1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Nexenta Systems, Inc. 28 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC. 29 * Copyright (c) 2015, 2017, Intel Corporation. 30 * Copyright (c) 2020 Datto Inc. 31 * Copyright (c) 2020, The FreeBSD Foundation [1] 32 * 33 * [1] Portions of this software were developed by Allan Jude 34 * under sponsorship from the FreeBSD Foundation. 35 * Copyright (c) 2021 Allan Jude 36 * Copyright (c) 2021 Toomas Soome <tsoome@me.com> 37 * Copyright (c) 2023, 2024, Klara Inc. 38 * Copyright (c) 2023, Rob Norris <robn@despairlabs.com> 39 */ 40 41 #include <stdio.h> 42 #include <unistd.h> 43 #include <stdlib.h> 44 #include <ctype.h> 45 #include <getopt.h> 46 #include <openssl/evp.h> 47 #include <sys/zfs_context.h> 48 #include <sys/spa.h> 49 #include <sys/spa_impl.h> 50 #include <sys/dmu.h> 51 #include <sys/zap.h> 52 #include <sys/zap_impl.h> 53 #include <sys/fs/zfs.h> 54 #include <sys/zfs_znode.h> 55 #include <sys/zfs_sa.h> 56 #include <sys/sa.h> 57 #include <sys/sa_impl.h> 58 #include <sys/vdev.h> 59 #include <sys/vdev_impl.h> 60 #include <sys/metaslab_impl.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/dsl_dir.h> 63 #include <sys/dsl_dataset.h> 64 #include <sys/dsl_pool.h> 65 #include <sys/dsl_bookmark.h> 66 #include <sys/dbuf.h> 67 #include <sys/zil.h> 68 #include <sys/zil_impl.h> 69 #include <sys/stat.h> 70 #include <sys/resource.h> 71 #include <sys/dmu_send.h> 72 #include <sys/dmu_traverse.h> 73 #include <sys/zio_checksum.h> 74 #include <sys/zio_compress.h> 75 #include <sys/zfs_fuid.h> 76 #include <sys/arc.h> 77 #include <sys/arc_impl.h> 78 #include <sys/ddt.h> 79 #include <sys/ddt_impl.h> 80 #include <sys/zfeature.h> 81 #include <sys/abd.h> 82 #include <sys/blkptr.h> 83 #include <sys/dsl_crypt.h> 84 #include <sys/dsl_scan.h> 85 #include <sys/btree.h> 86 #include <sys/brt.h> 87 #include <sys/brt_impl.h> 88 #include <zfs_comutil.h> 89 #include <sys/zstd/zstd.h> 90 #include <sys/backtrace.h> 91 92 #include <libnvpair.h> 93 #include <libzutil.h> 94 #include <libzfs_core.h> 95 96 #include <libzdb.h> 97 98 #include "zdb.h" 99 100 101 extern int reference_tracking_enable; 102 extern int zfs_recover; 103 extern uint_t zfs_vdev_async_read_max_active; 104 extern boolean_t spa_load_verify_dryrun; 105 extern boolean_t spa_mode_readable_spacemaps; 106 extern uint_t zfs_reconstruct_indirect_combinations_max; 107 extern uint_t zfs_btree_verify_intensity; 108 109 static const char cmdname[] = "zdb"; 110 uint8_t dump_opt[256]; 111 112 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); 113 114 static uint64_t *zopt_metaslab = NULL; 115 static unsigned zopt_metaslab_args = 0; 116 117 118 static zopt_object_range_t *zopt_object_ranges = NULL; 119 static unsigned zopt_object_args = 0; 120 121 static int flagbits[256]; 122 123 124 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */ 125 static int leaked_objects = 0; 126 static zfs_range_tree_t *mos_refd_objs; 127 static spa_t *spa; 128 static objset_t *os; 129 static boolean_t kernel_init_done; 130 static boolean_t corruption_found = B_FALSE; 131 132 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *, 133 boolean_t); 134 static void mos_obj_refd(uint64_t); 135 static void mos_obj_refd_multiple(uint64_t); 136 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free, 137 dmu_tx_t *tx); 138 139 140 141 static void zdb_print_blkptr(const blkptr_t *bp, int flags); 142 static void zdb_exit(int reason); 143 144 typedef struct sublivelist_verify_block_refcnt { 145 /* block pointer entry in livelist being verified */ 146 blkptr_t svbr_blk; 147 148 /* 149 * Refcount gets incremented to 1 when we encounter the first 150 * FREE entry for the svfbr block pointer and a node for it 151 * is created in our ZDB verification/tracking metadata. 152 * 153 * As we encounter more FREE entries we increment this counter 154 * and similarly decrement it whenever we find the respective 155 * ALLOC entries for this block. 156 * 157 * When the refcount gets to 0 it means that all the FREE and 158 * ALLOC entries of this block have paired up and we no longer 159 * need to track it in our verification logic (e.g. the node 160 * containing this struct in our verification data structure 161 * should be freed). 162 * 163 * [refer to sublivelist_verify_blkptr() for the actual code] 164 */ 165 uint32_t svbr_refcnt; 166 } sublivelist_verify_block_refcnt_t; 167 168 static int 169 sublivelist_block_refcnt_compare(const void *larg, const void *rarg) 170 { 171 const sublivelist_verify_block_refcnt_t *l = larg; 172 const sublivelist_verify_block_refcnt_t *r = rarg; 173 return (livelist_compare(&l->svbr_blk, &r->svbr_blk)); 174 } 175 176 static int 177 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free, 178 dmu_tx_t *tx) 179 { 180 ASSERT0P(tx); 181 struct sublivelist_verify *sv = arg; 182 sublivelist_verify_block_refcnt_t current = { 183 .svbr_blk = *bp, 184 185 /* 186 * Start with 1 in case this is the first free entry. 187 * This field is not used for our B-Tree comparisons 188 * anyway. 189 */ 190 .svbr_refcnt = 1, 191 }; 192 193 zfs_btree_index_t where; 194 sublivelist_verify_block_refcnt_t *pair = 195 zfs_btree_find(&sv->sv_pair, ¤t, &where); 196 if (free) { 197 if (pair == NULL) { 198 /* first free entry for this block pointer */ 199 zfs_btree_add(&sv->sv_pair, ¤t); 200 } else { 201 pair->svbr_refcnt++; 202 } 203 } else { 204 if (pair == NULL) { 205 /* block that is currently marked as allocated */ 206 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 207 if (DVA_IS_EMPTY(&bp->blk_dva[i])) 208 break; 209 sublivelist_verify_block_t svb = { 210 .svb_dva = bp->blk_dva[i], 211 .svb_allocated_txg = 212 BP_GET_BIRTH(bp) 213 }; 214 215 if (zfs_btree_find(&sv->sv_leftover, &svb, 216 &where) == NULL) { 217 zfs_btree_add_idx(&sv->sv_leftover, 218 &svb, &where); 219 } 220 } 221 } else { 222 /* alloc matches a free entry */ 223 pair->svbr_refcnt--; 224 if (pair->svbr_refcnt == 0) { 225 /* all allocs and frees have been matched */ 226 zfs_btree_remove_idx(&sv->sv_pair, &where); 227 } 228 } 229 } 230 231 return (0); 232 } 233 234 static int 235 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle) 236 { 237 int err; 238 struct sublivelist_verify *sv = args; 239 240 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL, 241 sizeof (sublivelist_verify_block_refcnt_t)); 242 243 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr, 244 sv, NULL); 245 246 sublivelist_verify_block_refcnt_t *e; 247 zfs_btree_index_t *cookie = NULL; 248 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) { 249 char blkbuf[BP_SPRINTF_LEN]; 250 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 251 &e->svbr_blk, B_TRUE); 252 (void) printf("\tERROR: %d unmatched FREE(s): %s\n", 253 e->svbr_refcnt, blkbuf); 254 corruption_found = B_TRUE; 255 } 256 zfs_btree_destroy(&sv->sv_pair); 257 258 return (err); 259 } 260 261 static int 262 livelist_block_compare(const void *larg, const void *rarg) 263 { 264 const sublivelist_verify_block_t *l = larg; 265 const sublivelist_verify_block_t *r = rarg; 266 267 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva)) 268 return (-1); 269 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva)) 270 return (+1); 271 272 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva)) 273 return (-1); 274 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva)) 275 return (+1); 276 277 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva)) 278 return (-1); 279 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva)) 280 return (+1); 281 282 return (0); 283 } 284 285 /* 286 * Check for errors in a livelist while tracking all unfreed ALLOCs in the 287 * sublivelist_verify_t: sv->sv_leftover 288 */ 289 static void 290 livelist_verify(dsl_deadlist_t *dl, void *arg) 291 { 292 sublivelist_verify_t *sv = arg; 293 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv); 294 } 295 296 /* 297 * Check for errors in the livelist entry and discard the intermediary 298 * data structures 299 */ 300 static int 301 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle) 302 { 303 (void) args; 304 sublivelist_verify_t sv; 305 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 306 sizeof (sublivelist_verify_block_t)); 307 int err = sublivelist_verify_func(&sv, dle); 308 zfs_btree_clear(&sv.sv_leftover); 309 zfs_btree_destroy(&sv.sv_leftover); 310 return (err); 311 } 312 313 typedef struct metaslab_verify { 314 /* 315 * Tree containing all the leftover ALLOCs from the livelists 316 * that are part of this metaslab. 317 */ 318 zfs_btree_t mv_livelist_allocs; 319 320 /* 321 * Metaslab information. 322 */ 323 uint64_t mv_vdid; 324 uint64_t mv_msid; 325 uint64_t mv_start; 326 uint64_t mv_end; 327 328 /* 329 * What's currently allocated for this metaslab. 330 */ 331 zfs_range_tree_t *mv_allocated; 332 } metaslab_verify_t; 333 334 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg); 335 336 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg, 337 void *arg); 338 339 typedef struct unflushed_iter_cb_arg { 340 spa_t *uic_spa; 341 uint64_t uic_txg; 342 void *uic_arg; 343 zdb_log_sm_cb_t uic_cb; 344 } unflushed_iter_cb_arg_t; 345 346 static int 347 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg) 348 { 349 unflushed_iter_cb_arg_t *uic = arg; 350 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg)); 351 } 352 353 static void 354 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg) 355 { 356 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 357 return; 358 359 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 360 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 361 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 362 space_map_t *sm = NULL; 363 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 364 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 365 366 unflushed_iter_cb_arg_t uic = { 367 .uic_spa = spa, 368 .uic_txg = sls->sls_txg, 369 .uic_arg = arg, 370 .uic_cb = cb 371 }; 372 VERIFY0(space_map_iterate(sm, space_map_length(sm), 373 iterate_through_spacemap_logs_cb, &uic)); 374 space_map_close(sm); 375 } 376 spa_config_exit(spa, SCL_CONFIG, FTAG); 377 } 378 379 static void 380 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg, 381 uint64_t offset, uint64_t size) 382 { 383 sublivelist_verify_block_t svb = {{{0}}}; 384 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid); 385 DVA_SET_OFFSET(&svb.svb_dva, offset); 386 DVA_SET_ASIZE(&svb.svb_dva, size); 387 zfs_btree_index_t where; 388 uint64_t end_offset = offset + size; 389 390 /* 391 * Look for an exact match for spacemap entry in the livelist entries. 392 * Then, look for other livelist entries that fall within the range 393 * of the spacemap entry as it may have been condensed 394 */ 395 sublivelist_verify_block_t *found = 396 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where); 397 if (found == NULL) { 398 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where); 399 } 400 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid && 401 DVA_GET_OFFSET(&found->svb_dva) < end_offset; 402 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 403 if (found->svb_allocated_txg <= txg) { 404 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] " 405 "from TXG %llx FREED at TXG %llx\n", 406 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva), 407 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva), 408 (u_longlong_t)found->svb_allocated_txg, 409 (u_longlong_t)txg); 410 corruption_found = B_TRUE; 411 } 412 } 413 } 414 415 static int 416 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg) 417 { 418 metaslab_verify_t *mv = arg; 419 uint64_t offset = sme->sme_offset; 420 uint64_t size = sme->sme_run; 421 uint64_t txg = sme->sme_txg; 422 423 if (sme->sme_type == SM_ALLOC) { 424 if (zfs_range_tree_contains(mv->mv_allocated, 425 offset, size)) { 426 (void) printf("ERROR: DOUBLE ALLOC: " 427 "%llu [%llx:%llx] " 428 "%llu:%llu LOG_SM\n", 429 (u_longlong_t)txg, (u_longlong_t)offset, 430 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 431 (u_longlong_t)mv->mv_msid); 432 corruption_found = B_TRUE; 433 } else { 434 zfs_range_tree_add(mv->mv_allocated, 435 offset, size); 436 } 437 } else { 438 if (!zfs_range_tree_contains(mv->mv_allocated, 439 offset, size)) { 440 (void) printf("ERROR: DOUBLE FREE: " 441 "%llu [%llx:%llx] " 442 "%llu:%llu LOG_SM\n", 443 (u_longlong_t)txg, (u_longlong_t)offset, 444 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 445 (u_longlong_t)mv->mv_msid); 446 corruption_found = B_TRUE; 447 } else { 448 zfs_range_tree_remove(mv->mv_allocated, 449 offset, size); 450 } 451 } 452 453 if (sme->sme_type != SM_ALLOC) { 454 /* 455 * If something is freed in the spacemap, verify that 456 * it is not listed as allocated in the livelist. 457 */ 458 verify_livelist_allocs(mv, txg, offset, size); 459 } 460 return (0); 461 } 462 463 static int 464 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme, 465 uint64_t txg, void *arg) 466 { 467 metaslab_verify_t *mv = arg; 468 uint64_t offset = sme->sme_offset; 469 uint64_t vdev_id = sme->sme_vdev; 470 471 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 472 473 /* skip indirect vdevs */ 474 if (!vdev_is_concrete(vd)) 475 return (0); 476 477 if (vdev_id != mv->mv_vdid) 478 return (0); 479 480 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 481 if (ms->ms_id != mv->mv_msid) 482 return (0); 483 484 if (txg < metaslab_unflushed_txg(ms)) 485 return (0); 486 487 488 ASSERT3U(txg, ==, sme->sme_txg); 489 return (metaslab_spacemap_validation_cb(sme, mv)); 490 } 491 492 static void 493 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv) 494 { 495 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv); 496 } 497 498 static void 499 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv) 500 { 501 if (sm == NULL) 502 return; 503 504 VERIFY0(space_map_iterate(sm, space_map_length(sm), 505 metaslab_spacemap_validation_cb, mv)); 506 } 507 508 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg); 509 510 /* 511 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if 512 * they are part of that metaslab (mv_msid). 513 */ 514 static void 515 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv) 516 { 517 zfs_btree_index_t where; 518 sublivelist_verify_block_t *svb; 519 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0); 520 for (svb = zfs_btree_first(&sv->sv_leftover, &where); 521 svb != NULL; 522 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) { 523 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid) 524 continue; 525 526 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start && 527 (DVA_GET_OFFSET(&svb->svb_dva) + 528 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) { 529 (void) printf("ERROR: Found block that crosses " 530 "metaslab boundary: <%llu:%llx:%llx>\n", 531 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 532 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 533 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 534 corruption_found = B_TRUE; 535 continue; 536 } 537 538 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start) 539 continue; 540 541 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end) 542 continue; 543 544 if ((DVA_GET_OFFSET(&svb->svb_dva) + 545 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) { 546 (void) printf("ERROR: Found block that crosses " 547 "metaslab boundary: <%llu:%llx:%llx>\n", 548 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 549 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 550 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 551 corruption_found = B_TRUE; 552 continue; 553 } 554 555 zfs_btree_add(&mv->mv_livelist_allocs, svb); 556 } 557 558 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where); 559 svb != NULL; 560 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 561 zfs_btree_remove(&sv->sv_leftover, svb); 562 } 563 } 564 565 /* 566 * [Livelist Check] 567 * Iterate through all the sublivelists and: 568 * - report leftover frees (**) 569 * - record leftover ALLOCs together with their TXG [see Cross Check] 570 * 571 * (**) Note: Double ALLOCs are valid in datasets that have dedup 572 * enabled. Similarly double FREEs are allowed as well but 573 * only if they pair up with a corresponding ALLOC entry once 574 * we our done with our sublivelist iteration. 575 * 576 * [Spacemap Check] 577 * for each metaslab: 578 * - iterate over spacemap and then the metaslab's entries in the 579 * spacemap log, then report any double FREEs and ALLOCs (do not 580 * blow up). 581 * 582 * [Cross Check] 583 * After finishing the Livelist Check phase and while being in the 584 * Spacemap Check phase, we find all the recorded leftover ALLOCs 585 * of the livelist check that are part of the metaslab that we are 586 * currently looking at in the Spacemap Check. We report any entries 587 * that are marked as ALLOCs in the livelists but have been actually 588 * freed (and potentially allocated again) after their TXG stamp in 589 * the spacemaps. Also report any ALLOCs from the livelists that 590 * belong to indirect vdevs (e.g. their vdev completed removal). 591 * 592 * Note that this will miss Log Spacemap entries that cancelled each other 593 * out before being flushed to the metaslab, so we are not guaranteed 594 * to match all erroneous ALLOCs. 595 */ 596 static void 597 livelist_metaslab_validate(spa_t *spa) 598 { 599 (void) printf("Verifying deleted livelist entries\n"); 600 601 sublivelist_verify_t sv; 602 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 603 sizeof (sublivelist_verify_block_t)); 604 iterate_deleted_livelists(spa, livelist_verify, &sv); 605 606 (void) printf("Verifying metaslab entries\n"); 607 vdev_t *rvd = spa->spa_root_vdev; 608 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 609 vdev_t *vd = rvd->vdev_child[c]; 610 611 if (!vdev_is_concrete(vd)) 612 continue; 613 614 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) { 615 metaslab_t *m = vd->vdev_ms[mid]; 616 617 (void) fprintf(stderr, 618 "\rverifying concrete vdev %llu, " 619 "metaslab %llu of %llu ...", 620 (longlong_t)vd->vdev_id, 621 (longlong_t)mid, 622 (longlong_t)vd->vdev_ms_count); 623 624 uint64_t shift, start; 625 zfs_range_seg_type_t type = 626 metaslab_calculate_range_tree_type(vd, m, 627 &start, &shift); 628 metaslab_verify_t mv; 629 mv.mv_allocated = zfs_range_tree_create_flags( 630 NULL, type, NULL, start, shift, 631 0, "livelist_metaslab_validate:mv_allocated"); 632 mv.mv_vdid = vd->vdev_id; 633 mv.mv_msid = m->ms_id; 634 mv.mv_start = m->ms_start; 635 mv.mv_end = m->ms_start + m->ms_size; 636 zfs_btree_create(&mv.mv_livelist_allocs, 637 livelist_block_compare, NULL, 638 sizeof (sublivelist_verify_block_t)); 639 640 mv_populate_livelist_allocs(&mv, &sv); 641 642 spacemap_check_ms_sm(m->ms_sm, &mv); 643 spacemap_check_sm_log(spa, &mv); 644 645 zfs_range_tree_vacate(mv.mv_allocated, NULL, NULL); 646 zfs_range_tree_destroy(mv.mv_allocated); 647 zfs_btree_clear(&mv.mv_livelist_allocs); 648 zfs_btree_destroy(&mv.mv_livelist_allocs); 649 } 650 } 651 (void) fprintf(stderr, "\n"); 652 653 /* 654 * If there are any segments in the leftover tree after we walked 655 * through all the metaslabs in the concrete vdevs then this means 656 * that we have segments in the livelists that belong to indirect 657 * vdevs and are marked as allocated. 658 */ 659 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) { 660 zfs_btree_destroy(&sv.sv_leftover); 661 return; 662 } 663 (void) printf("ERROR: Found livelist blocks marked as allocated " 664 "for indirect vdevs:\n"); 665 corruption_found = B_TRUE; 666 667 zfs_btree_index_t *where = NULL; 668 sublivelist_verify_block_t *svb; 669 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) != 670 NULL) { 671 int vdev_id = DVA_GET_VDEV(&svb->svb_dva); 672 ASSERT3U(vdev_id, <, rvd->vdev_children); 673 vdev_t *vd = rvd->vdev_child[vdev_id]; 674 ASSERT(!vdev_is_concrete(vd)); 675 (void) printf("<%d:%llx:%llx> TXG %llx\n", 676 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 677 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva), 678 (u_longlong_t)svb->svb_allocated_txg); 679 } 680 (void) printf("\n"); 681 zfs_btree_destroy(&sv.sv_leftover); 682 } 683 684 /* 685 * These libumem hooks provide a reasonable set of defaults for the allocator's 686 * debugging facilities. 687 */ 688 const char * 689 _umem_debug_init(void) 690 { 691 return ("default,verbose"); /* $UMEM_DEBUG setting */ 692 } 693 694 const char * 695 _umem_logging_init(void) 696 { 697 return ("fail,contents"); /* $UMEM_LOGGING setting */ 698 } 699 700 static void 701 usage(void) 702 { 703 (void) fprintf(stderr, 704 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] " 705 "[-I <inflight I/Os>]\n" 706 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 707 "\t\t[-K <key>]\n" 708 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n" 709 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n" 710 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n" 711 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n" 712 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 713 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n" 714 "\t%s [-v] <bookmark>\n" 715 "\t%s -C [-A] [-U <cache>] [<poolname>]\n" 716 "\t%s -l [-Aqu] <device>\n" 717 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] " 718 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n" 719 "\t%s -O [-K <key>] <dataset> <path>\n" 720 "\t%s -r [-K <key>] <dataset> <path> <destination>\n" 721 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 722 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n" 723 "\t%s -E [-A] word0:word1:...:word15\n" 724 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] " 725 "<poolname>\n\n", 726 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, 727 cmdname, cmdname, cmdname, cmdname, cmdname); 728 729 (void) fprintf(stderr, " Dataset name must include at least one " 730 "separator character '/' or '@'\n"); 731 (void) fprintf(stderr, " If dataset name is specified, only that " 732 "dataset is dumped\n"); 733 (void) fprintf(stderr, " If object numbers or object number " 734 "ranges are specified, only those\n" 735 " objects or ranges are dumped.\n\n"); 736 (void) fprintf(stderr, 737 " Object ranges take the form <start>:<end>[:<flags>]\n" 738 " start Starting object number\n" 739 " end Ending object number, or -1 for no upper bound\n" 740 " flags Optional flags to select object types:\n" 741 " A All objects (this is the default)\n" 742 " d ZFS directories\n" 743 " f ZFS files \n" 744 " m SPA space maps\n" 745 " z ZAPs\n" 746 " - Negate effect of next flag\n\n"); 747 (void) fprintf(stderr, " Options to control amount of output:\n"); 748 (void) fprintf(stderr, " -b --block-stats " 749 "block statistics\n"); 750 (void) fprintf(stderr, " -B --backup " 751 "backup stream\n"); 752 (void) fprintf(stderr, " -c --checksum " 753 "checksum all metadata (twice for all data) blocks\n"); 754 (void) fprintf(stderr, " -C --config " 755 "config (or cachefile if alone)\n"); 756 (void) fprintf(stderr, " -d --datasets " 757 "dataset(s)\n"); 758 (void) fprintf(stderr, " -D --dedup-stats " 759 "dedup statistics\n"); 760 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n" 761 " decode and display block " 762 "from an embedded block pointer\n"); 763 (void) fprintf(stderr, " -h --history " 764 "pool history\n"); 765 (void) fprintf(stderr, " -i --intent-logs " 766 "intent logs\n"); 767 (void) fprintf(stderr, " -l --label " 768 "read label contents\n"); 769 (void) fprintf(stderr, " -k --checkpointed-state " 770 "examine the checkpointed state of the pool\n"); 771 (void) fprintf(stderr, " -L --disable-leak-tracking " 772 "disable leak tracking (do not load spacemaps)\n"); 773 (void) fprintf(stderr, " -m --metaslabs " 774 "metaslabs\n"); 775 (void) fprintf(stderr, " -M --metaslab-groups " 776 "metaslab groups\n"); 777 (void) fprintf(stderr, " -O --object-lookups " 778 "perform object lookups by path\n"); 779 (void) fprintf(stderr, " -r --copy-object " 780 "copy an object by path to file\n"); 781 (void) fprintf(stderr, " -R --read-block " 782 "read and display block from a device\n"); 783 (void) fprintf(stderr, " -s --io-stats " 784 "report stats on zdb's I/O\n"); 785 (void) fprintf(stderr, " -S --simulate-dedup " 786 "simulate dedup to measure effect\n"); 787 (void) fprintf(stderr, " -v --verbose " 788 "verbose (applies to all others)\n"); 789 (void) fprintf(stderr, " -y --livelist " 790 "perform livelist and metaslab validation on any livelists being " 791 "deleted\n\n"); 792 (void) fprintf(stderr, " Below options are intended for use " 793 "with other options:\n"); 794 (void) fprintf(stderr, " -A --ignore-assertions " 795 "ignore assertions (-A), enable panic recovery (-AA) or both " 796 "(-AAA)\n"); 797 (void) fprintf(stderr, " -e --exported " 798 "pool is exported/destroyed/has altroot/not in a cachefile\n"); 799 (void) fprintf(stderr, " -F --automatic-rewind " 800 "attempt automatic rewind within safe range of transaction " 801 "groups\n"); 802 (void) fprintf(stderr, " -G --dump-debug-msg " 803 "dump zfs_dbgmsg buffer before exiting\n"); 804 (void) fprintf(stderr, " -I --inflight=INTEGER " 805 "specify the maximum number of checksumming I/Os " 806 "[default is 200]\n"); 807 (void) fprintf(stderr, " -K --key=KEY " 808 "decryption key for encrypted dataset\n"); 809 (void) fprintf(stderr, " -o --option=\"NAME=VALUE\" " 810 "set the named tunable to the given value\n"); 811 (void) fprintf(stderr, " -p --path==PATH " 812 "use one or more with -e to specify path to vdev dir\n"); 813 (void) fprintf(stderr, " -P --parseable " 814 "print numbers in parseable form\n"); 815 (void) fprintf(stderr, " -q --skip-label " 816 "don't print label contents\n"); 817 (void) fprintf(stderr, " -t --txg=INTEGER " 818 "highest txg to use when searching for uberblocks\n"); 819 (void) fprintf(stderr, " -T --brt-stats " 820 "BRT statistics\n"); 821 (void) fprintf(stderr, " -u --uberblock " 822 "uberblock\n"); 823 (void) fprintf(stderr, " -U --cachefile=PATH " 824 "use alternate cachefile\n"); 825 (void) fprintf(stderr, " -V --verbatim " 826 "do verbatim import\n"); 827 (void) fprintf(stderr, " -x --dump-blocks=PATH " 828 "dump all read blocks into specified directory\n"); 829 (void) fprintf(stderr, " -X --extreme-rewind " 830 "attempt extreme rewind (does not work with dataset)\n"); 831 (void) fprintf(stderr, " -Y --all-reconstruction " 832 "attempt all reconstruction combinations for split blocks\n"); 833 (void) fprintf(stderr, " -Z --zstd-headers " 834 "show ZSTD headers \n"); 835 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " 836 "to make only that option verbose\n"); 837 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); 838 zdb_exit(2); 839 } 840 841 static void 842 dump_debug_buffer(void) 843 { 844 ssize_t ret __attribute__((unused)); 845 846 if (!dump_opt['G']) 847 return; 848 /* 849 * We use write() instead of printf() so that this function 850 * is safe to call from a signal handler. 851 */ 852 ret = write(STDERR_FILENO, "\n", 1); 853 zfs_dbgmsg_print(STDERR_FILENO, "zdb"); 854 } 855 856 static void sig_handler(int signo) 857 { 858 struct sigaction action; 859 860 libspl_backtrace(STDERR_FILENO); 861 dump_debug_buffer(); 862 863 /* 864 * Restore default action and re-raise signal so SIGSEGV and 865 * SIGABRT can trigger a core dump. 866 */ 867 action.sa_handler = SIG_DFL; 868 sigemptyset(&action.sa_mask); 869 action.sa_flags = 0; 870 (void) sigaction(signo, &action, NULL); 871 raise(signo); 872 } 873 874 /* 875 * Called for usage errors that are discovered after a call to spa_open(), 876 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. 877 */ 878 879 static void 880 fatal(const char *fmt, ...) 881 { 882 va_list ap; 883 884 va_start(ap, fmt); 885 (void) fprintf(stderr, "%s: ", cmdname); 886 (void) vfprintf(stderr, fmt, ap); 887 va_end(ap); 888 (void) fprintf(stderr, "\n"); 889 890 dump_debug_buffer(); 891 892 zdb_exit(1); 893 } 894 895 static void 896 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) 897 { 898 (void) size; 899 nvlist_t *nv; 900 size_t nvsize = *(uint64_t *)data; 901 char *packed = umem_alloc(nvsize, UMEM_NOFAIL); 902 903 VERIFY0(dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); 904 905 VERIFY0(nvlist_unpack(packed, nvsize, &nv, 0)); 906 907 umem_free(packed, nvsize); 908 909 dump_nvlist(nv, 8); 910 911 nvlist_free(nv); 912 } 913 914 static void 915 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) 916 { 917 (void) os, (void) object, (void) size; 918 spa_history_phys_t *shp = data; 919 920 if (shp == NULL) 921 return; 922 923 (void) printf("\t\tpool_create_len = %llu\n", 924 (u_longlong_t)shp->sh_pool_create_len); 925 (void) printf("\t\tphys_max_off = %llu\n", 926 (u_longlong_t)shp->sh_phys_max_off); 927 (void) printf("\t\tbof = %llu\n", 928 (u_longlong_t)shp->sh_bof); 929 (void) printf("\t\teof = %llu\n", 930 (u_longlong_t)shp->sh_eof); 931 (void) printf("\t\trecords_lost = %llu\n", 932 (u_longlong_t)shp->sh_records_lost); 933 } 934 935 static void 936 zdb_nicenum(uint64_t num, char *buf, size_t buflen) 937 { 938 if (dump_opt['P']) 939 (void) snprintf(buf, buflen, "%llu", (longlong_t)num); 940 else 941 nicenum(num, buf, buflen); 942 } 943 944 static void 945 zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen) 946 { 947 if (dump_opt['P']) 948 (void) snprintf(buf, buflen, "%llu", (longlong_t)bytes); 949 else 950 zfs_nicebytes(bytes, buf, buflen); 951 } 952 953 static const char histo_stars[] = "****************************************"; 954 static const uint64_t histo_width = sizeof (histo_stars) - 1; 955 956 static void 957 dump_histogram(const uint64_t *histo, int size, int offset) 958 { 959 int i; 960 int minidx = size - 1; 961 int maxidx = 0; 962 uint64_t max = 0; 963 964 for (i = 0; i < size; i++) { 965 if (histo[i] == 0) 966 continue; 967 if (histo[i] > max) 968 max = histo[i]; 969 if (i > maxidx) 970 maxidx = i; 971 if (i < minidx) 972 minidx = i; 973 } 974 975 if (max < histo_width) 976 max = histo_width; 977 978 for (i = minidx; i <= maxidx; i++) { 979 (void) printf("\t\t\t%3u: %6llu %s\n", 980 i + offset, (u_longlong_t)histo[i], 981 &histo_stars[(max - histo[i]) * histo_width / max]); 982 } 983 } 984 985 static void 986 dump_zap_stats(objset_t *os, uint64_t object) 987 { 988 int error; 989 zap_stats_t zs; 990 991 error = zap_get_stats(os, object, &zs); 992 if (error) 993 return; 994 995 if (zs.zs_ptrtbl_len == 0) { 996 ASSERT(zs.zs_num_blocks == 1); 997 (void) printf("\tmicrozap: %llu bytes, %llu entries\n", 998 (u_longlong_t)zs.zs_blocksize, 999 (u_longlong_t)zs.zs_num_entries); 1000 return; 1001 } 1002 1003 (void) printf("\tFat ZAP stats:\n"); 1004 1005 (void) printf("\t\tPointer table:\n"); 1006 (void) printf("\t\t\t%llu elements\n", 1007 (u_longlong_t)zs.zs_ptrtbl_len); 1008 (void) printf("\t\t\tzt_blk: %llu\n", 1009 (u_longlong_t)zs.zs_ptrtbl_zt_blk); 1010 (void) printf("\t\t\tzt_numblks: %llu\n", 1011 (u_longlong_t)zs.zs_ptrtbl_zt_numblks); 1012 (void) printf("\t\t\tzt_shift: %llu\n", 1013 (u_longlong_t)zs.zs_ptrtbl_zt_shift); 1014 (void) printf("\t\t\tzt_blks_copied: %llu\n", 1015 (u_longlong_t)zs.zs_ptrtbl_blks_copied); 1016 (void) printf("\t\t\tzt_nextblk: %llu\n", 1017 (u_longlong_t)zs.zs_ptrtbl_nextblk); 1018 1019 (void) printf("\t\tZAP entries: %llu\n", 1020 (u_longlong_t)zs.zs_num_entries); 1021 (void) printf("\t\tLeaf blocks: %llu\n", 1022 (u_longlong_t)zs.zs_num_leafs); 1023 (void) printf("\t\tTotal blocks: %llu\n", 1024 (u_longlong_t)zs.zs_num_blocks); 1025 (void) printf("\t\tzap_block_type: 0x%llx\n", 1026 (u_longlong_t)zs.zs_block_type); 1027 (void) printf("\t\tzap_magic: 0x%llx\n", 1028 (u_longlong_t)zs.zs_magic); 1029 (void) printf("\t\tzap_salt: 0x%llx\n", 1030 (u_longlong_t)zs.zs_salt); 1031 1032 (void) printf("\t\tLeafs with 2^n pointers:\n"); 1033 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); 1034 1035 (void) printf("\t\tBlocks with n*5 entries:\n"); 1036 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); 1037 1038 (void) printf("\t\tBlocks n/10 full:\n"); 1039 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); 1040 1041 (void) printf("\t\tEntries with n chunks:\n"); 1042 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); 1043 1044 (void) printf("\t\tBuckets with n entries:\n"); 1045 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); 1046 } 1047 1048 static void 1049 dump_none(objset_t *os, uint64_t object, void *data, size_t size) 1050 { 1051 (void) os, (void) object, (void) data, (void) size; 1052 } 1053 1054 static void 1055 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) 1056 { 1057 (void) os, (void) object, (void) data, (void) size; 1058 (void) printf("\tUNKNOWN OBJECT TYPE\n"); 1059 } 1060 1061 static void 1062 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) 1063 { 1064 (void) os, (void) object, (void) data, (void) size; 1065 } 1066 1067 static void 1068 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) 1069 { 1070 uint64_t *arr; 1071 uint64_t oursize; 1072 if (dump_opt['d'] < 6) 1073 return; 1074 1075 if (data == NULL) { 1076 dmu_object_info_t doi; 1077 1078 VERIFY0(dmu_object_info(os, object, &doi)); 1079 size = doi.doi_max_offset; 1080 /* 1081 * We cap the size at 1 mebibyte here to prevent 1082 * allocation failures and nigh-infinite printing if the 1083 * object is extremely large. 1084 */ 1085 oursize = MIN(size, 1 << 20); 1086 arr = kmem_alloc(oursize, KM_SLEEP); 1087 1088 int err = dmu_read(os, object, 0, oursize, arr, 0); 1089 if (err != 0) { 1090 (void) printf("got error %u from dmu_read\n", err); 1091 kmem_free(arr, oursize); 1092 return; 1093 } 1094 } else { 1095 /* 1096 * Even though the allocation is already done in this code path, 1097 * we still cap the size to prevent excessive printing. 1098 */ 1099 oursize = MIN(size, 1 << 20); 1100 arr = data; 1101 } 1102 1103 if (size == 0) { 1104 if (data == NULL) 1105 kmem_free(arr, oursize); 1106 (void) printf("\t\t[]\n"); 1107 return; 1108 } 1109 1110 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]); 1111 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) { 1112 if (i % 4 != 0) 1113 (void) printf(", %0llx", (u_longlong_t)arr[i]); 1114 else 1115 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]); 1116 } 1117 if (oursize != size) 1118 (void) printf(", ... "); 1119 (void) printf("]\n"); 1120 1121 if (data == NULL) 1122 kmem_free(arr, oursize); 1123 } 1124 1125 static void 1126 dump_zap(objset_t *os, uint64_t object, void *data, size_t size) 1127 { 1128 (void) data, (void) size; 1129 zap_cursor_t zc; 1130 zap_attribute_t *attrp = zap_attribute_long_alloc(); 1131 void *prop; 1132 unsigned i; 1133 1134 dump_zap_stats(os, object); 1135 (void) printf("\n"); 1136 1137 for (zap_cursor_init(&zc, os, object); 1138 zap_cursor_retrieve(&zc, attrp) == 0; 1139 zap_cursor_advance(&zc)) { 1140 boolean_t key64 = 1141 !!