1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (C) 2016 Gvozden Nešković. All rights reserved. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/time.h> 28 #include <sys/wait.h> 29 #include <sys/zio.h> 30 #include <umem.h> 31 #include <sys/vdev_raidz.h> 32 #include <sys/vdev_raidz_impl.h> 33 #include <assert.h> 34 #include <stdio.h> 35 #include "raidz_test.h" 36 37 static int *rand_data; 38 raidz_test_opts_t rto_opts; 39 40 static char gdb[256]; 41 static const char gdb_tmpl[] = "gdb -ex \"set pagination 0\" -p %d"; 42 43 static void sig_handler(int signo) 44 { 45 struct sigaction action; 46 /* 47 * Restore default action and re-raise signal so SIGSEGV and 48 * SIGABRT can trigger a core dump. 49 */ 50 action.sa_handler = SIG_DFL; 51 sigemptyset(&action.sa_mask); 52 action.sa_flags = 0; 53 (void) sigaction(signo, &action, NULL); 54 55 if (rto_opts.rto_gdb) 56 if (system(gdb)) { } 57 58 raise(signo); 59 } 60 61 static void print_opts(raidz_test_opts_t *opts, boolean_t force) 62 { 63 char *verbose; 64 switch (opts->rto_v) { 65 case 0: 66 verbose = "no"; 67 break; 68 case 1: 69 verbose = "info"; 70 break; 71 default: 72 verbose = "debug"; 73 break; 74 } 75 76 if (force || opts->rto_v >= D_INFO) { 77 (void) fprintf(stdout, DBLSEP "Running with options:\n" 78 " (-a) zio ashift : %zu\n" 79 " (-o) zio offset : 1 << %zu\n" 80 " (-e) expanded map : %s\n" 81 " (-r) reflow offset : %llx\n" 82 " (-d) number of raidz data columns : %zu\n" 83 " (-s) size of DATA : 1 << %zu\n" 84 " (-S) sweep parameters : %s \n" 85 " (-v) verbose : %s \n\n", 86 opts->rto_ashift, /* -a */ 87 ilog2(opts->rto_offset), /* -o */ 88 opts->rto_expand ? "yes" : "no", /* -e */ 89 (u_longlong_t)opts->rto_expand_offset, /* -r */ 90 opts->rto_dcols, /* -d */ 91 ilog2(opts->rto_dsize), /* -s */ 92 opts->rto_sweep ? "yes" : "no", /* -S */ 93 verbose); /* -v */ 94 } 95 } 96 97 static void usage(boolean_t requested) 98 { 99 const raidz_test_opts_t *o = &rto_opts_defaults; 100 101 FILE *fp = requested ? stdout : stderr; 102 103 (void) fprintf(fp, "Usage:\n" 104 "\t[-a zio ashift (default: %zu)]\n" 105 "\t[-o zio offset, exponent radix 2 (default: %zu)]\n" 106 "\t[-d number of raidz data columns (default: %zu)]\n" 107 "\t[-s zio size, exponent radix 2 (default: %zu)]\n" 108 "\t[-S parameter sweep (default: %s)]\n" 109 "\t[-t timeout for parameter sweep test]\n" 110 "\t[-B benchmark all raidz implementations]\n" 111 "\t[-e use expanded raidz map (default: %s)]\n" 112 "\t[-r expanded raidz map reflow offset (default: %llx)]\n" 113 "\t[-v increase verbosity (default: %zu)]\n" 114 "\t[-h (print help)]\n" 115 "\t[-T test the test, see if failure would be detected]\n" 116 "\t[-D debug (attach gdb on SIGSEGV)]\n" 117 "", 118 o->rto_ashift, /* -a */ 119 ilog2(o->rto_offset), /* -o */ 120 o->rto_dcols, /* -d */ 121 ilog2(o->rto_dsize), /* -s */ 122 rto_opts.rto_sweep ? "yes" : "no", /* -S */ 123 rto_opts.rto_expand ? "yes" : "no", /* -e */ 124 (u_longlong_t)o->rto_expand_offset, /* -r */ 125 o->rto_v); /* -d */ 126 127 exit(requested ? 