1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <sys/param.h> 6 #include <sys/ctype.h> 7 #include <sys/systm.h> 8 #include <sys/lock.h> 9 #include <sys/rwlock.h> 10 #include <sys/malloc.h> 11 #include <sys/mbuf.h> 12 #include <sys/socket.h> 13 #include <sys/kernel.h> 14 15 //#include <netinet6/rte_tailq.h> 16 int errno = 0, rte_errno = 0; 17 18 #include "rte_shim.h" 19 #include "rte_lpm6.h" 20 21 #define RTE_LPM6_TBL24_NUM_ENTRIES (1 << 24) 22 #define RTE_LPM6_TBL8_GROUP_NUM_ENTRIES 256 23 #define RTE_LPM6_TBL8_MAX_NUM_GROUPS (1 << 21) 24 25 #define RTE_LPM6_VALID_EXT_ENTRY_BITMASK 0xA0000000 26 #define RTE_LPM6_LOOKUP_SUCCESS 0x20000000 27 #define RTE_LPM6_TBL8_BITMASK 0x001FFFFF 28 29 #define ADD_FIRST_BYTE 3 30 #define LOOKUP_FIRST_BYTE 4 31 #define BYTE_SIZE 8 32 #define BYTES2_SIZE 16 33 34 #define RULE_HASH_TABLE_EXTRA_SPACE 64 35 #define TBL24_IND UINT32_MAX 36 37 #define lpm6_tbl8_gindex next_hop 38 39 /** Flags for setting an entry as valid/invalid. */ 40 enum valid_flag { 41 INVALID = 0, 42 VALID 43 }; 44 45 #if 0 46 TAILQ_HEAD(rte_lpm6_list, rte_tailq_entry); 47 48 static struct rte_tailq_elem rte_lpm6_tailq = { 49 .name = "RTE_LPM6", 50 }; 51 EAL_REGISTER_TAILQ(rte_lpm6_tailq) 52 #endif 53 54 /** Tbl entry structure. It is the same for both tbl24 and tbl8 */ 55 struct rte_lpm6_tbl_entry { 56 uint32_t next_hop: 21; /**< Next hop / next table to be checked. */ 57 uint32_t depth :8; /**< Rule depth. */ 58 59 /* Flags. */ 60 uint32_t valid :1; /**< Validation flag. */ 61 uint32_t valid_group :1; /**< Group validation flag. */ 62 uint32_t ext_entry :1; /**< External entry. */ 63 }; 64 65 /** Rules tbl entry structure. */ 66 struct rte_lpm6_rule { 67 uint8_t ip[RTE_LPM6_IPV6_ADDR_SIZE]; /**< Rule IP address. */ 68 uint32_t next_hop; /**< Rule next hop. */ 69 uint8_t depth; /**< Rule depth. */ 70 }; 71 72 /** Rules tbl entry key. */ 73 struct rte_lpm6_rule_key { 74 uint8_t ip[RTE_LPM6_IPV6_ADDR_SIZE]; /**< Rule IP address. */ 75 uint8_t depth; /**< Rule depth. */ 76 }; 77 78 /* Header of tbl8 */ 79 struct rte_lpm_tbl8_hdr { 80 uint32_t owner_tbl_ind; /**< owner table: TBL24_IND if owner is tbl24, 81 * otherwise index of tbl8 82 */ 83 uint32_t owner_entry_ind; /**< index of the owner table entry where 84 * pointer to the tbl8 is stored 85 */ 86 uint32_t ref_cnt; /**< table reference counter */ 87 }; 88 89 /** LPM6 structure. */ 90 struct rte_lpm6 { 91 struct rte_lpm6_external ext; /* Storage used by the algo wrapper */ 92 /* LPM metadata. */ 93 char name[RTE_LPM6_NAMESIZE]; /**< Name of the lpm. */ 94 uint32_t max_rules; /**< Max number of rules. */ 95 uint32_t used_rules; /**< Used rules so far. */ 96 uint32_t number_tbl8s; /**< Number of tbl8s to allocate. */ 97 98 /* LPM Tables. */ 99 //struct rte_hash *rules_tbl; /**< LPM rules. */ 100 struct rte_lpm6_tbl_entry tbl24[RTE_LPM6_TBL24_NUM_ENTRIES] 101 __rte_cache_aligned; /**< LPM tbl24 table. */ 102 103 uint32_t *tbl8_pool; /**< pool of indexes of free tbl8s */ 104 uint32_t tbl8_pool_pos; /**< current position in the tbl8 pool */ 105 106 struct rte_lpm_tbl8_hdr *tbl8_hdrs; /* array of tbl8 headers */ 107 108 struct rte_lpm6_tbl_entry tbl8[0] 109 __rte_cache_aligned; /**< LPM tbl8 table. */ 110 }; 111 112 /* 113 * Takes an array of uint8_t (IPv6 address) and masks it using the depth. 114 * It leaves untouched one bit per unit in the depth variable 115 * and set the rest to 0. 116 */ 117 static inline void 118 ip6_mask_addr(uint8_t *ip, uint8_t depth) 119 { 120 int16_t part_depth, mask; 121 int i; 122 123 part_depth = depth; 124 125 for (i = 0; i < RTE_LPM6_IPV6_ADDR_SIZE; i++) { 126 if (part_depth < BYTE_SIZE && part_depth >= 0) { 127 mask = (uint16_t)(~(UINT8_MAX >> part_depth)); 128 ip[i] = (uint8_t)(ip[i] & mask); 129 } else if (part_depth < 0) 130 ip[i] = 0; 131 132 part_depth -= BYTE_SIZE; 133 } 134 } 135 136 /* copy ipv6 address */ 137 static inline void 138 ip6_copy_addr(uint8_t *dst, const uint8_t *src) 139 { 140 rte_memcpy(dst, src, RTE_LPM6_IPV6_ADDR_SIZE); 141 } 142 143 #if 0 144 /* 145 * LPM6 rule hash function 146 * 147 * It's used as a hash function for the rte_hash 148 * containing rules 149 */ 150 static inline uint32_t 151 rule_hash(const void *data, __rte_unused uint32_t data_len, 152 uint32_t init_val) 153 { 154 return rte_jhash(data, sizeof(struct rte_lpm6_rule_key), init_val); 155 } 156 #endif 157 158 /* 159 * Init pool of free tbl8 indexes 160 */ 161 static void 162 tbl8_pool_init(struct rte_lpm6 *lpm) 163 { 164 uint32_t i; 165 166 /* put entire range of indexes to the tbl8 pool */ 167 for (i = 0; i < lpm->number_tbl8s; i++) 168 lpm->tbl8_pool[i] = i; 169 170 lpm->tbl8_pool_pos = 0; 171 } 172 173 /* 174 * Get an index of a free tbl8 from the pool 175 */ 176 static inline uint32_t 177 tbl8_get(struct rte_lpm6 *lpm, uint32_t *tbl8_ind) 178 { 179 if (lpm->tbl8_pool_pos == lpm->number_tbl8s) 180 /* no more free tbl8 */ 181 return -ENOSPC; 182 183 /* next index */ 184 *tbl8_ind = lpm->tbl8_pool[lpm->tbl8_pool_pos++]; 185 return 0; 186 } 187 188 /* 189 * Put an index of a free tbl8 back to the pool 190 */ 191 static inline uint32_t 192 tbl8_put(struct rte_lpm6 *lpm, uint32_t tbl8_ind) 193 { 194 if (lpm->tbl8_pool_pos == 0) 195 /* pool is full */ 196 return -ENOSPC; 197 198 lpm->tbl8_pool[--lpm->tbl8_pool_pos] = tbl8_ind; 199 return 0; 200 } 201 202 /* 203 * Returns number of tbl8s available in the pool 204 */ 205 static inline uint32_t 206 tbl8_available(struct rte_lpm6 *lpm) 207 { 208 return lpm->number_tbl8s - lpm->tbl8_pool_pos; 209 } 210 211 #if 0 212 /* 213 * Init a rule key. 214 * note that ip must be already masked 215 */ 216 static inline void 217 rule_key_init(struct rte_lpm6_rule_key *key, uint8_t *ip, uint8_t depth) 218 { 219 ip6_copy_addr(key->ip, ip); 220 key->depth = depth; 221 } 222 223 /* 224 * Rebuild the entire LPM tree by reinserting all rules 225 */ 226 static void 227 rebuild_lpm(struct rte_lpm6 *lpm) 228 { 229 uint64_t next_hop; 230 struct rte_lpm6_rule_key *rule_key; 231 uint32_t iter = 0; 232 233 while (rte_hash_iterate(lpm->rules_tbl, (void *) &rule_key, 234 (void **) &next_hop, &iter) >= 0) 235 rte_lpm6_add(lpm, rule_key->ip, rule_key->depth, 236 (uint32_t) next_hop); 237 } 238 #endif 239 240 /* 241 * Allocates memory for LPM object 242 */ 243 struct rte_lpm6 * 244 rte_lpm6_create(const char *name, int socket_id, 245 const struct rte_lpm6_config *config) 246 { 247 char mem_name[RTE_LPM6_NAMESIZE]; 248 struct rte_lpm6 *lpm = NULL; 249 //struct rte_tailq_entry *te; 250 uint64_t mem_size; 251 //struct rte_lpm6_list *lpm_list; 252 //struct rte_hash *rules_tbl = NULL; 253 uint32_t *tbl8_pool = NULL; 254 struct rte_lpm_tbl8_hdr *tbl8_hdrs = NULL; 255 256 //lpm_list = RTE_TAILQ_CAST(rte_lpm6_tailq.head, rte_lpm6_list); 257 258 RTE_BUILD_BUG_ON(sizeof(struct rte_lpm6_tbl_entry) != sizeof(uint32_t)); 259 260 /* Check user arguments. */ 261 if ((name == NULL) || (socket_id < -1) || (config == NULL) || 262 config->number_tbl8s > RTE_LPM6_TBL8_MAX_NUM_GROUPS) { 263 rte_errno = EINVAL; 264 return NULL; 265 } 266 267 #if 0 268 /* create rules hash table */ 269 snprintf(mem_name, sizeof(mem_name), "LRH_%s", name); 270 struct rte_hash_parameters rule_hash_tbl_params = { 271 .entries = config->max_rules * 1.2 + 272 RULE_HASH_TABLE_EXTRA_SPACE, 273 .key_len = sizeof(struct rte_lpm6_rule_key), 274 .hash_func = rule_hash, 275 .hash_func_init_val = 0, 276 .name = mem_name, 277 .reserved = 0, 278 .socket_id = socket_id, 279 .extra_flag = 0 280 }; 281 282 rules_tbl = rte_hash_create(&rule_hash_tbl_params); 283 if (rules_tbl == NULL) { 284 RTE_LOG(ERR, LPM, "LPM rules hash table allocation failed: %s (%d)", 285 rte_strerror(rte_errno), rte_errno); 286 goto fail_wo_unlock; 287 } 288 #endif 289 290 /* allocate tbl8 indexes pool */ 291 tbl8_pool = rte_malloc(NULL, 292 sizeof(uint32_t) * config->number_tbl8s, 293 RTE_CACHE_LINE_SIZE); 294 if (tbl8_pool == NULL) { 295 RTE_LOG(ERR, LPM, "LPM tbl8 pool allocation failed: %s (%d)", 296 rte_strerror(rte_errno), rte_errno); 297 rte_errno = ENOMEM; 298 goto fail_wo_unlock; 299 } 300 301 /* allocate tbl8 headers */ 302 tbl8_hdrs = rte_malloc(NULL, 303 sizeof(struct rte_lpm_tbl8_hdr) * config->number_tbl8s, 304 RTE_CACHE_LINE_SIZE); 305 if (tbl8_hdrs == NULL) { 306 RTE_LOG(ERR, LPM, "LPM tbl8 headers allocation failed: %s (%d)", 307 rte_strerror(rte_errno), rte_errno); 308 rte_errno = ENOMEM; 309 goto fail_wo_unlock; 310 } 311 312 snprintf(mem_name, sizeof(mem_name), "LPM_%s", name); 313 314 /* Determine the amount of memory to allocate. */ 315 mem_size = sizeof(*lpm) + (sizeof(lpm->tbl8[0]) * 316 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * config->number_tbl8s); 317 318 #if 0 319 rte_mcfg_tailq_write_lock(); 320 321 /* Guarantee there's no existing */ 322 TAILQ_FOREACH(te, lpm_list, next) { 323 lpm = (struct rte_lpm6 *) te->data; 324 if (strncmp(name, lpm->name, RTE_LPM6_NAMESIZE) == 0) 325 break; 326 } 327 lpm = NULL; 328 if (te != NULL) { 329 rte_errno = EEXIST; 330 goto fail; 331 } 332 333 /* allocate tailq entry */ 334 te = rte_zmalloc("LPM6_TAILQ_ENTRY", sizeof(*te), 0); 335 if (te == NULL) { 336 RTE_LOG(ERR, LPM, "Failed to allocate tailq entry!