1 // SPDX-License-Identifier: BSD-3-Clause-Clear 2 /* 3 * Copyright (c) 2018-2021 The Linux Foundation. All rights reserved. 4 * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved. 5 */ 6 7 #include <linux/ieee80211.h> 8 #include <linux/kernel.h> 9 #include <linux/skbuff.h> 10 #include <crypto/hash.h> 11 #include "core.h" 12 #include "debug.h" 13 #include "hal_desc.h" 14 #include "hw.h" 15 #include "dp_rx.h" 16 #include "hal_rx.h" 17 #include "dp_tx.h" 18 #include "peer.h" 19 #include "dp_mon.h" 20 21 #define ATH12K_DP_RX_FRAGMENT_TIMEOUT_MS (2 * HZ) 22 23 static enum hal_encrypt_type ath12k_dp_rx_h_enctype(struct ath12k_base *ab, 24 struct hal_rx_desc *desc) 25 { 26 if (!ab->hw_params->hal_ops->rx_desc_encrypt_valid(desc)) 27 return HAL_ENCRYPT_TYPE_OPEN; 28 29 return ab->hw_params->hal_ops->rx_desc_get_encrypt_type(desc); 30 } 31 32 u8 ath12k_dp_rx_h_decap_type(struct ath12k_base *ab, 33 struct hal_rx_desc *desc) 34 { 35 return ab->hw_params->hal_ops->rx_desc_get_decap_type(desc); 36 } 37 38 static u8 ath12k_dp_rx_h_mesh_ctl_present(struct ath12k_base *ab, 39 struct hal_rx_desc *desc) 40 { 41 return ab->hw_params->hal_ops->rx_desc_get_mesh_ctl(desc); 42 } 43 44 static bool ath12k_dp_rx_h_seq_ctrl_valid(struct ath12k_base *ab, 45 struct hal_rx_desc *desc) 46 { 47 return ab->hw_params->hal_ops->rx_desc_get_mpdu_seq_ctl_vld(desc); 48 } 49 50 static bool ath12k_dp_rx_h_fc_valid(struct ath12k_base *ab, 51 struct hal_rx_desc *desc) 52 { 53 return ab->hw_params->hal_ops->rx_desc_get_mpdu_fc_valid(desc); 54 } 55 56 static bool ath12k_dp_rx_h_more_frags(struct ath12k_base *ab, 57 struct sk_buff *skb) 58 { 59 struct ieee80211_hdr *hdr; 60 61 hdr = (struct ieee80211_hdr *)(skb->data + ab->hw_params->hal_desc_sz); 62 return ieee80211_has_morefrags(hdr->frame_control); 63 } 64 65 static u16 ath12k_dp_rx_h_frag_no(struct ath12k_base *ab, 66 struct sk_buff *skb) 67 { 68 struct ieee80211_hdr *hdr; 69 70 hdr = (struct ieee80211_hdr *)(skb->data + ab->hw_params->hal_desc_sz); 71 return le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; 72 } 73 74 static u16 ath12k_dp_rx_h_seq_no(struct ath12k_base *ab, 75 struct hal_rx_desc *desc) 76 { 77 return ab->hw_params->hal_ops->rx_desc_get_mpdu_start_seq_no(desc); 78 } 79 80 static bool ath12k_dp_rx_h_msdu_done(struct ath12k_base *ab, 81 struct hal_rx_desc *desc) 82 { 83 return ab->hw_params->hal_ops->dp_rx_h_msdu_done(desc); 84 } 85 86 static bool ath12k_dp_rx_h_l4_cksum_fail(struct ath12k_base *ab, 87 struct hal_rx_desc *desc) 88 { 89 return ab->hw_params->hal_ops->dp_rx_h_l4_cksum_fail(desc); 90 } 91 92 static bool ath12k_dp_rx_h_ip_cksum_fail(struct ath12k_base *ab, 93 struct hal_rx_desc *desc) 94 { 95 return ab->hw_params->hal_ops->dp_rx_h_ip_cksum_fail(desc); 96 } 97 98 static bool ath12k_dp_rx_h_is_decrypted(struct ath12k_base *ab, 99 struct hal_rx_desc *desc) 100 { 101 return ab->hw_params->hal_ops->dp_rx_h_is_decrypted(desc); 102 } 103 104 u32 ath12k_dp_rx_h_mpdu_err(struct ath12k_base *ab, 105 struct hal_rx_desc *desc) 106 { 107 return ab->hw_params->hal_ops->dp_rx_h_mpdu_err(desc); 108 } 109 110 static u16 ath12k_dp_rx_h_msdu_len(struct ath12k_base *ab, 111 struct hal_rx_desc *desc) 112 { 113 return ab->hw_params->hal_ops->rx_desc_get_msdu_len(desc); 114 } 115 116 static u8 ath12k_dp_rx_h_sgi(struct ath12k_base *ab, 117 struct hal_rx_desc *desc) 118 { 119 return ab->hw_params->hal_ops->rx_desc_get_msdu_sgi(desc); 120 } 121 122 static u8 ath12k_dp_rx_h_rate_mcs(struct ath12k_base *ab, 123 struct hal_rx_desc *desc) 124 { 125 return ab->hw_params->hal_ops->rx_desc_get_msdu_rate_mcs(desc); 126 } 127 128 static u8 ath12k_dp_rx_h_rx_bw(struct ath12k_base *ab, 129 struct hal_rx_desc *desc) 130 { 131 return ab->hw_params->hal_ops->rx_desc_get_msdu_rx_bw(desc); 132 } 133 134 static u32 ath12k_dp_rx_h_freq(struct ath12k_base *ab, 135 struct hal_rx_desc *desc) 136 { 137 return ab->hw_params->hal_ops->rx_desc_get_msdu_freq(desc); 138 } 139 140 static u8 ath12k_dp_rx_h_pkt_type(struct ath12k_base *ab, 141 struct hal_rx_desc *desc) 142 { 143 return ab->hw_params->hal_ops->rx_desc_get_msdu_pkt_type(desc); 144 } 145 146 static u8 ath12k_dp_rx_h_nss(struct ath12k_base *ab, 147 struct hal_rx_desc *desc) 148 { 149 return hweight8(ab->hw_params->hal_ops->rx_desc_get_msdu_nss(desc)); 150 } 151 152 static u8 ath12k_dp_rx_h_tid(struct ath12k_base *ab, 153 struct hal_rx_desc *desc) 154 { 155 return ab->hw_params->hal_ops->rx_desc_get_mpdu_tid(desc); 156 } 157 158 static u16 ath12k_dp_rx_h_peer_id(struct ath12k_base *ab, 159 struct hal_rx_desc *desc) 160 { 161 return ab->hw_params->hal_ops->rx_desc_get_mpdu_peer_id(desc); 162 } 163 164 u8 ath12k_dp_rx_h_l3pad(struct ath12k_base *ab, 165 struct hal_rx_desc *desc) 166 { 167 return ab->hw_params->hal_ops->rx_desc_get_l3_pad_bytes(desc); 168 } 169 170 static bool ath12k_dp_rx_h_first_msdu(struct ath12k_base *ab, 171 struct hal_rx_desc *desc) 172 { 173 return ab->hw_params->hal_ops->rx_desc_get_first_msdu(desc); 174 } 175 176 static bool ath12k_dp_rx_h_last_msdu(struct ath12k_base *ab, 177 struct hal_rx_desc *desc) 178 { 179 return ab->hw_params->hal_ops->rx_desc_get_last_msdu(desc); 180 } 181 182 static void ath12k_dp_rx_desc_end_tlv_copy(struct ath12k_base *ab, 183 struct hal_rx_desc *fdesc, 184 struct hal_rx_desc *ldesc) 185 { 186 ab->hw_params->hal_ops->rx_desc_copy_end_tlv(fdesc, ldesc); 187 } 188 189 static void ath12k_dp_rxdesc_set_msdu_len(struct ath12k_base *ab, 190 struct hal_rx_desc *desc, 191 u16 len) 192 { 193 ab->hw_params->hal_ops->rx_desc_set_msdu_len(desc, len); 194 } 195 196 static bool ath12k_dp_rx_h_is_da_mcbc(struct ath12k_base *ab, 197 struct hal_rx_desc *desc) 198 { 199 return (ath12k_dp_rx_h_first_msdu(ab, desc) && 200 ab->hw_params->hal_ops->rx_desc_is_da_mcbc(desc)); 201 } 202 203 static bool ath12k_dp_rxdesc_mac_addr2_valid(struct ath12k_base *ab, 204 struct hal_rx_desc *desc) 205 { 206 return ab->hw_params->hal_ops->rx_desc_mac_addr2_valid(desc); 