avail_spare, &l2cache, &log); 1008 if (!nvl) 1009 return (0); 1010 1011 verify(nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_VDEV_STATS, 1012 (uint64_t **)&vs, &c) == 0); 1013 if (!vs) { 1014 zed_log_msg(LOG_INFO, "%s: no nvlist for '%s'", __func__, 1015 vdev_path); 1016 return (0); 1017 } 1018 1019 return (vs->vs_pspace); 1020 } 1021 1022 /* 1023 * Given a path to a vdev, lookup if the vdev is a "whole disk" in the 1024 * config nvlist. "whole disk" means that ZFS was passed a whole disk 1025 * at pool creation time, which it partitioned up and has full control over. 1026 * Thus a partition with wholedisk=1 set tells us that zfs created the 1027 * partition at creation time. A partition without whole disk set would have 1028 * been created by externally (like with fdisk) and passed to ZFS. 1029 * 1030 * Returns the whole disk value (either 0 or 1). 1031 */ 1032 static uint64_t 1033 vdev_whole_disk_from_config(zpool_handle_t *zhp, const char *vdev_path) 1034 { 1035 nvlist_t *nvl = NULL; 1036 boolean_t avail_spare, l2cache, log; 1037 uint64_t wholedisk = 0; 1038 1039 nvl = zpool_find_vdev(zhp, vdev_path, &avail_spare, &l2cache, &log); 1040 if (!nvl) 1041 return (0); 1042 1043 (void) nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); 1044 1045 return (wholedisk); 1046 } 1047 1048 /* 1049 * If the device size grew more than 1% then return true. 1050 */ 1051 #define DEVICE_GREW(oldsize, newsize) \ 1052 ((newsize > oldsize) && \ 1053 ((newsize / (newsize - oldsize)) <= 100)) 1054 1055 static int 1056 zfsdle_vdev_online(zpool_handle_t *zhp, void *data) 1057 { 1058 boolean_t avail_spare, l2cache; 1059 nvlist_t *udev_nvl = data; 1060 nvlist_t *tgt; 1061 int error; 1062 1063 const char *tmp_devname; 1064 char devname[MAXPATHLEN] = ""; 1065 uint64_t guid; 1066 1067 if (nvlist_lookup_uint64(udev_nvl, ZFS_EV_VDEV_GUID, &guid) == 0) { 1068 sprintf(devname, "%llu", (u_longlong_t)guid); 1069 } else if (nvlist_lookup_string(udev_nvl, DEV_PHYS_PATH, 1070 &tmp_devname) == 0) { 1071 strlcpy(devname, tmp_devname, MAXPATHLEN); 1072 zfs_append_partition(devname, MAXPATHLEN); 1073 } else { 1074 zed_log_msg(LOG_INFO, "%s: no guid or physpath", __func__); 1075 } 1076 1077 zed_log_msg(LOG_INFO, "zfsdle_vdev_online: searching for '%s' in '%s'", 1078 devname, zpool_get_name(zhp)); 1079 1080 if ((tgt = zpool_find_vdev_by_physpath(zhp, devname, 1081 &avail_spare, &l2cache, NULL)) != NULL) { 1082 const char *path; 1083 char fullpath[MAXPATHLEN]; 1084 uint64_t wholedisk = 0; 1085 1086 error = nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH, &path); 1087 if (error) { 1088 zpool_close(zhp); 1089 return (0); 1090 } 1091 1092 (void) nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK, 1093 &wholedisk); 1094 1095 if (wholedisk) { 1096 char *tmp; 1097 path = strrchr(path, '/'); 1098 if (path != NULL) { 1099 tmp = zfs_strip_partition(path + 1); 1100 if (tmp == NULL) { 1101 zpool_close(zhp); 1102 return (0); 1103 } 1104 } else { 1105 zpool_close(zhp); 1106 return (0); 1107 } 1108 1109 (void) strlcpy(fullpath, tmp, sizeof (fullpath)); 1110 free(tmp); 1111 1112 /* 1113 * We need to reopen the pool associated with this 1114 * device so that the kernel can update the size of 1115 * the expanded device. When expanding there is no 1116 * need to restart the scrub from the beginning. 