0 : 1); 128 } 129 130 static void process_options(int argc, char **argv) 131 { 132 size_t value; 133 int opt; 134 135 raidz_test_opts_t *o = &rto_opts; 136 137 bcopy(&rto_opts_defaults, o, sizeof (*o)); 138 139 while ((opt = getopt(argc, argv, "TDBSvha:er:o:d:s:t:")) != -1) { 140 value = 0; 141 142 switch (opt) { 143 case 'a': 144 value = strtoull(optarg, NULL, 0); 145 o->rto_ashift = MIN(13, MAX(9, value)); 146 break; 147 case 'e': 148 o->rto_expand = 1; 149 break; 150 case 'r': 151 o->rto_expand_offset = strtoull(optarg, NULL, 0); 152 break; 153 case 'o': 154 value = strtoull(optarg, NULL, 0); 155 o->rto_offset = ((1ULL << MIN(12, value)) >> 9) << 9; 156 break; 157 case 'd': 158 value = strtoull(optarg, NULL, 0); 159 o->rto_dcols = MIN(255, MAX(1, value)); 160 break; 161 case 's': 162 value = strtoull(optarg, NULL, 0); 163 o->rto_dsize = 1ULL << MIN(SPA_MAXBLOCKSHIFT, 164 MAX(SPA_MINBLOCKSHIFT, value)); 165 break; 166 case 't': 167 value = strtoull(optarg, NULL, 0); 168 o->rto_sweep_timeout = value; 169 break; 170 case 'v': 171 o->rto_v++; 172 break; 173 case 'S': 174 o->rto_sweep = 1; 175 break; 176 case 'B': 177 o->rto_benchmark = 1; 178 break; 179 case 'D': 180 o->rto_gdb = 1; 181 break; 182 case 'T': 183 o->rto_sanity = 1; 184 break; 185 case 'h': 186 usage(B_TRUE); 187 break; 188 case '?': 189 default: 190 usage(B_FALSE); 191 break; 192 } 193 } 194 } 195 196 #define DATA_COL(rr, i) ((rr)->rr_col[rr->rr_firstdatacol + (i)].rc_abd) 197 #define DATA_COL_SIZE(rr, i) ((rr)->rr_col[rr->rr_firstdatacol + (i)].rc_size) 198 199 #define CODE_COL(rr, i) ((rr)->rr_col[(i)].rc_abd) 200 #define CODE_COL_SIZE(rr, i) ((rr)->rr_col[(i)].rc_size) 201 202 static int 203 cmp_code(raidz_test_opts_t *opts, const raidz_map_t *rm, const int parity) 204 { 205 int r, i, ret = 0; 206 207 VERIFY(parity >= 1 && parity <= 3); 208 209 for (r = 0; r < rm->rm_nrows; r++) { 210 raidz_row_t * const rr = rm->rm_row[r]; 211 raidz_row_t * const rrg = opts->rm_golden->rm_row[r]; 212 for (i = 0; i < parity; i++) { 213 if (CODE_COL_SIZE(rrg, i) == 0) { 214 VERIFY0(CODE_COL_SIZE(rr, i)); 215 continue; 216 } 217 218 if (abd_cmp(CODE_COL(rr, i), 219 CODE_COL(rrg, i)) != 0) { 220 ret++; 221 LOG_OPT(D_DEBUG, opts, 222 "\nParity block [%d] different!\n", i); 223 } 224 } 225 } 226 return (ret); 227 } 228 229 static int 230 cmp_data(raidz_test_opts_t *opts, raidz_map_t *rm) 231 { 232 int r, i, dcols, ret = 0; 233 234 for (r = 0; r < rm->rm_nrows; r++) { 235 raidz_row_t *rr = rm->rm_row[r]; 236 raidz_row_t *rrg = opts->rm_golden->rm_row[r]; 237 dcols = opts->rm_golden->rm_row[0]->rr_cols - 238 raidz_parity(opts->rm_golden); 239 for (i = 0; i < dcols; i++) { 240 if (DATA_COL_SIZE(rrg, i) == 0) { 241 VERIFY0(DATA_COL_SIZE(rr, i)); 242 continue; 243 } 244 245 if (abd_cmp(DATA_COL(rrg, i), 246 DATA_COL(rr, i)) != 0) { 247 ret++; 248 249 LOG_OPT(D_DEBUG, opts, 250 "\nData block [%d] different!\n", i); 251 } 252 } 253 } 254 return (ret); 255 } 256 257 static int 258 init_rand(void *data, size_t size, void *private) 259 { 260 int i; 261 int *dst = (int *)data; 262 263 for (i = 0; i < size / sizeof (int); i++) 264 dst[i] = rand_data[i]; 265 266 return (0); 267 } 268 269 static void 270 corrupt_colums(raidz_map_t *rm, const int *tgts, const int cnt) 271 { 272 for (int r = 0; r < rm->rm_nrows; r++) { 273 raidz_row_t *rr = rm->rm_row[r]; 274 for (int i = 0; i < cnt; i++) { 275 raidz_col_t *col = &rr->rr_col[tgts[i]]; 276 abd_iterate_func(col->rc_abd, 0, col->rc_size, 277 init_rand, NULL); 278 } 279 } 280 } 281 282 void 283 init_zio_abd(zio_t *zio) 284 { 285 abd_iterate_func(zio->io_abd, 0, zio->io_size, init_rand, NULL); 286 } 287 288 static void 289 fini_raidz_map(zio_t **zio, raidz_map_t **rm) 290 { 291 vdev_raidz_map_free(*rm); 292 raidz_free((*zio)->io_abd, (*zio)->io_size); 