207 } 208 209 static u8 *ath12k_dp_rxdesc_get_mpdu_start_addr2(struct ath12k_base *ab, 210 struct hal_rx_desc *desc) 211 { 212 return ab->hw_params->hal_ops->rx_desc_mpdu_start_addr2(desc); 213 } 214 215 static void ath12k_dp_rx_desc_get_dot11_hdr(struct ath12k_base *ab, 216 struct hal_rx_desc *desc, 217 struct ieee80211_hdr *hdr) 218 { 219 ab->hw_params->hal_ops->rx_desc_get_dot11_hdr(desc, hdr); 220 } 221 222 static void ath12k_dp_rx_desc_get_crypto_header(struct ath12k_base *ab, 223 struct hal_rx_desc *desc, 224 u8 *crypto_hdr, 225 enum hal_encrypt_type enctype) 226 { 227 ab->hw_params->hal_ops->rx_desc_get_crypto_header(desc, crypto_hdr, enctype); 228 } 229 230 static u16 ath12k_dp_rxdesc_get_mpdu_frame_ctrl(struct ath12k_base *ab, 231 struct hal_rx_desc *desc) 232 { 233 return ab->hw_params->hal_ops->rx_desc_get_mpdu_frame_ctl(desc); 234 } 235 236 static int ath12k_dp_purge_mon_ring(struct ath12k_base *ab) 237 { 238 int i, reaped = 0; 239 unsigned long timeout = jiffies + msecs_to_jiffies(DP_MON_PURGE_TIMEOUT_MS); 240 241 do { 242 for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) 243 reaped += ath12k_dp_mon_process_ring(ab, i, NULL, 244 DP_MON_SERVICE_BUDGET, 245 ATH12K_DP_RX_MONITOR_MODE); 246 247 /* nothing more to reap */ 248 if (reaped < DP_MON_SERVICE_BUDGET) 249 return 0; 250 251 } while (time_before(jiffies, timeout)); 252 253 ath12k_warn(ab, "dp mon ring purge timeout"); 254 255 return -ETIMEDOUT; 256 } 257 258 /* Returns number of Rx buffers replenished */ 259 int ath12k_dp_rx_bufs_replenish(struct ath12k_base *ab, int mac_id, 260 struct dp_rxdma_ring *rx_ring, 261 int req_entries, 262 enum hal_rx_buf_return_buf_manager mgr, 263 bool hw_cc) 264 { 265 struct ath12k_buffer_addr *desc; 266 struct hal_srng *srng; 267 struct sk_buff *skb; 268 int num_free; 269 int num_remain; 270 int buf_id; 271 u32 cookie; 272 dma_addr_t paddr; 273 struct ath12k_dp *dp = &ab->dp; 274 struct ath12k_rx_desc_info *rx_desc; 275 276 req_entries = min(req_entries, rx_ring->bufs_max); 277 278 srng = &ab->hal.srng_list[rx_ring->refill_buf_ring.ring_id]; 279 280 spin_lock_bh(&srng->lock); 281 282 ath12k_hal_srng_access_begin(ab, srng); 283 284 num_free = ath12k_hal_srng_src_num_free(ab, srng, true); 285 if (!req_entries && (num_free > (rx_ring->bufs_max * 3) / 4)) 286 req_entries = num_free; 287 288 req_entries = min(num_free, req_entries); 289 num_remain = req_entries; 290 291 while (num_remain > 0) { 292 skb = dev_alloc_skb(DP_RX_BUFFER_SIZE + 293 DP_RX_BUFFER_ALIGN_SIZE); 294 if (!skb) 295 break; 296 297 if (!IS_ALIGNED((unsigned long)skb->data, 298 DP_RX_BUFFER_ALIGN_SIZE)) { 299 skb_pull(skb, 300 PTR_ALIGN(skb->data, DP_RX_BUFFER_ALIGN_SIZE) - 301 skb->data); 302 } 303 304 paddr = dma_map_single(ab->dev, skb->data, 305 skb->len + skb_tailroom(skb), 306 DMA_FROM_DEVICE); 307 if (dma_mapping_error(ab->dev, paddr)) 308 goto fail_free_skb; 309 310 if (hw_cc) { 311 spin_lock_bh(&dp->rx_desc_lock); 312 313 /* Get desc from free list and store in used list 314 * for cleanup purposes 315 * 316 * TODO: pass the removed descs rather than 317 * add/read to optimize 318 */ 319 rx_desc = list_first_entry_or_null(&dp->rx_desc_free_list, 320 struct ath12k_rx_desc_info, 321 list); 322 if (!rx_desc) { 323 spin_unlock_bh(&dp->rx_desc_lock); 324 goto fail_dma_unmap; 325 } 326 327 rx_desc->skb = skb; 328 cookie = rx_desc->cookie; 329 list_del(&rx_desc->list); 330 list_add_tail(&rx_desc->list, &dp->rx_desc_used_list); 331 332 spin_unlock_bh(&dp->rx_desc_lock); 333 } else { 334 spin_lock_bh(&rx_ring->idr_lock); 335 buf_id = idr_alloc(&rx_ring->bufs_idr, skb, 0, 336 rx_ring->bufs_max * 3, GFP_ATOMIC); 337 spin_unlock_bh(&rx_ring->idr_lock); 338 if (buf_id < 0) 339 goto fail_dma_unmap; 340 cookie = u32_encode_bits(mac_id, 341 DP_RXDMA_BUF_COOKIE_PDEV_ID) | 342 u32_encode_bits(buf_id, 343 DP_RXDMA_BUF_COOKIE_BUF_ID); 344 } 345 346 desc = ath12k_hal_srng_src_get_next_entry(ab, srng); 347 if (!desc) 348 goto fail_buf_unassign; 349 350 ATH12K_SKB_RXCB(skb)->paddr = paddr; 351 352 num_remain--; 353 354 ath12k_hal_rx_buf_addr_info_set(desc, paddr, cookie, mgr); 355 } 356 357 ath12k_hal_srng_access_end(ab, srng); 358 359 spin_unlock_bh(&srng->lock); 360 361 return req_entries - num_remain; 362 363 fail_buf_unassign: 364 if (hw_cc) { 365 spin_lock_bh(&dp->rx_desc_lock); 366 list_del(&rx_desc->list); 367 list_add_tail(&rx_desc->list, &dp->rx_desc_free_list); 368 rx_desc->skb = NULL; 369 spin_unlock_bh(&dp->rx_desc_lock); 370 } else { 371 spin_lock_bh(&rx_ring->idr_lock); 372 idr_remove(&rx_ring->bufs_idr, buf_id); 373 spin_unlock_bh(&rx_ring->idr_lock); 374 } 375 fail_dma_unmap: 376 dma_unmap_single(ab->dev, paddr, skb->len + skb_tailroom(skb), 377 DMA_FROM_DEVICE); 378 fail_free_skb: 379 dev_kfree_skb_any(skb); 380 381 ath12k_hal_srng_access_end(ab, srng); 382 383 spin_unlock_bh(&srng->lock); 384 385 return req_entries - num_remain; 386 } 387 388 static int ath12k_dp_rxdma_buf_ring_free(struct ath12k_base *ab, 389 struct dp_rxdma_ring *rx_ring) 390 { 391 struct sk_buff *skb; 392 int buf_id; 393 394 spin_lock_bh(&rx_ring->idr_lock); 395 idr_for_each_entry(&rx_ring->bufs_idr, skb, buf_id) { 396 idr_remove(&rx_ring->bufs_idr, buf_id); 397 /* TODO: Understand where internal driver does this dma_unmap 398 * of rxdma_buffer. 