(zap_getflags(zc.zc_zap) & ZAP_FLAG_UINT64_KEY); 1142 1143 if (key64) 1144 (void) printf("\t\t0x%010" PRIu64 "x = ", 1145 *(uint64_t *)attrp->za_name); 1146 else 1147 (void) printf("\t\t%s = ", attrp->za_name); 1148 1149 if (attrp->za_num_integers == 0) { 1150 (void) printf("\n"); 1151 continue; 1152 } 1153 prop = umem_zalloc(attrp->za_num_integers * 1154 attrp->za_integer_length, UMEM_NOFAIL); 1155 1156 if (key64) 1157 (void) zap_lookup_uint64(os, object, 1158 (const uint64_t *)attrp->za_name, 1, 1159 attrp->za_integer_length, attrp->za_num_integers, 1160 prop); 1161 else 1162 (void) zap_lookup(os, object, attrp->za_name, 1163 attrp->za_integer_length, attrp->za_num_integers, 1164 prop); 1165 1166 if (attrp->za_integer_length == 1 && !key64) { 1167 if (strcmp(attrp->za_name, 1168 DSL_CRYPTO_KEY_MASTER_KEY) == 0 || 1169 strcmp(attrp->za_name, 1170 DSL_CRYPTO_KEY_HMAC_KEY) == 0 || 1171 strcmp(attrp->za_name, DSL_CRYPTO_KEY_IV) == 0 || 1172 strcmp(attrp->za_name, DSL_CRYPTO_KEY_MAC) == 0 || 1173 strcmp(attrp->za_name, 1174 DMU_POOL_CHECKSUM_SALT) == 0) { 1175 uint8_t *u8 = prop; 1176 1177 for (i = 0; i < attrp->za_num_integers; i++) { 1178 (void) printf("%02x", u8[i]); 1179 } 1180 } else { 1181 (void) printf("%s", (char *)prop); 1182 } 1183 } else { 1184 for (i = 0; i < attrp->za_num_integers; i++) { 1185 switch (attrp->za_integer_length) { 1186 case 1: 1187 (void) printf("%u ", 1188 ((uint8_t *)prop)[i]); 1189 break; 1190 case 2: 1191 (void) printf("%u ", 1192 ((uint16_t *)prop)[i]); 1193 break; 1194 case 4: 1195 (void) printf("%u ", 1196 ((uint32_t *)prop)[i]); 1197 break; 1198 case 8: 1199 (void) printf("%lld ", 1200 (u_longlong_t)((int64_t *)prop)[i]); 1201 break; 1202 } 1203 } 1204 } 1205 (void) printf("\n"); 1206 umem_free(prop, 1207 attrp->za_num_integers * attrp->za_integer_length); 1208 } 1209 zap_cursor_fini(&zc); 1210 zap_attribute_free(attrp); 1211 } 1212 1213 static void 1214 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) 1215 { 1216 bpobj_phys_t *bpop = data; 1217 uint64_t i; 1218 char bytes[32], comp[32], uncomp[32]; 1219 1220 /* make sure the output won't get truncated */ 1221 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 1222 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 1223 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 1224 1225 if (bpop == NULL) 1226 return; 1227 1228 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes)); 1229 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp)); 1230 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp)); 1231 1232 (void) printf("\t\tnum_blkptrs = %llu\n", 1233 (u_longlong_t)bpop->bpo_num_blkptrs); 1234 (void) printf("\t\tbytes = %s\n", bytes); 1235 if (size >= BPOBJ_SIZE_V1) { 1236 (void) printf("\t\tcomp = %s\n", comp); 1237 (void) printf("\t\tuncomp = %s\n", uncomp); 1238 } 1239 if (size >= BPOBJ_SIZE_V2) { 1240 (void) printf("\t\tsubobjs = %llu\n", 1241 (u_longlong_t)bpop->bpo_subobjs); 1242 (void) printf("\t\tnum_subobjs = %llu\n", 1243 (u_longlong_t)bpop->bpo_num_subobjs); 1244 } 1245 if (size >= sizeof (*bpop)) { 1246 (void) printf("\t\tnum_freed = %llu\n", 1247 (u_longlong_t)bpop->bpo_num_freed); 1248 } 1249 1250 if (dump_opt['d'] < 5) 1251 return; 1252 1253 for (i = 0; i < bpop->bpo_num_blkptrs; i++) { 1254 char blkbuf[BP_SPRINTF_LEN]; 1255 blkptr_t bp; 1256 1257 int err = dmu_read(os, object, 1258 i * sizeof (bp), sizeof (bp), &bp, 0); 1259 if (err != 0) { 1260 (void) printf("got error %u from dmu_read\n", err); 1261 break; 1262 } 1263 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp, 1264 BP_GET_FREE(&bp)); 1265 (void) printf("\t%s\n", blkbuf); 1266 } 1267 } 1268 1269 static void 1270 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) 1271 { 1272 (void) data, (void) size; 1273 dmu_object_info_t doi; 1274 int64_t i; 1275 1276 VERIFY0(dmu_object_info(os, object, &doi)); 1277 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); 1278 1279 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); 1280 if (err != 0) { 1281 (void) printf("got error %u from dmu_read\n", err); 1282 kmem_free(subobjs, doi.doi_max_offset); 1283 return; 1284 } 1285 1286 int64_t last_nonzero = -1; 1287 for (i = 0; i < doi.doi_max_offset / 8; i++) { 1288 if (subobjs[i] != 0) 1289 last_nonzero = i; 1290 } 1291 1292 for (i = 0; i <= last_nonzero; i++) { 1293 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]); 1294 } 1295 kmem_free(subobjs, doi.doi_max_offset); 1296 } 1297 1298 static void 1299 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) 1300 { 1301 (void) data, (void) size; 1302 dump_zap_stats(os, object); 1303 /* contents are printed elsewhere, properly decoded */ 1304 } 1305 1306 static void 1307 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) 1308 { 1309 (void) data, (void) size; 1310 zap_cursor_t zc; 1311 zap_attribute_t *attrp = zap_attribute_alloc(); 1312 1313 dump_zap_stats(os, object); 1314 (void) printf("\n"); 1315 1316 for (zap_cursor_init(&zc, os, object); 1317 zap_cursor_retrieve(&zc, attrp) == 0; 1318 zap_cursor_advance(&zc)) { 1319 (void) printf("\t\t%s = ", attrp->za_name); 1320 if (attrp->za_num_integers == 0) { 1321 (void) printf("\n"); 1322 continue; 1323 } 1324 (void) printf(" %llx : [%d:%d:%d]\n", 1325 (u_longlong_t)attrp->za_first_integer, 1326 (int)ATTR_LENGTH(attrp->za_first_integer), 1327 (int)ATTR_BSWAP(attrp->za_first_integer), 1328 (int)ATTR_NUM(attrp->za_first_integer)); 1329 } 1330 zap_cursor_fini(&zc); 1331 zap_attribute_free(attrp); 1332 } 1333 1334 static void 1335 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) 1336 { 1337 (void) data, (void) size; 1338 zap_cursor_t zc; 1339 zap_attribute_t *attrp = zap_attribute_alloc(); 1340 uint16_t *layout_attrs; 1341 unsigned i; 1342 1343 dump_zap_stats(os, object); 1344 (void) printf("\n"); 1345 1346 for (zap_cursor_init(&zc, os, object); 1347 zap_cursor_retrieve(&zc, attrp) == 0; 1348 zap_cursor_advance(&zc)) { 1349 (void) printf("\t\t%s = [", attrp->za_name); 1350 if (attrp->za_num_integers == 0) { 1351 (void) printf("\n"); 1352 continue; 1353 } 1354 1355 VERIFY(attrp->za_integer_length == 2); 1356 layout_attrs = umem_zalloc(attrp->za_num_integers * 1357 attrp->za_integer_length, UMEM_NOFAIL); 1358 1359 VERIFY(zap_lookup(os, object, attrp->za_name, 1360 attrp->za_integer_length, 1361 attrp->za_num_integers, layout_attrs) == 0); 1362 1363 for (i = 0; i != attrp->za_num_integers; i++) 1364 (void) printf(" %d ", (int)layout_attrs[i]); 1365 (void) printf("]\n"); 1366 umem_free(layout_attrs, 1367 attrp->za_num_integers * attrp->za_integer_length); 1368 } 1369 zap_cursor_fini(&zc); 1370 zap_attribute_free(attrp); 1371 } 1372 1373 static void 1374 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) 1375 { 1376 (void) data, (void) size; 1377 zap_cursor_t zc; 1378 zap_attribute_t *attrp = zap_attribute_long_alloc(); 1379 const char *typenames[] = { 1380 /* 0 */ "not specified", 1381 /* 1 */ "FIFO", 1382 /* 2 */ "Character Device", 1383 /* 3 */ "3 (invalid)", 1384 /* 4 */ "Directory", 1385 /* 5 */ "5 (invalid)", 1386 /* 6 */ "Block Device", 1387 /* 7 */ "7 (invalid)", 1388 /* 8 */ "Regular File", 1389 /* 9 */ "9 (invalid)", 1390 /* 10 */ "Symbolic Link", 1391 /* 11 */ "11 (invalid)", 1392 /* 12 */ "Socket", 1393 /* 13 */ "Door", 1394 /* 14 */ "Event Port", 1395 /* 15 */ "15 (invalid)", 1396 }; 1397 1398 dump_zap_stats(os, object); 1399 (void) printf("\n"); 1400 1401 for (zap_cursor_init(&zc, os, object); 1402 zap_cursor_retrieve(&zc, attrp) == 0; 1403 zap_cursor_advance(&zc)) { 1404 (void) printf("\t\t%s = %lld (type: %s)\n", 1405 attrp->za_name, ZFS_DIRENT_OBJ(attrp->za_first_integer), 1406 typenames[ZFS_DIRENT_TYPE(attrp->za_first_integer)]); 1407 } 1408 zap_cursor_fini(&zc); 1409 zap_attribute_free(attrp); 1410 } 1411 1412 static int 1413 get_dtl_refcount(vdev_t *vd) 1414 { 1415 int refcount = 0; 1416 1417 if (vd->vdev_ops->vdev_op_leaf) { 1418 space_map_t *sm = vd->vdev_dtl_sm; 1419 1420 if (sm != NULL && 1421 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1422 return (1); 1423 return (0); 1424 } 1425 1426 for (unsigned c = 0; c < vd->vdev_children; c++) 1427 refcount += get_dtl_refcount(vd->vdev_child[c]); 1428 return (refcount); 1429 } 1430 1431 static int 1432 get_metaslab_refcount(vdev_t *vd) 1433 { 1434 int refcount = 0; 1435 1436 if (vd->vdev_top == vd) { 1437 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 1438 space_map_t *sm = vd->vdev_ms[m]->ms_sm; 1439 1440 if (sm != NULL && 1441 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1442 refcount++; 1443 } 1444 } 1445 for (unsigned c = 0; c < vd->vdev_children; c++) 1446 refcount += get_metaslab_refcount(vd->vdev_child[c]); 1447 1448 return (refcount); 1449 } 1450 1451 static int 1452 get_obsolete_refcount(vdev_t *vd) 1453 { 1454 uint64_t obsolete_sm_object; 1455 int refcount = 0; 1456 1457 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1458 if (vd->vdev_top == vd && obsolete_sm_object != 0) { 1459 dmu_object_info_t doi; 1460 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset, 1461 obsolete_sm_object, &doi)); 1462 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1463 refcount++; 1464 } 1465 } else { 1466 ASSERT0P(vd->vdev_obsolete_sm); 1467 ASSERT0(obsolete_sm_object); 1468 } 1469 for (unsigned c = 0; c < vd->vdev_children; c++) { 1470 refcount += get_obsolete_refcount(vd->vdev_child[c]); 1471 } 1472 1473 return (refcount); 1474 } 1475 1476 static int 1477 get_prev_obsolete_spacemap_refcount(spa_t *spa) 1478 { 1479 uint64_t prev_obj = 1480 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object; 1481 if (prev_obj != 0) { 1482 dmu_object_info_t doi; 1483 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi)); 1484 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1485 return (1); 1486 } 1487 } 1488 return (0); 1489 } 1490 1491 static int 1492 get_checkpoint_refcount(vdev_t *vd) 1493 { 1494 int refcount = 0; 1495 1496 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 && 1497 zap_contains(spa_meta_objset(vd->vdev_spa), 1498 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0) 1499 refcount++; 1500 1501 for (uint64_t c = 0; c < vd->vdev_children; c++) 1502 refcount += get_checkpoint_refcount(vd->vdev_child[c]); 1503 1504 return (refcount); 1505 } 1506 1507 static int 1508 get_log_spacemap_refcount(spa_t *spa) 1509 { 1510 return (avl_numnodes(&spa->spa_sm_logs_by_txg)); 1511 } 1512 1513 static int 1514 verify_spacemap_refcounts(spa_t *spa) 1515 { 1516 uint64_t expected_refcount = 0; 1517 uint64_t actual_refcount; 1518 1519 (void) feature_get_refcount(spa, 1520 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], 1521 &expected_refcount); 1522 actual_refcount = get_dtl_refcount(spa->spa_root_vdev); 1523 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); 1524 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev); 1525 actual_refcount += get_prev_obsolete_spacemap_refcount(spa); 1526 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev); 1527 actual_refcount += get_log_spacemap_refcount(spa); 1528 1529 if (expected_refcount != actual_refcount) { 1530 (void) printf("space map refcount mismatch: expected %lld != " 1531 "actual %lld\n", 1532 (longlong_t)expected_refcount, 1533 (longlong_t)actual_refcount); 1534 return (2); 1535 } 1536 return (0); 1537 } 1538 1539 static void 1540 dump_spacemap(objset_t *os, space_map_t *sm) 1541 { 1542 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", 1543 "INVALID", "INVALID", "INVALID", "INVALID" }; 1544 1545 if (sm == NULL) 1546 return; 1547 1548 (void) printf("space map object %llu:\n", 1549 (longlong_t)sm->sm_object); 1550 (void) printf(" smp_length = 0x%llx\n", 1551 (longlong_t)sm->sm_phys->smp_length); 1552 (void) printf(" smp_alloc = 0x%llx\n", 1553 (longlong_t)sm->sm_phys->smp_alloc); 1554 1555 if (dump_opt['d'] < 6 && dump_opt['m'] < 4) 1556 return; 1557 1558 /* 1559 * Print out the freelist entries in both encoded and decoded form. 1560 */ 1561 uint8_t mapshift = sm->sm_shift; 1562 int64_t alloc = 0; 1563 uint64_t word, entry_id = 0; 1564 for (uint64_t offset = 0; offset < space_map_length(sm); 1565 offset += sizeof (word)) { 1566 1567 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1568 sizeof (word), &word, DMU_READ_PREFETCH)); 1569 1570 if (sm_entry_is_debug(word)) { 1571 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word); 1572 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word); 1573 if (de_txg == 0) { 1574 (void) printf( 1575 "\t [%6llu] PADDING\n", 1576 (u_longlong_t)entry_id); 1577 } else { 1578 (void) printf( 1579 "\t [%6llu] %s: txg %llu pass %llu\n", 1580 (u_longlong_t)entry_id, 1581 ddata[SM_DEBUG_ACTION_DECODE(word)], 1582 (u_longlong_t)de_txg, 1583 (u_longlong_t)de_sync_pass); 1584 } 1585 entry_id++; 1586 continue; 1587 } 1588 1589 char entry_type; 1590 uint64_t entry_off, entry_run, entry_vdev; 1591 1592 if (sm_entry_is_single_word(word)) { 1593 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ? 1594 'A' : 'F'; 1595 entry_off = (SM_OFFSET_DECODE(word) << mapshift) + 1596 sm->sm_start; 1597 entry_run = SM_RUN_DECODE(word) << mapshift; 1598 1599 (void) printf("\t [%6llu] %c " 1600 "range: %012llx-%012llx size: %08llx\n", 1601 (u_longlong_t)entry_id, entry_type, 1602 (u_longlong_t)entry_off, 1603 (u_longlong_t)(entry_off + entry_run - 1), 1604 (u_longlong_t)entry_run); 1605 } else { 1606 /* it is a two-word entry so we read another word */ 1607 ASSERT(sm_entry_is_double_word(word)); 1608 1609 uint64_t extra_word; 1610 offset += sizeof (extra_word); 1611 ASSERT3U(offset, <, space_map_length(sm)); 1612 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1613 sizeof (extra_word), &extra_word, 1614 DMU_READ_PREFETCH)); 1615 1616 entry_run = SM2_RUN_DECODE(word) << mapshift; 1617 entry_vdev = SM2_VDEV_DECODE(word); 1618 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ? 1619 'A' : 'F'; 1620 entry_off = (SM2_OFFSET_DECODE(extra_word) << 1621 mapshift) + sm->sm_start; 1622 1623 if (zopt_metaslab_args == 0 || 1624 zopt_metaslab[0] == entry_vdev) { 1625 (void) printf("\t [%6llu] %c " 1626 "range: %012llx-%012llx size: %08llx " 1627 "vdev: %llu\n", 1628 (u_longlong_t)entry_id, entry_type, 1629 (u_longlong_t)entry_off, 1630 (u_longlong_t)(entry_off + entry_run - 1), 1631 (u_longlong_t)entry_run, 1632 (u_longlong_t)entry_vdev); 1633 } 1634 } 1635 1636 if (entry_type == 'A') 1637 alloc += entry_run; 1638 else 1639 alloc -= entry_run; 1640 entry_id++; 1641 } 1642 if (alloc != space_map_allocated(sm)) { 1643 (void) printf("space_map_object alloc (%lld) INCONSISTENT " 1644 "with space map summary (%lld)\n", 1645 (longlong_t)space_map_allocated(sm), (longlong_t)alloc); 1646 } 1647 } 1648 1649 static void 1650 dump_metaslab_stats(metaslab_t *msp) 1651 { 1652 char maxbuf[32]; 1653 zfs_range_tree_t *rt = msp->ms_allocatable; 1654 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1655 int free_pct = zfs_range_tree_space(rt) * 100 / msp->ms_size; 1656 1657 /* max sure nicenum has enough space */ 1658 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated"); 1659 1660 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf)); 1661 1662 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", 1663 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf, 1664 "freepct", free_pct); 1665 (void) printf("\tIn-memory histogram:\n"); 1666 dump_histogram(rt->rt_histogram, ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0); 1667 } 1668 1669 static void 1670 dump_metaslab(metaslab_t *msp) 1671 { 1672 vdev_t *vd = msp->ms_group->mg_vd; 1673 spa_t *spa = vd->vdev_spa; 1674 space_map_t *sm = msp->ms_sm; 1675 char freebuf[32]; 1676 1677 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf, 1678 sizeof (freebuf)); 1679 1680 (void) printf( 1681 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", 1682 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, 1683 (u_longlong_t)space_map_object(sm), freebuf); 1684 1685 if (dump_opt['m'] > 2 && !dump_opt['L']) { 1686 mutex_enter(&msp->ms_lock); 1687 VERIFY0(metaslab_load(msp)); 1688 zfs_range_tree_stat_verify(msp->ms_allocatable); 1689 dump_metaslab_stats(msp); 1690 metaslab_unload(msp); 1691 mutex_exit(&msp->ms_lock); 1692 } 1693 1694 if (dump_opt['m'] > 1 && sm != NULL && 1695 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 1696 /* 1697 * The space map histogram represents free space in chunks 1698 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). 1699 */ 1700 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", 1701 (u_longlong_t)msp->ms_fragmentation); 1702 dump_histogram(sm->sm_phys->smp_histogram, 1703 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); 1704 } 1705 1706 if (vd->vdev_ops == &vdev_draid_ops) 1707 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift); 1708 else 1709 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift); 1710 1711 dump_spacemap(spa->spa_meta_objset, msp->ms_sm); 1712 1713 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 1714 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n", 1715 (u_longlong_t)metaslab_unflushed_txg(msp)); 1716 } 1717 } 1718 1719 static void 1720 print_vdev_metaslab_header(vdev_t *vd) 1721 { 1722 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 1723 const char *bias_str = ""; 1724 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) { 1725 bias_str = VDEV_ALLOC_BIAS_LOG; 1726 } else if (alloc_bias == VDEV_BIAS_SPECIAL) { 1727 bias_str = VDEV_ALLOC_BIAS_SPECIAL; 1728 } else if (alloc_bias == VDEV_BIAS_DEDUP) { 1729 bias_str = VDEV_ALLOC_BIAS_DEDUP; 1730 } 1731 1732 uint64_t ms_flush_data_obj = 0; 1733 if (vd->vdev_top_zap != 0) { 1734 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 1735 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 1736 sizeof (uint64_t), 1, &ms_flush_data_obj); 1737 if (error != ENOENT) { 1738 ASSERT0(error); 1739 } 1740 } 1741 1742 (void) printf("\tvdev %10llu %s", 1743 (u_longlong_t)vd->vdev_id, bias_str); 1744 1745 if (ms_flush_data_obj != 0) { 1746 (void) printf(" ms_unflushed_phys object %llu", 1747 (u_longlong_t)ms_flush_data_obj); 1748 } 1749 1750 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n", 1751 "metaslabs", (u_longlong_t)vd->vdev_ms_count, 1752 "offset", "spacemap", "free"); 1753 (void) printf("\t%15s %19s %15s %12s\n", 1754 "---------------", "-------------------", 1755 "---------------", "------------"); 1756 } 1757 1758 static void 1759 dump_metaslab_groups(spa_t *spa, boolean_t show_special) 1760 { 1761 vdev_t *rvd = spa->spa_root_vdev; 1762 metaslab_class_t *mc = spa_normal_class(spa); 1763 metaslab_class_t *smc = spa_special_class(spa); 1764 uint64_t fragmentation; 1765 1766 metaslab_class_histogram_verify(mc); 1767 1768 for (unsigned c = 0; c < rvd->vdev_children; c++) { 1769 vdev_t *tvd = rvd->vdev_child[c]; 1770 metaslab_group_t *mg = tvd->vdev_mg; 1771 1772 if (mg == NULL || (mg->mg_class != mc && 1773 (!show_special || mg->mg_class != smc))) 1774 continue; 1775 1776 metaslab_group_histogram_verify(mg); 1777 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 1778 1779 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" 1780 "fragmentation", 1781 (u_longlong_t)tvd->vdev_id, 1782 (u_longlong_t)tvd->vdev_ms_count); 1783 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 1784 (void) printf("%3s\n", "-"); 1785 } else { 1786 (void) printf("%3llu%%\n", 1787 (u_longlong_t)mg->mg_fragmentation); 1788 } 1789 dump_histogram(mg->mg_histogram, 1790 ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0); 1791 } 1792 1793 (void) printf("\tpool %s\tfragmentation", spa_name(spa)); 1794 fragmentation = metaslab_class_fragmentation(mc); 1795 if (fragmentation == ZFS_FRAG_INVALID) 1796 (void) printf("\t%3s\n", "-"); 1797 else 1798 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); 1799 dump_histogram(mc->mc_histogram, ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0); 1800 } 1801 1802 static void 1803 print_vdev_indirect(vdev_t *vd) 1804 { 1805 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1806 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1807 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 1808 1809 if (vim == NULL) { 1810 ASSERT0P(vib); 1811 return; 1812 } 1813 1814 ASSERT3U(vdev_indirect_mapping_object(vim), ==, 1815 vic->vic_mapping_object); 1816 ASSERT3U(vdev_indirect_births_object(vib), ==, 1817 vic->vic_births_object); 1818 1819 (void) printf("indirect births obj %llu:\n", 1820 (longlong_t)vic->vic_births_object); 1821 (void) printf(" vib_count = %llu\n", 1822 (longlong_t)vdev_indirect_births_count(vib)); 1823 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) { 1824 vdev_indirect_birth_entry_phys_t *cur_vibe = 1825 &vib->vib_entries[i]; 1826 (void) printf("\toffset %llx -> txg %llu\n", 1827 (longlong_t)cur_vibe->vibe_offset, 1828 (longlong_t)cur_vibe->vibe_phys_birth_txg); 1829 } 1830 (void) printf("\n"); 1831 1832 (void) printf("indirect mapping obj %llu:\n", 1833 (longlong_t)vic->vic_mapping_object); 1834 (void) printf(" vim_max_offset = 0x%llx\n", 1835 (longlong_t)vdev_indirect_mapping_max_offset(vim)); 1836 (void) printf(" vim_bytes_mapped = 0x%llx\n", 1837 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim)); 1838 (void) printf(" vim_count = %llu\n", 1839 (longlong_t)vdev_indirect_mapping_num_entries(vim)); 1840 1841 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3) 1842 return; 1843 1844 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim); 1845 1846 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 1847 vdev_indirect_mapping_entry_phys_t *vimep = 1848 &vim->vim_entries[i]; 1849 (void) printf("\t<%llx:%llx:%llx> -> " 1850 "<%llx:%llx:%llx> (%x obsolete)\n", 1851 (longlong_t)vd->vdev_id, 1852 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 1853 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1854 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst), 1855 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst), 1856 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1857 counts[i]); 1858 } 1859 (void) printf("\n"); 1860 1861 uint64_t obsolete_sm_object; 1862 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1863 if (obsolete_sm_object != 0) { 1864 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1865 (void) printf("obsolete space map object %llu:\n", 1866 (u_longlong_t)obsolete_sm_object); 1867 ASSERT(vd->vdev_obsolete_sm != NULL); 1868 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==, 1869 obsolete_sm_object); 1870 dump_spacemap(mos, vd->vdev_obsolete_sm); 1871 (void) printf("\n"); 1872 } 1873 } 1874 1875 static void 1876 dump_metaslabs(spa_t *spa) 1877 { 1878 vdev_t *vd, *rvd = spa->spa_root_vdev; 1879 uint64_t m, c = 0, children = rvd->vdev_children; 1880 1881 (void) printf("\nMetaslabs:\n"); 1882 1883 if (zopt_metaslab_args > 0) { 1884 c = zopt_metaslab[0]; 1885 1886 if (c >= children) 1887 (void) fatal("bad vdev id: %llu", (u_longlong_t)c); 1888 1889 if (zopt_metaslab_args > 1) { 1890 vd = rvd->vdev_child[c]; 1891 print_vdev_metaslab_header(vd); 1892 1893 for (m = 1; m < zopt_metaslab_args; m++) { 1894 if (zopt_metaslab[m] < vd->vdev_ms_count) 1895 dump_metaslab( 1896 vd->vdev_ms[zopt_metaslab[m]]); 1897 else 1898 (void) fprintf(stderr, "bad metaslab " 1899 "number %llu\n", 1900 (u_longlong_t)zopt_metaslab[m]); 1901 } 1902 (void) printf("\n"); 1903 return; 1904 } 1905 children = c + 1; 1906 } 1907 for (; c < children; c++) { 1908 vd = rvd->vdev_child[c]; 1909 print_vdev_metaslab_header(vd); 1910 1911 print_vdev_indirect(vd); 1912 1913 for (m = 0; m < vd->vdev_ms_count; m++) 1914 dump_metaslab(vd->vdev_ms[m]); 1915 (void) printf("\n"); 1916 } 1917 } 1918 1919 static void 1920 dump_log_spacemaps(spa_t *spa) 1921 { 1922 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1923 return; 1924 1925 (void) printf("\nLog Space Maps in Pool:\n"); 1926 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 1927 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 1928 space_map_t *sm = NULL; 1929 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 1930 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 1931 1932 (void) printf("Log Spacemap object %llu txg %llu\n", 1933 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg); 1934 dump_spacemap(spa->spa_meta_objset, sm); 1935 space_map_close(sm); 1936 } 1937 (void) printf("\n"); 1938 } 1939 1940 static void 1941 dump_ddt_entry(const ddt_t *ddt, const ddt_lightweight_entry_t *ddlwe, 1942 uint64_t index) 1943 { 1944 const ddt_key_t *ddk = &ddlwe->ddlwe_key; 1945 char blkbuf[BP_SPRINTF_LEN]; 1946 blkptr_t blk; 1947 int p; 1948 1949 for (p = 0; p < DDT_NPHYS(ddt); p++) { 1950 const ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys; 1951 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 1952 1953 if (ddt_phys_birth(ddp, v) == 0) 1954 continue; 1955 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk); 1956 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); 1957 (void) printf("index %llx refcnt %llu phys %d %s\n", 1958 (u_longlong_t)index, (u_longlong_t)ddt_phys_refcnt(ddp, v), 1959 p, blkbuf); 1960 } 1961 } 1962 1963 static void 1964 dump_dedup_ratio(const ddt_stat_t *dds) 1965 { 1966 double rL, rP, rD, D, dedup, compress, copies; 1967 1968 if (dds->dds_blocks == 0) 1969 return; 1970 1971 rL = (double)dds->dds_ref_lsize; 1972 rP = (double)dds->dds_ref_psize; 1973 rD = (double)dds->dds_ref_dsize; 1974 D = (double)dds->dds_dsize; 1975 1976 dedup = rD / D; 1977 compress = rL / rP; 1978 copies = rD / rP; 1979 1980 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " 1981 "dedup * compress / copies = %.2f\n\n", 1982 dedup, compress, copies, dedup * compress / copies); 1983 } 1984 1985 static void 1986 dump_ddt_log(ddt_t *ddt) 1987 { 1988 if (ddt->ddt_version != DDT_VERSION_FDT || 1989 !(ddt->ddt_flags & DDT_FLAG_LOG)) 1990 return; 1991 1992 for (int n = 0; n < 2; n++) { 1993 ddt_log_t *ddl = &ddt->ddt_log[n]; 1994 1995 char flagstr[64] = {0}; 1996 if (ddl->ddl_flags > 0) { 1997 flagstr[0] = ' '; 1998 int c = 1; 1999 if (ddl->ddl_flags & DDL_FLAG_FLUSHING) 2000 c += strlcpy(&flagstr[c], " FLUSHING", 2001 sizeof (flagstr) - c); 2002 if (ddl->ddl_flags & DDL_FLAG_CHECKPOINT) 2003 c += strlcpy(&flagstr[c], " CHECKPOINT", 2004 sizeof (flagstr) - c); 2005 if (ddl->ddl_flags & 2006 ~(DDL_FLAG_FLUSHING|DDL_FLAG_CHECKPOINT)) 2007 c += strlcpy(&flagstr[c], " UNKNOWN", 2008 sizeof (flagstr) - c); 2009 flagstr[1] = '['; 2010 flagstr[c] = ']'; 2011 } 2012 2013 uint64_t count = avl_numnodes(&ddl->ddl_tree); 2014 2015 printf(DMU_POOL_DDT_LOG ": flags=0x%02x%s; obj=%llu; " 2016 "len=%llu; txg=%llu; entries=%llu\n", 2017 zio_checksum_table[ddt->ddt_checksum].ci_name, n, 2018 ddl->ddl_flags, flagstr, 2019 (u_longlong_t)ddl->ddl_object, 2020 (u_longlong_t)ddl->ddl_length, 2021 (u_longlong_t)ddl->ddl_first_txg, (u_longlong_t)count); 2022 2023 if (ddl->ddl_flags & DDL_FLAG_CHECKPOINT) { 2024 const ddt_key_t *ddk = &ddl->ddl_checkpoint; 2025 printf(" checkpoint: " 2026 "%016llx:%016llx:%016llx:%016llx:%016llx\n", 2027 (u_longlong_t)ddk->ddk_cksum.zc_word[0], 2028 (u_longlong_t)ddk->ddk_cksum.zc_word[1], 2029 (u_longlong_t)ddk->ddk_cksum.zc_word[2], 2030 (u_longlong_t)ddk->ddk_cksum.zc_word[3], 2031 (u_longlong_t)ddk->ddk_prop); 2032 } 2033 2034 if (count == 0 || dump_opt['D'] < 4) 2035 continue; 2036 2037 ddt_lightweight_entry_t ddlwe; 2038 uint64_t index = 0; 2039 for (ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree); 2040 ddle; ddle = AVL_NEXT(&ddl->ddl_tree, ddle)) { 2041 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe); 2042 dump_ddt_entry(ddt, &ddlwe, index++); 2043 } 2044 } 2045 } 2046 2047 static void 2048 dump_ddt_object(ddt_t *ddt, ddt_type_t type, ddt_class_t class) 2049 { 2050 char name[DDT_NAMELEN]; 2051 ddt_lightweight_entry_t ddlwe; 2052 uint64_t walk = 0; 2053 dmu_object_info_t doi; 2054 uint64_t count, dspace, mspace; 2055 int error; 2056 2057 error = ddt_object_info(ddt, type, class, &doi); 2058 2059 if (error == ENOENT) 2060 return; 2061 ASSERT0(error); 2062 2063 error = ddt_object_count(ddt, type, class, &count); 2064 ASSERT0(error); 2065 if (count == 0) 2066 return; 2067 2068 dspace = doi.doi_physical_blocks_512 << 9; 2069 mspace = doi.doi_fill_count * doi.doi_data_block_size; 2070 2071 ddt_object_name(ddt, type, class, name); 2072 2073 (void) printf("%s: dspace=%llu; mspace=%llu; entries=%llu\n", name, 2074 (u_longlong_t)dspace, (u_longlong_t)mspace, (u_longlong_t)count); 2075 2076 if (dump_opt['D'] < 3) 2077 return; 2078 2079 (void) printf("%s: object=%llu\n", name, 2080 (u_longlong_t)ddt->ddt_object[type][class]); 2081 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); 2082 2083 if (dump_opt['D'] < 4) 2084 return; 2085 2086 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) 2087 return; 2088 2089 (void) printf("%s contents:\n\n", name); 2090 2091 while ((error = ddt_object_walk(ddt, type, class, &walk, &ddlwe)) == 0) 2092 dump_ddt_entry(ddt, &ddlwe, walk); 2093 2094 ASSERT3U(error, ==, ENOENT); 2095 2096 (void) printf("\n"); 2097 } 2098 2099 static void 2100 dump_ddt(ddt_t *ddt) 2101 { 2102 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED) 2103 return; 2104 2105 char flagstr[64] = {0}; 2106 if (ddt->ddt_flags > 0) { 2107 flagstr[0] = ' '; 2108 int c = 1; 2109 if (ddt->ddt_flags & DDT_FLAG_FLAT) 2110 c += strlcpy(&flagstr[c], " FLAT", 2111 sizeof (flagstr) - c); 2112 if (ddt->ddt_flags & DDT_FLAG_LOG) 2113 c += strlcpy(&flagstr[c], " LOG", 2114 sizeof (flagstr) - c); 2115 if (ddt->ddt_flags & ~DDT_FLAG_MASK) 2116 c += strlcpy(&flagstr[c], " UNKNOWN", 2117 sizeof (flagstr) - c); 2118 flagstr[1] = '['; 2119 flagstr[c] = ']'; 2120 } 2121 2122 printf("DDT-%s: version=%llu [%s]; flags=0x%02llx%s; rootobj=%llu\n", 2123 zio_checksum_table[ddt->ddt_checksum].ci_name, 2124 (u_longlong_t)ddt->ddt_version, 2125 (ddt->ddt_version == 0) ? "LEGACY" : 2126 (ddt->ddt_version == 1) ? "FDT" : "UNKNOWN", 2127 (u_longlong_t)ddt->ddt_flags, flagstr, 2128 (u_longlong_t)ddt->ddt_dir_object); 2129 2130 for (ddt_type_t type = 0; type < DDT_TYPES; type++) 2131 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) 2132 dump_ddt_object(ddt, type, class); 2133 2134 dump_ddt_log(ddt); 2135 } 2136 2137 static void 2138 dump_all_ddts(spa_t *spa) 2139 { 2140 ddt_histogram_t ddh_total = {{{0}}}; 2141 ddt_stat_t dds_total = {0}; 2142 2143 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) 2144 dump_ddt(spa->spa_ddt[c]); 2145 2146 ddt_get_dedup_stats(spa, &dds_total); 2147 2148 if (dds_total.dds_blocks == 0) { 2149 (void) printf("All DDTs are empty\n"); 2150 return; 2151 } 2152 2153 (void) printf("\n"); 2154 2155 if (dump_opt['D'] > 1) { 2156 (void) printf("DDT histogram (aggregated over all DDTs):\n"); 2157 ddt_get_dedup_histogram(spa, &ddh_total); 2158 zpool_dump_ddt(&dds_total, &ddh_total); 2159 } 2160 2161 dump_dedup_ratio(&dds_total); 2162 2163 /* 2164 * Dump a histogram of unique class entry age 2165 */ 2166 if (dump_opt['D'] == 3 && getenv("ZDB_DDT_UNIQUE_AGE_HIST") != NULL) { 2167 ddt_age_histo_t histogram; 2168 2169 (void) printf("DDT walk unique, building age histogram...\n"); 2170 ddt_prune_walk(spa, 0, &histogram); 2171 2172 /* 2173 * print out histogram for unique entry class birth 2174 */ 2175 if (histogram.dah_entries > 0) { 2176 (void) printf("%5s %9s %4s\n", 2177 "age", "blocks", "amnt"); 2178 (void) printf("%5s %9s %4s\n", 2179 "-----", "---------", "----"); 2180 for (int i = 0; i < HIST_BINS; i++) { 2181 (void) printf("%5d %9d %4d%%\n", 1 << i, 2182 (int)histogram.dah_age_histo[i], 2183 (int)((histogram.dah_age_histo[i] * 100) / 2184 histogram.dah_entries)); 2185 } 2186 } 2187 } 2188 } 2189 2190 static void 2191 dump_brt(spa_t *spa) 2192 { 2193 if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) { 2194 printf("BRT: unsupported on this pool\n"); 2195 return; 2196 } 2197 2198 if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 2199 printf("BRT: empty\n"); 2200 return; 2201 } 2202 2203 char count[32], used[32], saved[32]; 2204 zdb_nicebytes(brt_get_used(spa), used, sizeof (used)); 2205 zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved)); 2206 uint64_t ratio = brt_get_ratio(spa); 2207 printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved, 2208 (u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100)); 2209 2210 if (dump_opt['T'] < 2) 2211 return; 2212 2213 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) { 2214 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid]; 2215 if (!brtvd->bv_initiated) { 2216 printf("BRT: vdev %" PRIu64 ": empty\n", vdevid); 2217 continue; 2218 } 2219 2220 zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count)); 2221 zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used)); 2222 zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved)); 2223 printf("BRT: vdev %" PRIu64 ": refcnt %s; used %s; saved %s\n", 2224 vdevid, count, used, saved); 2225 } 2226 2227 if (dump_opt['T'] < 3) 2228 return; 2229 2230 /* -TTT shows a per-vdev histograms; -TTTT shows all entries */ 2231 boolean_t do_histo = dump_opt['T'] == 3; 2232 2233 char dva[64]; 2234 2235 if (!do_histo) 2236 printf("\n%-16s %-10s\n", "DVA", "REFCNT"); 2237 2238 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) { 2239 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid]; 2240 if (!brtvd->bv_initiated) 2241 continue; 2242 2243 uint64_t counts[64] = {}; 2244 2245 zap_cursor_t zc; 2246 zap_attribute_t *za = zap_attribute_alloc(); 2247 for (zap_cursor_init(&zc, spa->spa_meta_objset, 2248 brtvd->bv_mos_entries); 2249 zap_cursor_retrieve(&zc, za) == 0; 2250 zap_cursor_advance(&zc)) { 2251 uint64_t refcnt; 2252 VERIFY0(zap_lookup_uint64(spa->spa_meta_objset, 2253 brtvd->bv_mos_entries, 2254 (const uint64_t *)za->za_name, 1, 2255 za->za_integer_length, za->za_num_integers, 2256 &refcnt)); 2257 2258 if (do_histo) 2259 counts[highbit64(refcnt)]++; 2260 else { 2261 uint64_t offset = 2262 *(const uint64_t *)za->za_name; 2263 2264 snprintf(dva, sizeof (dva), "%" PRIu64 ":%llx", 2265 vdevid, (u_longlong_t)offset); 2266 printf("%-16s %-10llu\n", dva, 2267 (u_longlong_t)refcnt); 2268 } 2269 } 2270 zap_cursor_fini(&zc); 2271 zap_attribute_free(za); 2272 2273 if (do_histo) { 2274 printf("\nBRT: vdev %" PRIu64 2275 ": DVAs with 2^n refcnts:\n", vdevid); 2276 dump_histogram(counts, 64, 0); 2277 } 2278 } 2279 } 2280 2281 static void 2282 dump_dtl_seg(void *arg, uint64_t start, uint64_t size) 2283 { 2284 char *prefix = arg; 2285 2286 (void) printf("%s [%llu,%llu) length %llu\n", 2287 prefix, 2288 (u_longlong_t)start, 2289 (u_longlong_t)(start + size), 2290 (u_longlong_t)(size)); 2291 } 2292 2293 static void 2294 dump_dtl(vdev_t *vd, int indent) 2295 { 2296 spa_t *spa = vd->vdev_spa; 2297 boolean_t required; 2298 const char *name[DTL_TYPES] = { "missing", "partial", "scrub", 2299 "outage" }; 2300 char prefix[256]; 2301 2302 spa_vdev_state_enter(spa, SCL_NONE); 2303 required = vdev_dtl_required(vd); 2304 (void) spa_vdev_state_exit(spa, NULL, 0); 2305 2306 if (indent == 0) 2307 (void) printf("\nDirty time logs:\n\n"); 2308 2309 (void) printf("\t%*s%s [%s]\n", indent, "", 2310 vd->vdev_path ? vd->vdev_path : 2311 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), 2312 required ? "DTL-required" : "DTL-expendable"); 2313 2314 for (int t = 0; t < DTL_TYPES; t++) { 2315 zfs_range_tree_t *rt = vd->vdev_dtl[t]; 2316 if (zfs_range_tree_space(rt) == 0) 2317 continue; 2318 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", 2319 indent + 2, "", name[t]); 2320 zfs_range_tree_walk(rt, dump_dtl_seg, prefix); 2321 if (dump_opt['d'] > 5 && vd->vdev_children == 0) 2322 dump_spacemap(spa->spa_meta_objset, 2323 vd->vdev_dtl_sm); 2324 } 2325 2326 for (unsigned c = 0; c < vd->vdev_children; c++) 2327 dump_dtl(vd->vdev_child[c], indent + 4); 2328 } 2329 2330 static void 2331 dump_history(spa_t *spa) 2332 { 2333 nvlist_t **events = NULL; 2334 char *buf; 2335 uint64_t resid, len, off = 0; 2336 uint_t num = 0; 2337 int error; 2338 char tbuf[30]; 2339 2340 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) { 2341 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n", 2342 __func__); 2343 return; 2344 } 2345 2346 do { 2347 len = SPA_OLD_MAXBLOCKSIZE; 2348 2349 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { 2350 (void) fprintf(stderr, "Unable to read history: " 2351 "error %d\n", error); 2352 free(buf); 2353 return; 2354 } 2355 2356 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) 2357 break; 2358 2359 off -= resid; 2360 } while (len != 0); 2361 2362 (void) printf("\nHistory:\n"); 2363 for (unsigned i = 0; i < num; i++) { 2364 boolean_t printed = B_FALSE; 2365 2366 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) { 2367 time_t tsec; 2368 struct tm t; 2369 2370 tsec = fnvlist_lookup_uint64(events[i], 2371 ZPOOL_HIST_TIME); 2372 (void) localtime_r(&tsec, &t); 2373 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); 2374 } else { 2375 tbuf[0] = '\0'; 2376 } 2377 2378 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) { 2379 (void) printf("%s %s\n", tbuf, 2380 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD)); 2381 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) { 2382 uint64_t ievent; 2383 2384 ievent = fnvlist_lookup_uint64(events[i], 2385 ZPOOL_HIST_INT_EVENT); 2386 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) 2387 goto next; 2388 2389 (void) printf(" %s [internal %s txg:%ju] %s\n", 2390 tbuf, 2391 zfs_history_event_names[ievent], 2392 fnvlist_lookup_uint64(events[i], 2393 ZPOOL_HIST_TXG), 2394 fnvlist_lookup_string(events[i], 2395 ZPOOL_HIST_INT_STR)); 2396 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) { 2397 (void) printf("%s [txg:%ju] %s", tbuf, 2398 fnvlist_lookup_uint64(events[i], 2399 ZPOOL_HIST_TXG), 2400 fnvlist_lookup_string(events[i], 2401 ZPOOL_HIST_INT_NAME)); 2402 2403 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) { 2404 (void) printf(" %s (%llu)", 2405 fnvlist_lookup_string(events[i], 2406 ZPOOL_HIST_DSNAME), 2407 (u_longlong_t)fnvlist_lookup_uint64( 2408 events[i], 2409 ZPOOL_HIST_DSID)); 2410 } 2411 2412 (void) printf(" %s\n", fnvlist_lookup_string(events[i], 2413 ZPOOL_HIST_INT_STR)); 2414 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) { 2415 (void) printf("%s ioctl %s\n", tbuf, 2416 fnvlist_lookup_string(events[i], 2417 ZPOOL_HIST_IOCTL)); 2418 2419 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) { 2420 (void) printf(" input:\n"); 2421 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2422 ZPOOL_HIST_INPUT_NVL), 8); 2423 } 2424 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) { 2425 (void) printf(" output:\n"); 2426 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2427 ZPOOL_HIST_OUTPUT_NVL), 8); 2428 } 2429 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) { 2430 (void) printf(" errno: %lld\n", 2431 (longlong_t)fnvlist_lookup_int64(events[i], 2432 ZPOOL_HIST_ERRNO)); 2433 } 2434 } else { 2435 goto next; 2436 } 2437 2438 printed = B_TRUE; 2439 next: 2440 if (dump_opt['h'] > 1) { 2441 if (!printed) 2442 (void) printf("unrecognized record:\n"); 2443 dump_nvlist(events[i], 2); 2444 } 2445 } 2446 free(buf); 2447 } 2448 2449 static void 2450 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) 2451 { 2452 (void) os, (void) object, (void) data, (void) size; 2453 } 2454 2455 static uint64_t 2456 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, 2457 const zbookmark_phys_t *zb) 2458 { 2459 if (dnp == NULL) { 2460 ASSERT(zb->zb_level < 0); 2461 if (zb->zb_object == 0) 2462 return (zb->zb_blkid); 2463 return (zb->zb_blkid * BP_GET_LSIZE(bp)); 2464 } 2465 2466 ASSERT(zb->zb_level >= 0); 2467 2468 return ((zb->zb_blkid << 2469 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * 2470 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 2471 } 2472 2473 static void 2474 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen, 2475 const blkptr_t *bp) 2476 { 2477 static abd_t *pabd = NULL; 2478 void *buf; 2479 zio_t *zio; 2480 zfs_zstdhdr_t zstd_hdr; 2481 int error; 2482 2483 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD) 2484 return; 2485 2486 if (BP_IS_HOLE(bp)) 2487 return; 2488 2489 if (BP_IS_EMBEDDED(bp)) { 2490 buf = malloc(SPA_MAXBLOCKSIZE); 2491 if (buf == NULL) { 2492 (void) fprintf(stderr, "out of memory\n"); 2493 zdb_exit(1); 2494 } 2495 decode_embedded_bp_compressed(bp, buf); 2496 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2497 free(buf); 2498 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2499 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2500 (void) snprintf(blkbuf + strlen(blkbuf), 2501 buflen - strlen(blkbuf), 2502 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED", 2503 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2504 zfs_get_hdrlevel(&zstd_hdr)); 2505 return; 2506 } 2507 2508 if (!pabd) 2509 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 2510 zio = zio_root(spa, NULL, NULL, 0); 2511 2512 /* Decrypt but don't decompress so we can read the compression header */ 2513 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL, 2514 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS, 2515 NULL)); 2516 error = zio_wait(zio); 2517 if (error) { 2518 (void) fprintf(stderr, "read failed: %d\n", error); 2519 return; 2520 } 2521 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp)); 2522 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2523 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2524 