293 umem_free(*zio, sizeof (zio_t)); 294 295 *zio = NULL; 296 *rm = NULL; 297 } 298 299 static int 300 init_raidz_golden_map(raidz_test_opts_t *opts, const int parity) 301 { 302 int err = 0; 303 zio_t *zio_test; 304 raidz_map_t *rm_test; 305 const size_t total_ncols = opts->rto_dcols + parity; 306 307 if (opts->rm_golden) { 308 fini_raidz_map(&opts->zio_golden, &opts->rm_golden); 309 } 310 311 opts->zio_golden = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL); 312 zio_test = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL); 313 314 opts->zio_golden->io_offset = zio_test->io_offset = opts->rto_offset; 315 opts->zio_golden->io_size = zio_test->io_size = opts->rto_dsize; 316 317 opts->zio_golden->io_abd = raidz_alloc(opts->rto_dsize); 318 zio_test->io_abd = raidz_alloc(opts->rto_dsize); 319 320 init_zio_abd(opts->zio_golden); 321 init_zio_abd(zio_test); 322 323 VERIFY0(vdev_raidz_impl_set("original")); 324 325 if (opts->rto_expand) { 326 opts->rm_golden = 327 vdev_raidz_map_alloc_expanded(opts->zio_golden->io_abd, 328 opts->zio_golden->io_size, opts->zio_golden->io_offset, 329 opts->rto_ashift, total_ncols+1, total_ncols, 330 parity, opts->rto_expand_offset); 331 rm_test = vdev_raidz_map_alloc_expanded(zio_test->io_abd, 332 zio_test->io_size, zio_test->io_offset, 333 opts->rto_ashift, total_ncols+1, total_ncols, 334 parity, opts->rto_expand_offset); 335 } else { 336 opts->rm_golden = vdev_raidz_map_alloc(opts->zio_golden, 337 opts->rto_ashift, total_ncols, parity); 338 rm_test = vdev_raidz_map_alloc(zio_test, 339 opts->rto_ashift, total_ncols, parity); 340 } 341 342 VERIFY(opts->zio_golden); 343 VERIFY(opts->rm_golden); 344 345 vdev_raidz_generate_parity(opts->rm_golden); 346 vdev_raidz_generate_parity(rm_test); 347 348 /* sanity check */ 349 err |= cmp_data(opts, rm_test); 350 err |= cmp_code(opts, rm_test, parity); 351 352 if (err) 353 ERR("initializing the golden copy ... [FAIL]!\n"); 354 355 /* tear down raidz_map of test zio */ 356 fini_raidz_map(&zio_test, &rm_test); 357 358 return (err); 359 } 360 361 /* 362 * If reflow is not in progress, reflow_offset should be UINT64_MAX. 363 * For each row, if the row is entirely before reflow_offset, it will 364 * come from the new location. Otherwise this row will come from the 365 * old location. Therefore, rows that straddle the reflow_offset will 366 * come from the old location. 367 * 368 * NOTE: Until raidz expansion is implemented this function is only 369 * needed by raidz_test.c to the multi-row raid_map_t functionality. 370 */ 371 raidz_map_t * 372 vdev_raidz_map_alloc_expanded(abd_t *abd, uint64_t size, uint64_t offset, 373 uint64_t ashift, uint64_t physical_cols, uint64_t logical_cols, 374 uint64_t nparity, uint64_t reflow_offset) 375 { 376 /* The zio's size in units of the vdev's minimum sector size. */ 377 uint64_t s = size >> ashift; 378 uint64_t q, r, bc, devidx, asize = 0, tot; 379 380 /* 381 * "Quotient": The number of data sectors for this stripe on all but 382 * the "big column" child vdevs that also contain "remainder" data. 383 * AKA "full rows" 384 */ 385 q = s / (logical_cols - nparity); 386 387 /* 388 * "Remainder": The number of partial stripe data sectors in this I/O. 389 * This will add a sector to some, but not all, child vdevs. 390 */ 391 r = s - q * (logical_cols - nparity); 392 393 /* The number of "big columns" - those which contain remainder data. */ 394 bc = (r == 0 ? 