1117 */ 1118 boolean_t scrub_restart = B_FALSE; 1119 (void) zpool_reopen_one(zhp, &scrub_restart); 1120 } else { 1121 (void) strlcpy(fullpath, path, sizeof (fullpath)); 1122 } 1123 1124 if (zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) { 1125 vdev_state_t newstate; 1126 1127 if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL) { 1128 /* 1129 * If this disk size has not changed, then 1130 * there's no need to do an autoexpand. To 1131 * check we look at the disk's size in its 1132 * config, and compare it to the disk size 1133 * that udev is reporting. 1134 */ 1135 uint64_t udev_size = 0, conf_size = 0, 1136 wholedisk = 0, udev_parent_size = 0; 1137 1138 /* 1139 * Get the size of our disk that udev is 1140 * reporting. 1141 */ 1142 if (nvlist_lookup_uint64(udev_nvl, DEV_SIZE, 1143 &udev_size) != 0) { 1144 udev_size = 0; 1145 } 1146 1147 /* 1148 * Get the size of our disk's parent device 1149 * from udev (where sda1's parent is sda). 1150 */ 1151 if (nvlist_lookup_uint64(udev_nvl, 1152 DEV_PARENT_SIZE, &udev_parent_size) != 0) { 1153 udev_parent_size = 0; 1154 } 1155 1156 conf_size = vdev_size_from_config(zhp, 1157 fullpath); 1158 1159 wholedisk = vdev_whole_disk_from_config(zhp, 1160 fullpath); 1161 1162 /* 1163 * Only attempt an autoexpand if the vdev size 1164 * changed. There are two different cases 1165 * to consider. 1166 * 1167 * 1. wholedisk=1 1168 * If you do a 'zpool create' on a whole disk 1169 * (like /dev/sda), then zfs will create 1170 * partitions on the disk (like /dev/sda1). In 1171 * that case, wholedisk=1 will be set in the 1172 * partition's nvlist config. So zed will need 1173 * to see if your parent device (/dev/sda) 1174 * expanded in size, and if so, then attempt 1175 * the autoexpand. 1176 * 1177 * 2. wholedisk=0 1178 * If you do a 'zpool create' on an existing 1179 * partition, or a device that doesn't allow 1180 * partitions, then wholedisk=0, and you will 1181 * simply need to check if the device itself 1182 * expanded in size. 1183 */ 1184 if (DEVICE_GREW(conf_size, udev_size) || 1185 (wholedisk && DEVICE_GREW(conf_size, 1186 udev_parent_size))) { 1187 error = zpool_vdev_online(zhp, fullpath, 1188 0, &newstate); 1189 1190 zed_log_msg(LOG_INFO, 1191 "%s: autoexpanding '%s' from %llu" 1192 " to %llu bytes in pool '%s': %d", 1193 __func__, fullpath, conf_size, 1194 MAX(udev_size, udev_parent_size), 1195 zpool_get_name(zhp), error); 1196 } 1197 } 1198 } 1199 zpool_close(zhp); 1200 return (1); 1201 } 1202 zpool_close(zhp); 1203 return (0); 1204 } 1205 1206 /* 1207 * This function handles the ESC_DEV_DLE device change event. Use the 1208 * provided vdev guid when looking up a disk or partition, when the guid 1209 * is not present assume the entire disk is owned by ZFS and append the 1210 * expected -part1 partition information then lookup by physical path. 1211 */ 1212 static int 1213 zfs_deliver_dle(nvlist_t *nvl) 1214 { 1215 const char *devname; 1216 char name[MAXPATHLEN]; 1217 uint64_t guid; 1218 1219 if (nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &guid) == 0) { 1220 sprintf(name, "%llu", (u_longlong_t)guid); 1221 } else if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) == 0) { 1222 strlcpy(name, devname, MAXPATHLEN); 1223 zfs_append_partition(name, MAXPATHLEN); 1224 } else { 1225 sprintf(name, "unknown"); 1226 zed_log_msg(LOG_INFO, "zfs_deliver_dle: no guid or physpath"); 1227 } 1228 1229 if (zpool_iter(g_zfshdl, zfsdle_vdev_online, nvl) != 1) { 1230 zed_log_msg(LOG_INFO, "zfs_deliver_dle: device '%s' not " 1231 "found", name); 1232 return (1); 1233 } 1234 1235 return (0); 1236 } 1237 1238 /* 1239 * syseventd daemon module event handler 1240 * 1241 * Handles syseventd daemon zfs device