399 */ 400 dma_unmap_single(ab->dev, ATH12K_SKB_RXCB(skb)->paddr, 401 skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); 402 dev_kfree_skb_any(skb); 403 } 404 405 idr_destroy(&rx_ring->bufs_idr); 406 spin_unlock_bh(&rx_ring->idr_lock); 407 408 return 0; 409 } 410 411 static int ath12k_dp_rxdma_buf_free(struct ath12k_base *ab) 412 { 413 struct ath12k_dp *dp = &ab->dp; 414 struct dp_rxdma_ring *rx_ring = &dp->rx_refill_buf_ring; 415 416 ath12k_dp_rxdma_buf_ring_free(ab, rx_ring); 417 418 rx_ring = &dp->rxdma_mon_buf_ring; 419 ath12k_dp_rxdma_buf_ring_free(ab, rx_ring); 420 421 rx_ring = &dp->tx_mon_buf_ring; 422 ath12k_dp_rxdma_buf_ring_free(ab, rx_ring); 423 424 return 0; 425 } 426 427 static int ath12k_dp_rxdma_ring_buf_setup(struct ath12k_base *ab, 428 struct dp_rxdma_ring *rx_ring, 429 u32 ringtype) 430 { 431 int num_entries; 432 433 num_entries = rx_ring->refill_buf_ring.size / 434 ath12k_hal_srng_get_entrysize(ab, ringtype); 435 436 rx_ring->bufs_max = num_entries; 437 if ((ringtype == HAL_RXDMA_MONITOR_BUF) || (ringtype == HAL_TX_MONITOR_BUF)) 438 ath12k_dp_mon_buf_replenish(ab, rx_ring, num_entries); 439 else 440 ath12k_dp_rx_bufs_replenish(ab, 0, rx_ring, num_entries, 441 ab->hw_params->hal_params->rx_buf_rbm, 442 ringtype == HAL_RXDMA_BUF); 443 return 0; 444 } 445 446 static int ath12k_dp_rxdma_buf_setup(struct ath12k_base *ab) 447 { 448 struct ath12k_dp *dp = &ab->dp; 449 struct dp_rxdma_ring *rx_ring = &dp->rx_refill_buf_ring; 450 int ret; 451 452 ret = ath12k_dp_rxdma_ring_buf_setup(ab, rx_ring, 453 HAL_RXDMA_BUF); 454 if (ret) { 455 ath12k_warn(ab, 456 "failed to setup HAL_RXDMA_BUF\n"); 457 return ret; 458 } 459 460 if (ab->hw_params->rxdma1_enable) { 461 rx_ring = &dp->rxdma_mon_buf_ring; 462 ret = ath12k_dp_rxdma_ring_buf_setup(ab, rx_ring, 463 HAL_RXDMA_MONITOR_BUF); 464 if (ret) { 465 ath12k_warn(ab, 466 "failed to setup HAL_RXDMA_MONITOR_BUF\n"); 467 return ret; 468 } 469 470 rx_ring = &dp->tx_mon_buf_ring; 471 ret = ath12k_dp_rxdma_ring_buf_setup(ab, rx_ring, 472 HAL_TX_MONITOR_BUF); 473 if (ret) { 474 ath12k_warn(ab, 475 "failed to setup HAL_TX_MONITOR_BUF\n"); 476 return ret; 477 } 478 } 479 480 return 0; 481 } 482 483 static void ath12k_dp_rx_pdev_srng_free(struct ath12k *ar) 484 { 485 struct ath12k_pdev_dp *dp = &ar->dp; 486 struct ath12k_base *ab = ar->ab; 487 int i; 488 489 for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { 490 ath12k_dp_srng_cleanup(ab, &dp->rxdma_mon_dst_ring[i]); 491 ath12k_dp_srng_cleanup(ab, &dp->tx_mon_dst_ring[i]); 492 } 493 } 494 495 void ath12k_dp_rx_pdev_reo_cleanup(struct ath12k_base *ab) 496 { 497 struct ath12k_dp *dp = &ab->dp; 498 int i; 499 500 for (i = 0; i < DP_REO_DST_RING_MAX; i++) 501 ath12k_dp_srng_cleanup(ab, &dp->reo_dst_ring[i]); 502 } 503 504 int ath12k_dp_rx_pdev_reo_setup(struct ath12k_base *ab) 505 { 506 struct ath12k_dp *dp = &ab->dp; 507 int ret; 508 int i; 509 510 for (i = 0; i < DP_REO_DST_RING_MAX; i++) { 511 ret = ath12k_dp_srng_setup(ab, &dp->reo_dst_ring[i], 512 HAL_REO_DST, i, 0, 513 DP_REO_DST_RING_SIZE); 514 if (ret) { 515 ath12k_warn(ab, "failed to setup reo_dst_ring\n"); 516 goto err_reo_cleanup; 517 } 518 } 519 520 return 0; 521 522 err_reo_cleanup: 523 ath12k_dp_rx_pdev_reo_cleanup(ab); 524 525 return ret; 526 } 527 528 static int ath12k_dp_rx_pdev_srng_alloc(struct ath12k *ar) 529 { 530 struct ath12k_pdev_dp *dp = &ar->dp; 531 struct ath12k_base *ab = ar->ab; 532 int i; 533 int ret; 534 u32 mac_id = dp->mac_id; 535 536 for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { 537 ret = ath12k_dp_srng_setup(ar->ab, 538 &dp->rxdma_mon_dst_ring[i], 539 HAL_RXDMA_MONITOR_DST, 540 0, mac_id + i, 541 DP_RXDMA_MONITOR_DST_RING_SIZE); 542 if (ret) { 543 ath12k_warn(ar->ab, 544 "failed to setup HAL_RXDMA_MONITOR_DST\n"); 545 return ret; 546 } 547 548 ret = ath12k_dp_srng_setup(ar->ab, 549 &dp->tx_mon_dst_ring[i], 550 HAL_TX_MONITOR_DST, 551 0, mac_id + i, 552 DP_TX_MONITOR_DEST_RING_SIZE); 553 if (ret) { 554 ath12k_warn(ar->ab, 555 "failed to setup HAL_TX_MONITOR_DST\n"); 556 return ret; 557 } 558 } 559 560 return 0; 561 } 562 563 void ath12k_dp_rx_reo_cmd_list_cleanup(struct ath12k_base *ab) 564 { 565 struct ath12k_dp *dp = &ab->dp; 566 struct ath12k_dp_rx_reo_cmd *cmd, *tmp; 567 struct ath12k_dp_rx_reo_cache_flush_elem *cmd_cache, *tmp_cache; 568 569 spin_lock_bh(&dp->reo_cmd_lock); 570 list_for_each_entry_safe(cmd, tmp, &dp->reo_cmd_list, list) { 571 list_del(&cmd->list); 572 dma_unmap_single(ab->dev, cmd->data.paddr, 573 cmd->data.size, DMA_BIDIRECTIONAL); 574 kfree(cmd->data.vaddr); 575 kfree(cmd); 576 } 577 578 list_for_each_entry_safe(cmd_cache, tmp_cache, 579 &dp->reo_cmd_cache_flush_list, list) { 580 list_del(&cmd_cache->list); 581 dp->reo_cmd_cache_flush_count--; 582 dma_unmap_single(ab->dev, cmd_cache->data.paddr, 583 cmd_cache->data.size, DMA_BIDIRECTIONAL); 584 kfree(cmd_cache->data.vaddr); 585 kfree(cmd_cache); 586 } 587 spin_unlock_bh(&dp->reo_cmd_lock); 588 } 589 590 static void ath12k_dp_reo_cmd_free(struct ath12k_dp *dp, void *ctx, 591 enum hal_reo_cmd_status status) 592 { 593 struct ath12k_dp_rx_tid *rx_tid = ctx; 594 595 if (status != HAL_REO_CMD_SUCCESS) 596 ath12k_warn(dp->ab, "failed to flush rx tid hw desc, tid %d status %d\n", 597 rx_tid->tid, status); 598 599 dma_unmap_single(dp->ab->dev, rx_tid->paddr, rx_tid->size, 600 DMA_BIDIRECTIONAL); 601 kfree(rx_tid->vaddr); 602 rx_tid->vaddr = NULL; 603 } 604 605 static int ath12k_dp_reo_cmd_send(struct ath12k_base *ab, struct ath12k_dp_rx_tid *rx_tid, 606 enum hal_reo_cmd_type type, 607 struct ath12k_hal_reo_cmd *cmd, 608 void (*cb)(struct ath12k_dp *dp, void *ctx, 609 enum hal_reo_cmd_status status)) 610 { 611 struct ath12k_dp *dp = &ab->dp; 612 struct ath12k_dp_rx_reo_cmd *dp_cmd; 613 struct hal_srng *cmd_ring; 614 int cmd_num; 615 616 cmd_ring = &ab->hal.srng_list[dp->reo_cmd_ring.ring_id]; 617 cmd_num = ath12k_hal_reo_cmd_send(ab, cmd_ring, type, cmd); 618 619 /* cmd_num should start from 1, during failure return the error code */ 620 if (cmd_num < 0) 621 return cmd_num; 622 623 /* reo cmd ring descriptors has cmd_num starting from 1 */ 624 if (cmd_num == 0) 625 return -EINVAL; 626 627 if (!cb) 628 return 0; 629 630 /* Can this be optimized so that we keep the pending command list only 631 * for tid delete command to free up the resource on the command status 632 * indication? 