0 : r + nparity); 395 396 /* 397 * The total number of data and parity sectors associated with 398 * this I/O. 399 */ 400 tot = s + nparity * (q + (r == 0 ? 0 : 1)); 401 402 /* How many rows contain data (not skip) */ 403 uint64_t rows = howmany(tot, logical_cols); 404 int cols = MIN(tot, logical_cols); 405 406 raidz_map_t *rm = kmem_zalloc(offsetof(raidz_map_t, rm_row[rows]), 407 KM_SLEEP); 408 rm->rm_nrows = rows; 409 410 for (uint64_t row = 0; row < rows; row++) { 411 raidz_row_t *rr = kmem_alloc(offsetof(raidz_row_t, 412 rr_col[cols]), KM_SLEEP); 413 rm->rm_row[row] = rr; 414 415 /* The starting RAIDZ (parent) vdev sector of the row. */ 416 uint64_t b = (offset >> ashift) + row * logical_cols; 417 418 /* 419 * If we are in the middle of a reflow, and any part of this 420 * row has not been copied, then use the old location of 421 * this row. 422 */ 423 int row_phys_cols = physical_cols; 424 if (b + (logical_cols - nparity) > reflow_offset >> ashift) 425 row_phys_cols--; 426 427 /* starting child of this row */ 428 uint64_t child_id = b % row_phys_cols; 429 /* The starting byte offset on each child vdev. */ 430 uint64_t child_offset = (b / row_phys_cols) << ashift; 431 432 /* 433 * We set cols to the entire width of the block, even 434 * if this row is shorter. This is needed because parity 435 * generation (for Q and R) needs to know the entire width, 436 * because it treats the short row as though it was 437 * full-width (and the "phantom" sectors were zero-filled). 438 * 439 * Another approach to this would be to set cols shorter 440 * (to just the number of columns that we might do i/o to) 441 * and have another mechanism to tell the parity generation 442 * about the "entire width". Reconstruction (at least 443 * vdev_raidz_reconstruct_general()) would also need to 444 * know about the "entire width". 445 */ 446 rr->rr_cols = cols; 447 rr->rr_bigcols = bc; 448 rr->rr_missingdata = 0; 449 rr->rr_missingparity = 0; 450 rr->rr_firstdatacol = nparity; 451 rr->rr_abd_empty = NULL; 452 rr->rr_nempty = 0; 453 454 for (int c = 0; c < rr->rr_cols; c++, child_id++) { 455 if (child_id >= row_phys_cols) { 456 child_id -= row_phys_cols; 457 child_offset += 1ULL << ashift; 458 } 459 rr->rr_col[c].rc_devidx = child_id; 460 rr->rr_col[c].rc_offset = child_offset; 461 rr->rr_col[c].rc_orig_data = NULL; 462 rr->rr_col[c].rc_error = 0; 463 rr->rr_col[c].rc_tried = 0; 464 rr->rr_col[c].rc_skipped = 0; 465 rr->rr_col[c].rc_need_orig_restore = B_FALSE; 466 467 uint64_t dc = c - rr->rr_firstdatacol; 468 if (c < rr->rr_firstdatacol) { 469 rr->rr_col[c].rc_size = 1ULL << ashift; 470 rr->rr_col[c].rc_abd = 471 abd_alloc_linear(rr->rr_col[c].rc_size, 472 B_TRUE); 473 } else if (row == rows - 1 && bc != 0 && c >= bc) { 474 /* 475 * Past the end, this for parity generation. 476 */ 477 rr->rr_col[c].rc_size = 0; 478 rr->rr_col[c].rc_abd = NULL; 479 } else { 480 /* 481 * "data column" (col excluding parity) 482 * Add an ASCII art diagram here 483 */ 484 uint64_t off; 485 486 if (c < bc || r == 0) { 487 off = dc * rows + row; 488 } else { 489 off = r * rows + 490 (dc - r) * (rows - 1) + row; 491 } 492 rr->rr_col[c].rc_size = 1ULL << ashift; 493 rr->rr_col[c].rc_abd = abd_get_offset_struct( 494 &rr->rr_col[c].rc_abdstruct, 495 abd, off << ashift, 1 << ashift); 496 } 497 498 asize += rr->rr_col[c].rc_size; 499 } 500 /* 501 * If all data stored spans all columns, there's