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2525 2526 (void) snprintf(blkbuf + strlen(blkbuf), 2527 buflen - strlen(blkbuf), 2528 " ZSTD:size=%u:version=%u:level=%u:NORMAL", 2529 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2530 zfs_get_hdrlevel(&zstd_hdr)); 2531 2532 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp)); 2533 } 2534 2535 static void 2536 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp, 2537 boolean_t bp_freed) 2538 { 2539 const dva_t *dva = bp->blk_dva; 2540 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; 2541 int i; 2542 2543 if (dump_opt['b'] >= 6) { 2544 snprintf_blkptr(blkbuf, buflen, bp); 2545 if (bp_freed) { 2546 (void) snprintf(blkbuf + strlen(blkbuf), 2547 buflen - strlen(blkbuf), " %s", "FREE"); 2548 } 2549 return; 2550 } 2551 2552 if (BP_IS_EMBEDDED(bp)) { 2553 (void) sprintf(blkbuf, 2554 "EMBEDDED et=%u %llxL/%llxP B=%llu", 2555 (int)BPE_GET_ETYPE(bp), 2556 (u_longlong_t)BPE_GET_LSIZE(bp), 2557 (u_longlong_t)BPE_GET_PSIZE(bp), 2558 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); 2559 return; 2560 } 2561 2562 blkbuf[0] = '\0'; 2563 2564 for (i = 0; i < ndvas; i++) { 2565 (void) snprintf(blkbuf + strlen(blkbuf), 2566 buflen - strlen(blkbuf), "%llu:%llx:%llx%s ", 2567 (u_longlong_t)DVA_GET_VDEV(&dva[i]), 2568 (u_longlong_t)DVA_GET_OFFSET(&dva[i]), 2569 (u_longlong_t)DVA_GET_ASIZE(&dva[i]), 2570 (DVA_GET_GANG(&dva[i]) ? "G" : "")); 2571 } 2572 2573 if (BP_IS_HOLE(bp)) { 2574 (void) snprintf(blkbuf + strlen(blkbuf), 2575 buflen - strlen(blkbuf), 2576 "%llxL B=%llu", 2577 (u_longlong_t)BP_GET_LSIZE(bp), 2578 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); 2579 } else { 2580 (void) snprintf(blkbuf + strlen(blkbuf), 2581 buflen - strlen(blkbuf), 2582 "%llxL/%llxP F=%llu B=%llu/%llu", 2583 (u_longlong_t)BP_GET_LSIZE(bp), 2584 (u_longlong_t)BP_GET_PSIZE(bp), 2585 (u_longlong_t)BP_GET_FILL(bp), 2586 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp), 2587 (u_longlong_t)BP_GET_PHYSICAL_BIRTH(bp)); 2588 if (bp_freed) 2589 (void) snprintf(blkbuf + strlen(blkbuf), 2590 buflen - strlen(blkbuf), " %s", "FREE"); 2591 (void) snprintf(blkbuf + strlen(blkbuf), 2592 buflen - strlen(blkbuf), 2593 " cksum=%016llx:%016llx:%016llx:%016llx", 2594 (u_longlong_t)bp->blk_cksum.zc_word[0], 2595 (u_longlong_t)bp->blk_cksum.zc_word[1], 2596 (u_longlong_t)bp->blk_cksum.zc_word[2], 2597 (u_longlong_t)bp->blk_cksum.zc_word[3]); 2598 } 2599 } 2600 2601 static u_longlong_t 2602 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb, 2603 const dnode_phys_t *dnp) 2604 { 2605 char blkbuf[BP_SPRINTF_LEN]; 2606 u_longlong_t offset; 2607 int l; 2608 2609 offset = (u_longlong_t)blkid2offset(dnp, bp, zb); 2610 2611 (void) printf("%16llx ", offset); 2612 2613 ASSERT(zb->zb_level >= 0); 2614 2615 for (l = dnp->dn_nlevels - 1; l >= -1; l--) { 2616 if (l == zb->zb_level) { 2617 (void) printf("L%llx", (u_longlong_t)zb->zb_level); 2618 } else { 2619 (void) printf(" "); 2620 } 2621 } 2622 2623 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE); 2624 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD) 2625 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp); 2626 (void) printf("%s", blkbuf); 2627 2628 if (!BP_IS_EMBEDDED(bp)) { 2629 if (BP_GET_TYPE(bp) != dnp->dn_type) { 2630 (void) printf(" (ERROR: Block pointer type " 2631 "(%llu) does not match dnode type (%hhu))", 2632 BP_GET_TYPE(bp), dnp->dn_type); 2633 corruption_found = B_TRUE; 2634 } 2635 if (BP_GET_LEVEL(bp) != zb->zb_level) { 2636 (void) printf(" (ERROR: Block pointer level " 2637 "(%llu) does not match bookmark level (%lld))", 2638 BP_GET_LEVEL(bp), (u_longlong_t)zb->zb_level); 2639 corruption_found = B_TRUE; 2640 } 2641 } 2642 (void) printf("\n"); 2643 2644 return (offset); 2645 } 2646 2647 static int 2648 visit_indirect(spa_t *spa, const dnode_phys_t *dnp, 2649 blkptr_t *bp, const zbookmark_phys_t *zb) 2650 { 2651 u_longlong_t offset; 2652 int err = 0; 2653 2654 if (BP_GET_BIRTH(bp) == 0) 2655 return (0); 2656 2657 offset = print_indirect(spa, bp, zb, dnp); 2658 2659 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { 2660 arc_flags_t flags = ARC_FLAG_WAIT; 2661 int i; 2662 blkptr_t *cbp; 2663 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2664 arc_buf_t *buf; 2665 uint64_t fill = 0; 2666 ASSERT(!BP_IS_REDACTED(bp)); 2667 2668 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2669 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); 2670 if (err) 2671 return (err); 2672 ASSERT(buf->b_data); 2673 2674 /* recursively visit blocks below this */ 2675 cbp = buf->b_data; 2676 for (i = 0; i < epb; i++, cbp++) { 2677 zbookmark_phys_t czb; 2678 2679 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2680 zb->zb_level - 1, 2681 zb->zb_blkid * epb + i); 2682 err = visit_indirect(spa, dnp, cbp, &czb); 2683 if (err) 2684 break; 2685 fill += BP_GET_FILL(cbp); 2686 } 2687 if (!err) { 2688 if (fill != BP_GET_FILL(bp)) { 2689 (void) printf("%16llx: Block pointer " 2690 "fill (%llu) does not match calculated " 2691 "value (%llu)\n", offset, BP_GET_FILL(bp), 2692 (u_longlong_t)fill); 2693 corruption_found = B_TRUE; 2694 } 2695 } 2696 arc_buf_destroy(buf, &buf); 2697 } 2698 2699 return (err); 2700 } 2701 2702 static void 2703 dump_indirect(dnode_t *dn) 2704 { 2705 dnode_phys_t *dnp = dn->dn_phys; 2706 zbookmark_phys_t czb; 2707 2708 (void) printf("Indirect blocks:\n"); 2709 2710 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), 2711 dn->dn_object, dnp->dn_nlevels - 1, 0); 2712 for (int j = 0; j < dnp->dn_nblkptr; j++) { 2713 czb.zb_blkid = j; 2714 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, 2715 &dnp->dn_blkptr[j], &czb); 2716 } 2717 2718 (void) printf("\n"); 2719 } 2720 2721 static void 2722 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) 2723 { 2724 (void) os, (void) object; 2725 dsl_dir_phys_t *dd = data; 2726 time_t crtime; 2727 char nice[32]; 2728 2729 /* make sure nicenum has enough space */ 2730 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated"); 2731 2732 if (dd == NULL) 2733 return; 2734 2735 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); 2736 2737 crtime = dd->dd_creation_time; 2738 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2739 (void) printf("\t\thead_dataset_obj = %llu\n", 2740 (u_longlong_t)dd->dd_head_dataset_obj); 2741 (void) printf("\t\tparent_dir_obj = %llu\n", 2742 (u_longlong_t)dd->dd_parent_obj); 2743 (void) printf("\t\torigin_obj = %llu\n", 2744 (u_longlong_t)dd->dd_origin_obj); 2745 (void) printf("\t\tchild_dir_zapobj = %llu\n", 2746 (u_longlong_t)dd->dd_child_dir_zapobj); 2747 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice)); 2748 (void) printf("\t\tused_bytes = %s\n", nice); 2749 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice)); 2750 (void) printf("\t\tcompressed_bytes = %s\n", nice); 2751 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice)); 2752 (void) printf("\t\tuncompressed_bytes = %s\n", nice); 2753 zdb_nicenum(dd->dd_quota, nice, sizeof (nice)); 2754 (void) printf("\t\tquota = %s\n", nice); 2755 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice)); 2756 (void) printf("\t\treserved = %s\n", nice); 2757 (void) printf("\t\tprops_zapobj = %llu\n", 2758 (u_longlong_t)dd->dd_props_zapobj); 2759 (void) printf("\t\tdeleg_zapobj = %llu\n", 2760 (u_longlong_t)dd->dd_deleg_zapobj); 2761 (void) printf("\t\tflags = %llx\n", 2762 (u_longlong_t)dd->dd_flags); 2763 2764 #define DO(which) \ 2765 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \ 2766 sizeof (nice)); \ 2767 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) 2768 DO(HEAD); 2769 DO(SNAP); 2770 DO(CHILD); 2771 DO(CHILD_RSRV); 2772 DO(REFRSRV); 2773 #undef DO 2774 (void) printf("\t\tclones = %llu\n", 2775 (u_longlong_t)dd->dd_clones); 2776 } 2777 2778 static void 2779 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) 2780 { 2781 (void) os, (void) object; 2782 dsl_dataset_phys_t *ds = data; 2783 time_t crtime; 2784 char used[32], compressed[32], uncompressed[32], unique[32]; 2785 char blkbuf[BP_SPRINTF_LEN]; 2786 2787 /* make sure nicenum has enough space */ 2788 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated"); 2789 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ, 2790 "compressed truncated"); 2791 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ, 2792 "uncompressed truncated"); 2793 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated"); 2794 2795 if (ds == NULL) 2796 return; 2797 2798 ASSERT(size == sizeof (*ds)); 2799 crtime = ds->ds_creation_time; 2800 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used)); 2801 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed)); 2802 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed, 2803 sizeof (uncompressed)); 2804 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique)); 2805 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); 2806 2807 (void) printf("\t\tdir_obj = %llu\n", 2808 (u_longlong_t)ds->ds_dir_obj); 2809 (void) printf("\t\tprev_snap_obj = %llu\n", 2810 (u_longlong_t)ds->ds_prev_snap_obj); 2811 (void) printf("\t\tprev_snap_txg = %llu\n", 2812 (u_longlong_t)ds->ds_prev_snap_txg); 2813 (void) printf("\t\tnext_snap_obj = %llu\n", 2814 (u_longlong_t)ds->ds_next_snap_obj); 2815 (void) printf("\t\tsnapnames_zapobj = %llu\n", 2816 (u_longlong_t)ds->ds_snapnames_zapobj); 2817 (void) printf("\t\tnum_children = %llu\n", 2818 (u_longlong_t)ds->ds_num_children); 2819 (void) printf("\t\tuserrefs_obj = %llu\n", 2820 (u_longlong_t)ds->ds_userrefs_obj); 2821 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2822 (void) printf("\t\tcreation_txg = %llu\n", 2823 (u_longlong_t)ds->ds_creation_txg); 2824 (void) printf("\t\tdeadlist_obj = %llu\n", 2825 (u_longlong_t)ds->ds_deadlist_obj); 2826 (void) printf("\t\tused_bytes = %s\n", used); 2827 (void) printf("\t\tcompressed_bytes = %s\n", compressed); 2828 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); 2829 (void) printf("\t\tunique = %s\n", unique); 2830 (void) printf("\t\tfsid_guid = %llu\n", 2831 (u_longlong_t)ds->ds_fsid_guid); 2832 (void) printf("\t\tguid = %llu\n", 2833 (u_longlong_t)ds->ds_guid); 2834 (void) printf("\t\tflags = %llx\n", 2835 (u_longlong_t)ds->ds_flags); 2836 (void) printf("\t\tnext_clones_obj = %llu\n", 2837 (u_longlong_t)ds->ds_next_clones_obj); 2838 (void) printf("\t\tprops_obj = %llu\n", 2839 (u_longlong_t)ds->ds_props_obj); 2840 (void) printf("\t\tbp = %s\n", blkbuf); 2841 } 2842 2843 static int 2844 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2845 { 2846 (void) arg, (void) tx; 2847 char blkbuf[BP_SPRINTF_LEN]; 2848 2849 if (BP_GET_BIRTH(bp) != 0) { 2850 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 2851 (void) printf("\t%s\n", blkbuf); 2852 } 2853 return (0); 2854 } 2855 2856 static void 2857 dump_bptree(objset_t *os, uint64_t obj, const char *name) 2858 { 2859 char bytes[32]; 2860 bptree_phys_t *bt; 2861 dmu_buf_t *db; 2862 2863 /* make sure nicenum has enough space */ 2864 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2865 2866 if (dump_opt['d'] < 3) 2867 return; 2868 2869 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); 2870 bt = db->db_data; 2871 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes)); 2872 (void) printf("\n %s: %llu datasets, %s\n", 2873 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); 2874 dmu_buf_rele(db, FTAG); 2875 2876 if (dump_opt['d'] < 5) 2877 return; 2878 2879 (void) printf("\n"); 2880 2881 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); 2882 } 2883 2884 static int 2885 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) 2886 { 2887 (void) arg, (void) tx; 2888 char blkbuf[BP_SPRINTF_LEN]; 2889 2890 ASSERT(BP_GET_BIRTH(bp) != 0); 2891 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed); 2892 (void) printf("\t%s\n", blkbuf); 2893 return (0); 2894 } 2895 2896 static void 2897 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent) 2898 { 2899 char bytes[32]; 2900 char comp[32]; 2901 char uncomp[32]; 2902 uint64_t i; 2903 2904 /* make sure nicenum has enough space */ 2905 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2906 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2907 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2908 2909 if (dump_opt['d'] < 3) 2910 return; 2911 2912 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes)); 2913 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2914 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp)); 2915 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp)); 2916 if (bpo->bpo_havefreed) { 2917 (void) printf(" %*s: object %llu, %llu local " 2918 "blkptrs, %llu freed, %llu subobjs in object %llu, " 2919 "%s (%s/%s comp)\n", 2920 indent * 8, name, 2921 (u_longlong_t)bpo->bpo_object, 2922 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2923 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2924 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2925 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2926 bytes, comp, uncomp); 2927 } else { 2928 (void) printf(" %*s: object %llu, %llu local " 2929 "blkptrs, %llu subobjs in object %llu, " 2930 "%s (%s/%s comp)\n", 2931 indent * 8, name, 2932 (u_longlong_t)bpo->bpo_object, 2933 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2934 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2935 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2936 bytes, comp, uncomp); 2937 } 2938 2939 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2940 uint64_t subobj; 2941 bpobj_t subbpo; 2942 int error; 2943 VERIFY0(dmu_read(bpo->bpo_os, 2944 bpo->bpo_phys->bpo_subobjs, 2945 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2946 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2947 if (error != 0) { 2948 (void) printf("ERROR %u while trying to open " 2949 "subobj id %llu\n", 2950 error, (u_longlong_t)subobj); 2951 corruption_found = B_TRUE; 2952 continue; 2953 } 2954 dump_full_bpobj(&subbpo, "subobj", indent + 1); 2955 bpobj_close(&subbpo); 2956 } 2957 } else { 2958 if (bpo->bpo_havefreed) { 2959 (void) printf(" %*s: object %llu, %llu blkptrs, " 2960 "%llu freed, %s\n", 2961 indent * 8, name, 2962 (u_longlong_t)bpo->bpo_object, 2963 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2964 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2965 bytes); 2966 } else { 2967 (void) printf(" %*s: object %llu, %llu blkptrs, " 2968 "%s\n", 2969 indent * 8, name, 2970 (u_longlong_t)bpo->bpo_object, 2971 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2972 bytes); 2973 } 2974 } 2975 2976 if (dump_opt['d'] < 5) 2977 return; 2978 2979 2980 if (indent == 0) { 2981 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); 2982 (void) printf("\n"); 2983 } 2984 } 2985 2986 static int 2987 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact, 2988 boolean_t print_list) 2989 { 2990 int err = 0; 2991 zfs_bookmark_phys_t prop; 2992 objset_t *mos = dp->dp_spa->spa_meta_objset; 2993 err = dsl_bookmark_lookup(dp, name, NULL, &prop); 2994 2995 if (err != 0) { 2996 return (err); 2997 } 2998 2999 (void) printf("\t#%s: ", strchr(name, '#') + 1); 3000 (void) printf("{guid: %llx creation_txg: %llu creation_time: " 3001 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid, 3002 (u_longlong_t)prop.zbm_creation_txg, 3003 (u_longlong_t)prop.zbm_creation_time, 3004 (u_longlong_t)prop.zbm_redaction_obj); 3005 3006 IMPLY(print_list, print_redact); 3007 if (!print_redact || prop.zbm_redaction_obj == 0) 3008 return (0); 3009 3010 redaction_list_t *rl; 3011 VERIFY0(dsl_redaction_list_hold_obj(dp, 3012 prop.zbm_redaction_obj, FTAG, &rl)); 3013 3014 redaction_list_phys_t *rlp = rl->rl_phys; 3015 (void) printf("\tRedacted:\n\t\tProgress: "); 3016 if (rlp->rlp_last_object != UINT64_MAX || 3017 rlp->rlp_last_blkid != UINT64_MAX) { 3018 (void) printf("%llu %llu (incomplete)\n", 3019 (u_longlong_t)rlp->rlp_last_object, 3020 (u_longlong_t)rlp->rlp_last_blkid); 3021 } else { 3022 (void) printf("complete\n"); 3023 } 3024 (void) printf("\t\tSnapshots: ["); 3025 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) { 3026 if (i > 0) 3027 (void) printf(", "); 3028 (void) printf("%0llu", 3029 (u_longlong_t)rlp->rlp_snaps[i]); 3030 } 3031 (void) printf("]\n\t\tLength: %llu\n", 3032 (u_longlong_t)rlp->rlp_num_entries); 3033 3034 if (!print_list) { 3035 dsl_redaction_list_rele(rl, FTAG); 3036 return (0); 3037 } 3038 3039 if (rlp->rlp_num_entries == 0) { 3040 dsl_redaction_list_rele(rl, FTAG); 3041 (void) printf("\t\tRedaction List: []\n\n"); 3042 return (0); 3043 } 3044 3045 redact_block_phys_t *rbp_buf; 3046 uint64_t size; 3047 dmu_object_info_t doi; 3048 3049 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi)); 3050 size = doi.doi_max_offset; 3051 rbp_buf = kmem_alloc(size, KM_SLEEP); 3052 3053 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size, 3054 rbp_buf, 0); 3055 if (err != 0) { 3056 dsl_redaction_list_rele(rl, FTAG); 3057 kmem_free(rbp_buf, size); 3058 return (err); 3059 } 3060 3061 (void) printf("\t\tRedaction List: [{object: %llx, offset: " 3062 "%llx, blksz: %x, count: %llx}", 3063 (u_longlong_t)rbp_buf[0].rbp_object, 3064 (u_longlong_t)rbp_buf[0].rbp_blkid, 3065 (uint_t)(redact_block_get_size(&rbp_buf[0])), 3066 (u_longlong_t)redact_block_get_count(&rbp_buf[0])); 3067 3068 for (size_t i = 1; i < rlp->rlp_num_entries; i++) { 3069 (void) printf(",\n\t\t{object: %llx, offset: %llx, " 3070 "blksz: %x, count: %llx}", 3071 (u_longlong_t)rbp_buf[i].rbp_object, 3072 (u_longlong_t)rbp_buf[i].rbp_blkid, 3073 (uint_t)(redact_block_get_size(&rbp_buf[i])), 3074 (u_longlong_t)redact_block_get_count(&rbp_buf[i])); 3075 } 3076 dsl_redaction_list_rele(rl, FTAG); 3077 kmem_free(rbp_buf, size); 3078 (void) printf("]\n\n"); 3079 return (0); 3080 } 3081 3082 static void 3083 dump_bookmarks(objset_t *os, int verbosity) 3084 { 3085 zap_cursor_t zc; 3086 zap_attribute_t *attrp; 3087 dsl_dataset_t *ds = dmu_objset_ds(os); 3088 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 3089 objset_t *mos = os->os_spa->spa_meta_objset; 3090 if (verbosity < 4) 3091 return; 3092 attrp = zap_attribute_alloc(); 3093 dsl_pool_config_enter(dp, FTAG); 3094 3095 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj); 3096 zap_cursor_retrieve(&zc, attrp) == 0; 3097 zap_cursor_advance(&zc)) { 3098 char osname[ZFS_MAX_DATASET_NAME_LEN]; 3099 char buf[ZFS_MAX_DATASET_NAME_LEN]; 3100 int len; 3101 dmu_objset_name(os, osname); 3102 len = snprintf(buf, sizeof (buf), "%s#%s", osname, 3103 attrp->za_name); 3104 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN); 3105 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6); 3106 } 3107 zap_cursor_fini(&zc); 3108 dsl_pool_config_exit(dp, FTAG); 3109 zap_attribute_free(attrp); 3110 } 3111 3112 static void 3113 bpobj_count_refd(bpobj_t *bpo) 3114 { 3115 mos_obj_refd(bpo->bpo_object); 3116 3117 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 3118 mos_obj_refd(bpo->bpo_phys->bpo_subobjs); 3119 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 3120 uint64_t subobj; 3121 bpobj_t subbpo; 3122 int error; 3123 VERIFY0(dmu_read(bpo->bpo_os, 3124 bpo->bpo_phys->bpo_subobjs, 3125 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 3126 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 3127 if (error != 0) { 3128 (void) printf("ERROR %u while trying to open " 3129 "subobj id %llu\n", 3130 error, (u_longlong_t)subobj); 3131 corruption_found = B_TRUE; 3132 continue; 3133 } 3134 bpobj_count_refd(&subbpo); 3135 bpobj_close(&subbpo); 3136 } 3137 } 3138 } 3139 3140 static int 3141 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle) 3142 { 3143 spa_t *spa = arg; 3144 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 3145 if (dle->dle_bpobj.bpo_object != empty_bpobj) 3146 bpobj_count_refd(&dle->dle_bpobj); 3147 return (0); 3148 } 3149 3150 static int 3151 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle) 3152 { 3153 ASSERT0P(arg); 3154 if (dump_opt['d'] >= 5) { 3155 char buf[128]; 3156 (void) snprintf(buf, sizeof (buf), 3157 "mintxg %llu -> obj %llu", 3158 (longlong_t)dle->dle_mintxg, 3159 (longlong_t)dle->dle_bpobj.bpo_object); 3160 3161 dump_full_bpobj(&dle->dle_bpobj, buf, 0); 3162 } else { 3163 (void) printf("mintxg %llu -> obj %llu\n", 3164 (longlong_t)dle->dle_mintxg, 3165 (longlong_t)dle->dle_bpobj.bpo_object); 3166 } 3167 return (0); 3168 } 3169 3170 static void 3171 dump_blkptr_list(dsl_deadlist_t *dl, const char *name) 3172 { 3173 char bytes[32]; 3174 char comp[32]; 3175 char uncomp[32]; 3176 char entries[32]; 3177 spa_t *spa = dmu_objset_spa(dl->dl_os); 3178 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 3179 3180 if (dl->dl_oldfmt) { 3181 if (dl->dl_bpobj.bpo_object != empty_bpobj) 3182 bpobj_count_refd(&dl->dl_bpobj); 3183 } else { 3184 mos_obj_refd(dl->dl_object); 3185 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa); 3186 } 3187 3188 /* make sure nicenum has enough space */ 3189 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 3190 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 3191 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 3192 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated"); 3193 3194 if (dump_opt['d'] < 3) 3195 return; 3196 3197 if (dl->dl_oldfmt) { 3198 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); 3199 return; 3200 } 3201 3202 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes)); 3203 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp)); 3204 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp)); 3205 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries)); 3206 (void) printf("\n %s: %s (%s/%s comp), %s entries\n", 3207 name, bytes, comp, uncomp, entries); 3208 3209 if (dump_opt['d'] < 4) 3210 return; 3211 3212 (void) putchar('\n'); 3213 3214 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL); 3215 } 3216 3217 static int 3218 verify_dd_livelist(objset_t *os) 3219 { 3220 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp; 3221 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 3222 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 3223 3224 ASSERT(!dmu_objset_is_snapshot(os)); 3225 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 3226 return (0); 3227 3228 /* Iterate through the livelist to check for duplicates */ 3229 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight, 3230 NULL); 3231 3232 dsl_pool_config_enter(dp, FTAG); 3233 dsl_deadlist_space(&dd->dd_livelist, &ll_used, 3234 &ll_comp, &ll_uncomp); 3235 3236 dsl_dataset_t *origin_ds; 3237 ASSERT(dsl_pool_config_held(dp)); 3238 VERIFY0(dsl_dataset_hold_obj(dp, 3239 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds)); 3240 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset, 3241 &used, &comp, &uncomp)); 3242 dsl_dataset_rele(origin_ds, FTAG); 3243 dsl_pool_config_exit(dp, FTAG); 3244 /* 3245 * It's possible that the dataset's uncomp space is larger than the 3246 * livelist's because livelists do not track embedded block pointers 3247 */ 3248 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) { 3249 char nice_used[32], nice_comp[32], nice_uncomp[32]; 3250 (void) printf("Discrepancy in space accounting:\n"); 3251 zdb_nicenum(used, nice_used, sizeof (nice_used)); 3252 zdb_nicenum(comp, nice_comp, sizeof (nice_comp)); 3253 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp)); 3254 (void) printf("dir: used %s, comp %s, uncomp %s\n", 3255 nice_used, nice_comp, nice_uncomp); 3256 zdb_nicenum(ll_used, nice_used, sizeof (nice_used)); 3257 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp)); 3258 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp)); 3259 (void) printf("livelist: used %s, comp %s, uncomp %s\n", 3260 nice_used, nice_comp, nice_uncomp); 3261 return (1); 3262 } 3263 return (0); 3264 } 3265 3266 static char *key_material = NULL; 3267 3268 static boolean_t 3269 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out) 3270 { 3271 uint64_t keyformat, salt, iters; 3272 int i; 3273 unsigned char c; 3274 3275 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3276 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t), 3277 1, &keyformat)); 3278 3279 switch (keyformat) { 3280 case ZFS_KEYFORMAT_HEX: 3281 for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) { 3282 if (!isxdigit(key_material[i]) || 3283 !isxdigit(key_material[i+1])) 3284 return (B_FALSE); 3285 if (sscanf(&key_material[i], "%02hhx", &c) != 1) 3286 return (B_FALSE); 3287 key_out[i / 2] = c; 3288 } 3289 break; 3290 3291 case ZFS_KEYFORMAT_PASSPHRASE: 3292 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3293 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 3294 sizeof (uint64_t), 1, &salt)); 3295 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3296 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 3297 sizeof (uint64_t), 1, &iters)); 3298 3299 if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material), 3300 ((uint8_t *)&salt), sizeof (uint64_t), iters, 3301 WRAPPING_KEY_LEN, key_out) != 1) 3302 return (B_FALSE); 3303 3304 break; 3305 3306 default: 3307 fatal("no support for key format %u\n", 3308 (unsigned int) keyformat); 3309 } 3310 3311 return (B_TRUE); 3312 } 3313 3314 static char encroot[ZFS_MAX_DATASET_NAME_LEN]; 3315 static boolean_t key_loaded = B_FALSE; 3316 3317 static void 3318 zdb_load_key(objset_t *os) 3319 { 3320 dsl_pool_t *dp; 3321 dsl_dir_t *dd, *rdd; 3322 uint8_t key[WRAPPING_KEY_LEN]; 3323 uint64_t rddobj; 3324 int err; 3325 3326 dp = spa_get_dsl(os->os_spa); 3327 dd = os->os_dsl_dataset->ds_dir; 3328 3329 dsl_pool_config_enter(dp, FTAG); 3330 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3331 DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj)); 3332 VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd)); 3333 dsl_dir_name(rdd, encroot); 3334 dsl_dir_rele(rdd, FTAG); 3335 3336 if (!zdb_derive_key(dd, key)) 3337 fatal("couldn't derive encryption key"); 3338 3339 dsl_pool_config_exit(dp, FTAG); 3340 3341 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE); 3342 3343 dsl_crypto_params_t *dcp; 3344 nvlist_t *crypto_args; 3345 3346 crypto_args = fnvlist_alloc(); 3347 fnvlist_add_uint8_array(crypto_args, "wkeydata", 3348 (uint8_t *)key, WRAPPING_KEY_LEN); 3349 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 3350 NULL, crypto_args, &dcp)); 3351 err = spa_keystore_load_wkey(encroot, dcp, B_FALSE); 3352 3353 dsl_crypto_params_free(dcp, (err != 0)); 3354 fnvlist_free(crypto_args); 3355 3356 if (err != 0) 3357 fatal( 3358 "couldn't load encryption key for %s: %s", 3359 encroot, err == ZFS_ERR_CRYPTO_NOTSUP ? 3360 "crypto params not supported" : strerror(err)); 3361 3362 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE); 3363 3364 printf("Unlocked encryption root: %s\n", encroot); 3365 key_loaded = B_TRUE; 3366 } 3367 3368 static void 3369 zdb_unload_key(void) 3370 { 3371 if (!key_loaded) 3372 return; 3373 3374 VERIFY0(spa_keystore_unload_wkey(encroot)); 3375 key_loaded = B_FALSE; 3376 } 3377 3378 static avl_tree_t idx_tree; 3379 static avl_tree_t domain_tree; 3380 static boolean_t fuid_table_loaded; 3381 static objset_t *sa_os = NULL; 3382 static sa_attr_type_t *sa_attr_table = NULL; 3383 3384 static int 3385 open_objset(const char *path, const void *tag, objset_t **osp) 3386 { 3387 int err; 3388 uint64_t sa_attrs = 0; 3389 uint64_t version = 0; 3390 3391 VERIFY0P(sa_os); 3392 3393 /* 3394 * We can't own an objset if it's redacted. Therefore, we do this 3395 * dance: hold the objset, then acquire a long hold on its dataset, then 3396 * release the pool (which is held as part of holding the objset). 3397 */ 3398 3399 if (dump_opt['K']) { 3400 /* decryption requested, try to load keys */ 3401 err = dmu_objset_hold(path, tag, osp); 3402 if (err != 0) { 3403 (void) fprintf(stderr, "failed to hold dataset " 3404 "'%s': %s\n", 3405 path, strerror(err)); 3406 return (err); 3407 } 3408 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3409 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3410 3411 /* succeeds or dies */ 3412 zdb_load_key(*osp); 3413 3414 /* release it all */ 3415 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3416 dsl_dataset_rele(dmu_objset_ds(*osp), tag); 3417 } 3418 3419 int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0; 3420 3421 err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp); 3422 if (err != 0) { 3423 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n", 3424 path, strerror(err)); 3425 return (err); 3426 } 3427 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3428 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3429 3430 if (dmu_objset_type(*osp) == DMU_OST_ZFS && 3431 (key_loaded || !(*osp)->os_encrypted)) { 3432 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR, 3433 8, 1, &version); 3434 if (version >= ZPL_VERSION_SA) { 3435 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 3436 8, 1, &sa_attrs); 3437 } 3438 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END, 3439 &sa_attr_table); 3440 if (err != 0) { 3441 (void) fprintf(stderr, "sa_setup failed: %s\n", 3442 strerror(err)); 3443 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3444 dsl_dataset_rele_flags(dmu_objset_ds(*osp), 3445 ds_hold_flags, tag); 3446 *osp = NULL; 3447 } 3448 } 3449 sa_os = *osp; 3450 3451 return (err); 3452 } 3453 3454 static void 3455 close_objset(objset_t *os, const void *tag) 3456 { 3457 VERIFY3P(os, ==, sa_os); 3458 if (os->os_sa != NULL) 3459 sa_tear_down(os); 3460 dsl_dataset_long_rele(dmu_objset_ds(os), tag); 3461 dsl_dataset_rele_flags(dmu_objset_ds(os), 3462 key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag); 3463 sa_attr_table = NULL; 3464 sa_os = NULL; 3465 3466 zdb_unload_key(); 3467 } 3468 3469 static void 3470 fuid_table_destroy(void) 3471 { 3472 if (fuid_table_loaded) { 3473 zfs_fuid_table_destroy(&idx_tree, &domain_tree); 3474 fuid_table_loaded = B_FALSE; 3475 } 3476 } 3477 3478 /* 3479 * Clean up DDT internal state. ddt_lookup() adds entries to ddt_tree, which on 3480 * a live pool are normally cleaned up during ddt_sync(). We can't do that (and 3481 * wouldn't want to anyway), but if we don't clean up the presence of stuff on 3482 * ddt_tree will trip asserts in ddt_table_free(). So, we clean up ourselves. 3483 * 3484 * Note that this is not a particularly efficient way to do this, but 3485 * ddt_remove() is the only public method that can do the work we need, and it 3486 * requires the right locks and etc to do the job. This is only ever called 3487 * during zdb shutdown so efficiency is not especially important. 3488 */ 3489 static void 3490 zdb_ddt_cleanup(spa_t *spa) 3491 { 3492 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 3493 ddt_t *ddt = spa->spa_ddt[c]; 3494 if (!ddt) 3495 continue; 3496 3497 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3498 ddt_enter(ddt); 3499 ddt_entry_t *dde = avl_first(&ddt->ddt_tree), *next; 3500 while (dde) { 3501 next = AVL_NEXT(&ddt->ddt_tree, dde); 3502 dde->dde_io = NULL; 3503 ddt_remove(ddt, dde); 3504 dde = next; 3505 } 3506 ddt_exit(ddt); 3507 spa_config_exit(spa, SCL_CONFIG, FTAG); 3508 } 3509 } 3510 3511 static void 3512 zdb_exit(int reason) 3513 { 3514 if (spa != NULL) 3515 zdb_ddt_cleanup(spa); 3516 3517 if (os != NULL) { 3518 close_objset(os, FTAG); 3519 } else if (spa != NULL) { 3520 spa_close(spa, FTAG); 3521 } 3522 3523 fuid_table_destroy(); 3524 3525 if (kernel_init_done) 3526 kernel_fini(); 3527 3528 exit(reason); 3529 } 3530 3531 /* 3532 * print uid or gid information. 3533 * For normal POSIX id just the id is printed in decimal format. 3534 * For CIFS files with FUID the fuid is printed in hex followed by 3535 * the domain-rid string. 3536 */ 3537 static void 3538 print_idstr(uint64_t id, const char *id_type) 3539 { 3540 if (FUID_INDEX(id)) { 3541 const char *domain = 3542 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); 3543 (void) printf("\t%s %llx [%s-%d]\n", id_type, 3544 (u_longlong_t)id, domain, (int)FUID_RID(id)); 3545 } else { 3546 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); 3547 } 3548 3549 } 3550 3551 static void 3552 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) 3553 { 3554 uint32_t uid_idx, gid_idx; 3555 3556 uid_idx = FUID_INDEX(uid); 3557 gid_idx = FUID_INDEX(gid); 3558 3559 /* Load domain table, if not already loaded */ 3560 if (!fuid_table_loaded && (uid_idx || gid_idx)) { 3561 uint64_t fuid_obj; 3562 3563 /* first find the fuid object. It lives in the master node */ 3564 VERIFY0(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 3565 8, 1, &fuid_obj)); 3566 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); 3567 (void) zfs_fuid_table_load(os, fuid_obj, 3568 &idx_tree, &domain_tree); 3569 fuid_table_loaded = B_TRUE; 3570 } 3571 3572 print_idstr(uid, "uid"); 3573 print_idstr(gid, "gid"); 3574 } 3575 3576 static void 3577 dump_znode_sa_xattr(sa_handle_t *hdl) 3578 { 3579 nvlist_t *sa_xattr; 3580 nvpair_t *elem = NULL; 3581 int sa_xattr_size = 0; 3582 int sa_xattr_entries = 0; 3583 int error; 3584 char *sa_xattr_packed; 3585 3586 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size); 3587 if (error || sa_xattr_size == 0) 3588 return; 3589 3590 sa_xattr_packed = malloc(sa_xattr_size); 3591 if (sa_xattr_packed == NULL) 3592 return; 3593 3594 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR], 3595 sa_xattr_packed, sa_xattr_size); 3596 if (error) { 3597 free(sa_xattr_packed); 3598 return; 3599 } 3600 3601 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0); 3602 if (error) { 3603 free(sa_xattr_packed); 3604 return; 3605 } 3606 3607 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) 3608 sa_xattr_entries++; 3609 3610 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n", 3611 sa_xattr_size, sa_xattr_entries); 3612 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) { 3613 boolean_t can_print = !dump_opt['P']; 3614 uchar_t *value; 3615 uint_t cnt, idx; 3616 3617 (void) printf("\t\t%s = ", nvpair_name(elem)); 3618 nvpair_value_byte_array(elem, &value, &cnt); 3619 3620 for (idx = 0; idx < cnt; ++idx) { 3621 if (!isprint(value[idx])) { 3622 can_print = B_FALSE; 3623 break; 3624 } 3625 } 3626 3627 for (idx = 0; idx < cnt; ++idx) { 3628 if (can_print) 3629 (void) putchar(value[idx]); 3630 else 3631 (void) printf("\\%3.3o", value[idx]); 3632 } 3633 (void) putchar('\n'); 3634 } 3635 3636 nvlist_free(sa_xattr); 3637 free(sa_xattr_packed); 3638 } 3639 3640 static void 3641 dump_znode_symlink(sa_handle_t *hdl) 3642 { 3643 int sa_symlink_size = 0; 3644 char linktarget[MAXPATHLEN]; 3645 int error; 3646 3647 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size); 3648 if (error || sa_symlink_size == 0) { 3649 return; 3650 } 3651 if (sa_symlink_size >= sizeof (linktarget)) { 3652 (void) printf("symlink size %d is too large\n", 3653 sa_symlink_size); 3654 return; 3655 } 3656 linktarget[sa_symlink_size] = '\0'; 3657 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK], 3658 &linktarget, sa_symlink_size) == 0) 3659 (void) printf("\ttarget %s\n", linktarget); 3660 } 3661 3662 static void 3663 dump_znode(objset_t *os, uint64_t object, void *data, size_t size) 3664 { 3665 (void) data, (void) size; 3666 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ 3667 sa_handle_t *hdl; 3668 uint64_t xattr, rdev, gen; 3669 uint64_t uid, gid, mode, fsize, parent, links; 3670 uint64_t pflags; 3671 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; 3672 time_t z_crtime, z_atime, z_mtime, z_ctime; 3673 sa_bulk_attr_t bulk[12]; 3674 int idx = 0; 3675 int error; 3676 3677 VERIFY3P(os, ==, sa_os); 3678 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { 3679 (void) printf("Failed to get handle for SA znode\n"); 3680 return; 3681 } 3682 3683 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); 3684 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); 3685 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, 3686 &links, 8); 3687 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); 3688 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, 3689 &mode, 8); 3690 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], 3691 NULL, &parent, 8); 3692 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, 3693 &fsize, 8); 3694 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, 3695 acctm, 16); 3696 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, 3697 modtm, 16); 3698 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, 3699 crtm, 16); 3700 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, 3701 chgtm, 16); 3702 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, 3703 &pflags, 8); 3704 3705 if (sa_bulk_lookup(hdl, bulk, idx)) { 3706 (void) sa_handle_destroy(hdl); 3707 return; 3708 } 3709 3710 z_crtime = (time_t)crtm[0]; 3711 z_atime = (time_t)acctm[0]; 3712 z_mtime = (time_t)modtm[0]; 3713 z_ctime = (time_t)chgtm[0]; 3714 3715 if (dump_opt['d'] > 4) { 3716 error = zfs_obj_to_path(os, object, path, sizeof (path)); 3717 if (error == ESTALE) { 3718 (void) snprintf(path, sizeof (path), "on delete queue"); 3719 } else if (error != 0) { 3720 leaked_objects++; 3721 (void) snprintf(path, sizeof (path), 3722 "path not found, possibly leaked"); 3723 } 3724 (void) printf("\tpath %s\n", path); 3725 } 3726 3727 if (S_ISLNK(mode)) 3728 dump_znode_symlink(hdl); 3729 dump_uidgid(os, uid, gid); 3730 (void) printf("\tatime %s", ctime(&z_atime)); 3731 (void) printf("\tmtime %s", ctime(&z_mtime)); 3732 (void) printf("\tctime %s", ctime(&z_ctime)); 3733 (void) printf("\tcrtime %s", ctime(&z_crtime)); 3734 (void) printf("\tgen %llu\n", (u_longlong_t)gen); 3735 (void) printf("\tmode %llo\n", (u_longlong_t)mode); 3736 (void) printf("\tsize %llu\n", (u_longlong_t)fsize); 3737 (void) printf("\tparent %llu\n", (u_longlong_t)parent); 3738 (void) printf("\tlinks %llu\n", (u_longlong_t)links); 3739 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); 3740 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) { 3741 uint64_t projid; 3742 3743 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid, 3744 sizeof (uint64_t)) == 0) 3745 (void) printf("\tprojid %llu\n", (u_longlong_t)projid); 3746 } 3747 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, 3748 sizeof (uint64_t)) == 0) 3749 (void) printf("\txattr %llu\n", (u_longlong_t)xattr); 3750 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, 3751 sizeof (uint64_t)) == 0) 3752 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); 3753 dump_znode_sa_xattr(hdl); 3754 sa_handle_destroy(hdl); 3755 } 3756 3757 static void 3758 dump_acl(objset_t *os, uint64_t object, void *data, size_t size) 3759 { 3760 (void) os, (void) object, (void) data, (void) size; 3761 } 3762 3763 static void 3764 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) 3765 { 3766 (void) os, (void) object, (void) data, (void) size; 3767 } 3768 3769 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { 3770 dump_none, /* unallocated */ 3771 dump_zap, /* object directory */ 3772 dump_uint64, /* object array */ 3773 dump_none, /* packed nvlist */ 3774 dump_packed_nvlist, /* packed nvlist size */ 3775 dump_none, /* bpobj */ 3776 dump_bpobj, /* bpobj header */ 3777 dump_none, /* SPA space map header */ 3778 dump_none, /* SPA space map */ 3779 dump_none, /* ZIL intent log */ 3780 dump_dnode, /* DMU dnode */ 3781 dump_dmu_objset, /* DMU objset */ 3782 dump_dsl_dir, /* DSL directory */ 3783 dump_zap, /* DSL directory child map */ 3784 dump_zap, /* DSL dataset snap map */ 3785 dump_zap, /* DSL props */ 3786 dump_dsl_dataset, /* DSL dataset */ 3787 dump_znode, /* ZFS znode */ 3788 dump_acl, /* ZFS V0 ACL */ 3789 dump_uint8, /* ZFS plain file */ 3790 dump_zpldir, /* ZFS directory */ 3791 dump_zap, /* ZFS master node */ 3792 dump_zap, /* ZFS delete queue */ 3793 dump_uint8, /* zvol object */ 3794 dump_zap, /* zvol prop */ 3795 dump_uint8, /* other uint8[] */ 3796 dump_uint64, /* other uint64[] */ 3797 dump_zap, /* other ZAP */ 3798 dump_zap, /* persistent error log */ 3799 dump_uint8, /* SPA history */ 3800 dump_history_offsets, /* SPA history offsets */ 3801 dump_zap, /* Pool properties */ 3802 dump_zap, /* DSL permissions */ 3803 dump_acl, /* ZFS ACL */ 3804 dump_uint8, /* ZFS SYSACL */ 3805 dump_none, /* FUID nvlist */ 3806 dump_packed_nvlist, /* FUID nvlist size */ 3807 dump_zap, /* DSL dataset next clones */ 3808 dump_zap, /* DSL scrub queue */ 3809 dump_zap, /* ZFS user/group/project used */ 3810 dump_zap, /* ZFS user/group/project quota */ 3811 dump_zap, /* snapshot refcount tags */ 3812 dump_ddt_zap, /* DDT ZAP object */ 3813 dump_zap, /* DDT statistics */ 3814 dump_znode, /* SA object */ 3815 dump_zap, /* SA Master Node */ 3816 dump_sa_attrs, /* SA attribute registration */ 3817 dump_sa_layouts, /* SA attribute layouts */ 3818 dump_zap, /* DSL scrub translations */ 3819 dump_none, /* fake dedup BP */ 3820 dump_zap, /* deadlist */ 3821 dump_none, /* deadlist hdr */ 3822 dump_zap, /* dsl clones */ 3823 dump_bpobj_subobjs, /* bpobj subobjs */ 3824 dump_unknown, /* Unknown type, must be last */ 3825 }; 3826 3827 static boolean_t 3828 match_object_type(dmu_object_type_t obj_type, uint64_t flags) 3829 { 3830 boolean_t match = B_TRUE; 3831 3832 switch (obj_type) { 3833 case DMU_OT_DIRECTORY_CONTENTS: 3834 if (!