1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2016 Nexenta Systems, Inc. 27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC. 28 * Copyright (c) 2015, 2017, Intel Corporation. 29 * Copyright (c) 2020 Datto Inc. 30 * Copyright (c) 2020, The FreeBSD Foundation [1] 31 * 32 * [1] Portions of this software were developed by Allan Jude 33 * under sponsorship from the FreeBSD Foundation. 34 * Copyright (c) 2021 Allan Jude 35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com> 36 * Copyright (c) 2023, Klara Inc. 37 * Copyright (c) 2023, Rob Norris <robn@despairlabs.com> 38 */ 39 40 #include <stdio.h> 41 #include <unistd.h> 42 #include <stdlib.h> 43 #include <ctype.h> 44 #include <getopt.h> 45 #include <openssl/evp.h> 46 #include <sys/zfs_context.h> 47 #include <sys/spa.h> 48 #include <sys/spa_impl.h> 49 #include <sys/dmu.h> 50 #include <sys/zap.h> 51 #include <sys/fs/zfs.h> 52 #include <sys/zfs_znode.h> 53 #include <sys/zfs_sa.h> 54 #include <sys/sa.h> 55 #include <sys/sa_impl.h> 56 #include <sys/vdev.h> 57 #include <sys/vdev_impl.h> 58 #include <sys/metaslab_impl.h> 59 #include <sys/dmu_objset.h> 60 #include <sys/dsl_dir.h> 61 #include <sys/dsl_dataset.h> 62 #include <sys/dsl_pool.h> 63 #include <sys/dsl_bookmark.h> 64 #include <sys/dbuf.h> 65 #include <sys/zil.h> 66 #include <sys/zil_impl.h> 67 #include <sys/stat.h> 68 #include <sys/resource.h> 69 #include <sys/dmu_send.h> 70 #include <sys/dmu_traverse.h> 71 #include <sys/zio_checksum.h> 72 #include <sys/zio_compress.h> 73 #include <sys/zfs_fuid.h> 74 #include <sys/arc.h> 75 #include <sys/arc_impl.h> 76 #include <sys/ddt.h> 77 #include <sys/ddt_impl.h> 78 #include <sys/zfeature.h> 79 #include <sys/abd.h> 80 #include <sys/blkptr.h> 81 #include <sys/dsl_crypt.h> 82 #include <sys/dsl_scan.h> 83 #include <sys/btree.h> 84 #include <sys/brt.h> 85 #include <sys/brt_impl.h> 86 #include <zfs_comutil.h> 87 #include <sys/zstd/zstd.h> 88 89 #include <libnvpair.h> 90 #include <libzutil.h> 91 92 #include <libzdb.h> 93 94 #include "zdb.h" 95 96 97 extern int reference_tracking_enable; 98 extern int zfs_recover; 99 extern uint_t zfs_vdev_async_read_max_active; 100 extern boolean_t spa_load_verify_dryrun; 101 extern boolean_t spa_mode_readable_spacemaps; 102 extern uint_t zfs_reconstruct_indirect_combinations_max; 103 extern uint_t zfs_btree_verify_intensity; 104 105 static const char cmdname[] = "zdb"; 106 uint8_t dump_opt[256]; 107 108 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); 109 110 static uint64_t *zopt_metaslab = NULL; 111 static unsigned zopt_metaslab_args = 0; 112 113 114 static zopt_object_range_t *zopt_object_ranges = NULL; 115 static unsigned zopt_object_args = 0; 116 117 static int flagbits[256]; 118 119 120 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */ 121 static int leaked_objects = 0; 122 static range_tree_t *mos_refd_objs; 123 124 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *, 125 boolean_t); 126 static void mos_obj_refd(uint64_t); 127 static void mos_obj_refd_multiple(uint64_t); 128 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free, 129 dmu_tx_t *tx); 130 131 132 133 static void zdb_print_blkptr(const blkptr_t *bp, int flags); 134 135 typedef struct sublivelist_verify_block_refcnt { 136 /* block pointer entry in livelist being verified */ 137 blkptr_t svbr_blk; 138 139 /* 140 * Refcount gets incremented to 1 when we encounter the first 141 * FREE entry for the svfbr block pointer and a node for it 142 * is created in our ZDB verification/tracking metadata. 143 * 144 * As we encounter more FREE entries we increment this counter 145 * and similarly decrement it whenever we find the respective 146 * ALLOC entries for this block. 147 * 148 * When the refcount gets to 0 it means that all the FREE and 149 * ALLOC entries of this block have paired up and we no longer 150 * need to track it in our verification logic (e.g. the node 151 * containing this struct in our verification data structure 152 * should be freed). 153 * 154 * [refer to sublivelist_verify_blkptr() for the actual code] 155 */ 156 uint32_t svbr_refcnt; 157 } sublivelist_verify_block_refcnt_t; 158 159 static int 160 sublivelist_block_refcnt_compare(const void *larg, const void *rarg) 161 { 162 const sublivelist_verify_block_refcnt_t *l = larg; 163 const sublivelist_verify_block_refcnt_t *r = rarg; 164 return (livelist_compare(&l->svbr_blk, &r->svbr_blk)); 165 } 166 167 static int 168 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free, 169 dmu_tx_t *tx) 170 { 171 ASSERT3P(tx, ==, NULL); 172 struct sublivelist_verify *sv = arg; 173 sublivelist_verify_block_refcnt_t current = { 174 .svbr_blk = *bp, 175 176 /* 177 * Start with 1 in case this is the first free entry. 178 * This field is not used for our B-Tree comparisons 179 * anyway. 180 */ 181 .svbr_refcnt = 1, 182 }; 183 184 zfs_btree_index_t where; 185 sublivelist_verify_block_refcnt_t *pair = 186 zfs_btree_find(&sv->sv_pair, ¤t, &where); 187 if (free) { 188 if (pair == NULL) { 189 /* first free entry for this block pointer */ 190 zfs_btree_add(&sv->sv_pair, ¤t); 191 } else { 192 pair->svbr_refcnt++; 193 } 194 } else { 195 if (pair == NULL) { 196 /* block that is currently marked as allocated */ 197 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 198 if (DVA_IS_EMPTY(&bp->blk_dva[i])) 199 break; 200 sublivelist_verify_block_t svb = { 201 .svb_dva = bp->blk_dva[i], 202 .svb_allocated_txg = 203 BP_GET_LOGICAL_BIRTH(bp) 204 }; 205 206 if (zfs_btree_find(&sv->sv_leftover, &svb, 207 &where) == NULL) { 208 zfs_btree_add_idx(&sv->sv_leftover, 209 &svb, &where); 210 } 211 } 212 } else { 213 /* alloc matches a free entry */ 214 pair->svbr_refcnt--; 215 if (pair->svbr_refcnt == 0) { 216 /* all allocs and frees have been matched */ 217 zfs_btree_remove_idx(&sv->sv_pair, &where); 218 } 219 } 220 } 221 222 return (0); 223 } 224 225 static int 226 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle) 227 { 228 int err; 229 struct sublivelist_verify *sv = args; 230 231 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL, 232 sizeof (sublivelist_verify_block_refcnt_t)); 233 234 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr, 235 sv, NULL); 236 237 sublivelist_verify_block_refcnt_t *e; 238 zfs_btree_index_t *cookie = NULL; 239 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) { 240 char blkbuf[BP_SPRINTF_LEN]; 241 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 242 &e->svbr_blk, B_TRUE); 243 (void) printf("\tERROR: %d unmatched FREE(s): %s\n", 244 e->svbr_refcnt, blkbuf); 245 } 246 zfs_btree_destroy(&sv->sv_pair); 247 248 return (err); 249 } 250 251 static int 252 livelist_block_compare(const void *larg, const void *rarg) 253 { 254 const sublivelist_verify_block_t *l = larg; 255 const sublivelist_verify_block_t *r = rarg; 256 257 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva)) 258 return (-1); 259 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva)) 260 return (+1); 261 262 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva)) 263 return (-1); 264 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva)) 265 return (+1); 266 267 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva)) 268 return (-1); 269 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva)) 270 return (+1); 271 272 return (0); 273 } 274 275 /* 276 * Check for errors in a livelist while tracking all unfreed ALLOCs in the 277 * sublivelist_verify_t: sv->sv_leftover 278 */ 279 static void 280 livelist_verify(dsl_deadlist_t *dl, void *arg) 281 { 282 sublivelist_verify_t *sv = arg; 283 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv); 284 } 285 286 /* 287 * Check for errors in the livelist entry and discard the intermediary 288 * data structures 289 */ 290 static int 291 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle) 292 { 293 (void) args; 294 sublivelist_verify_t sv; 295 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 296 sizeof (sublivelist_verify_block_t)); 297 int err = sublivelist_verify_func(&sv, dle); 298 zfs_btree_clear(&sv.sv_leftover); 299 zfs_btree_destroy(&sv.sv_leftover); 300 return (err); 301 } 302 303 typedef struct metaslab_verify { 304 /* 305 * Tree containing all the leftover ALLOCs from the livelists 306 * that are part of this metaslab. 307 */ 308 zfs_btree_t mv_livelist_allocs; 309 310 /* 311 * Metaslab information. 312 */ 313 uint64_t mv_vdid; 314 uint64_t mv_msid; 315 uint64_t mv_start; 316 uint64_t mv_end; 317 318 /* 319 * What's currently allocated for this metaslab. 320 */ 321 range_tree_t *mv_allocated; 322 } metaslab_verify_t; 323 324 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg); 325 326 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg, 327 void *arg); 328 329 typedef struct unflushed_iter_cb_arg { 330 spa_t *uic_spa; 331 uint64_t uic_txg; 332 void *uic_arg; 333 zdb_log_sm_cb_t uic_cb; 334 } unflushed_iter_cb_arg_t; 335 336 static int 337 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg) 338 { 339 unflushed_iter_cb_arg_t *uic = arg; 340 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg)); 341 } 342 343 static void 344 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg) 345 { 346 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 347 return; 348 349 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 350 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 351 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 352 space_map_t *sm = NULL; 353 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 354 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 355 356 unflushed_iter_cb_arg_t uic = { 357 .uic_spa = spa, 358 .uic_txg = sls->sls_txg, 359 .uic_arg = arg, 360 .uic_cb = cb 361 }; 362 VERIFY0(space_map_iterate(sm, space_map_length(sm), 363 iterate_through_spacemap_logs_cb, &uic)); 364 space_map_close(sm); 365 } 366 spa_config_exit(spa, SCL_CONFIG, FTAG); 367 } 368 369 static void 370 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg, 371 uint64_t offset, uint64_t size) 372 { 373 sublivelist_verify_block_t svb = {{{0}}}; 374 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid); 375 DVA_SET_OFFSET(&svb.svb_dva, offset); 376 DVA_SET_ASIZE(&svb.svb_dva, size); 377 zfs_btree_index_t where; 378 uint64_t end_offset = offset + size; 379 380 /* 381 * Look for an exact match for spacemap entry in the livelist entries. 382 * Then, look for other livelist entries that fall within the range 383 * of the spacemap entry as it may have been condensed 384 */ 385 sublivelist_verify_block_t *found = 386 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where); 387 if (found == NULL) { 388 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where); 389 } 390 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid && 391 DVA_GET_OFFSET(&found->svb_dva) < end_offset; 392 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 393 if (found->svb_allocated_txg <= txg) { 394 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] " 395 "from TXG %llx FREED at TXG %llx\n", 396 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva), 397 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva), 398 (u_longlong_t)found->svb_allocated_txg, 399 (u_longlong_t)txg); 400 } 401 } 402 } 403 404 static int 405 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg) 406 { 407 metaslab_verify_t *mv = arg; 408 uint64_t offset = sme->sme_offset; 409 uint64_t size = sme->sme_run; 410 uint64_t txg = sme->sme_txg; 411 412 if (sme->sme_type == SM_ALLOC) { 413 if (range_tree_contains(mv->mv_allocated, 414 offset, size)) { 415 (void) printf("ERROR: DOUBLE ALLOC: " 416 "%llu [%llx:%llx] " 417 "%llu:%llu LOG_SM\n", 418 (u_longlong_t)txg, (u_longlong_t)offset, 419 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 420 (u_longlong_t)mv->mv_msid); 421 } else { 422 range_tree_add(mv->mv_allocated, 423 offset, size); 424 } 425 } else { 426 if (!range_tree_contains(mv->mv_allocated, 427 offset, size)) { 428 (void) printf("ERROR: DOUBLE FREE: " 429 "%llu [%llx:%llx] " 430 "%llu:%llu LOG_SM\n", 431 (u_longlong_t)txg, (u_longlong_t)offset, 432 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 433 (u_longlong_t)mv->mv_msid); 434 } else { 435 range_tree_remove(mv->mv_allocated, 436 offset, size); 437 } 438 } 439 440 if (sme->sme_type != SM_ALLOC) { 441 /* 442 * If something is freed in the spacemap, verify that 443 * it is not listed as allocated in the livelist. 444 */ 445 verify_livelist_allocs(mv, txg, offset, size); 446 } 447 return (0); 448 } 449 450 static int 451 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme, 452 uint64_t txg, void *arg) 453 { 454 metaslab_verify_t *mv = arg; 455 uint64_t offset = sme->sme_offset; 456 uint64_t vdev_id = sme->sme_vdev; 457 458 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 459 460 /* skip indirect vdevs */ 461 if (!vdev_is_concrete(vd)) 462 return (0); 463 464 if (vdev_id != mv->mv_vdid) 465 return (0); 466 467 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 468 if (ms->ms_id != mv->mv_msid) 469 return (0); 470 471 if (txg < metaslab_unflushed_txg(ms)) 472 return (0); 473 474 475 ASSERT3U(txg, ==, sme->sme_txg); 476 return (metaslab_spacemap_validation_cb(sme, mv)); 477 } 478 479 static void 480 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv) 481 { 482 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv); 483 } 484 485 static void 486 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv) 487 { 488 if (sm == NULL) 489 return; 490 491 VERIFY0(space_map_iterate(sm, space_map_length(sm), 492 metaslab_spacemap_validation_cb, mv)); 493 } 494 495 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg); 496 497 /* 498 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if 499 * they are part of that metaslab (mv_msid). 500 */ 501 static void 502 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv) 503 { 504 zfs_btree_index_t where; 505 sublivelist_verify_block_t *svb; 506 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0); 507 for (svb = zfs_btree_first(&sv->sv_leftover, &where); 508 svb != NULL; 509 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) { 510 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid) 511 continue; 512 513 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start && 514 (DVA_GET_OFFSET(&svb->svb_dva) + 515 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) { 516 (void) printf("ERROR: Found block that crosses " 517 "metaslab boundary: <%llu:%llx:%llx>\n", 518 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 519 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 520 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 521 continue; 522 } 523 524 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start) 525 continue; 526 527 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end) 528 continue; 529 530 if ((DVA_GET_OFFSET(&svb->svb_dva) + 531 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) { 532 (void) printf("ERROR: Found block that crosses " 533 "metaslab boundary: <%llu:%llx:%llx>\n", 534 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 535 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 536 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 537 continue; 538 } 539 540 zfs_btree_add(&mv->mv_livelist_allocs, svb); 541 } 542 543 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where); 544 svb != NULL; 545 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 546 zfs_btree_remove(&sv->sv_leftover, svb); 547 } 548 } 549 550 /* 551 * [Livelist Check] 552 * Iterate through all the sublivelists and: 553 * - report leftover frees (**) 554 * - record leftover ALLOCs together with their TXG [see Cross Check] 555 * 556 * (**) Note: Double ALLOCs are valid in datasets that have dedup 557 * enabled. Similarly double FREEs are allowed as well but 558 * only if they pair up with a corresponding ALLOC entry once 559 * we our done with our sublivelist iteration. 560 * 561 * [Spacemap Check] 562 * for each metaslab: 563 * - iterate over spacemap and then the metaslab's entries in the 564 * spacemap log, then report any double FREEs and ALLOCs (do not 565 * blow up). 566 * 567 * [Cross Check] 568 * After finishing the Livelist Check phase and while being in the 569 * Spacemap Check phase, we find all the recorded leftover ALLOCs 570 * of the livelist check that are part of the metaslab that we are 571 * currently looking at in the Spacemap Check. We report any entries 572 * that are marked as ALLOCs in the livelists but have been actually 573 * freed (and potentially allocated again) after their TXG stamp in 574 * the spacemaps. Also report any ALLOCs from the livelists that 575 * belong to indirect vdevs (e.g. their vdev completed removal). 576 * 577 * Note that this will miss Log Spacemap entries that cancelled each other 578 * out before being flushed to the metaslab, so we are not guaranteed 579 * to match all erroneous ALLOCs. 580 */ 581 static void 582 livelist_metaslab_validate(spa_t *spa) 583 { 584 (void) printf("Verifying deleted livelist entries\n"); 585 586 sublivelist_verify_t sv; 587 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 588 sizeof (sublivelist_verify_block_t)); 589 iterate_deleted_livelists(spa, livelist_verify, &sv); 590 591 (void) printf("Verifying metaslab entries\n"); 592 vdev_t *rvd = spa->spa_root_vdev; 593 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 594 vdev_t *vd = rvd->vdev_child[c]; 595 596 if (!vdev_is_concrete(vd)) 597 continue; 598 599 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) { 600 metaslab_t *m = vd->vdev_ms[mid]; 601 602 (void) fprintf(stderr, 603 "\rverifying concrete vdev %llu, " 604 "metaslab %llu of %llu ...", 605 (longlong_t)vd->vdev_id, 606 (longlong_t)mid, 607 (longlong_t)vd->vdev_ms_count); 608 609 uint64_t shift, start; 610 range_seg_type_t type = 611 metaslab_calculate_range_tree_type(vd, m, 612 &start, &shift); 613 metaslab_verify_t mv; 614 mv.mv_allocated = range_tree_create(NULL, 615 type, NULL, start, shift); 616 mv.mv_vdid = vd->vdev_id; 617 mv.mv_msid = m->ms_id; 618 mv.mv_start = m->ms_start; 619 mv.mv_end = m->ms_start + m->ms_size; 620 zfs_btree_create(&mv.mv_livelist_allocs, 621 livelist_block_compare, NULL, 622 sizeof (sublivelist_verify_block_t)); 623 624 mv_populate_livelist_allocs(&mv, &sv); 625 626 spacemap_check_ms_sm(m->ms_sm, &mv); 627 spacemap_check_sm_log(spa, &mv); 628 629 range_tree_vacate(mv.mv_allocated, NULL, NULL); 630 range_tree_destroy(mv.mv_allocated); 631 zfs_btree_clear(&mv.mv_livelist_allocs); 632 zfs_btree_destroy(&mv.mv_livelist_allocs); 633 } 634 } 635 (void) fprintf(stderr, "\n"); 636 637 /* 638 * If there are any segments in the leftover tree after we walked 639 * through all the metaslabs in the concrete vdevs then this means 640 * that we have segments in the livelists that belong to indirect 641 * vdevs and are marked as allocated. 642 */ 643 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) { 644 zfs_btree_destroy(&sv.sv_leftover); 645 return; 646 } 647 (void) printf("ERROR: Found livelist blocks marked as allocated " 648 "for indirect vdevs:\n"); 649 650 zfs_btree_index_t *where = NULL; 651 sublivelist_verify_block_t *svb; 652 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) != 653 NULL) { 654 int vdev_id = DVA_GET_VDEV(&svb->svb_dva); 655 ASSERT3U(vdev_id, <, rvd->vdev_children); 656 vdev_t *vd = rvd->vdev_child[vdev_id]; 657 ASSERT(!vdev_is_concrete(vd)); 658 (void) printf("<%d:%llx:%llx> TXG %llx\n", 659 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 660 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva), 661 (u_longlong_t)svb->svb_allocated_txg); 662 } 663 (void) printf("\n"); 664 zfs_btree_destroy(&sv.sv_leftover); 665 } 666 667 /* 668 * These libumem hooks provide a reasonable set of defaults for the allocator's 669 * debugging facilities. 670 */ 671 const char * 672 _umem_debug_init(void) 673 { 674 return ("default,verbose"); /* $UMEM_DEBUG setting */ 675 } 676 677 const char * 678 _umem_logging_init(void) 679 { 680 return ("fail,contents"); /* $UMEM_LOGGING setting */ 681 } 682 683 static void 684 usage(void) 685 { 686 (void) fprintf(stderr, 687 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] " 688 "[-I <inflight I/Os>]\n" 689 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 690 "\t\t[-K <key>]\n" 691 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n" 692 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n" 693 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n" 694 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n" 695 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 696 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n" 697 "\t%s [-v] <bookmark>\n" 698 "\t%s -C [-A] [-U <cache>] [<poolname>]\n" 699 "\t%s -l [-Aqu] <device>\n" 700 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] " 701 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n" 702 "\t%s -O [-K <key>] <dataset> <path>\n" 703 "\t%s -r [-K <key>] <dataset> <path> <destination>\n" 704 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 705 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n" 706 "\t%s -E [-A] word0:word1:...:word15\n" 707 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] " 708 "<poolname>\n\n", 709 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, 710 cmdname, cmdname, cmdname, cmdname, cmdname); 711 712 (void) fprintf(stderr, " Dataset name must include at least one " 713 "separator character '/' or '@'\n"); 714 (void) fprintf(stderr, " If dataset name is specified, only that " 715 "dataset is dumped\n"); 716 (void) fprintf(stderr, " If object numbers or object number " 717 "ranges are specified, only those\n" 718 " objects or ranges are dumped.\n\n"); 719 (void) fprintf(stderr, 720 " Object ranges take the form <start>:<end>[:<flags>]\n" 721 " start Starting object number\n" 722 " end Ending object number, or -1 for no upper bound\n" 723 " flags Optional flags to select object types:\n" 724 " A All objects (this is the default)\n" 725 " d ZFS directories\n" 726 " f ZFS files \n" 727 " m SPA space maps\n" 728 " z ZAPs\n" 729 " - Negate effect of next flag\n\n"); 730 (void) fprintf(stderr, " Options to control amount of output:\n"); 731 (void) fprintf(stderr, " -b --block-stats " 732 "block statistics\n"); 733 (void) fprintf(stderr, " -B --backup " 734 "backup stream\n"); 735 (void) fprintf(stderr, " -c --checksum " 736 "checksum all metadata (twice for all data) blocks\n"); 737 (void) fprintf(stderr, " -C --config " 738 "config (or cachefile if alone)\n"); 739 (void) fprintf(stderr, " -d --datasets " 740 "dataset(s)\n"); 741 (void) fprintf(stderr, " -D --dedup-stats " 742 "dedup statistics\n"); 743 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n" 744 " decode and display block " 745 "from an embedded block pointer\n"); 746 (void) fprintf(stderr, " -h --history " 747 "pool history\n"); 748 (void) fprintf(stderr, " -i --intent-logs " 749 "intent logs\n"); 750 (void) fprintf(stderr, " -l --label " 751 "read label contents\n"); 752 (void) fprintf(stderr, " -k --checkpointed-state " 753 "examine the checkpointed state of the pool\n"); 754 (void) fprintf(stderr, " -L --disable-leak-tracking " 755 "disable leak tracking (do not load spacemaps)\n"); 756 (void) fprintf(stderr, " -m --metaslabs " 757 "metaslabs\n"); 758 (void) fprintf(stderr, " -M --metaslab-groups " 759 "metaslab groups\n"); 760 (void) fprintf(stderr, " -O --object-lookups " 761 "perform object lookups by path\n"); 762 (void) fprintf(stderr, " -r --copy-object " 763 "copy an object by path to file\n"); 764 (void) fprintf(stderr, " -R --read-block " 765 "read and display block from a device\n"); 766 (void) fprintf(stderr, " -s --io-stats " 767 "report stats on zdb's I/O\n"); 768 (void) fprintf(stderr, " -S --simulate-dedup " 769 "simulate dedup to measure effect\n"); 770 (void) fprintf(stderr, " -v --verbose " 771 "verbose (applies to all others)\n"); 772 (void) fprintf(stderr, " -y --livelist " 773 "perform livelist and metaslab validation on any livelists being " 774 "deleted\n\n"); 775 (void) fprintf(stderr, " Below options are intended for use " 776 "with other options:\n"); 777 (void) fprintf(stderr, " -A --ignore-assertions " 778 "ignore assertions (-A), enable panic recovery (-AA) or both " 779 "(-AAA)\n"); 780 (void) fprintf(stderr, " -e --exported " 781 "pool is exported/destroyed/has altroot/not in a cachefile\n"); 782 (void) fprintf(stderr, " -F --automatic-rewind " 783 "attempt automatic rewind within safe range of transaction " 784 "groups\n"); 785 (void) fprintf(stderr, " -G --dump-debug-msg " 786 "dump zfs_dbgmsg buffer before exiting\n"); 787 (void) fprintf(stderr, " -I --inflight=INTEGER " 788 "specify the maximum number of checksumming I/Os " 789 "[default is 200]\n"); 790 (void) fprintf(stderr, " -K --key=KEY " 791 "decryption key for encrypted dataset\n"); 792 (void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" " 793 "set global variable to an unsigned 32-bit integer\n"); 794 (void) fprintf(stderr, " -p --path==PATH " 795 "use one or more with -e to specify path to vdev dir\n"); 796 (void) fprintf(stderr, " -P --parseable " 797 "print numbers in parseable form\n"); 798 (void) fprintf(stderr, " -q --skip-label " 799 "don't print label contents\n"); 800 (void) fprintf(stderr, " -t --txg=INTEGER " 801 "highest txg to use when searching for uberblocks\n"); 802 (void) fprintf(stderr, " -T --brt-stats " 803 "BRT statistics\n"); 804 (void) fprintf(stderr, " -u --uberblock " 805 "uberblock\n"); 806 (void) fprintf(stderr, " -U --cachefile=PATH " 807 "use alternate cachefile\n"); 808 (void) fprintf(stderr, " -V --verbatim " 809 "do verbatim import\n"); 810 (void) fprintf(stderr, " -x --dump-blocks=PATH " 811 "dump all read blocks into specified directory\n"); 812 (void) fprintf(stderr, " -X --extreme-rewind " 813 "attempt extreme rewind (does not work with dataset)\n"); 814 (void) fprintf(stderr, " -Y --all-reconstruction " 815 "attempt all reconstruction combinations for split blocks\n"); 816 (void) fprintf(stderr, " -Z --zstd-headers " 817 "show ZSTD headers \n"); 818 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " 819 "to make only that option verbose\n"); 820 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); 821 exit(1); 822 } 823 824 static void 825 dump_debug_buffer(void) 826 { 827 if (dump_opt['G']) { 828 (void) printf("\n"); 829 (void) fflush(stdout); 830 zfs_dbgmsg_print("zdb"); 831 } 832 } 833 834 /* 835 * Called for usage errors that are discovered after a call to spa_open(), 836 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. 837 */ 838 839 static void 840 fatal(const char *fmt, ...) 841 { 842 va_list ap; 843 844 va_start(ap, fmt); 845 (void) fprintf(stderr, "%s: ", cmdname); 846 (void) vfprintf(stderr, fmt, ap); 847 va_end(ap); 848 (void) fprintf(stderr, "\n"); 849 850 dump_debug_buffer(); 851 852 exit(1); 853 } 854 855 static void 856 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) 857 { 858 (void) size; 859 nvlist_t *nv; 860 size_t nvsize = *(uint64_t *)data; 861 char *packed = umem_alloc(nvsize, UMEM_NOFAIL); 862 863 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); 864 865 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); 866 867 umem_free(packed, nvsize); 868 869 dump_nvlist(nv, 8); 870 871 nvlist_free(nv); 872 } 873 874 static void 875 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) 876 { 877 (void) os, (void) object, (void) size; 878 spa_history_phys_t *shp = data; 879 880 if (shp == NULL) 881 return; 882 883 (void) printf("\t\tpool_create_len = %llu\n", 884 (u_longlong_t)shp->sh_pool_create_len); 885 (void) printf("\t\tphys_max_off = %llu\n", 886 (u_longlong_t)shp->sh_phys_max_off); 887 (void) printf("\t\tbof = %llu\n", 888 (u_longlong_t)shp->sh_bof); 889 (void) printf("\t\teof = %llu\n", 890 (u_longlong_t)shp->sh_eof); 891 (void) printf("\t\trecords_lost = %llu\n", 892 (u_longlong_t)shp->sh_records_lost); 893 } 894 895 static void 896 zdb_nicenum(uint64_t num, char *buf, size_t buflen) 897 { 898 if (dump_opt['P']) 899 (void) snprintf(buf, buflen, "%llu", (longlong_t)num); 900 else 901 nicenum(num, buf, buflen); 902 } 903 904 static void 905 zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen) 906 { 907 if (dump_opt['P']) 908 (void) snprintf(buf, buflen, "%llu", (longlong_t)bytes); 909 else 910 zfs_nicebytes(bytes, buf, buflen); 911 } 912 913 static const char histo_stars[] = "****************************************"; 914 static const uint64_t histo_width = sizeof (histo_stars) - 1; 915 916 static void 917 dump_histogram(const uint64_t *histo, int size, int offset) 918 { 919 int i; 920 int minidx = size - 1; 921 int maxidx = 0; 922 uint64_t max = 0; 923 924 for (i = 0; i < size; i++) { 925 if (histo[i] == 0) 926 continue; 927 if (histo[i] > max) 928 max = histo[i]; 929 if (i > maxidx) 930 maxidx = i; 931 if (i < minidx) 932 minidx = i; 933 } 934 935 if (max < histo_width) 936 max = histo_width; 937 938 for (i = minidx; i <= maxidx; i++) { 939 (void) printf("\t\t\t%3u: %6llu %s\n", 940 i + offset, (u_longlong_t)histo[i], 941 &histo_stars[(max - histo[i]) * histo_width / max]); 942 } 943 } 944 945 static void 946 dump_zap_stats(objset_t *os, uint64_t object) 947 { 948 int error; 949 zap_stats_t zs; 950 951 error = zap_get_stats(os, object, &zs); 952 if (error) 953 return; 954 955 if (zs.zs_ptrtbl_len == 0) { 956 ASSERT(zs.zs_num_blocks == 1); 957 (void) printf("\tmicrozap: %llu bytes, %llu entries\n", 958 (u_longlong_t)zs.zs_blocksize, 959 (u_longlong_t)zs.zs_num_entries); 960 return; 961 } 962 963 (void) printf("\tFat ZAP stats:\n"); 964 965 (void) printf("\t\tPointer table:\n"); 966 (void) printf("\t\t\t%llu elements\n", 967 (u_longlong_t)zs.zs_ptrtbl_len); 968 (void) printf("\t\t\tzt_blk: %llu\n", 969 (u_longlong_t)zs.zs_ptrtbl_zt_blk); 970 (void) printf("\t\t\tzt_numblks: %llu\n", 971 (u_longlong_t)zs.zs_ptrtbl_zt_numblks); 972 (void) printf("\t\t\tzt_shift: %llu\n", 973 (u_longlong_t)zs.zs_ptrtbl_zt_shift); 974 (void) printf("\t\t\tzt_blks_copied: %llu\n", 975 (u_longlong_t)zs.zs_ptrtbl_blks_copied); 976 (void) printf("\t\t\tzt_nextblk: %llu\n", 977 (u_longlong_t)zs.zs_ptrtbl_nextblk); 978 979 (void) printf("\t\tZAP entries: %llu\n", 980 (u_longlong_t)zs.zs_num_entries); 981 (void) printf("\t\tLeaf blocks: %llu\n", 982 (u_longlong_t)zs.zs_num_leafs); 983 (void) printf("\t\tTotal blocks: %llu\n", 984 (u_longlong_t)zs.zs_num_blocks); 985 (void) printf("\t\tzap_block_type: 0x%llx\n", 986 (u_longlong_t)zs.zs_block_type); 987 (void) printf("\t\tzap_magic: 0x%llx\n", 988 (u_longlong_t)zs.zs_magic); 989 (void) printf("\t\tzap_salt: 0x%llx\n", 990 (u_longlong_t)zs.zs_salt); 991 992 (void) printf("\t\tLeafs with 2^n pointers:\n"); 993 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); 994 995 (void) printf("\t\tBlocks with n*5 entries:\n"); 996 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); 997 998 (void) printf("\t\tBlocks n/10 full:\n"); 999 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); 1000 1001 (void) printf("\t\tEntries with n chunks:\n"); 1002 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); 1003 1004 (void) printf("\t\tBuckets with n entries:\n"); 1005 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); 1006 } 1007 1008 static void 1009 dump_none(objset_t *os, uint64_t object, void *data, size_t size) 1010 { 1011 (void) os, (void) object, (void) data, (void) size; 1012 } 1013 1014 static void 1015 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) 1016 { 1017 (void) os, (void) object, (void) data, (void) size; 1018 (void) printf("\tUNKNOWN OBJECT TYPE\n"); 1019 } 1020 1021 static void 1022 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) 1023 { 1024 (void) os, (void) object, (void) data, (void) size; 1025 } 1026 1027 static void 1028 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) 1029 { 1030 uint64_t *arr; 1031 uint64_t oursize; 1032 if (dump_opt['d'] < 6) 1033 return; 1034 1035 if (data == NULL) { 1036 dmu_object_info_t doi; 1037 1038 VERIFY0(dmu_object_info(os, object, &doi)); 1039 size = doi.doi_max_offset; 1040 /* 1041 * We cap the size at 1 mebibyte here to prevent 1042 * allocation failures and nigh-infinite printing if the 1043 * object is extremely large. 1044 */ 1045 oursize = MIN(size, 1 << 20); 1046 arr = kmem_alloc(oursize, KM_SLEEP); 1047 1048 int err = dmu_read(os, object, 0, oursize, arr, 0); 1049 if (err != 0) { 1050 (void) printf("got error %u from dmu_read\n", err); 1051 kmem_free(arr, oursize); 1052 return; 1053 } 1054 } else { 1055 /* 1056 * Even though the allocation is already done in this code path, 1057 * we still cap the size to prevent excessive printing. 