a danger that 502 * parity will always be on the same device and, since parity 503 * isn't read during normal operation, that that device's I/O 504 * bandwidth won't be used effectively. We therefore switch 505 * the parity every 1MB. 506 * 507 * ...at least that was, ostensibly, the theory. As a practical 508 * matter unless we juggle the parity between all devices 509 * evenly, we won't see any benefit. Further, occasional writes 510 * that aren't a multiple of the LCM of the number of children 511 * and the minimum stripe width are sufficient to avoid pessimal 512 * behavior. Unfortunately, this decision created an implicit 513 * on-disk format requirement that we need to support for all 514 * eternity, but only for single-parity RAID-Z. 515 * 516 * If we intend to skip a sector in the zeroth column for 517 * padding we must make sure to note this swap. We will never 518 * intend to skip the first column since at least one data and 519 * one parity column must appear in each row. 520 */ 521 if (rr->rr_firstdatacol == 1 && rr->rr_cols > 1 && 522 (offset & (1ULL << 20))) { 523 ASSERT(rr->rr_cols >= 2); 524 ASSERT(rr->rr_col[0].rc_size == rr->rr_col[1].rc_size); 525 devidx = rr->rr_col[0].rc_devidx; 526 uint64_t o = rr->rr_col[0].rc_offset; 527 rr->rr_col[0].rc_devidx = rr->rr_col[1].rc_devidx; 528 rr->rr_col[0].rc_offset = rr->rr_col[1].rc_offset; 529 rr->rr_col[1].rc_devidx = devidx; 530 rr->rr_col[1].rc_offset = o; 531 } 532 533 } 534 ASSERT3U(asize, ==, tot << ashift); 535 536 /* init RAIDZ parity ops */ 537 rm->rm_ops = vdev_raidz_math_get_ops(); 538 539 return (rm); 540 } 541 542 static raidz_map_t * 543 init_raidz_map(raidz_test_opts_t *opts, zio_t **zio, const int parity) 544 { 545 raidz_map_t *rm = NULL; 546 const size_t alloc_dsize = opts->rto_dsize; 547 const size_t total_ncols = opts->rto_dcols + parity; 548 const int ccols[] = { 0, 1, 2 }; 549 550 VERIFY(zio); 551 VERIFY(parity <= 3 && parity >= 1); 552 553 *zio = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL); 554 555 (*zio)->io_offset = 0; 556 (*zio)->io_size = alloc_dsize; 557 (*zio)->io_abd = raidz_alloc(alloc_dsize); 558 init_zio_abd(*zio); 559 560 if (opts->rto_expand) { 561 rm = vdev_raidz_map_alloc_expanded((*zio)->io_abd, 562 (*zio)->io_size, (*zio)->io_offset, 563 opts->rto_ashift, total_ncols+1, total_ncols, 564 parity, opts->rto_expand_offset); 565 } else { 566 rm = vdev_raidz_map_alloc(*zio, opts->rto_ashift, 567 total_ncols, parity); 568 } 569 VERIFY(rm); 570 571 /* Make sure code columns are destroyed */ 572 corrupt_colums(rm, ccols, parity); 573 574 return (rm); 575 } 576 577 static int 578 run_gen_check(raidz_test_opts_t *opts) 579 { 580 char **impl_name; 581 int fn, err = 0; 582 zio_t *zio_test; 583 raidz_map_t *rm_test; 584 585 err = init_raidz_golden_map(opts, PARITY_PQR); 586 if (0 != err) 587 return (err); 588 589 LOG(D_INFO, DBLSEP); 590 LOG(D_INFO, "Testing parity generation...