633 */ 634 dp_cmd = kzalloc(sizeof(*dp_cmd), GFP_ATOMIC); 635 636 if (!dp_cmd) 637 return -ENOMEM; 638 639 memcpy(&dp_cmd->data, rx_tid, sizeof(*rx_tid)); 640 dp_cmd->cmd_num = cmd_num; 641 dp_cmd->handler = cb; 642 643 spin_lock_bh(&dp->reo_cmd_lock); 644 list_add_tail(&dp_cmd->list, &dp->reo_cmd_list); 645 spin_unlock_bh(&dp->reo_cmd_lock); 646 647 return 0; 648 } 649 650 static void ath12k_dp_reo_cache_flush(struct ath12k_base *ab, 651 struct ath12k_dp_rx_tid *rx_tid) 652 { 653 struct ath12k_hal_reo_cmd cmd = {0}; 654 unsigned long tot_desc_sz, desc_sz; 655 int ret; 656 657 tot_desc_sz = rx_tid->size; 658 desc_sz = ath12k_hal_reo_qdesc_size(0, HAL_DESC_REO_NON_QOS_TID); 659 660 while (tot_desc_sz > desc_sz) { 661 tot_desc_sz -= desc_sz; 662 cmd.addr_lo = lower_32_bits(rx_tid->paddr + tot_desc_sz); 663 cmd.addr_hi = upper_32_bits(rx_tid->paddr); 664 ret = ath12k_dp_reo_cmd_send(ab, rx_tid, 665 HAL_REO_CMD_FLUSH_CACHE, &cmd, 666 NULL); 667 if (ret) 668 ath12k_warn(ab, 669 "failed to send HAL_REO_CMD_FLUSH_CACHE, tid %d (%d)\n", 670 rx_tid->tid, ret); 671 } 672 673 memset(&cmd, 0, sizeof(cmd)); 674 cmd.addr_lo = lower_32_bits(rx_tid->paddr); 675 cmd.addr_hi = upper_32_bits(rx_tid->paddr); 676 cmd.flag = HAL_REO_CMD_FLG_NEED_STATUS; 677 ret = ath12k_dp_reo_cmd_send(ab, rx_tid, 678 HAL_REO_CMD_FLUSH_CACHE, 679 &cmd, ath12k_dp_reo_cmd_free); 680 if (ret) { 681 ath12k_err(ab, "failed to send HAL_REO_CMD_FLUSH_CACHE cmd, tid %d (%d)\n", 682 rx_tid->tid, ret); 683 dma_unmap_single(ab->dev, rx_tid->paddr, rx_tid->size, 684 DMA_BIDIRECTIONAL); 685 kfree(rx_tid->vaddr); 686 rx_tid->vaddr = NULL; 687 } 688 } 689 690 static void ath12k_dp_rx_tid_del_func(struct ath12k_dp *dp, void *ctx, 691 enum hal_reo_cmd_status status) 692 { 693 struct ath12k_base *ab = dp->ab; 694 struct ath12k_dp_rx_tid *rx_tid = ctx; 695 struct ath12k_dp_rx_reo_cache_flush_elem *elem, *tmp; 696 697 if (status == HAL_REO_CMD_DRAIN) { 698 goto free_desc; 699 } else if (status != HAL_REO_CMD_SUCCESS) { 700 /* Shouldn't happen! Cleanup in case of other failure? */ 701 ath12k_warn(ab, "failed to delete rx tid %d hw descriptor %d\n", 702 rx_tid->tid, status); 703 return; 704 } 705 706 elem = kzalloc(sizeof(*elem), GFP_ATOMIC); 707 if (!elem) 708 goto free_desc; 709 710 elem->ts = jiffies; 711 memcpy(&elem->data, rx_tid, sizeof(*rx_tid)); 712 713 spin_lock_bh(&dp->reo_cmd_lock); 714 list_add_tail(&elem->list, &dp->reo_cmd_cache_flush_list); 715 dp->reo_cmd_cache_flush_count++; 716 717 /* Flush and invalidate aged REO desc from HW cache */ 718 list_for_each_entry_safe(elem, tmp, &dp->reo_cmd_cache_flush_list, 719 list) { 720 if (dp->reo_cmd_cache_flush_count > ATH12K_DP_RX_REO_DESC_FREE_THRES || 721 time_after(jiffies, elem->ts + 722 msecs_to_jiffies(ATH12K_DP_RX_REO_DESC_FREE_TIMEOUT_MS))) { 723 list_del(&elem->list); 724 dp->reo_cmd_cache_flush_count--; 725 726 /* Unlock the reo_cmd_lock before using ath12k_dp_reo_cmd_send() 727 * within ath12k_dp_reo_cache_flush. The reo_cmd_cache_flush_list 728 * is used in only two contexts, one is in this function called 729 * from napi and the other in ath12k_dp_free during core destroy. 730 * Before dp_free, the irqs would be disabled and would wait to 731 * synchronize. Hence there wouldn’t be any race against add or 732 * delete to this list. Hence unlock-lock is safe here. 733 */ 734 spin_unlock_bh(&dp->reo_cmd_lock); 735 736 ath12k_dp_reo_cache_flush(ab, &elem->data); 737 kfree(elem); 738 spin_lock_bh(&dp->reo_cmd_lock); 739 } 740 } 741 spin_unlock_bh(&dp->reo_cmd_lock); 742 743 return; 744 free_desc: 745 dma_unmap_single(ab->dev, rx_tid->paddr, rx_tid->size, 746 DMA_BIDIRECTIONAL); 747 kfree(rx_tid->vaddr); 748 rx_tid->vaddr = NULL; 749 } 750 751 static void ath12k_peer_rx_tid_qref_setup(struct ath12k_base *ab, u16 peer_id, u16 tid, 752 dma_addr_t paddr) 753 { 754 struct ath12k_reo_queue_ref *qref; 755 struct ath12k_dp *dp = &ab->dp; 756 757 if (!ab->hw_params->reoq_lut_support) 758 return; 759 760 /* TODO: based on ML peer or not, select the LUT. below assumes non 761 * ML peer 762 */ 763 qref = (struct ath12k_reo_queue_ref *)dp->reoq_lut.vaddr + 764 (peer_id * (IEEE80211_NUM_TIDS + 1) + tid); 765 766 qref->info0 = u32_encode_bits(lower_32_bits(paddr), 767 BUFFER_ADDR_INFO0_ADDR); 768 qref->info1 = u32_encode_bits(upper_32_bits(paddr), 769 BUFFER_ADDR_INFO1_ADDR) | 770 u32_encode_bits(tid, DP_REO_QREF_NUM); 771 } 772 773 static void ath12k_peer_rx_tid_qref_reset(struct ath12k_base *ab, u16 peer_id, u16 tid) 774 { 775 struct ath12k_reo_queue_ref *qref; 776 struct ath12k_dp *dp = &ab->dp; 777 778 if (!ab->hw_params->reoq_lut_support) 779 return; 780 781 /* TODO: based on ML peer or not, select the LUT. below assumes non 782 * ML peer 783 */ 784 qref = (struct ath12k_reo_queue_ref *)dp->reoq_lut.vaddr + 785 (peer_id * (IEEE80211_NUM_TIDS + 1) + tid); 786 787 qref->info0 = u32_encode_bits(0, BUFFER_ADDR_INFO0_ADDR); 788 qref->info1 = u32_encode_bits(0, BUFFER_ADDR_INFO1_ADDR) | 789 u32_encode_bits(tid, DP_REO_QREF_NUM); 790 } 791 792 void ath12k_dp_rx_peer_tid_delete(struct ath12k *ar, 793 struct ath12k_peer *peer, u8 tid) 794 { 795 struct ath12k_hal_reo_cmd cmd = {0}; 796 struct ath12k_dp_rx_tid *rx_tid = &peer->rx_tid[tid]; 797 int ret; 798 799 if (!rx_tid->active) 800 return; 801 802 cmd.flag = HAL_REO_CMD_FLG_NEED_STATUS; 803 cmd.addr_lo = lower_32_bits(rx_tid->paddr); 804 cmd.addr_hi = upper_32_bits(rx_tid->paddr); 805 cmd.upd0 = HAL_REO_CMD_UPD0_VLD; 806 ret = ath12k_dp_reo_cmd_send(ar->ab, rx_tid, 807 HAL_REO_CMD_UPDATE_RX_QUEUE, &cmd, 808 ath12k_dp_rx_tid_del_func); 809 if (ret) { 810 ath12k_err(ar->ab, "failed to send HAL_REO_CMD_UPDATE_RX_QUEUE cmd, tid %d (%d)\n", 811 tid, ret); 812 dma_unmap_single(ar->ab->dev, rx_tid->paddr, rx_tid->size, 813 DMA_BIDIRECTIONAL); 814 kfree(rx_tid->vaddr); 815 rx_tid->vaddr = NULL; 816 } 817 818 ath12k_peer_rx_tid_qref_reset(ar->ab, peer->peer_id, tid); 819 820 rx_tid->active = false; 821 } 822 823 /* TODO: it's strange (and ugly) that struct hal_reo_dest_ring is converted 824 * to struct hal_wbm_release_ring, I couldn't figure out the logic behind 825 * that. 826 */ 827 static int