\n"); 337 rte_errno = ENOMEM; 338 goto fail; 339 } 340 #endif 341 342 /* Allocate memory to store the LPM data structures. */ 343 lpm = rte_zmalloc_socket(mem_name, (size_t)mem_size, 344 RTE_CACHE_LINE_SIZE, socket_id); 345 346 if (lpm == NULL) { 347 RTE_LOG(ERR, LPM, "LPM memory allocation failed\n"); 348 //rte_free(te); 349 rte_errno = ENOMEM; 350 goto fail; 351 } 352 353 /* Save user arguments. */ 354 //lpm->max_rules = config->max_rules; 355 lpm->number_tbl8s = config->number_tbl8s; 356 strlcpy(lpm->name, name, sizeof(lpm->name)); 357 //lpm->rules_tbl = rules_tbl; 358 lpm->tbl8_pool = tbl8_pool; 359 lpm->tbl8_hdrs = tbl8_hdrs; 360 361 /* init the stack */ 362 tbl8_pool_init(lpm); 363 364 //te->data = (void *) lpm; 365 366 //TAILQ_INSERT_TAIL(lpm_list, te, next); 367 rte_mcfg_tailq_write_unlock(); 368 return lpm; 369 370 fail: 371 rte_mcfg_tailq_write_unlock(); 372 373 fail_wo_unlock: 374 rte_free(tbl8_hdrs); 375 rte_free(tbl8_pool); 376 //rte_hash_free(rules_tbl); 377 378 return NULL; 379 } 380 381 #if 0 382 /* 383 * Find an existing lpm table and return a pointer to it. 384 */ 385 struct rte_lpm6 * 386 rte_lpm6_find_existing(const char *name) 387 { 388 struct rte_lpm6 *l = NULL; 389 struct rte_tailq_entry *te; 390 struct rte_lpm6_list *lpm_list; 391 392 lpm_list = RTE_TAILQ_CAST(rte_lpm6_tailq.head, rte_lpm6_list); 393 394 rte_mcfg_tailq_read_lock(); 395 TAILQ_FOREACH(te, lpm_list, next) { 396 l = (struct rte_lpm6 *) te->data; 397 if (strncmp(name, l->name, RTE_LPM6_NAMESIZE) == 0) 398 break; 399 } 400 rte_mcfg_tailq_read_unlock(); 401 402 if (te == NULL) { 403 rte_errno = ENOENT; 404 return NULL; 405 } 406 407 return l; 408 } 409 #endif 410 411 /* 412 * Deallocates memory for given LPM table. 413 */ 414 void 415 rte_lpm6_free(struct rte_lpm6 *lpm) 416 { 417 #if 0 418 struct rte_lpm6_list *lpm_list; 419 struct rte_tailq_entry *te; 420 421 /* Check user arguments. */ 422 if (lpm == NULL) 423 return; 424 425 lpm_list = RTE_TAILQ_CAST(rte_lpm6_tailq.head, rte_lpm6_list); 426 427 rte_mcfg_tailq_write_lock(); 428 429 /* find our tailq entry */ 430 TAILQ_FOREACH(te, lpm_list, next) { 431 if (te->data == (void *) lpm) 432 break; 433 } 434 435 if (te != NULL) 436 TAILQ_REMOVE(lpm_list, te, next); 437 438 rte_mcfg_tailq_write_unlock(); 439 #endif 440 441 rte_free(lpm->tbl8_hdrs); 442 rte_free(lpm->tbl8_pool); 443 //rte_hash_free(lpm->rules_tbl); 444 rte_free(lpm); 445 //rte_free(te); 446 } 447 448 #if 0 449 /* Find a rule */ 450 static inline int 451 rule_find_with_key(struct rte_lpm6 *lpm, 452 const struct rte_lpm6_rule_key *rule_key, 453 uint32_t *next_hop) 454 { 455 uint64_t hash_val; 456 int ret; 457 458 /* lookup for a rule */ 459 ret = rte_hash_lookup_data(lpm->rules_tbl, (const void *) rule_key, 460 (void **) &hash_val); 461 if (ret >= 0) { 462 *next_hop = (uint32_t) hash_val; 463 return 1; 464 } 465 466 return 0; 467 } 468 469 /* Find a rule */ 470 static int 471 rule_find(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth, 472 uint32_t *next_hop) 473 { 474 struct rte_lpm6_rule_key rule_key; 475 476 /* init a rule key */ 477 rule_key_init(&rule_key, ip, depth); 478 479 return rule_find_with_key(lpm, &rule_key, next_hop); 480 } 481 482 /* 483 * Checks if a rule already exists in the rules table and updates 484 * the nexthop if so. Otherwise it adds a new rule if enough space is available. 485 * 486 * Returns: 487 * 0 - next hop of existed rule is updated 488 * 1 - new rule successfully added 489 * <0 - error 490 */ 491 static inline int 492 rule_add(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth, uint32_t next_hop) 493 { 494 int ret, rule_exist; 495 struct rte_lpm6_rule_key rule_key; 496 uint32_t unused; 497 498 /* init a rule key */ 499 rule_key_init(&rule_key, ip, depth); 500 501 /* Scan through rule list to see if rule already exists. */ 502 rule_exist = rule_find_with_key(lpm, &rule_key, &unused); 503 504 /* 505 * If rule does not exist check if there is space to add a new rule to 506 * this rule group. If there is no space return error. 507 */ 508 if (!rule_exist && lpm->used_rules == lpm->max_rules) 509 return -ENOSPC; 510 511 /* add the rule or update rules next hop */ 512 ret = rte_hash_add_key_data(lpm->rules_tbl, &rule_key, 513 (void *)(uintptr_t) next_hop); 514 if (ret < 0) 515 return ret; 516 517 /* Increment the used rules counter for this rule group. */ 518 if (!rule_exist) { 519 lpm->used_rules++; 520 return 1; 521 } 522 523 return 0; 524 } 525 #endif 526 527 /* 528 * Function that expands a rule across the data structure when a less-generic 529 * one has been added before. It assures that every possible combination of bits 530 * in the IP address returns a match. 531 */ 532 static void 533 expand_rule(struct rte_lpm6 *lpm, uint32_t tbl8_gindex, uint8_t old_depth, 534 uint8_t new_depth, uint32_t next_hop, uint8_t valid) 535 { 536 uint32_t tbl8_group_end, tbl8_gindex_next, j; 537 538 tbl8_group_end = tbl8_gindex + RTE_LPM6_TBL8_GROUP_NUM_ENTRIES; 539 540 struct rte_lpm6_tbl_entry new_tbl8_entry = { 541 .valid = valid, 542 .valid_group = valid, 543 .depth = new_depth, 544 .next_hop = next_hop, 545 .ext_entry = 0, 546 }; 547 548 for (j = tbl8_gindex; j < tbl8_group_end; j++) { 549 if (!lpm->tbl8[j].valid || (lpm->tbl8[j].ext_entry == 0 550 && lpm->tbl8[j].depth <= old_depth)) { 551 552 lpm->tbl8[j] = new_tbl8_entry; 553 554 } else if (lpm->tbl8[j].ext_entry == 1) { 555 556 tbl8_gindex_next = lpm->tbl8[j].lpm6_tbl8_gindex 