\n"); 591 592 for (impl_name = (char **)raidz_impl_names+1; *impl_name != NULL; 593 impl_name++) { 594 595 LOG(D_INFO, SEP); 596 LOG(D_INFO, "\tTesting [%s] implementation...", *impl_name); 597 598 if (0 != vdev_raidz_impl_set(*impl_name)) { 599 LOG(D_INFO, "[SKIP]\n"); 600 continue; 601 } else { 602 LOG(D_INFO, "[SUPPORTED]\n"); 603 } 604 605 for (fn = 0; fn < RAIDZ_GEN_NUM; fn++) { 606 607 /* Check if should stop */ 608 if (rto_opts.rto_should_stop) 609 return (err); 610 611 /* create suitable raidz_map */ 612 rm_test = init_raidz_map(opts, &zio_test, fn+1); 613 VERIFY(rm_test); 614 615 LOG(D_INFO, "\t\tTesting method [%s] ...", 616 raidz_gen_name[fn]); 617 618 if (!opts->rto_sanity) 619 vdev_raidz_generate_parity(rm_test); 620 621 if (cmp_code(opts, rm_test, fn+1) != 0) { 622 LOG(D_INFO, "[FAIL]\n"); 623 err++; 624 } else 625 LOG(D_INFO, "[PASS]\n"); 626 627 fini_raidz_map(&zio_test, &rm_test); 628 } 629 } 630 631 fini_raidz_map(&opts->zio_golden, &opts->rm_golden); 632 633 return (err); 634 } 635 636 static int 637 run_rec_check_impl(raidz_test_opts_t *opts, raidz_map_t *rm, const int fn) 638 { 639 int x0, x1, x2; 640 int tgtidx[3]; 641 int err = 0; 642 static const int rec_tgts[7][3] = { 643 {1, 2, 3}, /* rec_p: bad QR & D[0] */ 644 {0, 2, 3}, /* rec_q: bad PR & D[0] */ 645 {0, 1, 3}, /* rec_r: bad PQ & D[0] */ 646 {2, 3, 4}, /* rec_pq: bad R & D[0][1] */ 647 {1, 3, 4}, /* rec_pr: bad Q & D[0][1] */ 648 {0, 3, 4}, /* rec_qr: bad P & D[0][1] */ 649 {3, 4, 5} /* rec_pqr: bad & D[0][1][2] */ 650 }; 651 652 memcpy(tgtidx, rec_tgts[fn], sizeof (tgtidx)); 653 654 if (fn < RAIDZ_REC_PQ) { 655 /* can reconstruct 1 failed data disk */ 656 for (x0 = 0; x0 < opts->rto_dcols; x0++) { 657 if (x0 >= rm->rm_row[0]->rr_cols - raidz_parity(rm)) 658 continue; 659 660 /* Check if should stop */ 661 if (rto_opts.rto_should_stop) 662 return (err); 663 664 LOG(D_DEBUG, "[%d] ", x0); 665 666 tgtidx[2] = x0 + raidz_parity(rm); 667 668 corrupt_colums(rm, tgtidx+2, 1); 669 670 if (!opts->rto_sanity) 671 vdev_raidz_reconstruct(rm, tgtidx, 3); 672 673 if (cmp_data(opts, rm) != 0) { 674 err++; 675 LOG(D_DEBUG, "\nREC D[%d]... [FAIL]\n", x0); 676 } 677 } 678 679 } else if (fn < RAIDZ_REC_PQR) { 680 /* can reconstruct 2 failed data disk */ 681 for (x0 = 0; x0 < opts->rto_dcols; x0++) { 682 if (x0 >= rm->rm_row[0]->rr_cols - raidz_parity(rm)) 683 continue; 684 for (x1 = x0 + 1; x1 < opts->rto_dcols; x1++) { 685 if (x1 >= rm->rm_row[0]->rr_cols - 686 raidz_parity(rm)) 687 continue; 688 689 /* Check if should stop */ 690 if (rto_opts.rto_should_stop) 691 return (err); 692 693 LOG(D_DEBUG, "[%d %d] ", x0, x1); 694 695 tgtidx[1] = x0 + raidz_parity(rm); 696 tgtidx[2] = x1 + raidz_parity(rm); 697 698 corrupt_colums(rm, tgtidx+1, 2); 699 700 if (!opts->rto_sanity) 701 vdev_raidz_reconstruct(rm, tgtidx, 3); 702 703 if (cmp_data(opts, rm) != 0) { 704 err++; 705 LOG(D_DEBUG, "\nREC D[%d %d]... " 706 "[FAIL]\n", x0, x1); 707 } 708 } 709 } 710 } else { 711 /* can reconstruct 3 failed data disk */ 712 for (x0 = 0; x0 < opts->rto_dcols; x0++) { 713 if (x0 >= rm->rm_row[0]->rr_cols - raidz_parity(rm)) 714 continue; 715 for (x1 = x0 + 1; x1 < opts->rto_dcols; x1++) { 716 if (x1 >= rm->rm_row[0]->rr_cols - 717 raidz_parity(rm)) 718 continue; 719 for (x2 = x1 + 1; x2 < opts->rto_dcols; x2++) { 720 if (x2 >= rm->rm_row[0]->rr_cols - 721 raidz_parity(rm)) 722 continue; 723 724 /* Check if should stop */ 725 if (rto_opts.rto_should_stop) 726 return (err); 727 728 LOG(D_DEBUG, "[%d %d %d]", x0, x1, x2); 729 730 tgtidx[0] = x0 + raidz_parity(rm); 731 tgtidx[1] = x1 + raidz_parity(rm); 732 tgtidx[2] = x2 + raidz_parity(rm); 733 734 corrupt_colums(rm, tgtidx, 3); 735 736 if (!opts->rto_sanity) 737 vdev_raidz_reconstruct(rm, 738 tgtidx, 3); 739 740 if (cmp_data(opts, rm) != 0) { 741 err++; 742 LOG(D_DEBUG, 743 "\nREC D[%d %d %d]... " 744 "[FAIL]\n", x0, x1, x2); 745 } 746 } 747 } 748 } 749 } 750 return (err); 751 } 752 753 static int 754 run_rec_check(raidz_test_opts_t *opts) 755 { 756 char **impl_name; 757 unsigned fn, err = 0; 758 zio_t *zio_test; 759 raidz_map_t *rm_test; 760 761 err = init_raidz_golden_map(opts, PARITY_PQR); 762 if (0 != err) 763 return (err); 764 765 LOG(D_INFO, DBLSEP); 766 LOG(D_INFO, "Testing data reconstruction...