related events: 1242 * 1243 * EC_DEV_ADD.ESC_DISK 1244 * EC_DEV_STATUS.ESC_DEV_DLE 1245 * EC_ZFS.ESC_ZFS_VDEV_CHECK 1246 * 1247 * Note: assumes only one thread active at a time (not thread safe) 1248 */ 1249 static int 1250 zfs_slm_deliver_event(const char *class, const char *subclass, nvlist_t *nvl) 1251 { 1252 int ret; 1253 boolean_t is_check = B_FALSE, is_dle = B_FALSE; 1254 1255 if (strcmp(class, EC_DEV_ADD) == 0) { 1256 /* 1257 * We're mainly interested in disk additions, but we also listen 1258 * for new loop devices, to allow for simplified testing. 1259 */ 1260 if (strcmp(subclass, ESC_DISK) != 0 && 1261 strcmp(subclass, ESC_LOFI) != 0) 1262 return (0); 1263 1264 is_check = B_FALSE; 1265 } else if (strcmp(class, EC_ZFS) == 0 && 1266 strcmp(subclass, ESC_ZFS_VDEV_CHECK) == 0) { 1267 /* 1268 * This event signifies that a device failed to open 1269 * during pool load, but the 'autoreplace' property was 1270 * set, so we should pretend it's just been added. 1271 */ 1272 is_check = B_TRUE; 1273 } else if (strcmp(class, EC_DEV_STATUS) == 0 && 1274 strcmp(subclass, ESC_DEV_DLE) == 0) { 1275 is_dle = B_TRUE; 1276 } else { 1277 return (0); 1278 } 1279 1280 if (is_dle) 1281 ret = zfs_deliver_dle(nvl); 1282 else if (is_check) 1283 ret = zfs_deliver_check(nvl); 1284 else 1285 ret = zfs_deliver_add(nvl); 1286 1287 return (ret); 1288 } 1289 1290 static void * 1291 zfs_enum_pools(void *arg) 1292 { 1293 (void) arg; 1294 1295 (void) zpool_iter(g_zfshdl, zfs_unavail_pool, (void *)&g_pool_list); 1296 /* 1297 * Linux - instead of using a thread pool, each list entry 1298 * will spawn a thread when an unavailable pool transitions 1299 * to available. zfs_slm_fini will wait for these threads. 1300 */ 1301 g_enumeration_done = B_TRUE; 1302 return (NULL); 1303 } 1304 1305 /* 1306 * called from zed daemon at startup 1307 * 1308 * sent messages from zevents or udev monitor 1309 * 1310 * For now, each agent has its own libzfs instance 1311 */ 1312 int 1313 zfs_slm_init(void) 1314 { 1315 if ((g_zfshdl = libzfs_init()) == NULL) 1316 return (-1); 1317 1318 /* 1319 * collect a list of unavailable pools (asynchronously, 1320 * since this can take a while) 1321 */ 1322 list_create(&g_pool_list, sizeof (struct unavailpool), 1323 offsetof(struct unavailpool, uap_node)); 1324 1325 if (pthread_create(&g_zfs_tid, NULL, zfs_enum_pools, NULL) != 0) { 1326 list_destroy(&g_pool_list); 1327 libzfs_fini(g_zfshdl); 1328 return (-1); 1329 } 1330 1331 pthread_setname_np(g_zfs_tid, "enum-pools"); 1332 list_create(&g_device_list, sizeof (struct pendingdev), 1333 offsetof(struct pendingdev, pd_node)); 1334 1335 return (0); 1336 } 1337 1338 void 1339 zfs_slm_fini(void) 1340 { 1341 unavailpool_t *pool; 1342 pendingdev_t *device; 1343 1344 /* wait for zfs_enum_pools thread to complete */ 1345 (void) pthread_join(g_zfs_tid, NULL); 1346 /* destroy the thread pool */ 1347 if (g_tpool != NULL) { 1348 tpool_wait(g_tpool); 1349 tpool_destroy(g_tpool); 1350 } 1351 1352 while ((pool = list_remove_head(&g_pool_list)) != NULL) { 1353 zpool_close(pool->uap_zhp); 1354 free(pool); 1355 } 1356 list_destroy(&g_pool_list); 1357 1358 while ((device = list_remove_head(&g_device_list)) != NULL) 1359 free(device); 1360 list_destroy(&g_device_list); 1361 1362 libzfs_fini(g_zfshdl); 1363 } 1364 1365 void 1366 zfs_slm_event(const char *class, const char *subclass, nvlist_t *nvl) 1367 { 1368 zed_log_msg(LOG_INFO, "zfs_slm_event: %s.%s", class, subclass); 1369 (void) zfs_slm_deliver_event(class, subclass, nvl); 1370 } 1371