557 * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES; 558 expand_rule(lpm, tbl8_gindex_next, old_depth, new_depth, 559 next_hop, valid); 560 } 561 } 562 } 563 564 /* 565 * Init a tbl8 header 566 */ 567 static inline void 568 init_tbl8_header(struct rte_lpm6 *lpm, uint32_t tbl_ind, 569 uint32_t owner_tbl_ind, uint32_t owner_entry_ind) 570 { 571 struct rte_lpm_tbl8_hdr *tbl_hdr = &lpm->tbl8_hdrs[tbl_ind]; 572 tbl_hdr->owner_tbl_ind = owner_tbl_ind; 573 tbl_hdr->owner_entry_ind = owner_entry_ind; 574 tbl_hdr->ref_cnt = 0; 575 } 576 577 /* 578 * Calculate index to the table based on the number and position 579 * of the bytes being inspected in this step. 580 */ 581 static uint32_t 582 get_bitshift(const uint8_t *ip, uint8_t first_byte, uint8_t bytes) 583 { 584 uint32_t entry_ind, i; 585 int8_t bitshift; 586 587 entry_ind = 0; 588 for (i = first_byte; i < (uint32_t)(first_byte + bytes); i++) { 589 bitshift = (int8_t)((bytes - i)*BYTE_SIZE); 590 591 if (bitshift < 0) 592 bitshift = 0; 593 entry_ind = entry_ind | ip[i-1] << bitshift; 594 } 595 596 return entry_ind; 597 } 598 599 /* 600 * Simulate adding a new route to the LPM counting number 601 * of new tables that will be needed 602 * 603 * It returns 0 on success, or 1 if 604 * the process needs to be continued by calling the function again. 605 */ 606 static inline int 607 simulate_add_step(struct rte_lpm6 *lpm, struct rte_lpm6_tbl_entry *tbl, 608 struct rte_lpm6_tbl_entry **next_tbl, const uint8_t *ip, 609 uint8_t bytes, uint8_t first_byte, uint8_t depth, 610 uint32_t *need_tbl_nb) 611 { 612 uint32_t entry_ind; 613 uint8_t bits_covered; 614 uint32_t next_tbl_ind; 615 616 /* 617 * Calculate index to the table based on the number and position 618 * of the bytes being inspected in this step. 619 */ 620 entry_ind = get_bitshift(ip, first_byte, bytes); 621 622 /* Number of bits covered in this step */ 623 bits_covered = (uint8_t)((bytes+first_byte-1)*BYTE_SIZE); 624 625 if (depth <= bits_covered) { 626 *need_tbl_nb = 0; 627 return 0; 628 } 629 630 if (tbl[entry_ind].valid == 0 || tbl[entry_ind].ext_entry == 0) { 631 /* from this point on a new table is needed on each level 632 * that is not covered yet 633 */ 634 depth -= bits_covered; 635 uint32_t cnt = depth >> 3; /* depth / BYTE_SIZE */ 636 if (depth & 7) /* 0b00000111 */ 637 /* if depth % 8 > 0 then one more table is needed 638 * for those last bits 639 */ 640 cnt++; 641 642 *need_tbl_nb = cnt; 643 return 0; 644 } 645 646 next_tbl_ind = tbl[entry_ind].lpm6_tbl8_gindex; 647 *next_tbl = &(lpm->tbl8[next_tbl_ind * 648 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES]); 649 *need_tbl_nb = 0; 650 return 1; 651 } 652 653 /* 654 * Partially adds a new route to the data structure (tbl24+tbl8s). 655 * It returns 0 on success, a negative number on failure, or 1 if 656 * the process needs to be continued by calling the function again. 657 */ 658 static inline int 659 add_step(struct rte_lpm6 *lpm, struct rte_lpm6_tbl_entry *tbl, 660 uint32_t tbl_ind, struct rte_lpm6_tbl_entry **next_tbl, 661 uint32_t *next_tbl_ind, uint8_t *ip, uint8_t bytes, 662 uint8_t first_byte, uint8_t depth, uint32_t next_hop, 663 uint8_t is_new_rule) 664 { 665 uint32_t entry_ind, tbl_range, tbl8_group_start, tbl8_group_end, i; 666 uint32_t tbl8_gindex; 667 uint8_t bits_covered; 668 int ret; 669 670 /* 671 * Calculate index to the table based on the number and position 672 * of the bytes being inspected in this step. 673 */ 674 entry_ind = get_bitshift(ip, first_byte, bytes); 675 676 /* Number of bits covered in this step */ 677 bits_covered = (uint8_t)((bytes+first_byte-1)*BYTE_SIZE); 678 679 /* 680 * If depth if smaller than this number (ie this is the last step) 681 * expand the rule across the relevant positions in the table. 682 */ 683 if (depth <= bits_covered) { 684 tbl_range = 1 << (bits_covered - depth); 685 686 for (i = entry_ind; i < (entry_ind + tbl_range); i++) { 687 if (!tbl[i].valid || (tbl[i].ext_entry == 0 && 688 tbl[i].depth <= depth)) { 689 690 struct rte_lpm6_tbl_entry new_tbl_entry = { 691 .next_hop = next_hop, 692 .depth = depth, 693 .valid = VALID, 694 .valid_group = VALID, 695 .ext_entry = 0, 696 }; 697 698 tbl[i] = new_tbl_entry; 699 700 } else if (tbl[i].ext_entry == 1) { 701 702 /* 703 * If tbl entry is valid and extended calculate the index 704 * into next tbl8 and expand the rule across the data structure. 705 */ 706 tbl8_gindex = tbl[i].lpm6_tbl8_gindex * 707 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES; 708 expand_rule(lpm, tbl8_gindex, depth, depth, 709 next_hop, VALID); 710 } 711 } 712 713 /* update tbl8 rule reference counter */ 714 if (tbl_ind != TBL24_IND && is_new_rule) 715 lpm->tbl8_hdrs[tbl_ind].ref_cnt++; 716 717 return 0; 718 } 719 /* 720 * If this is not the last step just fill one position 721 * and calculate the index to the next table. 