\n"); 767 768 for (impl_name = (char **)raidz_impl_names+1; *impl_name != NULL; 769 impl_name++) { 770 771 LOG(D_INFO, SEP); 772 LOG(D_INFO, "\tTesting [%s] implementation...", *impl_name); 773 774 if (vdev_raidz_impl_set(*impl_name) != 0) { 775 LOG(D_INFO, "[SKIP]\n"); 776 continue; 777 } else 778 LOG(D_INFO, "[SUPPORTED]\n"); 779 780 781 /* create suitable raidz_map */ 782 rm_test = init_raidz_map(opts, &zio_test, PARITY_PQR); 783 /* generate parity */ 784 vdev_raidz_generate_parity(rm_test); 785 786 for (fn = 0; fn < RAIDZ_REC_NUM; fn++) { 787 788 LOG(D_INFO, "\t\tTesting method [%s] ...", 789 raidz_rec_name[fn]); 790 791 if (run_rec_check_impl(opts, rm_test, fn) != 0) { 792 LOG(D_INFO, "[FAIL]\n"); 793 err++; 794 795 } else 796 LOG(D_INFO, "[PASS]\n"); 797 798 } 799 /* tear down test raidz_map */ 800 fini_raidz_map(&zio_test, &rm_test); 801 } 802 803 fini_raidz_map(&opts->zio_golden, &opts->rm_golden); 804 805 return (err); 806 } 807 808 static int 809 run_test(raidz_test_opts_t *opts) 810 { 811 int err = 0; 812 813 if (opts == NULL) 814 opts = &rto_opts; 815 816 print_opts(opts, B_FALSE); 817 818 err |= run_gen_check(opts); 819 err |= run_rec_check(opts); 820 821 return (err); 822 } 823 824 #define SWEEP_RUNNING 0 825 #define SWEEP_FINISHED 1 826 #define SWEEP_ERROR 2 827 #define SWEEP_TIMEOUT 3 828 829 static int sweep_state = 0; 830 static raidz_test_opts_t failed_opts; 831 832 static kmutex_t sem_mtx; 833 static kcondvar_t sem_cv; 834 static int max_free_slots; 835 static int free_slots; 836 837 static void 838 sweep_thread(void *arg) 839 { 840 int err = 0; 841 raidz_test_opts_t *opts = (raidz_test_opts_t *)arg; 842 VERIFY(opts != NULL); 843 844 err = run_test(opts); 845 846 if (rto_opts.rto_sanity) { 847 /* 25% chance that a sweep test fails */ 848 if (rand() < (RAND_MAX/4)) 849 err = 1; 850 } 851 852 if (0 != err) { 853 mutex_enter(&sem_mtx); 854 memcpy(&failed_opts, opts, sizeof (raidz_test_opts_t)); 855 sweep_state = SWEEP_ERROR; 856 mutex_exit(&sem_mtx); 857 } 858 859 umem_free(opts, sizeof (raidz_test_opts_t)); 860 861 /* signal the next thread */ 862 mutex_enter(&sem_mtx); 863 free_slots++; 864 cv_signal(&sem_cv); 865 mutex_exit(&sem_mtx); 866 867 thread_exit(); 868 } 869 870 static int 871 run_sweep(void) 872 { 873 static const size_t dcols_v[] = { 1, 2, 3, 4, 5, 6, 7, 8, 12, 15, 16 }; 874 static const size_t ashift_v[] = { 9, 12, 14 }; 875 static const size_t size_v[] = { 1 << 9, 21 * (1 << 9), 13 * (1 << 12), 876 1 << 17, (1 << 20) - (1 << 12), SPA_MAXBLOCKSIZE }; 877 878 (void) setvbuf(stdout, NULL, _IONBF, 0); 879 880 ulong_t total_comb = ARRAY_SIZE(size_v) * ARRAY_SIZE(ashift_v) * 881 ARRAY_SIZE(dcols_v); 882 ulong_t tried_comb = 0; 883 hrtime_t time_diff, start_time = gethrtime(); 884 raidz_test_opts_t *opts; 885 int a, d, s; 886 887 max_free_slots = free_slots = MAX(2, boot_ncpus); 888 889 mutex_init(&sem_mtx, NULL, MUTEX_DEFAULT, NULL); 890 cv_init(&sem_cv, NULL, CV_DEFAULT, NULL); 891 892 for (s = 0; s < ARRAY_SIZE(size_v); s++) 893 for (a = 0; a < ARRAY_SIZE(ashift_v); a++) 