1058 */ 1059 oursize = MIN(size, 1 << 20); 1060 arr = data; 1061 } 1062 1063 if (size == 0) { 1064 if (data == NULL) 1065 kmem_free(arr, oursize); 1066 (void) printf("\t\t[]\n"); 1067 return; 1068 } 1069 1070 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]); 1071 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) { 1072 if (i % 4 != 0) 1073 (void) printf(", %0llx", (u_longlong_t)arr[i]); 1074 else 1075 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]); 1076 } 1077 if (oursize != size) 1078 (void) printf(", ... "); 1079 (void) printf("]\n"); 1080 1081 if (data == NULL) 1082 kmem_free(arr, oursize); 1083 } 1084 1085 static void 1086 dump_zap(objset_t *os, uint64_t object, void *data, size_t size) 1087 { 1088 (void) data, (void) size; 1089 zap_cursor_t zc; 1090 zap_attribute_t attr; 1091 void *prop; 1092 unsigned i; 1093 1094 dump_zap_stats(os, object); 1095 (void) printf("\n"); 1096 1097 for (zap_cursor_init(&zc, os, object); 1098 zap_cursor_retrieve(&zc, &attr) == 0; 1099 zap_cursor_advance(&zc)) { 1100 (void) printf("\t\t%s = ", attr.za_name); 1101 if (attr.za_num_integers == 0) { 1102 (void) printf("\n"); 1103 continue; 1104 } 1105 prop = umem_zalloc(attr.za_num_integers * 1106 attr.za_integer_length, UMEM_NOFAIL); 1107 (void) zap_lookup(os, object, attr.za_name, 1108 attr.za_integer_length, attr.za_num_integers, prop); 1109 if (attr.za_integer_length == 1) { 1110 if (strcmp(attr.za_name, 1111 DSL_CRYPTO_KEY_MASTER_KEY) == 0 || 1112 strcmp(attr.za_name, 1113 DSL_CRYPTO_KEY_HMAC_KEY) == 0 || 1114 strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 || 1115 strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 || 1116 strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) { 1117 uint8_t *u8 = prop; 1118 1119 for (i = 0; i < attr.za_num_integers; i++) { 1120 (void) printf("%02x", u8[i]); 1121 } 1122 } else { 1123 (void) printf("%s", (char *)prop); 1124 } 1125 } else { 1126 for (i = 0; i < attr.za_num_integers; i++) { 1127 switch (attr.za_integer_length) { 1128 case 2: 1129 (void) printf("%u ", 1130 ((uint16_t *)prop)[i]); 1131 break; 1132 case 4: 1133 (void) printf("%u ", 1134 ((uint32_t *)prop)[i]); 1135 break; 1136 case 8: 1137 (void) printf("%lld ", 1138 (u_longlong_t)((int64_t *)prop)[i]); 1139 break; 1140 } 1141 } 1142 } 1143 (void) printf("\n"); 1144 umem_free(prop, attr.za_num_integers * attr.za_integer_length); 1145 } 1146 zap_cursor_fini(&zc); 1147 } 1148 1149 static void 1150 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) 1151 { 1152 bpobj_phys_t *bpop = data; 1153 uint64_t i; 1154 char bytes[32], comp[32], uncomp[32]; 1155 1156 /* make sure the output won't get truncated */ 1157 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 1158 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 1159 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 1160 1161 if (bpop == NULL) 1162 return; 1163 1164 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes)); 1165 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp)); 1166 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp)); 1167 1168 (void) printf("\t\tnum_blkptrs = %llu\n", 1169 (u_longlong_t)bpop->bpo_num_blkptrs); 1170 (void) printf("\t\tbytes = %s\n", bytes); 1171 if (size >= BPOBJ_SIZE_V1) { 1172 (void) printf("\t\tcomp = %s\n", comp); 1173 (void) printf("\t\tuncomp = %s\n", uncomp); 1174 } 1175 if (size >= BPOBJ_SIZE_V2) { 1176 (void) printf("\t\tsubobjs = %llu\n", 1177 (u_longlong_t)bpop->bpo_subobjs); 1178 (void) printf("\t\tnum_subobjs = %llu\n", 1179 (u_longlong_t)bpop->bpo_num_subobjs); 1180 } 1181 if (size >= sizeof (*bpop)) { 1182 (void) printf("\t\tnum_freed = %llu\n", 1183 (u_longlong_t)bpop->bpo_num_freed); 1184 } 1185 1186 if (dump_opt['d'] < 5) 1187 return; 1188 1189 for (i = 0; i < bpop->bpo_num_blkptrs; i++) { 1190 char blkbuf[BP_SPRINTF_LEN]; 1191 blkptr_t bp; 1192 1193 int err = dmu_read(os, object, 1194 i * sizeof (bp), sizeof (bp), &bp, 0); 1195 if (err != 0) { 1196 (void) printf("got error %u from dmu_read\n", err); 1197 break; 1198 } 1199 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp, 1200 BP_GET_FREE(&bp)); 1201 (void) printf("\t%s\n", blkbuf); 1202 } 1203 } 1204 1205 static void 1206 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) 1207 { 1208 (void) data, (void) size; 1209 dmu_object_info_t doi; 1210 int64_t i; 1211 1212 VERIFY0(dmu_object_info(os, object, &doi)); 1213 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); 1214 1215 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); 1216 if (err != 0) { 1217 (void) printf("got error %u from dmu_read\n", err); 1218 kmem_free(subobjs, doi.doi_max_offset); 1219 return; 1220 } 1221 1222 int64_t last_nonzero = -1; 1223 for (i = 0; i < doi.doi_max_offset / 8; i++) { 1224 if (subobjs[i] != 0) 1225 last_nonzero = i; 1226 } 1227 1228 for (i = 0; i <= last_nonzero; i++) { 1229 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]); 1230 } 1231 kmem_free(subobjs, doi.doi_max_offset); 1232 } 1233 1234 static void 1235 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) 1236 { 1237 (void) data, (void) size; 1238 dump_zap_stats(os, object); 1239 /* contents are printed elsewhere, properly decoded */ 1240 } 1241 1242 static void 1243 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) 1244 { 1245 (void) data, (void) size; 1246 zap_cursor_t zc; 1247 zap_attribute_t attr; 1248 1249 dump_zap_stats(os, object); 1250 (void) printf("\n"); 1251 1252 for (zap_cursor_init(&zc, os, object); 1253 zap_cursor_retrieve(&zc, &attr) == 0; 1254 zap_cursor_advance(&zc)) { 1255 (void) printf("\t\t%s = ", attr.za_name); 1256 if (attr.za_num_integers == 0) { 1257 (void) printf("\n"); 1258 continue; 1259 } 1260 (void) printf(" %llx : [%d:%d:%d]\n", 1261 (u_longlong_t)attr.za_first_integer, 1262 (int)ATTR_LENGTH(attr.za_first_integer), 1263 (int)ATTR_BSWAP(attr.za_first_integer), 1264 (int)ATTR_NUM(attr.za_first_integer)); 1265 } 1266 zap_cursor_fini(&zc); 1267 } 1268 1269 static void 1270 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) 1271 { 1272 (void) data, (void) size; 1273 zap_cursor_t zc; 1274 zap_attribute_t attr; 1275 uint16_t *layout_attrs; 1276 unsigned i; 1277 1278 dump_zap_stats(os, object); 1279 (void) printf("\n"); 1280 1281 for (zap_cursor_init(&zc, os, object); 1282 zap_cursor_retrieve(&zc, &attr) == 0; 1283 zap_cursor_advance(&zc)) { 1284 (void) printf("\t\t%s = [", attr.za_name); 1285 if (attr.za_num_integers == 0) { 1286 (void) printf("\n"); 1287 continue; 1288 } 1289 1290 VERIFY(attr.za_integer_length == 2); 1291 layout_attrs = umem_zalloc(attr.za_num_integers * 1292 attr.za_integer_length, UMEM_NOFAIL); 1293 1294 VERIFY(zap_lookup(os, object, attr.za_name, 1295 attr.za_integer_length, 1296 attr.za_num_integers, layout_attrs) == 0); 1297 1298 for (i = 0; i != attr.za_num_integers; i++) 1299 (void) printf(" %d ", (int)layout_attrs[i]); 1300 (void) printf("]\n"); 1301 umem_free(layout_attrs, 1302 attr.za_num_integers * attr.za_integer_length); 1303 } 1304 zap_cursor_fini(&zc); 1305 } 1306 1307 static void 1308 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) 1309 { 1310 (void) data, (void) size; 1311 zap_cursor_t zc; 1312 zap_attribute_t attr; 1313 const char *typenames[] = { 1314 /* 0 */ "not specified", 1315 /* 1 */ "FIFO", 1316 /* 2 */ "Character Device", 1317 /* 3 */ "3 (invalid)", 1318 /* 4 */ "Directory", 1319 /* 5 */ "5 (invalid)", 1320 /* 6 */ "Block Device", 1321 /* 7 */ "7 (invalid)", 1322 /* 8 */ "Regular File", 1323 /* 9 */ "9 (invalid)", 1324 /* 10 */ "Symbolic Link", 1325 /* 11 */ "11 (invalid)", 1326 /* 12 */ "Socket", 1327 /* 13 */ "Door", 1328 /* 14 */ "Event Port", 1329 /* 15 */ "15 (invalid)", 1330 }; 1331 1332 dump_zap_stats(os, object); 1333 (void) printf("\n"); 1334 1335 for (zap_cursor_init(&zc, os, object); 1336 zap_cursor_retrieve(&zc, &attr) == 0; 1337 zap_cursor_advance(&zc)) { 1338 (void) printf("\t\t%s = %lld (type: %s)\n", 1339 attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer), 1340 typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]); 1341 } 1342 zap_cursor_fini(&zc); 1343 } 1344 1345 static int 1346 get_dtl_refcount(vdev_t *vd) 1347 { 1348 int refcount = 0; 1349 1350 if (vd->vdev_ops->vdev_op_leaf) { 1351 space_map_t *sm = vd->vdev_dtl_sm; 1352 1353 if (sm != NULL && 1354 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1355 return (1); 1356 return (0); 1357 } 1358 1359 for (unsigned c = 0; c < vd->vdev_children; c++) 1360 refcount += get_dtl_refcount(vd->vdev_child[c]); 1361 return (refcount); 1362 } 1363 1364 static int 1365 get_metaslab_refcount(vdev_t *vd) 1366 { 1367 int refcount = 0; 1368 1369 if (vd->vdev_top == vd) { 1370 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 1371 space_map_t *sm = vd->vdev_ms[m]->ms_sm; 1372 1373 if (sm != NULL && 1374 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1375 refcount++; 1376 } 1377 } 1378 for (unsigned c = 0; c < vd->vdev_children; c++) 1379 refcount += get_metaslab_refcount(vd->vdev_child[c]); 1380 1381 return (refcount); 1382 } 1383 1384 static int 1385 get_obsolete_refcount(vdev_t *vd) 1386 { 1387 uint64_t obsolete_sm_object; 1388 int refcount = 0; 1389 1390 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1391 if (vd->vdev_top == vd && obsolete_sm_object != 0) { 1392 dmu_object_info_t doi; 1393 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset, 1394 obsolete_sm_object, &doi)); 1395 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1396 refcount++; 1397 } 1398 } else { 1399 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 1400 ASSERT3U(obsolete_sm_object, ==, 0); 1401 } 1402 for (unsigned c = 0; c < vd->vdev_children; c++) { 1403 refcount += get_obsolete_refcount(vd->vdev_child[c]); 1404 } 1405 1406 return (refcount); 1407 } 1408 1409 static int 1410 get_prev_obsolete_spacemap_refcount(spa_t *spa) 1411 { 1412 uint64_t prev_obj = 1413 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object; 1414 if (prev_obj != 0) { 1415 dmu_object_info_t doi; 1416 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi)); 1417 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1418 return (1); 1419 } 1420 } 1421 return (0); 1422 } 1423 1424 static int 1425 get_checkpoint_refcount(vdev_t *vd) 1426 { 1427 int refcount = 0; 1428 1429 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 && 1430 zap_contains(spa_meta_objset(vd->vdev_spa), 1431 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0) 1432 refcount++; 1433 1434 for (uint64_t c = 0; c < vd->vdev_children; c++) 1435 refcount += get_checkpoint_refcount(vd->vdev_child[c]); 1436 1437 return (refcount); 1438 } 1439 1440 static int 1441 get_log_spacemap_refcount(spa_t *spa) 1442 { 1443 return (avl_numnodes(&spa->spa_sm_logs_by_txg)); 1444 } 1445 1446 static int 1447 verify_spacemap_refcounts(spa_t *spa) 1448 { 1449 uint64_t expected_refcount = 0; 1450 uint64_t actual_refcount; 1451 1452 (void) feature_get_refcount(spa, 1453 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], 1454 &expected_refcount); 1455 actual_refcount = get_dtl_refcount(spa->spa_root_vdev); 1456 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); 1457 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev); 1458 actual_refcount += get_prev_obsolete_spacemap_refcount(spa); 1459 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev); 1460 actual_refcount += get_log_spacemap_refcount(spa); 1461 1462 if (expected_refcount != actual_refcount) { 1463 (void) printf("space map refcount mismatch: expected %lld != " 1464 "actual %lld\n", 1465 (longlong_t)expected_refcount, 1466 (longlong_t)actual_refcount); 1467 return (2); 1468 } 1469 return (0); 1470 } 1471 1472 static void 1473 dump_spacemap(objset_t *os, space_map_t *sm) 1474 { 1475 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", 1476 "INVALID", "INVALID", "INVALID", "INVALID" }; 1477 1478 if (sm == NULL) 1479 return; 1480 1481 (void) printf("space map object %llu:\n", 1482 (longlong_t)sm->sm_object); 1483 (void) printf(" smp_length = 0x%llx\n", 1484 (longlong_t)sm->sm_phys->smp_length); 1485 (void) printf(" smp_alloc = 0x%llx\n", 1486 (longlong_t)sm->sm_phys->smp_alloc); 1487 1488 if (dump_opt['d'] < 6 && dump_opt['m'] < 4) 1489 return; 1490 1491 /* 1492 * Print out the freelist entries in both encoded and decoded form. 1493 */ 1494 uint8_t mapshift = sm->sm_shift; 1495 int64_t alloc = 0; 1496 uint64_t word, entry_id = 0; 1497 for (uint64_t offset = 0; offset < space_map_length(sm); 1498 offset += sizeof (word)) { 1499 1500 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1501 sizeof (word), &word, DMU_READ_PREFETCH)); 1502 1503 if (sm_entry_is_debug(word)) { 1504 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word); 1505 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word); 1506 if (de_txg == 0) { 1507 (void) printf( 1508 "\t [%6llu] PADDING\n", 1509 (u_longlong_t)entry_id); 1510 } else { 1511 (void) printf( 1512 "\t [%6llu] %s: txg %llu pass %llu\n", 1513 (u_longlong_t)entry_id, 1514 ddata[SM_DEBUG_ACTION_DECODE(word)], 1515 (u_longlong_t)de_txg, 1516 (u_longlong_t)de_sync_pass); 1517 } 1518 entry_id++; 1519 continue; 1520 } 1521 1522 uint8_t words; 1523 char entry_type; 1524 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID; 1525 1526 if (sm_entry_is_single_word(word)) { 1527 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ? 1528 'A' : 'F'; 1529 entry_off = (SM_OFFSET_DECODE(word) << mapshift) + 1530 sm->sm_start; 1531 entry_run = SM_RUN_DECODE(word) << mapshift; 1532 words = 1; 1533 } else { 1534 /* it is a two-word entry so we read another word */ 1535 ASSERT(sm_entry_is_double_word(word)); 1536 1537 uint64_t extra_word; 1538 offset += sizeof (extra_word); 1539 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1540 sizeof (extra_word), &extra_word, 1541 DMU_READ_PREFETCH)); 1542 1543 ASSERT3U(offset, <=, space_map_length(sm)); 1544 1545 entry_run = SM2_RUN_DECODE(word) << mapshift; 1546 entry_vdev = SM2_VDEV_DECODE(word); 1547 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ? 1548 'A' : 'F'; 1549 entry_off = (SM2_OFFSET_DECODE(extra_word) << 1550 mapshift) + sm->sm_start; 1551 words = 2; 1552 } 1553 1554 (void) printf("\t [%6llu] %c range:" 1555 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n", 1556 (u_longlong_t)entry_id, 1557 entry_type, (u_longlong_t)entry_off, 1558 (u_longlong_t)(entry_off + entry_run), 1559 (u_longlong_t)entry_run, 1560 (u_longlong_t)entry_vdev, words); 1561 1562 if (entry_type == 'A') 1563 alloc += entry_run; 1564 else 1565 alloc -= entry_run; 1566 entry_id++; 1567 } 1568 if (alloc != space_map_allocated(sm)) { 1569 (void) printf("space_map_object alloc (%lld) INCONSISTENT " 1570 "with space map summary (%lld)\n", 1571 (longlong_t)space_map_allocated(sm), (longlong_t)alloc); 1572 } 1573 } 1574 1575 static void 1576 dump_metaslab_stats(metaslab_t *msp) 1577 { 1578 char maxbuf[32]; 1579 range_tree_t *rt = msp->ms_allocatable; 1580 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1581 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1582 1583 /* max sure nicenum has enough space */ 1584 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated"); 1585 1586 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf)); 1587 1588 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", 1589 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf, 1590 "freepct", free_pct); 1591 (void) printf("\tIn-memory histogram:\n"); 1592 dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1593 } 1594 1595 static void 1596 dump_metaslab(metaslab_t *msp) 1597 { 1598 vdev_t *vd = msp->ms_group->mg_vd; 1599 spa_t *spa = vd->vdev_spa; 1600 space_map_t *sm = msp->ms_sm; 1601 char freebuf[32]; 1602 1603 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf, 1604 sizeof (freebuf)); 1605 1606 (void) printf( 1607 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", 1608 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, 1609 (u_longlong_t)space_map_object(sm), freebuf); 1610 1611 if (dump_opt['m'] > 2 && !dump_opt['L']) { 1612 mutex_enter(&msp->ms_lock); 1613 VERIFY0(metaslab_load(msp)); 1614 range_tree_stat_verify(msp->ms_allocatable); 1615 dump_metaslab_stats(msp); 1616 metaslab_unload(msp); 1617 mutex_exit(&msp->ms_lock); 1618 } 1619 1620 if (dump_opt['m'] > 1 && sm != NULL && 1621 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 1622 /* 1623 * The space map histogram represents free space in chunks 1624 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). 1625 */ 1626 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", 1627 (u_longlong_t)msp->ms_fragmentation); 1628 dump_histogram(sm->sm_phys->smp_histogram, 1629 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); 1630 } 1631 1632 if (vd->vdev_ops == &vdev_draid_ops) 1633 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift); 1634 else 1635 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift); 1636 1637 dump_spacemap(spa->spa_meta_objset, msp->ms_sm); 1638 1639 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 1640 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n", 1641 (u_longlong_t)metaslab_unflushed_txg(msp)); 1642 } 1643 } 1644 1645 static void 1646 print_vdev_metaslab_header(vdev_t *vd) 1647 { 1648 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 1649 const char *bias_str = ""; 1650 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) { 1651 bias_str = VDEV_ALLOC_BIAS_LOG; 1652 } else if (alloc_bias == VDEV_BIAS_SPECIAL) { 1653 bias_str = VDEV_ALLOC_BIAS_SPECIAL; 1654 } else if (alloc_bias == VDEV_BIAS_DEDUP) { 1655 bias_str = VDEV_ALLOC_BIAS_DEDUP; 1656 } 1657 1658 uint64_t ms_flush_data_obj = 0; 1659 if (vd->vdev_top_zap != 0) { 1660 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 1661 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 1662 sizeof (uint64_t), 1, &ms_flush_data_obj); 1663 if (error != ENOENT) { 1664 ASSERT0(error); 1665 } 1666 } 1667 1668 (void) printf("\tvdev %10llu %s", 1669 (u_longlong_t)vd->vdev_id, bias_str); 1670 1671 if (ms_flush_data_obj != 0) { 1672 (void) printf(" ms_unflushed_phys object %llu", 1673 (u_longlong_t)ms_flush_data_obj); 1674 } 1675 1676 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n", 1677 "metaslabs", (u_longlong_t)vd->vdev_ms_count, 1678 "offset", "spacemap", "free"); 1679 (void) printf("\t%15s %19s %15s %12s\n", 1680 "---------------", "-------------------", 1681 "---------------", "------------"); 1682 } 1683 1684 static void 1685 dump_metaslab_groups(spa_t *spa, boolean_t show_special) 1686 { 1687 vdev_t *rvd = spa->spa_root_vdev; 1688 metaslab_class_t *mc = spa_normal_class(spa); 1689 metaslab_class_t *smc = spa_special_class(spa); 1690 uint64_t fragmentation; 1691 1692 metaslab_class_histogram_verify(mc); 1693 1694 for (unsigned c = 0; c < rvd->vdev_children; c++) { 1695 vdev_t *tvd = rvd->vdev_child[c]; 1696 metaslab_group_t *mg = tvd->vdev_mg; 1697 1698 if (mg == NULL || (mg->mg_class != mc && 1699 (!show_special || mg->mg_class != smc))) 1700 continue; 1701 1702 metaslab_group_histogram_verify(mg); 1703 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 1704 1705 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" 1706 "fragmentation", 1707 (u_longlong_t)tvd->vdev_id, 1708 (u_longlong_t)tvd->vdev_ms_count); 1709 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 1710 (void) printf("%3s\n", "-"); 1711 } else { 1712 (void) printf("%3llu%%\n", 1713 (u_longlong_t)mg->mg_fragmentation); 1714 } 1715 dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1716 } 1717 1718 (void) printf("\tpool %s\tfragmentation", spa_name(spa)); 1719 fragmentation = metaslab_class_fragmentation(mc); 1720 if (fragmentation == ZFS_FRAG_INVALID) 1721 (void) printf("\t%3s\n", "-"); 1722 else 1723 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); 1724 dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1725 } 1726 1727 static void 1728 print_vdev_indirect(vdev_t *vd) 1729 { 1730 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1731 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1732 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 1733 1734 if (vim == NULL) { 1735 ASSERT3P(vib, ==, NULL); 1736 return; 1737 } 1738 1739 ASSERT3U(vdev_indirect_mapping_object(vim), ==, 1740 vic->vic_mapping_object); 1741 ASSERT3U(vdev_indirect_births_object(vib), ==, 1742 vic->vic_births_object); 1743 1744 (void) printf("indirect births obj %llu:\n", 1745 (longlong_t)vic->vic_births_object); 1746 (void) printf(" vib_count = %llu\n", 1747 (longlong_t)vdev_indirect_births_count(vib)); 1748 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) { 1749 vdev_indirect_birth_entry_phys_t *cur_vibe = 1750 &vib->vib_entries[i]; 1751 (void) printf("\toffset %llx -> txg %llu\n", 1752 (longlong_t)cur_vibe->vibe_offset, 1753 (longlong_t)cur_vibe->vibe_phys_birth_txg); 1754 } 1755 (void) printf("\n"); 1756 1757 (void) printf("indirect mapping obj %llu:\n", 1758 (longlong_t)vic->vic_mapping_object); 1759 (void) printf(" vim_max_offset = 0x%llx\n", 1760 (longlong_t)vdev_indirect_mapping_max_offset(vim)); 1761 (void) printf(" vim_bytes_mapped = 0x%llx\n", 1762 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim)); 1763 (void) printf(" vim_count = %llu\n", 1764 (longlong_t)vdev_indirect_mapping_num_entries(vim)); 1765 1766 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3) 1767 return; 1768 1769 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim); 1770 1771 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 1772 vdev_indirect_mapping_entry_phys_t *vimep = 1773 &vim->vim_entries[i]; 1774 (void) printf("\t<%llx:%llx:%llx> -> " 1775 "<%llx:%llx:%llx> (%x obsolete)\n", 1776 (longlong_t)vd->vdev_id, 1777 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 1778 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1779 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst), 1780 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst), 1781 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1782 counts[i]); 1783 } 1784 (void) printf("\n"); 1785 1786 uint64_t obsolete_sm_object; 1787 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1788 if (obsolete_sm_object != 0) { 1789 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1790 (void) printf("obsolete space map object %llu:\n", 1791 (u_longlong_t)obsolete_sm_object); 1792 ASSERT(vd->vdev_obsolete_sm != NULL); 1793 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==, 1794 obsolete_sm_object); 1795 dump_spacemap(mos, vd->vdev_obsolete_sm); 1796 (void) printf("\n"); 1797 } 1798 } 1799 1800 static void 1801 dump_metaslabs(spa_t *spa) 1802 { 1803 vdev_t *vd, *rvd = spa->spa_root_vdev; 1804 uint64_t m, c = 0, children = rvd->vdev_children; 1805 1806 (void) printf("\nMetaslabs:\n"); 1807 1808 if (!dump_opt['d'] && zopt_metaslab_args > 0) { 1809 c = zopt_metaslab[0]; 1810 1811 if (c >= children) 1812 (void) fatal("bad vdev id: %llu", (u_longlong_t)c); 1813 1814 if (zopt_metaslab_args > 1) { 1815 vd = rvd->vdev_child[c]; 1816 print_vdev_metaslab_header(vd); 1817 1818 for (m = 1; m < zopt_metaslab_args; m++) { 1819 if (zopt_metaslab[m] < vd->vdev_ms_count) 1820 dump_metaslab( 1821 vd->vdev_ms[zopt_metaslab[m]]); 1822 else 1823 (void) fprintf(stderr, "bad metaslab " 1824 "number %llu\n", 1825 (u_longlong_t)zopt_metaslab[m]); 1826 } 1827 (void) printf("\n"); 1828 return; 1829 } 1830 children = c + 1; 1831 } 1832 for (; c < children; c++) { 1833 vd = rvd->vdev_child[c]; 1834 print_vdev_metaslab_header(vd); 1835 1836 print_vdev_indirect(vd); 1837 1838 for (m = 0; m < vd->vdev_ms_count; m++) 1839 dump_metaslab(vd->vdev_ms[m]); 1840 (void) printf("\n"); 1841 } 1842 } 1843 1844 static void 1845 dump_log_spacemaps(spa_t *spa) 1846 { 1847 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1848 return; 1849 1850 (void) printf("\nLog Space Maps in Pool:\n"); 1851 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 1852 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 1853 space_map_t *sm = NULL; 1854 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 1855 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 1856 1857 (void) printf("Log Spacemap object %llu txg %llu\n", 1858 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg); 1859 dump_spacemap(spa->spa_meta_objset, sm); 1860 space_map_close(sm); 1861 } 1862 (void) printf("\n"); 1863 } 1864 1865 static void 1866 dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index) 1867 { 1868 const ddt_phys_t *ddp = dde->dde_phys; 1869 const ddt_key_t *ddk = &dde->dde_key; 1870 const char *types[4] = { "ditto", "single", "double", "triple" }; 1871 char blkbuf[BP_SPRINTF_LEN]; 1872 blkptr_t blk; 1873 int p; 1874 1875 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 1876 if (ddp->ddp_phys_birth == 0) 1877 continue; 1878 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); 1879 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); 1880 (void) printf("index %llx refcnt %llu %s %s\n", 1881 (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt, 1882 types[p], blkbuf); 1883 } 1884 } 1885 1886 static void 1887 dump_dedup_ratio(const ddt_stat_t *dds) 1888 { 1889 double rL, rP, rD, D, dedup, compress, copies; 1890 1891 if (dds->dds_blocks == 0) 1892 return; 1893 1894 rL = (double)dds->dds_ref_lsize; 1895 rP = (double)dds->dds_ref_psize; 1896 rD = (double)dds->dds_ref_dsize; 1897 D = (double)dds->dds_dsize; 1898 1899 dedup = rD / D; 1900 compress = rL / rP; 1901 copies = rD / rP; 1902 1903 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " 1904 "dedup * compress / copies = %.2f\n\n", 1905 dedup, compress, copies, dedup * compress / copies); 1906 } 1907 1908 static void 1909 dump_ddt(ddt_t *ddt, ddt_type_t type, ddt_class_t class) 1910 { 1911 char name[DDT_NAMELEN]; 1912 ddt_entry_t dde; 1913 uint64_t walk = 0; 1914 dmu_object_info_t doi; 1915 uint64_t count, dspace, mspace; 1916 int error; 1917 1918 error = ddt_object_info(ddt, type, class, &doi); 1919 1920 if (error == ENOENT) 1921 return; 1922 ASSERT(error == 0); 1923 1924 error = ddt_object_count(ddt, type, class, &count); 1925 ASSERT(error == 0); 1926 if (count == 0) 1927 return; 1928 1929 dspace = doi.doi_physical_blocks_512 << 9; 1930 mspace = doi.doi_fill_count * doi.doi_data_block_size; 1931 1932 ddt_object_name(ddt, type, class, name); 1933 1934 (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n", 1935 name, 1936 (u_longlong_t)count, 1937 (u_longlong_t)(dspace / count), 1938 (u_longlong_t)(mspace / count)); 1939 1940 if (dump_opt['D'] < 3) 1941 return; 1942 1943 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); 1944 1945 if (dump_opt['D'] < 4) 1946 return; 1947 1948 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) 1949 return; 1950 1951 (void) printf("%s contents:\n\n", name); 1952 1953 while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0) 1954 dump_dde(ddt, &dde, walk); 1955 1956 ASSERT3U(error, ==, ENOENT); 1957 1958 (void) printf("\n"); 1959 } 1960 1961 static void 1962 dump_all_ddts(spa_t *spa) 1963 { 1964 ddt_histogram_t ddh_total = {{{0}}}; 1965 ddt_stat_t dds_total = {0}; 1966 1967 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 1968 ddt_t *ddt = spa->spa_ddt[c]; 1969 if (!ddt) 1970 continue; 1971 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1972 for (ddt_class_t class = 0; class < DDT_CLASSES; 1973 class++) { 1974 dump_ddt(ddt, type, class); 1975 } 1976 } 1977 } 1978 1979 ddt_get_dedup_stats(spa, &dds_total); 1980 1981 if (dds_total.dds_blocks == 0) { 1982 (void) printf("All DDTs are empty\n"); 1983 return; 1984 } 1985 1986 (void) printf("\n"); 1987 1988 if (dump_opt['D'] > 1) { 1989 (void) printf("DDT histogram (aggregated over all DDTs):\n"); 1990 ddt_get_dedup_histogram(spa, &ddh_total); 1991 zpool_dump_ddt(&dds_total, &ddh_total); 1992 } 1993 1994 dump_dedup_ratio(&dds_total); 1995 } 1996 1997 static void 1998 dump_brt(spa_t *spa) 1999 { 2000 if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) { 2001 printf("BRT: unsupported on this pool\n"); 2002 return; 2003 } 2004 2005 if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 2006 printf("BRT: empty\n"); 2007 return; 2008 } 2009 2010 brt_t *brt = spa->spa_brt; 2011 VERIFY(brt); 2012 2013 char count[32], used[32], saved[32]; 2014 zdb_nicebytes(brt_get_used(spa), used, sizeof (used)); 2015 zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved)); 2016 uint64_t ratio = brt_get_ratio(spa); 2017 printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved, 2018 (u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100)); 2019 2020 if (dump_opt['T'] < 2) 2021 return; 2022 2023 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { 2024 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid]; 2025 if (brtvd == NULL) 2026 continue; 2027 2028 if (!brtvd->bv_initiated) { 2029 printf("BRT: vdev %" PRIu64 ": empty\n", vdevid); 2030 continue; 2031 } 2032 2033 zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count)); 2034 zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used)); 2035 zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved)); 2036 printf("BRT: vdev %" PRIu64 ": refcnt %s; used %s; saved %s\n", 2037 vdevid, count, used, saved); 2038 } 2039 2040 if (dump_opt['T'] < 3) 2041 return; 2042 2043 char dva[64]; 2044 printf("\n%-16s %-10s\n", "DVA", "REFCNT"); 2045 2046 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { 2047 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid]; 2048 if (brtvd == NULL || !brtvd->bv_initiated) 2049 continue; 2050 2051 zap_cursor_t zc; 2052 zap_attribute_t za; 2053 for (zap_cursor_init(&zc, brt->brt_mos, brtvd->bv_mos_entries); 2054 zap_cursor_retrieve(&zc, &za) == 0; 2055 zap_cursor_advance(&zc)) { 2056 uint64_t offset = *(uint64_t *)za.za_name; 2057 uint64_t refcnt = za.za_first_integer; 2058 2059 snprintf(dva, sizeof (dva), "%" PRIu64 ":%llx", vdevid, 2060 (u_longlong_t)offset); 2061 printf("%-16s %-10llu\n", dva, (u_longlong_t)refcnt); 2062 } 2063 zap_cursor_fini(&zc); 2064 } 2065 } 2066 2067 static void 2068 dump_dtl_seg(void *arg, uint64_t start, uint64_t size) 2069 { 2070 char *prefix = arg; 2071 2072 (void) printf("%s [%llu,%llu) length %llu\n", 2073 prefix, 2074 (u_longlong_t)start, 2075 (u_longlong_t)(start + size), 2076 (u_longlong_t)(size)); 2077 } 2078 2079 static void 2080 dump_dtl(vdev_t *vd, int indent) 2081 { 2082 spa_t *spa = vd->vdev_spa; 2083 boolean_t required; 2084 const char *name[DTL_TYPES] = { "missing", "partial", "scrub", 2085 "outage" }; 2086 char prefix[256]; 2087 2088 spa_vdev_state_enter(spa, SCL_NONE); 2089 required = vdev_dtl_required(vd); 2090 (void) spa_vdev_state_exit(spa, NULL, 0); 2091 2092 if (indent == 0) 2093 (void) printf("\nDirty time logs:\n\n"); 2094 2095 (void) printf("\t%*s%s [%s]\n", indent, "", 2096 vd->vdev_path ? vd->vdev_path : 2097 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), 2098 required ? "DTL-required" : "DTL-expendable"); 2099 2100 for (int t = 0; t < DTL_TYPES; t++) { 2101 range_tree_t *rt = vd->vdev_dtl[t]; 2102 if (range_tree_space(rt) == 0) 2103 continue; 2104 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", 2105 indent + 2, "", name[t]); 2106 range_tree_walk(rt, dump_dtl_seg, prefix); 2107 if (dump_opt['d'] > 5 && vd->vdev_children == 0) 2108 dump_spacemap(spa->spa_meta_objset, 2109 vd->vdev_dtl_sm); 2110 } 2111 2112 for (unsigned c = 0; c < vd->vdev_children; c++) 2113 dump_dtl(vd->vdev_child[c], indent + 4); 2114 } 2115 2116 static void 2117 dump_history(spa_t *spa) 2118 { 2119 nvlist_t **events = NULL; 2120 char *buf; 2121 uint64_t resid, len, off = 0; 2122 uint_t num = 0; 2123 int error; 2124 char tbuf[30]; 2125 2126 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) { 2127 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n", 2128 __func__); 2129 return; 2130 } 2131 2132 do { 2133 len = SPA_OLD_MAXBLOCKSIZE; 2134 2135 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { 2136 (void) fprintf(stderr, "Unable to read history: " 2137 "error %d\n", error); 2138 free(buf); 2139 return; 2140 } 2141 2142 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) 2143 break; 2144 2145 off -= resid; 2146 } while (len != 0); 2147 2148 (void) printf("\nHistory:\n"); 2149 for (unsigned i = 0; i < num; i++) { 2150 boolean_t printed = B_FALSE; 2151 2152 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) { 2153 time_t tsec; 2154 struct tm t; 2155 2156 tsec = fnvlist_lookup_uint64(events[i], 2157 ZPOOL_HIST_TIME); 2158 (void) localtime_r(&tsec, &t); 2159 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); 2160 } else { 2161 tbuf[0] = '\0'; 2162 } 2163 2164 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) { 2165 (void) printf("%s %s\n", tbuf, 2166 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD)); 2167 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) { 2168 uint64_t ievent; 2169 2170 ievent = fnvlist_lookup_uint64(events[i], 2171 ZPOOL_HIST_INT_EVENT); 2172 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) 2173 goto next; 2174 2175 (void) printf(" %s [internal %s txg:%ju] %s\n", 2176 tbuf, 2177 zfs_history_event_names[ievent], 2178 fnvlist_lookup_uint64(events[i], 2179 ZPOOL_HIST_TXG), 2180 fnvlist_lookup_string(events[i], 2181 ZPOOL_HIST_INT_STR)); 2182 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) { 2183 (void) printf("%s [txg:%ju] %s", tbuf, 2184 fnvlist_lookup_uint64(events[i], 2185 ZPOOL_HIST_TXG), 2186 fnvlist_lookup_string(events[i], 2187 ZPOOL_HIST_INT_NAME)); 2188 2189 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) { 2190 (void) printf(" %s (%llu)", 2191 fnvlist_lookup_string(events[i], 2192 ZPOOL_HIST_DSNAME), 2193 (u_longlong_t)fnvlist_lookup_uint64( 2194 events[i], 2195 ZPOOL_HIST_DSID)); 2196 } 2197 2198 (void) printf(" %s\n", fnvlist_lookup_string(events[i], 2199 ZPOOL_HIST_INT_STR)); 2200 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) { 2201 (void) printf("%s ioctl %s\n", tbuf, 2202 fnvlist_lookup_string(events[i], 2203 ZPOOL_HIST_IOCTL)); 2204 2205 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) { 2206 (void) printf(" input:\n"); 2207 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2208 ZPOOL_HIST_INPUT_NVL), 8); 2209 } 2210 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) { 2211 (void) printf(" output:\n"); 2212 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2213 ZPOOL_HIST_OUTPUT_NVL), 8); 2214 } 2215 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) { 2216 (void) printf(" errno: %lld\n", 2217 (longlong_t)fnvlist_lookup_int64(events[i], 2218 ZPOOL_HIST_ERRNO)); 2219 } 2220 } else { 2221 goto next; 2222 } 2223 2224 printed = B_TRUE; 2225 next: 2226 if (dump_opt['h'] > 1) { 2227 if (!printed) 2228 (void) printf("unrecognized record:\n"); 2229 dump_nvlist(events[i], 2); 2230 } 2231 } 2232 free(buf); 2233 } 2234 2235 static void 2236 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) 2237 { 2238 (void) os, (void) object, (void) data, (void) size; 2239 } 2240 2241 static uint64_t 2242 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, 2243 const zbookmark_phys_t *zb) 2244 { 2245 if (dnp == NULL) { 2246 ASSERT(zb->zb_level < 0); 2247 if (zb->zb_object == 0) 2248 return (zb->zb_blkid); 2249 return (zb->zb_blkid * BP_GET_LSIZE(bp)); 2250 } 2251 2252 ASSERT(zb->zb_level >= 0); 2253 2254 return ((zb->zb_blkid << 2255 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * 2256 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 2257 } 2258 2259 static void 2260 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen, 2261 const blkptr_t *bp) 2262 { 2263 static abd_t *pabd = NULL; 2264 void *buf; 2265 zio_t *zio; 2266 zfs_zstdhdr_t zstd_hdr; 2267 int error; 2268 2269 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD) 2270 return; 2271 2272 if (BP_IS_HOLE(bp)) 2273 return; 2274 2275 if (BP_IS_EMBEDDED(bp)) { 2276 buf = malloc(SPA_MAXBLOCKSIZE); 2277 if (buf == NULL) { 2278 (void) fprintf(stderr, "out of memory\n"); 2279 exit(1); 2280 } 2281 decode_embedded_bp_compressed(bp, buf); 2282 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2283 free(buf); 2284 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2285 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2286 (void) snprintf(blkbuf + strlen(blkbuf), 2287 buflen - strlen(blkbuf), 2288 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED", 2289 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2290 zfs_get_hdrlevel(&zstd_hdr)); 2291 return; 2292 } 2293 2294 if (!pabd) 2295 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 2296 zio = zio_root(spa, NULL, NULL, 0); 2297 2298 /* Decrypt but don't decompress so we can read the compression header */ 2299 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL, 2300 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS, 2301 NULL)); 2302 error = zio_wait(zio); 2303 if (error) { 2304 (void) fprintf(stderr, "read failed: %d\n", error); 2305 return; 2306 } 2307 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp)); 2308 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2309 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2310 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2311 2312 (void) snprintf(blkbuf + strlen(blkbuf), 2313 buflen - strlen(blkbuf), 2314 " ZSTD:size=%u:version=%u:level=%u:NORMAL", 2315 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2316 zfs_get_hdrlevel(&zstd_hdr)); 2317 2318 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp)); 2319 } 2320 2321 static void 2322 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp, 2323 boolean_t bp_freed) 2324 { 2325 const dva_t *dva = bp->blk_dva; 2326 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; 2327 int i; 2328 2329 if (dump_opt['b'] >= 6) { 2330 snprintf_blkptr(blkbuf, buflen, bp); 2331 if (bp_freed) { 2332 (void) snprintf(blkbuf + strlen(blkbuf), 2333 buflen - strlen(blkbuf), " %s", "FREE"); 2334 } 2335 return; 2336 } 2337 2338 if (BP_IS_EMBEDDED(bp)) { 2339 (void) sprintf(blkbuf, 2340 "EMBEDDED et=%u %llxL/%llxP B=%llu", 2341 (int)BPE_GET_ETYPE(bp), 2342 (u_longlong_t)BPE_GET_LSIZE(bp), 2343 (u_longlong_t)BPE_GET_PSIZE(bp), 2344 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); 2345 return; 2346 } 2347 2348 blkbuf[0] = '\0'; 2349 2350 for (i = 0; i < ndvas; i++) 2351 (void) snprintf(blkbuf + strlen(blkbuf), 2352 buflen - strlen(blkbuf), "%llu:%llx:%llx ", 2353 (u_longlong_t)DVA_GET_VDEV(&dva[i]), 2354 (u_longlong_t)DVA_GET_OFFSET(&dva[i]), 2355 (u_longlong_t)DVA_GET_ASIZE(&dva[i])); 2356 2357 if (BP_IS_HOLE(bp)) { 2358 (void) snprintf(blkbuf + strlen(blkbuf), 2359 buflen - strlen(blkbuf), 2360 "%llxL B=%llu", 2361 (u_longlong_t)BP_GET_LSIZE(bp), 2362 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); 2363 } else { 2364 (void) snprintf(blkbuf + strlen(blkbuf), 2365 buflen - strlen(blkbuf), 2366 "%llxL/%llxP F=%llu B=%llu/%llu", 2367 (u_longlong_t)BP_GET_LSIZE(bp), 2368 (u_longlong_t)BP_GET_PSIZE(bp), 2369 (u_longlong_t)BP_GET_FILL(bp), 2370 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp), 2371 (u_longlong_t)BP_GET_BIRTH(bp)); 2372 if (bp_freed) 2373 (void) snprintf(blkbuf + strlen(blkbuf), 2374 buflen - strlen(blkbuf), " %s", "FREE"); 2375 (void) snprintf(blkbuf + strlen(blkbuf), 2376 buflen - strlen(blkbuf), 2377 " cksum=%016llx:%016llx:%016llx:%016llx", 2378 (u_longlong_t)bp->blk_cksum.zc_word[0], 2379 (u_longlong_t)bp->blk_cksum.zc_word[1], 2380 (u_longlong_t)bp->blk_cksum.zc_word[2], 2381 (u_longlong_t)bp->blk_cksum.zc_word[3]); 2382 } 2383 } 2384 2385 static void 2386 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb, 2387 const dnode_phys_t *dnp) 2388 { 2389 char blkbuf[BP_SPRINTF_LEN]; 2390 int l; 2391 2392 if (!BP_IS_EMBEDDED(bp)) { 2393 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); 2394 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); 2395 } 2396 2397 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); 2398 2399 ASSERT(zb->zb_level >= 0); 2400 2401 for (l = dnp->dn_nlevels - 1; l >= -1; l--) { 2402 if (l == zb->zb_level) { 2403 (void) printf("L%llx", (u_longlong_t)zb->zb_level); 2404 } else { 2405 (void) printf(" "); 2406 } 2407 } 2408 2409 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE); 2410 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD) 2411 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp); 2412 (void) printf("%s\n", blkbuf); 2413 } 2414 2415 static int 2416 visit_indirect(spa_t *spa, const dnode_phys_t *dnp, 2417 blkptr_t *bp, const zbookmark_phys_t *zb) 2418 { 2419 int err = 0; 2420 2421 if (BP_GET_LOGICAL_BIRTH(bp) == 0) 2422 return (0); 2423 2424 print_indirect(spa, bp, zb, dnp); 2425 2426 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { 2427 arc_flags_t flags = ARC_FLAG_WAIT; 2428 int i; 2429 blkptr_t *cbp; 2430 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2431 arc_buf_t *buf; 2432 uint64_t fill = 0; 2433 ASSERT(!BP_IS_REDACTED(bp)); 2434 2435 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2436 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); 2437 if (err) 2438 return (err); 2439 ASSERT(buf->b_data); 2440 2441 /* recursively visit blocks below this */ 2442 cbp = buf->b_data; 2443 for (i = 0; i < epb; i++, cbp++) { 2444 zbookmark_phys_t czb; 2445 2446 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2447 zb->zb_level - 1, 2448 zb->zb_blkid * epb + i); 2449 err = visit_indirect(spa, dnp, cbp, &czb); 2450 if (err) 2451 break; 2452 fill += BP_GET_FILL(cbp); 2453 } 2454 if (!err) 2455 ASSERT3U(fill, ==, BP_GET_FILL(bp)); 2456 arc_buf_destroy(buf, &buf); 2457 } 2458 2459 return (err); 2460 } 2461 2462 static void 2463 dump_indirect(dnode_t *dn) 2464 { 2465 dnode_phys_t *dnp = dn->dn_phys; 2466 zbookmark_phys_t czb; 2467 2468 (void) printf("Indirect blocks:\n"); 2469 2470 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), 2471 dn->dn_object, dnp->dn_nlevels - 1, 0); 2472 for (int j = 0; j < dnp->dn_nblkptr; j++) { 2473 czb.zb_blkid = j; 2474 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, 2475 &dnp->dn_blkptr[j], &czb); 2476 } 2477 2478 (void) printf("\n"); 2479 } 2480 2481 static void 2482 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) 2483 { 2484 (void) os, (void) object; 2485 dsl_dir_phys_t *dd = data; 2486 time_t crtime; 2487 char nice[32]; 2488 2489 /* make sure nicenum has enough space */ 2490 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated"); 2491 2492 if (dd == NULL) 2493 return; 2494 2495 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); 2496 2497 crtime = dd->dd_creation_time; 2498 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2499 (void) printf("\t\thead_dataset_obj = %llu\n", 2500 (u_longlong_t)dd->dd_head_dataset_obj); 2501 (void) printf("\t\tparent_dir_obj = %llu\n", 2502 (u_longlong_t)dd->dd_parent_obj); 2503 (void) printf("\t\torigin_obj = %llu\n", 2504 (u_longlong_t)dd->dd_origin_obj); 2505 (void) printf("\t\tchild_dir_zapobj = %llu\n", 2506 (u_longlong_t)dd->dd_child_dir_zapobj); 2507 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice)); 2508 (void) printf("\t\tused_bytes = %s\n", nice); 2509 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice)); 2510 (void) printf("\t\tcompressed_bytes = %s\n", nice); 2511 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice)); 2512 (void) printf("\t\tuncompressed_bytes = %s\n", nice); 2513 zdb_nicenum(dd->dd_quota, nice, sizeof (nice)); 2514 (void) printf("\t\tquota = %s\n", nice); 2515 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice)); 2516 (void) printf("\t\treserved = %s\n", nice); 2517 (void) printf("\t\tprops_zapobj = %llu\n", 2518 (u_longlong_t)dd->dd_props_zapobj); 2519 (void) printf("\t\tdeleg_zapobj = %llu\n", 2520 (u_longlong_t)dd->dd_deleg_zapobj); 2521 (void) printf("\t\tflags = %llx\n", 2522 (u_longlong_t)dd->dd_flags); 2523 2524 #define DO(which) \ 2525 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \ 2526 sizeof (nice)); \ 2527 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) 2528 DO(HEAD); 2529 DO(SNAP); 2530 DO(CHILD); 2531 DO(CHILD_RSRV); 2532 DO(REFRSRV); 2533 #undef DO 2534 (void) printf("\t\tclones = %llu\n", 2535 (u_longlong_t)dd->dd_clones); 2536 } 2537 2538 static void 2539 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) 2540 { 2541 (void) os, (void) object; 2542 dsl_dataset_phys_t *ds = data; 2543 time_t crtime; 2544 char used[32], compressed[32], uncompressed[32], unique[32]; 2545 char blkbuf[BP_SPRINTF_LEN]; 2546 2547 /* make sure nicenum has enough space */ 2548 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated"); 2549 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ, 2550 "compressed truncated"); 2551 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ, 2552 "uncompressed truncated"); 2553 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated"); 2554 2555 if (ds == NULL) 2556 return; 2557 2558 ASSERT(size == sizeof (*ds)); 2559 crtime = ds->ds_creation_time; 2560 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used)); 2561 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed)); 2562 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed, 2563 sizeof (uncompressed)); 2564 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique)); 2565 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); 2566 2567 (void) printf("\t\tdir_obj = %llu\n", 2568 (u_longlong_t)ds->ds_dir_obj); 2569 (void) printf("\t\tprev_snap_obj = %llu\n", 2570 (u_longlong_t)ds->ds_prev_snap_obj); 2571 (void) printf("\t\tprev_snap_txg = %llu\n", 2572 (u_longlong_t)ds->ds_prev_snap_txg); 2573 (void) printf("\t\tnext_snap_obj = %llu\n", 2574 (u_longlong_t)ds->ds_next_snap_obj); 2575 (void) printf("\t\tsnapnames_zapobj = %llu\n", 2576 (u_longlong_t)ds->ds_snapnames_zapobj); 2577 (void) printf("\t\tnum_children = %llu\n", 2578 (u_longlong_t)ds->ds_num_children); 2579 (void) printf("\t\tuserrefs_obj = %llu\n", 2580 (u_longlong_t)ds->ds_userrefs_obj); 2581 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2582 (void) printf("\t\tcreation_txg = %llu\n", 2583 (u_longlong_t)ds->ds_creation_txg); 2584 (void) printf("\t\tdeadlist_obj = %llu\n", 2585 (u_longlong_t)ds->ds_deadlist_obj); 2586 (void) printf("\t\tused_bytes = %s\n", used); 2587 (void) printf("\t\tcompressed_bytes = %s\n", compressed); 2588 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); 2589 (void) printf("\t\tunique = %s\n", unique); 2590 (void) printf("\t\tfsid_guid = %llu\n", 2591 (u_longlong_t)ds->ds_fsid_guid); 2592 (void) printf("\t\tguid = %llu\n", 2593 (u_longlong_t)ds->ds_guid); 2594 (void) printf("\t\tflags = %llx\n", 2595 (u_longlong_t)ds->ds_flags); 2596 (void) printf("\t\tnext_clones_obj = %llu\n", 2597 (u_longlong_t)ds->ds_next_clones_obj); 2598 (void) printf("\t\tprops_obj = %llu\n", 2599 (u_longlong_t)ds->ds_props_obj); 2600 (void) printf("\t\tbp = %s\n", blkbuf); 2601 } 2602 2603 static int 2604 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2605 { 2606 (void) arg, (void) tx; 2607 char blkbuf[BP_SPRINTF_LEN]; 2608 2609 if (BP_GET_LOGICAL_BIRTH(bp) != 0) { 2610 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 2611 (void) printf("\t%s\n", blkbuf); 2612 } 2613 return (0); 2614 } 2615 2616 static void 2617 dump_bptree(objset_t *os, uint64_t obj, const char *name) 2618 { 2619 char bytes[32]; 2620 bptree_phys_t *bt; 2621 dmu_buf_t *db; 2622 2623 /* make sure nicenum has enough space */ 2624 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2625 2626 if (dump_opt['d'] < 3) 2627 return; 2628 2629 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); 2630 bt = db->db_data; 2631 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes)); 2632 (void) printf("\n %s: %llu datasets, %s\n", 2633 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); 2634 dmu_buf_rele(db, FTAG); 2635 2636 if (dump_opt['d'] < 5) 2637 return; 2638 2639 (void) printf("\n"); 2640 2641 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); 2642 } 2643 2644 static int 2645 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) 2646 { 2647 (void) arg, (void) tx; 2648 char blkbuf[BP_SPRINTF_LEN]; 2649 2650 ASSERT(BP_GET_LOGICAL_BIRTH(bp) != 0); 2651 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed); 2652 (void) printf("\t%s\n", blkbuf); 2653 return (0); 2654 } 2655 2656 static void 2657 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent) 2658 { 2659 char bytes[32]; 2660 char comp[32]; 2661 char uncomp[32]; 2662 uint64_t i; 2663 2664 /* make sure nicenum has enough space */ 2665 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2666 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2667 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2668 2669 if (dump_opt['d'] < 3) 2670 return; 2671 2672 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes)); 2673 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2674 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp)); 2675 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp)); 2676 if (bpo->bpo_havefreed) { 2677 (void) printf(" %*s: object %llu, %llu local " 2678 "blkptrs, %llu freed, %llu subobjs in object %llu, " 2679 "%s (%s/%s comp)\n", 2680 indent * 8, name, 2681 (u_longlong_t)bpo->bpo_object, 2682 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2683 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2684 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2685 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2686 bytes, comp, uncomp); 2687 } else { 2688 (void) printf(" %*s: object %llu, %llu local " 2689 "blkptrs, %llu subobjs in object %llu, " 2690 "%s (%s/%s comp)\n", 2691 indent * 8, name, 2692 (u_longlong_t)bpo->bpo_object, 2693 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2694 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2695 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2696 bytes, comp, uncomp); 2697 } 2698 2699 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2700 uint64_t subobj; 2701 bpobj_t subbpo; 2702 int error; 2703 VERIFY0(dmu_read(bpo->bpo_os, 2704 bpo->bpo_phys->bpo_subobjs, 2705 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2706 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2707 if (error != 0) { 2708 (void) printf("ERROR %u while trying to open " 2709 "subobj id %llu\n", 2710 error, (u_longlong_t)subobj); 2711 continue; 2712 } 2713 dump_full_bpobj(&subbpo, "subobj", indent + 1); 2714 bpobj_close(&subbpo); 2715 } 2716 } else { 2717 if (bpo->bpo_havefreed) { 2718 (void) printf(" %*s: object %llu, %llu blkptrs, " 2719 "%llu freed, %s\n", 2720 indent * 8, name, 2721 (u_longlong_t)bpo->bpo_object, 2722 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2723 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2724 bytes); 2725 } else { 2726 (void) printf(" %*s: object %llu, %llu blkptrs, " 2727 "%s\n", 2728 indent * 8, name, 2729 (u_longlong_t)bpo->bpo_object, 2730 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2731 bytes); 2732 } 2733 } 2734 2735 if (dump_opt['d'] < 5) 2736 return; 2737 2738 2739 if (indent == 0) { 2740 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); 2741 (void) printf("\n"); 2742 } 2743 } 2744 2745 static int 2746 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact, 2747 boolean_t print_list) 2748 { 2749 int err = 0; 2750 zfs_bookmark_phys_t prop; 2751 objset_t *mos = dp->dp_spa->spa_meta_objset; 2752 err = dsl_bookmark_lookup(dp, name, NULL, &prop); 2753 2754 if (err != 0) { 2755 return (err); 2756 } 2757 2758 (void) printf("\t#%s: ", strchr(name, '#') + 1); 2759 (void) printf("{guid: %llx creation_txg: %llu creation_time: " 2760 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid, 2761 (u_longlong_t)prop.zbm_creation_txg, 2762 (u_longlong_t)prop.zbm_creation_time, 2763 (u_longlong_t)prop.zbm_redaction_obj); 2764 2765 IMPLY(print_list, print_redact); 2766 if (!print_redact || prop.zbm_redaction_obj == 0) 2767 return (0); 2768 2769 redaction_list_t *rl; 2770 VERIFY0(dsl_redaction_list_hold_obj(dp, 2771 prop.zbm_redaction_obj, FTAG, &rl)); 2772 2773 redaction_list_phys_t *rlp = rl->rl_phys; 2774 (void) printf("\tRedacted:\n\t\tProgress: "); 2775 if (rlp->rlp_last_object != UINT64_MAX || 2776 rlp->rlp_last_blkid != UINT64_MAX) { 2777 (void) printf("%llu %llu (incomplete)\n", 2778 (u_longlong_t)rlp->rlp_last_object, 2779 (u_longlong_t)rlp->rlp_last_blkid); 2780 } else { 2781 (void) printf("complete\n"); 2782 } 2783 (void) printf("\t\tSnapshots: ["); 2784 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) { 2785 if (i > 0) 2786 (void) printf(", "); 2787 (void) printf("%0llu", 2788 (u_longlong_t)rlp->rlp_snaps[i]); 2789 } 2790 (void) printf("]\n\t\tLength: %llu\n", 2791 (u_longlong_t)rlp->rlp_num_entries); 2792 2793 if (!print_list) { 2794 dsl_redaction_list_rele(rl, FTAG); 2795 return (0); 2796 } 2797 2798 if (rlp->rlp_num_entries == 0) { 2799 dsl_redaction_list_rele(rl, FTAG); 2800 (void) printf("\t\tRedaction List: []\n\n"); 2801 return (0); 2802 } 2803 2804 redact_block_phys_t *rbp_buf; 2805 uint64_t size; 2806 dmu_object_info_t doi; 2807 2808 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi)); 2809 size = doi.doi_max_offset; 2810 rbp_buf = kmem_alloc(size, KM_SLEEP); 2811 2812 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size, 2813 rbp_buf, 0); 2814 if (err != 0) { 2815 dsl_redaction_list_rele(rl, FTAG); 2816 kmem_free(rbp_buf, size); 2817 return (err); 2818 } 2819 2820 (void) printf("\t\tRedaction List: [{object: %llx, offset: " 2821 "%llx, blksz: %x, count: %llx}", 2822 (u_longlong_t)rbp_buf[0].rbp_object, 2823 (u_longlong_t)rbp_buf[0].rbp_blkid, 2824 (uint_t)(redact_block_get_size(&rbp_buf[0])), 2825 (u_longlong_t)redact_block_get_count(&rbp_buf[0])); 2826 2827 for (size_t i = 1; i < rlp->rlp_num_entries; i++) { 2828 (void) printf(",\n\t\t{object: %llx, offset: %llx, " 2829 "blksz: %x, count: %llx}", 2830 (u_longlong_t)rbp_buf[i].rbp_object, 2831 (u_longlong_t)rbp_buf[i].rbp_blkid, 2832 (uint_t)(redact_block_get_size(&rbp_buf[i])), 2833 (u_longlong_t)redact_block_get_count(&rbp_buf[i])); 2834 } 2835 dsl_redaction_list_rele(rl, FTAG); 2836 kmem_free(rbp_buf, size); 2837 (void) printf("]\n\n"); 2838 return (0); 2839 } 2840 2841 static void 2842 dump_bookmarks(objset_t *os, int verbosity) 2843 { 2844 zap_cursor_t zc; 2845 zap_attribute_t attr; 2846 dsl_dataset_t *ds = dmu_objset_ds(os); 2847 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2848 objset_t *mos = os->os_spa->spa_meta_objset; 2849 if (verbosity < 4) 2850 return; 2851 dsl_pool_config_enter(dp, FTAG); 2852 2853 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj); 2854 zap_cursor_retrieve(&zc, &attr) == 0; 2855 zap_cursor_advance(&zc)) { 2856 char osname[ZFS_MAX_DATASET_NAME_LEN]; 2857 char buf[ZFS_MAX_DATASET_NAME_LEN]; 2858 int len; 2859 dmu_objset_name(os, osname); 2860 len = snprintf(buf, sizeof (buf), "%s#%s", osname, 2861 attr.za_name); 2862 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN); 2863 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6); 2864 } 2865 zap_cursor_fini(&zc); 2866 dsl_pool_config_exit(dp, FTAG); 2867 } 2868 2869 static void 2870 bpobj_count_refd(bpobj_t *bpo) 2871 { 2872 mos_obj_refd(bpo->bpo_object); 2873 2874 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2875 mos_obj_refd(bpo->bpo_phys->bpo_subobjs); 2876 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2877 uint64_t subobj; 2878 bpobj_t subbpo; 2879 int error; 2880 VERIFY0(dmu_read(bpo->bpo_os, 2881 bpo->bpo_phys->bpo_subobjs, 2882 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2883 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2884 if (error != 0) { 2885 (void) printf("ERROR %u while trying to open " 2886 "subobj id %llu\n", 2887 error, (u_longlong_t)subobj); 2888 continue; 2889 } 2890 bpobj_count_refd(&subbpo); 2891 bpobj_close(&subbpo); 2892 } 2893 } 2894 } 2895 2896 static int 2897 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle) 2898 { 2899 spa_t *spa = arg; 2900 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 2901 if (dle->dle_bpobj.bpo_object != empty_bpobj) 2902 bpobj_count_refd(&dle->dle_bpobj); 2903 return (0); 2904 } 2905 2906 static int 2907 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle) 2908 { 2909 ASSERT(arg == NULL); 2910 if (dump_opt['d'] >= 5) { 2911 char buf[128]; 2912 (void) snprintf(buf, sizeof (buf), 2913 "mintxg %llu -> obj %llu", 2914 (longlong_t)dle->dle_mintxg, 2915 (longlong_t)dle->dle_bpobj.bpo_object); 2916 2917 dump_full_bpobj(&dle->dle_bpobj, buf, 0); 2918 } else { 2919 (void) printf("mintxg %llu -> obj %llu\n", 2920 (longlong_t)dle->dle_mintxg, 2921 (longlong_t)dle->dle_bpobj.bpo_object); 2922 } 2923 return (0); 2924 } 2925 2926 static void 2927 dump_blkptr_list(dsl_deadlist_t *dl, const char *name) 2928 { 2929 char bytes[32]; 2930 char comp[32]; 2931 char uncomp[32]; 2932 char entries[32]; 2933 spa_t *spa = dmu_objset_spa(dl->dl_os); 2934 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 2935 2936 if (dl->dl_oldfmt) { 2937 if (dl->dl_bpobj.bpo_object != empty_bpobj) 2938 bpobj_count_refd(&dl->dl_bpobj); 2939 } else { 2940 mos_obj_refd(dl->dl_object); 2941 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa); 2942 } 2943 2944 /* make sure nicenum has enough space */ 2945 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2946 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2947 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2948 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated"); 2949 2950 if (dump_opt['d'] < 3) 2951 return; 2952 2953 if (dl->dl_oldfmt) { 2954 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); 2955 return; 2956 } 2957 2958 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes)); 2959 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp)); 2960 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp)); 2961 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries)); 2962 (void) printf("\n %s: %s (%s/%s comp), %s entries\n", 2963 name, bytes, comp, uncomp, entries); 2964 2965 if (dump_opt['d'] < 4) 2966 return; 2967 2968 (void) putchar('\n'); 2969 2970 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL); 2971 } 2972 2973 static int 2974 verify_dd_livelist(objset_t *os) 2975 { 2976 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp; 2977 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2978 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 2979 2980 ASSERT(!dmu_objset_is_snapshot(os)); 2981 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 2982 return (0); 2983 2984 /* Iterate through the livelist to check for duplicates */ 2985 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight, 2986 NULL); 2987 2988 dsl_pool_config_enter(dp, FTAG); 2989 dsl_deadlist_space(&dd->dd_livelist, &ll_used, 2990 &ll_comp, &ll_uncomp); 2991 2992 dsl_dataset_t *origin_ds; 2993 ASSERT(dsl_pool_config_held(dp)); 2994 VERIFY0(dsl_dataset_hold_obj(dp, 2995 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds)); 2996 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset, 2997 &used, &comp, &uncomp)); 2998 dsl_dataset_rele(origin_ds, FTAG); 2999 dsl_pool_config_exit(dp, FTAG); 3000 /* 3001 * It's possible that the dataset's uncomp space is larger than the 3002 * livelist's because livelists do not track embedded block pointers 3003 */ 3004 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) { 3005 char nice_used[32], nice_comp[32], nice_uncomp[32]; 3006 (void) printf("Discrepancy in space accounting:\n"); 3007 zdb_nicenum(used, nice_used, sizeof (nice_used)); 3008 zdb_nicenum(comp, nice_comp, sizeof (nice_comp)); 3009 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp)); 3010 (void) printf("dir: used %s, comp %s, uncomp %s\n", 3011 nice_used, nice_comp, nice_uncomp); 3012 zdb_nicenum(ll_used, nice_used, sizeof (nice_used)); 3013 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp)); 3014 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp)); 3015 (void) printf("livelist: used %s, comp %s, uncomp %s\n", 3016 nice_used, nice_comp, nice_uncomp); 3017 return (1); 3018 } 3019 return (0); 3020 } 3021 3022 static char *key_material = NULL; 3023 3024 static boolean_t 3025 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out) 3026 { 3027 uint64_t keyformat, salt, iters; 3028 int i; 3029 unsigned char c; 3030 3031 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3032 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t), 3033 1, &keyformat)); 3034 3035 switch (keyformat) { 3036 case ZFS_KEYFORMAT_HEX: 3037 for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) { 3038 if (!isxdigit(key_material[i]) || 3039 !isxdigit(key_material[i+1])) 3040 return (B_FALSE); 3041 if (sscanf(&key_material[i], "%02hhx", &c) != 1) 3042 return (B_FALSE); 3043 key_out[i / 2] = c; 3044 } 3045 break; 3046 3047 case ZFS_KEYFORMAT_PASSPHRASE: 3048 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3049 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 3050 sizeof (uint64_t), 1, &salt)); 3051 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3052 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 3053 sizeof (uint64_t), 1, &iters)); 3054 3055 if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material), 3056 ((uint8_t *)&salt), sizeof (uint64_t), iters, 3057 WRAPPING_KEY_LEN, key_out) != 1) 3058 return (B_FALSE); 3059 3060 break; 3061 3062 default: 3063 fatal("no support for key format %u\n", 3064 (unsigned int) keyformat); 3065 } 3066 3067 return (B_TRUE); 3068 } 3069 3070 static char encroot[ZFS_MAX_DATASET_NAME_LEN]; 3071 static boolean_t key_loaded = B_FALSE; 3072 3073 static void 3074 zdb_load_key(objset_t *os) 3075 { 3076 dsl_pool_t *dp; 3077 dsl_dir_t *dd, *rdd; 3078 uint8_t key[WRAPPING_KEY_LEN]; 3079 uint64_t rddobj; 3080 int err; 3081 3082 dp = spa_get_dsl(os->os_spa); 3083 dd = os->os_dsl_dataset->ds_dir; 3084 3085 dsl_pool_config_enter(dp, FTAG); 3086 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3087 DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj)); 3088 VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd)); 3089 dsl_dir_name(rdd, encroot); 3090 dsl_dir_rele(rdd, FTAG); 3091 3092 if (!zdb_derive_key(dd, key)) 3093 fatal("couldn't derive encryption key"); 3094 3095 dsl_pool_config_exit(dp, FTAG); 3096 3097 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE); 3098 3099 dsl_crypto_params_t *dcp; 3100 nvlist_t *crypto_args; 3101 3102 crypto_args = fnvlist_alloc(); 3103 fnvlist_add_uint8_array(crypto_args, "wkeydata", 3104 (uint8_t *)key, WRAPPING_KEY_LEN); 3105 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 3106 NULL, crypto_args, &dcp)); 3107 err = spa_keystore_load_wkey(encroot, dcp, B_FALSE); 3108 3109 dsl_crypto_params_free(dcp, (err != 0)); 3110 fnvlist_free(crypto_args); 3111 3112 if (err != 0) 3113 fatal( 3114 "couldn't load encryption key for %s: %s", 3115 encroot, err == ZFS_ERR_CRYPTO_NOTSUP ? 3116 "crypto params not supported" : strerror(err)); 3117 3118 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE); 3119 3120 printf("Unlocked encryption root: %s\n", encroot); 3121 key_loaded = B_TRUE; 3122 } 3123 3124 static void 3125 zdb_unload_key(void) 3126 { 3127 if (!key_loaded) 3128 return; 3129 3130 VERIFY0(spa_keystore_unload_wkey(encroot)); 3131 key_loaded = B_FALSE; 3132 } 3133 3134 static avl_tree_t idx_tree; 3135 static avl_tree_t domain_tree; 3136 static boolean_t fuid_table_loaded; 3137 static objset_t *sa_os = NULL; 3138 static sa_attr_type_t *sa_attr_table = NULL; 3139 3140 static int 3141 open_objset(const char *path, const void *tag, objset_t **osp) 3142 { 3143 int err; 3144 uint64_t sa_attrs = 0; 3145 uint64_t version = 0; 3146 3147 VERIFY3P(sa_os, ==, NULL); 3148 3149 /* 3150 * We can't own an objset if it's redacted. Therefore, we do this 3151 * dance: hold the objset, then acquire a long hold on its dataset, then 3152 * release the pool (which is held as part of holding the objset). 3153 */ 3154 3155 if (dump_opt['K']) { 3156 /* decryption requested, try to load keys */ 3157 err = dmu_objset_hold(path, tag, osp); 3158 if (err != 0) { 3159 (void) fprintf(stderr, "failed to hold dataset " 3160 "'%s': %s\n", 3161 path, strerror(err)); 3162 return (err); 3163 } 3164 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3165 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3166 3167 /* succeeds or dies */ 3168 zdb_load_key(*osp); 3169 3170 /* release it all */ 3171 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3172 dsl_dataset_rele(dmu_objset_ds(*osp), tag); 3173 } 3174 3175 int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0; 3176 3177 err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp); 3178 if (err != 0) { 3179 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n", 3180 path, strerror(err)); 3181 return (err); 3182 } 3183 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3184 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3185 3186 if (dmu_objset_type(*osp) == DMU_OST_ZFS && 3187 (key_loaded || !(*osp)->os_encrypted)) { 3188 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR, 3189 8, 1, &version); 3190 if (version >= ZPL_VERSION_SA) { 3191 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 3192 8, 1, &sa_attrs); 3193 } 3194 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END, 3195 &sa_attr_table); 3196 if (err != 0) { 3197 (void) fprintf(stderr, "sa_setup failed: %s\n", 3198 strerror(err)); 3199 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3200 dsl_dataset_rele_flags(dmu_objset_ds(*osp), 3201 ds_hold_flags, tag); 3202 *osp = NULL; 3203 } 3204 } 3205 sa_os = *osp; 3206 3207 return (err); 3208 } 3209 3210 static void 3211 close_objset(objset_t *os, const void *tag) 3212 { 3213 VERIFY3P(os, ==, sa_os); 3214 if (os->os_sa != NULL) 3215 sa_tear_down(os); 3216 dsl_dataset_long_rele(dmu_objset_ds(os), tag); 3217 dsl_dataset_rele_flags(dmu_objset_ds(os), 3218 key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag); 3219 sa_attr_table = NULL; 3220 sa_os = NULL; 3221 3222 zdb_unload_key(); 3223 } 3224 3225 static void 3226 fuid_table_destroy(void) 3227 { 3228 if (fuid_table_loaded) { 3229 zfs_fuid_table_destroy(&idx_tree, &domain_tree); 3230 fuid_table_loaded = B_FALSE; 3231 } 3232 } 3233 3234 /* 3235 * print uid or gid information. 3236 * For normal POSIX id just the id is printed in decimal format. 3237 * For CIFS files with FUID the fuid is printed in hex followed by 3238 * the domain-rid string. 3239 */ 3240 static void 3241 print_idstr(uint64_t id, const char *id_type) 3242 { 3243 if (FUID_INDEX(id)) { 3244 const char *domain = 3245 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); 3246 (void) printf("\t%s %llx [%s-%d]\n", id_type, 3247 (u_longlong_t)id, domain, (int)FUID_RID(id)); 3248 } else { 3249 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); 3250 } 3251 3252 } 3253 3254 static void 3255 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) 3256 { 3257 uint32_t uid_idx, gid_idx; 3258 3259 uid_idx = FUID_INDEX(uid); 3260 gid_idx = FUID_INDEX(gid); 3261 3262 /* Load domain table, if not already loaded */ 3263 if (!fuid_table_loaded && (uid_idx || gid_idx)) { 3264 uint64_t fuid_obj; 3265 3266 /* first find the fuid object. It lives in the master node */ 3267 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 3268 8, 1, &fuid_obj) == 0); 3269 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); 3270 (void) zfs_fuid_table_load(os, fuid_obj, 3271 &idx_tree, &domain_tree); 3272 fuid_table_loaded = B_TRUE; 3273 } 3274 3275 print_idstr(uid, "uid"); 3276 print_idstr(gid, "gid"); 3277 } 3278 3279 static void 3280 dump_znode_sa_xattr(sa_handle_t *hdl) 3281 { 3282 nvlist_t *sa_xattr; 3283 nvpair_t *elem = NULL; 3284 int sa_xattr_size = 0; 3285 int sa_xattr_entries = 0; 3286 int error; 3287 char *sa_xattr_packed; 3288 3289 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size); 3290 if (error || sa_xattr_size == 0) 3291 return; 3292 3293 sa_xattr_packed = malloc(sa_xattr_size); 3294 if (sa_xattr_packed == NULL) 3295 return; 3296 3297 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR], 3298 sa_xattr_packed, sa_xattr_size); 3299 if (error) { 3300 free(sa_xattr_packed); 3301 return; 3302 } 3303 3304 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0); 3305 if (error) { 3306 free(sa_xattr_packed); 3307 return; 3308 } 3309 3310 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) 3311 sa_xattr_entries++; 3312 3313 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n", 3314 sa_xattr_size, sa_xattr_entries); 3315 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) { 3316 boolean_t can_print = !dump_opt['P']; 3317 uchar_t *value; 3318 uint_t cnt, idx; 3319 3320 (void) printf("\t\t%s = ", nvpair_name(elem)); 3321 nvpair_value_byte_array(elem, &value, &cnt); 3322 3323 for (idx = 0; idx < cnt; ++idx) { 3324 if (!isprint(value[idx])) { 3325 can_print = B_FALSE; 3326 break; 3327 } 3328 } 3329 3330 for (idx = 0; idx < cnt; ++idx) { 3331 if (can_print) 3332 (void) putchar(value[idx]); 3333 else 3334 (void) printf("\\%3.3o", value[idx]); 3335 } 3336 (void) putchar('\n'); 3337 } 3338 3339 nvlist_free(sa_xattr); 3340 free(sa_xattr_packed); 3341 } 3342 3343 static void 3344 dump_znode_symlink(sa_handle_t *hdl) 3345 { 3346 int sa_symlink_size = 0; 3347 char linktarget[MAXPATHLEN]; 3348 int error; 3349 3350 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size); 3351 if (error || sa_symlink_size == 0) { 3352 return; 3353 } 3354 if (sa_symlink_size >= sizeof (linktarget)) { 3355 (void) printf("symlink size %d is too large\n", 3356 sa_symlink_size); 3357 return; 3358 } 3359 linktarget[sa_symlink_size] = '\0'; 3360 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK], 3361 &linktarget, sa_symlink_size) == 0) 3362 (void) printf("\ttarget %s\n", linktarget); 3363 } 3364 3365 static void 3366 dump_znode(objset_t *os, uint64_t object, void *data, size_t size) 3367 { 3368 (void) data, (void) size; 3369 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ 3370 sa_handle_t *hdl; 3371 uint64_t xattr, rdev, gen; 3372 uint64_t uid, gid, mode, fsize, parent, links; 3373 uint64_t pflags; 3374 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; 3375 time_t z_crtime, z_atime, z_mtime, z_ctime; 3376 sa_bulk_attr_t bulk[12]; 3377 int idx = 0; 3378 int error; 3379 3380 VERIFY3P(os, ==, sa_os); 3381 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { 3382 (void) printf("Failed to get handle for SA znode\n"); 3383 return; 3384 } 3385 3386 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); 3387 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); 3388 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, 3389 &links, 8); 3390 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); 3391 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, 3392 &mode, 8); 3393 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], 3394 NULL, &parent, 8); 3395 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, 3396 &fsize, 8); 3397 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, 3398 acctm, 16); 3399 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, 3400 modtm, 16); 3401 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, 3402 crtm, 16); 3403 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, 3404 chgtm, 16); 3405 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, 3406 &pflags, 8); 3407 3408 if (sa_bulk_lookup(hdl, bulk, idx)) { 3409 (void) sa_handle_destroy(hdl); 3410 return; 3411 } 3412 3413 z_crtime = (time_t)crtm[0]; 3414 z_atime = (time_t)acctm[0]; 3415 z_mtime = (time_t)modtm[0]; 3416 z_ctime = (time_t)chgtm[0]; 3417 3418 if (dump_opt['d'] > 4) { 3419 error = zfs_obj_to_path(os, object, path, sizeof (path)); 3420 if (error == ESTALE) { 3421 (void) snprintf(path, sizeof (path), "on delete queue"); 3422 } else if (error != 0) { 3423 leaked_objects++; 3424 (void) snprintf(path, sizeof (path), 3425 "path not found, possibly leaked"); 3426 } 3427 (void) printf("\tpath %s\n", path); 3428 } 3429 3430 if (S_ISLNK(mode)) 3431 dump_znode_symlink(hdl); 3432 dump_uidgid(os, uid, gid); 3433 (void) printf("\tatime %s", ctime(&z_atime)); 3434 (void) printf("\tmtime %s", ctime(&z_mtime)); 3435 (void) printf("\tctime %s", ctime(&z_ctime)); 3436 (void) printf("\tcrtime %s", ctime(&z_crtime)); 3437 (void) printf("\tgen %llu\n", (u_longlong_t)gen); 3438 (void) printf("\tmode %llo\n", (u_longlong_t)mode); 3439 (void) printf("\tsize %llu\n", (u_longlong_t)fsize); 3440 (void) printf("\tparent %llu\n", (u_longlong_t)parent); 3441 (void) printf("\tlinks %llu\n", (u_longlong_t)links); 3442 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); 3443 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) { 3444 uint64_t projid; 3445 3446 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid, 3447 sizeof (uint64_t)) == 0) 3448 (void) printf("\tprojid %llu\n", (u_longlong_t)projid); 3449 } 3450 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, 3451 sizeof (uint64_t)) == 0) 3452 (void) printf("\txattr %llu\n", (u_longlong_t)xattr); 3453 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, 3454 sizeof (uint64_t)) == 0) 3455 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); 3456 dump_znode_sa_xattr(hdl); 3457 sa_handle_destroy(hdl); 3458 } 3459 3460 static void 3461 dump_acl(objset_t *os, uint64_t object, void *data, size_t size) 3462 { 3463 (void) os, (void) object, (void) data, (void) size; 3464 } 3465 3466 static void 3467 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) 3468 { 3469 (void) os, (void) object, (void) data, (void) size; 3470 } 3471 3472 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { 3473 dump_none, /* unallocated */ 3474 dump_zap, /* object directory */ 3475 dump_uint64, /* object array */ 3476 dump_none, /* packed nvlist */ 3477 dump_packed_nvlist, /* packed nvlist size */ 3478 dump_none, /* bpobj */ 3479 dump_bpobj, /* bpobj header */ 3480 dump_none, /* SPA space map header */ 3481 dump_none, /* SPA space map */ 3482 dump_none, /* ZIL intent log */ 3483 dump_dnode, /* DMU dnode */ 3484 dump_dmu_objset, /* DMU objset */ 3485 dump_dsl_dir, /* DSL directory */ 3486 dump_zap, /* DSL directory child map */ 3487 dump_zap, /* DSL dataset snap map */ 3488 dump_zap, /* DSL props */ 3489 dump_dsl_dataset, /* DSL dataset */ 3490 dump_znode, /* ZFS znode */ 3491 dump_acl, /* ZFS V0 ACL */ 3492 dump_uint8, /* ZFS plain file */ 3493 dump_zpldir, /* ZFS directory */ 3494 dump_zap, /* ZFS master node */ 3495 dump_zap, /* ZFS delete queue */ 3496 dump_uint8, /* zvol object */ 3497 dump_zap, /* zvol prop */ 3498 dump_uint8, /* other uint8[] */ 3499 dump_uint64, /* other uint64[] */ 3500 dump_zap, /* other ZAP */ 3501 dump_zap, /* persistent error log */ 3502 dump_uint8, /* SPA history */ 3503 dump_history_offsets, /* SPA history offsets */ 3504 dump_zap, /* Pool properties */ 3505 dump_zap, /* DSL permissions */ 3506 dump_acl, /* ZFS ACL */ 3507 dump_uint8, /* ZFS SYSACL */ 3508 dump_none, /* FUID nvlist */ 3509 dump_packed_nvlist, /* FUID nvlist size */ 3510 dump_zap, /* DSL dataset next clones */ 3511 dump_zap, /* DSL scrub queue */ 3512 dump_zap, /* ZFS user/group/project used */ 3513 dump_zap, /* ZFS user/group/project quota */ 3514 dump_zap, /* snapshot refcount tags */ 3515 dump_ddt_zap, /* DDT ZAP object */ 3516 dump_zap, /* DDT statistics */ 3517 dump_znode, /* SA object */ 3518 dump_zap, /* SA Master Node */ 3519 dump_sa_attrs, /* SA attribute registration */ 3520 dump_sa_layouts, /* SA attribute layouts */ 3521 dump_zap, /* DSL scrub translations */ 3522 dump_none, /* fake dedup BP */ 3523 dump_zap, /* deadlist */ 3524 dump_none, /* deadlist hdr */ 3525 dump_zap, /* dsl clones */ 3526 dump_bpobj_subobjs, /* bpobj subobjs */ 3527 dump_unknown, /* Unknown type, must be last */ 3528 }; 3529 3530 static boolean_t 3531 match_object_type(dmu_object_type_t obj_type, uint64_t flags) 3532 { 3533 boolean_t match = B_TRUE; 3534 3535 switch (obj_type) { 3536 case DMU_OT_DIRECTORY_CONTENTS: 3537 if (!