ath12k_dp_rx_link_desc_return(struct ath12k_base *ab, 828 struct hal_reo_dest_ring *ring, 829 enum hal_wbm_rel_bm_act action) 830 { 831 struct hal_wbm_release_ring *link_desc = (struct hal_wbm_release_ring *)ring; 832 struct hal_wbm_release_ring *desc; 833 struct ath12k_dp *dp = &ab->dp; 834 struct hal_srng *srng; 835 int ret = 0; 836 837 srng = &ab->hal.srng_list[dp->wbm_desc_rel_ring.ring_id]; 838 839 spin_lock_bh(&srng->lock); 840 841 ath12k_hal_srng_access_begin(ab, srng); 842 843 desc = ath12k_hal_srng_src_get_next_entry(ab, srng); 844 if (!desc) { 845 ret = -ENOBUFS; 846 goto exit; 847 } 848 849 ath12k_hal_rx_msdu_link_desc_set(ab, desc, link_desc, action); 850 851 exit: 852 ath12k_hal_srng_access_end(ab, srng); 853 854 spin_unlock_bh(&srng->lock); 855 856 return ret; 857 } 858 859 static void ath12k_dp_rx_frags_cleanup(struct ath12k_dp_rx_tid *rx_tid, 860 bool rel_link_desc) 861 { 862 struct ath12k_base *ab = rx_tid->ab; 863 864 lockdep_assert_held(&ab->base_lock); 865 866 if (rx_tid->dst_ring_desc) { 867 if (rel_link_desc) 868 ath12k_dp_rx_link_desc_return(ab, rx_tid->dst_ring_desc, 869 HAL_WBM_REL_BM_ACT_PUT_IN_IDLE); 870 kfree(rx_tid->dst_ring_desc); 871 rx_tid->dst_ring_desc = NULL; 872 } 873 874 rx_tid->cur_sn = 0; 875 rx_tid->last_frag_no = 0; 876 rx_tid->rx_frag_bitmap = 0; 877 __skb_queue_purge(&rx_tid->rx_frags); 878 } 879 880 void ath12k_dp_rx_peer_tid_cleanup(struct ath12k *ar, struct ath12k_peer *peer) 881 { 882 struct ath12k_dp_rx_tid *rx_tid; 883 int i; 884 885 lockdep_assert_held(&ar->ab->base_lock); 886 887 for (i = 0; i <= IEEE80211_NUM_TIDS; i++) { 888 rx_tid = &peer->rx_tid[i]; 889 890 ath12k_dp_rx_peer_tid_delete(ar, peer, i); 891 ath12k_dp_rx_frags_cleanup(rx_tid, true); 892 893 spin_unlock_bh(&ar->ab->base_lock); 894 del_timer_sync(&rx_tid->frag_timer); 895 spin_lock_bh(&ar->ab->base_lock); 896 } 897 } 898 899 static int ath12k_peer_rx_tid_reo_update(struct ath12k *ar, 900 struct ath12k_peer *peer, 901 struct ath12k_dp_rx_tid *rx_tid, 902 u32 ba_win_sz, u16 ssn, 903 bool update_ssn) 904 { 905 struct ath12k_hal_reo_cmd cmd = {0}; 906 int ret; 907 908 cmd.addr_lo = lower_32_bits(rx_tid->paddr); 909 cmd.addr_hi = upper_32_bits(rx_tid->paddr); 910 cmd.flag = HAL_REO_CMD_FLG_NEED_STATUS; 911 cmd.upd0 = HAL_REO_CMD_UPD0_BA_WINDOW_SIZE; 912 cmd.ba_window_size = ba_win_sz; 913 914 if (update_ssn) { 915 cmd.upd0 |= HAL_REO_CMD_UPD0_SSN; 916 cmd.upd2 = u32_encode_bits(ssn, HAL_REO_CMD_UPD2_SSN); 917 } 918 919 ret = ath12k_dp_reo_cmd_send(ar->ab, rx_tid, 920 HAL_REO_CMD_UPDATE_RX_QUEUE, &cmd, 921 NULL); 922 if (ret) { 923 ath12k_warn(ar->ab, "failed to update rx tid queue, tid %d (%d)\n", 924 rx_tid->tid, ret); 925 return ret; 926 } 927 928 rx_tid->ba_win_sz = ba_win_sz; 929 930 return 0; 931 } 932 933 int ath12k_dp_rx_peer_tid_setup(struct ath12k *ar, const u8 *peer_mac, int vdev_id, 934 u8 tid, u32 ba_win_sz, u16 ssn, 935 enum hal_pn_type pn_type) 936 { 937 struct ath12k_base *ab = ar->ab; 938 struct ath12k_dp *dp = &ab->dp; 939 struct hal_rx_reo_queue *addr_aligned; 940 struct ath12k_peer *peer; 941 struct ath12k_dp_rx_tid *rx_tid; 942 u32 hw_desc_sz; 943 void *vaddr; 944 dma_addr_t paddr; 945 int ret; 946 947 spin_lock_bh(&ab->base_lock); 948 949 peer = ath12k_peer_find(ab, vdev_id, peer_mac); 950 if (!peer) { 951 spin_unlock_bh(&ab->base_lock); 952 ath12k_warn(ab, "failed to find the peer to set up rx tid\n"); 953 return -ENOENT; 954 } 955 956 if (ab->hw_params->reoq_lut_support && !dp->reoq_lut.vaddr) { 957 spin_unlock_bh(&ab->base_lock); 958 ath12k_warn(ab, "reo qref table is not setup\n"); 959 return -EINVAL; 960 } 961 962 if (peer->peer_id > DP_MAX_PEER_ID || tid > IEEE80211_NUM_TIDS) { 963 ath12k_warn(ab, "peer id of peer %d or tid %d doesn't allow reoq setup\n", 964 peer->peer_id, tid); 965 spin_unlock_bh(&ab->base_lock); 966 return -EINVAL; 967 } 968 969 rx_tid = &peer->rx_tid[tid]; 970 /* Update the tid queue if it is already setup */ 971 if (rx_tid->active) { 972 paddr = rx_tid->paddr; 973 ret = ath12k_peer_rx_tid_reo_update(ar, peer, rx_tid, 974 ba_win_sz, ssn, true); 975 spin_unlock_bh(&ab->base_lock); 976 if (ret) { 977 ath12k_warn(ab, "failed to update reo for rx tid %d\n", tid); 978 return ret; 979 } 980 981 if (!ab->hw_params->reoq_lut_support) { 982 ret = ath12k_wmi_peer_rx_reorder_queue_setup(ar, vdev_id, 983 peer_mac, 984 paddr, tid, 1, 985 ba_win_sz); 986 if (ret) { 987 ath12k_warn(ab, "failed to setup peer rx reorder queuefor tid %d: %d\n", 988 tid, ret); 989 return ret; 990 } 991 } 992 993 return 0; 994 } 995 996 rx_tid->tid = tid; 997 998 rx_tid->ba_win_sz = ba_win_sz; 999 1000 /* TODO: Optimize the memory allocation for qos tid based on 1001 * the actual BA window size in REO tid update path. 1002 */ 1003 if (tid == HAL_DESC_REO_NON_QOS_TID) 1004 hw_desc_sz = ath12k_hal_reo_qdesc_size(ba_win_sz, tid); 1005 else 1006 hw_desc_sz = ath12k_hal_reo_qdesc_size(DP_BA_WIN_SZ_MAX, tid); 1007 1008 vaddr = kzalloc(hw_desc_sz + HAL_LINK_DESC_ALIGN - 1, GFP_ATOMIC); 1009 if (!vaddr) { 1010 spin_unlock_bh(&ab->base_lock); 1011 return -ENOMEM; 1012 } 1013 1014 addr_aligned = PTR_ALIGN(vaddr, HAL_LINK_DESC_ALIGN); 1015 1016 ath12k_hal_reo_qdesc_setup(addr_aligned, tid, ba_win_sz, 1017 ssn, pn_type); 1018 1019 paddr = dma_map_single(ab->dev, addr_aligned, hw_desc_sz, 1020 DMA_BIDIRECTIONAL); 1021 1022 ret = dma_mapping_error(ab->dev, paddr); 1023 if (ret) { 1024 spin_unlock_bh(&ab->base_lock); 1025 goto err_mem_free; 1026 } 1027 1028 rx_tid->vaddr = vaddr; 1029 rx_tid->paddr = paddr; 1030 rx_tid->size = hw_desc_sz; 1031 rx_tid->active = true; 1032 1033 if (ab->hw_params->reoq_lut_support) { 1034 /* Update the REO queue LUT at the corresponding peer id 1035 * and tid with qaddr. 