(flags & ZOR_FLAG_DIRECTORY)) 3835 match = B_FALSE; 3836 break; 3837 case DMU_OT_PLAIN_FILE_CONTENTS: 3838 if (!(flags & ZOR_FLAG_PLAIN_FILE)) 3839 match = B_FALSE; 3840 break; 3841 case DMU_OT_SPACE_MAP: 3842 if (!(flags & ZOR_FLAG_SPACE_MAP)) 3843 match = B_FALSE; 3844 break; 3845 default: 3846 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) { 3847 if (!(flags & ZOR_FLAG_ZAP)) 3848 match = B_FALSE; 3849 break; 3850 } 3851 3852 /* 3853 * If all bits except some of the supported flags are 3854 * set, the user combined the all-types flag (A) with 3855 * a negated flag to exclude some types (e.g. A-f to 3856 * show all object types except plain files). 3857 */ 3858 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES) 3859 match = B_FALSE; 3860 3861 break; 3862 } 3863 3864 return (match); 3865 } 3866 3867 static void 3868 dump_object(objset_t *os, uint64_t object, int verbosity, 3869 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags) 3870 { 3871 dmu_buf_t *db = NULL; 3872 dmu_object_info_t doi; 3873 dnode_t *dn; 3874 boolean_t dnode_held = B_FALSE; 3875 void *bonus = NULL; 3876 size_t bsize = 0; 3877 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32]; 3878 char bonus_size[32]; 3879 char aux[50]; 3880 int error; 3881 3882 /* make sure nicenum has enough space */ 3883 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated"); 3884 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated"); 3885 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated"); 3886 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated"); 3887 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ, 3888 "bonus_size truncated"); 3889 3890 if (*print_header) { 3891 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n", 3892 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize", 3893 "lsize", "%full", "type"); 3894 *print_header = 0; 3895 } 3896 3897 if (object == 0) { 3898 dn = DMU_META_DNODE(os); 3899 dmu_object_info_from_dnode(dn, &doi); 3900 } else { 3901 /* 3902 * Encrypted datasets will have sensitive bonus buffers 3903 * encrypted. Therefore we cannot hold the bonus buffer and 3904 * must hold the dnode itself instead. 3905 */ 3906 error = dmu_object_info(os, object, &doi); 3907 if (error) 3908 fatal("dmu_object_info() failed, errno %u", error); 3909 3910 if (!key_loaded && os->os_encrypted && 3911 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) { 3912 error = dnode_hold(os, object, FTAG, &dn); 3913 if (error) 3914 fatal("dnode_hold() failed, errno %u", error); 3915 dnode_held = B_TRUE; 3916 } else { 3917 error = dmu_bonus_hold(os, object, FTAG, &db); 3918 if (error) 3919 fatal("dmu_bonus_hold(%llu) failed, errno %u", 3920 object, error); 3921 bonus = db->db_data; 3922 bsize = db->db_size; 3923 dn = DB_DNODE((dmu_buf_impl_t *)db); 3924 } 3925 } 3926 3927 /* 3928 * Default to showing all object types if no flags were specified. 3929 */ 3930 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES && 3931 !match_object_type(doi.doi_type, flags)) 3932 goto out; 3933 3934 if (dnode_slots_used) 3935 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE; 3936 3937 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk)); 3938 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk)); 3939 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize)); 3940 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize)); 3941 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size)); 3942 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize)); 3943 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 * 3944 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ? 3945 DNODES_PER_BLOCK : 1) / doi.doi_max_offset); 3946 3947 aux[0] = '\0'; 3948 3949 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { 3950 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3951 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); 3952 } 3953 3954 if (doi.doi_compress == ZIO_COMPRESS_INHERIT && 3955 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) { 3956 const char *compname = NULL; 3957 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION, 3958 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel), 3959 &compname) == 0) { 3960 (void) snprintf(aux + strlen(aux), 3961 sizeof (aux) - strlen(aux), " (Z=inherit=%s)", 3962 compname); 3963 } else { 3964 (void) snprintf(aux + strlen(aux), 3965 sizeof (aux) - strlen(aux), 3966 " (Z=inherit=%s-unknown)", 3967 ZDB_COMPRESS_NAME(os->os_compress)); 3968 } 3969 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) { 3970 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3971 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress)); 3972 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { 3973 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3974 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); 3975 } 3976 3977 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n", 3978 (u_longlong_t)object, doi.doi_indirection, iblk, dblk, 3979 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux); 3980 3981 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { 3982 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n", 3983 "", "", "", "", "", "", bonus_size, "bonus", 3984 zdb_ot_name(doi.doi_bonus_type)); 3985 } 3986 3987 if (verbosity >= 4) { 3988 (void) printf("\tdnode flags: %s%s%s%s\n", 3989 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? 3990 "USED_BYTES " : "", 3991 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? 3992 "USERUSED_ACCOUNTED " : "", 3993 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ? 3994 "USEROBJUSED_ACCOUNTED " : "", 3995 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? 3996 "SPILL_BLKPTR" : ""); 3997 (void) printf("\tdnode maxblkid: %llu\n", 3998 (longlong_t)dn->dn_phys->dn_maxblkid); 3999 4000 if (!dnode_held) { 4001 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, 4002 object, bonus, bsize); 4003 } else { 4004 (void) printf("\t\t(bonus encrypted)\n"); 4005 } 4006 4007 if (key_loaded || 4008 (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) { 4009 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, 4010 NULL, 0); 4011 } else { 4012 (void) printf("\t\t(object encrypted)\n"); 4013 } 4014 4015 *print_header = B_TRUE; 4016 } 4017 4018 if (verbosity >= 5) { 4019 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 4020 char blkbuf[BP_SPRINTF_LEN]; 4021 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 4022 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE); 4023 (void) printf("\nSpill block: %s\n", blkbuf); 4024 } 4025 dump_indirect(dn); 4026 } 4027 4028 if (verbosity >= 5) { 4029 /* 4030 * Report the list of segments that comprise the object. 4031 */ 4032 uint64_t start = 0; 4033 uint64_t end; 4034 uint64_t blkfill = 1; 4035 int minlvl = 1; 4036 4037 if (dn->dn_type == DMU_OT_DNODE) { 4038 minlvl = 0; 4039 blkfill = DNODES_PER_BLOCK; 4040 } 4041 4042 for (;;) { 4043 char segsize[32]; 4044 /* make sure nicenum has enough space */ 4045 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ, 4046 "segsize truncated"); 4047 error = dnode_next_offset(dn, 4048 0, &start, minlvl, blkfill, 0); 4049 if (error) 4050 break; 4051 end = start; 4052 error = dnode_next_offset(dn, 4053 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); 4054 zdb_nicenum(end - start, segsize, sizeof (segsize)); 4055 (void) printf("\t\tsegment [%016llx, %016llx)" 4056 " size %5s\n", (u_longlong_t)start, 4057 (u_longlong_t)end, segsize); 4058 if (error) 4059 break; 4060 start = end; 4061 } 4062 } 4063 4064 out: 4065 if (db != NULL) 4066 dmu_buf_rele(db, FTAG); 4067 if (dnode_held) 4068 dnode_rele(dn, FTAG); 4069 } 4070 4071 static void 4072 count_dir_mos_objects(dsl_dir_t *dd) 4073 { 4074 mos_obj_refd(dd->dd_object); 4075 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj); 4076 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj); 4077 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj); 4078 mos_obj_refd(dsl_dir_phys(dd)->dd_clones); 4079 4080 /* 4081 * The dd_crypto_obj can be referenced by multiple dsl_dir's. 4082 * Ignore the references after the first one. 4083 */ 4084 mos_obj_refd_multiple(dd->dd_crypto_obj); 4085 } 4086 4087 static void 4088 count_ds_mos_objects(dsl_dataset_t *ds) 4089 { 4090 mos_obj_refd(ds->ds_object); 4091 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj); 4092 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj); 4093 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj); 4094 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj); 4095 mos_obj_refd(ds->ds_bookmarks_obj); 4096 4097 if (!dsl_dataset_is_snapshot(ds)) { 4098 count_dir_mos_objects(ds->ds_dir); 4099 } 4100 } 4101 4102 static const char *const objset_types[DMU_OST_NUMTYPES] = { 4103 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; 4104 4105 /* 4106 * Parse a string denoting a range of object IDs of the form 4107 * <start>[:<end>[:flags]], and store the results in zor. 4108 * Return 0 on success. On error, return 1 and update the msg 4109 * pointer to point to a descriptive error message. 4110 */ 4111 static int 4112 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg) 4113 { 4114 uint64_t flags = 0; 4115 char *p, *s, *dup, *flagstr, *tmp = NULL; 4116 size_t len; 4117 int i; 4118 int rc = 0; 4119 4120 if (strchr(range, ':') == NULL) { 4121 zor->zor_obj_start = strtoull(range, &p, 0); 4122 if (*p != '\0') { 4123 *msg = "Invalid characters in object ID"; 4124 rc = 1; 4125 } 4126 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 4127 zor->zor_obj_end = zor->zor_obj_start; 4128 return (rc); 4129 } 4130 4131 if (strchr(range, ':') == range) { 4132 *msg = "Invalid leading colon"; 4133 rc = 1; 4134 return (rc); 4135 } 4136 4137 len = strlen(range); 4138 if (range[len - 1] == ':') { 4139 *msg = "Invalid trailing colon"; 4140 rc = 1; 4141 return (rc); 4142 } 4143 4144 dup = strdup(range); 4145 s = strtok_r(dup, ":", &tmp); 4146 zor->zor_obj_start = strtoull(s, &p, 0); 4147 4148 if (*p != '\0') { 4149 *msg = "Invalid characters in start object ID"; 4150 rc = 1; 4151 goto out; 4152 } 4153 4154 s = strtok_r(NULL, ":", &tmp); 4155 zor->zor_obj_end = strtoull(s, &p, 0); 4156 4157 if (*p != '\0') { 4158 *msg = "Invalid characters in end object ID"; 4159 rc = 1; 4160 goto out; 4161 } 4162 4163 if (zor->zor_obj_start > zor->zor_obj_end) { 4164 *msg = "Start object ID may not exceed end object ID"; 4165 rc = 1; 4166 goto out; 4167 } 4168 4169 s = strtok_r(NULL, ":", &tmp); 4170 if (s == NULL) { 4171 zor->zor_flags = ZOR_FLAG_ALL_TYPES; 4172 goto out; 4173 } else if (strtok_r(NULL, ":", &tmp) != NULL) { 4174 *msg = "Invalid colon-delimited field after flags"; 4175 rc = 1; 4176 goto out; 4177 } 4178 4179 flagstr = s; 4180 for (i = 0; flagstr[i]; i++) { 4181 int bit; 4182 boolean_t negation = (flagstr[i] == '-'); 4183 4184 if (negation) { 4185 i++; 4186 if (flagstr[i] == '\0') { 4187 *msg = "Invalid trailing negation operator"; 4188 rc = 1; 4189 goto out; 4190 } 4191 } 4192 bit = flagbits[(uchar_t)flagstr[i]]; 4193 if (bit == 0) { 4194 *msg = "Invalid flag"; 4195 rc = 1; 4196 goto out; 4197 } 4198 if (negation) 4199 flags &= ~bit; 4200 else 4201 flags |= bit; 4202 } 4203 zor->zor_flags = flags; 4204 4205 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 4206 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end); 4207 4208 out: 4209 free(dup); 4210 return (rc); 4211 } 4212 4213 static void 4214 dump_objset(objset_t *os) 4215 { 4216 dmu_objset_stats_t dds = { 0 }; 4217 uint64_t object, object_count; 4218 uint64_t refdbytes, usedobjs, scratch; 4219 char numbuf[32]; 4220 char blkbuf[BP_SPRINTF_LEN + 20]; 4221 char osname[ZFS_MAX_DATASET_NAME_LEN]; 4222 const char *type = "UNKNOWN"; 4223 int verbosity = dump_opt['d']; 4224 boolean_t print_header; 4225 unsigned i; 4226 int error; 4227 uint64_t total_slots_used = 0; 4228 uint64_t max_slot_used = 0; 4229 uint64_t dnode_slots; 4230 uint64_t obj_start; 4231 uint64_t obj_end; 4232 uint64_t flags; 4233 4234 /* make sure nicenum has enough space */ 4235 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated"); 4236 4237 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 4238 dmu_objset_fast_stat(os, &dds); 4239 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 4240 4241 print_header = B_TRUE; 4242 4243 if (dds.dds_type < DMU_OST_NUMTYPES) 4244 type = objset_types[dds.dds_type]; 4245 4246 if (dds.dds_type == DMU_OST_META) { 4247 dds.dds_creation_txg = TXG_INITIAL; 4248 usedobjs = BP_GET_FILL(os->os_rootbp); 4249 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> 4250 dd_used_bytes; 4251 } else { 4252 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); 4253 } 4254 4255 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); 4256 4257 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf)); 4258 4259 if (verbosity >= 4) { 4260 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); 4261 (void) snprintf_blkptr(blkbuf + strlen(blkbuf), 4262 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); 4263 } else { 4264 blkbuf[0] = '\0'; 4265 } 4266 4267 dmu_objset_name(os, osname); 4268 4269 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " 4270 "%s, %llu objects%s%s\n", 4271 osname, type, (u_longlong_t)dmu_objset_id(os), 4272 (u_longlong_t)dds.dds_creation_txg, 4273 numbuf, (u_longlong_t)usedobjs, blkbuf, 4274 (dds.dds_inconsistent) ? " (inconsistent)" : ""); 4275 4276 for (i = 0; i < zopt_object_args; i++) { 4277 obj_start = zopt_object_ranges[i].zor_obj_start; 4278 obj_end = zopt_object_ranges[i].zor_obj_end; 4279 flags = zopt_object_ranges[i].zor_flags; 4280 4281 object = obj_start; 4282 if (object == 0 || obj_start == obj_end) 4283 dump_object(os, object, verbosity, &print_header, NULL, 4284 flags); 4285 else 4286 object--; 4287 4288 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) && 4289 object <= obj_end) { 4290 dump_object(os, object, verbosity, &print_header, NULL, 4291 flags); 4292 } 4293 } 4294 4295 if (zopt_object_args > 0) { 4296 (void) printf("\n"); 4297 return; 4298 } 4299 4300 if (dump_opt['i'] != 0 || verbosity >= 2) 4301 dump_intent_log(dmu_objset_zil(os)); 4302 4303 if (dmu_objset_ds(os) != NULL) { 4304 dsl_dataset_t *ds = dmu_objset_ds(os); 4305 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 4306 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4307 !dmu_objset_is_snapshot(os)) { 4308 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist"); 4309 if (verify_dd_livelist(os) != 0) 4310 fatal("livelist is incorrect"); 4311 } 4312 4313 if (dsl_dataset_remap_deadlist_exists(ds)) { 4314 (void) printf("ds_remap_deadlist:\n"); 4315 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist"); 4316 } 4317 count_ds_mos_objects(ds); 4318 } 4319 4320 if (dmu_objset_ds(os) != NULL) 4321 dump_bookmarks(os, verbosity); 4322 4323 if (verbosity < 2) 4324 return; 4325 4326 if (BP_IS_HOLE(os->os_rootbp)) 4327 return; 4328 4329 dump_object(os, 0, verbosity, &print_header, NULL, 0); 4330 object_count = 0; 4331 if (DMU_USERUSED_DNODE(os) != NULL && 4332 DMU_USERUSED_DNODE(os)->dn_type != 0) { 4333 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header, 4334 NULL, 0); 4335 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header, 4336 NULL, 0); 4337 } 4338 4339 if (DMU_PROJECTUSED_DNODE(os) != NULL && 4340 DMU_PROJECTUSED_DNODE(os)->dn_type != 0) 4341 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity, 4342 &print_header, NULL, 0); 4343 4344 object = 0; 4345 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { 4346 dump_object(os, object, verbosity, &print_header, &dnode_slots, 4347 0); 4348 object_count++; 4349 total_slots_used += dnode_slots; 4350 max_slot_used = object + dnode_slots - 1; 4351 } 4352 4353 (void) printf("\n"); 4354 4355 (void) printf(" Dnode slots:\n"); 4356 (void) printf("\tTotal used: %10llu\n", 4357 (u_longlong_t)total_slots_used); 4358 (void) printf("\tMax used: %10llu\n", 4359 (u_longlong_t)max_slot_used); 4360 (void) printf("\tPercent empty: %10lf\n", 4361 (double)(max_slot_used - total_slots_used)*100 / 4362 (double)max_slot_used); 4363 (void) printf("\n"); 4364 4365 if (error != ESRCH) { 4366 (void) fprintf(stderr, "dmu_object_next() = %d\n", error); 4367 abort(); 4368 } 4369 4370 ASSERT3U(object_count, ==, usedobjs); 4371 4372 if (leaked_objects != 0) { 4373 (void) printf("%d potentially leaked objects detected\n", 4374 leaked_objects); 4375 leaked_objects = 0; 4376 } 4377 } 4378 4379 static void 4380 dump_uberblock(uberblock_t *ub, const char *header, const char *footer) 4381 { 4382 time_t timestamp = ub->ub_timestamp; 4383 4384 (void) printf("%s", header ? header : ""); 4385 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); 4386 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); 4387 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); 4388 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); 4389 (void) printf("\ttimestamp = %llu UTC = %s", 4390 (u_longlong_t)ub->ub_timestamp, ctime(×tamp)); 4391 4392 char blkbuf[BP_SPRINTF_LEN]; 4393 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 4394 (void) printf("\tbp = %s\n", blkbuf); 4395 4396 (void) printf("\tmmp_magic = %016llx\n", 4397 (u_longlong_t)ub->ub_mmp_magic); 4398 if (MMP_VALID(ub)) { 4399 (void) printf("\tmmp_delay = %0llu\n", 4400 (u_longlong_t)ub->ub_mmp_delay); 4401 if (MMP_SEQ_VALID(ub)) 4402 (void) printf("\tmmp_seq = %u\n", 4403 (unsigned int) MMP_SEQ(ub)); 4404 if (MMP_FAIL_INT_VALID(ub)) 4405 (void) printf("\tmmp_fail = %u\n", 4406 (unsigned int) MMP_FAIL_INT(ub)); 4407 if (MMP_INTERVAL_VALID(ub)) 4408 (void) printf("\tmmp_write = %u\n", 4409 (unsigned int) MMP_INTERVAL(ub)); 4410 /* After MMP_* to make summarize_uberblock_mmp cleaner */ 4411 (void) printf("\tmmp_valid = %x\n", 4412 (unsigned int) ub->ub_mmp_config & 0xFF); 4413 } 4414 4415 if (dump_opt['u'] >= 4) { 4416 char blkbuf[BP_SPRINTF_LEN]; 4417 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 4418 (void) printf("\trootbp = %s\n", blkbuf); 4419 } 4420 (void) printf("\tcheckpoint_txg = %llu\n", 4421 (u_longlong_t)ub->ub_checkpoint_txg); 4422 4423 (void) printf("\traidz_reflow state=%u off=%llu\n", 4424 (int)RRSS_GET_STATE(ub), 4425 (u_longlong_t)RRSS_GET_OFFSET(ub)); 4426 4427 (void) printf("%s", footer ? footer : ""); 4428 } 4429 4430 static void 4431 dump_config(spa_t *spa) 4432 { 4433 dmu_buf_t *db; 4434 size_t nvsize = 0; 4435 int error = 0; 4436 4437 4438 error = dmu_bonus_hold(spa->spa_meta_objset, 4439 spa->spa_config_object, FTAG, &db); 4440 4441 if (error == 0) { 4442 nvsize = *(uint64_t *)db->db_data; 4443 dmu_buf_rele(db, FTAG); 4444 4445 (void) printf("\nMOS Configuration:\n"); 4446 dump_packed_nvlist(spa->spa_meta_objset, 4447 spa->spa_config_object, (void *)&nvsize, 1); 4448 } else { 4449 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", 4450 (u_longlong_t)spa->spa_config_object, error); 4451 } 4452 } 4453 4454 static void 4455 dump_cachefile(const char *cachefile) 4456 { 4457 int fd; 4458 struct stat64 statbuf; 4459 char *buf; 4460 nvlist_t *config; 4461 4462 if ((fd = open64(cachefile, O_RDONLY)) < 0) { 4463 (void) printf("cannot open '%s': %s\n", cachefile, 4464 strerror(errno)); 4465 zdb_exit(1); 4466 } 4467 4468 if (fstat64(fd, &statbuf) != 0) { 4469 (void) printf("failed to stat '%s': %s\n", cachefile, 4470 strerror(errno)); 4471 zdb_exit(1); 4472 } 4473 4474 if ((buf = malloc(statbuf.st_size)) == NULL) { 4475 (void) fprintf(stderr, "failed to allocate %llu bytes\n", 4476 (u_longlong_t)statbuf.st_size); 4477 zdb_exit(1); 4478 } 4479 4480 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 4481 (void) fprintf(stderr, "failed to read %llu bytes\n", 4482 (u_longlong_t)statbuf.st_size); 4483 zdb_exit(1); 4484 } 4485 4486 (void) close(fd); 4487 4488 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { 4489 (void) fprintf(stderr, "failed to unpack nvlist\n"); 4490 zdb_exit(1); 4491 } 4492 4493 free(buf); 4494 4495 dump_nvlist(config, 0); 4496 4497 nvlist_free(config); 4498 } 4499 4500 /* 4501 * ZFS label nvlist stats 4502 */ 4503 typedef struct zdb_nvl_stats { 4504 int zns_list_count; 4505 int zns_leaf_count; 4506 size_t zns_leaf_largest; 4507 size_t zns_leaf_total; 4508 nvlist_t *zns_string; 4509 nvlist_t *zns_uint64; 4510 nvlist_t *zns_boolean; 4511 } zdb_nvl_stats_t; 4512 4513 static void 4514 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats) 4515 { 4516 nvlist_t *list, **array; 4517 nvpair_t *nvp = NULL; 4518 const char *name; 4519 uint_t i, items; 4520 4521 stats->zns_list_count++; 4522 4523 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4524 name = nvpair_name(nvp); 4525 4526 switch (nvpair_type(nvp)) { 4527 case DATA_TYPE_STRING: 4528 fnvlist_add_string(stats->zns_string, name, 4529 fnvpair_value_string(nvp)); 4530 break; 4531 case DATA_TYPE_UINT64: 4532 fnvlist_add_uint64(stats->zns_uint64, name, 4533 fnvpair_value_uint64(nvp)); 4534 break; 4535 case DATA_TYPE_BOOLEAN: 4536 fnvlist_add_boolean(stats->zns_boolean, name); 4537 break; 4538 case DATA_TYPE_NVLIST: 4539 if (nvpair_value_nvlist(nvp, &list) == 0) 4540 collect_nvlist_stats(list, stats); 4541 break; 4542 case DATA_TYPE_NVLIST_ARRAY: 4543 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0) 4544 break; 4545 4546 for (i = 0; i < items; i++) { 4547 collect_nvlist_stats(array[i], stats); 4548 4549 /* collect stats on leaf vdev */ 4550 if (strcmp(name, "children") == 0) { 4551 size_t size; 4552 4553 (void) nvlist_size(array[i], &size, 4554 NV_ENCODE_XDR); 4555 stats->zns_leaf_total += size; 4556 if (size > stats->zns_leaf_largest) 4557 stats->zns_leaf_largest = size; 4558 stats->zns_leaf_count++; 4559 } 4560 } 4561 break; 4562 default: 4563 (void) printf("skip type %d!\n", (int)nvpair_type(nvp)); 4564 } 4565 } 4566 } 4567 4568 static void 4569 dump_nvlist_stats(nvlist_t *nvl, size_t cap) 4570 { 4571 zdb_nvl_stats_t stats = { 0 }; 4572 size_t size, sum = 0, total; 4573 size_t noise; 4574 4575 /* requires nvlist with non-unique names for stat collection */ 4576 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0)); 4577 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0)); 4578 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0)); 4579 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR)); 4580 4581 (void) printf("\n\nZFS Label NVList Config Stats:\n"); 4582 4583 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR)); 4584 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n", 4585 (int)total, (int)(cap - total), 100.0 * total / cap); 4586 4587 collect_nvlist_stats(nvl, &stats); 4588 4589 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR)); 4590 size -= noise; 4591 sum += size; 4592 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:", 4593 (int)fnvlist_num_pairs(stats.zns_uint64), 4594 (int)size, 100.0 * size / total); 4595 4596 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR)); 4597 size -= noise; 4598 sum += size; 4599 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:", 4600 (int)fnvlist_num_pairs(stats.zns_string), 4601 (int)size, 100.0 * size / total); 4602 4603 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR)); 4604 size -= noise; 4605 sum += size; 4606 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:", 4607 (int)fnvlist_num_pairs(stats.zns_boolean), 4608 (int)size, 100.0 * size / total); 4609 4610 size = total - sum; /* treat remainder as nvlist overhead */ 4611 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:", 4612 stats.zns_list_count, (int)size, 100.0 * size / total); 4613 4614 if (stats.zns_leaf_count > 0) { 4615 size_t average = stats.zns_leaf_total / stats.zns_leaf_count; 4616 4617 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:", 4618 stats.zns_leaf_count, (int)average); 4619 (void) printf("%24d bytes largest\n", 4620 (int)stats.zns_leaf_largest); 4621 4622 if (dump_opt['l'] >= 3 && average > 0) 4623 (void) printf(" space for %d additional leaf vdevs\n", 4624 (int)((cap - total) / average)); 4625 } 4626 (void) printf("\n"); 4627 4628 nvlist_free(stats.zns_string); 4629 nvlist_free(stats.zns_uint64); 4630 nvlist_free(stats.zns_boolean); 4631 } 4632 4633 typedef struct cksum_record { 4634 zio_cksum_t cksum; 4635 boolean_t labels[VDEV_LABELS]; 4636 avl_node_t link; 4637 } cksum_record_t; 4638 4639 static int 4640 cksum_record_compare(const void *x1, const void *x2) 4641 { 4642 const cksum_record_t *l = (cksum_record_t *)x1; 4643 const cksum_record_t *r = (cksum_record_t *)x2; 4644 int arraysize = ARRAY_SIZE(l->cksum.zc_word); 4645 int difference = 0; 4646 4647 for (int i = 0; i < arraysize; i++) { 4648 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]); 4649 if (difference) 4650 break; 4651 } 4652 4653 return (difference); 4654 } 4655 4656 static cksum_record_t * 4657 cksum_record_alloc(zio_cksum_t *cksum, int l) 4658 { 4659 cksum_record_t *rec; 4660 4661 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL); 4662 rec->cksum = *cksum; 4663 rec->labels[l] = B_TRUE; 4664 4665 return (rec); 4666 } 4667 4668 static cksum_record_t * 4669 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum) 4670 { 4671 cksum_record_t lookup = { .cksum = *cksum }; 4672 avl_index_t where; 4673 4674 return (avl_find(tree, &lookup, &where)); 4675 } 4676 4677 static cksum_record_t * 4678 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l) 4679 { 4680 cksum_record_t *rec; 4681 4682 rec = cksum_record_lookup(tree, cksum); 4683 if (rec) { 4684 rec->labels[l] = B_TRUE; 4685 } else { 4686 rec = cksum_record_alloc(cksum, l); 4687 avl_add(tree, rec); 4688 } 4689 4690 return (rec); 4691 } 4692 4693 static int 4694 first_label(cksum_record_t *rec) 4695 { 4696 for (int i = 0; i < VDEV_LABELS; i++) 4697 if (rec->labels[i]) 4698 return (i); 4699 4700 return (-1); 4701 } 4702 4703 static void 4704 print_label_numbers(const char *prefix, const cksum_record_t *rec) 4705 { 4706 fputs(prefix, stdout); 4707 for (int i = 0; i < VDEV_LABELS; i++) 4708 if (rec->labels[i] == B_TRUE) 4709 printf("%d ", i); 4710 putchar('\n'); 4711 } 4712 4713 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT) 4714 4715 typedef struct zdb_label { 4716 vdev_label_t label; 4717 uint64_t label_offset; 4718 nvlist_t *config_nv; 4719 cksum_record_t *config; 4720 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT]; 4721 boolean_t header_printed; 4722 boolean_t read_failed; 4723 boolean_t cksum_valid; 4724 } zdb_label_t; 4725 4726 static void 4727 print_label_header(zdb_label_t *label, int l) 4728 { 4729 4730 if (dump_opt['q']) 4731 return; 4732 4733 if (label->header_printed == B_TRUE) 4734 return; 4735 4736 (void) printf("------------------------------------\n"); 4737 (void) printf("LABEL %d %s\n", l, 4738 label->cksum_valid ? "" : "(Bad label cksum)"); 4739 (void) printf("------------------------------------\n"); 4740 4741 label->header_printed = B_TRUE; 4742 } 4743 4744 static void 4745 print_l2arc_header(void) 4746 { 4747 (void) printf("------------------------------------\n"); 4748 (void) printf("L2ARC device header\n"); 4749 (void) printf("------------------------------------\n"); 4750 } 4751 4752 static void 4753 print_l2arc_log_blocks(void) 4754 { 4755 (void) printf("------------------------------------\n"); 4756 (void) printf("L2ARC device log blocks\n"); 4757 (void) printf("------------------------------------\n"); 4758 } 4759 4760 static void 4761 dump_l2arc_log_entries(uint64_t log_entries, 4762 l2arc_log_ent_phys_t *le, uint64_t i) 4763 { 4764 for (int j = 0; j < log_entries; j++) { 4765 dva_t dva = le[j].le_dva; 4766 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, " 4767 "vdev: %llu, offset: %llu\n", 4768 (u_longlong_t)i, j + 1, 4769 (u_longlong_t)DVA_GET_ASIZE(&dva), 4770 (u_longlong_t)DVA_GET_VDEV(&dva), 4771 (u_longlong_t)DVA_GET_OFFSET(&dva)); 4772 (void) printf("|\t\t\t\tbirth: %llu\n", 4773 (u_longlong_t)le[j].le_birth); 4774 (void) printf("|\t\t\t\tlsize: %llu\n", 4775 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop)); 4776 (void) printf("|\t\t\t\tpsize: %llu\n", 4777 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop)); 4778 (void) printf("|\t\t\t\tcompr: %llu\n", 4779 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop)); 4780 (void) printf("|\t\t\t\tcomplevel: %llu\n", 4781 (u_longlong_t)(&le[j])->le_complevel); 4782 (void) printf("|\t\t\t\ttype: %llu\n", 4783 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop)); 4784 (void) printf("|\t\t\t\tprotected: %llu\n", 4785 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop)); 4786 (void) printf("|\t\t\t\tprefetch: %llu\n", 4787 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop)); 4788 (void) printf("|\t\t\t\taddress: %llu\n", 4789 (u_longlong_t)le[j].le_daddr); 4790 (void) printf("|\t\t\t\tARC state: %llu\n", 4791 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop)); 4792 (void) printf("|\n"); 4793 } 4794 (void) printf("\n"); 4795 } 4796 4797 static void 4798 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps) 4799 { 4800 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr); 4801 (void) printf("|\t\tpayload_asize: %llu\n", 4802 (u_longlong_t)lbps->lbp_payload_asize); 4803 (void) printf("|\t\tpayload_start: %llu\n", 4804 (u_longlong_t)lbps->lbp_payload_start); 4805 (void) printf("|\t\tlsize: %llu\n", 4806 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop)); 4807 (void) printf("|\t\tasize: %llu\n", 4808 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop)); 4809 (void) printf("|\t\tcompralgo: %llu\n", 4810 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop)); 4811 (void) printf("|\t\tcksumalgo: %llu\n", 4812 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop)); 4813 (void) printf("|\n\n"); 4814 } 4815 4816 static void 4817 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr, 4818 l2arc_dev_hdr_phys_t *rebuild) 4819 { 4820 l2arc_log_blk_phys_t this_lb; 4821 uint64_t asize; 4822 l2arc_log_blkptr_t lbps[2]; 4823 zio_cksum_t cksum; 4824 int failed = 0; 4825 l2arc_dev_t dev; 4826 4827 if (!dump_opt['q']) 4828 print_l2arc_log_blocks(); 4829 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 4830 4831 dev.l2ad_evict = l2dhdr->dh_evict; 4832 dev.l2ad_start = l2dhdr->dh_start; 4833 dev.l2ad_end = l2dhdr->dh_end; 4834 4835 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) { 4836 /* no log blocks to read */ 4837 if (!dump_opt['q']) { 4838 (void) printf("No log blocks to read\n"); 4839 (void) printf("\n"); 4840 } 4841 return; 4842 } else { 4843 dev.l2ad_hand = lbps[0].lbp_daddr + 4844 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4845 } 4846 4847 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 4848 4849 for (;;) { 4850 if (!l2arc_log_blkptr_valid(&dev, &lbps[0])) 4851 break; 4852 4853 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 4854 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4855 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) { 4856 if (!dump_opt['q']) { 4857 (void) printf("Error while reading next log " 4858 "block\n\n"); 4859 } 4860 break; 4861 } 4862 4863 fletcher_4_native_varsize(&this_lb, asize, &cksum); 4864 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) { 4865 failed++; 4866 if (!dump_opt['q']) { 4867 (void) printf("Invalid cksum\n"); 4868 dump_l2arc_log_blkptr(&lbps[0]); 4869 } 4870 break; 4871 } 4872 4873 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) { 4874 case ZIO_COMPRESS_OFF: 4875 break; 4876 default: { 4877 abd_t *abd = abd_alloc_linear(asize, B_TRUE); 4878 abd_copy_from_buf_off(abd, &this_lb, 0, asize); 4879 abd_t dabd; 4880 abd_get_from_buf_struct(&dabd, &this_lb, 4881 sizeof (this_lb)); 4882 int err = zio_decompress_data(L2BLK_GET_COMPRESS( 4883 (&lbps[0])->lbp_prop), abd, &dabd, 4884 asize, sizeof (this_lb), NULL); 4885 abd_free(&dabd); 4886 abd_free(abd); 4887 if (err != 0) { 4888 (void) printf("L2ARC block decompression " 4889 "failed\n"); 4890 goto out; 4891 } 4892 break; 4893 } 4894 } 4895 4896 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 4897 byteswap_uint64_array(&this_lb, sizeof (this_lb)); 4898 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) { 4899 if (!dump_opt['q']) 4900 (void) printf("Invalid log block magic\n\n"); 4901 break; 4902 } 4903 4904 rebuild->dh_lb_count++; 4905 rebuild->dh_lb_asize += asize; 4906 if (dump_opt['l'] > 1 && !dump_opt['q']) { 4907 (void) printf("lb[%4llu]\tmagic: %llu\n", 4908 (u_longlong_t)rebuild->dh_lb_count, 4909 (u_longlong_t)this_lb.lb_magic); 4910 dump_l2arc_log_blkptr(&lbps[0]); 4911 } 4912 4913 if (dump_opt['l'] > 2 && !dump_opt['q']) 4914 dump_l2arc_log_entries(l2dhdr->dh_log_entries, 4915 this_lb.lb_entries, 4916 rebuild->dh_lb_count); 4917 4918 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 4919 lbps[0].lbp_payload_start, dev.l2ad_evict) && 4920 !dev.l2ad_first) 4921 break; 4922 4923 lbps[0] = lbps[1]; 4924 lbps[1] = this_lb.lb_prev_lbp; 4925 } 4926 out: 4927 if (!dump_opt['q']) { 4928 (void) printf("log_blk_count:\t %llu with valid cksum\n", 4929 (u_longlong_t)rebuild->dh_lb_count); 4930 (void) printf("\t\t %d with invalid cksum\n", failed); 4931 (void) printf("log_blk_asize:\t %llu\n\n", 4932 (u_longlong_t)rebuild->dh_lb_asize); 4933 } 4934 } 4935 4936 static int 4937 dump_l2arc_header(int fd) 4938 { 4939 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0}; 4940 int error = B_FALSE; 4941 4942 if (pread64(fd, &l2dhdr, sizeof (l2dhdr), 4943 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) { 4944 error = B_TRUE; 4945 } else { 4946 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 4947 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr)); 4948 4949 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC) 4950 error = B_TRUE; 4951 } 4952 4953 if (error) { 4954 (void) printf("L2ARC device header not found\n\n"); 4955 /* Do not return an error here for backward compatibility */ 4956 return (0); 4957 } else if (!dump_opt['q']) { 4958 print_l2arc_header(); 4959 4960 (void) printf(" magic: %llu\n", 4961 (u_longlong_t)l2dhdr.dh_magic); 4962 (void) printf(" version: %llu\n", 4963 (u_longlong_t)l2dhdr.dh_version); 4964 (void) printf(" pool_guid: %llu\n", 4965 (u_longlong_t)l2dhdr.dh_spa_guid); 4966 (void) printf(" flags: %llu\n", 4967 (u_longlong_t)l2dhdr.dh_flags); 4968 (void) printf(" start_lbps[0]: %llu\n", 4969 (u_longlong_t) 4970 l2dhdr.dh_start_lbps[0].lbp_daddr); 4971 (void) printf(" start_lbps[1]: %llu\n", 4972 (u_longlong_t) 4973 l2dhdr.dh_start_lbps[1].lbp_daddr); 4974 (void) printf(" log_blk_ent: %llu\n", 4975 (u_longlong_t)l2dhdr.dh_log_entries); 4976 (void) printf(" start: %llu\n", 4977 (u_longlong_t)l2dhdr.dh_start); 4978 (void) printf(" end: %llu\n", 4979 (u_longlong_t)l2dhdr.dh_end); 4980 (void) printf(" evict: %llu\n", 4981 (u_longlong_t)l2dhdr.dh_evict); 4982 (void) printf(" lb_asize_refcount: %llu\n", 4983 (u_longlong_t)l2dhdr.dh_lb_asize); 4984 (void) printf(" lb_count_refcount: %llu\n", 4985 (u_longlong_t)l2dhdr.dh_lb_count); 4986 (void) printf(" trim_action_time: %llu\n", 4987 (u_longlong_t)l2dhdr.dh_trim_action_time); 4988 (void) printf(" trim_state: %llu\n\n", 4989 (u_longlong_t)l2dhdr.dh_trim_state); 4990 } 4991 4992 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild); 4993 /* 4994 * The total aligned size of log blocks and the number of log blocks 4995 * reported in the header of the device may be less than what zdb 4996 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild(). 