(flags & ZOR_FLAG_DIRECTORY)) 3538 match = B_FALSE; 3539 break; 3540 case DMU_OT_PLAIN_FILE_CONTENTS: 3541 if (!(flags & ZOR_FLAG_PLAIN_FILE)) 3542 match = B_FALSE; 3543 break; 3544 case DMU_OT_SPACE_MAP: 3545 if (!(flags & ZOR_FLAG_SPACE_MAP)) 3546 match = B_FALSE; 3547 break; 3548 default: 3549 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) { 3550 if (!(flags & ZOR_FLAG_ZAP)) 3551 match = B_FALSE; 3552 break; 3553 } 3554 3555 /* 3556 * If all bits except some of the supported flags are 3557 * set, the user combined the all-types flag (A) with 3558 * a negated flag to exclude some types (e.g. A-f to 3559 * show all object types except plain files). 3560 */ 3561 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES) 3562 match = B_FALSE; 3563 3564 break; 3565 } 3566 3567 return (match); 3568 } 3569 3570 static void 3571 dump_object(objset_t *os, uint64_t object, int verbosity, 3572 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags) 3573 { 3574 dmu_buf_t *db = NULL; 3575 dmu_object_info_t doi; 3576 dnode_t *dn; 3577 boolean_t dnode_held = B_FALSE; 3578 void *bonus = NULL; 3579 size_t bsize = 0; 3580 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32]; 3581 char bonus_size[32]; 3582 char aux[50]; 3583 int error; 3584 3585 /* make sure nicenum has enough space */ 3586 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated"); 3587 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated"); 3588 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated"); 3589 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated"); 3590 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ, 3591 "bonus_size truncated"); 3592 3593 if (*print_header) { 3594 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n", 3595 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize", 3596 "lsize", "%full", "type"); 3597 *print_header = 0; 3598 } 3599 3600 if (object == 0) { 3601 dn = DMU_META_DNODE(os); 3602 dmu_object_info_from_dnode(dn, &doi); 3603 } else { 3604 /* 3605 * Encrypted datasets will have sensitive bonus buffers 3606 * encrypted. Therefore we cannot hold the bonus buffer and 3607 * must hold the dnode itself instead. 3608 */ 3609 error = dmu_object_info(os, object, &doi); 3610 if (error) 3611 fatal("dmu_object_info() failed, errno %u", error); 3612 3613 if (!key_loaded && os->os_encrypted && 3614 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) { 3615 error = dnode_hold(os, object, FTAG, &dn); 3616 if (error) 3617 fatal("dnode_hold() failed, errno %u", error); 3618 dnode_held = B_TRUE; 3619 } else { 3620 error = dmu_bonus_hold(os, object, FTAG, &db); 3621 if (error) 3622 fatal("dmu_bonus_hold(%llu) failed, errno %u", 3623 object, error); 3624 bonus = db->db_data; 3625 bsize = db->db_size; 3626 dn = DB_DNODE((dmu_buf_impl_t *)db); 3627 } 3628 } 3629 3630 /* 3631 * Default to showing all object types if no flags were specified. 3632 */ 3633 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES && 3634 !match_object_type(doi.doi_type, flags)) 3635 goto out; 3636 3637 if (dnode_slots_used) 3638 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE; 3639 3640 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk)); 3641 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk)); 3642 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize)); 3643 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize)); 3644 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size)); 3645 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize)); 3646 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 * 3647 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ? 3648 DNODES_PER_BLOCK : 1) / doi.doi_max_offset); 3649 3650 aux[0] = '\0'; 3651 3652 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { 3653 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3654 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); 3655 } 3656 3657 if (doi.doi_compress == ZIO_COMPRESS_INHERIT && 3658 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) { 3659 const char *compname = NULL; 3660 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION, 3661 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel), 3662 &compname) == 0) { 3663 (void) snprintf(aux + strlen(aux), 3664 sizeof (aux) - strlen(aux), " (Z=inherit=%s)", 3665 compname); 3666 } else { 3667 (void) snprintf(aux + strlen(aux), 3668 sizeof (aux) - strlen(aux), 3669 " (Z=inherit=%s-unknown)", 3670 ZDB_COMPRESS_NAME(os->os_compress)); 3671 } 3672 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) { 3673 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3674 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress)); 3675 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { 3676 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3677 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); 3678 } 3679 3680 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n", 3681 (u_longlong_t)object, doi.doi_indirection, iblk, dblk, 3682 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux); 3683 3684 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { 3685 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n", 3686 "", "", "", "", "", "", bonus_size, "bonus", 3687 zdb_ot_name(doi.doi_bonus_type)); 3688 } 3689 3690 if (verbosity >= 4) { 3691 (void) printf("\tdnode flags: %s%s%s%s\n", 3692 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? 3693 "USED_BYTES " : "", 3694 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? 3695 "USERUSED_ACCOUNTED " : "", 3696 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ? 3697 "USEROBJUSED_ACCOUNTED " : "", 3698 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? 3699 "SPILL_BLKPTR" : ""); 3700 (void) printf("\tdnode maxblkid: %llu\n", 3701 (longlong_t)dn->dn_phys->dn_maxblkid); 3702 3703 if (!dnode_held) { 3704 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, 3705 object, bonus, bsize); 3706 } else { 3707 (void) printf("\t\t(bonus encrypted)\n"); 3708 } 3709 3710 if (key_loaded || 3711 (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) { 3712 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, 3713 NULL, 0); 3714 } else { 3715 (void) printf("\t\t(object encrypted)\n"); 3716 } 3717 3718 *print_header = B_TRUE; 3719 } 3720 3721 if (verbosity >= 5) { 3722 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 3723 char blkbuf[BP_SPRINTF_LEN]; 3724 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 3725 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE); 3726 (void) printf("\nSpill block: %s\n", blkbuf); 3727 } 3728 dump_indirect(dn); 3729 } 3730 3731 if (verbosity >= 5) { 3732 /* 3733 * Report the list of segments that comprise the object. 3734 */ 3735 uint64_t start = 0; 3736 uint64_t end; 3737 uint64_t blkfill = 1; 3738 int minlvl = 1; 3739 3740 if (dn->dn_type == DMU_OT_DNODE) { 3741 minlvl = 0; 3742 blkfill = DNODES_PER_BLOCK; 3743 } 3744 3745 for (;;) { 3746 char segsize[32]; 3747 /* make sure nicenum has enough space */ 3748 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ, 3749 "segsize truncated"); 3750 error = dnode_next_offset(dn, 3751 0, &start, minlvl, blkfill, 0); 3752 if (error) 3753 break; 3754 end = start; 3755 error = dnode_next_offset(dn, 3756 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); 3757 zdb_nicenum(end - start, segsize, sizeof (segsize)); 3758 (void) printf("\t\tsegment [%016llx, %016llx)" 3759 " size %5s\n", (u_longlong_t)start, 3760 (u_longlong_t)end, segsize); 3761 if (error) 3762 break; 3763 start = end; 3764 } 3765 } 3766 3767 out: 3768 if (db != NULL) 3769 dmu_buf_rele(db, FTAG); 3770 if (dnode_held) 3771 dnode_rele(dn, FTAG); 3772 } 3773 3774 static void 3775 count_dir_mos_objects(dsl_dir_t *dd) 3776 { 3777 mos_obj_refd(dd->dd_object); 3778 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj); 3779 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj); 3780 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj); 3781 mos_obj_refd(dsl_dir_phys(dd)->dd_clones); 3782 3783 /* 3784 * The dd_crypto_obj can be referenced by multiple dsl_dir's. 3785 * Ignore the references after the first one. 3786 */ 3787 mos_obj_refd_multiple(dd->dd_crypto_obj); 3788 } 3789 3790 static void 3791 count_ds_mos_objects(dsl_dataset_t *ds) 3792 { 3793 mos_obj_refd(ds->ds_object); 3794 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj); 3795 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj); 3796 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj); 3797 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj); 3798 mos_obj_refd(ds->ds_bookmarks_obj); 3799 3800 if (!dsl_dataset_is_snapshot(ds)) { 3801 count_dir_mos_objects(ds->ds_dir); 3802 } 3803 } 3804 3805 static const char *const objset_types[DMU_OST_NUMTYPES] = { 3806 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; 3807 3808 /* 3809 * Parse a string denoting a range of object IDs of the form 3810 * <start>[:<end>[:flags]], and store the results in zor. 3811 * Return 0 on success. On error, return 1 and update the msg 3812 * pointer to point to a descriptive error message. 3813 */ 3814 static int 3815 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg) 3816 { 3817 uint64_t flags = 0; 3818 char *p, *s, *dup, *flagstr, *tmp = NULL; 3819 size_t len; 3820 int i; 3821 int rc = 0; 3822 3823 if (strchr(range, ':') == NULL) { 3824 zor->zor_obj_start = strtoull(range, &p, 0); 3825 if (*p != '\0') { 3826 *msg = "Invalid characters in object ID"; 3827 rc = 1; 3828 } 3829 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 3830 zor->zor_obj_end = zor->zor_obj_start; 3831 return (rc); 3832 } 3833 3834 if (strchr(range, ':') == range) { 3835 *msg = "Invalid leading colon"; 3836 rc = 1; 3837 return (rc); 3838 } 3839 3840 len = strlen(range); 3841 if (range[len - 1] == ':') { 3842 *msg = "Invalid trailing colon"; 3843 rc = 1; 3844 return (rc); 3845 } 3846 3847 dup = strdup(range); 3848 s = strtok_r(dup, ":", &tmp); 3849 zor->zor_obj_start = strtoull(s, &p, 0); 3850 3851 if (*p != '\0') { 3852 *msg = "Invalid characters in start object ID"; 3853 rc = 1; 3854 goto out; 3855 } 3856 3857 s = strtok_r(NULL, ":", &tmp); 3858 zor->zor_obj_end = strtoull(s, &p, 0); 3859 3860 if (*p != '\0') { 3861 *msg = "Invalid characters in end object ID"; 3862 rc = 1; 3863 goto out; 3864 } 3865 3866 if (zor->zor_obj_start > zor->zor_obj_end) { 3867 *msg = "Start object ID may not exceed end object ID"; 3868 rc = 1; 3869 goto out; 3870 } 3871 3872 s = strtok_r(NULL, ":", &tmp); 3873 if (s == NULL) { 3874 zor->zor_flags = ZOR_FLAG_ALL_TYPES; 3875 goto out; 3876 } else if (strtok_r(NULL, ":", &tmp) != NULL) { 3877 *msg = "Invalid colon-delimited field after flags"; 3878 rc = 1; 3879 goto out; 3880 } 3881 3882 flagstr = s; 3883 for (i = 0; flagstr[i]; i++) { 3884 int bit; 3885 boolean_t negation = (flagstr[i] == '-'); 3886 3887 if (negation) { 3888 i++; 3889 if (flagstr[i] == '\0') { 3890 *msg = "Invalid trailing negation operator"; 3891 rc = 1; 3892 goto out; 3893 } 3894 } 3895 bit = flagbits[(uchar_t)flagstr[i]]; 3896 if (bit == 0) { 3897 *msg = "Invalid flag"; 3898 rc = 1; 3899 goto out; 3900 } 3901 if (negation) 3902 flags &= ~bit; 3903 else 3904 flags |= bit; 3905 } 3906 zor->zor_flags = flags; 3907 3908 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 3909 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end); 3910 3911 out: 3912 free(dup); 3913 return (rc); 3914 } 3915 3916 static void 3917 dump_objset(objset_t *os) 3918 { 3919 dmu_objset_stats_t dds = { 0 }; 3920 uint64_t object, object_count; 3921 uint64_t refdbytes, usedobjs, scratch; 3922 char numbuf[32]; 3923 char blkbuf[BP_SPRINTF_LEN + 20]; 3924 char osname[ZFS_MAX_DATASET_NAME_LEN]; 3925 const char *type = "UNKNOWN"; 3926 int verbosity = dump_opt['d']; 3927 boolean_t print_header; 3928 unsigned i; 3929 int error; 3930 uint64_t total_slots_used = 0; 3931 uint64_t max_slot_used = 0; 3932 uint64_t dnode_slots; 3933 uint64_t obj_start; 3934 uint64_t obj_end; 3935 uint64_t flags; 3936 3937 /* make sure nicenum has enough space */ 3938 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated"); 3939 3940 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 3941 dmu_objset_fast_stat(os, &dds); 3942 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 3943 3944 print_header = B_TRUE; 3945 3946 if (dds.dds_type < DMU_OST_NUMTYPES) 3947 type = objset_types[dds.dds_type]; 3948 3949 if (dds.dds_type == DMU_OST_META) { 3950 dds.dds_creation_txg = TXG_INITIAL; 3951 usedobjs = BP_GET_FILL(os->os_rootbp); 3952 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> 3953 dd_used_bytes; 3954 } else { 3955 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); 3956 } 3957 3958 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); 3959 3960 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf)); 3961 3962 if (verbosity >= 4) { 3963 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); 3964 (void) snprintf_blkptr(blkbuf + strlen(blkbuf), 3965 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); 3966 } else { 3967 blkbuf[0] = '\0'; 3968 } 3969 3970 dmu_objset_name(os, osname); 3971 3972 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " 3973 "%s, %llu objects%s%s\n", 3974 osname, type, (u_longlong_t)dmu_objset_id(os), 3975 (u_longlong_t)dds.dds_creation_txg, 3976 numbuf, (u_longlong_t)usedobjs, blkbuf, 3977 (dds.dds_inconsistent) ? " (inconsistent)" : ""); 3978 3979 for (i = 0; i < zopt_object_args; i++) { 3980 obj_start = zopt_object_ranges[i].zor_obj_start; 3981 obj_end = zopt_object_ranges[i].zor_obj_end; 3982 flags = zopt_object_ranges[i].zor_flags; 3983 3984 object = obj_start; 3985 if (object == 0 || obj_start == obj_end) 3986 dump_object(os, object, verbosity, &print_header, NULL, 3987 flags); 3988 else 3989 object--; 3990 3991 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) && 3992 object <= obj_end) { 3993 dump_object(os, object, verbosity, &print_header, NULL, 3994 flags); 3995 } 3996 } 3997 3998 if (zopt_object_args > 0) { 3999 (void) printf("\n"); 4000 return; 4001 } 4002 4003 if (dump_opt['i'] != 0 || verbosity >= 2) 4004 dump_intent_log(dmu_objset_zil(os)); 4005 4006 if (dmu_objset_ds(os) != NULL) { 4007 dsl_dataset_t *ds = dmu_objset_ds(os); 4008 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 4009 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4010 !dmu_objset_is_snapshot(os)) { 4011 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist"); 4012 if (verify_dd_livelist(os) != 0) 4013 fatal("livelist is incorrect"); 4014 } 4015 4016 if (dsl_dataset_remap_deadlist_exists(ds)) { 4017 (void) printf("ds_remap_deadlist:\n"); 4018 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist"); 4019 } 4020 count_ds_mos_objects(ds); 4021 } 4022 4023 if (dmu_objset_ds(os) != NULL) 4024 dump_bookmarks(os, verbosity); 4025 4026 if (verbosity < 2) 4027 return; 4028 4029 if (BP_IS_HOLE(os->os_rootbp)) 4030 return; 4031 4032 dump_object(os, 0, verbosity, &print_header, NULL, 0); 4033 object_count = 0; 4034 if (DMU_USERUSED_DNODE(os) != NULL && 4035 DMU_USERUSED_DNODE(os)->dn_type != 0) { 4036 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header, 4037 NULL, 0); 4038 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header, 4039 NULL, 0); 4040 } 4041 4042 if (DMU_PROJECTUSED_DNODE(os) != NULL && 4043 DMU_PROJECTUSED_DNODE(os)->dn_type != 0) 4044 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity, 4045 &print_header, NULL, 0); 4046 4047 object = 0; 4048 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { 4049 dump_object(os, object, verbosity, &print_header, &dnode_slots, 4050 0); 4051 object_count++; 4052 total_slots_used += dnode_slots; 4053 max_slot_used = object + dnode_slots - 1; 4054 } 4055 4056 (void) printf("\n"); 4057 4058 (void) printf(" Dnode slots:\n"); 4059 (void) printf("\tTotal used: %10llu\n", 4060 (u_longlong_t)total_slots_used); 4061 (void) printf("\tMax used: %10llu\n", 4062 (u_longlong_t)max_slot_used); 4063 (void) printf("\tPercent empty: %10lf\n", 4064 (double)(max_slot_used - total_slots_used)*100 / 4065 (double)max_slot_used); 4066 (void) printf("\n"); 4067 4068 if (error != ESRCH) { 4069 (void) fprintf(stderr, "dmu_object_next() = %d\n", error); 4070 abort(); 4071 } 4072 4073 ASSERT3U(object_count, ==, usedobjs); 4074 4075 if (leaked_objects != 0) { 4076 (void) printf("%d potentially leaked objects detected\n", 4077 leaked_objects); 4078 leaked_objects = 0; 4079 } 4080 } 4081 4082 static void 4083 dump_uberblock(uberblock_t *ub, const char *header, const char *footer) 4084 { 4085 time_t timestamp = ub->ub_timestamp; 4086 4087 (void) printf("%s", header ? header : ""); 4088 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); 4089 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); 4090 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); 4091 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); 4092 (void) printf("\ttimestamp = %llu UTC = %s", 4093 (u_longlong_t)ub->ub_timestamp, ctime(×tamp)); 4094 4095 (void) printf("\tmmp_magic = %016llx\n", 4096 (u_longlong_t)ub->ub_mmp_magic); 4097 if (MMP_VALID(ub)) { 4098 (void) printf("\tmmp_delay = %0llu\n", 4099 (u_longlong_t)ub->ub_mmp_delay); 4100 if (MMP_SEQ_VALID(ub)) 4101 (void) printf("\tmmp_seq = %u\n", 4102 (unsigned int) MMP_SEQ(ub)); 4103 if (MMP_FAIL_INT_VALID(ub)) 4104 (void) printf("\tmmp_fail = %u\n", 4105 (unsigned int) MMP_FAIL_INT(ub)); 4106 if (MMP_INTERVAL_VALID(ub)) 4107 (void) printf("\tmmp_write = %u\n", 4108 (unsigned int) MMP_INTERVAL(ub)); 4109 /* After MMP_* to make summarize_uberblock_mmp cleaner */ 4110 (void) printf("\tmmp_valid = %x\n", 4111 (unsigned int) ub->ub_mmp_config & 0xFF); 4112 } 4113 4114 if (dump_opt['u'] >= 4) { 4115 char blkbuf[BP_SPRINTF_LEN]; 4116 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 4117 (void) printf("\trootbp = %s\n", blkbuf); 4118 } 4119 (void) printf("\tcheckpoint_txg = %llu\n", 4120 (u_longlong_t)ub->ub_checkpoint_txg); 4121 4122 (void) printf("\traidz_reflow state=%u off=%llu\n", 4123 (int)RRSS_GET_STATE(ub), 4124 (u_longlong_t)RRSS_GET_OFFSET(ub)); 4125 4126 (void) printf("%s", footer ? footer : ""); 4127 } 4128 4129 static void 4130 dump_config(spa_t *spa) 4131 { 4132 dmu_buf_t *db; 4133 size_t nvsize = 0; 4134 int error = 0; 4135 4136 4137 error = dmu_bonus_hold(spa->spa_meta_objset, 4138 spa->spa_config_object, FTAG, &db); 4139 4140 if (error == 0) { 4141 nvsize = *(uint64_t *)db->db_data; 4142 dmu_buf_rele(db, FTAG); 4143 4144 (void) printf("\nMOS Configuration:\n"); 4145 dump_packed_nvlist(spa->spa_meta_objset, 4146 spa->spa_config_object, (void *)&nvsize, 1); 4147 } else { 4148 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", 4149 (u_longlong_t)spa->spa_config_object, error); 4150 } 4151 } 4152 4153 static void 4154 dump_cachefile(const char *cachefile) 4155 { 4156 int fd; 4157 struct stat64 statbuf; 4158 char *buf; 4159 nvlist_t *config; 4160 4161 if ((fd = open64(cachefile, O_RDONLY)) < 0) { 4162 (void) printf("cannot open '%s': %s\n", cachefile, 4163 strerror(errno)); 4164 exit(1); 4165 } 4166 4167 if (fstat64(fd, &statbuf) != 0) { 4168 (void) printf("failed to stat '%s': %s\n", cachefile, 4169 strerror(errno)); 4170 exit(1); 4171 } 4172 4173 if ((buf = malloc(statbuf.st_size)) == NULL) { 4174 (void) fprintf(stderr, "failed to allocate %llu bytes\n", 4175 (u_longlong_t)statbuf.st_size); 4176 exit(1); 4177 } 4178 4179 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 4180 (void) fprintf(stderr, "failed to read %llu bytes\n", 4181 (u_longlong_t)statbuf.st_size); 4182 exit(1); 4183 } 4184 4185 (void) close(fd); 4186 4187 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { 4188 (void) fprintf(stderr, "failed to unpack nvlist\n"); 4189 exit(1); 4190 } 4191 4192 free(buf); 4193 4194 dump_nvlist(config, 0); 4195 4196 nvlist_free(config); 4197 } 4198 4199 /* 4200 * ZFS label nvlist stats 4201 */ 4202 typedef struct zdb_nvl_stats { 4203 int zns_list_count; 4204 int zns_leaf_count; 4205 size_t zns_leaf_largest; 4206 size_t zns_leaf_total; 4207 nvlist_t *zns_string; 4208 nvlist_t *zns_uint64; 4209 nvlist_t *zns_boolean; 4210 } zdb_nvl_stats_t; 4211 4212 static void 4213 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats) 4214 { 4215 nvlist_t *list, **array; 4216 nvpair_t *nvp = NULL; 4217 const char *name; 4218 uint_t i, items; 4219 4220 stats->zns_list_count++; 4221 4222 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4223 name = nvpair_name(nvp); 4224 4225 switch (nvpair_type(nvp)) { 4226 case DATA_TYPE_STRING: 4227 fnvlist_add_string(stats->zns_string, name, 4228 fnvpair_value_string(nvp)); 4229 break; 4230 case DATA_TYPE_UINT64: 4231 fnvlist_add_uint64(stats->zns_uint64, name, 4232 fnvpair_value_uint64(nvp)); 4233 break; 4234 case DATA_TYPE_BOOLEAN: 4235 fnvlist_add_boolean(stats->zns_boolean, name); 4236 break; 4237 case DATA_TYPE_NVLIST: 4238 if (nvpair_value_nvlist(nvp, &list) == 0) 4239 collect_nvlist_stats(list, stats); 4240 break; 4241 case DATA_TYPE_NVLIST_ARRAY: 4242 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0) 4243 break; 4244 4245 for (i = 0; i < items; i++) { 4246 collect_nvlist_stats(array[i], stats); 4247 4248 /* collect stats on leaf vdev */ 4249 if (strcmp(name, "children") == 0) { 4250 size_t size; 4251 4252 (void) nvlist_size(array[i], &size, 4253 NV_ENCODE_XDR); 4254 stats->zns_leaf_total += size; 4255 if (size > stats->zns_leaf_largest) 4256 stats->zns_leaf_largest = size; 4257 stats->zns_leaf_count++; 4258 } 4259 } 4260 break; 4261 default: 4262 (void) printf("skip type %d!\n", (int)nvpair_type(nvp)); 4263 } 4264 } 4265 } 4266 4267 static void 4268 dump_nvlist_stats(nvlist_t *nvl, size_t cap) 4269 { 4270 zdb_nvl_stats_t stats = { 0 }; 4271 size_t size, sum = 0, total; 4272 size_t noise; 4273 4274 /* requires nvlist with non-unique names for stat collection */ 4275 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0)); 4276 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0)); 4277 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0)); 4278 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR)); 4279 4280 (void) printf("\n\nZFS Label NVList Config Stats:\n"); 4281 4282 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR)); 4283 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n", 4284 (int)total, (int)(cap - total), 100.0 * total / cap); 4285 4286 collect_nvlist_stats(nvl, &stats); 4287 4288 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR)); 4289 size -= noise; 4290 sum += size; 4291 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:", 4292 (int)fnvlist_num_pairs(stats.zns_uint64), 4293 (int)size, 100.0 * size / total); 4294 4295 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR)); 4296 size -= noise; 4297 sum += size; 4298 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:", 4299 (int)fnvlist_num_pairs(stats.zns_string), 4300 (int)size, 100.0 * size / total); 4301 4302 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR)); 4303 size -= noise; 4304 sum += size; 4305 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:", 4306 (int)fnvlist_num_pairs(stats.zns_boolean), 4307 (int)size, 100.0 * size / total); 4308 4309 size = total - sum; /* treat remainder as nvlist overhead */ 4310 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:", 4311 stats.zns_list_count, (int)size, 100.0 * size / total); 4312 4313 if (stats.zns_leaf_count > 0) { 4314 size_t average = stats.zns_leaf_total / stats.zns_leaf_count; 4315 4316 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:", 4317 stats.zns_leaf_count, (int)average); 4318 (void) printf("%24d bytes largest\n", 4319 (int)stats.zns_leaf_largest); 4320 4321 if (dump_opt['l'] >= 3 && average > 0) 4322 (void) printf(" space for %d additional leaf vdevs\n", 4323 (int)((cap - total) / average)); 4324 } 4325 (void) printf("\n"); 4326 4327 nvlist_free(stats.zns_string); 4328 nvlist_free(stats.zns_uint64); 4329 nvlist_free(stats.zns_boolean); 4330 } 4331 4332 typedef struct cksum_record { 4333 zio_cksum_t cksum; 4334 boolean_t labels[VDEV_LABELS]; 4335 avl_node_t link; 4336 } cksum_record_t; 4337 4338 static int 4339 cksum_record_compare(const void *x1, const void *x2) 4340 { 4341 const cksum_record_t *l = (cksum_record_t *)x1; 4342 const cksum_record_t *r = (cksum_record_t *)x2; 4343 int arraysize = ARRAY_SIZE(l->cksum.zc_word); 4344 int difference = 0; 4345 4346 for (int i = 0; i < arraysize; i++) { 4347 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]); 4348 if (difference) 4349 break; 4350 } 4351 4352 return (difference); 4353 } 4354 4355 static cksum_record_t * 4356 cksum_record_alloc(zio_cksum_t *cksum, int l) 4357 { 4358 cksum_record_t *rec; 4359 4360 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL); 4361 rec->cksum = *cksum; 4362 rec->labels[l] = B_TRUE; 4363 4364 return (rec); 4365 } 4366 4367 static cksum_record_t * 4368 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum) 4369 { 4370 cksum_record_t lookup = { .cksum = *cksum }; 4371 avl_index_t where; 4372 4373 return (avl_find(tree, &lookup, &where)); 4374 } 4375 4376 static cksum_record_t * 4377 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l) 4378 { 4379 cksum_record_t *rec; 4380 4381 rec = cksum_record_lookup(tree, cksum); 4382 if (rec) { 4383 rec->labels[l] = B_TRUE; 4384 } else { 4385 rec = cksum_record_alloc(cksum, l); 4386 avl_add(tree, rec); 4387 } 4388 4389 return (rec); 4390 } 4391 4392 static int 4393 first_label(cksum_record_t *rec) 4394 { 4395 for (int i = 0; i < VDEV_LABELS; i++) 4396 if (rec->labels[i]) 4397 return (i); 4398 4399 return (-1); 4400 } 4401 4402 static void 4403 print_label_numbers(const char *prefix, const cksum_record_t *rec) 4404 { 4405 fputs(prefix, stdout); 4406 for (int i = 0; i < VDEV_LABELS; i++) 4407 if (rec->labels[i] == B_TRUE) 4408 printf("%d ", i); 4409 putchar('\n'); 4410 } 4411 4412 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT) 4413 4414 typedef struct zdb_label { 4415 vdev_label_t label; 4416 uint64_t label_offset; 4417 nvlist_t *config_nv; 4418 cksum_record_t *config; 4419 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT]; 4420 boolean_t header_printed; 4421 boolean_t read_failed; 4422 boolean_t cksum_valid; 4423 } zdb_label_t; 4424 4425 static void 4426 print_label_header(zdb_label_t *label, int l) 4427 { 4428 4429 if (dump_opt['q']) 4430 return; 4431 4432 if (label->header_printed == B_TRUE) 4433 return; 4434 4435 (void) printf("------------------------------------\n"); 4436 (void) printf("LABEL %d %s\n", l, 4437 label->cksum_valid ? "" : "(Bad label cksum)"); 4438 (void) printf("------------------------------------\n"); 4439 4440 label->header_printed = B_TRUE; 4441 } 4442 4443 static void 4444 print_l2arc_header(void) 4445 { 4446 (void) printf("------------------------------------\n"); 4447 (void) printf("L2ARC device header\n"); 4448 (void) printf("------------------------------------\n"); 4449 } 4450 4451 static void 4452 print_l2arc_log_blocks(void) 4453 { 4454 (void) printf("------------------------------------\n"); 4455 (void) printf("L2ARC device log blocks\n"); 4456 (void) printf("------------------------------------\n"); 4457 } 4458 4459 static void 4460 dump_l2arc_log_entries(uint64_t log_entries, 4461 l2arc_log_ent_phys_t *le, uint64_t i) 4462 { 4463 for (int j = 0; j < log_entries; j++) { 4464 dva_t dva = le[j].le_dva; 4465 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, " 4466 "vdev: %llu, offset: %llu\n", 4467 (u_longlong_t)i, j + 1, 4468 (u_longlong_t)DVA_GET_ASIZE(&dva), 4469 (u_longlong_t)DVA_GET_VDEV(&dva), 4470 (u_longlong_t)DVA_GET_OFFSET(&dva)); 4471 (void) printf("|\t\t\t\tbirth: %llu\n", 4472 (u_longlong_t)le[j].le_birth); 4473 (void) printf("|\t\t\t\tlsize: %llu\n", 4474 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop)); 4475 (void) printf("|\t\t\t\tpsize: %llu\n", 4476 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop)); 4477 (void) printf("|\t\t\t\tcompr: %llu\n", 4478 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop)); 4479 (void) printf("|\t\t\t\tcomplevel: %llu\n", 4480 (u_longlong_t)(&le[j])->le_complevel); 4481 (void) printf("|\t\t\t\ttype: %llu\n", 4482 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop)); 4483 (void) printf("|\t\t\t\tprotected: %llu\n", 4484 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop)); 4485 (void) printf("|\t\t\t\tprefetch: %llu\n", 4486 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop)); 4487 (void) printf("|\t\t\t\taddress: %llu\n", 4488 (u_longlong_t)le[j].le_daddr); 4489 (void) printf("|\t\t\t\tARC state: %llu\n", 4490 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop)); 4491 (void) printf("|\n"); 4492 } 4493 (void) printf("\n"); 4494 } 4495 4496 static void 4497 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps) 4498 { 4499 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr); 4500 (void) printf("|\t\tpayload_asize: %llu\n", 4501 (u_longlong_t)lbps->lbp_payload_asize); 4502 (void) printf("|\t\tpayload_start: %llu\n", 4503 (u_longlong_t)lbps->lbp_payload_start); 4504 (void) printf("|\t\tlsize: %llu\n", 4505 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop)); 4506 (void) printf("|\t\tasize: %llu\n", 4507 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop)); 4508 (void) printf("|\t\tcompralgo: %llu\n", 4509 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop)); 4510 (void) printf("|\t\tcksumalgo: %llu\n", 4511 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop)); 4512 (void) printf("|\n\n"); 4513 } 4514 4515 static void 4516 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr, 4517 l2arc_dev_hdr_phys_t *rebuild) 4518 { 4519 l2arc_log_blk_phys_t this_lb; 4520 uint64_t asize; 4521 l2arc_log_blkptr_t lbps[2]; 4522 abd_t *abd; 4523 zio_cksum_t cksum; 4524 int failed = 0; 4525 l2arc_dev_t dev; 4526 4527 if (!dump_opt['q']) 4528 print_l2arc_log_blocks(); 4529 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 4530 4531 dev.l2ad_evict = l2dhdr->dh_evict; 4532 dev.l2ad_start = l2dhdr->dh_start; 4533 dev.l2ad_end = l2dhdr->dh_end; 4534 4535 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) { 4536 /* no log blocks to read */ 4537 if (!dump_opt['q']) { 4538 (void) printf("No log blocks to read\n"); 4539 (void) printf("\n"); 4540 } 4541 return; 4542 } else { 4543 dev.l2ad_hand = lbps[0].lbp_daddr + 4544 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4545 } 4546 4547 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 4548 4549 for (;;) { 4550 if (!l2arc_log_blkptr_valid(&dev, &lbps[0])) 4551 break; 4552 4553 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 4554 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4555 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) { 4556 if (!dump_opt['q']) { 4557 (void) printf("Error while reading next log " 4558 "block\n\n"); 4559 } 4560 break; 4561 } 4562 4563 fletcher_4_native_varsize(&this_lb, asize, &cksum); 4564 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) { 4565 failed++; 4566 if (!dump_opt['q']) { 4567 (void) printf("Invalid cksum\n"); 4568 dump_l2arc_log_blkptr(&lbps[0]); 4569 } 4570 break; 4571 } 4572 4573 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) { 4574 case ZIO_COMPRESS_OFF: 4575 break; 4576 default: 4577 abd = abd_alloc_for_io(asize, B_TRUE); 4578 abd_copy_from_buf_off(abd, &this_lb, 0, asize); 4579 if (zio_decompress_data(L2BLK_GET_COMPRESS( 4580 (&lbps[0])->lbp_prop), abd, &this_lb, 4581 asize, sizeof (this_lb), NULL) != 0) { 4582 (void) printf("L2ARC block decompression " 4583 "failed\n"); 4584 abd_free(abd); 4585 goto out; 4586 } 4587 abd_free(abd); 4588 break; 4589 } 4590 4591 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 4592 byteswap_uint64_array(&this_lb, sizeof (this_lb)); 4593 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) { 4594 if (!dump_opt['q']) 4595 (void) printf("Invalid log block magic\n\n"); 4596 break; 4597 } 4598 4599 rebuild->dh_lb_count++; 4600 rebuild->dh_lb_asize += asize; 4601 if (dump_opt['l'] > 1 && !dump_opt['q']) { 4602 (void) printf("lb[%4llu]\tmagic: %llu\n", 4603 (u_longlong_t)rebuild->dh_lb_count, 4604 (u_longlong_t)this_lb.lb_magic); 4605 dump_l2arc_log_blkptr(&lbps[0]); 4606 } 4607 4608 if (dump_opt['l'] > 2 && !dump_opt['q']) 4609 dump_l2arc_log_entries(l2dhdr->dh_log_entries, 4610 this_lb.lb_entries, 4611 rebuild->dh_lb_count); 4612 4613 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 4614 lbps[0].lbp_payload_start, dev.l2ad_evict) && 4615 !dev.l2ad_first) 4616 break; 4617 4618 lbps[0] = lbps[1]; 4619 lbps[1] = this_lb.lb_prev_lbp; 4620 } 4621 out: 4622 if (!dump_opt['q']) { 4623 (void) printf("log_blk_count:\t %llu with valid cksum\n", 4624 (u_longlong_t)rebuild->dh_lb_count); 4625 (void) printf("\t\t %d with invalid cksum\n", failed); 4626 (void) printf("log_blk_asize:\t %llu\n\n", 4627 (u_longlong_t)rebuild->dh_lb_asize); 4628 } 4629 } 4630 4631 static int 4632 dump_l2arc_header(int fd) 4633 { 4634 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0}; 4635 int error = B_FALSE; 4636 4637 if (pread64(fd, &l2dhdr, sizeof (l2dhdr), 4638 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) { 4639 error = B_TRUE; 4640 } else { 4641 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 4642 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr)); 4643 4644 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC) 4645 error = B_TRUE; 4646 } 4647 4648 if (error) { 4649 (void) printf("L2ARC device header not found\n\n"); 4650 /* Do not return an error here for backward compatibility */ 4651 return (0); 4652 } else if (!dump_opt['q']) { 4653 print_l2arc_header(); 4654 4655 (void) printf(" magic: %llu\n", 4656 (u_longlong_t)l2dhdr.dh_magic); 4657 (void) printf(" version: %llu\n", 4658 (u_longlong_t)l2dhdr.dh_version); 4659 (void) printf(" pool_guid: %llu\n", 4660 (u_longlong_t)l2dhdr.dh_spa_guid); 4661 (void) printf(" flags: %llu\n", 4662 (u_longlong_t)l2dhdr.dh_flags); 4663 (void) printf(" start_lbps[0]: %llu\n", 4664 (u_longlong_t) 4665 l2dhdr.dh_start_lbps[0].lbp_daddr); 4666 (void) printf(" start_lbps[1]: %llu\n", 4667 (u_longlong_t) 4668 l2dhdr.dh_start_lbps[1].lbp_daddr); 4669 (void) printf(" log_blk_ent: %llu\n", 4670 (u_longlong_t)l2dhdr.dh_log_entries); 4671 (void) printf(" start: %llu\n", 4672 (u_longlong_t)l2dhdr.dh_start); 4673 (void) printf(" end: %llu\n", 4674 (u_longlong_t)l2dhdr.dh_end); 4675 (void) printf(" evict: %llu\n", 4676 (u_longlong_t)l2dhdr.dh_evict); 4677 (void) printf(" lb_asize_refcount: %llu\n", 4678 (u_longlong_t)l2dhdr.dh_lb_asize); 4679 (void) printf(" lb_count_refcount: %llu\n", 4680 (u_longlong_t)l2dhdr.dh_lb_count); 4681 (void) printf(" trim_action_time: %llu\n", 4682 (u_longlong_t)l2dhdr.dh_trim_action_time); 4683 (void) printf(" trim_state: %llu\n\n", 4684 (u_longlong_t)l2dhdr.dh_trim_state); 4685 } 4686 4687 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild); 4688 /* 4689 * The total aligned size of log blocks and the number of log blocks 4690 * reported in the header of the device may be less than what zdb 4691 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild(). 4692 * This happens because dump_l2arc_log_blocks() lacks the memory 4693 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system 4694 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize 4695 * and dh_lb_count will be lower to begin with than what exists on the 4696 * device. This is normal and zdb should not exit with an error. The 4697 * opposite case should never happen though, the values reported in the 4698 * header should never be higher than what dump_l2arc_log_blocks() and 4699 * l2arc_rebuild() report. If this happens there is a leak in the 4700 * accounting of log blocks. 