1036 */ 1037 ath12k_peer_rx_tid_qref_setup(ab, peer->peer_id, tid, paddr); 1038 spin_unlock_bh(&ab->base_lock); 1039 } else { 1040 spin_unlock_bh(&ab->base_lock); 1041 ret = ath12k_wmi_peer_rx_reorder_queue_setup(ar, vdev_id, peer_mac, 1042 paddr, tid, 1, ba_win_sz); 1043 } 1044 1045 return ret; 1046 1047 err_mem_free: 1048 kfree(vaddr); 1049 1050 return ret; 1051 } 1052 1053 int ath12k_dp_rx_ampdu_start(struct ath12k *ar, 1054 struct ieee80211_ampdu_params *params) 1055 { 1056 struct ath12k_base *ab = ar->ab; 1057 struct ath12k_sta *arsta = (void *)params->sta->drv_priv; 1058 int vdev_id = arsta->arvif->vdev_id; 1059 int ret; 1060 1061 ret = ath12k_dp_rx_peer_tid_setup(ar, params->sta->addr, vdev_id, 1062 params->tid, params->buf_size, 1063 params->ssn, arsta->pn_type); 1064 if (ret) 1065 ath12k_warn(ab, "failed to setup rx tid %d\n", ret); 1066 1067 return ret; 1068 } 1069 1070 int ath12k_dp_rx_ampdu_stop(struct ath12k *ar, 1071 struct ieee80211_ampdu_params *params) 1072 { 1073 struct ath12k_base *ab = ar->ab; 1074 struct ath12k_peer *peer; 1075 struct ath12k_sta *arsta = (void *)params->sta->drv_priv; 1076 int vdev_id = arsta->arvif->vdev_id; 1077 bool active; 1078 int ret; 1079 1080 spin_lock_bh(&ab->base_lock); 1081 1082 peer = ath12k_peer_find(ab, vdev_id, params->sta->addr); 1083 if (!peer) { 1084 spin_unlock_bh(&ab->base_lock); 1085 ath12k_warn(ab, "failed to find the peer to stop rx aggregation\n"); 1086 return -ENOENT; 1087 } 1088 1089 active = peer->rx_tid[params->tid].active; 1090 1091 if (!active) { 1092 spin_unlock_bh(&ab->base_lock); 1093 return 0; 1094 } 1095 1096 ret = ath12k_peer_rx_tid_reo_update(ar, peer, peer->rx_tid, 1, 0, false); 1097 spin_unlock_bh(&ab->base_lock); 1098 if (ret) { 1099 ath12k_warn(ab, "failed to update reo for rx tid %d: %d\n", 1100 params->tid, ret); 1101 return ret; 1102 } 1103 1104 return ret; 1105 } 1106 1107 int ath12k_dp_rx_peer_pn_replay_config(struct ath12k_vif *arvif, 1108 const u8 *peer_addr, 1109 enum set_key_cmd key_cmd, 1110 struct ieee80211_key_conf *key) 1111 { 1112 struct ath12k *ar = arvif->ar; 1113 struct ath12k_base *ab = ar->ab; 1114 struct ath12k_hal_reo_cmd cmd = {0}; 1115 struct ath12k_peer *peer; 1116 struct ath12k_dp_rx_tid *rx_tid; 1117 u8 tid; 1118 int ret = 0; 1119 1120 /* NOTE: Enable PN/TSC replay check offload only for unicast frames. 1121 * We use mac80211 PN/TSC replay check functionality for bcast/mcast 1122 * for now. 1123 */ 1124 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) 1125 return 0; 1126 1127 cmd.flag = HAL_REO_CMD_FLG_NEED_STATUS; 1128 cmd.upd0 = HAL_REO_CMD_UPD0_PN | 1129 HAL_REO_CMD_UPD0_PN_SIZE | 1130 HAL_REO_CMD_UPD0_PN_VALID | 1131 HAL_REO_CMD_UPD0_PN_CHECK | 1132 HAL_REO_CMD_UPD0_SVLD; 1133 1134 switch (key->cipher) { 1135 case WLAN_CIPHER_SUITE_TKIP: 1136 case WLAN_CIPHER_SUITE_CCMP: 1137 case WLAN_CIPHER_SUITE_CCMP_256: 1138 case WLAN_CIPHER_SUITE_GCMP: 1139 case WLAN_CIPHER_SUITE_GCMP_256: 1140 if (key_cmd == SET_KEY) { 1141 cmd.upd1 |= HAL_REO_CMD_UPD1_PN_CHECK; 1142 cmd.pn_size = 48; 1143 } 1144 break; 1145 default: 1146 break; 1147 } 1148 1149 spin_lock_bh(&ab->base_lock); 1150 1151 peer = ath12k_peer_find(ab, arvif->vdev_id, peer_addr); 1152 if (!peer) { 1153 spin_unlock_bh(&ab->base_lock); 1154 ath12k_warn(ab, "failed to find the peer %pM to configure pn replay detection\n", 1155 peer_addr); 1156 return -ENOENT; 1157 } 1158 1159 for (tid = 0; tid <= IEEE80211_NUM_TIDS; tid++) { 1160 rx_tid = &peer->rx_tid[tid]; 1161 if (!rx_tid->active) 1162 continue; 1163 cmd.addr_lo = lower_32_bits(rx_tid->paddr); 1164 cmd.addr_hi = upper_32_bits(rx_tid->paddr); 1165 ret = ath12k_dp_reo_cmd_send(ab, rx_tid, 1166 HAL_REO_CMD_UPDATE_RX_QUEUE, 1167 &cmd, NULL); 1168 if (ret) { 1169 ath12k_warn(ab, "failed to configure rx tid %d queue of peer %pM for pn replay detection %d\n", 1170 tid, peer_addr, ret); 1171 break; 1172 } 1173 } 1174 1175 spin_unlock_bh(&ab->base_lock); 1176 1177 return ret; 1178 } 1179 1180 static int ath12k_get_ppdu_user_index(struct htt_ppdu_stats *ppdu_stats, 1181 u16 peer_id) 1182 { 1183 int i; 1184 1185 for (i = 0; i < HTT_PPDU_STATS_MAX_USERS - 1; i++) { 1186 if (ppdu_stats->user_stats[i].is_valid_peer_id) { 1187 if (peer_id == ppdu_stats->user_stats[i].peer_id) 1188 return i; 1189 } else { 1190 return i; 1191 } 1192 } 1193 1194 return -EINVAL; 1195 } 1196 1197 static int ath12k_htt_tlv_ppdu_stats_parse(struct ath12k_base *ab, 1198 u16 tag, u16 len, const void *ptr, 1199 void *data) 1200 { 1201 const struct htt_ppdu_stats_usr_cmpltn_ack_ba_status *ba_status; 1202 const struct htt_ppdu_stats_usr_cmpltn_cmn *cmplt_cmn; 1203 const struct htt_ppdu_stats_user_rate *user_rate; 1204 struct htt_ppdu_stats_info *ppdu_info; 1205 struct htt_ppdu_user_stats *user_stats; 1206 int cur_user; 1207 u16 peer_id; 1208 1209 ppdu_info = data; 1210 1211 switch (tag) { 1212 case HTT_PPDU_STATS_TAG_COMMON: 1213 if (len < sizeof(struct htt_ppdu_stats_common)) { 1214 ath12k_warn(ab, "Invalid len %d for the tag 0x%x\n", 1215 len, tag); 1216 return -EINVAL; 1217 } 1218 memcpy(&ppdu_info->ppdu_stats.common, ptr, 1219 sizeof(struct htt_ppdu_stats_common)); 1220 break; 1221 case HTT_PPDU_STATS_TAG_USR_RATE: 1222 if (len < sizeof(struct htt_ppdu_stats_user_rate)) { 1223 ath12k_warn(ab, "Invalid len %d for the tag 0x%x\n", 1224 len, tag); 1225 return -EINVAL; 1226 } 1227 user_rate = ptr; 1228 peer_id = le16_to_cpu(user_rate->sw_peer_id); 1229 cur_user = ath12k_get_ppdu_user_index(&ppdu_info->ppdu_stats, 1230 peer_id); 1231 if (cur_user < 0) 1232 return -EINVAL; 1233 user_stats = &ppdu_info->ppdu_stats.user_stats[cur_user]; 1234 user_stats->peer_id = peer_id; 1235 user_stats->is_valid_peer_id = true; 1236 memcpy(&user_stats->rate, ptr, 1237 sizeof(struct htt_ppdu_stats_user_rate)); 1238 user_stats->tlv_flags |= BIT(tag); 1239 break; 1240 case HTT_PPDU_STATS_TAG_USR_COMPLTN_COMMON: 1241 if (len < sizeof(struct htt_ppdu_stats_usr_cmpltn_cmn)) { 1242 ath12k_warn(ab, "Invalid len %d for the tag 0x%x\n", 1243 len, tag); 1244 return -EINVAL; 1245 } 1246 1247 cmplt_cmn = ptr; 1248 peer_id = le16_to_cpu(cmplt_cmn->sw_peer_id); 1249 cur_user = ath12k_get_ppdu_user_index(&ppdu_info->ppdu_stats, 