4997 * This happens because dump_l2arc_log_blocks() lacks the memory 4998 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system 4999 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize 5000 * and dh_lb_count will be lower to begin with than what exists on the 5001 * device. This is normal and zdb should not exit with an error. The 5002 * opposite case should never happen though, the values reported in the 5003 * header should never be higher than what dump_l2arc_log_blocks() and 5004 * l2arc_rebuild() report. If this happens there is a leak in the 5005 * accounting of log blocks. 5006 */ 5007 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize || 5008 l2dhdr.dh_lb_count > rebuild.dh_lb_count) 5009 return (1); 5010 5011 return (0); 5012 } 5013 5014 static void 5015 dump_config_from_label(zdb_label_t *label, size_t buflen, int l) 5016 { 5017 if (dump_opt['q']) 5018 return; 5019 5020 if ((dump_opt['l'] < 3) && (first_label(label->config) != l)) 5021 return; 5022 5023 print_label_header(label, l); 5024 dump_nvlist(label->config_nv, 4); 5025 print_label_numbers(" labels = ", label->config); 5026 5027 if (dump_opt['l'] >= 2) 5028 dump_nvlist_stats(label->config_nv, buflen); 5029 } 5030 5031 #define ZDB_MAX_UB_HEADER_SIZE 32 5032 5033 static void 5034 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num) 5035 { 5036 5037 vdev_t vd; 5038 char header[ZDB_MAX_UB_HEADER_SIZE]; 5039 5040 vd.vdev_ashift = ashift; 5041 vd.vdev_top = &vd; 5042 5043 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 5044 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 5045 uberblock_t *ub = (void *)((char *)&label->label + uoff); 5046 cksum_record_t *rec = label->uberblocks[i]; 5047 5048 if (rec == NULL) { 5049 if (dump_opt['u'] >= 2) { 5050 print_label_header(label, label_num); 5051 (void) printf(" Uberblock[%d] invalid\n", i); 5052 } 5053 continue; 5054 } 5055 5056 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num)) 5057 continue; 5058 5059 if ((dump_opt['u'] < 4) && 5060 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay && 5061 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL)) 5062 continue; 5063 5064 print_label_header(label, label_num); 5065 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, 5066 " Uberblock[%d]\n", i); 5067 dump_uberblock(ub, header, ""); 5068 print_label_numbers(" labels = ", rec); 5069 } 5070 } 5071 5072 static char curpath[PATH_MAX]; 5073 5074 /* 5075 * Iterate through the path components, recursively passing 5076 * current one's obj and remaining path until we find the obj 5077 * for the last one. 5078 */ 5079 static int 5080 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj) 5081 { 5082 int err; 5083 boolean_t header = B_TRUE; 5084 uint64_t child_obj; 5085 char *s; 5086 dmu_buf_t *db; 5087 dmu_object_info_t doi; 5088 5089 if ((s = strchr(name, '/')) != NULL) 5090 *s = '\0'; 5091 err = zap_lookup(os, obj, name, 8, 1, &child_obj); 5092 5093 (void) strlcat(curpath, name, sizeof (curpath)); 5094 5095 if (err != 0) { 5096 (void) fprintf(stderr, "failed to lookup %s: %s\n", 5097 curpath, strerror(err)); 5098 return (err); 5099 } 5100 5101 child_obj = ZFS_DIRENT_OBJ(child_obj); 5102 err = sa_buf_hold(os, child_obj, FTAG, &db); 5103 if (err != 0) { 5104 (void) fprintf(stderr, 5105 "failed to get SA dbuf for obj %llu: %s\n", 5106 (u_longlong_t)child_obj, strerror(err)); 5107 return (EINVAL); 5108 } 5109 dmu_object_info_from_db(db, &doi); 5110 sa_buf_rele(db, FTAG); 5111 5112 if (doi.doi_bonus_type != DMU_OT_SA && 5113 doi.doi_bonus_type != DMU_OT_ZNODE) { 5114 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n", 5115 doi.doi_bonus_type, (u_longlong_t)child_obj); 5116 return (EINVAL); 5117 } 5118 5119 if (dump_opt['v'] > 6) { 5120 (void) printf("obj=%llu %s type=%d bonustype=%d\n", 5121 (u_longlong_t)child_obj, curpath, doi.doi_type, 5122 doi.doi_bonus_type); 5123 } 5124 5125 (void) strlcat(curpath, "/", sizeof (curpath)); 5126 5127 switch (doi.doi_type) { 5128 case DMU_OT_DIRECTORY_CONTENTS: 5129 if (s != NULL && *(s + 1) != '\0') 5130 return (dump_path_impl(os, child_obj, s + 1, retobj)); 5131 zfs_fallthrough; 5132 case DMU_OT_PLAIN_FILE_CONTENTS: 5133 if (retobj != NULL) { 5134 *retobj = child_obj; 5135 } else { 5136 dump_object(os, child_obj, dump_opt['v'], &header, 5137 NULL, 0); 5138 } 5139 return (0); 5140 default: 5141 (void) fprintf(stderr, "object %llu has non-file/directory " 5142 "type %d\n", (u_longlong_t)obj, doi.doi_type); 5143 break; 5144 } 5145 5146 return (EINVAL); 5147 } 5148 5149 /* 5150 * Dump the blocks for the object specified by path inside the dataset. 5151 */ 5152 static int 5153 dump_path(char *ds, char *path, uint64_t *retobj) 5154 { 5155 int err; 5156 objset_t *os; 5157 uint64_t root_obj; 5158 5159 err = open_objset(ds, FTAG, &os); 5160 if (err != 0) 5161 return (err); 5162 5163 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj); 5164 if (err != 0) { 5165 (void) fprintf(stderr, "can't lookup root znode: %s\n", 5166 strerror(err)); 5167 close_objset(os, FTAG); 5168 return (EINVAL); 5169 } 5170 5171 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds); 5172 5173 err = dump_path_impl(os, root_obj, path, retobj); 5174 5175 close_objset(os, FTAG); 5176 return (err); 5177 } 5178 5179 static int 5180 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg) 5181 { 5182 const char *p = (const char *)buf; 5183 ssize_t nwritten; 5184 5185 (void) os; 5186 (void) arg; 5187 5188 /* Write the data out, handling short writes and signals. */ 5189 while ((nwritten = write(STDOUT_FILENO, p, len)) < len) { 5190 if (nwritten < 0) { 5191 if (errno == EINTR) 5192 continue; 5193 return (errno); 5194 } 5195 p += nwritten; 5196 len -= nwritten; 5197 } 5198 5199 return (0); 5200 } 5201 5202 static void 5203 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr) 5204 { 5205 boolean_t embed = B_FALSE; 5206 boolean_t large_block = B_FALSE; 5207 boolean_t compress = B_FALSE; 5208 boolean_t raw = B_FALSE; 5209 5210 const char *c; 5211 for (c = flagstr; c != NULL && *c != '\0'; c++) { 5212 switch (*c) { 5213 case 'e': 5214 embed = B_TRUE; 5215 break; 5216 case 'L': 5217 large_block = B_TRUE; 5218 break; 5219 case 'c': 5220 compress = B_TRUE; 5221 break; 5222 case 'w': 5223 raw = B_TRUE; 5224 break; 5225 default: 5226 fprintf(stderr, "dump_backup: invalid flag " 5227 "'%c'\n", *c); 5228 return; 5229 } 5230 } 5231 5232 if (isatty(STDOUT_FILENO)) { 5233 fprintf(stderr, "dump_backup: stream cannot be written " 5234 "to a terminal\n"); 5235 return; 5236 } 5237 5238 offset_t off = 0; 5239 dmu_send_outparams_t out = { 5240 .dso_outfunc = dump_backup_bytes, 5241 .dso_dryrun = B_FALSE, 5242 }; 5243 5244 int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed, 5245 large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO, 5246 &off, &out); 5247 if (err != 0) { 5248 fprintf(stderr, "dump_backup: dmu_send_obj: %s\n", 5249 strerror(err)); 5250 return; 5251 } 5252 } 5253 5254 static int 5255 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile) 5256 { 5257 int err = 0; 5258 uint64_t size, readsize, oursize, offset; 5259 ssize_t writesize; 5260 sa_handle_t *hdl; 5261 5262 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj, 5263 destfile); 5264 5265 VERIFY3P(os, ==, sa_os); 5266 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) { 5267 (void) printf("Failed to get handle for SA znode\n"); 5268 return (err); 5269 } 5270 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) { 5271 (void) sa_handle_destroy(hdl); 5272 return (err); 5273 } 5274 (void) sa_handle_destroy(hdl); 5275 5276 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj, 5277 size); 5278 if (size == 0) { 5279 return (EINVAL); 5280 } 5281 5282 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644); 5283 if (fd == -1) 5284 return (errno); 5285 /* 5286 * We cap the size at 1 mebibyte here to prevent 5287 * allocation failures and nigh-infinite printing if the 5288 * object is extremely large. 5289 */ 5290 oursize = MIN(size, 1 << 20); 5291 offset = 0; 5292 char *buf = kmem_alloc(oursize, KM_NOSLEEP); 5293 if (buf == NULL) { 5294 (void) close(fd); 5295 return (ENOMEM); 5296 } 5297 5298 while (offset < size) { 5299 readsize = MIN(size - offset, 1 << 20); 5300 err = dmu_read(os, srcobj, offset, readsize, buf, 0); 5301 if (err != 0) { 5302 (void) printf("got error %u from dmu_read\n", err); 5303 kmem_free(buf, oursize); 5304 (void) close(fd); 5305 return (err); 5306 } 5307 if (dump_opt['v'] > 3) { 5308 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64 5309 " error=%d\n", offset, readsize, err); 5310 } 5311 5312 writesize = write(fd, buf, readsize); 5313 if (writesize < 0) { 5314 err = errno; 5315 break; 5316 } else if (writesize != readsize) { 5317 /* Incomplete write */ 5318 (void) fprintf(stderr, "Short write, only wrote %llu of" 5319 " %" PRIu64 " bytes, exiting...\n", 5320 (u_longlong_t)writesize, readsize); 5321 break; 5322 } 5323 5324 offset += readsize; 5325 } 5326 5327 (void) close(fd); 5328 5329 if (buf != NULL) 5330 kmem_free(buf, oursize); 5331 5332 return (err); 5333 } 5334 5335 static boolean_t 5336 label_cksum_valid(vdev_label_t *label, uint64_t offset) 5337 { 5338 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; 5339 zio_cksum_t expected_cksum; 5340 zio_cksum_t actual_cksum; 5341 zio_cksum_t verifier; 5342 zio_eck_t *eck; 5343 int byteswap; 5344 5345 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys); 5346 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1; 5347 5348 offset += offsetof(vdev_label_t, vl_vdev_phys); 5349 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0); 5350 5351 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC)); 5352 if (byteswap) 5353 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); 5354 5355 expected_cksum = eck->zec_cksum; 5356 eck->zec_cksum = verifier; 5357 5358 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE); 5359 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum); 5360 abd_free(abd); 5361 5362 if (byteswap) 5363 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t)); 5364 5365 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) 5366 return (B_TRUE); 5367 5368 return (B_FALSE); 5369 } 5370 5371 static int 5372 dump_label(const char *dev) 5373 { 5374 char path[MAXPATHLEN]; 5375 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}}; 5376 uint64_t psize, ashift, l2cache; 5377 struct stat64 statbuf; 5378 boolean_t config_found = B_FALSE; 5379 boolean_t error = B_FALSE; 5380 boolean_t read_l2arc_header = B_FALSE; 5381 avl_tree_t config_tree; 5382 avl_tree_t uberblock_tree; 5383 void *node, *cookie; 5384 int fd; 5385 5386 /* 5387 * Check if we were given absolute path and use it as is. 5388 * Otherwise if the provided vdev name doesn't point to a file, 5389 * try prepending expected disk paths and partition numbers. 5390 */ 5391 (void) strlcpy(path, dev, sizeof (path)); 5392 if (dev[0] != '/' && stat64(path, &statbuf) != 0) { 5393 int error; 5394 5395 error = zfs_resolve_shortname(dev, path, MAXPATHLEN); 5396 if (error == 0 && zfs_dev_is_whole_disk(path)) { 5397 if (zfs_append_partition(path, MAXPATHLEN) == -1) 5398 error = ENOENT; 5399 } 5400 5401 if (error || (stat64(path, &statbuf) != 0)) { 5402 (void) printf("failed to find device %s, try " 5403 "specifying absolute path instead\n", dev); 5404 return (1); 5405 } 5406 } 5407 5408 if ((fd = open64(path, O_RDONLY)) < 0) { 5409 (void) printf("cannot open '%s': %s\n", path, strerror(errno)); 5410 zdb_exit(1); 5411 } 5412 5413 if (fstat64_blk(fd, &statbuf) != 0) { 5414 (void) printf("failed to stat '%s': %s\n", path, 5415 strerror(errno)); 5416 (void) close(fd); 5417 zdb_exit(1); 5418 } 5419 5420 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0) 5421 (void) printf("failed to invalidate cache '%s' : %s\n", path, 5422 strerror(errno)); 5423 5424 avl_create(&config_tree, cksum_record_compare, 5425 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5426 avl_create(&uberblock_tree, cksum_record_compare, 5427 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5428 5429 psize = statbuf.st_size; 5430 psize = P2ALIGN_TYPED(psize, sizeof (vdev_label_t), uint64_t); 5431 ashift = SPA_MINBLOCKSHIFT; 5432 5433 /* 5434 * 1. Read the label from disk 5435 * 2. Verify label cksum 5436 * 3. Unpack the configuration and insert in config tree. 5437 * 4. Traverse all uberblocks and insert in uberblock tree. 5438 */ 5439 for (int l = 0; l < VDEV_LABELS; l++) { 5440 zdb_label_t *label = &labels[l]; 5441 char *buf = label->label.vl_vdev_phys.vp_nvlist; 5442 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5443 nvlist_t *config; 5444 cksum_record_t *rec; 5445 zio_cksum_t cksum; 5446 vdev_t vd; 5447 5448 label->label_offset = vdev_label_offset(psize, l, 0); 5449 5450 if (pread64(fd, &label->label, sizeof (label->label), 5451 label->label_offset) != sizeof (label->label)) { 5452 if (!dump_opt['q']) 5453 (void) printf("failed to read label %d\n", l); 5454 label->read_failed = B_TRUE; 5455 error = B_TRUE; 5456 continue; 5457 } 5458 5459 label->read_failed = B_FALSE; 5460 label->cksum_valid = label_cksum_valid(&label->label, 5461 label->label_offset); 5462 5463 if (nvlist_unpack(buf, buflen, &config, 0) == 0) { 5464 nvlist_t *vdev_tree = NULL; 5465 size_t size; 5466 5467 if ((nvlist_lookup_nvlist(config, 5468 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || 5469 (nvlist_lookup_uint64(vdev_tree, 5470 ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) 5471 ashift = SPA_MINBLOCKSHIFT; 5472 5473 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0) 5474 size = buflen; 5475 5476 /* If the device is a cache device read the header. */ 5477 if (!read_l2arc_header) { 5478 if (nvlist_lookup_uint64(config, 5479 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 && 5480 l2cache == POOL_STATE_L2CACHE) { 5481 read_l2arc_header = B_TRUE; 5482 } 5483 } 5484 5485 fletcher_4_native_varsize(buf, size, &cksum); 5486 rec = cksum_record_insert(&config_tree, &cksum, l); 5487 5488 label->config = rec; 5489 label->config_nv = config; 5490 config_found = B_TRUE; 5491 } else { 5492 error = B_TRUE; 5493 } 5494 5495 vd.vdev_ashift = ashift; 5496 vd.vdev_top = &vd; 5497 5498 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 5499 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 5500 uberblock_t *ub = (void *)((char *)label + uoff); 5501 5502 if (uberblock_verify(ub)) 5503 continue; 5504 5505 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum); 5506 rec = cksum_record_insert(&uberblock_tree, &cksum, l); 5507 5508 label->uberblocks[i] = rec; 5509 } 5510 } 5511 5512 /* 5513 * Dump the label and uberblocks. 5514 */ 5515 for (int l = 0; l < VDEV_LABELS; l++) { 5516 zdb_label_t *label = &labels[l]; 5517 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5518 5519 if (label->read_failed == B_TRUE) 5520 continue; 5521 5522 if (label->config_nv) { 5523 dump_config_from_label(label, buflen, l); 5524 } else { 5525 if (!dump_opt['q']) 5526 (void) printf("failed to unpack label %d\n", l); 5527 } 5528 5529 if (dump_opt['u']) 5530 dump_label_uberblocks(label, ashift, l); 5531 5532 nvlist_free(label->config_nv); 5533 } 5534 5535 /* 5536 * Dump the L2ARC header, if existent. 5537 */ 5538 if (read_l2arc_header) 5539 error |= dump_l2arc_header(fd); 5540 5541 cookie = NULL; 5542 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL) 5543 umem_free(node, sizeof (cksum_record_t)); 5544 5545 cookie = NULL; 5546 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL) 5547 umem_free(node, sizeof (cksum_record_t)); 5548 5549 avl_destroy(&config_tree); 5550 avl_destroy(&uberblock_tree); 5551 5552 (void) close(fd); 5553 5554 return (config_found == B_FALSE ? 2 : 5555 (error == B_TRUE ? 1 : 0)); 5556 } 5557 5558 static uint64_t dataset_feature_count[SPA_FEATURES]; 5559 static uint64_t global_feature_count[SPA_FEATURES]; 5560 static uint64_t remap_deadlist_count = 0; 5561 5562 static int 5563 dump_one_objset(const char *dsname, void *arg) 5564 { 5565 (void) arg; 5566 int error; 5567 objset_t *os; 5568 spa_feature_t f; 5569 5570 error = open_objset(dsname, FTAG, &os); 5571 if (error != 0) 5572 return (0); 5573 5574 for (f = 0; f < SPA_FEATURES; f++) { 5575 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f)) 5576 continue; 5577 ASSERT(spa_feature_table[f].fi_flags & 5578 ZFEATURE_FLAG_PER_DATASET); 5579 dataset_feature_count[f]++; 5580 } 5581 5582 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) { 5583 remap_deadlist_count++; 5584 } 5585 5586 for (dsl_bookmark_node_t *dbn = 5587 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL; 5588 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) { 5589 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj); 5590 if (dbn->dbn_phys.zbm_redaction_obj != 0) { 5591 global_feature_count[ 5592 SPA_FEATURE_REDACTION_BOOKMARKS]++; 5593 objset_t *mos = os->os_spa->spa_meta_objset; 5594 dnode_t *rl; 5595 VERIFY0(dnode_hold(mos, 5596 dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl)); 5597 if (rl->dn_have_spill) { 5598 global_feature_count[ 5599 SPA_FEATURE_REDACTION_LIST_SPILL]++; 5600 } 5601 } 5602 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN) 5603 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++; 5604 } 5605 5606 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) && 5607 !dmu_objset_is_snapshot(os)) { 5608 global_feature_count[SPA_FEATURE_LIVELIST]++; 5609 } 5610 5611 dump_objset(os); 5612 close_objset(os, FTAG); 5613 fuid_table_destroy(); 5614 return (0); 5615 } 5616 5617 /* 5618 * Block statistics. 5619 */ 5620 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) 5621 typedef struct zdb_blkstats { 5622 uint64_t zb_asize; 5623 uint64_t zb_lsize; 5624 uint64_t zb_psize; 5625 uint64_t zb_count; 5626 uint64_t zb_gangs; 5627 uint64_t zb_ditto_samevdev; 5628 uint64_t zb_ditto_same_ms; 5629 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; 5630 } zdb_blkstats_t; 5631 5632 /* 5633 * Extended object types to report deferred frees and dedup auto-ditto blocks. 5634 */ 5635 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) 5636 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) 5637 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) 5638 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) 5639 5640 static const char *zdb_ot_extname[] = { 5641 "deferred free", 5642 "dedup ditto", 5643 "other", 5644 "Total", 5645 }; 5646 5647 #define ZB_TOTAL DN_MAX_LEVELS 5648 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1) 5649 5650 typedef struct zdb_brt_entry { 5651 dva_t zbre_dva; 5652 uint64_t zbre_refcount; 5653 avl_node_t zbre_node; 5654 } zdb_brt_entry_t; 5655 5656 typedef struct zdb_cb { 5657 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; 5658 uint64_t zcb_removing_size; 5659 uint64_t zcb_checkpoint_size; 5660 uint64_t zcb_dedup_asize; 5661 uint64_t zcb_dedup_blocks; 5662 uint64_t zcb_clone_asize; 5663 uint64_t zcb_clone_blocks; 5664 uint64_t zcb_psize_count[SPA_MAX_FOR_16M]; 5665 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M]; 5666 uint64_t zcb_asize_count[SPA_MAX_FOR_16M]; 5667 uint64_t zcb_psize_len[SPA_MAX_FOR_16M]; 5668 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M]; 5669 uint64_t zcb_asize_len[SPA_MAX_FOR_16M]; 5670 uint64_t zcb_psize_total; 5671 uint64_t zcb_lsize_total; 5672 uint64_t zcb_asize_total; 5673 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; 5674 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] 5675 [BPE_PAYLOAD_SIZE + 1]; 5676 uint64_t zcb_start; 5677 hrtime_t zcb_lastprint; 5678 uint64_t zcb_totalasize; 5679 uint64_t zcb_errors[256]; 5680 int zcb_readfails; 5681 int zcb_haderrors; 5682 spa_t *zcb_spa; 5683 uint32_t **zcb_vd_obsolete_counts; 5684 avl_tree_t zcb_brt; 5685 boolean_t zcb_brt_is_active; 5686 } zdb_cb_t; 5687 5688 /* test if two DVA offsets from same vdev are within the same metaslab */ 5689 static boolean_t 5690 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2) 5691 { 5692 vdev_t *vd = vdev_lookup_top(spa, vdev); 5693 uint64_t ms_shift = vd->vdev_ms_shift; 5694 5695 return ((off1 >> ms_shift) == (off2 >> ms_shift)); 5696 } 5697 5698 /* 5699 * Used to simplify reporting of the histogram data. 5700 */ 5701 typedef struct one_histo { 5702 const char *name; 5703 uint64_t *count; 5704 uint64_t *len; 5705 uint64_t cumulative; 5706 } one_histo_t; 5707 5708 /* 5709 * The number of separate histograms processed for psize, lsize and asize. 5710 */ 5711 #define NUM_HISTO 3 5712 5713 /* 5714 * This routine will create a fixed column size output of three different 5715 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M 5716 * the count, length and cumulative length of the psize, lsize and 5717 * asize blocks. 5718 * 5719 * All three types of blocks are listed on a single line 5720 * 5721 * By default the table is printed in nicenumber format (e.g. 123K) but 5722 * if the '-P' parameter is specified then the full raw number (parseable) 5723 * is printed out. 5724 */ 5725 static void 5726 dump_size_histograms(zdb_cb_t *zcb) 5727 { 5728 /* 5729 * A temporary buffer that allows us to convert a number into 5730 * a string using zdb_nicenumber to allow either raw or human 5731 * readable numbers to be output. 5732 */ 5733 char numbuf[32]; 5734 5735 /* 5736 * Define titles which are used in the headers of the tables 5737 * printed by this routine. 5738 */ 5739 const char blocksize_title1[] = "block"; 5740 const char blocksize_title2[] = "size"; 5741 const char count_title[] = "Count"; 5742 const char length_title[] = "Size"; 5743 const char cumulative_title[] = "Cum."; 5744 5745 /* 5746 * Setup the histogram arrays (psize, lsize, and asize). 5747 */ 5748 one_histo_t parm_histo[NUM_HISTO]; 5749 5750 parm_histo[0].name = "psize"; 5751 parm_histo[0].count = zcb->zcb_psize_count; 5752 parm_histo[0].len = zcb->zcb_psize_len; 5753 parm_histo[0].cumulative = 0; 5754 5755 parm_histo[1].name = "lsize"; 5756 parm_histo[1].count = zcb->zcb_lsize_count; 5757 parm_histo[1].len = zcb->zcb_lsize_len; 5758 parm_histo[1].cumulative = 0; 5759 5760 parm_histo[2].name = "asize"; 5761 parm_histo[2].count = zcb->zcb_asize_count; 5762 parm_histo[2].len = zcb->zcb_asize_len; 5763 parm_histo[2].cumulative = 0; 5764 5765 5766 (void) printf("\nBlock Size Histogram\n"); 5767 /* 5768 * Print the first line titles 5769 */ 5770 if (dump_opt['P']) 5771 (void) printf("\n%s\t", blocksize_title1); 5772 else 5773 (void) printf("\n%7s ", blocksize_title1); 5774 5775 for (int j = 0; j < NUM_HISTO; j++) { 5776 if (dump_opt['P']) { 5777 if (j < NUM_HISTO - 1) { 5778 (void) printf("%s\t\t\t", parm_histo[j].name); 5779 } else { 5780 /* Don't print trailing spaces */ 5781 (void) printf(" %s", parm_histo[j].name); 5782 } 5783 } else { 5784 if (j < NUM_HISTO - 1) { 5785 /* Left aligned strings in the output */ 5786 (void) printf("%-7s ", 5787 parm_histo[j].name); 5788 } else { 5789 /* Don't print trailing spaces */ 5790 (void) printf("%s", parm_histo[j].name); 5791 } 5792 } 5793 } 5794 (void) printf("\n"); 5795 5796 /* 5797 * Print the second line titles 5798 */ 5799 if (dump_opt['P']) { 5800 (void) printf("%s\t", blocksize_title2); 5801 } else { 5802 (void) printf("%7s ", blocksize_title2); 5803 } 5804 5805 for (int i = 0; i < NUM_HISTO; i++) { 5806 if (dump_opt['P']) { 5807 (void) printf("%s\t%s\t%s\t", 5808 count_title, length_title, cumulative_title); 5809 } else { 5810 (void) printf("%7s%7s%7s", 5811 count_title, length_title, cumulative_title); 5812 } 5813 } 5814 (void) printf("\n"); 5815 5816 /* 5817 * Print the rows 5818 */ 5819 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) { 5820 5821 /* 5822 * Print the first column showing the blocksize 5823 */ 5824 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf)); 5825 5826 if (dump_opt['P']) { 5827 printf("%s", numbuf); 5828 } else { 5829 printf("%7s:", numbuf); 5830 } 5831 5832 /* 5833 * Print the remaining set of 3 columns per size: 5834 * for psize, lsize and asize 5835 */ 5836 for (int j = 0; j < NUM_HISTO; j++) { 5837 parm_histo[j].cumulative += parm_histo[j].len[i]; 5838 5839 zdb_nicenum(parm_histo[j].count[i], 5840 numbuf, sizeof (numbuf)); 5841 if (dump_opt['P']) 5842 (void) printf("\t%s", numbuf); 5843 else 5844 (void) printf("%7s", numbuf); 5845 5846 zdb_nicenum(parm_histo[j].len[i], 5847 numbuf, sizeof (numbuf)); 5848 if (dump_opt['P']) 5849 (void) printf("\t%s", numbuf); 5850 else 5851 (void) printf("%7s", numbuf); 5852 5853 zdb_nicenum(parm_histo[j].cumulative, 5854 numbuf, sizeof (numbuf)); 5855 if (dump_opt['P']) 5856 (void) printf("\t%s", numbuf); 5857 else 5858 (void) printf("%7s", numbuf); 5859 } 5860 (void) printf("\n"); 5861 } 5862 } 5863 5864 static void 5865 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, 5866 dmu_object_type_t type) 5867 { 5868 int i; 5869 5870 ASSERT(type < ZDB_OT_TOTAL); 5871 5872 if (zilog && zil_bp_tree_add(zilog, bp) != 0) 5873 return; 5874 5875 /* 5876 * This flag controls if we will issue a claim for the block while 5877 * counting it, to ensure that all blocks are referenced in space maps. 5878 * We don't issue claims if we're not doing leak tracking, because it's 5879 * expensive if the user isn't interested. We also don't claim the 5880 * second or later occurences of cloned or dedup'd blocks, because we 5881 * already claimed them the first time. 5882 */ 5883 boolean_t do_claim = !dump_opt['L']; 5884 5885 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER); 5886 5887 blkptr_t tempbp; 5888 if (BP_GET_DEDUP(bp)) { 5889 /* 5890 * Dedup'd blocks are special. We need to count them, so we can 5891 * later uncount them when reporting leaked space, and we must 5892 * only claim them once. 5893 * 5894 * We use the existing dedup system to track what we've seen. 5895 * The first time we see a block, we do a ddt_lookup() to see 5896 * if it exists in the DDT. If we're doing leak tracking, we 5897 * claim the block at this time. 5898 * 5899 * Each time we see a block, we reduce the refcount in the 5900 * entry by one, and add to the size and count of dedup'd 5901 * blocks to report at the end. 5902 */ 5903 5904 ddt_t *ddt = ddt_select(zcb->zcb_spa, bp); 5905 5906 ddt_enter(ddt); 5907 5908 /* 5909 * Find the block. This will create the entry in memory, but 5910 * we'll know if that happened by its refcount. 5911 */ 5912 ddt_entry_t *dde = ddt_lookup(ddt, bp, B_TRUE); 5913 5914 /* 5915 * ddt_lookup() can return NULL if this block didn't exist 5916 * in the DDT and creating it would take the DDT over its 5917 * quota. Since we got the block from disk, it must exist in 5918 * the DDT, so this can't happen. However, when unique entries 5919 * are pruned, the dedup bit can be set with no corresponding 5920 * entry in the DDT. 5921 */ 5922 if (dde == NULL) { 5923 ddt_exit(ddt); 5924 goto skipped; 5925 } 5926 5927 /* Get the phys for this variant */ 5928 ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp); 5929 5930 /* 5931 * This entry may have multiple sets of DVAs. We must claim 5932 * each set the first time we see them in a real block on disk, 5933 * or count them on subsequent occurences. We don't have a 5934 * convenient way to track the first time we see each variant, 5935 * so we repurpose dde_io as a set of "seen" flag bits. We can 5936 * do this safely in zdb because it never writes, so it will 5937 * never have a writing zio for this block in that pointer. 5938 */ 5939 boolean_t seen = !!(((uintptr_t)dde->dde_io) & (1 << v)); 5940 if (!seen) 5941 dde->dde_io = 5942 (void *)(((uintptr_t)dde->dde_io) | (1 << v)); 5943 5944 /* Consume a reference for this block. */ 5945 if (ddt_phys_total_refcnt(ddt, dde->dde_phys) > 0) 5946 ddt_phys_decref(dde->dde_phys, v); 5947 5948 /* 5949 * If this entry has a single flat phys, it may have been 5950 * extended with additional DVAs at some time in its life. 5951 * This block might be from before it was fully extended, and 5952 * so have fewer DVAs. 5953 * 5954 * If this is the first time we've seen this block, and we 5955 * claimed it as-is, then we would miss the claim on some 5956 * number of DVAs, which would then be seen as leaked. 5957 * 5958 * In all cases, if we've had fewer DVAs, then the asize would 5959 * be too small, and would lead to the pool apparently using 5960 * more space than allocated. 5961 * 5962 * To handle this, we copy the canonical set of DVAs from the 5963 * entry back to the block pointer before we claim it. 5964 */ 5965 if (v == DDT_PHYS_FLAT) { 5966 ASSERT3U(BP_GET_PHYSICAL_BIRTH(bp), ==, 5967 ddt_phys_birth(dde->dde_phys, v)); 5968 tempbp = *bp; 5969 ddt_bp_fill(dde->dde_phys, v, &tempbp, 5970 BP_GET_PHYSICAL_BIRTH(bp)); 5971 bp = &tempbp; 5972 } 5973 5974 if (seen) { 5975 /* 5976 * The second or later time we see this block, 5977 * it's a duplicate and we count it. 5978 */ 5979 zcb->zcb_dedup_asize += BP_GET_ASIZE(bp); 5980 zcb->zcb_dedup_blocks++; 5981 5982 /* Already claimed, don't do it again. */ 5983 do_claim = B_FALSE; 5984 } 5985 5986 ddt_exit(ddt); 5987 } else if (zcb->zcb_brt_is_active && 5988 brt_maybe_exists(zcb->zcb_spa, bp)) { 5989 /* 5990 * Cloned blocks are special. We need to count them, so we can 5991 * later uncount them when reporting leaked space, and we must 5992 * only claim them once. 5993 * 5994 * To do this, we keep our own in-memory BRT. For each block 5995 * we haven't seen before, we look it up in the real BRT and 5996 * if its there, we note it and its refcount then proceed as 5997 * normal. If we see the block again, we count it as a clone 5998 * and then give it no further consideration. 5999 */ 6000 zdb_brt_entry_t zbre_search, *zbre; 6001 avl_index_t where; 6002 6003 zbre_search.zbre_dva = bp->blk_dva[0]; 6004 zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where); 6005 if (zbre == NULL) { 6006 /* Not seen before; track it */ 6007 uint64_t refcnt = 6008 brt_entry_get_refcount(zcb->zcb_spa, bp); 6009 if (refcnt > 0) { 6010 zbre = umem_zalloc(sizeof (zdb_brt_entry_t), 6011 UMEM_NOFAIL); 6012 zbre->zbre_dva = bp->blk_dva[0]; 6013 zbre->zbre_refcount = refcnt; 6014 avl_insert(&zcb->zcb_brt, zbre, where); 6015 } 6016 } else { 6017 /* 6018 * Second or later occurrence, count it and take a 6019 * refcount. 6020 */ 6021 zcb->zcb_clone_asize += BP_GET_ASIZE(bp); 6022 zcb->zcb_clone_blocks++; 6023 6024 zbre->zbre_refcount--; 6025 if (zbre->zbre_refcount == 0) { 6026 avl_remove(&zcb->zcb_brt, zbre); 6027 umem_free(zbre, sizeof (zdb_brt_entry_t)); 6028 } 6029 6030 /* Already claimed, don't do it again. */ 6031 do_claim = B_FALSE; 6032 } 6033 } 6034 6035 skipped: 6036 for (i = 0; i < 4; i++) { 6037 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; 6038 int t = (i & 1) ? type : ZDB_OT_TOTAL; 6039 int equal; 6040 zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; 6041 6042 zb->zb_asize += BP_GET_ASIZE(bp); 6043 zb->zb_lsize += BP_GET_LSIZE(bp); 6044 zb->zb_psize += BP_GET_PSIZE(bp); 6045 zb->zb_count++; 6046 6047 /* 6048 * The histogram is only big enough to record blocks up to 6049 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, 6050 * "other", bucket. 6051 */ 6052 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; 6053 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); 6054 zb->zb_psize_histogram[idx]++; 6055 6056 zb->zb_gangs += BP_COUNT_GANG(bp); 6057 6058 switch (BP_GET_NDVAS(bp)) { 6059 case 2: 6060 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 6061 DVA_GET_VDEV(&bp->blk_dva[1])) { 6062 zb->zb_ditto_samevdev++; 6063 6064 if (same_metaslab(zcb->zcb_spa, 6065 DVA_GET_VDEV(&bp->blk_dva[0]), 6066 DVA_GET_OFFSET(&bp->blk_dva[0]), 6067 DVA_GET_OFFSET(&bp->blk_dva[1]))) 6068 zb->zb_ditto_same_ms++; 6069 } 6070 break; 6071 case 3: 6072 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 6073 DVA_GET_VDEV(&bp->blk_dva[1])) + 6074 (DVA_GET_VDEV(&bp->blk_dva[0]) == 6075 DVA_GET_VDEV(&bp->blk_dva[2])) + 6076 (DVA_GET_VDEV(&bp->blk_dva[1]) == 6077 DVA_GET_VDEV(&bp->blk_dva[2])); 6078 if (equal != 0) { 6079 zb->zb_ditto_samevdev++; 6080 6081 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 6082 DVA_GET_VDEV(&bp->blk_dva[1]) && 6083 same_metaslab(zcb->zcb_spa, 6084 DVA_GET_VDEV(&bp->blk_dva[0]), 6085 DVA_GET_OFFSET(&bp->blk_dva[0]), 6086 DVA_GET_OFFSET(&bp->blk_dva[1]))) 6087 zb->zb_ditto_same_ms++; 6088 else if (DVA_GET_VDEV(&bp->blk_dva[0]) == 6089 DVA_GET_VDEV(&bp->blk_dva[2]) && 6090 same_metaslab(zcb->zcb_spa, 6091 DVA_GET_VDEV(&bp->blk_dva[0]), 6092 DVA_GET_OFFSET(&bp->blk_dva[0]), 6093 DVA_GET_OFFSET(&bp->blk_dva[2]))) 6094 zb->zb_ditto_same_ms++; 6095 else if (DVA_GET_VDEV(&bp->blk_dva[1]) == 6096 DVA_GET_VDEV(&bp->blk_dva[2]) && 6097 same_metaslab(zcb->zcb_spa, 6098 DVA_GET_VDEV(&bp->blk_dva[1]), 6099 DVA_GET_OFFSET(&bp->blk_dva[1]), 6100 DVA_GET_OFFSET(&bp->blk_dva[2]))) 6101 zb->zb_ditto_same_ms++; 6102 } 6103 break; 6104 } 6105 } 6106 6107 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG); 6108 6109 if (BP_IS_EMBEDDED(bp)) { 6110 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; 6111 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] 6112 [BPE_GET_PSIZE(bp)]++; 6113 return; 6114 } 6115 /* 6116 * The binning histogram bins by powers of two up to 6117 * SPA_MAXBLOCKSIZE rather than creating bins for 6118 * every possible blocksize found in the pool. 6119 */ 6120 int bin = highbit64(BP_GET_PSIZE(bp)) - 1; 6121 6122 zcb->zcb_psize_count[bin]++; 6123 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp); 6124 zcb->zcb_psize_total += BP_GET_PSIZE(bp); 6125 6126 bin = highbit64(BP_GET_LSIZE(bp)) - 1; 6127 6128 zcb->zcb_lsize_count[bin]++; 6129 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp); 6130 zcb->zcb_lsize_total += BP_GET_LSIZE(bp); 6131 6132 bin = highbit64(BP_GET_ASIZE(bp)) - 1; 6133 6134 zcb->zcb_asize_count[bin]++; 6135 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp); 6136 zcb->zcb_asize_total += BP_GET_ASIZE(bp); 6137 6138 if (!do_claim) 6139 return; 6140 6141 VERIFY0(zio_wait(zio_claim(NULL, zcb->zcb_spa, 6142 spa_min_claim_txg(zcb->zcb_spa), bp, NULL, NULL, 6143 ZIO_FLAG_CANFAIL))); 6144 } 6145 6146 static void 6147 zdb_blkptr_done(zio_t *zio) 6148 { 6149 spa_t *spa = zio->io_spa; 6150 blkptr_t *bp = zio->io_bp; 6151 int ioerr = zio->io_error; 6152 zdb_cb_t *zcb = zio->io_private; 6153 zbookmark_phys_t *zb = &zio->io_bookmark; 6154 6155 mutex_enter(&spa->spa_scrub_lock); 6156 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 6157 cv_broadcast(&spa->spa_scrub_io_cv); 6158 6159 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 6160 char blkbuf[BP_SPRINTF_LEN]; 6161 6162 zcb->zcb_haderrors = 1; 6163 zcb->zcb_errors[ioerr]++; 6164 6165 if (dump_opt['b'] >= 2) 6166 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6167 else 6168 blkbuf[0] = '\0'; 6169 6170 (void) printf("zdb_blkptr_cb: " 6171 "Got error %d reading " 6172 "<%llu, %llu, %lld, %llx> %s -- skipping\n", 6173 ioerr, 6174 (u_longlong_t)zb->zb_objset, 6175 (u_longlong_t)zb->zb_object, 6176 (u_longlong_t)zb->zb_level, 6177 (u_longlong_t)zb->zb_blkid, 6178 blkbuf); 6179 } 6180 mutex_exit(&spa->spa_scrub_lock); 6181 6182 abd_free(zio->io_abd); 6183 } 6184 6185 static int 6186 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 6187 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 6188 { 6189 zdb_cb_t *zcb = arg; 6190 dmu_object_type_t type; 6191 boolean_t is_metadata; 6192 6193 if (zb->zb_level == ZB_DNODE_LEVEL) 6194 return (0); 6195 6196 if (dump_opt['b'] >= 5 && BP_GET_BIRTH(bp) > 0) { 6197 char blkbuf[BP_SPRINTF_LEN]; 6198 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6199 (void) printf("objset %llu object %llu " 6200 "level %lld offset 0x%llx %s\n", 6201 (u_longlong_t)zb->zb_objset, 6202 (u_longlong_t)zb->zb_object, 6203 (longlong_t)zb->zb_level, 6204 (u_longlong_t)blkid2offset(dnp, bp, zb), 6205 blkbuf); 6206 } 6207 6208 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) 6209 return (0); 6210 6211 type = BP_GET_TYPE(bp); 6212 6213 zdb_count_block(zcb, zilog, bp, 6214 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); 6215 6216 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); 6217 6218 if (!BP_IS_EMBEDDED(bp) && 6219 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { 6220 size_t size = BP_GET_PSIZE(bp); 6221 abd_t *abd = abd_alloc(size, B_FALSE); 6222 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; 6223 6224 /* If it's an intent log block, failure is expected. */ 6225 if (zb->zb_level == ZB_ZIL_LEVEL) 6226 flags |= ZIO_FLAG_SPECULATIVE; 6227 6228 mutex_enter(&spa->spa_scrub_lock); 6229 while (spa->spa_load_verify_bytes > max_inflight_bytes) 6230 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 6231 spa->spa_load_verify_bytes += size; 6232 mutex_exit(&spa->spa_scrub_lock); 6233 6234 zio_nowait(zio_read(NULL, spa, bp, abd, size, 6235 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); 6236 } 6237 6238 zcb->zcb_readfails = 0; 6239 6240 /* only call gethrtime() every 100 blocks */ 6241 static int iters; 6242 if (++iters > 100) 6243 iters = 0; 6244 else 6245 return (0); 6246 6247 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { 6248 uint64_t now = gethrtime(); 6249 char buf[10]; 6250 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; 6251 uint64_t kb_per_sec = 6252 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); 6253 uint64_t sec_remaining = 6254 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; 6255 6256 /* make sure nicenum has enough space */ 6257 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated"); 6258 6259 zfs_nicebytes(bytes, buf, sizeof (buf)); 6260 (void) fprintf(stderr, 6261 "\r%5s completed (%4"PRIu64"MB/s) " 6262 "estimated time remaining: " 6263 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ", 6264 buf, kb_per_sec / 1024, 6265 sec_remaining / 60 / 60, 6266 sec_remaining / 60 % 60, 6267 sec_remaining % 60); 6268 6269 zcb->zcb_lastprint = now; 6270 } 6271 6272 return (0); 6273 } 6274 6275 static void 6276 zdb_leak(void *arg, uint64_t start, uint64_t size) 6277 { 6278 vdev_t *vd = arg; 6279 6280 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", 6281 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); 6282 } 6283 6284 static metaslab_ops_t zdb_metaslab_ops = { 6285 NULL /* alloc */ 6286 }; 6287 6288 static int 6289 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme, 6290 uint64_t txg, void *arg) 6291 { 6292 spa_vdev_removal_t *svr = arg; 6293 6294 uint64_t offset = sme->sme_offset; 6295 uint64_t size = sme->sme_run; 6296 6297 /* skip vdevs we don't care about */ 6298 if (sme->sme_vdev != svr->svr_vdev_id) 6299 return (0); 6300 6301 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev); 6302 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6303 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6304 6305 if (txg < metaslab_unflushed_txg(ms)) 6306 return (0); 6307 6308 if (sme->sme_type == SM_ALLOC) 6309 zfs_range_tree_add(svr->svr_allocd_segs, offset, size); 6310 else 6311 zfs_range_tree_remove(svr->svr_allocd_segs, offset, size); 6312 6313 return (0); 6314 } 6315 6316 static void 6317 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 6318 uint64_t size, void *arg) 6319 { 6320 (void) inner_offset, (void) arg; 6321 6322 /* 6323 * This callback was called through a remap from 6324 * a device being removed. Therefore, the vdev that 6325 * this callback is applied to is a concrete 6326 * vdev. 6327 */ 6328 ASSERT(vdev_is_concrete(vd)); 6329 6330 VERIFY0(metaslab_claim_impl(vd, offset, size, 6331 spa_min_claim_txg(vd->vdev_spa))); 6332 } 6333 6334 static void 6335 claim_segment_cb(void *arg, uint64_t offset, uint64_t size) 6336 { 6337 vdev_t *vd = arg; 6338 6339 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 6340 claim_segment_impl_cb, NULL); 6341 } 6342 6343 /* 6344 * After accounting for all allocated blocks that are directly referenced, 6345 * we might have missed a reference to a block from a partially complete 6346 * (and thus unused) indirect mapping object. We perform a secondary pass 6347 * through the metaslabs we have already mapped and claim the destination 6348 * blocks. 