4701 */ 4702 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize || 4703 l2dhdr.dh_lb_count > rebuild.dh_lb_count) 4704 return (1); 4705 4706 return (0); 4707 } 4708 4709 static void 4710 dump_config_from_label(zdb_label_t *label, size_t buflen, int l) 4711 { 4712 if (dump_opt['q']) 4713 return; 4714 4715 if ((dump_opt['l'] < 3) && (first_label(label->config) != l)) 4716 return; 4717 4718 print_label_header(label, l); 4719 dump_nvlist(label->config_nv, 4); 4720 print_label_numbers(" labels = ", label->config); 4721 4722 if (dump_opt['l'] >= 2) 4723 dump_nvlist_stats(label->config_nv, buflen); 4724 } 4725 4726 #define ZDB_MAX_UB_HEADER_SIZE 32 4727 4728 static void 4729 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num) 4730 { 4731 4732 vdev_t vd; 4733 char header[ZDB_MAX_UB_HEADER_SIZE]; 4734 4735 vd.vdev_ashift = ashift; 4736 vd.vdev_top = &vd; 4737 4738 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4739 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4740 uberblock_t *ub = (void *)((char *)&label->label + uoff); 4741 cksum_record_t *rec = label->uberblocks[i]; 4742 4743 if (rec == NULL) { 4744 if (dump_opt['u'] >= 2) { 4745 print_label_header(label, label_num); 4746 (void) printf(" Uberblock[%d] invalid\n", i); 4747 } 4748 continue; 4749 } 4750 4751 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num)) 4752 continue; 4753 4754 if ((dump_opt['u'] < 4) && 4755 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay && 4756 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL)) 4757 continue; 4758 4759 print_label_header(label, label_num); 4760 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, 4761 " Uberblock[%d]\n", i); 4762 dump_uberblock(ub, header, ""); 4763 print_label_numbers(" labels = ", rec); 4764 } 4765 } 4766 4767 static char curpath[PATH_MAX]; 4768 4769 /* 4770 * Iterate through the path components, recursively passing 4771 * current one's obj and remaining path until we find the obj 4772 * for the last one. 4773 */ 4774 static int 4775 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj) 4776 { 4777 int err; 4778 boolean_t header = B_TRUE; 4779 uint64_t child_obj; 4780 char *s; 4781 dmu_buf_t *db; 4782 dmu_object_info_t doi; 4783 4784 if ((s = strchr(name, '/')) != NULL) 4785 *s = '\0'; 4786 err = zap_lookup(os, obj, name, 8, 1, &child_obj); 4787 4788 (void) strlcat(curpath, name, sizeof (curpath)); 4789 4790 if (err != 0) { 4791 (void) fprintf(stderr, "failed to lookup %s: %s\n", 4792 curpath, strerror(err)); 4793 return (err); 4794 } 4795 4796 child_obj = ZFS_DIRENT_OBJ(child_obj); 4797 err = sa_buf_hold(os, child_obj, FTAG, &db); 4798 if (err != 0) { 4799 (void) fprintf(stderr, 4800 "failed to get SA dbuf for obj %llu: %s\n", 4801 (u_longlong_t)child_obj, strerror(err)); 4802 return (EINVAL); 4803 } 4804 dmu_object_info_from_db(db, &doi); 4805 sa_buf_rele(db, FTAG); 4806 4807 if (doi.doi_bonus_type != DMU_OT_SA && 4808 doi.doi_bonus_type != DMU_OT_ZNODE) { 4809 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n", 4810 doi.doi_bonus_type, (u_longlong_t)child_obj); 4811 return (EINVAL); 4812 } 4813 4814 if (dump_opt['v'] > 6) { 4815 (void) printf("obj=%llu %s type=%d bonustype=%d\n", 4816 (u_longlong_t)child_obj, curpath, doi.doi_type, 4817 doi.doi_bonus_type); 4818 } 4819 4820 (void) strlcat(curpath, "/", sizeof (curpath)); 4821 4822 switch (doi.doi_type) { 4823 case DMU_OT_DIRECTORY_CONTENTS: 4824 if (s != NULL && *(s + 1) != '\0') 4825 return (dump_path_impl(os, child_obj, s + 1, retobj)); 4826 zfs_fallthrough; 4827 case DMU_OT_PLAIN_FILE_CONTENTS: 4828 if (retobj != NULL) { 4829 *retobj = child_obj; 4830 } else { 4831 dump_object(os, child_obj, dump_opt['v'], &header, 4832 NULL, 0); 4833 } 4834 return (0); 4835 default: 4836 (void) fprintf(stderr, "object %llu has non-file/directory " 4837 "type %d\n", (u_longlong_t)obj, doi.doi_type); 4838 break; 4839 } 4840 4841 return (EINVAL); 4842 } 4843 4844 /* 4845 * Dump the blocks for the object specified by path inside the dataset. 4846 */ 4847 static int 4848 dump_path(char *ds, char *path, uint64_t *retobj) 4849 { 4850 int err; 4851 objset_t *os; 4852 uint64_t root_obj; 4853 4854 err = open_objset(ds, FTAG, &os); 4855 if (err != 0) 4856 return (err); 4857 4858 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj); 4859 if (err != 0) { 4860 (void) fprintf(stderr, "can't lookup root znode: %s\n", 4861 strerror(err)); 4862 close_objset(os, FTAG); 4863 return (EINVAL); 4864 } 4865 4866 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds); 4867 4868 err = dump_path_impl(os, root_obj, path, retobj); 4869 4870 close_objset(os, FTAG); 4871 return (err); 4872 } 4873 4874 static int 4875 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg) 4876 { 4877 const char *p = (const char *)buf; 4878 ssize_t nwritten; 4879 4880 (void) os; 4881 (void) arg; 4882 4883 /* Write the data out, handling short writes and signals. */ 4884 while ((nwritten = write(STDOUT_FILENO, p, len)) < len) { 4885 if (nwritten < 0) { 4886 if (errno == EINTR) 4887 continue; 4888 return (errno); 4889 } 4890 p += nwritten; 4891 len -= nwritten; 4892 } 4893 4894 return (0); 4895 } 4896 4897 static void 4898 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr) 4899 { 4900 boolean_t embed = B_FALSE; 4901 boolean_t large_block = B_FALSE; 4902 boolean_t compress = B_FALSE; 4903 boolean_t raw = B_FALSE; 4904 4905 const char *c; 4906 for (c = flagstr; c != NULL && *c != '\0'; c++) { 4907 switch (*c) { 4908 case 'e': 4909 embed = B_TRUE; 4910 break; 4911 case 'L': 4912 large_block = B_TRUE; 4913 break; 4914 case 'c': 4915 compress = B_TRUE; 4916 break; 4917 case 'w': 4918 raw = B_TRUE; 4919 break; 4920 default: 4921 fprintf(stderr, "dump_backup: invalid flag " 4922 "'%c'\n", *c); 4923 return; 4924 } 4925 } 4926 4927 if (isatty(STDOUT_FILENO)) { 4928 fprintf(stderr, "dump_backup: stream cannot be written " 4929 "to a terminal\n"); 4930 return; 4931 } 4932 4933 offset_t off = 0; 4934 dmu_send_outparams_t out = { 4935 .dso_outfunc = dump_backup_bytes, 4936 .dso_dryrun = B_FALSE, 4937 }; 4938 4939 int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed, 4940 large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO, 4941 &off, &out); 4942 if (err != 0) { 4943 fprintf(stderr, "dump_backup: dmu_send_obj: %s\n", 4944 strerror(err)); 4945 return; 4946 } 4947 } 4948 4949 static int 4950 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile) 4951 { 4952 int err = 0; 4953 uint64_t size, readsize, oursize, offset; 4954 ssize_t writesize; 4955 sa_handle_t *hdl; 4956 4957 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj, 4958 destfile); 4959 4960 VERIFY3P(os, ==, sa_os); 4961 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) { 4962 (void) printf("Failed to get handle for SA znode\n"); 4963 return (err); 4964 } 4965 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) { 4966 (void) sa_handle_destroy(hdl); 4967 return (err); 4968 } 4969 (void) sa_handle_destroy(hdl); 4970 4971 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj, 4972 size); 4973 if (size == 0) { 4974 return (EINVAL); 4975 } 4976 4977 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644); 4978 if (fd == -1) 4979 return (errno); 4980 /* 4981 * We cap the size at 1 mebibyte here to prevent 4982 * allocation failures and nigh-infinite printing if the 4983 * object is extremely large. 4984 */ 4985 oursize = MIN(size, 1 << 20); 4986 offset = 0; 4987 char *buf = kmem_alloc(oursize, KM_NOSLEEP); 4988 if (buf == NULL) { 4989 (void) close(fd); 4990 return (ENOMEM); 4991 } 4992 4993 while (offset < size) { 4994 readsize = MIN(size - offset, 1 << 20); 4995 err = dmu_read(os, srcobj, offset, readsize, buf, 0); 4996 if (err != 0) { 4997 (void) printf("got error %u from dmu_read\n", err); 4998 kmem_free(buf, oursize); 4999 (void) close(fd); 5000 return (err); 5001 } 5002 if (dump_opt['v'] > 3) { 5003 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64 5004 " error=%d\n", offset, readsize, err); 5005 } 5006 5007 writesize = write(fd, buf, readsize); 5008 if (writesize < 0) { 5009 err = errno; 5010 break; 5011 } else if (writesize != readsize) { 5012 /* Incomplete write */ 5013 (void) fprintf(stderr, "Short write, only wrote %llu of" 5014 " %" PRIu64 " bytes, exiting...\n", 5015 (u_longlong_t)writesize, readsize); 5016 break; 5017 } 5018 5019 offset += readsize; 5020 } 5021 5022 (void) close(fd); 5023 5024 if (buf != NULL) 5025 kmem_free(buf, oursize); 5026 5027 return (err); 5028 } 5029 5030 static boolean_t 5031 label_cksum_valid(vdev_label_t *label, uint64_t offset) 5032 { 5033 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; 5034 zio_cksum_t expected_cksum; 5035 zio_cksum_t actual_cksum; 5036 zio_cksum_t verifier; 5037 zio_eck_t *eck; 5038 int byteswap; 5039 5040 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys); 5041 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1; 5042 5043 offset += offsetof(vdev_label_t, vl_vdev_phys); 5044 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0); 5045 5046 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC)); 5047 if (byteswap) 5048 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); 5049 5050 expected_cksum = eck->zec_cksum; 5051 eck->zec_cksum = verifier; 5052 5053 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE); 5054 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum); 5055 abd_free(abd); 5056 5057 if (byteswap) 5058 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t)); 5059 5060 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) 5061 return (B_TRUE); 5062 5063 return (B_FALSE); 5064 } 5065 5066 static int 5067 dump_label(const char *dev) 5068 { 5069 char path[MAXPATHLEN]; 5070 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}}; 5071 uint64_t psize, ashift, l2cache; 5072 struct stat64 statbuf; 5073 boolean_t config_found = B_FALSE; 5074 boolean_t error = B_FALSE; 5075 boolean_t read_l2arc_header = B_FALSE; 5076 avl_tree_t config_tree; 5077 avl_tree_t uberblock_tree; 5078 void *node, *cookie; 5079 int fd; 5080 5081 /* 5082 * Check if we were given absolute path and use it as is. 5083 * Otherwise if the provided vdev name doesn't point to a file, 5084 * try prepending expected disk paths and partition numbers. 5085 */ 5086 (void) strlcpy(path, dev, sizeof (path)); 5087 if (dev[0] != '/' && stat64(path, &statbuf) != 0) { 5088 int error; 5089 5090 error = zfs_resolve_shortname(dev, path, MAXPATHLEN); 5091 if (error == 0 && zfs_dev_is_whole_disk(path)) { 5092 if (zfs_append_partition(path, MAXPATHLEN) == -1) 5093 error = ENOENT; 5094 } 5095 5096 if (error || (stat64(path, &statbuf) != 0)) { 5097 (void) printf("failed to find device %s, try " 5098 "specifying absolute path instead\n", dev); 5099 return (1); 5100 } 5101 } 5102 5103 if ((fd = open64(path, O_RDONLY)) < 0) { 5104 (void) printf("cannot open '%s': %s\n", path, strerror(errno)); 5105 exit(1); 5106 } 5107 5108 if (fstat64_blk(fd, &statbuf) != 0) { 5109 (void) printf("failed to stat '%s': %s\n", path, 5110 strerror(errno)); 5111 (void) close(fd); 5112 exit(1); 5113 } 5114 5115 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0) 5116 (void) printf("failed to invalidate cache '%s' : %s\n", path, 5117 strerror(errno)); 5118 5119 avl_create(&config_tree, cksum_record_compare, 5120 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5121 avl_create(&uberblock_tree, cksum_record_compare, 5122 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5123 5124 psize = statbuf.st_size; 5125 psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t)); 5126 ashift = SPA_MINBLOCKSHIFT; 5127 5128 /* 5129 * 1. Read the label from disk 5130 * 2. Verify label cksum 5131 * 3. Unpack the configuration and insert in config tree. 5132 * 4. Traverse all uberblocks and insert in uberblock tree. 5133 */ 5134 for (int l = 0; l < VDEV_LABELS; l++) { 5135 zdb_label_t *label = &labels[l]; 5136 char *buf = label->label.vl_vdev_phys.vp_nvlist; 5137 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5138 nvlist_t *config; 5139 cksum_record_t *rec; 5140 zio_cksum_t cksum; 5141 vdev_t vd; 5142 5143 label->label_offset = vdev_label_offset(psize, l, 0); 5144 5145 if (pread64(fd, &label->label, sizeof (label->label), 5146 label->label_offset) != sizeof (label->label)) { 5147 if (!dump_opt['q']) 5148 (void) printf("failed to read label %d\n", l); 5149 label->read_failed = B_TRUE; 5150 error = B_TRUE; 5151 continue; 5152 } 5153 5154 label->read_failed = B_FALSE; 5155 label->cksum_valid = label_cksum_valid(&label->label, 5156 label->label_offset); 5157 5158 if (nvlist_unpack(buf, buflen, &config, 0) == 0) { 5159 nvlist_t *vdev_tree = NULL; 5160 size_t size; 5161 5162 if ((nvlist_lookup_nvlist(config, 5163 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || 5164 (nvlist_lookup_uint64(vdev_tree, 5165 ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) 5166 ashift = SPA_MINBLOCKSHIFT; 5167 5168 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0) 5169 size = buflen; 5170 5171 /* If the device is a cache device read the header. */ 5172 if (!read_l2arc_header) { 5173 if (nvlist_lookup_uint64(config, 5174 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 && 5175 l2cache == POOL_STATE_L2CACHE) { 5176 read_l2arc_header = B_TRUE; 5177 } 5178 } 5179 5180 fletcher_4_native_varsize(buf, size, &cksum); 5181 rec = cksum_record_insert(&config_tree, &cksum, l); 5182 5183 label->config = rec; 5184 label->config_nv = config; 5185 config_found = B_TRUE; 5186 } else { 5187 error = B_TRUE; 5188 } 5189 5190 vd.vdev_ashift = ashift; 5191 vd.vdev_top = &vd; 5192 5193 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 5194 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 5195 uberblock_t *ub = (void *)((char *)label + uoff); 5196 5197 if (uberblock_verify(ub)) 5198 continue; 5199 5200 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum); 5201 rec = cksum_record_insert(&uberblock_tree, &cksum, l); 5202 5203 label->uberblocks[i] = rec; 5204 } 5205 } 5206 5207 /* 5208 * Dump the label and uberblocks. 5209 */ 5210 for (int l = 0; l < VDEV_LABELS; l++) { 5211 zdb_label_t *label = &labels[l]; 5212 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5213 5214 if (label->read_failed == B_TRUE) 5215 continue; 5216 5217 if (label->config_nv) { 5218 dump_config_from_label(label, buflen, l); 5219 } else { 5220 if (!dump_opt['q']) 5221 (void) printf("failed to unpack label %d\n", l); 5222 } 5223 5224 if (dump_opt['u']) 5225 dump_label_uberblocks(label, ashift, l); 5226 5227 nvlist_free(label->config_nv); 5228 } 5229 5230 /* 5231 * Dump the L2ARC header, if existent. 5232 */ 5233 if (read_l2arc_header) 5234 error |= dump_l2arc_header(fd); 5235 5236 cookie = NULL; 5237 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL) 5238 umem_free(node, sizeof (cksum_record_t)); 5239 5240 cookie = NULL; 5241 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL) 5242 umem_free(node, sizeof (cksum_record_t)); 5243 5244 avl_destroy(&config_tree); 5245 avl_destroy(&uberblock_tree); 5246 5247 (void) close(fd); 5248 5249 return (config_found == B_FALSE ? 2 : 5250 (error == B_TRUE ? 1 : 0)); 5251 } 5252 5253 static uint64_t dataset_feature_count[SPA_FEATURES]; 5254 static uint64_t global_feature_count[SPA_FEATURES]; 5255 static uint64_t remap_deadlist_count = 0; 5256 5257 static int 5258 dump_one_objset(const char *dsname, void *arg) 5259 { 5260 (void) arg; 5261 int error; 5262 objset_t *os; 5263 spa_feature_t f; 5264 5265 error = open_objset(dsname, FTAG, &os); 5266 if (error != 0) 5267 return (0); 5268 5269 for (f = 0; f < SPA_FEATURES; f++) { 5270 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f)) 5271 continue; 5272 ASSERT(spa_feature_table[f].fi_flags & 5273 ZFEATURE_FLAG_PER_DATASET); 5274 dataset_feature_count[f]++; 5275 } 5276 5277 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) { 5278 remap_deadlist_count++; 5279 } 5280 5281 for (dsl_bookmark_node_t *dbn = 5282 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL; 5283 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) { 5284 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj); 5285 if (dbn->dbn_phys.zbm_redaction_obj != 0) { 5286 global_feature_count[ 5287 SPA_FEATURE_REDACTION_BOOKMARKS]++; 5288 objset_t *mos = os->os_spa->spa_meta_objset; 5289 dnode_t *rl; 5290 VERIFY0(dnode_hold(mos, 5291 dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl)); 5292 if (rl->dn_have_spill) { 5293 global_feature_count[ 5294 SPA_FEATURE_REDACTION_LIST_SPILL]++; 5295 } 5296 } 5297 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN) 5298 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++; 5299 } 5300 5301 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) && 5302 !dmu_objset_is_snapshot(os)) { 5303 global_feature_count[SPA_FEATURE_LIVELIST]++; 5304 } 5305 5306 dump_objset(os); 5307 close_objset(os, FTAG); 5308 fuid_table_destroy(); 5309 return (0); 5310 } 5311 5312 /* 5313 * Block statistics. 5314 */ 5315 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) 5316 typedef struct zdb_blkstats { 5317 uint64_t zb_asize; 5318 uint64_t zb_lsize; 5319 uint64_t zb_psize; 5320 uint64_t zb_count; 5321 uint64_t zb_gangs; 5322 uint64_t zb_ditto_samevdev; 5323 uint64_t zb_ditto_same_ms; 5324 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; 5325 } zdb_blkstats_t; 5326 5327 /* 5328 * Extended object types to report deferred frees and dedup auto-ditto blocks. 5329 */ 5330 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) 5331 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) 5332 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) 5333 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) 5334 5335 static const char *zdb_ot_extname[] = { 5336 "deferred free", 5337 "dedup ditto", 5338 "other", 5339 "Total", 5340 }; 5341 5342 #define ZB_TOTAL DN_MAX_LEVELS 5343 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1) 5344 5345 typedef struct zdb_brt_entry { 5346 dva_t zbre_dva; 5347 uint64_t zbre_refcount; 5348 avl_node_t zbre_node; 5349 } zdb_brt_entry_t; 5350 5351 typedef struct zdb_cb { 5352 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; 5353 uint64_t zcb_removing_size; 5354 uint64_t zcb_checkpoint_size; 5355 uint64_t zcb_dedup_asize; 5356 uint64_t zcb_dedup_blocks; 5357 uint64_t zcb_clone_asize; 5358 uint64_t zcb_clone_blocks; 5359 uint64_t zcb_psize_count[SPA_MAX_FOR_16M]; 5360 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M]; 5361 uint64_t zcb_asize_count[SPA_MAX_FOR_16M]; 5362 uint64_t zcb_psize_len[SPA_MAX_FOR_16M]; 5363 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M]; 5364 uint64_t zcb_asize_len[SPA_MAX_FOR_16M]; 5365 uint64_t zcb_psize_total; 5366 uint64_t zcb_lsize_total; 5367 uint64_t zcb_asize_total; 5368 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; 5369 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] 5370 [BPE_PAYLOAD_SIZE + 1]; 5371 uint64_t zcb_start; 5372 hrtime_t zcb_lastprint; 5373 uint64_t zcb_totalasize; 5374 uint64_t zcb_errors[256]; 5375 int zcb_readfails; 5376 int zcb_haderrors; 5377 spa_t *zcb_spa; 5378 uint32_t **zcb_vd_obsolete_counts; 5379 avl_tree_t zcb_brt; 5380 boolean_t zcb_brt_is_active; 5381 } zdb_cb_t; 5382 5383 /* test if two DVA offsets from same vdev are within the same metaslab */ 5384 static boolean_t 5385 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2) 5386 { 5387 vdev_t *vd = vdev_lookup_top(spa, vdev); 5388 uint64_t ms_shift = vd->vdev_ms_shift; 5389 5390 return ((off1 >> ms_shift) == (off2 >> ms_shift)); 5391 } 5392 5393 /* 5394 * Used to simplify reporting of the histogram data. 5395 */ 5396 typedef struct one_histo { 5397 const char *name; 5398 uint64_t *count; 5399 uint64_t *len; 5400 uint64_t cumulative; 5401 } one_histo_t; 5402 5403 /* 5404 * The number of separate histograms processed for psize, lsize and asize. 5405 */ 5406 #define NUM_HISTO 3 5407 5408 /* 5409 * This routine will create a fixed column size output of three different 5410 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M 5411 * the count, length and cumulative length of the psize, lsize and 5412 * asize blocks. 5413 * 5414 * All three types of blocks are listed on a single line 5415 * 5416 * By default the table is printed in nicenumber format (e.g. 123K) but 5417 * if the '-P' parameter is specified then the full raw number (parseable) 5418 * is printed out. 5419 */ 5420 static void 5421 dump_size_histograms(zdb_cb_t *zcb) 5422 { 5423 /* 5424 * A temporary buffer that allows us to convert a number into 5425 * a string using zdb_nicenumber to allow either raw or human 5426 * readable numbers to be output. 5427 */ 5428 char numbuf[32]; 5429 5430 /* 5431 * Define titles which are used in the headers of the tables 5432 * printed by this routine. 5433 */ 5434 const char blocksize_title1[] = "block"; 5435 const char blocksize_title2[] = "size"; 5436 const char count_title[] = "Count"; 5437 const char length_title[] = "Size"; 5438 const char cumulative_title[] = "Cum."; 5439 5440 /* 5441 * Setup the histogram arrays (psize, lsize, and asize). 5442 */ 5443 one_histo_t parm_histo[NUM_HISTO]; 5444 5445 parm_histo[0].name = "psize"; 5446 parm_histo[0].count = zcb->zcb_psize_count; 5447 parm_histo[0].len = zcb->zcb_psize_len; 5448 parm_histo[0].cumulative = 0; 5449 5450 parm_histo[1].name = "lsize"; 5451 parm_histo[1].count = zcb->zcb_lsize_count; 5452 parm_histo[1].len = zcb->zcb_lsize_len; 5453 parm_histo[1].cumulative = 0; 5454 5455 parm_histo[2].name = "asize"; 5456 parm_histo[2].count = zcb->zcb_asize_count; 5457 parm_histo[2].len = zcb->zcb_asize_len; 5458 parm_histo[2].cumulative = 0; 5459 5460 5461 (void) printf("\nBlock Size Histogram\n"); 5462 /* 5463 * Print the first line titles 5464 */ 5465 if (dump_opt['P']) 5466 (void) printf("\n%s\t", blocksize_title1); 5467 else 5468 (void) printf("\n%7s ", blocksize_title1); 5469 5470 for (int j = 0; j < NUM_HISTO; j++) { 5471 if (dump_opt['P']) { 5472 if (j < NUM_HISTO - 1) { 5473 (void) printf("%s\t\t\t", parm_histo[j].name); 5474 } else { 5475 /* Don't print trailing spaces */ 5476 (void) printf(" %s", parm_histo[j].name); 5477 } 5478 } else { 5479 if (j < NUM_HISTO - 1) { 5480 /* Left aligned strings in the output */ 5481 (void) printf("%-7s ", 5482 parm_histo[j].name); 5483 } else { 5484 /* Don't print trailing spaces */ 5485 (void) printf("%s", parm_histo[j].name); 5486 } 5487 } 5488 } 5489 (void) printf("\n"); 5490 5491 /* 5492 * Print the second line titles 5493 */ 5494 if (dump_opt['P']) { 5495 (void) printf("%s\t", blocksize_title2); 5496 } else { 5497 (void) printf("%7s ", blocksize_title2); 5498 } 5499 5500 for (int i = 0; i < NUM_HISTO; i++) { 5501 if (dump_opt['P']) { 5502 (void) printf("%s\t%s\t%s\t", 5503 count_title, length_title, cumulative_title); 5504 } else { 5505 (void) printf("%7s%7s%7s", 5506 count_title, length_title, cumulative_title); 5507 } 5508 } 5509 (void) printf("\n"); 5510 5511 /* 5512 * Print the rows 5513 */ 5514 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) { 5515 5516 /* 5517 * Print the first column showing the blocksize 5518 */ 5519 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf)); 5520 5521 if (dump_opt['P']) { 5522 printf("%s", numbuf); 5523 } else { 5524 printf("%7s:", numbuf); 5525 } 5526 5527 /* 5528 * Print the remaining set of 3 columns per size: 5529 * for psize, lsize and asize 5530 */ 5531 for (int j = 0; j < NUM_HISTO; j++) { 5532 parm_histo[j].cumulative += parm_histo[j].len[i]; 5533 5534 zdb_nicenum(parm_histo[j].count[i], 5535 numbuf, sizeof (numbuf)); 5536 if (dump_opt['P']) 5537 (void) printf("\t%s", numbuf); 5538 else 5539 (void) printf("%7s", numbuf); 5540 5541 zdb_nicenum(parm_histo[j].len[i], 5542 numbuf, sizeof (numbuf)); 5543 if (dump_opt['P']) 5544 (void) printf("\t%s", numbuf); 5545 else 5546 (void) printf("%7s", numbuf); 5547 5548 zdb_nicenum(parm_histo[j].cumulative, 5549 numbuf, sizeof (numbuf)); 5550 if (dump_opt['P']) 5551 (void) printf("\t%s", numbuf); 5552 else 5553 (void) printf("%7s", numbuf); 5554 } 5555 (void) printf("\n"); 5556 } 5557 } 5558 5559 static void 5560 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, 5561 dmu_object_type_t type) 5562 { 5563 uint64_t refcnt = 0; 5564 int i; 5565 5566 ASSERT(type < ZDB_OT_TOTAL); 5567 5568 if (zilog && zil_bp_tree_add(zilog, bp) != 0) 5569 return; 5570 5571 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER); 5572 5573 for (i = 0; i < 4; i++) { 5574 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; 5575 int t = (i & 1) ? type : ZDB_OT_TOTAL; 5576 int equal; 5577 zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; 5578 5579 zb->zb_asize += BP_GET_ASIZE(bp); 5580 zb->zb_lsize += BP_GET_LSIZE(bp); 5581 zb->zb_psize += BP_GET_PSIZE(bp); 5582 zb->zb_count++; 5583 5584 /* 5585 * The histogram is only big enough to record blocks up to 5586 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, 5587 * "other", bucket. 5588 */ 5589 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; 5590 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); 5591 zb->zb_psize_histogram[idx]++; 5592 5593 zb->zb_gangs += BP_COUNT_GANG(bp); 5594 5595 switch (BP_GET_NDVAS(bp)) { 5596 case 2: 5597 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5598 DVA_GET_VDEV(&bp->blk_dva[1])) { 5599 zb->zb_ditto_samevdev++; 5600 5601 if (same_metaslab(zcb->zcb_spa, 5602 DVA_GET_VDEV(&bp->blk_dva[0]), 5603 DVA_GET_OFFSET(&bp->blk_dva[0]), 5604 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5605 zb->zb_ditto_same_ms++; 5606 } 5607 break; 5608 case 3: 5609 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 5610 DVA_GET_VDEV(&bp->blk_dva[1])) + 5611 (DVA_GET_VDEV(&bp->blk_dva[0]) == 5612 DVA_GET_VDEV(&bp->blk_dva[2])) + 5613 (DVA_GET_VDEV(&bp->blk_dva[1]) == 5614 DVA_GET_VDEV(&bp->blk_dva[2])); 5615 if (equal != 0) { 5616 zb->zb_ditto_samevdev++; 5617 5618 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5619 DVA_GET_VDEV(&bp->blk_dva[1]) && 5620 same_metaslab(zcb->zcb_spa, 5621 DVA_GET_VDEV(&bp->blk_dva[0]), 5622 DVA_GET_OFFSET(&bp->blk_dva[0]), 5623 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5624 zb->zb_ditto_same_ms++; 5625 else if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5626 DVA_GET_VDEV(&bp->blk_dva[2]) && 5627 same_metaslab(zcb->zcb_spa, 5628 DVA_GET_VDEV(&bp->blk_dva[0]), 5629 DVA_GET_OFFSET(&bp->blk_dva[0]), 5630 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5631 zb->zb_ditto_same_ms++; 5632 else if (DVA_GET_VDEV(&bp->blk_dva[1]) == 5633 DVA_GET_VDEV(&bp->blk_dva[2]) && 5634 same_metaslab(zcb->zcb_spa, 5635 DVA_GET_VDEV(&bp->blk_dva[1]), 5636 DVA_GET_OFFSET(&bp->blk_dva[1]), 5637 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5638 zb->zb_ditto_same_ms++; 5639 } 5640 break; 5641 } 5642 } 5643 5644 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG); 5645 5646 if (BP_IS_EMBEDDED(bp)) { 5647 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; 5648 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] 5649 [BPE_GET_PSIZE(bp)]++; 5650 return; 5651 } 5652 /* 5653 * The binning histogram bins by powers of two up to 5654 * SPA_MAXBLOCKSIZE rather than creating bins for 5655 * every possible blocksize found in the pool. 5656 */ 5657 int bin = highbit64(BP_GET_PSIZE(bp)) - 1; 5658 5659 zcb->zcb_psize_count[bin]++; 5660 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp); 5661 zcb->zcb_psize_total += BP_GET_PSIZE(bp); 5662 5663 bin = highbit64(BP_GET_LSIZE(bp)) - 1; 5664 5665 zcb->zcb_lsize_count[bin]++; 5666 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp); 5667 zcb->zcb_lsize_total += BP_GET_LSIZE(bp); 5668 5669 bin = highbit64(BP_GET_ASIZE(bp)) - 1; 5670 5671 zcb->zcb_asize_count[bin]++; 5672 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp); 5673 zcb->zcb_asize_total += BP_GET_ASIZE(bp); 5674 5675 if (zcb->zcb_brt_is_active && brt_maybe_exists(zcb->zcb_spa, bp)) { 5676 /* 5677 * Cloned blocks are special. We need to count them, so we can 5678 * later uncount them when reporting leaked space, and we must 5679 * only claim them them once. 5680 * 5681 * To do this, we keep our own in-memory BRT. For each block 5682 * we haven't seen before, we look it up in the real BRT and 5683 * if its there, we note it and its refcount then proceed as 5684 * normal. If we see the block again, we count it as a clone 5685 * and then give it no further consideration. 5686 */ 5687 zdb_brt_entry_t zbre_search, *zbre; 5688 avl_index_t where; 5689 5690 zbre_search.zbre_dva = bp->blk_dva[0]; 5691 zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where); 5692 if (zbre != NULL) { 5693 zcb->zcb_clone_asize += BP_GET_ASIZE(bp); 5694 zcb->zcb_clone_blocks++; 5695 5696 zbre->zbre_refcount--; 5697 if (zbre->zbre_refcount == 0) { 5698 avl_remove(&zcb->zcb_brt, zbre); 5699 umem_free(zbre, sizeof (zdb_brt_entry_t)); 5700 } 5701 return; 5702 } 5703 5704 uint64_t crefcnt = brt_entry_get_refcount(zcb->zcb_spa, bp); 5705 if (crefcnt > 0) { 5706 zbre = umem_zalloc(sizeof (zdb_brt_entry_t), 5707 UMEM_NOFAIL); 5708 zbre->zbre_dva = bp->blk_dva[0]; 5709 zbre->zbre_refcount = crefcnt; 5710 avl_insert(&zcb->zcb_brt, zbre, where); 5711 } 5712 } 5713 5714 if (dump_opt['L']) 5715 return; 5716 5717 if (BP_GET_DEDUP(bp)) { 5718 ddt_t *ddt; 5719 ddt_entry_t *dde; 5720 5721 ddt = ddt_select(zcb->zcb_spa, bp); 5722 ddt_enter(ddt); 5723 dde = ddt_lookup(ddt, bp, B_FALSE); 5724 5725 if (dde == NULL) { 5726 refcnt = 0; 5727 } else { 5728 ddt_phys_t *ddp = ddt_phys_select(dde, bp); 5729 ddt_phys_decref(ddp); 5730 refcnt = ddp->ddp_refcnt; 5731 if (ddt_phys_total_refcnt(dde) == 0) 5732 ddt_remove(ddt, dde); 5733 } 5734 ddt_exit(ddt); 5735 } 5736 5737 VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa, 5738 refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa), 5739 bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0); 5740 } 5741 5742 static void 5743 zdb_blkptr_done(zio_t *zio) 5744 { 5745 spa_t *spa = zio->io_spa; 5746 blkptr_t *bp = zio->io_bp; 5747 int ioerr = zio->io_error; 5748 zdb_cb_t *zcb = zio->io_private; 5749 zbookmark_phys_t *zb = &zio->io_bookmark; 5750 5751 mutex_enter(&spa->spa_scrub_lock); 5752 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 5753 cv_broadcast(&spa->spa_scrub_io_cv); 5754 5755 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 5756 char blkbuf[BP_SPRINTF_LEN]; 5757 5758 zcb->zcb_haderrors = 1; 5759 zcb->zcb_errors[ioerr]++; 5760 5761 if (dump_opt['b'] >= 2) 5762 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5763 else 5764 blkbuf[0] = '\0'; 5765 5766 (void) printf("zdb_blkptr_cb: " 5767 "Got error %d reading " 5768 "<%llu, %llu, %lld, %llx> %s -- skipping\n", 5769 ioerr, 5770 (u_longlong_t)zb->zb_objset, 5771 (u_longlong_t)zb->zb_object, 5772 (u_longlong_t)zb->zb_level, 5773 (u_longlong_t)zb->zb_blkid, 5774 blkbuf); 5775 } 5776 mutex_exit(&spa->spa_scrub_lock); 5777 5778 abd_free(zio->io_abd); 5779 } 5780 5781 static int 5782 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 5783 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 5784 { 5785 zdb_cb_t *zcb = arg; 5786 dmu_object_type_t type; 5787 boolean_t is_metadata; 5788 5789 if (zb->zb_level == ZB_DNODE_LEVEL) 5790 return (0); 5791 5792 if (dump_opt['b'] >= 5 && BP_GET_LOGICAL_BIRTH(bp) > 0) { 5793 char blkbuf[BP_SPRINTF_LEN]; 5794 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5795 (void) printf("objset %llu object %llu " 5796 "level %lld offset 0x%llx %s\n", 5797 (u_longlong_t)zb->zb_objset, 5798 (u_longlong_t)zb->zb_object, 5799 (longlong_t)zb->zb_level, 5800 (u_longlong_t)blkid2offset(dnp, bp, zb), 5801 blkbuf); 5802 } 5803 5804 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) 5805 return (0); 5806 5807 type = BP_GET_TYPE(bp); 5808 5809 zdb_count_block(zcb, zilog, bp, 5810 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); 5811 5812 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); 5813 5814 if (!BP_IS_EMBEDDED(bp) && 5815 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { 5816 size_t size = BP_GET_PSIZE(bp); 5817 abd_t *abd = abd_alloc(size, B_FALSE); 5818 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; 5819 5820 /* If it's an intent log block, failure is expected. */ 5821 if (zb->zb_level == ZB_ZIL_LEVEL) 5822 flags |= ZIO_FLAG_SPECULATIVE; 5823 5824 mutex_enter(&spa->spa_scrub_lock); 5825 while (spa->spa_load_verify_bytes > max_inflight_bytes) 5826 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 5827 spa->spa_load_verify_bytes += size; 5828 mutex_exit(&spa->spa_scrub_lock); 5829 5830 zio_nowait(zio_read(NULL, spa, bp, abd, size, 5831 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); 5832 } 5833 5834 zcb->zcb_readfails = 0; 5835 5836 /* only call gethrtime() every 100 blocks */ 5837 static int iters; 5838 if (++iters > 100) 5839 iters = 0; 5840 else 5841 return (0); 5842 5843 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { 5844 uint64_t now = gethrtime(); 5845 char buf[10]; 5846 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; 5847 uint64_t kb_per_sec = 5848 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); 5849 uint64_t sec_remaining = 5850 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; 5851 5852 /* make sure nicenum has enough space */ 5853 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated"); 5854 5855 zfs_nicebytes(bytes, buf, sizeof (buf)); 5856 (void) fprintf(stderr, 5857 "\r%5s completed (%4"PRIu64"MB/s) " 5858 "estimated time remaining: " 5859 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ", 5860 buf, kb_per_sec / 1024, 5861 sec_remaining / 60 / 60, 5862 sec_remaining / 60 % 60, 5863 sec_remaining % 60); 5864 5865 zcb->zcb_lastprint = now; 5866 } 5867 5868 return (0); 5869 } 5870 5871 static void 5872 zdb_leak(void *arg, uint64_t start, uint64_t size) 5873 { 5874 vdev_t *vd = arg; 5875 5876 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", 5877 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); 5878 } 5879 5880 static metaslab_ops_t zdb_metaslab_ops = { 5881 NULL /* alloc */ 5882 }; 5883 5884 static int 5885 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme, 5886 uint64_t txg, void *arg) 5887 { 5888 spa_vdev_removal_t *svr = arg; 5889 5890 uint64_t offset = sme->sme_offset; 5891 uint64_t size = sme->sme_run; 5892 5893 /* skip vdevs we don't care about */ 5894 if (sme->sme_vdev != svr->svr_vdev_id) 5895 return (0); 5896 5897 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev); 5898 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5899 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 5900 5901 if (txg < metaslab_unflushed_txg(ms)) 5902 return (0); 5903 5904 if (sme->sme_type == SM_ALLOC) 5905 range_tree_add(svr->svr_allocd_segs, offset, size); 5906 else 5907 range_tree_remove(svr->svr_allocd_segs, offset, size); 5908 5909 return (0); 5910 } 5911 5912 static void 5913 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5914 uint64_t size, void *arg) 5915 { 5916 (void) inner_offset, (void) arg; 5917 5918 /* 5919 * This callback was called through a remap from 5920 * a device being removed. Therefore, the vdev that 5921 * this callback is applied to is a concrete 5922 * vdev. 5923 */ 5924 ASSERT(vdev_is_concrete(vd)); 5925 5926 VERIFY0(metaslab_claim_impl(vd, offset, size, 5927 spa_min_claim_txg(vd->vdev_spa))); 5928 } 5929 5930 static void 5931 claim_segment_cb(void *arg, uint64_t offset, uint64_t size) 5932 { 5933 vdev_t *vd = arg; 5934 5935 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 5936 claim_segment_impl_cb, NULL); 5937 } 5938 5939 /* 5940 * After accounting for all allocated blocks that are directly referenced, 5941 * we might have missed a reference to a block from a partially complete 5942 * (and thus unused) indirect mapping object. We perform a secondary pass 5943 * through the metaslabs we have already mapped and claim the destination 5944 * blocks. 