1250 peer_id); 1251 if (cur_user < 0) 1252 return -EINVAL; 1253 user_stats = &ppdu_info->ppdu_stats.user_stats[cur_user]; 1254 user_stats->peer_id = peer_id; 1255 user_stats->is_valid_peer_id = true; 1256 memcpy(&user_stats->cmpltn_cmn, ptr, 1257 sizeof(struct htt_ppdu_stats_usr_cmpltn_cmn)); 1258 user_stats->tlv_flags |= BIT(tag); 1259 break; 1260 case HTT_PPDU_STATS_TAG_USR_COMPLTN_ACK_BA_STATUS: 1261 if (len < 1262 sizeof(struct htt_ppdu_stats_usr_cmpltn_ack_ba_status)) { 1263 ath12k_warn(ab, "Invalid len %d for the tag 0x%x\n", 1264 len, tag); 1265 return -EINVAL; 1266 } 1267 1268 ba_status = ptr; 1269 peer_id = le16_to_cpu(ba_status->sw_peer_id); 1270 cur_user = ath12k_get_ppdu_user_index(&ppdu_info->ppdu_stats, 1271 peer_id); 1272 if (cur_user < 0) 1273 return -EINVAL; 1274 user_stats = &ppdu_info->ppdu_stats.user_stats[cur_user]; 1275 user_stats->peer_id = peer_id; 1276 user_stats->is_valid_peer_id = true; 1277 memcpy(&user_stats->ack_ba, ptr, 1278 sizeof(struct htt_ppdu_stats_usr_cmpltn_ack_ba_status)); 1279 user_stats->tlv_flags |= BIT(tag); 1280 break; 1281 } 1282 return 0; 1283 } 1284 1285 #if defined(__linux__) 1286 static int ath12k_dp_htt_tlv_iter(struct ath12k_base *ab, const void *ptr, size_t len, 1287 #elif defined(__FreeBSD__) 1288 static int ath12k_dp_htt_tlv_iter(struct ath12k_base *ab, const u8 *ptr, size_t len, 1289 #endif 1290 int (*iter)(struct ath12k_base *ar, u16 tag, u16 len, 1291 const void *ptr, void *data), 1292 void *data) 1293 { 1294 const struct htt_tlv *tlv; 1295 #if defined(__linux__) 1296 const void *begin = ptr; 1297 #elif defined(__FreeBSD__) 1298 const u8 *begin = ptr; 1299 #endif 1300 u16 tlv_tag, tlv_len; 1301 int ret = -EINVAL; 1302 1303 while (len > 0) { 1304 if (len < sizeof(*tlv)) { 1305 ath12k_err(ab, "htt tlv parse failure at byte %zd (%zu bytes left, %zu expected)\n", 1306 ptr - begin, len, sizeof(*tlv)); 1307 return -EINVAL; 1308 } 1309 #if defined(__linux__) 1310 tlv = (struct htt_tlv *)ptr; 1311 #elif defined(__FreeBSD__) 1312 tlv = (const struct htt_tlv *)ptr; 1313 #endif 1314 tlv_tag = le32_get_bits(tlv->header, HTT_TLV_TAG); 1315 tlv_len = le32_get_bits(tlv->header, HTT_TLV_LEN); 1316 ptr += sizeof(*tlv); 1317 len -= sizeof(*tlv); 1318 1319 if (tlv_len > len) { 1320 ath12k_err(ab, "htt tlv parse failure of tag %u at byte %zd (%zu bytes left, %u expected)\n", 1321 tlv_tag, ptr - begin, len, tlv_len); 1322 return -EINVAL; 1323 } 1324 ret = iter(ab, tlv_tag, tlv_len, ptr, data); 1325 if (ret == -ENOMEM) 1326 return ret; 1327 1328 ptr += tlv_len; 1329 len -= tlv_len; 1330 } 1331 return 0; 1332 } 1333 1334 static void 1335 ath12k_update_per_peer_tx_stats(struct ath12k *ar, 1336 struct htt_ppdu_stats *ppdu_stats, u8 user) 1337 { 1338 struct ath12k_base *ab = ar->ab; 1339 struct ath12k_peer *peer; 1340 struct ieee80211_sta *sta; 1341 struct ath12k_sta *arsta; 1342 struct htt_ppdu_stats_user_rate *user_rate; 1343 struct ath12k_per_peer_tx_stats *peer_stats = &ar->peer_tx_stats; 1344 struct htt_ppdu_user_stats *usr_stats = &ppdu_stats->user_stats[user]; 1345 struct htt_ppdu_stats_common *common = &ppdu_stats->common; 1346 int ret; 1347 u8 flags, mcs, nss, bw, sgi, dcm, rate_idx = 0; 1348 u32 v, succ_bytes = 0; 1349 u16 tones, rate = 0, succ_pkts = 0; 1350 u32 tx_duration = 0; 1351 u8 tid = HTT_PPDU_STATS_NON_QOS_TID; 1352 bool is_ampdu = false; 1353 1354 if (!usr_stats) 1355 return; 1356 1357 if (!(usr_stats->tlv_flags & BIT(HTT_PPDU_STATS_TAG_USR_RATE))) 1358 return; 1359 1360 if (usr_stats->tlv_flags & BIT(HTT_PPDU_STATS_TAG_USR_COMPLTN_COMMON)) 1361 is_ampdu = 1362 HTT_USR_CMPLTN_IS_AMPDU(usr_stats->cmpltn_cmn.flags); 1363 1364 if (usr_stats->tlv_flags & 1365 BIT(HTT_PPDU_STATS_TAG_USR_COMPLTN_ACK_BA_STATUS)) { 1366 succ_bytes = le32_to_cpu(usr_stats->ack_ba.success_bytes); 1367 succ_pkts = le32_get_bits(usr_stats->ack_ba.info, 1368 HTT_PPDU_STATS_ACK_BA_INFO_NUM_MSDU_M); 1369 tid = le32_get_bits(usr_stats->ack_ba.info, 1370 HTT_PPDU_STATS_ACK_BA_INFO_TID_NUM); 1371 } 1372 1373 if (common->fes_duration_us) 1374 tx_duration = le32_to_cpu(common->fes_duration_us); 1375 1376 user_rate = &usr_stats->rate; 1377 flags = HTT_USR_RATE_PREAMBLE(user_rate->rate_flags); 1378 bw = HTT_USR_RATE_BW(user_rate->rate_flags) - 2; 1379 nss = HTT_USR_RATE_NSS(user_rate->rate_flags) + 1; 1380 mcs = HTT_USR_RATE_MCS(user_rate->rate_flags); 1381 sgi = HTT_USR_RATE_GI(user_rate->rate_flags); 1382 dcm = HTT_USR_RATE_DCM(user_rate->rate_flags); 1383 1384 /* Note: If host configured fixed rates and in some other special 1385 * cases, the broadcast/management frames are sent in different rates. 1386 * Firmware rate's control to be skipped for this? 1387 */ 1388 1389 if (flags == WMI_RATE_PREAMBLE_HE && mcs > ATH12K_HE_MCS_MAX) { 1390 ath12k_warn(ab, "Invalid HE mcs %d peer stats", mcs); 1391 return; 1392 } 1393 1394 if (flags == WMI_RATE_PREAMBLE_VHT && mcs > ATH12K_VHT_MCS_MAX) { 1395 ath12k_warn(ab, "Invalid VHT mcs %d peer stats", mcs); 1396 return; 1397 } 1398 1399 if (flags == WMI_RATE_PREAMBLE_HT && (mcs > ATH12K_HT_MCS_MAX || nss < 1)) { 1400 ath12k_warn(ab, "Invalid HT mcs %d nss %d peer stats", 1401 mcs, nss); 1402 return; 1403 } 1404 1405 if (flags == WMI_RATE_PREAMBLE_CCK || flags == WMI_RATE_PREAMBLE_OFDM) { 1406 ret = ath12k_mac_hw_ratecode_to_legacy_rate(mcs, 1407 flags, 1408 &rate_idx, 1409 &rate); 1410 if (ret < 0) 1411 return; 1412 } 1413 1414 rcu_read_lock(); 1415 spin_lock_bh(&ab->base_lock); 1416 peer = ath12k_peer_find_by_id(ab, usr_stats->peer_id); 1417 1418 if (!peer || !peer->sta) { 1419 spin_unlock_bh(&ab->base_lock); 1420 rcu_read_unlock(); 1421 return; 1422 } 1423 1424 sta = peer->sta; 1425 arsta = (struct ath12k_sta *)sta->drv_priv; 1426 1427 memset(&arsta->txrate, 0, sizeof(arsta->txrate)); 1428 1429 switch (flags) { 1430 case WMI_RATE_PREAMBLE_OFDM: 1431 arsta->txrate.legacy = rate; 1432 break; 1433 case WMI_RATE_PREAMBLE_CCK: 1434 arsta->txrate.legacy = rate; 