722 */ 723 else { 724 /* If it's invalid a new tbl8 is needed */ 725 if (!tbl[entry_ind].valid) { 726 /* get a new table */ 727 ret = tbl8_get(lpm, &tbl8_gindex); 728 if (ret != 0) 729 return -ENOSPC; 730 731 /* invalidate all new tbl8 entries */ 732 tbl8_group_start = tbl8_gindex * 733 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES; 734 memset(&lpm->tbl8[tbl8_group_start], 0, 735 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * 736 sizeof(struct rte_lpm6_tbl_entry)); 737 738 /* init the new table's header: 739 * save the reference to the owner table 740 */ 741 init_tbl8_header(lpm, tbl8_gindex, tbl_ind, entry_ind); 742 743 /* reference to a new tbl8 */ 744 struct rte_lpm6_tbl_entry new_tbl_entry = { 745 .lpm6_tbl8_gindex = tbl8_gindex, 746 .depth = 0, 747 .valid = VALID, 748 .valid_group = VALID, 749 .ext_entry = 1, 750 }; 751 752 tbl[entry_ind] = new_tbl_entry; 753 754 /* update the current table's reference counter */ 755 if (tbl_ind != TBL24_IND) 756 lpm->tbl8_hdrs[tbl_ind].ref_cnt++; 757 } 758 /* 759 * If it's valid but not extended the rule that was stored 760 * here needs to be moved to the next table. 761 */ 762 else if (tbl[entry_ind].ext_entry == 0) { 763 /* get a new tbl8 index */ 764 ret = tbl8_get(lpm, &tbl8_gindex); 765 if (ret != 0) 766 return -ENOSPC; 767 768 tbl8_group_start = tbl8_gindex * 769 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES; 770 tbl8_group_end = tbl8_group_start + 771 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES; 772 773 struct rte_lpm6_tbl_entry tbl_entry = { 774 .next_hop = tbl[entry_ind].next_hop, 775 .depth = tbl[entry_ind].depth, 776 .valid = VALID, 777 .valid_group = VALID, 778 .ext_entry = 0 779 }; 780 781 /* Populate new tbl8 with tbl value. */ 782 for (i = tbl8_group_start; i < tbl8_group_end; i++) 783 lpm->tbl8[i] = tbl_entry; 784 785 /* init the new table's header: 786 * save the reference to the owner table 787 */ 788 init_tbl8_header(lpm, tbl8_gindex, tbl_ind, entry_ind); 789 790 /* 791 * Update tbl entry to point to new tbl8 entry. Note: The 792 * ext_flag and tbl8_index need to be updated simultaneously, 793 * so assign whole structure in one go. 794 */ 795 struct rte_lpm6_tbl_entry new_tbl_entry = { 796 .lpm6_tbl8_gindex = tbl8_gindex, 797 .depth = 0, 798 .valid = VALID, 799 .valid_group = VALID, 800 .ext_entry = 1, 801 }; 802 803 tbl[entry_ind] = new_tbl_entry; 804 805 /* update the current table's reference counter */ 806 if (tbl_ind != TBL24_IND) 807 lpm->tbl8_hdrs[tbl_ind].ref_cnt++; 808 } 809 810 *next_tbl_ind = tbl[entry_ind].lpm6_tbl8_gindex; 811 *next_tbl = &(lpm->tbl8[*next_tbl_ind * 812 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES]); 813 } 814 815 return 1; 816 } 817 818 /* 819 * Simulate adding a route to LPM 820 * 821 * Returns: 822 * 0 on success 823 * -ENOSPC not enough tbl8 left 824 */ 825 static int 826 simulate_add(struct rte_lpm6 *lpm, const uint8_t *masked_ip, uint8_t depth) 827 { 828 struct rte_lpm6_tbl_entry *tbl; 829 struct rte_lpm6_tbl_entry *tbl_next = NULL; 830 int ret, i; 831 832 /* number of new tables needed for a step */ 833 uint32_t need_tbl_nb; 834 /* total number of new tables needed */ 835 uint32_t total_need_tbl_nb; 836 837 /* Inspect the first three bytes through tbl24 on the first step. */ 838 ret = simulate_add_step(lpm, lpm->tbl24, &tbl_next, masked_ip, 839 ADD_FIRST_BYTE, 1, depth, &need_tbl_nb); 840 total_need_tbl_nb = need_tbl_nb; 841 /* 842 * Inspect one by one the rest of the bytes until 843 * the process is completed. 844 */ 845 for (i = ADD_FIRST_BYTE; i < RTE_LPM6_IPV6_ADDR_SIZE && ret == 1; i++) { 846 tbl = tbl_next; 847 ret = simulate_add_step(lpm, tbl, &tbl_next, masked_ip, 1, 848 (uint8_t)(i + 1), depth, &need_tbl_nb); 849 total_need_tbl_nb += need_tbl_nb; 850 } 851 852 if (tbl8_available(lpm) < total_need_tbl_nb) 853 /* not enough tbl8 to add a rule */ 854 return -ENOSPC; 855 856 return 0; 857 } 858 859 /* 860 * Add a route 861 */ 862 int 863 rte_lpm6_add(struct rte_lpm6 *lpm, const uint8_t *ip, uint8_t depth, 864 uint32_t next_hop, int is_new_rule) 865 { 866 struct rte_lpm6_tbl_entry *tbl; 867 struct rte_lpm6_tbl_entry *tbl_next = NULL; 868 /* init to avoid compiler warning */ 869 uint32_t tbl_next_num = 123456; 870 int status; 871 uint8_t masked_ip[RTE_LPM6_IPV6_ADDR_SIZE]; 872 int i; 873 874 /* Check user arguments. */ 875 if ((lpm == NULL) || (depth < 1) || (depth > RTE_LPM6_MAX_DEPTH)) 876 return -EINVAL; 877 878 /* Copy the IP and mask it to avoid modifying user's input data. */ 879 ip6_copy_addr(masked_ip, ip); 880 ip6_mask_addr(masked_ip, depth); 881 882 /* Simulate adding a new route */ 883 int ret = simulate_add(lpm, masked_ip, depth); 884 if (ret < 0) 885 return ret; 886 887 #if 0 888 /* Add the rule to the rule table. */ 889 int is_new_rule = rule_add(lpm, masked_ip, depth, next_hop); 890 /* If there is no space available for new rule return error. */ 891 if (is_new_rule < 0) 892 return is_new_rule; 893 #endif 894 895 /* Inspect the first three bytes through tbl24 on the first step. */ 896 tbl = lpm->tbl24; 897 status = add_step(lpm, tbl, TBL24_IND, &tbl_next, &tbl_next_num, 898 masked_ip, ADD_FIRST_BYTE, 1, depth, next_hop, 899 is_new_rule); 900 assert(status >= 0); 901 902 /* 903 * Inspect one by one the rest of the bytes until 904 * the process is completed. 