6349 */ 6350 static void 6351 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb) 6352 { 6353 if (dump_opt['L']) 6354 return; 6355 6356 if (spa->spa_vdev_removal == NULL) 6357 return; 6358 6359 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6360 6361 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 6362 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 6363 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6364 6365 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs)); 6366 6367 zfs_range_tree_t *allocs = zfs_range_tree_create_flags( 6368 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, 6369 0, "zdb_claim_removing:allocs"); 6370 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 6371 metaslab_t *msp = vd->vdev_ms[msi]; 6372 6373 ASSERT0(zfs_range_tree_space(allocs)); 6374 if (msp->ms_sm != NULL) 6375 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC)); 6376 zfs_range_tree_vacate(allocs, zfs_range_tree_add, 6377 svr->svr_allocd_segs); 6378 } 6379 zfs_range_tree_destroy(allocs); 6380 6381 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr); 6382 6383 /* 6384 * Clear everything past what has been synced, 6385 * because we have not allocated mappings for 6386 * it yet. 6387 */ 6388 zfs_range_tree_clear(svr->svr_allocd_segs, 6389 vdev_indirect_mapping_max_offset(vim), 6390 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim)); 6391 6392 zcb->zcb_removing_size += zfs_range_tree_space(svr->svr_allocd_segs); 6393 zfs_range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd); 6394 6395 spa_config_exit(spa, SCL_CONFIG, FTAG); 6396 } 6397 6398 static int 6399 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6400 dmu_tx_t *tx) 6401 { 6402 (void) tx; 6403 zdb_cb_t *zcb = arg; 6404 spa_t *spa = zcb->zcb_spa; 6405 vdev_t *vd; 6406 const dva_t *dva = &bp->blk_dva[0]; 6407 6408 ASSERT(!bp_freed); 6409 ASSERT(!dump_opt['L']); 6410 ASSERT3U(BP_GET_NDVAS(bp), ==, 1); 6411 6412 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6413 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva)); 6414 ASSERT3P(vd, !=, NULL); 6415 spa_config_exit(spa, SCL_VDEV, FTAG); 6416 6417 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 6418 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL); 6419 6420 vdev_indirect_mapping_increment_obsolete_count( 6421 vd->vdev_indirect_mapping, 6422 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), 6423 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6424 6425 return (0); 6426 } 6427 6428 static uint32_t * 6429 zdb_load_obsolete_counts(vdev_t *vd) 6430 { 6431 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6432 spa_t *spa = vd->vdev_spa; 6433 spa_condensing_indirect_phys_t *scip = 6434 &spa->spa_condensing_indirect_phys; 6435 uint64_t obsolete_sm_object; 6436 uint32_t *counts; 6437 6438 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 6439 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL); 6440 counts = vdev_indirect_mapping_load_obsolete_counts(vim); 6441 if (vd->vdev_obsolete_sm != NULL) { 6442 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6443 vd->vdev_obsolete_sm); 6444 } 6445 if (scip->scip_vdev == vd->vdev_id && 6446 scip->scip_prev_obsolete_sm_object != 0) { 6447 space_map_t *prev_obsolete_sm = NULL; 6448 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, 6449 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); 6450 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6451 prev_obsolete_sm); 6452 space_map_close(prev_obsolete_sm); 6453 } 6454 return (counts); 6455 } 6456 6457 typedef struct checkpoint_sm_exclude_entry_arg { 6458 vdev_t *cseea_vd; 6459 uint64_t cseea_checkpoint_size; 6460 } checkpoint_sm_exclude_entry_arg_t; 6461 6462 static int 6463 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg) 6464 { 6465 checkpoint_sm_exclude_entry_arg_t *cseea = arg; 6466 vdev_t *vd = cseea->cseea_vd; 6467 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 6468 uint64_t end = sme->sme_offset + sme->sme_run; 6469 6470 ASSERT(sme->sme_type == SM_FREE); 6471 6472 /* 6473 * Since the vdev_checkpoint_sm exists in the vdev level 6474 * and the ms_sm space maps exist in the metaslab level, 6475 * an entry in the checkpoint space map could theoretically 6476 * cross the boundaries of the metaslab that it belongs. 6477 * 6478 * In reality, because of the way that we populate and 6479 * manipulate the checkpoint's space maps currently, 6480 * there shouldn't be any entries that cross metaslabs. 6481 * Hence the assertion below. 6482 * 6483 * That said, there is no fundamental requirement that 6484 * the checkpoint's space map entries should not cross 6485 * metaslab boundaries. So if needed we could add code 6486 * that handles metaslab-crossing segments in the future. 6487 */ 6488 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 6489 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 6490 6491 /* 6492 * By removing the entry from the allocated segments we 6493 * also verify that the entry is there to begin with. 6494 */ 6495 mutex_enter(&ms->ms_lock); 6496 zfs_range_tree_remove(ms->ms_allocatable, sme->sme_offset, 6497 sme->sme_run); 6498 mutex_exit(&ms->ms_lock); 6499 6500 cseea->cseea_checkpoint_size += sme->sme_run; 6501 return (0); 6502 } 6503 6504 static void 6505 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb) 6506 { 6507 spa_t *spa = vd->vdev_spa; 6508 space_map_t *checkpoint_sm = NULL; 6509 uint64_t checkpoint_sm_obj; 6510 6511 /* 6512 * If there is no vdev_top_zap, we are in a pool whose 6513 * version predates the pool checkpoint feature. 6514 */ 6515 if (vd->vdev_top_zap == 0) 6516 return; 6517 6518 /* 6519 * If there is no reference of the vdev_checkpoint_sm in 6520 * the vdev_top_zap, then one of the following scenarios 6521 * is true: 6522 * 6523 * 1] There is no checkpoint 6524 * 2] There is a checkpoint, but no checkpointed blocks 6525 * have been freed yet 6526 * 3] The current vdev is indirect 6527 * 6528 * In these cases we return immediately. 6529 */ 6530 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 6531 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 6532 return; 6533 6534 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 6535 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, 6536 &checkpoint_sm_obj)); 6537 6538 checkpoint_sm_exclude_entry_arg_t cseea; 6539 cseea.cseea_vd = vd; 6540 cseea.cseea_checkpoint_size = 0; 6541 6542 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 6543 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 6544 6545 VERIFY0(space_map_iterate(checkpoint_sm, 6546 space_map_length(checkpoint_sm), 6547 checkpoint_sm_exclude_entry_cb, &cseea)); 6548 space_map_close(checkpoint_sm); 6549 6550 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size; 6551 } 6552 6553 static void 6554 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb) 6555 { 6556 ASSERT(!dump_opt['L']); 6557 6558 vdev_t *rvd = spa->spa_root_vdev; 6559 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6560 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id); 6561 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb); 6562 } 6563 } 6564 6565 static int 6566 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme, 6567 uint64_t txg, void *arg) 6568 { 6569 int64_t *ualloc_space = arg; 6570 6571 uint64_t offset = sme->sme_offset; 6572 uint64_t vdev_id = sme->sme_vdev; 6573 6574 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6575 if (!vdev_is_concrete(vd)) 6576 return (0); 6577 6578 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6579 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6580 6581 if (txg < metaslab_unflushed_txg(ms)) 6582 return (0); 6583 6584 if (sme->sme_type == SM_ALLOC) 6585 *ualloc_space += sme->sme_run; 6586 else 6587 *ualloc_space -= sme->sme_run; 6588 6589 return (0); 6590 } 6591 6592 static int64_t 6593 get_unflushed_alloc_space(spa_t *spa) 6594 { 6595 if (dump_opt['L']) 6596 return (0); 6597 6598 int64_t ualloc_space = 0; 6599 iterate_through_spacemap_logs(spa, count_unflushed_space_cb, 6600 &ualloc_space); 6601 return (ualloc_space); 6602 } 6603 6604 static int 6605 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) 6606 { 6607 maptype_t *uic_maptype = arg; 6608 6609 uint64_t offset = sme->sme_offset; 6610 uint64_t size = sme->sme_run; 6611 uint64_t vdev_id = sme->sme_vdev; 6612 6613 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6614 6615 /* skip indirect vdevs */ 6616 if (!vdev_is_concrete(vd)) 6617 return (0); 6618 6619 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6620 6621 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6622 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE); 6623 6624 if (txg < metaslab_unflushed_txg(ms)) 6625 return (0); 6626 6627 if (*uic_maptype == sme->sme_type) 6628 zfs_range_tree_add(ms->ms_allocatable, offset, size); 6629 else 6630 zfs_range_tree_remove(ms->ms_allocatable, offset, size); 6631 6632 return (0); 6633 } 6634 6635 static void 6636 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype) 6637 { 6638 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype); 6639 } 6640 6641 static void 6642 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype) 6643 { 6644 vdev_t *rvd = spa->spa_root_vdev; 6645 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 6646 vdev_t *vd = rvd->vdev_child[i]; 6647 6648 ASSERT3U(i, ==, vd->vdev_id); 6649 6650 if (vd->vdev_ops == &vdev_indirect_ops) 6651 continue; 6652 6653 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6654 metaslab_t *msp = vd->vdev_ms[m]; 6655 6656 (void) fprintf(stderr, 6657 "\rloading concrete vdev %llu, " 6658 "metaslab %llu of %llu ...", 6659 (longlong_t)vd->vdev_id, 6660 (longlong_t)msp->ms_id, 6661 (longlong_t)vd->vdev_ms_count); 6662 6663 mutex_enter(&msp->ms_lock); 6664 zfs_range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6665 6666 /* 6667 * We don't want to spend the CPU manipulating the 6668 * size-ordered tree, so clear the range_tree ops. 6669 */ 6670 msp->ms_allocatable->rt_ops = NULL; 6671 6672 if (msp->ms_sm != NULL) { 6673 VERIFY0(space_map_load(msp->ms_sm, 6674 msp->ms_allocatable, maptype)); 6675 } 6676 if (!msp->ms_loaded) 6677 msp->ms_loaded = B_TRUE; 6678 mutex_exit(&msp->ms_lock); 6679 } 6680 } 6681 6682 load_unflushed_to_ms_allocatables(spa, maptype); 6683 } 6684 6685 /* 6686 * vm_idxp is an in-out parameter which (for indirect vdevs) is the 6687 * index in vim_entries that has the first entry in this metaslab. 6688 * On return, it will be set to the first entry after this metaslab. 6689 */ 6690 static void 6691 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp, 6692 uint64_t *vim_idxp) 6693 { 6694 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6695 6696 mutex_enter(&msp->ms_lock); 6697 zfs_range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6698 6699 /* 6700 * We don't want to spend the CPU manipulating the 6701 * size-ordered tree, so clear the range_tree ops. 6702 */ 6703 msp->ms_allocatable->rt_ops = NULL; 6704 6705 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim); 6706 (*vim_idxp)++) { 6707 vdev_indirect_mapping_entry_phys_t *vimep = 6708 &vim->vim_entries[*vim_idxp]; 6709 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6710 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst); 6711 ASSERT3U(ent_offset, >=, msp->ms_start); 6712 if (ent_offset >= msp->ms_start + msp->ms_size) 6713 break; 6714 6715 /* 6716 * Mappings do not cross metaslab boundaries, 6717 * because we create them by walking the metaslabs. 6718 */ 6719 ASSERT3U(ent_offset + ent_len, <=, 6720 msp->ms_start + msp->ms_size); 6721 zfs_range_tree_add(msp->ms_allocatable, ent_offset, ent_len); 6722 } 6723 6724 if (!msp->ms_loaded) 6725 msp->ms_loaded = B_TRUE; 6726 mutex_exit(&msp->ms_lock); 6727 } 6728 6729 static void 6730 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb) 6731 { 6732 ASSERT(!dump_opt['L']); 6733 6734 vdev_t *rvd = spa->spa_root_vdev; 6735 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6736 vdev_t *vd = rvd->vdev_child[c]; 6737 6738 ASSERT3U(c, ==, vd->vdev_id); 6739 6740 if (vd->vdev_ops != &vdev_indirect_ops) 6741 continue; 6742 6743 /* 6744 * Note: we don't check for mapping leaks on 6745 * removing vdevs because their ms_allocatable's 6746 * are used to look for leaks in allocated space. 6747 */ 6748 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd); 6749 6750 /* 6751 * Normally, indirect vdevs don't have any 6752 * metaslabs. We want to set them up for 6753 * zio_claim(). 6754 */ 6755 vdev_metaslab_group_create(vd); 6756 VERIFY0(vdev_metaslab_init(vd, 0)); 6757 6758 vdev_indirect_mapping_t *vim __maybe_unused = 6759 vd->vdev_indirect_mapping; 6760 uint64_t vim_idx = 0; 6761 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6762 6763 (void) fprintf(stderr, 6764 "\rloading indirect vdev %llu, " 6765 "metaslab %llu of %llu ...", 6766 (longlong_t)vd->vdev_id, 6767 (longlong_t)vd->vdev_ms[m]->ms_id, 6768 (longlong_t)vd->vdev_ms_count); 6769 6770 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m], 6771 &vim_idx); 6772 } 6773 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim)); 6774 } 6775 } 6776 6777 static void 6778 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) 6779 { 6780 zcb->zcb_spa = spa; 6781 6782 if (dump_opt['L']) 6783 return; 6784 6785 dsl_pool_t *dp = spa->spa_dsl_pool; 6786 vdev_t *rvd = spa->spa_root_vdev; 6787 6788 /* 6789 * We are going to be changing the meaning of the metaslab's 6790 * ms_allocatable. Ensure that the allocator doesn't try to 6791 * use the tree. 6792 */ 6793 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops; 6794 spa->spa_log_class->mc_ops = &zdb_metaslab_ops; 6795 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops; 6796 spa->spa_special_embedded_log_class->mc_ops = &zdb_metaslab_ops; 6797 6798 zcb->zcb_vd_obsolete_counts = 6799 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *), 6800 UMEM_NOFAIL); 6801 6802 /* 6803 * For leak detection, we overload the ms_allocatable trees 6804 * to contain allocated segments instead of free segments. 6805 * As a result, we can't use the normal metaslab_load/unload 6806 * interfaces. 6807 */ 6808 zdb_leak_init_prepare_indirect_vdevs(spa, zcb); 6809 load_concrete_ms_allocatable_trees(spa, SM_ALLOC); 6810 6811 /* 6812 * On load_concrete_ms_allocatable_trees() we loaded all the 6813 * allocated entries from the ms_sm to the ms_allocatable for 6814 * each metaslab. If the pool has a checkpoint or is in the 6815 * middle of discarding a checkpoint, some of these blocks 6816 * may have been freed but their ms_sm may not have been 6817 * updated because they are referenced by the checkpoint. In 6818 * order to avoid false-positives during leak-detection, we 6819 * go through the vdev's checkpoint space map and exclude all 6820 * its entries from their relevant ms_allocatable. 6821 * 6822 * We also aggregate the space held by the checkpoint and add 6823 * it to zcb_checkpoint_size. 6824 * 6825 * Note that at this point we are also verifying that all the 6826 * entries on the checkpoint_sm are marked as allocated in 6827 * the ms_sm of their relevant metaslab. 6828 * [see comment in checkpoint_sm_exclude_entry_cb()] 6829 */ 6830 zdb_leak_init_exclude_checkpoint(spa, zcb); 6831 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa)); 6832 6833 /* for cleaner progress output */ 6834 (void) fprintf(stderr, "\n"); 6835 6836 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 6837 ASSERT(spa_feature_is_enabled(spa, 6838 SPA_FEATURE_DEVICE_REMOVAL)); 6839 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj, 6840 increment_indirect_mapping_cb, zcb, NULL); 6841 } 6842 } 6843 6844 static boolean_t 6845 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb) 6846 { 6847 boolean_t leaks = B_FALSE; 6848 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6849 uint64_t total_leaked = 0; 6850 boolean_t are_precise = B_FALSE; 6851 6852 ASSERT(vim != NULL); 6853 6854 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 6855 vdev_indirect_mapping_entry_phys_t *vimep = 6856 &vim->vim_entries[i]; 6857 uint64_t obsolete_bytes = 0; 6858 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6859 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6860 6861 /* 6862 * This is not very efficient but it's easy to 6863 * verify correctness. 6864 */ 6865 for (uint64_t inner_offset = 0; 6866 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst); 6867 inner_offset += 1ULL << vd->vdev_ashift) { 6868 if (zfs_range_tree_contains(msp->ms_allocatable, 6869 offset + inner_offset, 1ULL << vd->vdev_ashift)) { 6870 obsolete_bytes += 1ULL << vd->vdev_ashift; 6871 } 6872 } 6873 6874 int64_t bytes_leaked = obsolete_bytes - 6875 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]; 6876 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=, 6877 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]); 6878 6879 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6880 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) { 6881 (void) printf("obsolete indirect mapping count " 6882 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n", 6883 (u_longlong_t)vd->vdev_id, 6884 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 6885 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 6886 (u_longlong_t)bytes_leaked); 6887 } 6888 total_leaked += ABS(bytes_leaked); 6889 } 6890 6891 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6892 if (!are_precise && total_leaked > 0) { 6893 int pct_leaked = total_leaked * 100 / 6894 vdev_indirect_mapping_bytes_mapped(vim); 6895 (void) printf("cannot verify obsolete indirect mapping " 6896 "counts of vdev %llu because precise feature was not " 6897 "enabled when it was removed: %d%% (%llx bytes) of mapping" 6898 "unreferenced\n", 6899 (u_longlong_t)vd->vdev_id, pct_leaked, 6900 (u_longlong_t)total_leaked); 6901 } else if (total_leaked > 0) { 6902 (void) printf("obsolete indirect mapping count mismatch " 6903 "for vdev %llu -- %llx total bytes mismatched\n", 6904 (u_longlong_t)vd->vdev_id, 6905 (u_longlong_t)total_leaked); 6906 leaks |= B_TRUE; 6907 } 6908 6909 vdev_indirect_mapping_free_obsolete_counts(vim, 6910 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6911 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL; 6912 6913 return (leaks); 6914 } 6915 6916 static boolean_t 6917 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb) 6918 { 6919 if (dump_opt['L']) 6920 return (B_FALSE); 6921 6922 boolean_t leaks = B_FALSE; 6923 vdev_t *rvd = spa->spa_root_vdev; 6924 for (unsigned c = 0; c < rvd->vdev_children; c++) { 6925 vdev_t *vd = rvd->vdev_child[c]; 6926 6927 if (zcb->zcb_vd_obsolete_counts[c] != NULL) { 6928 leaks |= zdb_check_for_obsolete_leaks(vd, zcb); 6929 } 6930 6931 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6932 metaslab_t *msp = vd->vdev_ms[m]; 6933 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class == 6934 spa_embedded_log_class(spa) || 6935 msp->ms_group->mg_class == 6936 spa_special_embedded_log_class(spa)) ? 6937 vd->vdev_log_mg : vd->vdev_mg); 6938 6939 /* 6940 * ms_allocatable has been overloaded 6941 * to contain allocated segments. Now that 6942 * we finished traversing all blocks, any 6943 * block that remains in the ms_allocatable 6944 * represents an allocated block that we 6945 * did not claim during the traversal. 6946 * Claimed blocks would have been removed 6947 * from the ms_allocatable. For indirect 6948 * vdevs, space remaining in the tree 6949 * represents parts of the mapping that are 6950 * not referenced, which is not a bug. 6951 */ 6952 if (vd->vdev_ops == &vdev_indirect_ops) { 6953 zfs_range_tree_vacate(msp->ms_allocatable, 6954 NULL, NULL); 6955 } else { 6956 zfs_range_tree_vacate(msp->ms_allocatable, 6957 zdb_leak, vd); 6958 } 6959 if (msp->ms_loaded) { 6960 msp->ms_loaded = B_FALSE; 6961 } 6962 } 6963 } 6964 6965 umem_free(zcb->zcb_vd_obsolete_counts, 6966 rvd->vdev_children * sizeof (uint32_t *)); 6967 zcb->zcb_vd_obsolete_counts = NULL; 6968 6969 return (leaks); 6970 } 6971 6972 static int 6973 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6974 { 6975 (void) tx; 6976 zdb_cb_t *zcb = arg; 6977 6978 if (dump_opt['b'] >= 5) { 6979 char blkbuf[BP_SPRINTF_LEN]; 6980 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6981 (void) printf("[%s] %s\n", 6982 "deferred free", blkbuf); 6983 } 6984 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); 6985 return (0); 6986 } 6987 6988 /* 6989 * Iterate over livelists which have been destroyed by the user but 6990 * are still present in the MOS, waiting to be freed 6991 */ 6992 static void 6993 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg) 6994 { 6995 objset_t *mos = spa->spa_meta_objset; 6996 uint64_t zap_obj; 6997 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6998 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6999 if (err == ENOENT) 7000 return; 7001 ASSERT0(err); 7002 7003 zap_cursor_t zc; 7004 zap_attribute_t *attrp = zap_attribute_alloc(); 7005 dsl_deadlist_t ll; 7006 /* NULL out os prior to dsl_deadlist_open in case it's garbage */ 7007 ll.dl_os = NULL; 7008 for (zap_cursor_init(&zc, mos, zap_obj); 7009 zap_cursor_retrieve(&zc, attrp) == 0; 7010 (void) zap_cursor_advance(&zc)) { 7011 VERIFY0(dsl_deadlist_open(&ll, mos, attrp->za_first_integer)); 7012 func(&ll, arg); 7013 dsl_deadlist_close(&ll); 7014 } 7015 zap_cursor_fini(&zc); 7016 zap_attribute_free(attrp); 7017 } 7018 7019 static int 7020 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 7021 dmu_tx_t *tx) 7022 { 7023 ASSERT(!bp_freed); 7024 return (count_block_cb(arg, bp, tx)); 7025 } 7026 7027 static int 7028 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle) 7029 { 7030 zdb_cb_t *zbc = args; 7031 bplist_t blks; 7032 bplist_create(&blks); 7033 /* determine which blocks have been alloc'd but not freed */ 7034 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL)); 7035 /* count those blocks */ 7036 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL); 7037 bplist_destroy(&blks); 7038 return (0); 7039 } 7040 7041 static void 7042 livelist_count_blocks(dsl_deadlist_t *ll, void *arg) 7043 { 7044 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg); 7045 } 7046 7047 /* 7048 * Count the blocks in the livelists that have been destroyed by the user 7049 * but haven't yet been freed. 7050 */ 7051 static void 7052 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc) 7053 { 7054 iterate_deleted_livelists(spa, livelist_count_blocks, zbc); 7055 } 7056 7057 static void 7058 dump_livelist_cb(dsl_deadlist_t *ll, void *arg) 7059 { 7060 ASSERT0P(arg); 7061 global_feature_count[SPA_FEATURE_LIVELIST]++; 7062 dump_blkptr_list(ll, "Deleted Livelist"); 7063 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL); 7064 } 7065 7066 /* 7067 * Print out, register object references to, and increment feature counts for 7068 * livelists that have been destroyed by the user but haven't yet been freed. 7069 */ 7070 static void 7071 deleted_livelists_dump_mos(spa_t *spa) 7072 { 7073 uint64_t zap_obj; 7074 objset_t *mos = spa->spa_meta_objset; 7075 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 7076 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 7077 if (err == ENOENT) 7078 return; 7079 mos_obj_refd(zap_obj); 7080 iterate_deleted_livelists(spa, dump_livelist_cb, NULL); 7081 } 7082 7083 static int 7084 zdb_brt_entry_compare(const void *zcn1, const void *zcn2) 7085 { 7086 const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva; 7087 const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva; 7088 int cmp; 7089 7090 cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 7091 if (cmp == 0) 7092 cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)); 7093 7094 return (cmp); 7095 } 7096 7097 static int 7098 dump_block_stats(spa_t *spa) 7099 { 7100 zdb_cb_t *zcb; 7101 zdb_blkstats_t *zb, *tzb; 7102 uint64_t norm_alloc, norm_space, total_alloc, total_found; 7103 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 7104 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD; 7105 boolean_t leaks = B_FALSE; 7106 int e, c, err; 7107 bp_embedded_type_t i; 7108 7109 ddt_prefetch_all(spa); 7110 7111 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL); 7112 7113 if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 7114 avl_create(&zcb->zcb_brt, zdb_brt_entry_compare, 7115 sizeof (zdb_brt_entry_t), 7116 offsetof(zdb_brt_entry_t, zbre_node)); 7117 zcb->zcb_brt_is_active = B_TRUE; 7118 } 7119 7120 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", 7121 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", 7122 (dump_opt['c'] == 1) ? "metadata " : "", 7123 dump_opt['c'] ? "checksums " : "", 7124 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", 7125 !dump_opt['L'] ? "nothing leaked " : ""); 7126 7127 /* 7128 * When leak detection is enabled we load all space maps as SM_ALLOC 7129 * maps, then traverse the pool claiming each block we discover. If 7130 * the pool is perfectly consistent, the segment trees will be empty 7131 * when we're done. Anything left over is a leak; any block we can't 7132 * claim (because it's not part of any space map) is a double 7133 * allocation, reference to a freed block, or an unclaimed log block. 7134 * 7135 * When leak detection is disabled (-L option) we still traverse the 7136 * pool claiming each block we discover, but we skip opening any space 7137 * maps. 7138 */ 7139 zdb_leak_init(spa, zcb); 7140 7141 /* 7142 * If there's a deferred-free bplist, process that first. 7143 */ 7144 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, 7145 bpobj_count_block_cb, zcb, NULL); 7146 7147 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 7148 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, 7149 bpobj_count_block_cb, zcb, NULL); 7150 } 7151 7152 zdb_claim_removing(spa, zcb); 7153 7154 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 7155 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, 7156 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, 7157 zcb, NULL)); 7158 } 7159 7160 deleted_livelists_count_blocks(spa, zcb); 7161 7162 if (dump_opt['c'] > 1) 7163 flags |= TRAVERSE_PREFETCH_DATA; 7164 7165 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); 7166 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa)); 7167 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa)); 7168 zcb->zcb_totalasize += 7169 metaslab_class_get_alloc(spa_embedded_log_class(spa)); 7170 zcb->zcb_totalasize += 7171 metaslab_class_get_alloc(spa_special_embedded_log_class(spa)); 7172 zcb->zcb_start = zcb->zcb_lastprint = gethrtime(); 7173 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb); 7174 7175 /* 7176 * If we've traversed the data blocks then we need to wait for those 7177 * I/Os to complete. We leverage "The Godfather" zio to wait on 7178 * all async I/Os to complete. 7179 */ 7180 if (dump_opt['c']) { 7181 for (c = 0; c < max_ncpus; c++) { 7182 (void) zio_wait(spa->spa_async_zio_root[c]); 7183 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL, 7184 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 7185 ZIO_FLAG_GODFATHER); 7186 } 7187 } 7188 ASSERT0(spa->spa_load_verify_bytes); 7189 7190 /* 7191 * Done after zio_wait() since zcb_haderrors is modified in 7192 * zdb_blkptr_done() 7193 */ 7194 zcb->zcb_haderrors |= err; 7195 7196 if (zcb->zcb_haderrors) { 7197 (void) printf("\nError counts:\n\n"); 7198 (void) printf("\t%5s %s\n", "errno", "count"); 7199 for (e = 0; e < 256; e++) { 7200 if (zcb->zcb_errors[e] != 0) { 7201 (void) printf("\t%5d %llu\n", 7202 e, (u_longlong_t)zcb->zcb_errors[e]); 7203 } 7204 } 7205 } 7206 7207 /* 7208 * Report any leaked segments. 7209 */ 7210 leaks |= zdb_leak_fini(spa, zcb); 7211 7212 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; 7213 7214 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 7215 norm_space = metaslab_class_get_space(spa_normal_class(spa)); 7216 7217 total_alloc = norm_alloc + 7218 metaslab_class_get_alloc(spa_log_class(spa)) + 7219 metaslab_class_get_alloc(spa_embedded_log_class(spa)) + 7220 metaslab_class_get_alloc(spa_special_embedded_log_class(spa)) + 7221 metaslab_class_get_alloc(spa_special_class(spa)) + 7222 metaslab_class_get_alloc(spa_dedup_class(spa)) + 7223 get_unflushed_alloc_space(spa); 7224 total_found = 7225 tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize + 7226 zcb->zcb_removing_size + zcb->zcb_checkpoint_size; 7227 7228 if (total_found == total_alloc && !dump_opt['L']) { 7229 (void) printf("\n\tNo leaks (block sum matches space" 7230 " maps exactly)\n"); 7231 } else if (!dump_opt['L']) { 7232 (void) printf("block traversal size %llu != alloc %llu " 7233 "(%s %lld)\n", 7234 (u_longlong_t)total_found, 7235 (u_longlong_t)total_alloc, 7236 (dump_opt['L']) ? "unreachable" : "leaked", 7237 (longlong_t)(total_alloc - total_found)); 7238 } 7239 7240 if (tzb->zb_count == 0) { 7241 umem_free(zcb, sizeof (zdb_cb_t)); 7242 return (2); 7243 } 7244 7245 (void) printf("\n"); 7246 (void) printf("\t%-16s %14llu\n", "bp count:", 7247 (u_longlong_t)tzb->zb_count); 7248 (void) printf("\t%-16s %14llu\n", "ganged count:", 7249 (longlong_t)tzb->zb_gangs); 7250 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:", 7251 (u_longlong_t)tzb->zb_lsize, 7252 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); 7253 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 7254 "bp physical:", (u_longlong_t)tzb->zb_psize, 7255 (u_longlong_t)(tzb->zb_psize / tzb->zb_count), 7256 (double)tzb->zb_lsize / tzb->zb_psize); 7257 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 7258 "bp allocated:", (u_longlong_t)tzb->zb_asize, 7259 (u_longlong_t)(tzb->zb_asize / tzb->zb_count), 7260 (double)tzb->zb_lsize / tzb->zb_asize); 7261 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n", 7262 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize, 7263 (u_longlong_t)zcb->zcb_dedup_blocks, 7264 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0); 7265 (void) printf("\t%-16s %14llu count: %6llu\n", 7266 "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize, 7267 (u_longlong_t)zcb->zcb_clone_blocks); 7268 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:", 7269 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); 7270 7271 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7272 uint64_t alloc = metaslab_class_get_alloc( 7273 spa_special_class(spa)); 7274 uint64_t space = metaslab_class_get_space( 7275 spa_special_class(spa)); 7276 7277 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7278 "Special class", (u_longlong_t)alloc, 7279 100.0 * alloc / space); 7280 } 7281 7282 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7283 uint64_t alloc = metaslab_class_get_alloc( 7284 spa_dedup_class(spa)); 7285 uint64_t space = metaslab_class_get_space( 7286 spa_dedup_class(spa)); 7287 7288 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7289 "Dedup class", (u_longlong_t)alloc, 7290 100.0 * alloc / space); 7291 } 7292 7293 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7294 uint64_t alloc = metaslab_class_get_alloc( 7295 spa_embedded_log_class(spa)); 7296 uint64_t space = metaslab_class_get_space( 7297 spa_embedded_log_class(spa)); 7298 7299 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7300 "Embedded log class", (u_longlong_t)alloc, 7301 100.0 * alloc / space); 7302 } 7303 7304 if (spa_special_embedded_log_class(spa)->mc_allocator[0].mca_rotor 7305 != NULL) { 7306 uint64_t alloc = metaslab_class_get_alloc( 7307 spa_special_embedded_log_class(spa)); 7308 uint64_t space = metaslab_class_get_space( 7309 spa_special_embedded_log_class(spa)); 7310 7311 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7312 "Special embedded log", (u_longlong_t)alloc, 7313 100.0 * alloc / space); 7314 } 7315 7316 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { 7317 if (zcb->zcb_embedded_blocks[i] == 0) 7318 continue; 7319 (void) printf("\n"); 7320 (void) printf("\tadditional, non-pointer bps of type %u: " 7321 "%10llu\n", 7322 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]); 7323 7324 if (dump_opt['b'] >= 3) { 7325 (void) printf("\t number of (compressed) bytes: " 7326 "number of bps\n"); 7327 dump_histogram(zcb->zcb_embedded_histogram[i], 7328 sizeof (zcb->zcb_embedded_histogram[i]) / 7329 sizeof (zcb->zcb_embedded_histogram[i][0]), 0); 7330 } 7331 } 7332 7333 if (tzb->zb_ditto_samevdev != 0) { 7334 (void) printf("\tDittoed blocks on same vdev: %llu\n", 7335 (longlong_t)tzb->zb_ditto_samevdev); 7336 } 7337 if (tzb->zb_ditto_same_ms != 0) { 7338 (void) printf("\tDittoed blocks in same metaslab: %llu\n", 7339 (longlong_t)tzb->zb_ditto_same_ms); 7340 } 7341 7342 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) { 7343 vdev_t *vd = spa->spa_root_vdev->vdev_child[v]; 7344 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 7345 7346 if (vim == NULL) { 7347 continue; 7348 } 7349 7350 char mem[32]; 7351 zdb_nicenum(vdev_indirect_mapping_num_entries(vim), 7352 mem, vdev_indirect_mapping_size(vim)); 7353 7354 (void) printf("\tindirect vdev id %llu has %llu segments " 7355 "(%s in memory)\n", 7356 (longlong_t)vd->vdev_id, 7357 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem); 7358 } 7359 7360 if (dump_opt['b'] >= 2) { 7361 int l, t, level; 7362 char csize[32], lsize[32], psize[32], asize[32]; 7363 char avg[32], gang[32]; 7364 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" 7365 "\t avg\t comp\t%%Total\tType\n"); 7366 7367 zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t), 7368 UMEM_NOFAIL); 7369 7370 for (t = 0; t <= ZDB_OT_TOTAL; t++) { 7371 const char *typename; 7372 7373 /* make sure nicenum has enough space */ 7374 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ, 7375 "csize truncated"); 7376 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, 7377 "lsize truncated"); 7378 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ, 7379 "psize truncated"); 7380 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, 7381 "asize truncated"); 7382 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ, 7383 "avg truncated"); 7384 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ, 7385 "gang truncated"); 7386 7387 if (t < DMU_OT_NUMTYPES) 7388 typename = dmu_ot[t].ot_name; 7389 else 7390 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; 7391 7392 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) { 7393 (void) printf("%6s\t%5s\t%5s\t%5s" 7394 "\t%5s\t%5s\t%6s\t%s\n", 7395 "-", 7396 "-", 7397 "-", 7398 "-", 7399 "-", 7400 "-", 7401 "-", 7402 typename); 7403 continue; 7404 } 7405 7406 for (l = ZB_TOTAL - 1; l >= -1; l--) { 7407 level = (l == -1 ? ZB_TOTAL : l); 7408 zb = &zcb->zcb_type[level][t]; 7409 7410 if (zb->zb_asize == 0) 7411 continue; 7412 7413 if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES && 7414 (level > 0 || DMU_OT_IS_METADATA(t))) { 7415 mdstats->zb_count += zb->zb_count; 7416 mdstats->zb_lsize += zb->zb_lsize; 7417 mdstats->zb_psize += zb->zb_psize; 7418 mdstats->zb_asize += zb->zb_asize; 7419 mdstats->zb_gangs += zb->zb_gangs; 7420 } 7421 7422 if (dump_opt['b'] < 3 && level != ZB_TOTAL) 7423 continue; 7424 7425 if (level == 0 && zb->zb_asize == 7426 zcb->zcb_type[ZB_TOTAL][t].zb_asize) 7427 continue; 7428 7429 zdb_nicenum(zb->zb_count, csize, 7430 sizeof (csize)); 7431 zdb_nicenum(zb->zb_lsize, lsize, 7432 sizeof (lsize)); 7433 zdb_nicenum(zb->zb_psize, psize, 7434 sizeof (psize)); 7435 zdb_nicenum(zb->zb_asize, asize, 7436 sizeof (asize)); 7437 zdb_nicenum(zb->zb_asize / zb->zb_count, avg, 7438 sizeof (avg)); 7439 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang)); 7440 7441 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7442 "\t%5.2f\t%6.2f\t", 7443 csize, lsize, psize, asize, avg, 7444 (double)zb->zb_lsize / zb->zb_psize, 7445 100.0 * zb->zb_asize / tzb->zb_asize); 7446 7447 if (level == ZB_TOTAL) 7448 (void) printf("%s\n", typename); 7449 else 7450 (void) printf(" L%d %s\n", 7451 level, typename); 7452 7453 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { 7454 (void) printf("\t number of ganged " 7455 "blocks: %s\n", gang); 7456 } 7457 7458 if (dump_opt['b'] >= 4) { 7459 (void) printf("psize " 7460 "(in 512-byte