5945 */ 5946 static void 5947 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb) 5948 { 5949 if (dump_opt['L']) 5950 return; 5951 5952 if (spa->spa_vdev_removal == NULL) 5953 return; 5954 5955 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5956 5957 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 5958 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 5959 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5960 5961 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 5962 5963 range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 5964 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 5965 metaslab_t *msp = vd->vdev_ms[msi]; 5966 5967 ASSERT0(range_tree_space(allocs)); 5968 if (msp->ms_sm != NULL) 5969 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC)); 5970 range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs); 5971 } 5972 range_tree_destroy(allocs); 5973 5974 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr); 5975 5976 /* 5977 * Clear everything past what has been synced, 5978 * because we have not allocated mappings for 5979 * it yet. 5980 */ 5981 range_tree_clear(svr->svr_allocd_segs, 5982 vdev_indirect_mapping_max_offset(vim), 5983 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim)); 5984 5985 zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs); 5986 range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd); 5987 5988 spa_config_exit(spa, SCL_CONFIG, FTAG); 5989 } 5990 5991 static int 5992 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 5993 dmu_tx_t *tx) 5994 { 5995 (void) tx; 5996 zdb_cb_t *zcb = arg; 5997 spa_t *spa = zcb->zcb_spa; 5998 vdev_t *vd; 5999 const dva_t *dva = &bp->blk_dva[0]; 6000 6001 ASSERT(!bp_freed); 6002 ASSERT(!dump_opt['L']); 6003 ASSERT3U(BP_GET_NDVAS(bp), ==, 1); 6004 6005 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6006 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva)); 6007 ASSERT3P(vd, !=, NULL); 6008 spa_config_exit(spa, SCL_VDEV, FTAG); 6009 6010 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 6011 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL); 6012 6013 vdev_indirect_mapping_increment_obsolete_count( 6014 vd->vdev_indirect_mapping, 6015 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), 6016 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6017 6018 return (0); 6019 } 6020 6021 static uint32_t * 6022 zdb_load_obsolete_counts(vdev_t *vd) 6023 { 6024 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6025 spa_t *spa = vd->vdev_spa; 6026 spa_condensing_indirect_phys_t *scip = 6027 &spa->spa_condensing_indirect_phys; 6028 uint64_t obsolete_sm_object; 6029 uint32_t *counts; 6030 6031 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 6032 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL); 6033 counts = vdev_indirect_mapping_load_obsolete_counts(vim); 6034 if (vd->vdev_obsolete_sm != NULL) { 6035 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6036 vd->vdev_obsolete_sm); 6037 } 6038 if (scip->scip_vdev == vd->vdev_id && 6039 scip->scip_prev_obsolete_sm_object != 0) { 6040 space_map_t *prev_obsolete_sm = NULL; 6041 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, 6042 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); 6043 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6044 prev_obsolete_sm); 6045 space_map_close(prev_obsolete_sm); 6046 } 6047 return (counts); 6048 } 6049 6050 static void 6051 zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb) 6052 { 6053 ddt_bookmark_t ddb = {0}; 6054 ddt_entry_t dde; 6055 int error; 6056 int p; 6057 6058 ASSERT(!dump_opt['L']); 6059 6060 while ((error = ddt_walk(spa, &ddb, &dde)) == 0) { 6061 blkptr_t blk; 6062 ddt_phys_t *ddp = dde.dde_phys; 6063 6064 if (ddb.ddb_class == DDT_CLASS_UNIQUE) 6065 return; 6066 6067 ASSERT(ddt_phys_total_refcnt(&dde) > 1); 6068 ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum]; 6069 VERIFY(ddt); 6070 6071 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 6072 if (ddp->ddp_phys_birth == 0) 6073 continue; 6074 ddt_bp_create(ddb.ddb_checksum, 6075 &dde.dde_key, ddp, &blk); 6076 if (p == DDT_PHYS_DITTO) { 6077 zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO); 6078 } else { 6079 zcb->zcb_dedup_asize += 6080 BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1); 6081 zcb->zcb_dedup_blocks++; 6082 } 6083 } 6084 6085 ddt_enter(ddt); 6086 VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL); 6087 ddt_exit(ddt); 6088 } 6089 6090 ASSERT(error == ENOENT); 6091 } 6092 6093 typedef struct checkpoint_sm_exclude_entry_arg { 6094 vdev_t *cseea_vd; 6095 uint64_t cseea_checkpoint_size; 6096 } checkpoint_sm_exclude_entry_arg_t; 6097 6098 static int 6099 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg) 6100 { 6101 checkpoint_sm_exclude_entry_arg_t *cseea = arg; 6102 vdev_t *vd = cseea->cseea_vd; 6103 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 6104 uint64_t end = sme->sme_offset + sme->sme_run; 6105 6106 ASSERT(sme->sme_type == SM_FREE); 6107 6108 /* 6109 * Since the vdev_checkpoint_sm exists in the vdev level 6110 * and the ms_sm space maps exist in the metaslab level, 6111 * an entry in the checkpoint space map could theoretically 6112 * cross the boundaries of the metaslab that it belongs. 6113 * 6114 * In reality, because of the way that we populate and 6115 * manipulate the checkpoint's space maps currently, 6116 * there shouldn't be any entries that cross metaslabs. 6117 * Hence the assertion below. 6118 * 6119 * That said, there is no fundamental requirement that 6120 * the checkpoint's space map entries should not cross 6121 * metaslab boundaries. So if needed we could add code 6122 * that handles metaslab-crossing segments in the future. 6123 */ 6124 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 6125 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 6126 6127 /* 6128 * By removing the entry from the allocated segments we 6129 * also verify that the entry is there to begin with. 6130 */ 6131 mutex_enter(&ms->ms_lock); 6132 range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run); 6133 mutex_exit(&ms->ms_lock); 6134 6135 cseea->cseea_checkpoint_size += sme->sme_run; 6136 return (0); 6137 } 6138 6139 static void 6140 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb) 6141 { 6142 spa_t *spa = vd->vdev_spa; 6143 space_map_t *checkpoint_sm = NULL; 6144 uint64_t checkpoint_sm_obj; 6145 6146 /* 6147 * If there is no vdev_top_zap, we are in a pool whose 6148 * version predates the pool checkpoint feature. 6149 */ 6150 if (vd->vdev_top_zap == 0) 6151 return; 6152 6153 /* 6154 * If there is no reference of the vdev_checkpoint_sm in 6155 * the vdev_top_zap, then one of the following scenarios 6156 * is true: 6157 * 6158 * 1] There is no checkpoint 6159 * 2] There is a checkpoint, but no checkpointed blocks 6160 * have been freed yet 6161 * 3] The current vdev is indirect 6162 * 6163 * In these cases we return immediately. 6164 */ 6165 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 6166 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 6167 return; 6168 6169 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 6170 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, 6171 &checkpoint_sm_obj)); 6172 6173 checkpoint_sm_exclude_entry_arg_t cseea; 6174 cseea.cseea_vd = vd; 6175 cseea.cseea_checkpoint_size = 0; 6176 6177 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 6178 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 6179 6180 VERIFY0(space_map_iterate(checkpoint_sm, 6181 space_map_length(checkpoint_sm), 6182 checkpoint_sm_exclude_entry_cb, &cseea)); 6183 space_map_close(checkpoint_sm); 6184 6185 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size; 6186 } 6187 6188 static void 6189 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb) 6190 { 6191 ASSERT(!dump_opt['L']); 6192 6193 vdev_t *rvd = spa->spa_root_vdev; 6194 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6195 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id); 6196 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb); 6197 } 6198 } 6199 6200 static int 6201 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme, 6202 uint64_t txg, void *arg) 6203 { 6204 int64_t *ualloc_space = arg; 6205 6206 uint64_t offset = sme->sme_offset; 6207 uint64_t vdev_id = sme->sme_vdev; 6208 6209 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6210 if (!vdev_is_concrete(vd)) 6211 return (0); 6212 6213 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6214 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6215 6216 if (txg < metaslab_unflushed_txg(ms)) 6217 return (0); 6218 6219 if (sme->sme_type == SM_ALLOC) 6220 *ualloc_space += sme->sme_run; 6221 else 6222 *ualloc_space -= sme->sme_run; 6223 6224 return (0); 6225 } 6226 6227 static int64_t 6228 get_unflushed_alloc_space(spa_t *spa) 6229 { 6230 if (dump_opt['L']) 6231 return (0); 6232 6233 int64_t ualloc_space = 0; 6234 iterate_through_spacemap_logs(spa, count_unflushed_space_cb, 6235 &ualloc_space); 6236 return (ualloc_space); 6237 } 6238 6239 static int 6240 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) 6241 { 6242 maptype_t *uic_maptype = arg; 6243 6244 uint64_t offset = sme->sme_offset; 6245 uint64_t size = sme->sme_run; 6246 uint64_t vdev_id = sme->sme_vdev; 6247 6248 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6249 6250 /* skip indirect vdevs */ 6251 if (!vdev_is_concrete(vd)) 6252 return (0); 6253 6254 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6255 6256 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6257 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE); 6258 6259 if (txg < metaslab_unflushed_txg(ms)) 6260 return (0); 6261 6262 if (*uic_maptype == sme->sme_type) 6263 range_tree_add(ms->ms_allocatable, offset, size); 6264 else 6265 range_tree_remove(ms->ms_allocatable, offset, size); 6266 6267 return (0); 6268 } 6269 6270 static void 6271 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype) 6272 { 6273 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype); 6274 } 6275 6276 static void 6277 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype) 6278 { 6279 vdev_t *rvd = spa->spa_root_vdev; 6280 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 6281 vdev_t *vd = rvd->vdev_child[i]; 6282 6283 ASSERT3U(i, ==, vd->vdev_id); 6284 6285 if (vd->vdev_ops == &vdev_indirect_ops) 6286 continue; 6287 6288 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6289 metaslab_t *msp = vd->vdev_ms[m]; 6290 6291 (void) fprintf(stderr, 6292 "\rloading concrete vdev %llu, " 6293 "metaslab %llu of %llu ...", 6294 (longlong_t)vd->vdev_id, 6295 (longlong_t)msp->ms_id, 6296 (longlong_t)vd->vdev_ms_count); 6297 6298 mutex_enter(&msp->ms_lock); 6299 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6300 6301 /* 6302 * We don't want to spend the CPU manipulating the 6303 * size-ordered tree, so clear the range_tree ops. 6304 */ 6305 msp->ms_allocatable->rt_ops = NULL; 6306 6307 if (msp->ms_sm != NULL) { 6308 VERIFY0(space_map_load(msp->ms_sm, 6309 msp->ms_allocatable, maptype)); 6310 } 6311 if (!msp->ms_loaded) 6312 msp->ms_loaded = B_TRUE; 6313 mutex_exit(&msp->ms_lock); 6314 } 6315 } 6316 6317 load_unflushed_to_ms_allocatables(spa, maptype); 6318 } 6319 6320 /* 6321 * vm_idxp is an in-out parameter which (for indirect vdevs) is the 6322 * index in vim_entries that has the first entry in this metaslab. 6323 * On return, it will be set to the first entry after this metaslab. 6324 */ 6325 static void 6326 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp, 6327 uint64_t *vim_idxp) 6328 { 6329 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6330 6331 mutex_enter(&msp->ms_lock); 6332 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6333 6334 /* 6335 * We don't want to spend the CPU manipulating the 6336 * size-ordered tree, so clear the range_tree ops. 6337 */ 6338 msp->ms_allocatable->rt_ops = NULL; 6339 6340 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim); 6341 (*vim_idxp)++) { 6342 vdev_indirect_mapping_entry_phys_t *vimep = 6343 &vim->vim_entries[*vim_idxp]; 6344 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6345 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst); 6346 ASSERT3U(ent_offset, >=, msp->ms_start); 6347 if (ent_offset >= msp->ms_start + msp->ms_size) 6348 break; 6349 6350 /* 6351 * Mappings do not cross metaslab boundaries, 6352 * because we create them by walking the metaslabs. 6353 */ 6354 ASSERT3U(ent_offset + ent_len, <=, 6355 msp->ms_start + msp->ms_size); 6356 range_tree_add(msp->ms_allocatable, ent_offset, ent_len); 6357 } 6358 6359 if (!msp->ms_loaded) 6360 msp->ms_loaded = B_TRUE; 6361 mutex_exit(&msp->ms_lock); 6362 } 6363 6364 static void 6365 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb) 6366 { 6367 ASSERT(!dump_opt['L']); 6368 6369 vdev_t *rvd = spa->spa_root_vdev; 6370 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6371 vdev_t *vd = rvd->vdev_child[c]; 6372 6373 ASSERT3U(c, ==, vd->vdev_id); 6374 6375 if (vd->vdev_ops != &vdev_indirect_ops) 6376 continue; 6377 6378 /* 6379 * Note: we don't check for mapping leaks on 6380 * removing vdevs because their ms_allocatable's 6381 * are used to look for leaks in allocated space. 6382 */ 6383 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd); 6384 6385 /* 6386 * Normally, indirect vdevs don't have any 6387 * metaslabs. We want to set them up for 6388 * zio_claim(). 6389 */ 6390 vdev_metaslab_group_create(vd); 6391 VERIFY0(vdev_metaslab_init(vd, 0)); 6392 6393 vdev_indirect_mapping_t *vim __maybe_unused = 6394 vd->vdev_indirect_mapping; 6395 uint64_t vim_idx = 0; 6396 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6397 6398 (void) fprintf(stderr, 6399 "\rloading indirect vdev %llu, " 6400 "metaslab %llu of %llu ...", 6401 (longlong_t)vd->vdev_id, 6402 (longlong_t)vd->vdev_ms[m]->ms_id, 6403 (longlong_t)vd->vdev_ms_count); 6404 6405 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m], 6406 &vim_idx); 6407 } 6408 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim)); 6409 } 6410 } 6411 6412 static void 6413 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) 6414 { 6415 zcb->zcb_spa = spa; 6416 6417 if (dump_opt['L']) 6418 return; 6419 6420 dsl_pool_t *dp = spa->spa_dsl_pool; 6421 vdev_t *rvd = spa->spa_root_vdev; 6422 6423 /* 6424 * We are going to be changing the meaning of the metaslab's 6425 * ms_allocatable. Ensure that the allocator doesn't try to 6426 * use the tree. 6427 */ 6428 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops; 6429 spa->spa_log_class->mc_ops = &zdb_metaslab_ops; 6430 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops; 6431 6432 zcb->zcb_vd_obsolete_counts = 6433 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *), 6434 UMEM_NOFAIL); 6435 6436 /* 6437 * For leak detection, we overload the ms_allocatable trees 6438 * to contain allocated segments instead of free segments. 6439 * As a result, we can't use the normal metaslab_load/unload 6440 * interfaces. 6441 */ 6442 zdb_leak_init_prepare_indirect_vdevs(spa, zcb); 6443 load_concrete_ms_allocatable_trees(spa, SM_ALLOC); 6444 6445 /* 6446 * On load_concrete_ms_allocatable_trees() we loaded all the 6447 * allocated entries from the ms_sm to the ms_allocatable for 6448 * each metaslab. If the pool has a checkpoint or is in the 6449 * middle of discarding a checkpoint, some of these blocks 6450 * may have been freed but their ms_sm may not have been 6451 * updated because they are referenced by the checkpoint. In 6452 * order to avoid false-positives during leak-detection, we 6453 * go through the vdev's checkpoint space map and exclude all 6454 * its entries from their relevant ms_allocatable. 6455 * 6456 * We also aggregate the space held by the checkpoint and add 6457 * it to zcb_checkpoint_size. 6458 * 6459 * Note that at this point we are also verifying that all the 6460 * entries on the checkpoint_sm are marked as allocated in 6461 * the ms_sm of their relevant metaslab. 6462 * [see comment in checkpoint_sm_exclude_entry_cb()] 6463 */ 6464 zdb_leak_init_exclude_checkpoint(spa, zcb); 6465 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa)); 6466 6467 /* for cleaner progress output */ 6468 (void) fprintf(stderr, "\n"); 6469 6470 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 6471 ASSERT(spa_feature_is_enabled(spa, 6472 SPA_FEATURE_DEVICE_REMOVAL)); 6473 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj, 6474 increment_indirect_mapping_cb, zcb, NULL); 6475 } 6476 6477 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6478 zdb_ddt_leak_init(spa, zcb); 6479 spa_config_exit(spa, SCL_CONFIG, FTAG); 6480 } 6481 6482 static boolean_t 6483 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb) 6484 { 6485 boolean_t leaks = B_FALSE; 6486 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6487 uint64_t total_leaked = 0; 6488 boolean_t are_precise = B_FALSE; 6489 6490 ASSERT(vim != NULL); 6491 6492 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 6493 vdev_indirect_mapping_entry_phys_t *vimep = 6494 &vim->vim_entries[i]; 6495 uint64_t obsolete_bytes = 0; 6496 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6497 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6498 6499 /* 6500 * This is not very efficient but it's easy to 6501 * verify correctness. 6502 */ 6503 for (uint64_t inner_offset = 0; 6504 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst); 6505 inner_offset += 1ULL << vd->vdev_ashift) { 6506 if (range_tree_contains(msp->ms_allocatable, 6507 offset + inner_offset, 1ULL << vd->vdev_ashift)) { 6508 obsolete_bytes += 1ULL << vd->vdev_ashift; 6509 } 6510 } 6511 6512 int64_t bytes_leaked = obsolete_bytes - 6513 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]; 6514 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=, 6515 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]); 6516 6517 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6518 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) { 6519 (void) printf("obsolete indirect mapping count " 6520 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n", 6521 (u_longlong_t)vd->vdev_id, 6522 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 6523 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 6524 (u_longlong_t)bytes_leaked); 6525 } 6526 total_leaked += ABS(bytes_leaked); 6527 } 6528 6529 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6530 if (!are_precise && total_leaked > 0) { 6531 int pct_leaked = total_leaked * 100 / 6532 vdev_indirect_mapping_bytes_mapped(vim); 6533 (void) printf("cannot verify obsolete indirect mapping " 6534 "counts of vdev %llu because precise feature was not " 6535 "enabled when it was removed: %d%% (%llx bytes) of mapping" 6536 "unreferenced\n", 6537 (u_longlong_t)vd->vdev_id, pct_leaked, 6538 (u_longlong_t)total_leaked); 6539 } else if (total_leaked > 0) { 6540 (void) printf("obsolete indirect mapping count mismatch " 6541 "for vdev %llu -- %llx total bytes mismatched\n", 6542 (u_longlong_t)vd->vdev_id, 6543 (u_longlong_t)total_leaked); 6544 leaks |= B_TRUE; 6545 } 6546 6547 vdev_indirect_mapping_free_obsolete_counts(vim, 6548 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6549 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL; 6550 6551 return (leaks); 6552 } 6553 6554 static boolean_t 6555 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb) 6556 { 6557 if (dump_opt['L']) 6558 return (B_FALSE); 6559 6560 boolean_t leaks = B_FALSE; 6561 vdev_t *rvd = spa->spa_root_vdev; 6562 for (unsigned c = 0; c < rvd->vdev_children; c++) { 6563 vdev_t *vd = rvd->vdev_child[c]; 6564 6565 if (zcb->zcb_vd_obsolete_counts[c] != NULL) { 6566 leaks |= zdb_check_for_obsolete_leaks(vd, zcb); 6567 } 6568 6569 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6570 metaslab_t *msp = vd->vdev_ms[m]; 6571 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class == 6572 spa_embedded_log_class(spa)) ? 6573 vd->vdev_log_mg : vd->vdev_mg); 6574 6575 /* 6576 * ms_allocatable has been overloaded 6577 * to contain allocated segments. Now that 6578 * we finished traversing all blocks, any 6579 * block that remains in the ms_allocatable 6580 * represents an allocated block that we 6581 * did not claim during the traversal. 6582 * Claimed blocks would have been removed 6583 * from the ms_allocatable. For indirect 6584 * vdevs, space remaining in the tree 6585 * represents parts of the mapping that are 6586 * not referenced, which is not a bug. 6587 */ 6588 if (vd->vdev_ops == &vdev_indirect_ops) { 6589 range_tree_vacate(msp->ms_allocatable, 6590 NULL, NULL); 6591 } else { 6592 range_tree_vacate(msp->ms_allocatable, 6593 zdb_leak, vd); 6594 } 6595 if (msp->ms_loaded) { 6596 msp->ms_loaded = B_FALSE; 6597 } 6598 } 6599 } 6600 6601 umem_free(zcb->zcb_vd_obsolete_counts, 6602 rvd->vdev_children * sizeof (uint32_t *)); 6603 zcb->zcb_vd_obsolete_counts = NULL; 6604 6605 return (leaks); 6606 } 6607 6608 static int 6609 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6610 { 6611 (void) tx; 6612 zdb_cb_t *zcb = arg; 6613 6614 if (dump_opt['b'] >= 5) { 6615 char blkbuf[BP_SPRINTF_LEN]; 6616 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6617 (void) printf("[%s] %s\n", 6618 "deferred free", blkbuf); 6619 } 6620 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); 6621 return (0); 6622 } 6623 6624 /* 6625 * Iterate over livelists which have been destroyed by the user but 6626 * are still present in the MOS, waiting to be freed 6627 */ 6628 static void 6629 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg) 6630 { 6631 objset_t *mos = spa->spa_meta_objset; 6632 uint64_t zap_obj; 6633 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6634 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6635 if (err == ENOENT) 6636 return; 6637 ASSERT0(err); 6638 6639 zap_cursor_t zc; 6640 zap_attribute_t attr; 6641 dsl_deadlist_t ll; 6642 /* NULL out os prior to dsl_deadlist_open in case it's garbage */ 6643 ll.dl_os = NULL; 6644 for (zap_cursor_init(&zc, mos, zap_obj); 6645 zap_cursor_retrieve(&zc, &attr) == 0; 6646 (void) zap_cursor_advance(&zc)) { 6647 dsl_deadlist_open(&ll, mos, attr.za_first_integer); 6648 func(&ll, arg); 6649 dsl_deadlist_close(&ll); 6650 } 6651 zap_cursor_fini(&zc); 6652 } 6653 6654 static int 6655 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6656 dmu_tx_t *tx) 6657 { 6658 ASSERT(!bp_freed); 6659 return (count_block_cb(arg, bp, tx)); 6660 } 6661 6662 static int 6663 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle) 6664 { 6665 zdb_cb_t *zbc = args; 6666 bplist_t blks; 6667 bplist_create(&blks); 6668 /* determine which blocks have been alloc'd but not freed */ 6669 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL)); 6670 /* count those blocks */ 6671 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL); 6672 bplist_destroy(&blks); 6673 return (0); 6674 } 6675 6676 static void 6677 livelist_count_blocks(dsl_deadlist_t *ll, void *arg) 6678 { 6679 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg); 6680 } 6681 6682 /* 6683 * Count the blocks in the livelists that have been destroyed by the user 6684 * but haven't yet been freed. 6685 */ 6686 static void 6687 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc) 6688 { 6689 iterate_deleted_livelists(spa, livelist_count_blocks, zbc); 6690 } 6691 6692 static void 6693 dump_livelist_cb(dsl_deadlist_t *ll, void *arg) 6694 { 6695 ASSERT3P(arg, ==, NULL); 6696 global_feature_count[SPA_FEATURE_LIVELIST]++; 6697 dump_blkptr_list(ll, "Deleted Livelist"); 6698 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL); 6699 } 6700 6701 /* 6702 * Print out, register object references to, and increment feature counts for 6703 * livelists that have been destroyed by the user but haven't yet been freed. 6704 */ 6705 static void 6706 deleted_livelists_dump_mos(spa_t *spa) 6707 { 6708 uint64_t zap_obj; 6709 objset_t *mos = spa->spa_meta_objset; 6710 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6711 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6712 if (err == ENOENT) 6713 return; 6714 mos_obj_refd(zap_obj); 6715 iterate_deleted_livelists(spa, dump_livelist_cb, NULL); 6716 } 6717 6718 static int 6719 zdb_brt_entry_compare(const void *zcn1, const void *zcn2) 6720 { 6721 const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva; 6722 const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva; 6723 int cmp; 6724 6725 cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 6726 if (cmp == 0) 6727 cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)); 6728 6729 return (cmp); 6730 } 6731 6732 static int 6733 dump_block_stats(spa_t *spa) 6734 { 6735 zdb_cb_t *zcb; 6736 zdb_blkstats_t *zb, *tzb; 6737 uint64_t norm_alloc, norm_space, total_alloc, total_found; 6738 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 6739 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD; 6740 boolean_t leaks = B_FALSE; 6741 int e, c, err; 6742 bp_embedded_type_t i; 6743 6744 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL); 6745 6746 if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 6747 avl_create(&zcb->zcb_brt, zdb_brt_entry_compare, 6748 sizeof (zdb_brt_entry_t), 6749 offsetof(zdb_brt_entry_t, zbre_node)); 6750 zcb->zcb_brt_is_active = B_TRUE; 6751 } 6752 6753 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", 6754 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", 6755 (dump_opt['c'] == 1) ? "metadata " : "", 6756 dump_opt['c'] ? "checksums " : "", 6757 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", 6758 !dump_opt['L'] ? "nothing leaked " : ""); 6759 6760 /* 6761 * When leak detection is enabled we load all space maps as SM_ALLOC 6762 * maps, then traverse the pool claiming each block we discover. If 6763 * the pool is perfectly consistent, the segment trees will be empty 6764 * when we're done. Anything left over is a leak; any block we can't 6765 * claim (because it's not part of any space map) is a double 6766 * allocation, reference to a freed block, or an unclaimed log block. 6767 * 6768 * When leak detection is disabled (-L option) we still traverse the 6769 * pool claiming each block we discover, but we skip opening any space 6770 * maps. 6771 */ 6772 zdb_leak_init(spa, zcb); 6773 6774 /* 6775 * If there's a deferred-free bplist, process that first. 6776 */ 6777 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, 6778 bpobj_count_block_cb, zcb, NULL); 6779 6780 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 6781 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, 6782 bpobj_count_block_cb, zcb, NULL); 6783 } 6784 6785 zdb_claim_removing(spa, zcb); 6786 6787 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 6788 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, 6789 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, 6790 zcb, NULL)); 6791 } 6792 6793 deleted_livelists_count_blocks(spa, zcb); 6794 6795 if (dump_opt['c'] > 1) 6796 flags |= TRAVERSE_PREFETCH_DATA; 6797 6798 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); 6799 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa)); 6800 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa)); 6801 zcb->zcb_totalasize += 6802 metaslab_class_get_alloc(spa_embedded_log_class(spa)); 6803 zcb->zcb_start = zcb->zcb_lastprint = gethrtime(); 6804 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb); 6805 6806 /* 6807 * If we've traversed the data blocks then we need to wait for those 6808 * I/Os to complete. We leverage "The Godfather" zio to wait on 6809 * all async I/Os to complete. 6810 */ 6811 if (dump_opt['c']) { 6812 for (c = 0; c < max_ncpus; c++) { 6813 (void) zio_wait(spa->spa_async_zio_root[c]); 6814 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL, 6815 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 6816 ZIO_FLAG_GODFATHER); 6817 } 6818 } 6819 ASSERT0(spa->spa_load_verify_bytes); 6820 6821 /* 6822 * Done after zio_wait() since zcb_haderrors is modified in 6823 * zdb_blkptr_done() 6824 */ 6825 zcb->zcb_haderrors |= err; 6826 6827 if (zcb->zcb_haderrors) { 6828 (void) printf("\nError counts:\n\n"); 6829 (void) printf("\t%5s %s\n", "errno", "count"); 6830 for (e = 0; e < 256; e++) { 6831 if (zcb->zcb_errors[e] != 0) { 6832 (void) printf("\t%5d %llu\n", 6833 e, (u_longlong_t)zcb->zcb_errors[e]); 6834 } 6835 } 6836 } 6837 6838 /* 6839 * Report any leaked segments. 6840 */ 6841 leaks |= zdb_leak_fini(spa, zcb); 6842 6843 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; 6844 6845 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 6846 norm_space = metaslab_class_get_space(spa_normal_class(spa)); 6847 6848 total_alloc = norm_alloc + 6849 metaslab_class_get_alloc(spa_log_class(spa)) + 6850 metaslab_class_get_alloc(spa_embedded_log_class(spa)) + 6851 metaslab_class_get_alloc(spa_special_class(spa)) + 6852 metaslab_class_get_alloc(spa_dedup_class(spa)) + 6853 get_unflushed_alloc_space(spa); 6854 total_found = 6855 tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize + 6856 zcb->zcb_removing_size + zcb->zcb_checkpoint_size; 6857 6858 if (total_found == total_alloc && !dump_opt['L']) { 6859 (void) printf("\n\tNo leaks (block sum matches space" 6860 " maps exactly)\n"); 6861 } else if (!dump_opt['L']) { 6862 (void) printf("block traversal size %llu != alloc %llu " 6863 "(%s %lld)\n", 6864 (u_longlong_t)total_found, 6865 (u_longlong_t)total_alloc, 6866 (dump_opt['L']) ? "unreachable" : "leaked", 6867 (longlong_t)(total_alloc - total_found)); 6868 leaks = B_TRUE; 6869 } 6870 6871 if (tzb->zb_count == 0) { 6872 umem_free(zcb, sizeof (zdb_cb_t)); 6873 return (2); 6874 } 6875 6876 (void) printf("\n"); 6877 (void) printf("\t%-16s %14llu\n", "bp count:", 6878 (u_longlong_t)tzb->zb_count); 6879 (void) printf("\t%-16s %14llu\n", "ganged count:", 6880 (longlong_t)tzb->zb_gangs); 6881 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:", 6882 (u_longlong_t)tzb->zb_lsize, 6883 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); 6884 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6885 "bp physical:", (u_longlong_t)tzb->zb_psize, 6886 (u_longlong_t)(tzb->zb_psize / tzb->zb_count), 6887 (double)tzb->zb_lsize / tzb->zb_psize); 6888 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6889 "bp allocated:", (u_longlong_t)tzb->zb_asize, 6890 (u_longlong_t)(tzb->zb_asize / tzb->zb_count), 6891 (double)tzb->zb_lsize / tzb->zb_asize); 6892 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n", 6893 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize, 6894 (u_longlong_t)zcb->zcb_dedup_blocks, 6895 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0); 6896 (void) printf("\t%-16s %14llu count: %6llu\n", 6897 "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize, 6898 (u_longlong_t)zcb->zcb_clone_blocks); 6899 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:", 6900 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); 6901 6902 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6903 uint64_t alloc = metaslab_class_get_alloc( 6904 spa_special_class(spa)); 6905 uint64_t space = metaslab_class_get_space( 6906 spa_special_class(spa)); 6907 6908 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6909 "Special class", (u_longlong_t)alloc, 6910 100.0 * alloc / space); 6911 } 6912 6913 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6914 uint64_t alloc = metaslab_class_get_alloc( 6915 spa_dedup_class(spa)); 6916 uint64_t space = metaslab_class_get_space( 6917 spa_dedup_class(spa)); 6918 6919 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6920 "Dedup class", (u_longlong_t)alloc, 6921 100.0 * alloc / space); 6922 } 6923 6924 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6925 uint64_t alloc = metaslab_class_get_alloc( 6926 spa_embedded_log_class(spa)); 6927 uint64_t space = metaslab_class_get_space( 6928 spa_embedded_log_class(spa)); 6929 6930 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6931 "Embedded log class", (u_longlong_t)alloc, 6932 100.0 * alloc / space); 6933 } 6934 6935 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { 6936 if (zcb->zcb_embedded_blocks[i] == 0) 6937 continue; 6938 (void) printf("\n"); 6939 (void) printf("\tadditional, non-pointer bps of type %u: " 6940 "%10llu\n", 6941 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]); 6942 6943 if (dump_opt['b'] >= 3) { 6944 (void) printf("\t number of (compressed) bytes: " 6945 "number of bps\n"); 6946 dump_histogram(zcb->zcb_embedded_histogram[i], 6947 sizeof (zcb->zcb_embedded_histogram[i]) / 6948 sizeof (zcb->zcb_embedded_histogram[i][0]), 0); 6949 } 6950 } 6951 6952 if (tzb->zb_ditto_samevdev != 0) { 6953 (void) printf("\tDittoed blocks on same vdev: %llu\n", 6954 (longlong_t)tzb->zb_ditto_samevdev); 6955 } 6956 if (tzb->zb_ditto_same_ms != 0) { 6957 (void) printf("\tDittoed blocks in same metaslab: %llu\n", 6958 (longlong_t)tzb->zb_ditto_same_ms); 6959 } 6960 6961 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) { 6962 vdev_t *vd = spa->spa_root_vdev->vdev_child[v]; 6963 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6964 6965 if (vim == NULL) { 6966 continue; 6967 } 6968 6969 char mem[32]; 6970 zdb_nicenum(vdev_indirect_mapping_num_entries(vim), 6971 mem, vdev_indirect_mapping_size(vim)); 6972 6973 (void) printf("\tindirect vdev id %llu has %llu segments " 6974 "(%s in memory)\n", 6975 (longlong_t)vd->vdev_id, 6976 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem); 6977 } 6978 6979 if (dump_opt['b'] >= 2) { 6980 int l, t, level; 6981 char csize[32], lsize[32], psize[32], asize[32]; 6982 char avg[32], gang[32]; 6983 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" 6984 "\t avg\t comp\t%%Total\tType\n"); 6985 6986 zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t), 6987 UMEM_NOFAIL); 6988 6989 for (t = 0; t <= ZDB_OT_TOTAL; t++) { 6990 const char *typename; 6991 6992 /* make sure nicenum has enough space */ 6993 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ, 6994 "csize truncated"); 6995 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, 6996 "lsize truncated"); 6997 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ, 6998 "psize truncated"); 6999 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, 7000 "asize truncated"); 7001 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ, 7002 "avg truncated"); 7003 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ, 7004 "gang truncated"); 7005 7006 if (t < DMU_OT_NUMTYPES) 7007 typename = dmu_ot[t].ot_name; 7008 else 7009 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; 7010 7011 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) { 7012 (void) printf("%6s\t%5s\t%5s\t%5s" 7013 "\t%5s\t%5s\t%6s\t%s\n", 7014 "-", 7015 "-", 7016 "-", 7017 "-", 7018 "-", 7019 "-", 7020 "-", 7021 typename); 7022 continue; 7023 } 7024 7025 for (l = ZB_TOTAL - 1; l >= -1; l--) { 7026 level = (l == -1 ? ZB_TOTAL : l); 7027 zb = &zcb->zcb_type[level][t]; 7028 7029 if (zb->zb_asize == 0) 7030 continue; 7031 7032 if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES && 7033 (level > 0 || DMU_OT_IS_METADATA(t))) { 7034 mdstats->zb_count += zb->zb_count; 7035 mdstats->zb_lsize += zb->zb_lsize; 7036 mdstats->zb_psize += zb->zb_psize; 7037 mdstats->zb_asize += zb->zb_asize; 7038 mdstats->zb_gangs += zb->zb_gangs; 7039 } 7040 7041 if (dump_opt['b'] < 3 && level != ZB_TOTAL) 7042 continue; 7043 7044 if (level == 0 && zb->zb_asize == 7045 zcb->zcb_type[ZB_TOTAL][t].zb_asize) 7046 continue; 7047 7048 zdb_nicenum(zb->zb_count, csize, 7049 sizeof (csize)); 7050 zdb_nicenum(zb->zb_lsize, lsize, 7051 sizeof (lsize)); 7052 zdb_nicenum(zb->zb_psize, psize, 7053 sizeof (psize)); 7054 zdb_nicenum(zb->zb_asize, asize, 7055 sizeof (asize)); 7056 zdb_nicenum(zb->zb_asize / zb->zb_count, avg, 7057 sizeof (avg)); 7058 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang)); 7059 7060 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7061 "\t%5.2f\t%6.2f\t", 7062 csize, lsize, psize, asize, avg, 7063 (double)zb->zb_lsize / zb->zb_psize, 7064 100.0 * zb->zb_asize / tzb->zb_asize); 7065 7066 if (level == ZB_TOTAL) 7067 (void) printf("%s\n", typename); 7068 else 7069 (void) printf(" L%d %s\n", 7070 level, typename); 7071 7072 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { 7073 (void) printf("\t number of ganged " 7074 "blocks: %s\n", gang); 7075 } 7076 7077 if (dump_opt['b'] >= 4) { 7078 (void) printf("psize " 7079 "(in 512-byte sectors): " 7080 "number of blocks\n"); 7081 dump_histogram(zb->zb_psize_histogram, 7082 PSIZE_HISTO_SIZE, 0); 7083 } 7084 } 7085 } 7086 zdb_nicenum(mdstats->zb_count, csize, 7087 sizeof (csize)); 7088 zdb_nicenum(mdstats->zb_lsize, lsize, 7089 sizeof (lsize)); 7090 zdb_nicenum(mdstats->zb_psize, psize, 7091 sizeof (psize)); 7092 zdb_nicenum(mdstats->zb_asize, asize, 7093 sizeof (asize)); 7094 zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg, 7095 sizeof (avg)); 7096 zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang)); 7097 7098 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7099 "\t%5.2f\t%6.2f\t", 7100 csize, lsize, psize, asize, avg, 7101 (double)mdstats->zb_lsize / mdstats->zb_psize, 7102 100.0 * mdstats->zb_asize / tzb->zb_asize); 7103 (void) printf("%s\n", "Metadata Total"); 7104 7105 /* Output a table summarizing block sizes in the pool */ 7106 if (dump_opt['b'] >= 2) { 7107 dump_size_histograms(zcb); 7108 } 7109 7110 umem_free(mdstats, sizeof (zfs_blkstat_t)); 7111 } 7112 7113 (void) printf("\n"); 7114 7115 if (leaks) { 7116 umem_free(zcb, sizeof (zdb_cb_t)); 7117 return (2); 7118 } 7119 7120 if (zcb->zcb_haderrors) { 7121 umem_free(zcb, sizeof (zdb_cb_t)); 7122 return (3); 7123 } 7124 7125 umem_free(zcb, sizeof (zdb_cb_t)); 7126 return (0); 7127 } 7128 7129 typedef struct zdb_ddt_entry { 7130 /* key must be first for ddt_key_compare */ 7131 ddt_key_t zdde_key; 7132 uint64_t zdde_ref_blocks; 7133 uint64_t zdde_ref_lsize; 7134 uint64_t zdde_ref_psize; 7135 uint64_t zdde_ref_dsize; 7136 avl_node_t zdde_node; 7137 } zdb_ddt_entry_t; 7138 7139 static int 7140 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 7141 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 7142 { 7143 (void) zilog, (void) dnp; 7144 avl_tree_t *t = arg; 7145 avl_index_t where; 7146 zdb_ddt_entry_t *zdde, zdde_search; 7147 7148 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 7149 BP_IS_EMBEDDED(bp)) 7150 return (0); 7151 7152 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { 7153 (void) printf("traversing objset %llu, %llu objects, " 7154 "%lu blocks so far\n", 7155 (u_longlong_t)zb->zb_objset, 7156 (u_longlong_t)BP_GET_FILL(bp), 7157 avl_numnodes(t)); 7158 } 7159 7160 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || 7161 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) 7162 return (0); 7163 7164 ddt_key_fill(&zdde_search.zdde_key, bp); 7165 7166 zdde = avl_find(t, &zdde_search, &where); 7167 7168 if (zdde == NULL) { 7169 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); 7170 zdde->zdde_key = zdde_search.zdde_key; 7171 avl_insert(t, zdde, where); 7172 } 7173 7174 zdde->zdde_ref_blocks += 1; 7175 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); 7176 zdde->zdde_ref_psize += BP_GET_PSIZE(bp); 7177 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); 7178 7179 return (0); 7180 } 7181 7182 static void 7183 dump_simulated_ddt(spa_t *spa) 7184 { 7185 avl_tree_t t; 7186 void *cookie = NULL; 7187 zdb_ddt_entry_t *zdde; 7188 ddt_histogram_t ddh_total = {{{0}}}; 7189 ddt_stat_t dds_total = {0}; 7190 7191 avl_create(&t, ddt_key_compare, 7192 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); 7193 7194 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7195 7196 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 7197 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t); 7198 7199 spa_config_exit(spa, SCL_CONFIG, FTAG); 7200 7201 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { 7202 ddt_stat_t dds; 7203 uint64_t refcnt = zdde->zdde_ref_blocks; 7204 ASSERT(refcnt != 0); 7205 7206 dds.dds_blocks = zdde->zdde_ref_blocks / refcnt; 7207 dds.dds_lsize = zdde->zdde_ref_lsize / refcnt; 7208 dds.dds_psize = zdde->zdde_ref_psize / refcnt; 7209 dds.dds_dsize = zdde->zdde_ref_dsize / refcnt; 7210 7211 dds.dds_ref_blocks = zdde->zdde_ref_blocks; 7212 dds.dds_ref_lsize = zdde->zdde_ref_lsize; 7213 dds.dds_ref_psize = zdde->zdde_ref_psize; 7214 dds.dds_ref_dsize = zdde->zdde_ref_dsize; 7215 7216 ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1], 7217 &dds, 0); 7218 7219 umem_free(zdde, sizeof (*zdde)); 7220 } 7221 7222 avl_destroy(&t); 7223 7224 ddt_histogram_stat(&dds_total, &ddh_total); 7225 7226 (void) printf("Simulated DDT histogram:\n"); 7227 7228 zpool_dump_ddt(&dds_total, &ddh_total); 7229 7230 dump_dedup_ratio(&dds_total); 7231 } 7232 7233 static int 7234 verify_device_removal_feature_counts(spa_t *spa) 7235 { 7236 uint64_t dr_feature_refcount = 0; 7237 uint64_t oc_feature_refcount = 0; 7238 uint64_t indirect_vdev_count = 0; 7239 uint64_t precise_vdev_count = 0; 7240 uint64_t obsolete_counts_object_count = 0; 7241 uint64_t obsolete_sm_count = 0; 7242 uint64_t obsolete_counts_count = 0; 7243 uint64_t scip_count = 0; 7244 uint64_t obsolete_bpobj_count = 0; 7245 int ret = 0; 7246 7247 spa_condensing_indirect_phys_t *scip = 7248 &spa->spa_condensing_indirect_phys; 7249 if (scip->scip_next_mapping_object != 0) { 7250 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev]; 7251 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 7252 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 7253 7254 (void) printf("Condensing indirect vdev %llu: new mapping " 7255 "object %llu, prev obsolete sm %llu\n", 7256 (u_longlong_t)scip->scip_vdev, 7257 (u_longlong_t)scip->scip_next_mapping_object, 7258 (u_longlong_t)scip->scip_prev_obsolete_sm_object); 7259 if (scip->scip_prev_obsolete_sm_object != 0) { 7260 space_map_t *prev_obsolete_sm = NULL; 7261 VERIFY0(space_map_open(&prev_obsolete_sm, 7262 spa->spa_meta_objset, 7263 scip->scip_prev_obsolete_sm_object, 7264 0, vd->vdev_asize, 0)); 7265 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm); 7266 (void) printf("\n"); 7267 space_map_close(prev_obsolete_sm); 7268 } 7269 7270 scip_count += 2; 7271 } 7272 7273 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 7274 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 7275 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 7276 7277 if (vic->vic_mapping_object != 0) { 7278 ASSERT(vd->vdev_ops == &vdev_indirect_ops || 7279 vd->vdev_removing); 7280 indirect_vdev_count++; 7281 7282 if (vd->vdev_indirect_mapping->vim_havecounts) { 7283 obsolete_counts_count++; 7284 } 7285 } 7286 7287 boolean_t are_precise; 7288 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 7289 if (are_precise) { 7290 ASSERT(vic->vic_mapping_object != 0); 7291 precise_vdev_count++; 7292 } 7293 7294 uint64_t obsolete_sm_object; 7295 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 7296 if (obsolete_sm_object != 0) { 7297 ASSERT(vic->vic_mapping_object != 0); 7298 obsolete_sm_count++; 7299 } 7300 } 7301 7302 (void) feature_get_refcount(spa, 7303 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL], 7304 &dr_feature_refcount); 7305 (void) feature_get_refcount(spa, 7306 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS], 7307 &oc_feature_refcount); 7308 7309 if (dr_feature_refcount != indirect_vdev_count) { 7310 ret = 1; 7311 (void) printf("Number of indirect vdevs (%llu) " \ 7312 "does not match feature count (%llu)\n", 7313 (u_longlong_t)indirect_vdev_count, 7314 (u_longlong_t)dr_feature_refcount); 7315 } else { 7316 (void) printf("Verified device_removal feature refcount " \ 7317 "of %llu is correct\n", 7318 (u_longlong_t)dr_feature_refcount); 7319 } 7320 7321 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, 7322 DMU_POOL_OBSOLETE_BPOBJ) == 0) { 7323 obsolete_bpobj_count++; 7324 } 7325 7326 7327 obsolete_counts_object_count = precise_vdev_count; 7328 obsolete_counts_object_count += obsolete_sm_count; 7329 obsolete_counts_object_count += obsolete_counts_count; 7330 obsolete_counts_object_count += scip_count; 7331 obsolete_counts_object_count += obsolete_bpobj_count; 7332 obsolete_counts_object_count += remap_deadlist_count; 7333 7334 if (oc_feature_refcount != obsolete_counts_object_count) { 7335 ret = 1; 7336 (void) printf("Number of obsolete counts objects (%llu) " \ 7337 "does not match feature count (%llu)\n", 7338 (u_longlong_t)obsolete_counts_object_count, 7339 (u_longlong_t)oc_feature_refcount); 7340 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu " 7341 "ob:%llu rd:%llu\n", 7342 (u_longlong_t)precise_vdev_count, 7343 (u_longlong_t)obsolete_sm_count, 7344 (u_longlong_t)obsolete_counts_count, 7345 (u_longlong_t)scip_count, 7346 (u_longlong_t)obsolete_bpobj_count, 7347 (u_longlong_t)remap_deadlist_count); 7348 } else { 7349 (void) printf("Verified indirect_refcount feature refcount " \ 7350 "of %llu is correct\n", 7351 (u_longlong_t)oc_feature_refcount); 7352 } 7353 return (ret); 7354 } 7355 7356 static void 7357 zdb_set_skip_mmp(char *target) 7358 { 7359 spa_t *spa; 7360 7361 /* 7362 * Disable the activity check to allow examination of 7363 * active pools. 7364 */ 7365 mutex_enter(&spa_namespace_lock); 7366 if ((spa = spa_lookup(target)) != NULL) { 7367 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP; 7368 } 7369 mutex_exit(&spa_namespace_lock); 7370 } 7371 7372 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE" 7373 /* 7374 * Import the checkpointed state of the pool specified by the target 7375 * parameter as readonly. The function also accepts a pool config 7376 * as an optional parameter, else it attempts to infer the config by 7377 * the name of the target pool. 7378 * 7379 * Note that the checkpointed state's pool name will be the name of 7380 * the original pool with the above suffix appended to it. In addition, 7381 * if the target is not a pool name (e.g. a path to a dataset) then 7382 * the new_path parameter is populated with the updated path to 7383 * reflect the fact that we are looking into the checkpointed state. 7384 * 7385 * The function returns a newly-allocated copy of the name of the 7386 * pool containing the checkpointed state. When this copy is no 7387 * longer needed it should be freed with free(3C). Same thing 7388 * applies to the new_path parameter if allocated. 7389 */ 7390 static char * 7391 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path) 7392 { 7393 int error = 0; 7394 char *poolname, *bogus_name = NULL; 7395 boolean_t freecfg = B_FALSE; 7396 7397 /* If the target is not a pool, the extract the pool name */ 7398 char *path_start = strchr(target, '/'); 7399 if (path_start != NULL) { 7400 size_t poolname_len = path_start - target; 7401 poolname = strndup(target, poolname_len); 7402 } else { 7403 poolname = target; 7404 } 7405 7406 if (cfg == NULL) { 7407 zdb_set_skip_mmp(poolname); 7408 error = spa_get_stats(poolname, &cfg, NULL, 0); 7409 if (error != 0) { 7410 fatal("Tried to read config of pool \"%s\" but " 7411 "spa_get_stats() failed with error %d\n", 7412 poolname, error); 7413 } 7414 freecfg = B_TRUE; 7415 } 7416 7417 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) { 7418 if (target != poolname) 7419 free(poolname); 7420 return (NULL); 7421 } 7422 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name); 7423 7424 error = spa_import(bogus_name, cfg, NULL, 7425 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT | 7426 ZFS_IMPORT_SKIP_MMP); 7427 if (freecfg) 7428 nvlist_free(cfg); 7429 if (error != 0) { 7430 fatal("Tried to import pool \"%s\" but spa_import() failed " 7431 "with error %d\n", bogus_name, error); 7432 } 7433 7434 if (new_path != NULL && path_start != NULL) { 7435 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) { 7436 free(bogus_name); 7437 if (path_start != NULL) 7438 free(poolname); 7439 return (NULL); 7440 } 7441 } 7442 7443 if (target != poolname) 7444 free(poolname); 7445 7446 return (bogus_name); 7447 } 7448 7449 typedef struct verify_checkpoint_sm_entry_cb_arg { 7450 vdev_t *vcsec_vd; 7451 7452 /* the following fields are only used for printing progress */ 7453 uint64_t vcsec_entryid; 7454 uint64_t vcsec_num_entries; 7455 } verify_checkpoint_sm_entry_cb_arg_t; 7456 7457 #define ENTRIES_PER_PROGRESS_UPDATE 10000 7458 7459 static int 7460 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg) 7461 { 7462 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg; 7463 vdev_t *vd = vcsec->vcsec_vd; 7464 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 7465 uint64_t end = sme->sme_offset + sme->sme_run; 7466 7467 ASSERT(sme->sme_type == SM_FREE); 7468 7469 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) { 7470 (void) fprintf(stderr, 7471 "\rverifying vdev %llu, space map entry %llu of %llu ...", 7472 (longlong_t)vd->vdev_id, 7473 (longlong_t)vcsec->vcsec_entryid, 7474 (longlong_t)vcsec->vcsec_num_entries); 7475 } 7476 vcsec->vcsec_entryid++; 7477 7478 /* 7479 * See comment in checkpoint_sm_exclude_entry_cb() 7480 */ 7481 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 7482 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 7483 7484 /* 7485 * The entries in the vdev_checkpoint_sm should be marked as 7486 * allocated in the checkpointed state of the pool, therefore 7487 * their respective ms_allocateable trees should not contain them. 7488 */ 7489 mutex_enter(&ms->ms_lock); 7490 range_tree_verify_not_present(ms->ms_allocatable, 7491 sme->sme_offset, sme->sme_run); 7492 mutex_exit(&ms->ms_lock); 7493 7494 return (0); 7495 } 7496 7497 /* 7498 * Verify that all segments in the vdev_checkpoint_sm are allocated 7499 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's 7500 * ms_allocatable). 7501 * 7502 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of 7503 * each vdev in the current state of the pool to the metaslab space maps 7504 * (ms_sm) of the checkpointed state of the pool. 7505 * 7506 * Note that the function changes the state of the ms_allocatable 7507 * trees of the current spa_t. The entries of these ms_allocatable 7508 * trees are cleared out and then repopulated from with the free 7509 * entries of their respective ms_sm space maps. 7510 */ 7511 static void 7512 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current) 7513 { 7514 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7515 vdev_t *current_rvd = current->spa_root_vdev; 7516 7517 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE); 7518 7519 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) { 7520 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c]; 7521 vdev_t *current_vd = current_rvd->vdev_child[c]; 7522 7523 space_map_t *checkpoint_sm = NULL; 7524 uint64_t checkpoint_sm_obj; 7525 7526 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7527 /* 7528 * Since we don't allow device removal in a pool 7529 * that has a checkpoint, we expect that all removed 7530 * vdevs were removed from the pool before the 7531 * checkpoint. 7532 */ 7533 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7534 continue; 7535 } 7536 7537 /* 7538 * If the checkpoint space map doesn't exist, then nothing 7539 * here is checkpointed so there's nothing to verify. 7540 */ 7541 if (current_vd->vdev_top_zap == 0 || 7542 zap_contains(spa_meta_objset(current), 7543 current_vd->vdev_top_zap, 7544 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7545 continue; 7546 7547 VERIFY0(zap_lookup(spa_meta_objset(current), 7548 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7549 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7550 7551 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current), 7552 checkpoint_sm_obj, 0, current_vd->vdev_asize, 7553 current_vd->vdev_ashift)); 7554 7555 verify_checkpoint_sm_entry_cb_arg_t vcsec; 7556 vcsec.vcsec_vd = ckpoint_vd; 7557 vcsec.vcsec_entryid = 0; 7558 vcsec.vcsec_num_entries = 7559 space_map_length(checkpoint_sm) / sizeof (uint64_t); 7560 VERIFY0(space_map_iterate(checkpoint_sm, 7561 space_map_length(checkpoint_sm), 7562 verify_checkpoint_sm_entry_cb, &vcsec)); 7563 if (dump_opt['m'] > 3) 7564 dump_spacemap(current->spa_meta_objset, checkpoint_sm); 7565 space_map_close(checkpoint_sm); 7566 } 7567 7568 /* 7569 * If we've added vdevs since we took the checkpoint, ensure 7570 * that their checkpoint space maps are empty. 7571 */ 7572 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) { 7573 for (uint64_t c = ckpoint_rvd->vdev_children; 7574 c < current_rvd->vdev_children; c++) { 7575 vdev_t *current_vd = current_rvd->vdev_child[c]; 7576 VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL); 7577 } 7578 } 7579 7580 /* for cleaner progress output */ 7581 (void) fprintf(stderr, "\n"); 7582 } 7583 7584 /* 7585 * Verifies that all space that's allocated in the checkpoint is 7586 * still allocated in the current version, by checking that everything 7587 * in checkpoint's ms_allocatable (which is actually allocated, not 7588 * allocatable/free) is not present in current's ms_allocatable. 7589 * 7590 * Note that the function changes the state of the ms_allocatable 7591 * trees of both spas when called. The entries of all ms_allocatable 7592 * trees are cleared out and then repopulated from their respective 7593 * ms_sm space maps. In the checkpointed state we load the allocated 7594 * entries, and in the current state we load the free entries. 7595 */ 7596 static void 7597 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current) 7598 { 7599 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7600 vdev_t *current_rvd = current->spa_root_vdev; 7601 7602 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC); 7603 load_concrete_ms_allocatable_trees(current, SM_FREE); 7604 7605 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) { 7606 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i]; 7607 vdev_t *current_vd = current_rvd->vdev_child[i]; 7608 7609 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7610 /* 7611 * See comment in verify_checkpoint_vdev_spacemaps() 7612 */ 7613 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7614 continue; 7615 } 7616 7617 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) { 7618 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m]; 7619 metaslab_t *current_msp = current_vd->vdev_ms[m]; 7620 7621 (void) fprintf(stderr, 7622 "\rverifying vdev %llu of %llu, " 7623 "metaslab %llu of %llu ...", 7624 (longlong_t)current_vd->vdev_id, 7625 (longlong_t)current_rvd->vdev_children, 7626 (longlong_t)current_vd->vdev_ms[m]->ms_id, 7627 (longlong_t)current_vd->vdev_ms_count); 7628 7629 /* 7630 * We walk through the ms_allocatable trees that 7631 * are loaded with the allocated blocks from the 7632 * ms_sm spacemaps of the checkpoint. For each 7633 * one of these ranges we ensure that none of them 7634 * exists in the ms_allocatable trees of the 7635 * current state which are loaded with the ranges 7636 * that are currently free. 7637 * 7638 * This way we ensure that none of the blocks that 7639 * are part of the checkpoint were freed by mistake. 7640 */ 7641 range_tree_walk(ckpoint_msp->ms_allocatable, 7642 (range_tree_func_t *)range_tree_verify_not_present, 7643 current_msp->ms_allocatable); 7644 } 7645 } 7646 7647 /* for cleaner progress output */ 7648 (void) fprintf(stderr, "\n"); 7649 } 7650 7651 static void 7652 verify_checkpoint_blocks(spa_t *spa) 7653 { 7654 ASSERT(!dump_opt['L']); 7655 7656 spa_t *checkpoint_spa; 7657 char *checkpoint_pool; 7658 int error = 0; 7659 7660 /* 7661 * We import the checkpointed state of the pool (under a different 7662 * name) so we can do verification on it against the current state 7663 * of the pool. 7664 */ 7665 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, 7666 NULL); 7667 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0); 7668 7669 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG); 7670 if (error != 0) { 7671 fatal("Tried to open pool \"%s\" but spa_open() failed with " 7672 "error %d\n", checkpoint_pool, error); 7673 } 7674 7675 /* 7676 * Ensure that ranges in the checkpoint space maps of each vdev 7677 * are allocated according to the checkpointed state's metaslab 7678 * space maps. 7679 */ 7680 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa); 7681 7682 /* 7683 * Ensure that allocated ranges in the checkpoint's metaslab 7684 * space maps remain allocated in the metaslab space maps of 7685 * the current state. 7686 */ 7687 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa); 7688 7689 /* 7690 * Once we are done, we get rid of the checkpointed state. 7691 */ 7692 spa_close(checkpoint_spa, FTAG); 7693 free(checkpoint_pool); 7694 } 7695 7696 static void 7697 dump_leftover_checkpoint_blocks(spa_t *spa) 7698 { 7699 vdev_t *rvd = spa->spa_root_vdev; 7700 7701 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 7702 vdev_t *vd = rvd->vdev_child[i]; 7703 7704 space_map_t *checkpoint_sm = NULL; 7705 uint64_t checkpoint_sm_obj; 7706 7707 if (vd->vdev_top_zap == 0) 7708 continue; 7709 7710 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 7711 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7712 continue; 7713 7714 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 7715 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7716 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7717 7718 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 7719 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 7720 dump_spacemap(spa->spa_meta_objset, checkpoint_sm); 7721 space_map_close(checkpoint_sm); 7722 } 7723 } 7724 7725 static int 7726 verify_checkpoint(spa_t *spa) 7727 { 7728 uberblock_t checkpoint; 7729 int error; 7730 7731 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) 7732 return (0); 7733 7734 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 7735 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 7736 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 7737 7738 if (error == ENOENT && !dump_opt['L']) { 7739 /* 7740 * If the feature is active but the uberblock is missing 7741 * then we must be in the middle of discarding the 7742 * checkpoint. 7743 */ 7744 (void) printf("\nPartially discarded checkpoint " 7745 "state found:\n"); 7746 if (dump_opt['m'] > 3) 7747 dump_leftover_checkpoint_blocks(spa); 7748 return (0); 7749 } else if (error != 0) { 7750 (void) printf("lookup error %d when looking for " 7751 "checkpointed uberblock in MOS\n", error); 7752 return (error); 7753 } 7754 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n"); 7755 7756 if (checkpoint.ub_checkpoint_txg == 0) { 7757 (void) printf("\nub_checkpoint_txg not set in checkpointed " 7758 "uberblock\n"); 7759 error = 3; 7760 } 7761 7762 if (error == 0 && !dump_opt['L']) 7763 verify_checkpoint_blocks(spa); 7764 7765 return (error); 7766 } 7767 7768 static void 7769 mos_leaks_cb(void *arg, uint64_t start, uint64_t size) 7770 { 7771 (void) arg; 7772 for (uint64_t i = start; i < size; i++) { 7773 (void) printf("MOS object %llu referenced but not allocated\n", 7774 (u_longlong_t)i); 7775 } 7776 } 7777 7778 static void 7779 mos_obj_refd(uint64_t obj) 7780 { 7781 if (obj != 0 && mos_refd_objs != NULL) 7782 range_tree_add(mos_refd_objs, obj, 1); 7783 } 7784 7785 /* 7786 * Call on a MOS object that may already have been referenced. 7787 */ 7788 static void 7789 mos_obj_refd_multiple(uint64_t obj) 7790 { 7791 if (obj != 0 && mos_refd_objs != NULL && 7792 !range_tree_contains(mos_refd_objs, obj, 1)) 7793 range_tree_add(mos_refd_objs, obj, 1); 7794 } 7795 7796 static void 7797 mos_leak_vdev_top_zap(vdev_t *vd) 7798 { 7799 uint64_t ms_flush_data_obj; 7800 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 7801 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 7802 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj); 7803 if (error == ENOENT) 7804 return; 7805 ASSERT0(error); 7806 7807 mos_obj_refd(ms_flush_data_obj); 7808 } 7809 7810 static void 7811 mos_leak_vdev(vdev_t *vd) 7812 { 7813 mos_obj_refd(vd->vdev_dtl_object); 7814 mos_obj_refd(vd->vdev_ms_array); 7815 mos_obj_refd(vd->vdev_indirect_config.vic_births_object); 7816 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object); 7817 mos_obj_refd(vd->vdev_leaf_zap); 7818 if (vd->vdev_checkpoint_sm != NULL) 7819 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object); 7820 if (vd->vdev_indirect_mapping != NULL) { 7821 mos_obj_refd(vd->vdev_indirect_mapping-> 7822 vim_phys->vimp_counts_object); 7823 } 7824 if (vd->vdev_obsolete_sm != NULL) 7825 mos_obj_refd(vd->vdev_obsolete_sm->sm_object); 7826 7827 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 7828 metaslab_t *ms = vd->vdev_ms[m]; 7829 mos_obj_refd(space_map_object(ms->ms_sm)); 7830 } 7831 7832 if (vd->vdev_root_zap != 0) 7833 mos_obj_refd(vd->vdev_root_zap); 7834 7835 if (vd->vdev_top_zap != 0) { 7836 mos_obj_refd(vd->vdev_top_zap); 7837 mos_leak_vdev_top_zap(vd); 7838 } 7839 7840 for (uint64_t c = 0; c < vd->vdev_children; c++) { 7841 mos_leak_vdev(vd->vdev_child[c]); 7842 } 7843 } 7844 7845 static void 7846 mos_leak_log_spacemaps(spa_t *spa) 7847 { 7848 uint64_t spacemap_zap; 7849 int error = zap_lookup(spa_meta_objset(spa), 7850 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP, 7851 sizeof (spacemap_zap), 1, &spacemap_zap); 7852 if (error == ENOENT) 7853 return; 7854 ASSERT0(error); 7855 7856 mos_obj_refd(spacemap_zap); 7857 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 7858 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) 7859 mos_obj_refd(sls->sls_sm_obj); 7860 } 7861 7862 static void 7863 errorlog_count_refd(objset_t *mos, uint64_t errlog) 7864 { 7865 zap_cursor_t zc; 7866 zap_attribute_t za; 7867 for (zap_cursor_init(&zc, mos, errlog); 7868 zap_cursor_retrieve(&zc, &za) == 0; 7869 zap_cursor_advance(&zc)) { 7870 mos_obj_refd(za.za_first_integer); 7871 } 7872 zap_cursor_fini(&zc); 7873 } 7874 7875 static int 7876 dump_mos_leaks(spa_t *spa) 7877 { 7878 int rv = 0; 7879 objset_t *mos = spa->spa_meta_objset; 7880 dsl_pool_t *dp = spa->spa_dsl_pool; 7881 7882 /* Visit and mark all referenced objects in the MOS */ 7883 7884 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT); 7885 mos_obj_refd(spa->spa_pool_props_object); 7886 mos_obj_refd(spa->spa_config_object); 7887 mos_obj_refd(spa->spa_ddt_stat_object); 7888 mos_obj_refd(spa->spa_feat_desc_obj); 7889 mos_obj_refd(spa->spa_feat_enabled_txg_obj); 7890 mos_obj_refd(spa->spa_feat_for_read_obj); 7891 mos_obj_refd(spa->spa_feat_for_write_obj); 7892 mos_obj_refd(spa->spa_history); 7893 mos_obj_refd(spa->spa_errlog_last); 7894 mos_obj_refd(spa->spa_errlog_scrub); 7895 7896 if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 7897 errorlog_count_refd(mos, spa->spa_errlog_last); 7898 errorlog_count_refd(mos, spa->spa_errlog_scrub); 7899 } 7900 7901 mos_obj_refd(spa->spa_all_vdev_zaps); 7902 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj); 7903 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj); 7904 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj); 7905 bpobj_count_refd(&spa->spa_deferred_bpobj); 7906 mos_obj_refd(dp->dp_empty_bpobj); 7907 bpobj_count_refd(&dp->dp_obsolete_bpobj); 7908 bpobj_count_refd(&dp->dp_free_bpobj); 7909 mos_obj_refd(spa->spa_l2cache.sav_object); 7910 mos_obj_refd(spa->spa_spares.sav_object); 7911 7912 if (spa->spa_syncing_log_sm != NULL) 7913 mos_obj_refd(spa->spa_syncing_log_sm->sm_object); 7914 mos_leak_log_spacemaps(spa); 7915 7916 mos_obj_refd(spa->spa_condensing_indirect_phys. 7917 scip_next_mapping_object); 7918 mos_obj_refd(spa->spa_condensing_indirect_phys. 7919 scip_prev_obsolete_sm_object); 7920 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) { 7921 vdev_indirect_mapping_t *vim = 7922 vdev_indirect_mapping_open(mos, 7923 spa->spa_condensing_indirect_phys.scip_next_mapping_object); 7924 mos_obj_refd(vim->vim_phys->vimp_counts_object); 7925 vdev_indirect_mapping_close(vim); 7926 } 7927 deleted_livelists_dump_mos(spa); 7928 7929 if (dp->dp_origin_snap != NULL) { 7930 dsl_dataset_t *ds; 7931 7932 dsl_pool_config_enter(dp, FTAG); 7933 VERIFY0(dsl_dataset_hold_obj(dp, 7934 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj, 7935 FTAG, &ds)); 7936 count_ds_mos_objects(ds); 7937 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 7938 dsl_dataset_rele(ds, FTAG); 7939 dsl_pool_config_exit(dp, FTAG); 7940 7941 count_ds_mos_objects(dp->dp_origin_snap); 7942 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist"); 7943 } 7944 count_dir_mos_objects(dp->dp_mos_dir); 7945 if (dp->dp_free_dir != NULL) 7946 count_dir_mos_objects(dp->dp_free_dir); 7947 if (dp->dp_leak_dir != NULL) 7948 count_dir_mos_objects(dp->dp_leak_dir); 7949 7950 mos_leak_vdev(spa->spa_root_vdev); 7951 7952 for (uint64_t class = 0; class < DDT_CLASSES; class++) { 7953 for (uint64_t type = 0; type < DDT_TYPES; type++) { 7954 for (uint64_t cksum = 0; 7955 cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) { 7956 ddt_t *ddt = spa->spa_ddt[cksum]; 7957 if (!ddt) 7958 continue; 7959 mos_obj_refd(ddt->ddt_object[type][class]); 7960 } 7961 } 7962 } 7963 7964 if (spa->spa_brt != NULL) { 7965 brt_t *brt = spa->spa_brt; 7966 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { 7967 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid]; 7968 if (brtvd != NULL && brtvd->bv_initiated) { 7969 mos_obj_refd(brtvd->bv_mos_brtvdev); 7970 mos_obj_refd(brtvd->bv_mos_entries); 7971 } 7972 } 7973 } 7974 7975 /* 7976 * Visit all allocated objects and make sure they are referenced. 7977 */ 7978 uint64_t object = 0; 7979 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) { 7980 if (range_tree_contains(mos_refd_objs, object, 1)) { 7981 range_tree_remove(mos_refd_objs, object, 1); 7982 } else { 7983 dmu_object_info_t doi; 7984 const char *name; 7985 VERIFY0(dmu_object_info(mos, object, &doi)); 7986 if (doi.doi_type & DMU_OT_NEWTYPE) { 7987 dmu_object_byteswap_t bswap = 7988 DMU_OT_BYTESWAP(doi.doi_type); 7989 name = dmu_ot_byteswap[bswap].ob_name; 7990 } else { 7991 name = dmu_ot[doi.doi_type].ot_name; 7992 } 7993 7994 (void) printf("MOS object %llu (%s) leaked\n", 7995 (u_longlong_t)object, name); 7996 rv = 2; 7997 } 7998 } 7999 (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL); 8000 if (!range_tree_is_empty(mos_refd_objs)) 8001 rv = 2; 8002 range_tree_vacate(mos_refd_objs, NULL, NULL); 8003 range_tree_destroy(mos_refd_objs); 8004 return (rv); 8005 } 8006 8007 typedef struct log_sm_obsolete_stats_arg { 8008 uint64_t lsos_current_txg; 8009 8010 uint64_t lsos_total_entries; 8011 uint64_t lsos_valid_entries; 8012 8013 uint64_t lsos_sm_entries; 8014 uint64_t lsos_valid_sm_entries; 8015 } log_sm_obsolete_stats_arg_t; 8016 8017 static int 8018 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme, 8019 uint64_t txg, void *arg) 8020 { 8021 log_sm_obsolete_stats_arg_t *lsos = arg; 8022 8023 uint64_t offset = sme->sme_offset; 8024 uint64_t vdev_id = sme->sme_vdev; 8025 8026 if (lsos->lsos_current_txg == 0) { 8027 /* this is the first log */ 8028 lsos->lsos_current_txg = txg; 8029 } else if (lsos->lsos_current_txg < txg) { 8030 /* we just changed log - print stats and reset */ 8031 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8032 (u_longlong_t)lsos->lsos_valid_sm_entries, 8033 (u_longlong_t)lsos->lsos_sm_entries, 8034 (u_longlong_t)lsos->lsos_current_txg); 8035 lsos->lsos_valid_sm_entries = 0; 8036 lsos->lsos_sm_entries = 0; 8037 lsos->lsos_current_txg = txg; 8038 } 8039 ASSERT3U(lsos->lsos_current_txg, ==, txg); 8040 8041 lsos->lsos_sm_entries++; 8042 lsos->lsos_total_entries++; 8043 8044 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 8045 if (!vdev_is_concrete(vd)) 8046 return (0); 8047 8048 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 8049 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 8050 8051 if (txg < metaslab_unflushed_txg(ms)) 8052 return (0); 8053 lsos->lsos_valid_sm_entries++; 8054 lsos->lsos_valid_entries++; 8055 return (0); 8056 } 8057 8058 static void 8059 dump_log_spacemap_obsolete_stats(spa_t *spa) 8060 { 8061 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 8062 return; 8063 8064 log_sm_obsolete_stats_arg_t lsos = {0}; 8065 8066 (void) printf("Log Space Map Obsolete Entry Statistics:\n"); 8067 8068 iterate_through_spacemap_logs(spa, 8069 log_spacemap_obsolete_stats_cb, &lsos); 8070 8071 /* print stats for latest log */ 8072 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8073 (u_longlong_t)lsos.lsos_valid_sm_entries, 8074 (u_longlong_t)lsos.lsos_sm_entries, 8075 (u_longlong_t)lsos.lsos_current_txg); 8076 8077 (void) printf("%-8llu valid entries out of %-8llu - total\n\n", 8078 (u_longlong_t)lsos.lsos_valid_entries, 8079 (u_longlong_t)lsos.lsos_total_entries); 8080 } 8081 8082 static void 8083 dump_zpool(spa_t *spa) 8084 { 8085 dsl_pool_t *dp = spa_get_dsl(spa); 8086 int rc = 0; 8087 8088 if (dump_opt['y']) { 8089 livelist_metaslab_validate(spa); 8090 } 8091 8092 if (dump_opt['S']) { 8093 dump_simulated_ddt(spa); 8094 return; 8095 } 8096 8097 if (!dump_opt['e'] && dump_opt['C'] > 1) { 8098 (void) printf("\nCached configuration:\n"); 8099 dump_nvlist(spa->spa_config, 8); 8100 } 8101 8102 if (dump_opt['C']) 8103 dump_config(spa); 8104 8105 if (dump_opt['u']) 8106 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); 8107 8108 if (dump_opt['D']) 8109 dump_all_ddts(spa); 8110 8111 if (dump_opt['T']) 8112 dump_brt(spa); 8113 8114 if (dump_opt['d'] > 2 || dump_opt['m']) 8115 dump_metaslabs(spa); 8116 if (dump_opt['M']) 8117 dump_metaslab_groups(spa, dump_opt['M'] > 1); 8118 if (dump_opt['d'] > 2 || dump_opt['m']) { 8119 dump_log_spacemaps(spa); 8120 dump_log_spacemap_obsolete_stats(spa); 8121 } 8122 8123 if (dump_opt['d'] || dump_opt['i']) { 8124 spa_feature_t f; 8125 mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 8126 0); 8127 dump_objset(dp->dp_meta_objset); 8128 8129 if (dump_opt['d'] >= 3) { 8130 dsl_pool_t *dp = spa->spa_dsl_pool; 8131 dump_full_bpobj(&spa->spa_deferred_bpobj, 8132 "Deferred frees", 0); 8133 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 8134 dump_full_bpobj(&dp->dp_free_bpobj, 8135 "Pool snapshot frees", 0); 8136 } 8137 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 8138 ASSERT(spa_feature_is_enabled(spa, 8139 SPA_FEATURE_DEVICE_REMOVAL)); 8140 dump_full_bpobj(&dp->dp_obsolete_bpobj, 8141 "Pool obsolete blocks", 0); 8142 } 8143 8144 if (spa_feature_is_active(spa, 8145 SPA_FEATURE_ASYNC_DESTROY)) { 8146 dump_bptree(spa->spa_meta_objset, 8147 dp->dp_bptree_obj, 8148 "Pool dataset frees"); 8149 } 8150 dump_dtl(spa->spa_root_vdev, 0); 8151 } 8152 8153 for (spa_feature_t f = 0; f < SPA_FEATURES; f++) 8154 global_feature_count[f] = UINT64_MAX; 8155 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0; 8156 global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0; 8157 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0; 8158 global_feature_count[SPA_FEATURE_LIVELIST] = 0; 8159 8160 (void) dmu_objset_find(spa_name(spa), dump_one_objset, 8161 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 8162 8163 if (rc == 0 && !dump_opt['L']) 8164 rc = dump_mos_leaks(spa); 8165 8166 for (f = 0; f < SPA_FEATURES; f++) { 8167 uint64_t refcount; 8168 8169 uint64_t *arr; 8170 if (!(spa_feature_table[f].fi_flags & 8171 ZFEATURE_FLAG_PER_DATASET)) { 8172 if (global_feature_count[f] == UINT64_MAX) 8173 continue; 8174 if (!spa_feature_is_enabled(spa, f)) { 8175 ASSERT0(global_feature_count[f]); 8176 continue; 8177 } 8178 arr = global_feature_count; 8179 } else { 8180 if (!spa_feature_is_enabled(spa, f)) { 8181 ASSERT0(dataset_feature_count[f]); 8182 continue; 8183 } 8184 arr = dataset_feature_count; 8185 } 8186 if (feature_get_refcount(spa, &spa_feature_table[f], 8187 &refcount) == ENOTSUP) 8188 continue; 8189 if (arr[f] != refcount) { 8190 (void) printf("%s feature refcount mismatch: " 8191 "%lld consumers != %lld refcount\n", 8192 spa_feature_table[f].fi_uname, 8193 (longlong_t)arr[f], (longlong_t)refcount); 8194 rc = 2; 8195 } else { 8196 (void) printf("Verified %s feature refcount " 8197 "of %llu is correct\n", 8198 spa_feature_table[f].fi_uname, 8199 (longlong_t)refcount); 8200 } 8201 } 8202 8203 if (rc == 0) 8204 rc = verify_device_removal_feature_counts(spa); 8205 } 8206 8207 if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) 8208 rc = dump_block_stats(spa); 8209 8210 if (rc == 0) 8211 rc = verify_spacemap_refcounts(spa); 8212 8213 if (dump_opt['s']) 8214 show_pool_stats(spa); 8215 8216 if (dump_opt['h']) 8217 dump_history(spa); 8218 8219 if (rc == 0) 8220 rc = verify_checkpoint(spa); 8221 8222 if (rc != 0) { 8223 dump_debug_buffer(); 8224 exit(rc); 8225 } 8226 } 8227 8228 #define ZDB_FLAG_CHECKSUM 0x0001 8229 #define ZDB_FLAG_DECOMPRESS 0x0002 8230 #define ZDB_FLAG_BSWAP 0x0004 8231 #define ZDB_FLAG_GBH 0x0008 8232 #define ZDB_FLAG_INDIRECT 0x0010 8233 #define ZDB_FLAG_RAW 0x0020 8234 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 8235 #define ZDB_FLAG_VERBOSE 0x0080 8236 8237 static int flagbits[256]; 8238 static char flagbitstr[16]; 8239 8240 static void 8241 zdb_print_blkptr(const blkptr_t *bp, int flags) 8242 { 8243 char blkbuf[BP_SPRINTF_LEN]; 8244 8245 if (flags & ZDB_FLAG_BSWAP) 8246 byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); 8247 8248 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 8249 (void) printf("%s\n", blkbuf); 8250 } 8251 8252 static void 8253 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) 8254 { 8255 int i; 8256 8257 for (i = 0; i < nbps; i++) 8258 zdb_print_blkptr(&bp[i], flags); 8259 } 8260 8261 static void 8262 zdb_dump_gbh(void *buf, int flags) 8263 { 8264 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); 8265 } 8266 8267 static void 8268 zdb_dump_block_raw(void *buf, uint64_t size, int flags) 8269 { 8270 if (flags & ZDB_FLAG_BSWAP) 8271 byteswap_uint64_array(buf, size); 8272 VERIFY(write(fileno(stdout), buf, size) == size); 8273 } 8274 8275 static void 8276 zdb_dump_block(char *label, void *buf, uint64_t size, int flags) 8277 { 8278 uint64_t *d = (uint64_t *)buf; 8279 unsigned nwords = size / sizeof (uint64_t); 8280 int do_bswap = !!