905 */ 906 for (i = ADD_FIRST_BYTE; i < RTE_LPM6_IPV6_ADDR_SIZE && status == 1; i++) { 907 tbl = tbl_next; 908 status = add_step(lpm, tbl, tbl_next_num, &tbl_next, 909 &tbl_next_num, masked_ip, 1, (uint8_t)(i + 1), 910 depth, next_hop, is_new_rule); 911 assert(status >= 0); 912 } 913 914 return status; 915 } 916 917 /* 918 * Takes a pointer to a table entry and inspect one level. 919 * The function returns 0 on lookup success, ENOENT if no match was found 920 * or 1 if the process needs to be continued by calling the function again. 921 */ 922 static inline int 923 lookup_step(const struct rte_lpm6 *lpm, const struct rte_lpm6_tbl_entry *tbl, 924 const struct rte_lpm6_tbl_entry **tbl_next, const uint8_t *ip, 925 uint8_t first_byte, uint32_t *next_hop) 926 { 927 uint32_t tbl8_index, tbl_entry; 928 929 /* Take the integer value from the pointer. */ 930 tbl_entry = *(const uint32_t *)tbl; 931 932 /* If it is valid and extended we calculate the new pointer to return. */ 933 if ((tbl_entry & RTE_LPM6_VALID_EXT_ENTRY_BITMASK) == 934 RTE_LPM6_VALID_EXT_ENTRY_BITMASK) { 935 936 tbl8_index = ip[first_byte-1] + 937 ((tbl_entry & RTE_LPM6_TBL8_BITMASK) * 938 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES); 939 940 *tbl_next = &lpm->tbl8[tbl8_index]; 941 942 return 1; 943 } else { 944 /* If not extended then we can have a match. */ 945 *next_hop = ((uint32_t)tbl_entry & RTE_LPM6_TBL8_BITMASK); 946 return (tbl_entry & RTE_LPM6_LOOKUP_SUCCESS) ? 0 : -ENOENT; 947 } 948 } 949 950 /* 951 * Looks up an IP 952 */ 953 int 954 rte_lpm6_lookup(const struct rte_lpm6 *lpm, const uint8_t *ip, 955 uint32_t *next_hop) 956 { 957 const struct rte_lpm6_tbl_entry *tbl; 958 const struct rte_lpm6_tbl_entry *tbl_next = NULL; 959 int status; 960 uint8_t first_byte; 961 uint32_t tbl24_index; 962 963 /* DEBUG: Check user input arguments. */ 964 if ((lpm == NULL) || (ip == NULL) || (next_hop == NULL)) 965 return -EINVAL; 966 967 first_byte = LOOKUP_FIRST_BYTE; 968 tbl24_index = (ip[0] << BYTES2_SIZE) | (ip[1] << BYTE_SIZE) | ip[2]; 969 970 /* Calculate pointer to the first entry to be inspected */ 971 tbl = &lpm->tbl24[tbl24_index]; 972 973 do { 974 /* Continue inspecting following levels until success or failure */ 975 status = lookup_step(lpm, tbl, &tbl_next, ip, first_byte++, next_hop); 976 tbl = tbl_next; 977 } while (status == 1); 978 979 return status; 980 } 981 982 /* 983 * Looks up a group of IP addresses 984 */ 985 int 986 rte_lpm6_lookup_bulk_func(const struct rte_lpm6 *lpm, 987 uint8_t ips[][RTE_LPM6_IPV6_ADDR_SIZE], 988 int32_t *next_hops, unsigned int n) 989 { 990 unsigned int i; 991 const struct rte_lpm6_tbl_entry *tbl; 992 const struct rte_lpm6_tbl_entry *tbl_next = NULL; 993 uint32_t tbl24_index, next_hop; 994 uint8_t first_byte; 995 int status; 996 997 /* DEBUG: Check user input arguments. */ 998 if ((lpm == NULL) || (ips == NULL) || (next_hops == NULL)) 999 return -EINVAL; 1000 1001 for (i = 0; i < n; i++) { 1002 first_byte = LOOKUP_FIRST_BYTE; 1003 tbl24_index = (ips[i][0] << BYTES2_SIZE) | 1004 (ips[i][1] << BYTE_SIZE) | ips[i][2]; 1005 1006 /* Calculate pointer to the first entry to be inspected */ 1007 tbl = &lpm->tbl24[tbl24_index]; 1008 1009 do { 1010 /* Continue inspecting following levels 1011 * until success or failure 1012 */ 1013 status = lookup_step(lpm, tbl, &tbl_next, ips[i], 1014 first_byte++, &next_hop); 1015 tbl = tbl_next; 1016 } while (status == 1); 1017 1018 if (status < 0) 1019 next_hops[i] = -1; 1020 else 1021 next_hops[i] = (int32_t)next_hop; 1022 } 1023 1024 return 0; 1025 } 1026 1027 struct rte_lpm6_rule * 1028 fill_rule6(char *buffer, const uint8_t *ip, uint8_t depth, uint32_t next_hop) 1029 { 1030 struct rte_lpm6_rule *rule = (struct rte_lpm6_rule *)buffer; 1031 1032 ip6_copy_addr((uint8_t *)&rule->ip, ip); 1033 rule->depth = depth; 1034 rule->next_hop = next_hop; 1035 1036 return (rule); 1037 } 1038 1039 #if 0 1040 /* 1041 * Look for a rule in the high-level rules table 1042 */ 1043 int 1044 rte_lpm6_is_rule_present(struct rte_lpm6 *lpm, const uint8_t *ip, uint8_t depth, 1045 uint32_t *next_hop) 1046 { 1047 uint8_t masked_ip[RTE_LPM6_IPV6_ADDR_SIZE]; 1048 1049 /* Check user arguments. */ 1050 if ((lpm == NULL) || next_hop == NULL || ip == NULL || 1051 (depth < 1) || (depth > RTE_LPM6_MAX_DEPTH)) 1052 return -EINVAL; 1053 1054 /* Copy the IP and mask it to avoid modifying user's input data. */ 1055 ip6_copy_addr(masked_ip, ip); 1056 ip6_mask_addr(masked_ip, depth); 1057 1058 return rule_find(lpm, masked_ip, depth, next_hop); 1059 } 1060 1061 /* 1062 * Delete a rule from the rule table. 