sectors): " 7461 "number of blocks\n"); 7462 dump_histogram(zb->zb_psize_histogram, 7463 PSIZE_HISTO_SIZE, 0); 7464 } 7465 } 7466 } 7467 zdb_nicenum(mdstats->zb_count, csize, 7468 sizeof (csize)); 7469 zdb_nicenum(mdstats->zb_lsize, lsize, 7470 sizeof (lsize)); 7471 zdb_nicenum(mdstats->zb_psize, psize, 7472 sizeof (psize)); 7473 zdb_nicenum(mdstats->zb_asize, asize, 7474 sizeof (asize)); 7475 zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg, 7476 sizeof (avg)); 7477 zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang)); 7478 7479 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7480 "\t%5.2f\t%6.2f\t", 7481 csize, lsize, psize, asize, avg, 7482 (double)mdstats->zb_lsize / mdstats->zb_psize, 7483 100.0 * mdstats->zb_asize / tzb->zb_asize); 7484 (void) printf("%s\n", "Metadata Total"); 7485 7486 /* Output a table summarizing block sizes in the pool */ 7487 if (dump_opt['b'] >= 2) { 7488 dump_size_histograms(zcb); 7489 } 7490 7491 umem_free(mdstats, sizeof (zfs_blkstat_t)); 7492 } 7493 7494 (void) printf("\n"); 7495 7496 if (leaks) { 7497 umem_free(zcb, sizeof (zdb_cb_t)); 7498 return (2); 7499 } 7500 7501 if (zcb->zcb_haderrors) { 7502 umem_free(zcb, sizeof (zdb_cb_t)); 7503 return (3); 7504 } 7505 7506 umem_free(zcb, sizeof (zdb_cb_t)); 7507 return (0); 7508 } 7509 7510 typedef struct zdb_ddt_entry { 7511 /* key must be first for ddt_key_compare */ 7512 ddt_key_t zdde_key; 7513 uint64_t zdde_ref_blocks; 7514 uint64_t zdde_ref_lsize; 7515 uint64_t zdde_ref_psize; 7516 uint64_t zdde_ref_dsize; 7517 avl_node_t zdde_node; 7518 } zdb_ddt_entry_t; 7519 7520 static int 7521 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 7522 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 7523 { 7524 (void) zilog, (void) dnp; 7525 avl_tree_t *t = arg; 7526 avl_index_t where; 7527 zdb_ddt_entry_t *zdde, zdde_search; 7528 7529 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 7530 BP_IS_EMBEDDED(bp)) 7531 return (0); 7532 7533 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { 7534 (void) printf("traversing objset %llu, %llu objects, " 7535 "%lu blocks so far\n", 7536 (u_longlong_t)zb->zb_objset, 7537 (u_longlong_t)BP_GET_FILL(bp), 7538 avl_numnodes(t)); 7539 } 7540 7541 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || 7542 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) 7543 return (0); 7544 7545 ddt_key_fill(&zdde_search.zdde_key, bp); 7546 7547 zdde = avl_find(t, &zdde_search, &where); 7548 7549 if (zdde == NULL) { 7550 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); 7551 zdde->zdde_key = zdde_search.zdde_key; 7552 avl_insert(t, zdde, where); 7553 } 7554 7555 zdde->zdde_ref_blocks += 1; 7556 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); 7557 zdde->zdde_ref_psize += BP_GET_PSIZE(bp); 7558 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); 7559 7560 return (0); 7561 } 7562 7563 static void 7564 dump_simulated_ddt(spa_t *spa) 7565 { 7566 avl_tree_t t; 7567 void *cookie = NULL; 7568 zdb_ddt_entry_t *zdde; 7569 ddt_histogram_t ddh_total = {{{0}}}; 7570 ddt_stat_t dds_total = {0}; 7571 7572 avl_create(&t, ddt_key_compare, 7573 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); 7574 7575 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7576 7577 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 7578 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t); 7579 7580 spa_config_exit(spa, SCL_CONFIG, FTAG); 7581 7582 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { 7583 uint64_t refcnt = zdde->zdde_ref_blocks; 7584 ASSERT(refcnt != 0); 7585 7586 ddt_stat_t *dds = &ddh_total.ddh_stat[highbit64(refcnt) - 1]; 7587 7588 dds->dds_blocks += zdde->zdde_ref_blocks / refcnt; 7589 dds->dds_lsize += zdde->zdde_ref_lsize / refcnt; 7590 dds->dds_psize += zdde->zdde_ref_psize / refcnt; 7591 dds->dds_dsize += zdde->zdde_ref_dsize / refcnt; 7592 7593 dds->dds_ref_blocks += zdde->zdde_ref_blocks; 7594 dds->dds_ref_lsize += zdde->zdde_ref_lsize; 7595 dds->dds_ref_psize += zdde->zdde_ref_psize; 7596 dds->dds_ref_dsize += zdde->zdde_ref_dsize; 7597 7598 umem_free(zdde, sizeof (*zdde)); 7599 } 7600 7601 avl_destroy(&t); 7602 7603 ddt_histogram_total(&dds_total, &ddh_total); 7604 7605 (void) printf("Simulated DDT histogram:\n"); 7606 7607 zpool_dump_ddt(&dds_total, &ddh_total); 7608 7609 dump_dedup_ratio(&dds_total); 7610 } 7611 7612 static int 7613 verify_device_removal_feature_counts(spa_t *spa) 7614 { 7615 uint64_t dr_feature_refcount = 0; 7616 uint64_t oc_feature_refcount = 0; 7617 uint64_t indirect_vdev_count = 0; 7618 uint64_t precise_vdev_count = 0; 7619 uint64_t obsolete_counts_object_count = 0; 7620 uint64_t obsolete_sm_count = 0; 7621 uint64_t obsolete_counts_count = 0; 7622 uint64_t scip_count = 0; 7623 uint64_t obsolete_bpobj_count = 0; 7624 int ret = 0; 7625 7626 spa_condensing_indirect_phys_t *scip = 7627 &spa->spa_condensing_indirect_phys; 7628 if (scip->scip_next_mapping_object != 0) { 7629 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev]; 7630 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 7631 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 7632 7633 (void) printf("Condensing indirect vdev %llu: new mapping " 7634 "object %llu, prev obsolete sm %llu\n", 7635 (u_longlong_t)scip->scip_vdev, 7636 (u_longlong_t)scip->scip_next_mapping_object, 7637 (u_longlong_t)scip->scip_prev_obsolete_sm_object); 7638 if (scip->scip_prev_obsolete_sm_object != 0) { 7639 space_map_t *prev_obsolete_sm = NULL; 7640 VERIFY0(space_map_open(&prev_obsolete_sm, 7641 spa->spa_meta_objset, 7642 scip->scip_prev_obsolete_sm_object, 7643 0, vd->vdev_asize, 0)); 7644 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm); 7645 (void) printf("\n"); 7646 space_map_close(prev_obsolete_sm); 7647 } 7648 7649 scip_count += 2; 7650 } 7651 7652 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 7653 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 7654 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 7655 7656 if (vic->vic_mapping_object != 0) { 7657 ASSERT(vd->vdev_ops == &vdev_indirect_ops || 7658 vd->vdev_removing); 7659 indirect_vdev_count++; 7660 7661 if (vd->vdev_indirect_mapping->vim_havecounts) { 7662 obsolete_counts_count++; 7663 } 7664 } 7665 7666 boolean_t are_precise; 7667 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 7668 if (are_precise) { 7669 ASSERT(vic->vic_mapping_object != 0); 7670 precise_vdev_count++; 7671 } 7672 7673 uint64_t obsolete_sm_object; 7674 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 7675 if (obsolete_sm_object != 0) { 7676 ASSERT(vic->vic_mapping_object != 0); 7677 obsolete_sm_count++; 7678 } 7679 } 7680 7681 (void) feature_get_refcount(spa, 7682 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL], 7683 &dr_feature_refcount); 7684 (void) feature_get_refcount(spa, 7685 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS], 7686 &oc_feature_refcount); 7687 7688 if (dr_feature_refcount != indirect_vdev_count) { 7689 ret = 1; 7690 (void) printf("Number of indirect vdevs (%llu) " \ 7691 "does not match feature count (%llu)\n", 7692 (u_longlong_t)indirect_vdev_count, 7693 (u_longlong_t)dr_feature_refcount); 7694 } else { 7695 (void) printf("Verified device_removal feature refcount " \ 7696 "of %llu is correct\n", 7697 (u_longlong_t)dr_feature_refcount); 7698 } 7699 7700 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, 7701 DMU_POOL_OBSOLETE_BPOBJ) == 0) { 7702 obsolete_bpobj_count++; 7703 } 7704 7705 7706 obsolete_counts_object_count = precise_vdev_count; 7707 obsolete_counts_object_count += obsolete_sm_count; 7708 obsolete_counts_object_count += obsolete_counts_count; 7709 obsolete_counts_object_count += scip_count; 7710 obsolete_counts_object_count += obsolete_bpobj_count; 7711 obsolete_counts_object_count += remap_deadlist_count; 7712 7713 if (oc_feature_refcount != obsolete_counts_object_count) { 7714 ret = 1; 7715 (void) printf("Number of obsolete counts objects (%llu) " \ 7716 "does not match feature count (%llu)\n", 7717 (u_longlong_t)obsolete_counts_object_count, 7718 (u_longlong_t)oc_feature_refcount); 7719 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu " 7720 "ob:%llu rd:%llu\n", 7721 (u_longlong_t)precise_vdev_count, 7722 (u_longlong_t)obsolete_sm_count, 7723 (u_longlong_t)obsolete_counts_count, 7724 (u_longlong_t)scip_count, 7725 (u_longlong_t)obsolete_bpobj_count, 7726 (u_longlong_t)remap_deadlist_count); 7727 } else { 7728 (void) printf("Verified indirect_refcount feature refcount " \ 7729 "of %llu is correct\n", 7730 (u_longlong_t)oc_feature_refcount); 7731 } 7732 return (ret); 7733 } 7734 7735 static void 7736 zdb_set_skip_mmp(char *target) 7737 { 7738 spa_t *spa; 7739 7740 /* 7741 * Disable the activity check to allow examination of 7742 * active pools. 7743 */ 7744 mutex_enter(&spa_namespace_lock); 7745 if ((spa = spa_lookup(target)) != NULL) { 7746 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP; 7747 } 7748 mutex_exit(&spa_namespace_lock); 7749 } 7750 7751 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE" 7752 /* 7753 * Import the checkpointed state of the pool specified by the target 7754 * parameter as readonly. The function also accepts a pool config 7755 * as an optional parameter, else it attempts to infer the config by 7756 * the name of the target pool. 7757 * 7758 * Note that the checkpointed state's pool name will be the name of 7759 * the original pool with the above suffix appended to it. In addition, 7760 * if the target is not a pool name (e.g. a path to a dataset) then 7761 * the new_path parameter is populated with the updated path to 7762 * reflect the fact that we are looking into the checkpointed state. 7763 * 7764 * The function returns a newly-allocated copy of the name of the 7765 * pool containing the checkpointed state. When this copy is no 7766 * longer needed it should be freed with free(3C). Same thing 7767 * applies to the new_path parameter if allocated. 7768 */ 7769 static char * 7770 import_checkpointed_state(char *target, nvlist_t *cfg, boolean_t target_is_spa, 7771 char **new_path) 7772 { 7773 int error = 0; 7774 char *poolname, *bogus_name = NULL; 7775 boolean_t freecfg = B_FALSE; 7776 7777 /* If the target is not a pool, the extract the pool name */ 7778 char *path_start = strchr(target, '/'); 7779 if (target_is_spa || path_start == NULL) { 7780 poolname = target; 7781 } else { 7782 size_t poolname_len = path_start - target; 7783 poolname = strndup(target, poolname_len); 7784 } 7785 7786 if (cfg == NULL) { 7787 zdb_set_skip_mmp(poolname); 7788 error = spa_get_stats(poolname, &cfg, NULL, 0); 7789 if (error != 0) { 7790 fatal("Tried to read config of pool \"%s\" but " 7791 "spa_get_stats() failed with error %d\n", 7792 poolname, error); 7793 } 7794 freecfg = B_TRUE; 7795 } 7796 7797 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) { 7798 if (target != poolname) 7799 free(poolname); 7800 return (NULL); 7801 } 7802 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name); 7803 7804 error = spa_import(bogus_name, cfg, NULL, 7805 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT | 7806 ZFS_IMPORT_SKIP_MMP); 7807 if (freecfg) 7808 nvlist_free(cfg); 7809 if (error != 0) { 7810 fatal("Tried to import pool \"%s\" but spa_import() failed " 7811 "with error %d\n", bogus_name, error); 7812 } 7813 7814 if (new_path != NULL && !target_is_spa) { 7815 if (asprintf(new_path, "%s%s", bogus_name, 7816 path_start != NULL ? path_start : "") == -1) { 7817 free(bogus_name); 7818 if (!target_is_spa && path_start != NULL) 7819 free(poolname); 7820 return (NULL); 7821 } 7822 } 7823 7824 if (target != poolname) 7825 free(poolname); 7826 7827 return (bogus_name); 7828 } 7829 7830 typedef struct verify_checkpoint_sm_entry_cb_arg { 7831 vdev_t *vcsec_vd; 7832 7833 /* the following fields are only used for printing progress */ 7834 uint64_t vcsec_entryid; 7835 uint64_t vcsec_num_entries; 7836 } verify_checkpoint_sm_entry_cb_arg_t; 7837 7838 #define ENTRIES_PER_PROGRESS_UPDATE 10000 7839 7840 static int 7841 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg) 7842 { 7843 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg; 7844 vdev_t *vd = vcsec->vcsec_vd; 7845 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 7846 uint64_t end = sme->sme_offset + sme->sme_run; 7847 7848 ASSERT(sme->sme_type == SM_FREE); 7849 7850 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) { 7851 (void) fprintf(stderr, 7852 "\rverifying vdev %llu, space map entry %llu of %llu ...", 7853 (longlong_t)vd->vdev_id, 7854 (longlong_t)vcsec->vcsec_entryid, 7855 (longlong_t)vcsec->vcsec_num_entries); 7856 } 7857 vcsec->vcsec_entryid++; 7858 7859 /* 7860 * See comment in checkpoint_sm_exclude_entry_cb() 7861 */ 7862 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 7863 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 7864 7865 /* 7866 * The entries in the vdev_checkpoint_sm should be marked as 7867 * allocated in the checkpointed state of the pool, therefore 7868 * their respective ms_allocateable trees should not contain them. 7869 */ 7870 mutex_enter(&ms->ms_lock); 7871 zfs_range_tree_verify_not_present(ms->ms_allocatable, 7872 sme->sme_offset, sme->sme_run); 7873 mutex_exit(&ms->ms_lock); 7874 7875 return (0); 7876 } 7877 7878 /* 7879 * Verify that all segments in the vdev_checkpoint_sm are allocated 7880 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's 7881 * ms_allocatable). 7882 * 7883 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of 7884 * each vdev in the current state of the pool to the metaslab space maps 7885 * (ms_sm) of the checkpointed state of the pool. 7886 * 7887 * Note that the function changes the state of the ms_allocatable 7888 * trees of the current spa_t. The entries of these ms_allocatable 7889 * trees are cleared out and then repopulated from with the free 7890 * entries of their respective ms_sm space maps. 7891 */ 7892 static void 7893 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current) 7894 { 7895 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7896 vdev_t *current_rvd = current->spa_root_vdev; 7897 7898 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE); 7899 7900 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) { 7901 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c]; 7902 vdev_t *current_vd = current_rvd->vdev_child[c]; 7903 7904 space_map_t *checkpoint_sm = NULL; 7905 uint64_t checkpoint_sm_obj; 7906 7907 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7908 /* 7909 * Since we don't allow device removal in a pool 7910 * that has a checkpoint, we expect that all removed 7911 * vdevs were removed from the pool before the 7912 * checkpoint. 7913 */ 7914 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7915 continue; 7916 } 7917 7918 /* 7919 * If the checkpoint space map doesn't exist, then nothing 7920 * here is checkpointed so there's nothing to verify. 7921 */ 7922 if (current_vd->vdev_top_zap == 0 || 7923 zap_contains(spa_meta_objset(current), 7924 current_vd->vdev_top_zap, 7925 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7926 continue; 7927 7928 VERIFY0(zap_lookup(spa_meta_objset(current), 7929 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7930 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7931 7932 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current), 7933 checkpoint_sm_obj, 0, current_vd->vdev_asize, 7934 current_vd->vdev_ashift)); 7935 7936 verify_checkpoint_sm_entry_cb_arg_t vcsec; 7937 vcsec.vcsec_vd = ckpoint_vd; 7938 vcsec.vcsec_entryid = 0; 7939 vcsec.vcsec_num_entries = 7940 space_map_length(checkpoint_sm) / sizeof (uint64_t); 7941 VERIFY0(space_map_iterate(checkpoint_sm, 7942 space_map_length(checkpoint_sm), 7943 verify_checkpoint_sm_entry_cb, &vcsec)); 7944 if (dump_opt['m'] > 3) 7945 dump_spacemap(current->spa_meta_objset, checkpoint_sm); 7946 space_map_close(checkpoint_sm); 7947 } 7948 7949 /* 7950 * If we've added vdevs since we took the checkpoint, ensure 7951 * that their checkpoint space maps are empty. 7952 */ 7953 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) { 7954 for (uint64_t c = ckpoint_rvd->vdev_children; 7955 c < current_rvd->vdev_children; c++) { 7956 vdev_t *current_vd = current_rvd->vdev_child[c]; 7957 VERIFY0P(current_vd->vdev_checkpoint_sm); 7958 } 7959 } 7960 7961 /* for cleaner progress output */ 7962 (void) fprintf(stderr, "\n"); 7963 } 7964 7965 /* 7966 * Verifies that all space that's allocated in the checkpoint is 7967 * still allocated in the current version, by checking that everything 7968 * in checkpoint's ms_allocatable (which is actually allocated, not 7969 * allocatable/free) is not present in current's ms_allocatable. 7970 * 7971 * Note that the function changes the state of the ms_allocatable 7972 * trees of both spas when called. The entries of all ms_allocatable 7973 * trees are cleared out and then repopulated from their respective 7974 * ms_sm space maps. In the checkpointed state we load the allocated 7975 * entries, and in the current state we load the free entries. 7976 */ 7977 static void 7978 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current) 7979 { 7980 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7981 vdev_t *current_rvd = current->spa_root_vdev; 7982 7983 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC); 7984 load_concrete_ms_allocatable_trees(current, SM_FREE); 7985 7986 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) { 7987 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i]; 7988 vdev_t *current_vd = current_rvd->vdev_child[i]; 7989 7990 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7991 /* 7992 * See comment in verify_checkpoint_vdev_spacemaps() 7993 */ 7994 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7995 continue; 7996 } 7997 7998 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) { 7999 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m]; 8000 metaslab_t *current_msp = current_vd->vdev_ms[m]; 8001 8002 (void) fprintf(stderr, 8003 "\rverifying vdev %llu of %llu, " 8004 "metaslab %llu of %llu ...", 8005 (longlong_t)current_vd->vdev_id, 8006 (longlong_t)current_rvd->vdev_children, 8007 (longlong_t)current_vd->vdev_ms[m]->ms_id, 8008 (longlong_t)current_vd->vdev_ms_count); 8009 8010 /* 8011 * We walk through the ms_allocatable trees that 8012 * are loaded with the allocated blocks from the 8013 * ms_sm spacemaps of the checkpoint. For each 8014 * one of these ranges we ensure that none of them 8015 * exists in the ms_allocatable trees of the 8016 * current state which are loaded with the ranges 8017 * that are currently free. 8018 * 8019 * This way we ensure that none of the blocks that 8020 * are part of the checkpoint were freed by mistake. 8021 */ 8022 zfs_range_tree_walk(ckpoint_msp->ms_allocatable, 8023 (zfs_range_tree_func_t *) 8024 zfs_range_tree_verify_not_present, 8025 current_msp->ms_allocatable); 8026 } 8027 } 8028 8029 /* for cleaner progress output */ 8030 (void) fprintf(stderr, "\n"); 8031 } 8032 8033 static void 8034 verify_checkpoint_blocks(spa_t *spa) 8035 { 8036 ASSERT(!dump_opt['L']); 8037 8038 spa_t *checkpoint_spa; 8039 char *checkpoint_pool; 8040 int error = 0; 8041 8042 /* 8043 * We import the checkpointed state of the pool (under a different 8044 * name) so we can do verification on it against the current state 8045 * of the pool. 8046 */ 8047 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, B_TRUE, 8048 NULL); 8049 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0); 8050 8051 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG); 8052 if (error != 0) { 8053 fatal("Tried to open pool \"%s\" but spa_open() failed with " 8054 "error %d\n", checkpoint_pool, error); 8055 } 8056 8057 /* 8058 * Ensure that ranges in the checkpoint space maps of each vdev 8059 * are allocated according to the checkpointed state's metaslab 8060 * space maps. 8061 */ 8062 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa); 8063 8064 /* 8065 * Ensure that allocated ranges in the checkpoint's metaslab 8066 * space maps remain allocated in the metaslab space maps of 8067 * the current state. 8068 */ 8069 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa); 8070 8071 /* 8072 * Once we are done, we get rid of the checkpointed state. 8073 */ 8074 spa_close(checkpoint_spa, FTAG); 8075 free(checkpoint_pool); 8076 } 8077 8078 static void 8079 dump_leftover_checkpoint_blocks(spa_t *spa) 8080 { 8081 vdev_t *rvd = spa->spa_root_vdev; 8082 8083 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 8084 vdev_t *vd = rvd->vdev_child[i]; 8085 8086 space_map_t *checkpoint_sm = NULL; 8087 uint64_t checkpoint_sm_obj; 8088 8089 if (vd->vdev_top_zap == 0) 8090 continue; 8091 8092 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 8093 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 8094 continue; 8095 8096 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 8097 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 8098 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 8099 8100 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 8101 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 8102 dump_spacemap(spa->spa_meta_objset, checkpoint_sm); 8103 space_map_close(checkpoint_sm); 8104 } 8105 } 8106 8107 static int 8108 verify_checkpoint(spa_t *spa) 8109 { 8110 uberblock_t checkpoint; 8111 int error; 8112 8113 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) 8114 return (0); 8115 8116 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 8117 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 8118 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 8119 8120 if (error == ENOENT && !dump_opt['L']) { 8121 /* 8122 * If the feature is active but the uberblock is missing 8123 * then we must be in the middle of discarding the 8124 * checkpoint. 8125 */ 8126 (void) printf("\nPartially discarded checkpoint " 8127 "state found:\n"); 8128 if (dump_opt['m'] > 3) 8129 dump_leftover_checkpoint_blocks(spa); 8130 return (0); 8131 } else if (error != 0) { 8132 (void) printf("lookup error %d when looking for " 8133 "checkpointed uberblock in MOS\n", error); 8134 return (error); 8135 } 8136 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n"); 8137 8138 if (checkpoint.ub_checkpoint_txg == 0) { 8139 (void) printf("\nub_checkpoint_txg not set in checkpointed " 8140 "uberblock\n"); 8141 error = 3; 8142 } 8143 8144 if (error == 0 && !dump_opt['L']) 8145 verify_checkpoint_blocks(spa); 8146 8147 return (error); 8148 } 8149 8150 static void 8151 mos_leaks_cb(void *arg, uint64_t start, uint64_t size) 8152 { 8153 (void) arg; 8154 for (uint64_t i = start; i < size; i++) { 8155 (void) printf("MOS object %llu referenced but not allocated\n", 8156 (u_longlong_t)i); 8157 } 8158 } 8159 8160 static void 8161 mos_obj_refd(uint64_t obj) 8162 { 8163 if (obj != 0 && mos_refd_objs != NULL) 8164 zfs_range_tree_add(mos_refd_objs, obj, 1); 8165 } 8166 8167 /* 8168 * Call on a MOS object that may already have been referenced. 8169 */ 8170 static void 8171 mos_obj_refd_multiple(uint64_t obj) 8172 { 8173 if (obj != 0 && mos_refd_objs != NULL && 8174 !zfs_range_tree_contains(mos_refd_objs, obj, 1)) 8175 zfs_range_tree_add(mos_refd_objs, obj, 1); 8176 } 8177 8178 static void 8179 mos_leak_vdev_top_zap(vdev_t *vd) 8180 { 8181 uint64_t ms_flush_data_obj; 8182 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 8183 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 8184 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj); 8185 if (error == ENOENT) 8186 return; 8187 ASSERT0(error); 8188 8189 mos_obj_refd(ms_flush_data_obj); 8190 } 8191 8192 static void 8193 mos_leak_vdev(vdev_t *vd) 8194 { 8195 mos_obj_refd(vd->vdev_dtl_object); 8196 mos_obj_refd(vd->vdev_ms_array); 8197 mos_obj_refd(vd->vdev_indirect_config.vic_births_object); 8198 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object); 8199 mos_obj_refd(vd->vdev_leaf_zap); 8200 if (vd->vdev_checkpoint_sm != NULL) 8201 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object); 8202 if (vd->vdev_indirect_mapping != NULL) { 8203 mos_obj_refd(vd->vdev_indirect_mapping-> 8204 vim_phys->vimp_counts_object); 8205 } 8206 if (vd->vdev_obsolete_sm != NULL) 8207 mos_obj_refd(vd->vdev_obsolete_sm->sm_object); 8208 8209 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 8210 metaslab_t *ms = vd->vdev_ms[m]; 8211 mos_obj_refd(space_map_object(ms->ms_sm)); 8212 } 8213 8214 if (vd->vdev_root_zap != 0) 8215 mos_obj_refd(vd->vdev_root_zap); 8216 8217 if (vd->vdev_top_zap != 0) { 8218 mos_obj_refd(vd->vdev_top_zap); 8219 mos_leak_vdev_top_zap(vd); 8220 } 8221 8222 for (uint64_t c = 0; c < vd->vdev_children; c++) { 8223 mos_leak_vdev(vd->vdev_child[c]); 8224 } 8225 } 8226 8227 static void 8228 mos_leak_log_spacemaps(spa_t *spa) 8229 { 8230 uint64_t spacemap_zap; 8231 int error = zap_lookup(spa_meta_objset(spa), 8232 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP, 8233 sizeof (spacemap_zap), 1, &spacemap_zap); 8234 if (error == ENOENT) 8235 return; 8236 ASSERT0(error); 8237 8238 mos_obj_refd(spacemap_zap); 8239 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 8240 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) 8241 mos_obj_refd(sls->sls_sm_obj); 8242 } 8243 8244 static void 8245 errorlog_count_refd(objset_t *mos, uint64_t errlog) 8246 { 8247 zap_cursor_t zc; 8248 zap_attribute_t *za = zap_attribute_alloc(); 8249 for (zap_cursor_init(&zc, mos, errlog); 8250 zap_cursor_retrieve(&zc, za) == 0; 8251 zap_cursor_advance(&zc)) { 8252 mos_obj_refd(za->za_first_integer); 8253 } 8254 zap_cursor_fini(&zc); 8255 zap_attribute_free(za); 8256 } 8257 8258 static int 8259 dump_mos_leaks(spa_t *spa) 8260 { 8261 int rv = 0; 8262 objset_t *mos = spa->spa_meta_objset; 8263 dsl_pool_t *dp = spa->spa_dsl_pool; 8264 8265 /* Visit and mark all referenced objects in the MOS */ 8266 8267 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT); 8268 mos_obj_refd(spa->spa_pool_props_object); 8269 mos_obj_refd(spa->spa_config_object); 8270 mos_obj_refd(spa->spa_ddt_stat_object); 8271 mos_obj_refd(spa->spa_feat_desc_obj); 8272 mos_obj_refd(spa->spa_feat_enabled_txg_obj); 8273 mos_obj_refd(spa->spa_feat_for_read_obj); 8274 mos_obj_refd(spa->spa_feat_for_write_obj); 8275 mos_obj_refd(spa->spa_history); 8276 mos_obj_refd(spa->spa_errlog_last); 8277 mos_obj_refd(spa->spa_errlog_scrub); 8278 8279 if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 8280 errorlog_count_refd(mos, spa->spa_errlog_last); 8281 errorlog_count_refd(mos, spa->spa_errlog_scrub); 8282 } 8283 8284 mos_obj_refd(spa->spa_all_vdev_zaps); 8285 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj); 8286 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj); 8287 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj); 8288 bpobj_count_refd(&spa->spa_deferred_bpobj); 8289 mos_obj_refd(dp->dp_empty_bpobj); 8290 bpobj_count_refd(&dp->dp_obsolete_bpobj); 8291 bpobj_count_refd(&dp->dp_free_bpobj); 8292 mos_obj_refd(spa->spa_l2cache.sav_object); 8293 mos_obj_refd(spa->spa_spares.sav_object); 8294 8295 if (spa->spa_syncing_log_sm != NULL) 8296 mos_obj_refd(spa->spa_syncing_log_sm->sm_object); 8297 mos_leak_log_spacemaps(spa); 8298 8299 mos_obj_refd(spa->spa_condensing_indirect_phys. 8300 scip_next_mapping_object); 8301 mos_obj_refd(spa->spa_condensing_indirect_phys. 8302 scip_prev_obsolete_sm_object); 8303 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) { 8304 vdev_indirect_mapping_t *vim = 8305 vdev_indirect_mapping_open(mos, 8306 spa->spa_condensing_indirect_phys.scip_next_mapping_object); 8307 mos_obj_refd(vim->vim_phys->vimp_counts_object); 8308 vdev_indirect_mapping_close(vim); 8309 } 8310 deleted_livelists_dump_mos(spa); 8311 8312 if (dp->dp_origin_snap != NULL) { 8313 dsl_dataset_t *ds; 8314 8315 dsl_pool_config_enter(dp, FTAG); 8316 VERIFY0(dsl_dataset_hold_obj(dp, 8317 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj, 8318 FTAG, &ds)); 8319 count_ds_mos_objects(ds); 8320 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 8321 dsl_dataset_rele(ds, FTAG); 8322 dsl_pool_config_exit(dp, FTAG); 8323 8324 count_ds_mos_objects(dp->dp_origin_snap); 8325 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist"); 8326 } 8327 count_dir_mos_objects(dp->dp_mos_dir); 8328 if (dp->dp_free_dir != NULL) 8329 count_dir_mos_objects(dp->dp_free_dir); 8330 if (dp->dp_leak_dir != NULL) 8331 count_dir_mos_objects(dp->dp_leak_dir); 8332 8333 mos_leak_vdev(spa->spa_root_vdev); 8334 8335 for (uint64_t c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 8336 ddt_t *ddt = spa->spa_ddt[c]; 8337 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED) 8338 continue; 8339 8340 /* DDT store objects */ 8341 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 8342 for (ddt_class_t class = 0; class < DDT_CLASSES; 8343 class++) { 8344 mos_obj_refd(ddt->ddt_object[type][class]); 8345 } 8346 } 8347 8348 /* FDT container */ 8349 if (ddt->ddt_version == DDT_VERSION_FDT) 8350 mos_obj_refd(ddt->ddt_dir_object); 8351 8352 /* FDT log objects */ 8353 if (ddt->ddt_flags & DDT_FLAG_LOG) { 8354 mos_obj_refd(ddt->ddt_log[0].ddl_object); 8355 mos_obj_refd(ddt->ddt_log[1].ddl_object); 8356 } 8357 } 8358 8359 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) { 8360 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid]; 8361 if (brtvd->bv_initiated) { 8362 mos_obj_refd(brtvd->bv_mos_brtvdev); 8363 mos_obj_refd(brtvd->bv_mos_entries); 8364 } 8365 } 8366 8367 /* 8368 * Visit all allocated objects and make sure they are referenced. 8369 */ 8370 uint64_t object = 0; 8371 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) { 8372 if (zfs_range_tree_contains(mos_refd_objs, object, 1)) { 8373 zfs_range_tree_remove(mos_refd_objs, object, 1); 8374 } else { 8375 dmu_object_info_t doi; 8376 const char *name; 8377 VERIFY0(dmu_object_info(mos, object, &doi)); 8378 if (doi.doi_type & DMU_OT_NEWTYPE) { 8379 dmu_object_byteswap_t bswap = 8380 DMU_OT_BYTESWAP(doi.doi_type); 8381 name = dmu_ot_byteswap[bswap].ob_name; 8382 } else { 8383 name = dmu_ot[doi.doi_type].ot_name; 8384 } 8385 8386 (void) printf("MOS object %llu (%s) leaked\n", 8387 (u_longlong_t)object, name); 8388 rv = 2; 8389 } 8390 } 8391 (void) zfs_range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL); 8392 if (!zfs_range_tree_is_empty(mos_refd_objs)) 8393 rv = 2; 8394 zfs_range_tree_vacate(mos_refd_objs, NULL, NULL); 8395 zfs_range_tree_destroy(mos_refd_objs); 8396 return (rv); 8397 } 8398 8399 typedef struct log_sm_obsolete_stats_arg { 8400 uint64_t lsos_current_txg; 8401 8402 uint64_t lsos_total_entries; 8403 uint64_t lsos_valid_entries; 8404 8405 uint64_t lsos_sm_entries; 8406 uint64_t lsos_valid_sm_entries; 8407 } log_sm_obsolete_stats_arg_t; 8408 8409 static int 8410 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme, 8411 uint64_t txg, void *arg) 8412 { 8413 log_sm_obsolete_stats_arg_t *lsos = arg; 8414 8415 uint64_t offset = sme->sme_offset; 8416 uint64_t vdev_id = sme->sme_vdev; 8417 8418 if (lsos->lsos_current_txg == 0) { 8419 /* this is the first log */ 8420 lsos->lsos_current_txg = txg; 8421 } else if (lsos->lsos_current_txg < txg) { 8422 /* we just changed log - print stats and reset */ 8423 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8424 (u_longlong_t)lsos->lsos_valid_sm_entries, 8425 (u_longlong_t)lsos->lsos_sm_entries, 8426 (u_longlong_t)lsos->lsos_current_txg); 8427 lsos->lsos_valid_sm_entries = 0; 8428 lsos->lsos_sm_entries = 0; 8429 lsos->lsos_current_txg = txg; 8430 } 8431 ASSERT3U(lsos->lsos_current_txg, ==, txg); 8432 8433 lsos->lsos_sm_entries++; 8434 lsos->lsos_total_entries++; 8435 8436 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 8437 if (!vdev_is_concrete(vd)) 8438 return (0); 8439 8440 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 8441 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 8442 8443 if (txg < metaslab_unflushed_txg(ms)) 8444 return (0); 8445 lsos->lsos_valid_sm_entries++; 8446 lsos->lsos_valid_entries++; 8447 return (0); 8448 } 8449 8450 static void 8451 dump_log_spacemap_obsolete_stats(spa_t *spa) 8452 { 8453 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 8454 return; 8455 8456 log_sm_obsolete_stats_arg_t lsos = {0}; 8457 8458 (void) printf("Log Space Map Obsolete Entry Statistics:\n"); 8459 8460 iterate_through_spacemap_logs(spa, 8461 log_spacemap_obsolete_stats_cb, &lsos); 8462 8463 /* print stats for latest log */ 8464 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8465 (u_longlong_t)lsos.lsos_valid_sm_entries, 8466 (u_longlong_t)lsos.lsos_sm_entries, 8467 (u_longlong_t)lsos.lsos_current_txg); 8468 8469 (void) printf("%-8llu valid entries out of %-8llu - total\n\n", 8470 (u_longlong_t)lsos.lsos_valid_entries, 8471 (u_longlong_t)lsos.lsos_total_entries); 8472 } 8473 8474 static void 8475 dump_zpool(spa_t *spa) 8476 { 8477 dsl_pool_t *dp = spa_get_dsl(spa); 8478 int rc = 0; 8479 8480 if (dump_opt['y']) { 8481 livelist_metaslab_validate(spa); 8482 } 8483 8484 if (dump_opt['S']) { 8485 dump_simulated_ddt(spa); 8486 return; 8487 } 8488 8489 if (!dump_opt['e'] && dump_opt['C'] > 1) { 8490 (void) printf("\nCached configuration:\n"); 8491 dump_nvlist(spa->spa_config, 8); 8492 } 8493 8494 if (dump_opt['C']) 8495 dump_config(spa); 8496 8497 if (dump_opt['u']) 8498 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); 8499 8500 if (dump_opt['D']) 8501 dump_all_ddts(spa); 8502 8503 if (dump_opt['T']) 8504 dump_brt(spa); 8505 8506 if (dump_opt['d'] > 2 || dump_opt['m']) 8507 dump_metaslabs(spa); 8508 if (dump_opt['M']) 8509 dump_metaslab_groups(spa, dump_opt['M'] > 1); 8510 if (dump_opt['d'] > 2 || dump_opt['m']) { 8511 dump_log_spacemaps(spa); 8512 dump_log_spacemap_obsolete_stats(spa); 8513 } 8514 8515 if (dump_opt['d'] || dump_opt['i']) { 8516 spa_feature_t f; 8517 mos_refd_objs = zfs_range_tree_create_flags( 8518 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, 8519 0, "dump_zpool:mos_refd_objs"); 8520 dump_objset(dp->dp_meta_objset); 8521 8522 if (dump_opt['d'] >= 3) { 8523 dsl_pool_t *dp = spa->spa_dsl_pool; 8524 dump_full_bpobj(&spa->spa_deferred_bpobj, 8525 "Deferred frees", 0); 8526 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 8527 dump_full_bpobj(&dp->dp_free_bpobj, 8528 "Pool snapshot frees", 0); 8529 } 8530 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 8531 ASSERT(spa_feature_is_enabled(spa, 8532 SPA_FEATURE_DEVICE_REMOVAL)); 8533 dump_full_bpobj(&dp->dp_obsolete_bpobj, 8534 "Pool obsolete blocks", 0); 8535 } 8536 8537 if (spa_feature_is_active(spa, 8538 SPA_FEATURE_ASYNC_DESTROY)) { 8539 dump_bptree(spa->spa_meta_objset, 8540 dp->dp_bptree_obj, 8541 "Pool dataset frees"); 8542 } 8543 dump_dtl(spa->spa_root_vdev, 0); 8544 } 8545 8546 for (spa_feature_t f = 0; f < SPA_FEATURES; f++) 8547 global_feature_count[f] = UINT64_MAX; 8548 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0; 8549 global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0; 8550 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0; 8551 global_feature_count[SPA_FEATURE_LIVELIST] = 0; 8552 8553 (void) dmu_objset_find(spa_name(spa), dump_one_objset, 8554 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 8555 8556 if (rc == 0 && !dump_opt['L']) 8557 rc = dump_mos_leaks(spa); 8558 8559 for (f = 0; f < SPA_FEATURES; f++) { 8560 uint64_t refcount; 8561 8562 uint64_t *arr; 8563 if (!(spa_feature_table[f].fi_flags & 8564 ZFEATURE_FLAG_PER_DATASET)) { 8565 if (global_feature_count[f] == UINT64_MAX) 8566 continue; 8567 if (!spa_feature_is_enabled(spa, f)) { 8568 ASSERT0(global_feature_count[f]); 8569 continue; 8570 } 8571 arr = global_feature_count; 8572 } else { 8573 if (!spa_feature_is_enabled(spa, f)) { 8574 ASSERT0(dataset_feature_count[f]); 8575 continue; 8576 } 8577 arr = dataset_feature_count; 8578 } 8579 if (feature_get_refcount(spa, &spa_feature_table[f], 8580 &refcount) == ENOTSUP) 8581 continue; 8582 if (arr[f] != refcount) { 8583 (void) printf("%s feature refcount mismatch: " 8584 "%lld consumers != %lld refcount\n", 8585 spa_feature_table[f].fi_uname, 8586 (longlong_t)arr[f], (longlong_t)refcount); 8587 rc = 2; 8588 } else { 8589 (void) printf("Verified %s feature refcount " 8590 "of %llu is correct\n", 8591 spa_feature_table[f].fi_uname, 8592 (longlong_t)refcount); 8593 } 8594 } 8595 8596 if (rc == 0) 8597 rc = verify_device_removal_feature_counts(spa); 8598 } 8599 8600 if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) 8601 rc = dump_block_stats(spa); 8602 8603 if (rc == 0) 8604 rc = verify_spacemap_refcounts(spa); 8605 8606 if (dump_opt['s']) 8607 show_pool_stats(spa); 8608 8609 if (dump_opt['h']) 8610 dump_history(spa); 8611 8612 if (rc == 0) 8613 rc = verify_checkpoint(spa); 8614 8615 if (rc != 0) { 8616 dump_debug_buffer(); 8617 zdb_exit(rc); 8618 } 8619 } 8620 8621 #define ZDB_FLAG_CHECKSUM 0x0001 8622 #define ZDB_FLAG_DECOMPRESS 0x0002 8623 #define ZDB_FLAG_BSWAP 0x0004 8624 #define ZDB_FLAG_GBH 0x0008 8625 #define ZDB_FLAG_INDIRECT 0x0010 8626 #define ZDB_FLAG_RAW 0x0020 8627 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 8628 #define ZDB_FLAG_VERBOSE 0x0080 8629 8630 static int flagbits[256]; 8631 static char flagbitstr[16]; 8632 8633 static void 8634 zdb_print_blkptr(const blkptr_t *bp, int flags) 8635 { 8636 char blkbuf[BP_SPRINTF_LEN]; 8637 8638 if (flags & ZDB_FLAG_BSWAP) 8639 byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); 8640 8641 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 8642 (void) printf("%s\n", blkbuf); 8643 } 8644 8645 static void 8646 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) 8647 { 8648 int i; 8649 8650 for (i = 0; i < nbps; i++) 8651 zdb_print_blkptr(&bp[i], flags); 8652 } 8653 8654 static void 8655 zdb_dump_gbh(void *buf, uint64_t size, int flags) 8656 { 8657 zdb_dump_indirect((blkptr_t *)buf, gbh_nblkptrs(size), flags); 8658 } 8659 8660 static void 8661 zdb_dump_block_raw(void *buf, uint64_t size, int flags) 8662 { 8663 if (flags & ZDB_FLAG_BSWAP) 8664 byteswap_uint64_array(buf, size); 8665 VERIFY(write(fileno(stdout), buf, size) == size); 8666 } 8667 8668 static void 8669 zdb_dump_block(char *label, void *buf, uint64_t size, int flags) 8670 { 8671 uint64_t *d = (uint64_t *)buf; 8672 unsigned nwords = size / sizeof (uint64_t); 8673 int do_bswap = !!