894 for (d = 0; d < ARRAY_SIZE(dcols_v); d++) { 895 896 if (size_v[s] < (1 << ashift_v[a])) { 897 total_comb--; 898 continue; 899 } 900 901 if (++tried_comb % 20 == 0) 902 LOG(D_ALL, "%lu/%lu... ", tried_comb, total_comb); 903 904 /* wait for signal to start new thread */ 905 mutex_enter(&sem_mtx); 906 while (cv_timedwait_sig(&sem_cv, &sem_mtx, 907 ddi_get_lbolt() + hz)) { 908 909 /* check if should stop the test (timeout) */ 910 time_diff = (gethrtime() - start_time) / NANOSEC; 911 if (rto_opts.rto_sweep_timeout > 0 && 912 time_diff >= rto_opts.rto_sweep_timeout) { 913 sweep_state = SWEEP_TIMEOUT; 914 rto_opts.rto_should_stop = B_TRUE; 915 mutex_exit(&sem_mtx); 916 goto exit; 917 } 918 919 /* check if should stop the test (error) */ 920 if (sweep_state != SWEEP_RUNNING) { 921 mutex_exit(&sem_mtx); 922 goto exit; 923 } 924 925 /* exit loop if a slot is available */ 926 if (free_slots > 0) { 927 break; 928 } 929 } 930 931 free_slots--; 932 mutex_exit(&sem_mtx); 933 934 opts = umem_zalloc(sizeof (raidz_test_opts_t), UMEM_NOFAIL); 935 opts->rto_ashift = ashift_v[a]; 936 opts->rto_dcols = dcols_v[d]; 937 opts->rto_offset = (1 << ashift_v[a]) * rand(); 938 opts->rto_dsize = size_v[s]; 939 opts->rto_expand = rto_opts.rto_expand; 940 opts->rto_expand_offset = rto_opts.rto_expand_offset; 941 opts->rto_v = 0; /* be quiet */ 942 943 VERIFY3P(thread_create(NULL, 0, sweep_thread, (void *) opts, 944 0, NULL, TS_RUN, defclsyspri), !=, NULL); 945 } 946 947 exit: 948 LOG(D_ALL, "\nWaiting for test threads to finish...\n"); 949 mutex_enter(&sem_mtx); 950 VERIFY(free_slots <= max_free_slots); 951 while (free_slots < max_free_slots) { 952 (void) cv_wait(&sem_cv, &sem_mtx); 953 } 954 mutex_exit(&sem_mtx); 955 956 if (sweep_state == SWEEP_ERROR) { 957 ERR("Sweep test failed! Failed option: \n"); 958 print_opts(&failed_opts, B_TRUE); 959 } else { 960 if (sweep_state == SWEEP_TIMEOUT) 961 LOG(D_ALL, "Test timeout (%lus). Stopping...\n", 962 (ulong_t)rto_opts.rto_sweep_timeout); 963 964 LOG(D_ALL, "Sweep test succeeded on %lu raidz maps!\n", 965 (ulong_t)tried_comb); 966 } 967 968 mutex_destroy(&sem_mtx); 969 970 return (sweep_state == SWEEP_ERROR ? SWEEP_ERROR : 0); 971 } 972 973 974 int 975 main(int argc, char **argv) 976 { 977 size_t i; 978 struct sigaction action; 979 int err = 0; 980 981 /* init gdb string early */ 982 (void) sprintf(gdb, gdb_tmpl, getpid()); 983 984 action.sa_handler = sig_handler; 985 sigemptyset(&action.sa_mask); 986 action.sa_flags = 0; 987 988 if (sigaction(SIGSEGV, &action, NULL) < 0) { 989 ERR("raidz_test: cannot catch SIGSEGV: %s.\n", strerror(errno)); 990 exit(EXIT_FAILURE); 991 } 992 993 (void) setvbuf(stdout, NULL, _IOLBF, 0); 994 995 dprintf_setup(&argc, argv); 996 997 process_options(argc, argv); 998 999 kernel_init(SPA_MODE_READ); 1000 1001 /* setup random data because rand() is not reentrant */ 1002 rand_data = (int *)umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 1003 srand((unsigned)time(NULL) * getpid()); 1004 for (i = 0; i < SPA_MAXBLOCKSIZE / sizeof (int); i++) 1005 rand_data[i] = rand(); 1006 1007 mprotect(rand_data, SPA_MAXBLOCKSIZE, PROT_READ); 1008 1009 if (rto_opts.rto_benchmark) { 1010 run_raidz_benchmark(); 1011 } else if (rto_opts.rto_sweep) { 1012 err = run_sweep(); 1013 } else { 1014 err = run_test(NULL); 1015 } 1016 1017 umem_free(rand_data, SPA_MAXBLOCKSIZE); 1018 kernel_fini(); 1019 1020 return (err); 1021 } 1022