1063 * NOTE: Valid range for depth parameter is 1 .. 128 inclusive. 1064 * return 1065 * 0 on success 1066 * <0 on failure 1067 */ 1068 static inline int 1069 rule_delete(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth) 1070 { 1071 int ret; 1072 struct rte_lpm6_rule_key rule_key; 1073 1074 /* init rule key */ 1075 rule_key_init(&rule_key, ip, depth); 1076 1077 /* delete the rule */ 1078 ret = rte_hash_del_key(lpm->rules_tbl, (void *) &rule_key); 1079 if (ret >= 0) 1080 lpm->used_rules--; 1081 1082 return ret; 1083 } 1084 1085 /* 1086 * Deletes a group of rules 1087 * 1088 * Note that the function rebuilds the lpm table, 1089 * rather than doing incremental updates like 1090 * the regular delete function 1091 */ 1092 int 1093 rte_lpm6_delete_bulk_func(struct rte_lpm6 *lpm, 1094 uint8_t ips[][RTE_LPM6_IPV6_ADDR_SIZE], uint8_t *depths, 1095 unsigned n) 1096 { 1097 uint8_t masked_ip[RTE_LPM6_IPV6_ADDR_SIZE]; 1098 unsigned i; 1099 1100 /* Check input arguments. */ 1101 if ((lpm == NULL) || (ips == NULL) || (depths == NULL)) 1102 return -EINVAL; 1103 1104 for (i = 0; i < n; i++) { 1105 ip6_copy_addr(masked_ip, ips[i]); 1106 ip6_mask_addr(masked_ip, depths[i]); 1107 rule_delete(lpm, masked_ip, depths[i]); 1108 } 1109 1110 /* 1111 * Set all the table entries to 0 (ie delete every rule 1112 * from the data structure. 1113 */ 1114 memset(lpm->tbl24, 0, sizeof(lpm->tbl24)); 1115 memset(lpm->tbl8, 0, sizeof(lpm->tbl8[0]) 1116 * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * lpm->number_tbl8s); 1117 tbl8_pool_init(lpm); 1118 1119 /* 1120 * Add every rule again (except for the ones that were removed from 1121 * the rules table). 1122 */ 1123 rebuild_lpm(lpm); 1124 1125 return 0; 1126 } 1127 1128 /* 1129 * Delete all rules from the LPM table. 1130 */ 1131 void 1132 rte_lpm6_delete_all(struct rte_lpm6 *lpm) 1133 { 1134 /* Zero used rules counter. */ 1135 lpm->used_rules = 0; 1136 1137 /* Zero tbl24. */ 1138 memset(lpm->tbl24, 0, sizeof(lpm->tbl24)); 1139 1140 /* Zero tbl8. */ 1141 memset(lpm->tbl8, 0, sizeof(lpm->tbl8[0]) * 1142 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * lpm->number_tbl8s); 1143 1144 /* init pool of free tbl8 indexes */ 1145 tbl8_pool_init(lpm); 1146 1147 /* Delete all rules form the rules table. */ 1148 rte_hash_reset(lpm->rules_tbl); 1149 } 1150 #endif 1151 1152 /* 1153 * Convert a depth to a one byte long mask 1154 * Example: 4 will be converted to 0xF0 1155 */ 1156 static uint8_t __attribute__((pure)) 1157 depth_to_mask_1b(uint8_t depth) 1158 { 1159 /* To calculate a mask start with a 1 on the left hand side and right 1160 * shift while populating the left hand side with 1's 1161 */ 1162 return (signed char)0x80 >> (depth - 1); 1163 } 1164 1165 #if 0 1166 /* 1167 * Find a less specific rule 1168 */ 1169 static int 1170 rule_find_less_specific(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth, 1171 struct rte_lpm6_rule *rule) 1172 { 1173 int ret; 1174 uint32_t next_hop; 1175 uint8_t mask; 1176 struct rte_lpm6_rule_key rule_key; 1177 1178 if (depth == 1) 1179 return 0; 1180 1181 rule_key_init(&rule_key, ip, depth); 1182 1183 while (depth > 1) { 1184 depth--; 1185 1186 /* each iteration zero one more bit of the key */ 1187 mask = depth & 7; /* depth % BYTE_SIZE */ 1188 if (mask > 0) 1189 mask = depth_to_mask_1b(mask); 1190 1191 rule_key.depth = depth; 1192 rule_key.ip[depth >> 3] &= mask; 1193 1194 ret = rule_find_with_key(lpm, &rule_key, &next_hop); 1195 if (ret) { 1196 rule->depth = depth; 1197 ip6_copy_addr(rule->ip, rule_key.ip); 1198 rule->next_hop = next_hop; 1199 return 1; 1200 } 1201 } 1202 1203 return 0; 1204 } 1205 #endif 1206 1207 /* 1208 * Find range of tbl8 cells occupied by a rule 1209 */ 1210 static void 1211 rule_find_range(struct rte_lpm6 *lpm, const uint8_t *ip, uint8_t depth, 1212 struct rte_lpm6_tbl_entry **from, 1213 struct rte_lpm6_tbl_entry **to, 1214 uint32_t *out_tbl_ind) 1215 { 1216 uint32_t ind; 1217 uint32_t first_3bytes = (uint32_t)ip[0] << 16 | ip[1] << 8 | ip[2]; 1218 1219 if (depth <= 24) { 1220 /* rule is within the top level */ 1221 ind = first_3bytes; 1222 *from = &lpm->tbl24[ind]; 1223 ind += (1 << (24 - depth)) - 1; 1224 *to = &lpm->tbl24[ind]; 1225 *out_tbl_ind = TBL24_IND; 1226 } else { 1227 /* top level entry */ 1228 struct rte_lpm6_tbl_entry *tbl = &lpm->tbl24[first_3bytes]; 1229 assert(tbl->ext_entry == 1); 1230 /* first tbl8 */ 1231 uint32_t tbl_ind = tbl->lpm6_tbl8_gindex; 1232 tbl = &lpm->tbl8[tbl_ind * 1233 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES]; 1234 /* current ip byte, the top level is already behind */ 1235 uint8_t byte = 3; 1236 /* minus top level */ 1237 depth -= 24; 1238 1239 /* iterate through levels (tbl8s) 1240 * until we reach the last one 1241 */ 1242 while (depth > 8) { 1243 tbl += ip[byte]; 1244 assert(tbl->ext_entry == 1); 1245 /* go to the next level/tbl8 */ 1246 tbl_ind = tbl->lpm6_tbl8_gindex; 1247 tbl = &lpm->tbl8[tbl_ind * 1248 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES]; 1249 byte += 1; 1250 depth -= 8; 1251 } 1252 1253 /* last level/tbl8 */ 1254 ind = ip[byte] & depth_to_mask_1b(depth); 1255 *from = &tbl[ind]; 1256 ind += (1 << (8 - depth)) - 1; 1257 *to = &tbl[ind]; 1258 *out_tbl_ind = tbl_ind; 1259 } 1260 } 1261 1262 /* 1263 * Remove a table from the LPM tree 1264 */ 1265 static void 1266 remove_tbl(struct rte_lpm6 *lpm, struct rte_lpm_tbl8_hdr *tbl_hdr, 1267 uint32_t tbl_ind, struct rte_lpm6_rule *lsp_rule) 1268 { 1269 struct rte_lpm6_tbl_entry *owner_entry; 1270 1271 if (tbl_hdr->owner_tbl_ind == TBL24_IND) 1272 owner_entry = &lpm->tbl24[tbl_hdr->owner_entry_ind]; 1273 else { 1274 uint32_t owner_tbl_ind = tbl_hdr->owner_tbl_ind; 1275 owner_entry = &lpm->tbl8[ 1276 owner_tbl_ind * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES + 1277 tbl_hdr->owner_entry_ind]; 1278 1279 struct rte_lpm_tbl8_hdr *owner_tbl_hdr = 1280 &lpm->tbl8_hdrs[owner_tbl_ind]; 1281 if (--owner_tbl_hdr->ref_cnt == 0) 1282 remove_tbl(lpm, owner_tbl_hdr, owner_tbl_ind, lsp_rule); 1283 } 1284 1285 assert(owner_entry->ext_entry == 1); 1286 1287 /* unlink the table */ 1288 if (lsp_rule != NULL) { 1289 struct rte_lpm6_tbl_entry new_tbl_entry = { 1290 .next_hop = lsp_rule->next_hop, 1291 .depth = lsp_rule->depth, 1292 .valid = VALID, 1293 .valid_group = VALID, 1294 .ext_entry = 0 1295 }; 1296 1297 *owner_entry = new_tbl_entry; 1298 } else { 1299 struct rte_lpm6_tbl_entry new_tbl_entry = { 1300 .next_hop = 0, 1301 .depth = 0, 1302 .valid = INVALID, 1303 .valid_group = INVALID, 1304 .ext_entry = 0 1305 }; 1306 1307 *owner_entry = new_tbl_entry; 1308 } 1309 1310 /* return the table to the pool */ 1311 tbl8_put(lpm, tbl_ind); 1312 } 1313 1314 /* 1315 * Deletes a rule 1316 */ 1317 int 1318 rte_lpm6_delete(struct rte_lpm6 *lpm, const uint8_t *ip, uint8_t depth, 1319 struct rte_lpm6_rule *lsp_rule) 1320 { 1321 uint8_t masked_ip[RTE_LPM6_IPV6_ADDR_SIZE]; 1322 //struct rte_lpm6_rule lsp_rule_obj; 1323 //struct rte_lpm6_rule *lsp_rule; 1324 //int ret; 1325 uint32_t tbl_ind; 1326 struct rte_lpm6_tbl_entry *from, *to; 1327 1328 /* Check input arguments. */ 1329 if ((lpm == NULL) || (depth < 1) || (depth > RTE_LPM6_MAX_DEPTH)) 1330 return -EINVAL; 1331 1332 /* Copy the IP and mask it to avoid modifying user's input data. */ 1333 ip6_copy_addr(masked_ip, ip); 1334 ip6_mask_addr(masked_ip, depth); 1335 1336 #if 0 1337 /* Delete the rule from the rule table. */ 1338 ret = rule_delete(lpm, masked_ip, depth); 1339 if (ret < 0) 1340 return -ENOENT; 1341 #endif 1342 1343 /* find rule cells */ 1344 rule_find_range(lpm, masked_ip, depth, &from, &to, &tbl_ind); 1345 1346 #if 0 1347 /* find a less specific rule (a rule with smaller depth) 1348 * note: masked_ip will be modified, don't use it anymore 1349 */ 1350 ret = rule_find_less_specific(lpm, masked_ip, depth, 1351 &lsp_rule_obj); 1352 lsp_rule = ret ? &lsp_rule_obj : NULL; 1353 #endif 1354 /* decrement the table rule counter, 1355 * note that tbl24 doesn't have a header 1356 */ 1357 if (tbl_ind != TBL24_IND) { 1358 struct rte_lpm_tbl8_hdr *tbl_hdr = &lpm->tbl8_hdrs[tbl_ind]; 1359 if (--tbl_hdr->ref_cnt == 0) { 1360 /* remove the table */ 1361 remove_tbl(lpm, tbl_hdr, tbl_ind, lsp_rule); 1362 return 0; 1363 } 1364 } 1365 1366 /* iterate rule cells */ 1367 for (; from <= to; from++) 1368 if (from->ext_entry == 1) { 1369 /* reference to a more specific space 1370 * of the prefix/rule. Entries in a more 1371 * specific space that are not used by 1372 * a more specific prefix must be occupied 1373 * by the prefix 1374 */ 1375 if (lsp_rule != NULL) 1376 expand_rule(lpm, 1377 from->lpm6_tbl8_gindex * 1378 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES, 1379 depth, lsp_rule->depth, 1380 lsp_rule->next_hop, VALID); 1381 else 1382 /* since the prefix has no less specific prefix, 1383 * its more specific space must be invalidated 1384 */ 1385 expand_rule(lpm, 1386 from->lpm6_tbl8_gindex * 1387 RTE_LPM6_TBL8_GROUP_NUM_ENTRIES, 1388 depth, 0, 0, INVALID); 1389 } else if (from->depth == depth) { 1390 /* entry is not a reference and belongs to the prefix */ 1391 if (lsp_rule != NULL) { 1392 struct rte_lpm6_tbl_entry new_tbl_entry = { 1393 .next_hop = lsp_rule->next_hop, 1394 .depth = lsp_rule->depth, 1395 .valid = VALID, 1396 .valid_group = VALID, 1397 .ext_entry = 0 1398 }; 1399 1400 *from = new_tbl_entry; 1401 } else { 1402 struct rte_lpm6_tbl_entry new_tbl_entry = { 1403 .next_hop = 0, 1404 .depth = 0, 1405 .valid = INVALID, 1406 .valid_group = INVALID, 1407 .ext_entry = 0 1408 }; 1409 1410 *from = new_tbl_entry; 1411 } 1412 } 1413 1414 return 0; 1415 } 1416