(flags & ZDB_FLAG_BSWAP); 8674 unsigned i, j; 8675 const char *hdr; 8676 char *c; 8677 8678 8679 if (do_bswap) 8680 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; 8681 else 8682 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; 8683 8684 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); 8685 8686 #ifdef _ZFS_LITTLE_ENDIAN 8687 /* correct the endianness */ 8688 do_bswap = !do_bswap; 8689 #endif 8690 for (i = 0; i < nwords; i += 2) { 8691 (void) printf("%06llx: %016llx %016llx ", 8692 (u_longlong_t)(i * sizeof (uint64_t)), 8693 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), 8694 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); 8695 8696 c = (char *)&d[i]; 8697 for (j = 0; j < 2 * sizeof (uint64_t); j++) 8698 (void) printf("%c", isprint(c[j]) ? c[j] : '.'); 8699 (void) printf("\n"); 8700 } 8701 } 8702 8703 /* 8704 * There are two acceptable formats: 8705 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a 8706 * child[.child]* - For example: 0.1.1 8707 * 8708 * The second form can be used to specify arbitrary vdevs anywhere 8709 * in the hierarchy. For example, in a pool with a mirror of 8710 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . 8711 */ 8712 static vdev_t * 8713 zdb_vdev_lookup(vdev_t *vdev, const char *path) 8714 { 8715 char *s, *p, *q; 8716 unsigned i; 8717 8718 if (vdev == NULL) 8719 return (NULL); 8720 8721 /* First, assume the x.x.x.x format */ 8722 i = strtoul(path, &s, 10); 8723 if (s == path || (s && *s != '.' && *s != '\0')) 8724 goto name; 8725 if (i >= vdev->vdev_children) 8726 return (NULL); 8727 8728 vdev = vdev->vdev_child[i]; 8729 if (s && *s == '\0') 8730 return (vdev); 8731 return (zdb_vdev_lookup(vdev, s+1)); 8732 8733 name: 8734 for (i = 0; i < vdev->vdev_children; i++) { 8735 vdev_t *vc = vdev->vdev_child[i]; 8736 8737 if (vc->vdev_path == NULL) { 8738 vc = zdb_vdev_lookup(vc, path); 8739 if (vc == NULL) 8740 continue; 8741 else 8742 return (vc); 8743 } 8744 8745 p = strrchr(vc->vdev_path, '/'); 8746 p = p ? p + 1 : vc->vdev_path; 8747 q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; 8748 8749 if (strcmp(vc->vdev_path, path) == 0) 8750 return (vc); 8751 if (strcmp(p, path) == 0) 8752 return (vc); 8753 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) 8754 return (vc); 8755 } 8756 8757 return (NULL); 8758 } 8759 8760 static int 8761 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr) 8762 { 8763 dsl_dataset_t *ds; 8764 8765 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 8766 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id, 8767 NULL, &ds); 8768 if (error != 0) { 8769 (void) fprintf(stderr, "failed to hold objset %llu: %s\n", 8770 (u_longlong_t)objset_id, strerror(error)); 8771 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8772 return (error); 8773 } 8774 dsl_dataset_name(ds, outstr); 8775 dsl_dataset_rele(ds, NULL); 8776 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8777 return (0); 8778 } 8779 8780 static boolean_t 8781 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize) 8782 { 8783 char *s0, *s1, *tmp = NULL; 8784 8785 if (sizes == NULL) 8786 return (B_FALSE); 8787 8788 s0 = strtok_r(sizes, "/", &tmp); 8789 if (s0 == NULL) 8790 return (B_FALSE); 8791 s1 = strtok_r(NULL, "/", &tmp); 8792 *lsize = strtoull(s0, NULL, 16); 8793 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize; 8794 return (*lsize >= *psize && *psize > 0); 8795 } 8796 8797 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg)) 8798 8799 static boolean_t 8800 try_decompress_block(abd_t *pabd, uint64_t lsize, uint64_t psize, 8801 int flags, int cfunc, void *lbuf, void *lbuf2) 8802 { 8803 if (flags & ZDB_FLAG_VERBOSE) { 8804 (void) fprintf(stderr, 8805 "Trying %05llx -> %05llx (%s)\n", 8806 (u_longlong_t)psize, 8807 (u_longlong_t)lsize, 8808 zio_compress_table[cfunc].ci_name); 8809 } 8810 8811 /* 8812 * We set lbuf to all zeros and lbuf2 to all 8813 * ones, then decompress to both buffers and 8814 * compare their contents. This way we can 8815 * know if decompression filled exactly to 8816 * lsize or if it left some bytes unwritten. 8817 */ 8818 8819 memset(lbuf, 0x00, lsize); 8820 memset(lbuf2, 0xff, lsize); 8821 8822 abd_t labd, labd2; 8823 abd_get_from_buf_struct(&labd, lbuf, lsize); 8824 abd_get_from_buf_struct(&labd2, lbuf2, lsize); 8825 8826 boolean_t ret = B_FALSE; 8827 if (zio_decompress_data(cfunc, pabd, 8828 &labd, psize, lsize, NULL) == 0 && 8829 zio_decompress_data(cfunc, pabd, 8830 &labd2, psize, lsize, NULL) == 0 && 8831 memcmp(lbuf, lbuf2, lsize) == 0) 8832 ret = B_TRUE; 8833 8834 abd_free(&labd2); 8835 abd_free(&labd); 8836 8837 return (ret); 8838 } 8839 8840 static uint64_t 8841 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize, 8842 uint64_t psize, int flags) 8843 { 8844 (void) buf; 8845 uint64_t orig_lsize = lsize; 8846 boolean_t tryzle = ((getenv("ZDB_NO_ZLE") == NULL)); 8847 /* 8848 * We don't know how the data was compressed, so just try 8849 * every decompress function at every inflated blocksize. 8850 */ 8851 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8852 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 }; 8853 int *cfuncp = cfuncs; 8854 uint64_t maxlsize = SPA_MAXBLOCKSIZE; 8855 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) | 8856 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) | 8857 ZIO_COMPRESS_MASK(ZLE); 8858 *cfuncp++ = ZIO_COMPRESS_LZ4; 8859 *cfuncp++ = ZIO_COMPRESS_LZJB; 8860 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB); 8861 /* 8862 * Every gzip level has the same decompressor, no need to 8863 * run it 9 times per bruteforce attempt. 8864 */ 8865 mask |= ZIO_COMPRESS_MASK(GZIP_2) | ZIO_COMPRESS_MASK(GZIP_3); 8866 mask |= ZIO_COMPRESS_MASK(GZIP_4) | ZIO_COMPRESS_MASK(GZIP_5); 8867 mask |= ZIO_COMPRESS_MASK(GZIP_6) | ZIO_COMPRESS_MASK(GZIP_7); 8868 mask |= ZIO_COMPRESS_MASK(GZIP_8) | ZIO_COMPRESS_MASK(GZIP_9); 8869 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) 8870 if (((1ULL << c) & mask) == 0) 8871 *cfuncp++ = c; 8872 8873 /* 8874 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this 8875 * could take a while and we should let the user know 8876 * we are not stuck. On the other hand, printing progress 8877 * info gets old after a while. User can specify 'v' flag 8878 * to see the progression. 8879 */ 8880 if (lsize == psize) 8881 lsize += SPA_MINBLOCKSIZE; 8882 else 8883 maxlsize = lsize; 8884 8885 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) { 8886 for (cfuncp = cfuncs; *cfuncp; cfuncp++) { 8887 if (try_decompress_block(pabd, lsize, psize, flags, 8888 *cfuncp, lbuf, lbuf2)) { 8889 tryzle = B_FALSE; 8890 break; 8891 } 8892 } 8893 if (*cfuncp != 0) 8894 break; 8895 } 8896 if (tryzle) { 8897 for (lsize = orig_lsize; lsize <= maxlsize; 8898 lsize += SPA_MINBLOCKSIZE) { 8899 if (try_decompress_block(pabd, lsize, psize, flags, 8900 ZIO_COMPRESS_ZLE, lbuf, lbuf2)) { 8901 *cfuncp = ZIO_COMPRESS_ZLE; 8902 break; 8903 } 8904 } 8905 } 8906 umem_free(lbuf2, SPA_MAXBLOCKSIZE); 8907 8908 if (*cfuncp == ZIO_COMPRESS_ZLE) { 8909 printf("\nZLE decompression was selected. If you " 8910 "suspect the results are wrong,\ntry avoiding ZLE " 8911 "by setting and exporting ZDB_NO_ZLE=\"true\"\n"); 8912 } 8913 8914 return (lsize > maxlsize ? -1 : lsize); 8915 } 8916 8917 /* 8918 * Read a block from a pool and print it out. The syntax of the 8919 * block descriptor is: 8920 * 8921 * pool:vdev_specifier:offset:[lsize/]psize[:flags] 8922 * 8923 * pool - The name of the pool you wish to read from 8924 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) 8925 * offset - offset, in hex, in bytes 8926 * size - Amount of data to read, in hex, in bytes 8927 * flags - A string of characters specifying options 8928 * b: Decode a blkptr at given offset within block 8929 * c: Calculate and display checksums 8930 * d: Decompress data before dumping 8931 * e: Byteswap data before dumping 8932 * g: Display data as a gang block header 8933 * i: Display as an indirect block 8934 * r: Dump raw data to stdout 8935 * v: Verbose 8936 * 8937 */ 8938 static void 8939 zdb_read_block(char *thing, spa_t *spa) 8940 { 8941 blkptr_t blk, *bp = &blk; 8942 dva_t *dva = bp->blk_dva; 8943 int flags = 0; 8944 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0; 8945 zio_t *zio; 8946 vdev_t *vd; 8947 abd_t *pabd; 8948 void *lbuf, *buf; 8949 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL; 8950 const char *vdev, *errmsg = NULL; 8951 int i, len, error; 8952 boolean_t borrowed = B_FALSE, found = B_FALSE; 8953 8954 dup = strdup(thing); 8955 s = strtok_r(dup, ":", &tmp); 8956 vdev = s ?: ""; 8957 s = strtok_r(NULL, ":", &tmp); 8958 offset = strtoull(s ? s : "", NULL, 16); 8959 sizes = strtok_r(NULL, ":", &tmp); 8960 s = strtok_r(NULL, ":", &tmp); 8961 flagstr = strdup(s ?: ""); 8962 8963 if (!zdb_parse_block_sizes(sizes, &lsize, &psize)) 8964 errmsg = "invalid size(s)"; 8965 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE)) 8966 errmsg = "size must be a multiple of sector size"; 8967 if (!IS_P2ALIGNED(offset, DEV_BSIZE)) 8968 errmsg = "offset must be a multiple of sector size"; 8969 if (errmsg) { 8970 (void) printf("Invalid block specifier: %s - %s\n", 8971 thing, errmsg); 8972 goto done; 8973 } 8974 8975 tmp = NULL; 8976 for (s = strtok_r(flagstr, ":", &tmp); 8977 s != NULL; 8978 s = strtok_r(NULL, ":", &tmp)) { 8979 len = strlen(flagstr); 8980 for (i = 0; i < len; i++) { 8981 int bit = flagbits[(uchar_t)flagstr[i]]; 8982 8983 if (bit == 0) { 8984 (void) printf("***Ignoring flag: %c\n", 8985 (uchar_t)flagstr[i]); 8986 continue; 8987 } 8988 found = B_TRUE; 8989 flags |= bit; 8990 8991 p = &flagstr[i + 1]; 8992 if (*p != ':' && *p != '\0') { 8993 int j = 0, nextbit = flagbits[(uchar_t)*p]; 8994 char *end, offstr[8] = { 0 }; 8995 if ((bit == ZDB_FLAG_PRINT_BLKPTR) && 8996 (nextbit == 0)) { 8997 /* look ahead to isolate the offset */ 8998 while (nextbit == 0 && 8999 strchr(flagbitstr, *p) == NULL) { 9000 offstr[j] = *p; 9001 j++; 9002 if (i + j > strlen(flagstr)) 9003 break; 9004 p++; 9005 nextbit = flagbits[(uchar_t)*p]; 9006 } 9007 blkptr_offset = strtoull(offstr, &end, 9008 16); 9009 i += j; 9010 } else if (nextbit == 0) { 9011 (void) printf("***Ignoring flag arg:" 9012 " '%c'\n", (uchar_t)*p); 9013 } 9014 } 9015 } 9016 } 9017 if (blkptr_offset % sizeof (blkptr_t)) { 9018 printf("Block pointer offset 0x%llx " 9019 "must be divisible by 0x%x\n", 9020 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t)); 9021 goto done; 9022 } 9023 if (found == B_FALSE && strlen(flagstr) > 0) { 9024 printf("Invalid flag arg: '%s'\n", flagstr); 9025 goto done; 9026 } 9027 9028 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); 9029 if (vd == NULL) { 9030 (void) printf("***Invalid vdev: %s\n", vdev); 9031 goto done; 9032 } else { 9033 if (vd->vdev_path) 9034 (void) fprintf(stderr, "Found vdev: %s\n", 9035 vd->vdev_path); 9036 else 9037 (void) fprintf(stderr, "Found vdev type: %s\n", 9038 vd->vdev_ops->vdev_op_type); 9039 } 9040 9041 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 9042 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 9043 9044 BP_ZERO(bp); 9045 9046 DVA_SET_VDEV(&dva[0], vd->vdev_id); 9047 DVA_SET_OFFSET(&dva[0], offset); 9048 DVA_SET_GANG(&dva[0], 0); 9049 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); 9050 9051 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); 9052 9053 BP_SET_LSIZE(bp, lsize); 9054 BP_SET_PSIZE(bp, psize); 9055 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 9056 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); 9057 BP_SET_TYPE(bp, DMU_OT_NONE); 9058 BP_SET_LEVEL(bp, 0); 9059 BP_SET_DEDUP(bp, 0); 9060 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 9061 9062 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9063 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 9064 9065 if (vd == vd->vdev_top) { 9066 /* 9067 * Treat this as a normal block read. 9068 */ 9069 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL, 9070 ZIO_PRIORITY_SYNC_READ, 9071 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); 9072 } else { 9073 /* 9074 * Treat this as a vdev child I/O. 9075 */ 9076 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd, 9077 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, 9078 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 9079 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL, 9080 NULL, NULL)); 9081 } 9082 9083 error = zio_wait(zio); 9084 spa_config_exit(spa, SCL_STATE, FTAG); 9085 9086 if (error) { 9087 (void) printf("Read of %s failed, error: %d\n", thing, error); 9088 goto out; 9089 } 9090 9091 uint64_t orig_lsize = lsize; 9092 buf = lbuf; 9093 if (flags & ZDB_FLAG_DECOMPRESS) { 9094 lsize = zdb_decompress_block(pabd, buf, lbuf, 9095 lsize, psize, flags); 9096 if (lsize == -1) { 9097 (void) printf("Decompress of %s failed\n", thing); 9098 goto out; 9099 } 9100 } else { 9101 buf = abd_borrow_buf_copy(pabd, lsize); 9102 borrowed = B_TRUE; 9103 } 9104 /* 9105 * Try to detect invalid block pointer. If invalid, try 9106 * decompressing. 9107 */ 9108 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) && 9109 !(flags & ZDB_FLAG_DECOMPRESS)) { 9110 const blkptr_t *b = (const blkptr_t *)(void *) 9111 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 9112 if (zfs_blkptr_verify(spa, b, 9113 BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY)) { 9114 abd_return_buf_copy(pabd, buf, lsize); 9115 borrowed = B_FALSE; 9116 buf = lbuf; 9117 lsize = zdb_decompress_block(pabd, buf, 9118 lbuf, lsize, psize, flags); 9119 b = (const blkptr_t *)(void *) 9120 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 9121 if (lsize == -1 || zfs_blkptr_verify(spa, b, 9122 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) { 9123 printf("invalid block pointer at this DVA\n"); 9124 goto out; 9125 } 9126 } 9127 } 9128 9129 if (flags & ZDB_FLAG_PRINT_BLKPTR) 9130 zdb_print_blkptr((blkptr_t *)(void *) 9131 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); 9132 else if (flags & ZDB_FLAG_RAW) 9133 zdb_dump_block_raw(buf, lsize, flags); 9134 else if (flags & ZDB_FLAG_INDIRECT) 9135 zdb_dump_indirect((blkptr_t *)buf, 9136 orig_lsize / sizeof (blkptr_t), flags); 9137 else if (flags & ZDB_FLAG_GBH) 9138 zdb_dump_gbh(buf, lsize, flags); 9139 else 9140 zdb_dump_block(thing, buf, lsize, flags); 9141 9142 /* 9143 * If :c was specified, iterate through the checksum table to 9144 * calculate and display each checksum for our specified 9145 * DVA and length. 9146 */ 9147 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) && 9148 !(flags & ZDB_FLAG_GBH)) { 9149 zio_t *czio; 9150 (void) printf("\n"); 9151 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL; 9152 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) { 9153 9154 if ((zio_checksum_table[ck].ci_flags & 9155 ZCHECKSUM_FLAG_EMBEDDED) || 9156 ck == ZIO_CHECKSUM_NOPARITY) { 9157 continue; 9158 } 9159 BP_SET_CHECKSUM(bp, ck); 9160 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9161 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 9162 if (vd == vd->vdev_top) { 9163 zio_nowait(zio_read(czio, spa, bp, pabd, psize, 9164 NULL, NULL, 9165 ZIO_PRIORITY_SYNC_READ, 9166 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 9167 ZIO_FLAG_DONT_RETRY, NULL)); 9168 } else { 9169 zio_nowait(zio_vdev_child_io(czio, bp, vd, 9170 offset, pabd, psize, ZIO_TYPE_READ, 9171 ZIO_PRIORITY_SYNC_READ, 9172 ZIO_FLAG_DONT_PROPAGATE | 9173 ZIO_FLAG_DONT_RETRY | 9174 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 9175 ZIO_FLAG_SPECULATIVE | 9176 ZIO_FLAG_OPTIONAL, NULL, NULL)); 9177 } 9178 error = zio_wait(czio); 9179 if (error == 0 || error == ECKSUM) { 9180 zio_t *ck_zio = zio_null(NULL, spa, NULL, 9181 NULL, NULL, 0); 9182 ck_zio->io_offset = 9183 DVA_GET_OFFSET(&bp->blk_dva[0]); 9184 ck_zio->io_bp = bp; 9185 zio_checksum_compute(ck_zio, ck, pabd, psize); 9186 printf( 9187 "%12s\t" 9188 "cksum=%016llx:%016llx:%016llx:%016llx\n", 9189 zio_checksum_table[ck].ci_name, 9190 (u_longlong_t)bp->blk_cksum.zc_word[0], 9191 (u_longlong_t)bp->blk_cksum.zc_word[1], 9192 (u_longlong_t)bp->blk_cksum.zc_word[2], 9193 (u_longlong_t)bp->blk_cksum.zc_word[3]); 9194 zio_wait(ck_zio); 9195 } else { 9196 printf("error %d reading block\n", error); 9197 } 9198 spa_config_exit(spa, SCL_STATE, FTAG); 9199 } 9200 } 9201 9202 if (borrowed) 9203 abd_return_buf_copy(pabd, buf, lsize); 9204 9205 out: 9206 abd_free(pabd); 9207 umem_free(lbuf, SPA_MAXBLOCKSIZE); 9208 done: 9209 free(flagstr); 9210 free(dup); 9211 } 9212 9213 static void 9214 zdb_embedded_block(char *thing) 9215 { 9216 blkptr_t bp = {{{{0}}}}; 9217 unsigned long long *words = (void *)&bp; 9218 char *buf; 9219 int err; 9220 9221 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:" 9222 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx", 9223 words + 0, words + 1, words + 2, words + 3, 9224 words + 4, words + 5, words + 6, words + 7, 9225 words + 8, words + 9, words + 10, words + 11, 9226 words + 12, words + 13, words + 14, words + 15); 9227 if (err != 16) { 9228 (void) fprintf(stderr, "invalid input format\n"); 9229 zdb_exit(1); 9230 } 9231 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE); 9232 buf = malloc(SPA_MAXBLOCKSIZE); 9233 if (buf == NULL) { 9234 (void) fprintf(stderr, "out of memory\n"); 9235 zdb_exit(1); 9236 } 9237 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp)); 9238 if (err != 0) { 9239 (void) fprintf(stderr, "decode failed: %u\n", err); 9240 zdb_exit(1); 9241 } 9242 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0); 9243 free(buf); 9244 } 9245 9246 /* check for valid hex or decimal numeric string */ 9247 static boolean_t 9248 zdb_numeric(char *str) 9249 { 9250 int i = 0, len; 9251 9252 len = strlen(str); 9253 if (len == 0) 9254 return (B_FALSE); 9255 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0) 9256 i = 2; 9257 for (; i < len; i++) { 9258 if (!isxdigit(str[i])) 9259 return (B_FALSE); 9260 } 9261 return (B_TRUE); 9262 } 9263 9264 static int 9265 dummy_get_file_info(dmu_object_type_t bonustype, const void *data, 9266 zfs_file_info_t *zoi) 9267 { 9268 (void) data, (void) zoi; 9269 9270 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 9271 return (ENOENT); 9272 9273 (void) fprintf(stderr, "dummy_get_file_info: not implemented"); 9274 abort(); 9275 } 9276 9277 int 9278 main(int argc, char **argv) 9279 { 9280 int c; 9281 int dump_all = 1; 9282 int verbose = 0; 9283 int error = 0; 9284 char **searchdirs = NULL; 9285 int nsearch = 0; 9286 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN]; 9287 nvlist_t *policy = NULL; 9288 uint64_t max_txg = UINT64_MAX; 9289 int64_t objset_id = -1; 9290 uint64_t object; 9291 int flags = ZFS_IMPORT_MISSING_LOG; 9292 int rewind = ZPOOL_NEVER_REWIND; 9293 char *spa_config_path_env, *objset_str; 9294 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE; 9295 nvlist_t *cfg = NULL; 9296 struct sigaction action; 9297 boolean_t force_import = B_FALSE; 9298 boolean_t config_path_console = B_FALSE; 9299 char pbuf[MAXPATHLEN]; 9300 9301 dprintf_setup(&argc, argv); 9302 9303 /* 9304 * Set up signal handlers, so if we crash due to bad on-disk data we 9305 * can get more info. Unlike ztest, we don't bail out if we can't set 9306 * up signal handlers, because zdb is very useful without them. 9307 */ 9308 action.sa_handler = sig_handler; 9309 sigemptyset(&action.sa_mask); 9310 action.sa_flags = 0; 9311 if (sigaction(SIGSEGV, &action, NULL) < 0) { 9312 (void) fprintf(stderr, "zdb: cannot catch SIGSEGV: %s\n", 9313 strerror(errno)); 9314 } 9315 if (sigaction(SIGABRT, &action, NULL) < 0) { 9316 (void) fprintf(stderr, "zdb: cannot catch SIGABRT: %s\n", 9317 strerror(errno)); 9318 } 9319 9320 /* 9321 * If there is an environment variable SPA_CONFIG_PATH it overrides 9322 * default spa_config_path setting. If -U flag is specified it will 9323 * override this environment variable settings once again. 9324 */ 9325 spa_config_path_env = getenv("SPA_CONFIG_PATH"); 9326 if (spa_config_path_env != NULL) 9327 spa_config_path = spa_config_path_env; 9328 9329 /* 9330 * For performance reasons, we set this tunable down. We do so before 9331 * the arg parsing section so that the user can override this value if 9332 * they choose. 9333 */ 9334 zfs_btree_verify_intensity = 3; 9335 9336 struct option long_options[] = { 9337 {"ignore-assertions", no_argument, NULL, 'A'}, 9338 {"block-stats", no_argument, NULL, 'b'}, 9339 {"backup", no_argument, NULL, 'B'}, 9340 {"checksum", no_argument, NULL, 'c'}, 9341 {"config", no_argument, NULL, 'C'}, 9342 {"datasets", no_argument, NULL, 'd'}, 9343 {"dedup-stats", no_argument, NULL, 'D'}, 9344 {"exported", no_argument, NULL, 'e'}, 9345 {"embedded-block-pointer", no_argument, NULL, 'E'}, 9346 {"automatic-rewind", no_argument, NULL, 'F'}, 9347 {"dump-debug-msg", no_argument, NULL, 'G'}, 9348 {"history", no_argument, NULL, 'h'}, 9349 {"intent-logs", no_argument, NULL, 'i'}, 9350 {"inflight", required_argument, NULL, 'I'}, 9351 {"checkpointed-state", no_argument, NULL, 'k'}, 9352 {"key", required_argument, NULL, 'K'}, 9353 {"label", no_argument, NULL, 'l'}, 9354 {"disable-leak-tracking", no_argument, NULL, 'L'}, 9355 {"metaslabs", no_argument, NULL, 'm'}, 9356 {"metaslab-groups", no_argument, NULL, 'M'}, 9357 {"numeric", no_argument, NULL, 'N'}, 9358 {"option", required_argument, NULL, 'o'}, 9359 {"object-lookups", no_argument, NULL, 'O'}, 9360 {"path", required_argument, NULL, 'p'}, 9361 {"parseable", no_argument, NULL, 'P'}, 9362 {"skip-label", no_argument, NULL, 'q'}, 9363 {"copy-object", no_argument, NULL, 'r'}, 9364 {"read-block", no_argument, NULL, 'R'}, 9365 {"io-stats", no_argument, NULL, 's'}, 9366 {"simulate-dedup", no_argument, NULL, 'S'}, 9367 {"txg", required_argument, NULL, 't'}, 9368 {"brt-stats", no_argument, NULL, 'T'}, 9369 {"uberblock", no_argument, NULL, 'u'}, 9370 {"cachefile", required_argument, NULL, 'U'}, 9371 {"verbose", no_argument, NULL, 'v'}, 9372 {"verbatim", no_argument, NULL, 'V'}, 9373 {"dump-blocks", required_argument, NULL, 'x'}, 9374 {"extreme-rewind", no_argument, NULL, 'X'}, 9375 {"all-reconstruction", no_argument, NULL, 'Y'}, 9376 {"livelist", no_argument, NULL, 'y'}, 9377 {"zstd-headers", no_argument, NULL, 'Z'}, 9378 {0, 0, 0, 0} 9379 }; 9380 9381 while ((c = getopt_long(argc, argv, 9382 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ", 9383 long_options, NULL)) != -1) { 9384 switch (c) { 9385 case 'b': 9386 case 'B': 9387 case 'c': 9388 case 'C': 9389 case 'd': 9390 case 'D': 9391 case 'E': 9392 case 'G': 9393 case 'h': 9394 case 'i': 9395 case 'l': 9396 case 'm': 9397 case 'M': 9398 case 'N': 9399 case 'O': 9400 case 'r': 9401 case 'R': 9402 case 's': 9403 case 'S': 9404 case 'T': 9405 case 'u': 9406 case 'y': 9407 case 'Z': 9408 dump_opt[c]++; 9409 dump_all = 0; 9410 break; 9411 case 'A': 9412 case 'e': 9413 case 'F': 9414 case 'k': 9415 case 'L': 9416 case 'P': 9417 case 'q': 9418 case 'X': 9419 dump_opt[c]++; 9420 break; 9421 case 'Y': 9422 zfs_reconstruct_indirect_combinations_max = INT_MAX; 9423 zfs_deadman_enabled = 0; 9424 break; 9425 /* NB: Sort single match options below. */ 9426 case 'I': 9427 max_inflight_bytes = strtoull(optarg, NULL, 0); 9428 if (max_inflight_bytes == 0) { 9429 (void) fprintf(stderr, "maximum number " 9430 "of inflight bytes must be greater " 9431 "than 0\n"); 9432 usage(); 9433 } 9434 break; 9435 case 'K': 9436 dump_opt[c]++; 9437 key_material = strdup(optarg); 9438 /* redact key material in process table */ 9439 while (*optarg != '\0') { *optarg++ = '*'; } 9440 break; 9441 case 'o': 9442 dump_opt[c]++; 9443 dump_all = 0; 9444 error = handle_tunable_option(optarg, B_FALSE); 9445 if (error != 0) 9446 zdb_exit(1); 9447 break; 9448 case 'p': 9449 if (searchdirs == NULL) { 9450 searchdirs = umem_alloc(sizeof (char *), 9451 UMEM_NOFAIL); 9452 } else { 9453 char **tmp = umem_alloc((nsearch + 1) * 9454 sizeof (char *), UMEM_NOFAIL); 9455 memcpy(tmp, searchdirs, nsearch * 9456 sizeof (char *)); 9457 umem_free(searchdirs, 9458 nsearch * sizeof (char *)); 9459 searchdirs = tmp; 9460 } 9461 searchdirs[nsearch++] = optarg; 9462 break; 9463 case 't': 9464 max_txg = strtoull(optarg, NULL, 0); 9465 if (max_txg < TXG_INITIAL) { 9466 (void) fprintf(stderr, "incorrect txg " 9467 "specified: %s\n", optarg); 9468 usage(); 9469 } 9470 break; 9471 case 'U': 9472 config_path_console = B_TRUE; 9473 spa_config_path = optarg; 9474 if (spa_config_path[0] != '/') { 9475 (void) fprintf(stderr, 9476 "cachefile must be an absolute path " 9477 "(i.e. start with a slash)\n"); 9478 usage(); 9479 } 9480 break; 9481 case 'v': 9482 verbose++; 9483 break; 9484 case 'V': 9485 flags = ZFS_IMPORT_VERBATIM; 9486 break; 9487 case 'x': 9488 vn_dumpdir = optarg; 9489 break; 9490 default: 9491 usage(); 9492 break; 9493 } 9494 } 9495 9496 if (!dump_opt['e'] && searchdirs != NULL) { 9497 (void) fprintf(stderr, "-p option requires use of -e\n"); 9498 usage(); 9499 } 9500 #if defined(_LP64) 9501 /* 9502 * ZDB does not typically re-read blocks; therefore limit the ARC 9503 * to 256 MB, which can be used entirely for metadata. 9504 */ 9505 zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT; 9506 zfs_arc_max = 256 * 1024 * 1024; 9507 #endif 9508 9509 /* 9510 * "zdb -c" uses checksum-verifying scrub i/os which are async reads. 9511 * "zdb -b" uses traversal prefetch which uses async reads. 9512 * For good performance, let several of them be active at once. 9513 */ 9514 zfs_vdev_async_read_max_active = 10; 9515 9516 /* 9517 * Disable reference tracking for better performance. 9518 */ 9519 reference_tracking_enable = B_FALSE; 9520 9521 /* 9522 * Do not fail spa_load when spa_load_verify fails. This is needed 9523 * to load non-idle pools. 9524 */ 9525 spa_load_verify_dryrun = B_TRUE; 9526 9527 /* 9528 * ZDB should have ability to read spacemaps. 9529 */ 9530 spa_mode_readable_spacemaps = B_TRUE; 9531 9532 if (dump_all) 9533 verbose = MAX(verbose, 1); 9534 9535 for (c = 0; c < 256; c++) { 9536 if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL) 9537 dump_opt[c] = 1; 9538 if (dump_opt[c]) 9539 dump_opt[c] += verbose; 9540 } 9541 9542 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2)); 9543 zfs_recover = (dump_opt['A'] > 1); 9544 9545 argc -= optind; 9546 argv += optind; 9547 if (argc < 2 && dump_opt['R']) 9548 usage(); 9549 9550 target = argv[0]; 9551 9552 /* 9553 * Automate cachefile 9554 */ 9555 if (!spa_config_path_env && !config_path_console && target && 9556 libzfs_core_init() == 0) { 9557 char *pname = strdup(target); 9558 const char *value; 9559 nvlist_t *pnvl = NULL; 9560 nvlist_t *vnvl = NULL; 9561 9562 if (strpbrk(pname, "/@") != NULL) 9563 *strpbrk(pname, "/@") = '\0'; 9564 9565 if (pname && lzc_get_props(pname, &pnvl) == 0) { 9566 if (nvlist_lookup_nvlist(pnvl, "cachefile", 9567 &vnvl) == 0) { 9568 value = fnvlist_lookup_string(vnvl, 9569 ZPROP_VALUE); 9570 } else { 9571 value = "-"; 9572 } 9573 strlcpy(pbuf, value, sizeof (pbuf)); 9574 if (pbuf[0] != '\0') { 9575 if (pbuf[0] == '/') { 9576 if (access(pbuf, F_OK) == 0) 9577 spa_config_path = pbuf; 9578 else 9579 force_import = B_TRUE; 9580 } else if ((strcmp(pbuf, "-") == 0 && 9581 access(ZPOOL_CACHE, F_OK) != 0) || 9582 strcmp(pbuf, "none") == 0) { 9583 force_import = B_TRUE; 9584 } 9585 } 9586 nvlist_free(vnvl); 9587 } 9588 9589 free(pname); 9590 nvlist_free(pnvl); 9591 libzfs_core_fini(); 9592 } 9593 9594 dmu_objset_register_type(DMU_OST_ZFS, dummy_get_file_info); 9595 kernel_init(SPA_MODE_READ); 9596 kernel_init_done = B_TRUE; 9597 9598 if (dump_opt['E']) { 9599 if (argc != 1) 9600 usage(); 9601 zdb_embedded_block(argv[0]); 9602 error = 0; 9603 goto fini; 9604 } 9605 9606 if (argc < 1) { 9607 if (!dump_opt['e'] && dump_opt['C']) { 9608 dump_cachefile(spa_config_path); 9609 error = 0; 9610 goto fini; 9611 } 9612 if (dump_opt['o']) 9613 /* 9614 * Avoid blasting tunable options off the top of the 9615 * screen. 9616 */ 9617 zdb_exit(1); 9618 usage(); 9619 } 9620 9621 if (dump_opt['l']) { 9622 error = dump_label(argv[0]); 9623 goto fini; 9624 } 9625 9626 if (dump_opt['X'] || dump_opt['F']) 9627 rewind = ZPOOL_DO_REWIND | 9628 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); 9629 9630 /* -N implies -d */ 9631 if (dump_opt['N'] && dump_opt['d'] == 0) 9632 dump_opt['d'] = dump_opt['N']; 9633 9634 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || 9635 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 || 9636 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0) 9637 fatal("internal error: %s", strerror(ENOMEM)); 9638 9639 error = 0; 9640 9641 if (strpbrk(target, "/@") != NULL) { 9642 size_t targetlen; 9643 9644 target_pool = strdup(target); 9645 *strpbrk(target_pool, "/@") = '\0'; 9646 9647 target_is_spa = B_FALSE; 9648 targetlen = strlen(target); 9649 if (targetlen && target[targetlen - 1] == '/') 9650 target[targetlen - 1] = '\0'; 9651 9652 /* 9653 * See if an objset ID was supplied (-d <pool>/<objset ID>). 9654 * To disambiguate tank/100, consider the 100 as objsetID 9655 * if -N was given, otherwise 100 is an objsetID iff 9656 * tank/100 as a named dataset fails on lookup. 9657 */ 9658 objset_str = strchr(target, '/'); 9659 if (objset_str && strlen(objset_str) > 1 && 9660 zdb_numeric(objset_str + 1)) { 9661 char *endptr; 9662 errno = 0; 9663 objset_str++; 9664 objset_id = strtoull(objset_str, &endptr, 0); 9665 /* dataset 0 is the same as opening the pool */ 9666 if (errno == 0 && endptr != objset_str && 9667 objset_id != 0) { 9668 if (dump_opt['N']) 9669 dataset_lookup = B_TRUE; 9670 } 9671 /* normal dataset name not an objset ID */ 9672 if (endptr == objset_str) { 9673 objset_id = -1; 9674 } 9675 } else if (objset_str && !zdb_numeric(objset_str + 1) && 9676 dump_opt['N']) { 9677 printf("Supply a numeric objset ID with -N\n"); 9678 error = 2; 9679 goto fini; 9680 } 9681 } else { 9682 target_pool = target; 9683 } 9684 9685 if (dump_opt['e'] || force_import) { 9686 importargs_t args = { 0 }; 9687 9688 /* 9689 * If path is not provided, search in /dev 9690 */ 9691 if (searchdirs == NULL) { 9692 searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL); 9693 searchdirs[nsearch++] = (char *)ZFS_DEVDIR; 9694 } 9695 9696 args.paths = nsearch; 9697 args.path = searchdirs; 9698 args.can_be_active = B_TRUE; 9699 9700 libpc_handle_t lpch = { 9701 .lpc_lib_handle = NULL, 9702 .lpc_ops = &libzpool_config_ops, 9703 .lpc_printerr = B_TRUE 9704 }; 9705 error = zpool_find_config(&lpch, target_pool, &cfg, &args); 9706 9707 if (error == 0) { 9708 9709 if (nvlist_add_nvlist(cfg, 9710 ZPOOL_LOAD_POLICY, policy) != 0) { 9711 fatal("can't open '%s': %s", 9712 target, strerror(ENOMEM)); 9713 } 9714 9715 if (dump_opt['C'] > 1) { 9716 (void) printf("\nConfiguration for import:\n"); 9717 dump_nvlist(cfg, 8); 9718 } 9719 9720 /* 9721 * Disable the activity check to allow examination of 9722 * active pools. 9723 */ 9724 error = spa_import(target_pool, cfg, NULL, 9725 flags | ZFS_IMPORT_SKIP_MMP); 9726 } 9727 } 9728 9729 if (searchdirs != NULL) { 9730 umem_free(searchdirs, nsearch * sizeof (char *)); 9731 searchdirs = NULL; 9732 } 9733 9734 /* 9735 * We need to make sure to process -O option or call 9736 * dump_path after the -e option has been processed, 9737 * which imports the pool to the namespace if it's 9738 * not in the cachefile. 9739 */ 9740 if (dump_opt['O']) { 9741 if (argc != 2) 9742 usage(); 9743 dump_opt['v'] = verbose + 3; 9744 error = dump_path(argv[0], argv[1], NULL); 9745 goto fini; 9746 } 9747 9748 if (dump_opt['r']) { 9749 target_is_spa = B_FALSE; 9750 if (argc != 3) 9751 usage(); 9752 dump_opt['v'] = verbose; 9753 error = dump_path(argv[0], argv[1], &object); 9754 if (error != 0) 9755 fatal("internal error: %s", strerror(error)); 9756 } 9757 9758 /* 9759 * import_checkpointed_state makes the assumption that the 9760 * target pool that we pass it is already part of the spa 9761 * namespace. Because of that we need to make sure to call 9762 * it always after the -e option has been processed, which 9763 * imports the pool to the namespace if it's not in the 9764 * cachefile. 9765 */ 9766 char *checkpoint_pool = NULL; 9767 char *checkpoint_target = NULL; 9768 if (dump_opt['k']) { 9769 checkpoint_pool = import_checkpointed_state(target, cfg, 9770 target_is_spa, &checkpoint_target); 9771 9772 if (checkpoint_target != NULL) 9773 target = checkpoint_target; 9774 } 9775 9776 if (cfg != NULL) { 9777 nvlist_free(cfg); 9778 cfg = NULL; 9779 } 9780 9781 if (target_pool != target) 9782 free(target_pool); 9783 9784 if (error == 0) { 9785 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) { 9786 ASSERT(checkpoint_pool != NULL); 9787 ASSERT0P(checkpoint_target); 9788 9789 error = spa_open(checkpoint_pool, &spa, FTAG); 9790 if (error != 0) { 9791 fatal("Tried to open pool \"%s\" but " 9792 "spa_open() failed with error %d\n", 9793 checkpoint_pool, error); 9794 } 9795 9796 } else if (target_is_spa || dump_opt['R'] || dump_opt['B'] || 9797 objset_id == 0) { 9798 zdb_set_skip_mmp(target); 9799 error = spa_open_rewind(target, &spa, FTAG, policy, 9800 NULL); 9801 if (error) { 9802 /* 9803 * If we're missing the log device then 9804 * try opening the pool after clearing the 9805 * log state. 9806 */ 9807 mutex_enter(&spa_namespace_lock); 9808 if ((spa = spa_lookup(target)) != NULL && 9809 spa->spa_log_state == SPA_LOG_MISSING) { 9810 spa->spa_log_state = SPA_LOG_CLEAR; 9811 error = 0; 9812 } 9813 mutex_exit(&spa_namespace_lock); 9814 9815 if (!error) { 9816 error = spa_open_rewind(target, &spa, 9817 FTAG, policy, NULL); 9818 } 9819 } 9820 } else if (strpbrk(target, "#") != NULL) { 9821 dsl_pool_t *dp; 9822 error = dsl_pool_hold(target, FTAG, &dp); 9823 if (error != 0) { 9824 fatal("can't dump '%s': %s", target, 9825 strerror(error)); 9826 } 9827 error = dump_bookmark(dp, target, B_TRUE, verbose > 1); 9828 dsl_pool_rele(dp, FTAG); 9829 if (error != 0) { 9830 fatal("can't dump '%s': %s", target, 9831 strerror(error)); 9832 } 9833 goto fini; 9834 } else { 9835 target_pool = strdup(target); 9836 if (strpbrk(target, "/@") != NULL) 9837 *strpbrk(target_pool, "/@") = '\0'; 9838 9839 zdb_set_skip_mmp(target); 9840 /* 9841 * If -N was supplied, the user has indicated that 9842 * zdb -d <pool>/<objsetID> is in effect. Otherwise 9843 * we first assume that the dataset string is the 9844 * dataset name. If dmu_objset_hold fails with the 9845 * dataset string, and we have an objset_id, retry the 9846 * lookup with the objsetID. 9847 */ 9848 boolean_t retry = B_TRUE; 9849 retry_lookup: 9850 if (dataset_lookup == B_TRUE) { 9851 /* 9852 * Use the supplied id to get the name 9853 * for open_objset. 9854 */ 9855 error = spa_open(target_pool, &spa, FTAG); 9856 if (error == 0) { 9857 error = name_from_objset_id(spa, 9858 objset_id, dsname); 9859 spa_close(spa, FTAG); 9860 if (error == 0) 9861 target = dsname; 9862 } 9863 } 9864 if (error == 0) { 9865 if (objset_id > 0 && retry) { 9866 int err = dmu_objset_hold(target, FTAG, 9867 &os); 9868 if (err) { 9869 dataset_lookup = B_TRUE; 9870 retry = B_FALSE; 9871 goto retry_lookup; 9872 } else { 9873 dmu_objset_rele(os, FTAG); 9874 } 9875 } 9876 error = open_objset(target, FTAG, &os); 9877 } 9878 if (error == 0) 9879 spa = dmu_objset_spa(os); 9880 free(target_pool); 9881 } 9882 } 9883 nvlist_free(policy); 9884 9885 if (error) 9886 fatal("can't open '%s': %s", target, strerror(error)); 9887 9888 /* 9889 * Set the pool failure mode to panic in order to prevent the pool 9890 * from suspending. A suspended I/O will have no way to resume and 9891 * can prevent the zdb(8) command from terminating as expected. 9892 */ 9893 if (spa != NULL) 9894 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 9895 9896 argv++; 9897 argc--; 9898 if (dump_opt['r']) { 9899 error = zdb_copy_object(os, object, argv[1]); 9900 } else if (!dump_opt['R']) { 9901 flagbits['d'] = ZOR_FLAG_DIRECTORY; 9902 flagbits['f'] = ZOR_FLAG_PLAIN_FILE; 9903 flagbits['m'] = ZOR_FLAG_SPACE_MAP; 9904 flagbits['z'] = ZOR_FLAG_ZAP; 9905 flagbits['A'] = ZOR_FLAG_ALL_TYPES; 9906 9907 if (argc > 0 && dump_opt['d']) { 9908 zopt_object_args = argc; 9909 zopt_object_ranges = calloc(zopt_object_args, 9910 sizeof (zopt_object_range_t)); 9911 for (unsigned i = 0; i < zopt_object_args; i++) { 9912 int err; 9913 const char *msg = NULL; 9914 9915 err = parse_object_range(argv[i], 9916 &zopt_object_ranges[i], &msg); 9917 if (err != 0) 9918 fatal("Bad object or range: '%s': %s\n", 9919 argv[i], msg ?: ""); 9920 } 9921 } else if (argc > 0 && dump_opt['m']) { 9922 zopt_metaslab_args = argc; 9923 zopt_metaslab = calloc(zopt_metaslab_args, 9924 sizeof (uint64_t)); 9925 for (unsigned i = 0; i < zopt_metaslab_args; i++) { 9926 errno = 0; 9927 zopt_metaslab[i] = strtoull(argv[i], NULL, 0); 9928 if (zopt_metaslab[i] == 0 && errno != 0) 9929 fatal("bad number %s: %s", argv[i], 9930 strerror(errno)); 9931 } 9932 } 9933 if (dump_opt['B']) { 9934 dump_backup(target, objset_id, 9935 argc > 0 ? argv[0] : NULL); 9936 } else if (os != NULL) { 9937 dump_objset(os); 9938 } else if (zopt_object_args > 0 && !dump_opt['m']) { 9939 dump_objset(spa->spa_meta_objset); 9940 } else { 9941 dump_zpool(spa); 9942 } 9943 } else { 9944 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; 9945 flagbits['c'] = ZDB_FLAG_CHECKSUM; 9946 flagbits['d'] = ZDB_FLAG_DECOMPRESS; 9947 flagbits['e'] = ZDB_FLAG_BSWAP; 9948 flagbits['g'] = ZDB_FLAG_GBH; 9949 flagbits['i'] = ZDB_FLAG_INDIRECT; 9950 flagbits['r'] = ZDB_FLAG_RAW; 9951 flagbits['v'] = ZDB_FLAG_VERBOSE; 9952 9953 for (int i = 0; i < argc; i++) 9954 zdb_read_block(argv[i], spa); 9955 } 9956 9957 if (dump_opt['k']) { 9958 free(checkpoint_pool); 9959 if (!target_is_spa) 9960 free(checkpoint_target); 9961 } 9962 9963 fini: 9964 if (spa != NULL) 9965 zdb_ddt_cleanup(spa); 9966 9967 if (os != NULL) { 9968 close_objset(os, FTAG); 9969 } else if (spa != NULL) { 9970 spa_close(spa, FTAG); 9971 } 9972 9973 fuid_table_destroy(); 9974 9975 dump_debug_buffer(); 9976 9977 if (kernel_init_done) 9978 kernel_fini(); 9979 9980 if (corruption_found && error == 0) 9981 error = 3; 9982 9983 return (error); 9984 } 9985