(flags & ZDB_FLAG_BSWAP); 8281 unsigned i, j; 8282 const char *hdr; 8283 char *c; 8284 8285 8286 if (do_bswap) 8287 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; 8288 else 8289 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; 8290 8291 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); 8292 8293 #ifdef _LITTLE_ENDIAN 8294 /* correct the endianness */ 8295 do_bswap = !do_bswap; 8296 #endif 8297 for (i = 0; i < nwords; i += 2) { 8298 (void) printf("%06llx: %016llx %016llx ", 8299 (u_longlong_t)(i * sizeof (uint64_t)), 8300 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), 8301 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); 8302 8303 c = (char *)&d[i]; 8304 for (j = 0; j < 2 * sizeof (uint64_t); j++) 8305 (void) printf("%c", isprint(c[j]) ? c[j] : '.'); 8306 (void) printf("\n"); 8307 } 8308 } 8309 8310 /* 8311 * There are two acceptable formats: 8312 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a 8313 * child[.child]* - For example: 0.1.1 8314 * 8315 * The second form can be used to specify arbitrary vdevs anywhere 8316 * in the hierarchy. For example, in a pool with a mirror of 8317 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . 8318 */ 8319 static vdev_t * 8320 zdb_vdev_lookup(vdev_t *vdev, const char *path) 8321 { 8322 char *s, *p, *q; 8323 unsigned i; 8324 8325 if (vdev == NULL) 8326 return (NULL); 8327 8328 /* First, assume the x.x.x.x format */ 8329 i = strtoul(path, &s, 10); 8330 if (s == path || (s && *s != '.' && *s != '\0')) 8331 goto name; 8332 if (i >= vdev->vdev_children) 8333 return (NULL); 8334 8335 vdev = vdev->vdev_child[i]; 8336 if (s && *s == '\0') 8337 return (vdev); 8338 return (zdb_vdev_lookup(vdev, s+1)); 8339 8340 name: 8341 for (i = 0; i < vdev->vdev_children; i++) { 8342 vdev_t *vc = vdev->vdev_child[i]; 8343 8344 if (vc->vdev_path == NULL) { 8345 vc = zdb_vdev_lookup(vc, path); 8346 if (vc == NULL) 8347 continue; 8348 else 8349 return (vc); 8350 } 8351 8352 p = strrchr(vc->vdev_path, '/'); 8353 p = p ? p + 1 : vc->vdev_path; 8354 q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; 8355 8356 if (strcmp(vc->vdev_path, path) == 0) 8357 return (vc); 8358 if (strcmp(p, path) == 0) 8359 return (vc); 8360 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) 8361 return (vc); 8362 } 8363 8364 return (NULL); 8365 } 8366 8367 static int 8368 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr) 8369 { 8370 dsl_dataset_t *ds; 8371 8372 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 8373 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id, 8374 NULL, &ds); 8375 if (error != 0) { 8376 (void) fprintf(stderr, "failed to hold objset %llu: %s\n", 8377 (u_longlong_t)objset_id, strerror(error)); 8378 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8379 return (error); 8380 } 8381 dsl_dataset_name(ds, outstr); 8382 dsl_dataset_rele(ds, NULL); 8383 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8384 return (0); 8385 } 8386 8387 static boolean_t 8388 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize) 8389 { 8390 char *s0, *s1, *tmp = NULL; 8391 8392 if (sizes == NULL) 8393 return (B_FALSE); 8394 8395 s0 = strtok_r(sizes, "/", &tmp); 8396 if (s0 == NULL) 8397 return (B_FALSE); 8398 s1 = strtok_r(NULL, "/", &tmp); 8399 *lsize = strtoull(s0, NULL, 16); 8400 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize; 8401 return (*lsize >= *psize && *psize > 0); 8402 } 8403 8404 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg)) 8405 8406 static boolean_t 8407 try_decompress_block(abd_t *pabd, uint64_t lsize, uint64_t psize, 8408 int flags, int cfunc, void *lbuf, void *lbuf2) 8409 { 8410 if (flags & ZDB_FLAG_VERBOSE) { 8411 (void) fprintf(stderr, 8412 "Trying %05llx -> %05llx (%s)\n", 8413 (u_longlong_t)psize, 8414 (u_longlong_t)lsize, 8415 zio_compress_table[cfunc].ci_name); 8416 } 8417 8418 /* 8419 * We set lbuf to all zeros and lbuf2 to all 8420 * ones, then decompress to both buffers and 8421 * compare their contents. This way we can 8422 * know if decompression filled exactly to 8423 * lsize or if it left some bytes unwritten. 8424 */ 8425 8426 memset(lbuf, 0x00, lsize); 8427 memset(lbuf2, 0xff, lsize); 8428 8429 if (zio_decompress_data(cfunc, pabd, 8430 lbuf, psize, lsize, NULL) == 0 && 8431 zio_decompress_data(cfunc, pabd, 8432 lbuf2, psize, lsize, NULL) == 0 && 8433 memcmp(lbuf, lbuf2, lsize) == 0) 8434 return (B_TRUE); 8435 return (B_FALSE); 8436 } 8437 8438 static uint64_t 8439 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize, 8440 uint64_t psize, int flags) 8441 { 8442 (void) buf; 8443 uint64_t orig_lsize = lsize; 8444 boolean_t tryzle = ((getenv("ZDB_NO_ZLE") == NULL)); 8445 boolean_t found = B_FALSE; 8446 /* 8447 * We don't know how the data was compressed, so just try 8448 * every decompress function at every inflated blocksize. 8449 */ 8450 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8451 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 }; 8452 int *cfuncp = cfuncs; 8453 uint64_t maxlsize = SPA_MAXBLOCKSIZE; 8454 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) | 8455 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) | 8456 ZIO_COMPRESS_MASK(ZLE); 8457 *cfuncp++ = ZIO_COMPRESS_LZ4; 8458 *cfuncp++ = ZIO_COMPRESS_LZJB; 8459 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB); 8460 /* 8461 * Every gzip level has the same decompressor, no need to 8462 * run it 9 times per bruteforce attempt. 8463 */ 8464 mask |= ZIO_COMPRESS_MASK(GZIP_2) | ZIO_COMPRESS_MASK(GZIP_3); 8465 mask |= ZIO_COMPRESS_MASK(GZIP_4) | ZIO_COMPRESS_MASK(GZIP_5); 8466 mask |= ZIO_COMPRESS_MASK(GZIP_6) | ZIO_COMPRESS_MASK(GZIP_7); 8467 mask |= ZIO_COMPRESS_MASK(GZIP_8) | ZIO_COMPRESS_MASK(GZIP_9); 8468 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) 8469 if (((1ULL << c) & mask) == 0) 8470 *cfuncp++ = c; 8471 8472 /* 8473 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this 8474 * could take a while and we should let the user know 8475 * we are not stuck. On the other hand, printing progress 8476 * info gets old after a while. User can specify 'v' flag 8477 * to see the progression. 8478 */ 8479 if (lsize == psize) 8480 lsize += SPA_MINBLOCKSIZE; 8481 else 8482 maxlsize = lsize; 8483 8484 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) { 8485 for (cfuncp = cfuncs; *cfuncp; cfuncp++) { 8486 if (try_decompress_block(pabd, lsize, psize, flags, 8487 *cfuncp, lbuf, lbuf2)) { 8488 found = B_TRUE; 8489 break; 8490 } 8491 } 8492 if (*cfuncp != 0) 8493 break; 8494 } 8495 if (!found && tryzle) { 8496 for (lsize = orig_lsize; lsize <= maxlsize; 8497 lsize += SPA_MINBLOCKSIZE) { 8498 if (try_decompress_block(pabd, lsize, psize, flags, 8499 ZIO_COMPRESS_ZLE, lbuf, lbuf2)) { 8500 *cfuncp = ZIO_COMPRESS_ZLE; 8501 found = B_TRUE; 8502 break; 8503 } 8504 } 8505 } 8506 umem_free(lbuf2, SPA_MAXBLOCKSIZE); 8507 8508 if (*cfuncp == ZIO_COMPRESS_ZLE) { 8509 printf("\nZLE decompression was selected. If you " 8510 "suspect the results are wrong,\ntry avoiding ZLE " 8511 "by setting and exporting ZDB_NO_ZLE=\"true\"\n"); 8512 } 8513 8514 return (lsize > maxlsize ? -1 : lsize); 8515 } 8516 8517 /* 8518 * Read a block from a pool and print it out. The syntax of the 8519 * block descriptor is: 8520 * 8521 * pool:vdev_specifier:offset:[lsize/]psize[:flags] 8522 * 8523 * pool - The name of the pool you wish to read from 8524 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) 8525 * offset - offset, in hex, in bytes 8526 * size - Amount of data to read, in hex, in bytes 8527 * flags - A string of characters specifying options 8528 * b: Decode a blkptr at given offset within block 8529 * c: Calculate and display checksums 8530 * d: Decompress data before dumping 8531 * e: Byteswap data before dumping 8532 * g: Display data as a gang block header 8533 * i: Display as an indirect block 8534 * r: Dump raw data to stdout 8535 * v: Verbose 8536 * 8537 */ 8538 static void 8539 zdb_read_block(char *thing, spa_t *spa) 8540 { 8541 blkptr_t blk, *bp = &blk; 8542 dva_t *dva = bp->blk_dva; 8543 int flags = 0; 8544 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0; 8545 zio_t *zio; 8546 vdev_t *vd; 8547 abd_t *pabd; 8548 void *lbuf, *buf; 8549 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL; 8550 const char *vdev, *errmsg = NULL; 8551 int i, error; 8552 boolean_t borrowed = B_FALSE, found = B_FALSE; 8553 8554 dup = strdup(thing); 8555 s = strtok_r(dup, ":", &tmp); 8556 vdev = s ?: ""; 8557 s = strtok_r(NULL, ":", &tmp); 8558 offset = strtoull(s ? s : "", NULL, 16); 8559 sizes = strtok_r(NULL, ":", &tmp); 8560 s = strtok_r(NULL, ":", &tmp); 8561 flagstr = strdup(s ?: ""); 8562 8563 if (!zdb_parse_block_sizes(sizes, &lsize, &psize)) 8564 errmsg = "invalid size(s)"; 8565 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE)) 8566 errmsg = "size must be a multiple of sector size"; 8567 if (!IS_P2ALIGNED(offset, DEV_BSIZE)) 8568 errmsg = "offset must be a multiple of sector size"; 8569 if (errmsg) { 8570 (void) printf("Invalid block specifier: %s - %s\n", 8571 thing, errmsg); 8572 goto done; 8573 } 8574 8575 tmp = NULL; 8576 for (s = strtok_r(flagstr, ":", &tmp); 8577 s != NULL; 8578 s = strtok_r(NULL, ":", &tmp)) { 8579 for (i = 0; i < strlen(flagstr); i++) { 8580 int bit = flagbits[(uchar_t)flagstr[i]]; 8581 8582 if (bit == 0) { 8583 (void) printf("***Ignoring flag: %c\n", 8584 (uchar_t)flagstr[i]); 8585 continue; 8586 } 8587 found = B_TRUE; 8588 flags |= bit; 8589 8590 p = &flagstr[i + 1]; 8591 if (*p != ':' && *p != '\0') { 8592 int j = 0, nextbit = flagbits[(uchar_t)*p]; 8593 char *end, offstr[8] = { 0 }; 8594 if ((bit == ZDB_FLAG_PRINT_BLKPTR) && 8595 (nextbit == 0)) { 8596 /* look ahead to isolate the offset */ 8597 while (nextbit == 0 && 8598 strchr(flagbitstr, *p) == NULL) { 8599 offstr[j] = *p; 8600 j++; 8601 if (i + j > strlen(flagstr)) 8602 break; 8603 p++; 8604 nextbit = flagbits[(uchar_t)*p]; 8605 } 8606 blkptr_offset = strtoull(offstr, &end, 8607 16); 8608 i += j; 8609 } else if (nextbit == 0) { 8610 (void) printf("***Ignoring flag arg:" 8611 " '%c'\n", (uchar_t)*p); 8612 } 8613 } 8614 } 8615 } 8616 if (blkptr_offset % sizeof (blkptr_t)) { 8617 printf("Block pointer offset 0x%llx " 8618 "must be divisible by 0x%x\n", 8619 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t)); 8620 goto done; 8621 } 8622 if (found == B_FALSE && strlen(flagstr) > 0) { 8623 printf("Invalid flag arg: '%s'\n", flagstr); 8624 goto done; 8625 } 8626 8627 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); 8628 if (vd == NULL) { 8629 (void) printf("***Invalid vdev: %s\n", vdev); 8630 goto done; 8631 } else { 8632 if (vd->vdev_path) 8633 (void) fprintf(stderr, "Found vdev: %s\n", 8634 vd->vdev_path); 8635 else 8636 (void) fprintf(stderr, "Found vdev type: %s\n", 8637 vd->vdev_ops->vdev_op_type); 8638 } 8639 8640 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 8641 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8642 8643 BP_ZERO(bp); 8644 8645 DVA_SET_VDEV(&dva[0], vd->vdev_id); 8646 DVA_SET_OFFSET(&dva[0], offset); 8647 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); 8648 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); 8649 8650 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); 8651 8652 BP_SET_LSIZE(bp, lsize); 8653 BP_SET_PSIZE(bp, psize); 8654 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 8655 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); 8656 BP_SET_TYPE(bp, DMU_OT_NONE); 8657 BP_SET_LEVEL(bp, 0); 8658 BP_SET_DEDUP(bp, 0); 8659 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 8660 8661 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8662 zio = zio_root(spa, NULL, NULL, 0); 8663 8664 if (vd == vd->vdev_top) { 8665 /* 8666 * Treat this as a normal block read. 8667 */ 8668 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL, 8669 ZIO_PRIORITY_SYNC_READ, 8670 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); 8671 } else { 8672 /* 8673 * Treat this as a vdev child I/O. 8674 */ 8675 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd, 8676 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, 8677 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 8678 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL, 8679 NULL, NULL)); 8680 } 8681 8682 error = zio_wait(zio); 8683 spa_config_exit(spa, SCL_STATE, FTAG); 8684 8685 if (error) { 8686 (void) printf("Read of %s failed, error: %d\n", thing, error); 8687 goto out; 8688 } 8689 8690 uint64_t orig_lsize = lsize; 8691 buf = lbuf; 8692 if (flags & ZDB_FLAG_DECOMPRESS) { 8693 lsize = zdb_decompress_block(pabd, buf, lbuf, 8694 lsize, psize, flags); 8695 if (lsize == -1) { 8696 (void) printf("Decompress of %s failed\n", thing); 8697 goto out; 8698 } 8699 } else { 8700 buf = abd_borrow_buf_copy(pabd, lsize); 8701 borrowed = B_TRUE; 8702 } 8703 /* 8704 * Try to detect invalid block pointer. If invalid, try 8705 * decompressing. 8706 */ 8707 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) && 8708 !(flags & ZDB_FLAG_DECOMPRESS)) { 8709 const blkptr_t *b = (const blkptr_t *)(void *) 8710 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8711 if (zfs_blkptr_verify(spa, b, 8712 BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY) == B_FALSE) { 8713 abd_return_buf_copy(pabd, buf, lsize); 8714 borrowed = B_FALSE; 8715 buf = lbuf; 8716 lsize = zdb_decompress_block(pabd, buf, 8717 lbuf, lsize, psize, flags); 8718 b = (const blkptr_t *)(void *) 8719 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8720 if (lsize == -1 || zfs_blkptr_verify(spa, b, 8721 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG) == B_FALSE) { 8722 printf("invalid block pointer at this DVA\n"); 8723 goto out; 8724 } 8725 } 8726 } 8727 8728 if (flags & ZDB_FLAG_PRINT_BLKPTR) 8729 zdb_print_blkptr((blkptr_t *)(void *) 8730 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); 8731 else if (flags & ZDB_FLAG_RAW) 8732 zdb_dump_block_raw(buf, lsize, flags); 8733 else if (flags & ZDB_FLAG_INDIRECT) 8734 zdb_dump_indirect((blkptr_t *)buf, 8735 orig_lsize / sizeof (blkptr_t), flags); 8736 else if (flags & ZDB_FLAG_GBH) 8737 zdb_dump_gbh(buf, flags); 8738 else 8739 zdb_dump_block(thing, buf, lsize, flags); 8740 8741 /* 8742 * If :c was specified, iterate through the checksum table to 8743 * calculate and display each checksum for our specified 8744 * DVA and length. 8745 */ 8746 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) && 8747 !(flags & ZDB_FLAG_GBH)) { 8748 zio_t *czio; 8749 (void) printf("\n"); 8750 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL; 8751 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) { 8752 8753 if ((zio_checksum_table[ck].ci_flags & 8754 ZCHECKSUM_FLAG_EMBEDDED) || 8755 ck == ZIO_CHECKSUM_NOPARITY) { 8756 continue; 8757 } 8758 BP_SET_CHECKSUM(bp, ck); 8759 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8760 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 8761 if (vd == vd->vdev_top) { 8762 zio_nowait(zio_read(czio, spa, bp, pabd, psize, 8763 NULL, NULL, 8764 ZIO_PRIORITY_SYNC_READ, 8765 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8766 ZIO_FLAG_DONT_RETRY, NULL)); 8767 } else { 8768 zio_nowait(zio_vdev_child_io(czio, bp, vd, 8769 offset, pabd, psize, ZIO_TYPE_READ, 8770 ZIO_PRIORITY_SYNC_READ, 8771 ZIO_FLAG_DONT_PROPAGATE | 8772 ZIO_FLAG_DONT_RETRY | 8773 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8774 ZIO_FLAG_SPECULATIVE | 8775 ZIO_FLAG_OPTIONAL, NULL, NULL)); 8776 } 8777 error = zio_wait(czio); 8778 if (error == 0 || error == ECKSUM) { 8779 zio_t *ck_zio = zio_null(NULL, spa, NULL, 8780 NULL, NULL, 0); 8781 ck_zio->io_offset = 8782 DVA_GET_OFFSET(&bp->blk_dva[0]); 8783 ck_zio->io_bp = bp; 8784 zio_checksum_compute(ck_zio, ck, pabd, lsize); 8785 printf( 8786 "%12s\t" 8787 "cksum=%016llx:%016llx:%016llx:%016llx\n", 8788 zio_checksum_table[ck].ci_name, 8789 (u_longlong_t)bp->blk_cksum.zc_word[0], 8790 (u_longlong_t)bp->blk_cksum.zc_word[1], 8791 (u_longlong_t)bp->blk_cksum.zc_word[2], 8792 (u_longlong_t)bp->blk_cksum.zc_word[3]); 8793 zio_wait(ck_zio); 8794 } else { 8795 printf("error %d reading block\n", error); 8796 } 8797 spa_config_exit(spa, SCL_STATE, FTAG); 8798 } 8799 } 8800 8801 if (borrowed) 8802 abd_return_buf_copy(pabd, buf, lsize); 8803 8804 out: 8805 abd_free(pabd); 8806 umem_free(lbuf, SPA_MAXBLOCKSIZE); 8807 done: 8808 free(flagstr); 8809 free(dup); 8810 } 8811 8812 static void 8813 zdb_embedded_block(char *thing) 8814 { 8815 blkptr_t bp = {{{{0}}}}; 8816 unsigned long long *words = (void *)&bp; 8817 char *buf; 8818 int err; 8819 8820 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:" 8821 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx", 8822 words + 0, words + 1, words + 2, words + 3, 8823 words + 4, words + 5, words + 6, words + 7, 8824 words + 8, words + 9, words + 10, words + 11, 8825 words + 12, words + 13, words + 14, words + 15); 8826 if (err != 16) { 8827 (void) fprintf(stderr, "invalid input format\n"); 8828 exit(1); 8829 } 8830 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE); 8831 buf = malloc(SPA_MAXBLOCKSIZE); 8832 if (buf == NULL) { 8833 (void) fprintf(stderr, "out of memory\n"); 8834 exit(1); 8835 } 8836 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp)); 8837 if (err != 0) { 8838 (void) fprintf(stderr, "decode failed: %u\n", err); 8839 exit(1); 8840 } 8841 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0); 8842 free(buf); 8843 } 8844 8845 /* check for valid hex or decimal numeric string */ 8846 static boolean_t 8847 zdb_numeric(char *str) 8848 { 8849 int i = 0; 8850 8851 if (strlen(str) == 0) 8852 return (B_FALSE); 8853 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0) 8854 i = 2; 8855 for (; i < strlen(str); i++) { 8856 if (!isxdigit(str[i])) 8857 return (B_FALSE); 8858 } 8859 return (B_TRUE); 8860 } 8861 8862 int 8863 main(int argc, char **argv) 8864 { 8865 int c; 8866 spa_t *spa = NULL; 8867 objset_t *os = NULL; 8868 int dump_all = 1; 8869 int verbose = 0; 8870 int error = 0; 8871 char **searchdirs = NULL; 8872 int nsearch = 0; 8873 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN]; 8874 nvlist_t *policy = NULL; 8875 uint64_t max_txg = UINT64_MAX; 8876 int64_t objset_id = -1; 8877 uint64_t object; 8878 int flags = ZFS_IMPORT_MISSING_LOG; 8879 int rewind = ZPOOL_NEVER_REWIND; 8880 char *spa_config_path_env, *objset_str; 8881 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE; 8882 nvlist_t *cfg = NULL; 8883 8884 dprintf_setup(&argc, argv); 8885 8886 /* 8887 * If there is an environment variable SPA_CONFIG_PATH it overrides 8888 * default spa_config_path setting. If -U flag is specified it will 8889 * override this environment variable settings once again. 8890 */ 8891 spa_config_path_env = getenv("SPA_CONFIG_PATH"); 8892 if (spa_config_path_env != NULL) 8893 spa_config_path = spa_config_path_env; 8894 8895 /* 8896 * For performance reasons, we set this tunable down. We do so before 8897 * the arg parsing section so that the user can override this value if 8898 * they choose. 8899 */ 8900 zfs_btree_verify_intensity = 3; 8901 8902 struct option long_options[] = { 8903 {"ignore-assertions", no_argument, NULL, 'A'}, 8904 {"block-stats", no_argument, NULL, 'b'}, 8905 {"backup", no_argument, NULL, 'B'}, 8906 {"checksum", no_argument, NULL, 'c'}, 8907 {"config", no_argument, NULL, 'C'}, 8908 {"datasets", no_argument, NULL, 'd'}, 8909 {"dedup-stats", no_argument, NULL, 'D'}, 8910 {"exported", no_argument, NULL, 'e'}, 8911 {"embedded-block-pointer", no_argument, NULL, 'E'}, 8912 {"automatic-rewind", no_argument, NULL, 'F'}, 8913 {"dump-debug-msg", no_argument, NULL, 'G'}, 8914 {"history", no_argument, NULL, 'h'}, 8915 {"intent-logs", no_argument, NULL, 'i'}, 8916 {"inflight", required_argument, NULL, 'I'}, 8917 {"checkpointed-state", no_argument, NULL, 'k'}, 8918 {"key", required_argument, NULL, 'K'}, 8919 {"label", no_argument, NULL, 'l'}, 8920 {"disable-leak-tracking", no_argument, NULL, 'L'}, 8921 {"metaslabs", no_argument, NULL, 'm'}, 8922 {"metaslab-groups", no_argument, NULL, 'M'}, 8923 {"numeric", no_argument, NULL, 'N'}, 8924 {"option", required_argument, NULL, 'o'}, 8925 {"object-lookups", no_argument, NULL, 'O'}, 8926 {"path", required_argument, NULL, 'p'}, 8927 {"parseable", no_argument, NULL, 'P'}, 8928 {"skip-label", no_argument, NULL, 'q'}, 8929 {"copy-object", no_argument, NULL, 'r'}, 8930 {"read-block", no_argument, NULL, 'R'}, 8931 {"io-stats", no_argument, NULL, 's'}, 8932 {"simulate-dedup", no_argument, NULL, 'S'}, 8933 {"txg", required_argument, NULL, 't'}, 8934 {"brt-stats", no_argument, NULL, 'T'}, 8935 {"uberblock", no_argument, NULL, 'u'}, 8936 {"cachefile", required_argument, NULL, 'U'}, 8937 {"verbose", no_argument, NULL, 'v'}, 8938 {"verbatim", no_argument, NULL, 'V'}, 8939 {"dump-blocks", required_argument, NULL, 'x'}, 8940 {"extreme-rewind", no_argument, NULL, 'X'}, 8941 {"all-reconstruction", no_argument, NULL, 'Y'}, 8942 {"livelist", no_argument, NULL, 'y'}, 8943 {"zstd-headers", no_argument, NULL, 'Z'}, 8944 {0, 0, 0, 0} 8945 }; 8946 8947 while ((c = getopt_long(argc, argv, 8948 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ", 8949 long_options, NULL)) != -1) { 8950 switch (c) { 8951 case 'b': 8952 case 'B': 8953 case 'c': 8954 case 'C': 8955 case 'd': 8956 case 'D': 8957 case 'E': 8958 case 'G': 8959 case 'h': 8960 case 'i': 8961 case 'l': 8962 case 'm': 8963 case 'M': 8964 case 'N': 8965 case 'O': 8966 case 'r': 8967 case 'R': 8968 case 's': 8969 case 'S': 8970 case 'T': 8971 case 'u': 8972 case 'y': 8973 case 'Z': 8974 dump_opt[c]++; 8975 dump_all = 0; 8976 break; 8977 case 'A': 8978 case 'e': 8979 case 'F': 8980 case 'k': 8981 case 'L': 8982 case 'P': 8983 case 'q': 8984 case 'X': 8985 dump_opt[c]++; 8986 break; 8987 case 'Y': 8988 zfs_reconstruct_indirect_combinations_max = INT_MAX; 8989 zfs_deadman_enabled = 0; 8990 break; 8991 /* NB: Sort single match options below. */ 8992 case 'I': 8993 max_inflight_bytes = strtoull(optarg, NULL, 0); 8994 if (max_inflight_bytes == 0) { 8995 (void) fprintf(stderr, "maximum number " 8996 "of inflight bytes must be greater " 8997 "than 0\n"); 8998 usage(); 8999 } 9000 break; 9001 case 'K': 9002 dump_opt[c]++; 9003 key_material = strdup(optarg); 9004 /* redact key material in process table */ 9005 while (*optarg != '\0') { *optarg++ = '*'; } 9006 break; 9007 case 'o': 9008 error = set_global_var(optarg); 9009 if (error != 0) 9010 usage(); 9011 break; 9012 case 'p': 9013 if (searchdirs == NULL) { 9014 searchdirs = umem_alloc(sizeof (char *), 9015 UMEM_NOFAIL); 9016 } else { 9017 char **tmp = umem_alloc((nsearch + 1) * 9018 sizeof (char *), UMEM_NOFAIL); 9019 memcpy(tmp, searchdirs, nsearch * 9020 sizeof (char *)); 9021 umem_free(searchdirs, 9022 nsearch * sizeof (char *)); 9023 searchdirs = tmp; 9024 } 9025 searchdirs[nsearch++] = optarg; 9026 break; 9027 case 't': 9028 max_txg = strtoull(optarg, NULL, 0); 9029 if (max_txg < TXG_INITIAL) { 9030 (void) fprintf(stderr, "incorrect txg " 9031 "specified: %s\n", optarg); 9032 usage(); 9033 } 9034 break; 9035 case 'U': 9036 spa_config_path = optarg; 9037 if (spa_config_path[0] != '/') { 9038 (void) fprintf(stderr, 9039 "cachefile must be an absolute path " 9040 "(i.e. start with a slash)\n"); 9041 usage(); 9042 } 9043 break; 9044 case 'v': 9045 verbose++; 9046 break; 9047 case 'V': 9048 flags = ZFS_IMPORT_VERBATIM; 9049 break; 9050 case 'x': 9051 vn_dumpdir = optarg; 9052 break; 9053 default: 9054 usage(); 9055 break; 9056 } 9057 } 9058 9059 if (!dump_opt['e'] && searchdirs != NULL) { 9060 (void) fprintf(stderr, "-p option requires use of -e\n"); 9061 usage(); 9062 } 9063 #if defined(_LP64) 9064 /* 9065 * ZDB does not typically re-read blocks; therefore limit the ARC 9066 * to 256 MB, which can be used entirely for metadata. 9067 */ 9068 zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT; 9069 zfs_arc_max = 256 * 1024 * 1024; 9070 #endif 9071 9072 /* 9073 * "zdb -c" uses checksum-verifying scrub i/os which are async reads. 9074 * "zdb -b" uses traversal prefetch which uses async reads. 9075 * For good performance, let several of them be active at once. 9076 */ 9077 zfs_vdev_async_read_max_active = 10; 9078 9079 /* 9080 * Disable reference tracking for better performance. 9081 */ 9082 reference_tracking_enable = B_FALSE; 9083 9084 /* 9085 * Do not fail spa_load when spa_load_verify fails. This is needed 9086 * to load non-idle pools. 9087 */ 9088 spa_load_verify_dryrun = B_TRUE; 9089 9090 /* 9091 * ZDB should have ability to read spacemaps. 9092 */ 9093 spa_mode_readable_spacemaps = B_TRUE; 9094 9095 kernel_init(SPA_MODE_READ); 9096 9097 if (dump_all) 9098 verbose = MAX(verbose, 1); 9099 9100 for (c = 0; c < 256; c++) { 9101 if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL) 9102 dump_opt[c] = 1; 9103 if (dump_opt[c]) 9104 dump_opt[c] += verbose; 9105 } 9106 9107 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2)); 9108 zfs_recover = (dump_opt['A'] > 1); 9109 9110 argc -= optind; 9111 argv += optind; 9112 if (argc < 2 && dump_opt['R']) 9113 usage(); 9114 9115 if (dump_opt['E']) { 9116 if (argc != 1) 9117 usage(); 9118 zdb_embedded_block(argv[0]); 9119 return (0); 9120 } 9121 9122 if (argc < 1) { 9123 if (!dump_opt['e'] && dump_opt['C']) { 9124 dump_cachefile(spa_config_path); 9125 return (0); 9126 } 9127 usage(); 9128 } 9129 9130 if (dump_opt['l']) 9131 return (dump_label(argv[0])); 9132 9133 if (dump_opt['X'] || dump_opt['F']) 9134 rewind = ZPOOL_DO_REWIND | 9135 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); 9136 9137 /* -N implies -d */ 9138 if (dump_opt['N'] && dump_opt['d'] == 0) 9139 dump_opt['d'] = dump_opt['N']; 9140 9141 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || 9142 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 || 9143 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0) 9144 fatal("internal error: %s", strerror(ENOMEM)); 9145 9146 error = 0; 9147 target = argv[0]; 9148 9149 if (strpbrk(target, "/@") != NULL) { 9150 size_t targetlen; 9151 9152 target_pool = strdup(target); 9153 *strpbrk(target_pool, "/@") = '\0'; 9154 9155 target_is_spa = B_FALSE; 9156 targetlen = strlen(target); 9157 if (targetlen && target[targetlen - 1] == '/') 9158 target[targetlen - 1] = '\0'; 9159 9160 /* 9161 * See if an objset ID was supplied (-d <pool>/<objset ID>). 9162 * To disambiguate tank/100, consider the 100 as objsetID 9163 * if -N was given, otherwise 100 is an objsetID iff 9164 * tank/100 as a named dataset fails on lookup. 9165 */ 9166 objset_str = strchr(target, '/'); 9167 if (objset_str && strlen(objset_str) > 1 && 9168 zdb_numeric(objset_str + 1)) { 9169 char *endptr; 9170 errno = 0; 9171 objset_str++; 9172 objset_id = strtoull(objset_str, &endptr, 0); 9173 /* dataset 0 is the same as opening the pool */ 9174 if (errno == 0 && endptr != objset_str && 9175 objset_id != 0) { 9176 if (dump_opt['N']) 9177 dataset_lookup = B_TRUE; 9178 } 9179 /* normal dataset name not an objset ID */ 9180 if (endptr == objset_str) { 9181 objset_id = -1; 9182 } 9183 } else if (objset_str && !zdb_numeric(objset_str + 1) && 9184 dump_opt['N']) { 9185 printf("Supply a numeric objset ID with -N\n"); 9186 exit(1); 9187 } 9188 } else { 9189 target_pool = target; 9190 } 9191 9192 if (dump_opt['e']) { 9193 importargs_t args = { 0 }; 9194 9195 args.paths = nsearch; 9196 args.path = searchdirs; 9197 args.can_be_active = B_TRUE; 9198 9199 libpc_handle_t lpch = { 9200 .lpc_lib_handle = NULL, 9201 .lpc_ops = &libzpool_config_ops, 9202 .lpc_printerr = B_TRUE 9203 }; 9204 error = zpool_find_config(&lpch, target_pool, &cfg, &args); 9205 9206 if (error == 0) { 9207 9208 if (nvlist_add_nvlist(cfg, 9209 ZPOOL_LOAD_POLICY, policy) != 0) { 9210 fatal("can't open '%s': %s", 9211 target, strerror(ENOMEM)); 9212 } 9213 9214 if (dump_opt['C'] > 1) { 9215 (void) printf("\nConfiguration for import:\n"); 9216 dump_nvlist(cfg, 8); 9217 } 9218 9219 /* 9220 * Disable the activity check to allow examination of 9221 * active pools. 9222 */ 9223 error = spa_import(target_pool, cfg, NULL, 9224 flags | ZFS_IMPORT_SKIP_MMP); 9225 } 9226 } 9227 9228 if (searchdirs != NULL) { 9229 umem_free(searchdirs, nsearch * sizeof (char *)); 9230 searchdirs = NULL; 9231 } 9232 9233 /* 9234 * We need to make sure to process -O option or call 9235 * dump_path after the -e option has been processed, 9236 * which imports the pool to the namespace if it's 9237 * not in the cachefile. 9238 */ 9239 if (dump_opt['O']) { 9240 if (argc != 2) 9241 usage(); 9242 dump_opt['v'] = verbose + 3; 9243 return (dump_path(argv[0], argv[1], NULL)); 9244 } 9245 9246 if (dump_opt['r']) { 9247 target_is_spa = B_FALSE; 9248 if (argc != 3) 9249 usage(); 9250 dump_opt['v'] = verbose; 9251 error = dump_path(argv[0], argv[1], &object); 9252 if (error != 0) 9253 fatal("internal error: %s", strerror(error)); 9254 } 9255 9256 /* 9257 * import_checkpointed_state makes the assumption that the 9258 * target pool that we pass it is already part of the spa 9259 * namespace. Because of that we need to make sure to call 9260 * it always after the -e option has been processed, which 9261 * imports the pool to the namespace if it's not in the 9262 * cachefile. 9263 */ 9264 char *checkpoint_pool = NULL; 9265 char *checkpoint_target = NULL; 9266 if (dump_opt['k']) { 9267 checkpoint_pool = import_checkpointed_state(target, cfg, 9268 &checkpoint_target); 9269 9270 if (checkpoint_target != NULL) 9271 target = checkpoint_target; 9272 } 9273 9274 if (cfg != NULL) { 9275 nvlist_free(cfg); 9276 cfg = NULL; 9277 } 9278 9279 if (target_pool != target) 9280 free(target_pool); 9281 9282 if (error == 0) { 9283 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) { 9284 ASSERT(checkpoint_pool != NULL); 9285 ASSERT(checkpoint_target == NULL); 9286 9287 error = spa_open(checkpoint_pool, &spa, FTAG); 9288 if (error != 0) { 9289 fatal("Tried to open pool \"%s\" but " 9290 "spa_open() failed with error %d\n", 9291 checkpoint_pool, error); 9292 } 9293 9294 } else if (target_is_spa || dump_opt['R'] || dump_opt['B'] || 9295 objset_id == 0) { 9296 zdb_set_skip_mmp(target); 9297 error = spa_open_rewind(target, &spa, FTAG, policy, 9298 NULL); 9299 if (error) { 9300 /* 9301 * If we're missing the log device then 9302 * try opening the pool after clearing the 9303 * log state. 9304 */ 9305 mutex_enter(&spa_namespace_lock); 9306 if ((spa = spa_lookup(target)) != NULL && 9307 spa->spa_log_state == SPA_LOG_MISSING) { 9308 spa->spa_log_state = SPA_LOG_CLEAR; 9309 error = 0; 9310 } 9311 mutex_exit(&spa_namespace_lock); 9312 9313 if (!error) { 9314 error = spa_open_rewind(target, &spa, 9315 FTAG, policy, NULL); 9316 } 9317 } 9318 } else if (strpbrk(target, "#") != NULL) { 9319 dsl_pool_t *dp; 9320 error = dsl_pool_hold(target, FTAG, &dp); 9321 if (error != 0) { 9322 fatal("can't dump '%s': %s", target, 9323 strerror(error)); 9324 } 9325 error = dump_bookmark(dp, target, B_TRUE, verbose > 1); 9326 dsl_pool_rele(dp, FTAG); 9327 if (error != 0) { 9328 fatal("can't dump '%s': %s", target, 9329 strerror(error)); 9330 } 9331 return (error); 9332 } else { 9333 target_pool = strdup(target); 9334 if (strpbrk(target, "/@") != NULL) 9335 *strpbrk(target_pool, "/@") = '\0'; 9336 9337 zdb_set_skip_mmp(target); 9338 /* 9339 * If -N was supplied, the user has indicated that 9340 * zdb -d <pool>/<objsetID> is in effect. Otherwise 9341 * we first assume that the dataset string is the 9342 * dataset name. If dmu_objset_hold fails with the 9343 * dataset string, and we have an objset_id, retry the 9344 * lookup with the objsetID. 9345 */ 9346 boolean_t retry = B_TRUE; 9347 retry_lookup: 9348 if (dataset_lookup == B_TRUE) { 9349 /* 9350 * Use the supplied id to get the name 9351 * for open_objset. 9352 */ 9353 error = spa_open(target_pool, &spa, FTAG); 9354 if (error == 0) { 9355 error = name_from_objset_id(spa, 9356 objset_id, dsname); 9357 spa_close(spa, FTAG); 9358 if (error == 0) 9359 target = dsname; 9360 } 9361 } 9362 if (error == 0) { 9363 if (objset_id > 0 && retry) { 9364 int err = dmu_objset_hold(target, FTAG, 9365 &os); 9366 if (err) { 9367 dataset_lookup = B_TRUE; 9368 retry = B_FALSE; 9369 goto retry_lookup; 9370 } else { 9371 dmu_objset_rele(os, FTAG); 9372 } 9373 } 9374 error = open_objset(target, FTAG, &os); 9375 } 9376 if (error == 0) 9377 spa = dmu_objset_spa(os); 9378 free(target_pool); 9379 } 9380 } 9381 nvlist_free(policy); 9382 9383 if (error) 9384 fatal("can't open '%s': %s", target, strerror(error)); 9385 9386 /* 9387 * Set the pool failure mode to panic in order to prevent the pool 9388 * from suspending. A suspended I/O will have no way to resume and 9389 * can prevent the zdb(8) command from terminating as expected. 9390 */ 9391 if (spa != NULL) 9392 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 9393 9394 argv++; 9395 argc--; 9396 if (dump_opt['r']) { 9397 error = zdb_copy_object(os, object, argv[1]); 9398 } else if (!dump_opt['R']) { 9399 flagbits['d'] = ZOR_FLAG_DIRECTORY; 9400 flagbits['f'] = ZOR_FLAG_PLAIN_FILE; 9401 flagbits['m'] = ZOR_FLAG_SPACE_MAP; 9402 flagbits['z'] = ZOR_FLAG_ZAP; 9403 flagbits['A'] = ZOR_FLAG_ALL_TYPES; 9404 9405 if (argc > 0 && dump_opt['d']) { 9406 zopt_object_args = argc; 9407 zopt_object_ranges = calloc(zopt_object_args, 9408 sizeof (zopt_object_range_t)); 9409 for (unsigned i = 0; i < zopt_object_args; i++) { 9410 int err; 9411 const char *msg = NULL; 9412 9413 err = parse_object_range(argv[i], 9414 &zopt_object_ranges[i], &msg); 9415 if (err != 0) 9416 fatal("Bad object or range: '%s': %s\n", 9417 argv[i], msg ?: ""); 9418 } 9419 } else if (argc > 0 && dump_opt['m']) { 9420 zopt_metaslab_args = argc; 9421 zopt_metaslab = calloc(zopt_metaslab_args, 9422 sizeof (uint64_t)); 9423 for (unsigned i = 0; i < zopt_metaslab_args; i++) { 9424 errno = 0; 9425 zopt_metaslab[i] = strtoull(argv[i], NULL, 0); 9426 if (zopt_metaslab[i] == 0 && errno != 0) 9427 fatal("bad number %s: %s", argv[i], 9428 strerror(errno)); 9429 } 9430 } 9431 if (dump_opt['B']) { 9432 dump_backup(target, objset_id, 9433 argc > 0 ? argv[0] : NULL); 9434 } else if (os != NULL) { 9435 dump_objset(os); 9436 } else if (zopt_object_args > 0 && !dump_opt['m']) { 9437 dump_objset(spa->spa_meta_objset); 9438 } else { 9439 dump_zpool(spa); 9440 } 9441 } else { 9442 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; 9443 flagbits['c'] = ZDB_FLAG_CHECKSUM; 9444 flagbits['d'] = ZDB_FLAG_DECOMPRESS; 9445 flagbits['e'] = ZDB_FLAG_BSWAP; 9446 flagbits['g'] = ZDB_FLAG_GBH; 9447 flagbits['i'] = ZDB_FLAG_INDIRECT; 9448 flagbits['r'] = ZDB_FLAG_RAW; 9449 flagbits['v'] = ZDB_FLAG_VERBOSE; 9450 9451 for (int i = 0; i < argc; i++) 9452 zdb_read_block(argv[i], spa); 9453 } 9454 9455 if (dump_opt['k']) { 9456 free(checkpoint_pool); 9457 if (!target_is_spa) 9458 free(checkpoint_target); 9459 } 9460 9461 if (os != NULL) { 9462 close_objset(os, FTAG); 9463 } else { 9464 spa_close(spa, FTAG); 9465 } 9466 9467 fuid_table_destroy(); 9468 9469 dump_debug_buffer(); 9470 9471 kernel_fini(); 9472 9473 return (error); 9474 } 9475