1435 break; 1436 case WMI_RATE_PREAMBLE_HT: 1437 arsta->txrate.mcs = mcs + 8 * (nss - 1); 1438 arsta->txrate.flags = RATE_INFO_FLAGS_MCS; 1439 if (sgi) 1440 arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI; 1441 break; 1442 case WMI_RATE_PREAMBLE_VHT: 1443 arsta->txrate.mcs = mcs; 1444 arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS; 1445 if (sgi) 1446 arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI; 1447 break; 1448 case WMI_RATE_PREAMBLE_HE: 1449 arsta->txrate.mcs = mcs; 1450 arsta->txrate.flags = RATE_INFO_FLAGS_HE_MCS; 1451 arsta->txrate.he_dcm = dcm; 1452 arsta->txrate.he_gi = ath12k_he_gi_to_nl80211_he_gi(sgi); 1453 tones = le16_to_cpu(user_rate->ru_end) - 1454 le16_to_cpu(user_rate->ru_start) + 1; 1455 v = ath12k_he_ru_tones_to_nl80211_he_ru_alloc(tones); 1456 arsta->txrate.he_ru_alloc = v; 1457 break; 1458 } 1459 1460 arsta->txrate.nss = nss; 1461 arsta->txrate.bw = ath12k_mac_bw_to_mac80211_bw(bw); 1462 arsta->tx_duration += tx_duration; 1463 memcpy(&arsta->last_txrate, &arsta->txrate, sizeof(struct rate_info)); 1464 1465 /* PPDU stats reported for mgmt packet doesn't have valid tx bytes. 1466 * So skip peer stats update for mgmt packets. 1467 */ 1468 if (tid < HTT_PPDU_STATS_NON_QOS_TID) { 1469 memset(peer_stats, 0, sizeof(*peer_stats)); 1470 peer_stats->succ_pkts = succ_pkts; 1471 peer_stats->succ_bytes = succ_bytes; 1472 peer_stats->is_ampdu = is_ampdu; 1473 peer_stats->duration = tx_duration; 1474 peer_stats->ba_fails = 1475 HTT_USR_CMPLTN_LONG_RETRY(usr_stats->cmpltn_cmn.flags) + 1476 HTT_USR_CMPLTN_SHORT_RETRY(usr_stats->cmpltn_cmn.flags); 1477 } 1478 1479 spin_unlock_bh(&ab->base_lock); 1480 rcu_read_unlock(); 1481 } 1482 1483 static void ath12k_htt_update_ppdu_stats(struct ath12k *ar, 1484 struct htt_ppdu_stats *ppdu_stats) 1485 { 1486 u8 user; 1487 1488 for (user = 0; user < HTT_PPDU_STATS_MAX_USERS - 1; user++) 1489 ath12k_update_per_peer_tx_stats(ar, ppdu_stats, user); 1490 } 1491 1492 static 1493 struct htt_ppdu_stats_info *ath12k_dp_htt_get_ppdu_desc(struct ath12k *ar, 1494 u32 ppdu_id) 1495 { 1496 struct htt_ppdu_stats_info *ppdu_info; 1497 1498 lockdep_assert_held(&ar->data_lock); 1499 if (!list_empty(&ar->ppdu_stats_info)) { 1500 list_for_each_entry(ppdu_info, &ar->ppdu_stats_info, list) { 1501 if (ppdu_info->ppdu_id == ppdu_id) 1502 return ppdu_info; 1503 } 1504 1505 if (ar->ppdu_stat_list_depth > HTT_PPDU_DESC_MAX_DEPTH) { 1506 ppdu_info = list_first_entry(&ar->ppdu_stats_info, 1507 typeof(*ppdu_info), list); 1508 list_del(&ppdu_info->list); 1509 ar->ppdu_stat_list_depth--; 1510 ath12k_htt_update_ppdu_stats(ar, &ppdu_info->ppdu_stats); 1511 kfree(ppdu_info); 1512 } 1513 } 1514 1515 ppdu_info = kzalloc(sizeof(*ppdu_info), GFP_ATOMIC); 1516 if (!ppdu_info) 1517 return NULL; 1518 1519 list_add_tail(&ppdu_info->list, &ar->ppdu_stats_info); 1520 ar->ppdu_stat_list_depth++; 1521 1522 return ppdu_info; 1523 } 1524 1525 static void ath12k_copy_to_delay_stats(struct ath12k_peer *peer, 1526 struct htt_ppdu_user_stats *usr_stats) 1527 { 1528 peer->ppdu_stats_delayba.sw_peer_id = le16_to_cpu(usr_stats->rate.sw_peer_id); 1529 peer->ppdu_stats_delayba.info0 = le32_to_cpu(usr_stats->rate.info0); 1530 peer->ppdu_stats_delayba.ru_end = le16_to_cpu(usr_stats->rate.ru_end); 1531 peer->ppdu_stats_delayba.ru_start = le16_to_cpu(usr_stats->rate.ru_start); 1532 peer->ppdu_stats_delayba.info1 = le32_to_cpu(usr_stats->rate.info1); 1533 peer->ppdu_stats_delayba.rate_flags = le32_to_cpu(usr_stats->rate.rate_flags); 1534 peer->ppdu_stats_delayba.resp_rate_flags = 1535 le32_to_cpu(usr_stats->rate.resp_rate_flags); 1536 1537 peer->delayba_flag = true; 1538 } 1539 1540 static void ath12k_copy_to_bar(struct ath12k_peer *peer, 1541 struct htt_ppdu_user_stats *usr_stats) 1542 { 1543 usr_stats->rate.sw_peer_id = cpu_to_le16(peer->ppdu_stats_delayba.sw_peer_id); 1544 usr_stats->rate.info0 = cpu_to_le32(peer->ppdu_stats_delayba.info0); 1545 usr_stats->rate.ru_end = cpu_to_le16(peer->ppdu_stats_delayba.ru_end); 1546 usr_stats->rate.ru_start = cpu_to_le16(peer->ppdu_stats_delayba.ru_start); 1547 usr_stats->rate.info1 = cpu_to_le32(peer->ppdu_stats_delayba.info1); 1548 usr_stats->rate.rate_flags = cpu_to_le32(peer->ppdu_stats_delayba.rate_flags); 1549 usr_stats->rate.resp_rate_flags = 1550 cpu_to_le32(peer->ppdu_stats_delayba.resp_rate_flags); 1551 1552 peer->delayba_flag = false; 1553 } 1554 1555 static int ath12k_htt_pull_ppdu_stats(struct ath12k_base *ab, 1556 struct sk_buff *skb) 1557 { 1558 struct ath12k_htt_ppdu_stats_msg *msg; 1559 struct htt_ppdu_stats_info *ppdu_info; 1560 struct ath12k_peer *peer = NULL; 1561 struct htt_ppdu_user_stats *usr_stats = NULL; 1562 u32 peer_id = 0; 1563 struct ath12k *ar; 1564 int ret, i; 1565 u8 pdev_id; 1566 u32 ppdu_id, len; 1567 1568 msg = (struct ath12k_htt_ppdu_stats_msg *)skb->data; 1569 len = le32_get_bits(msg->info, HTT_T2H_PPDU_STATS_INFO_PAYLOAD_SIZE); 1570 pdev_id = le32_get_bits(msg->info, HTT_T2H_PPDU_STATS_INFO_PDEV_ID); 1571 ppdu_id = le32_to_cpu(msg->ppdu_id); 1572 1573 rcu_read_lock(); 1574 ar = ath12k_mac_get_ar_by_pdev_id(ab, pdev_id); 1575 if (!ar) { 1576 ret = -EINVAL; 1577 goto exit; 1578 } 1579 1580 spin_lock_bh(&ar->data_lock); 1581 ppdu_info = ath12k_dp_htt_get_ppdu_desc(ar, ppdu_id); 1582 if (!ppdu_info) { 1583 spin_unlock_bh(&ar->data_lock); 1584 ret = -EINVAL; 1585 goto exit; 1586 } 1587 1588 ppdu_info->ppdu_id = ppdu_id; 1589 ret = ath12k_dp_htt_tlv_iter(ab, msg->data, len, 1590 ath12k_htt_tlv_ppdu_stats_parse, 1591 (void *)ppdu_info); 1592 if (ret) { 1593 spin_unlock_bh(&ar->data_lock); 1594 ath12k_warn(ab, "Failed to parse tlv %d\n", ret); 1595 goto exit; 1596 } 1597 1598 /* back up data rate tlv for all peers */ 1599 if (ppdu_info->frame_type == HTT_STATS_PPDU_FTYPE_DATA && 1600 (ppdu_info->tlv_bitmap & (1 << HTT_PPDU_STATS_TAG_USR_COMMON)) && 1601 ppdu_info->delay_ba) { 1602 for (i = 0; i < ppdu_info->ppdu_stats.common.num_users; i++) { 1603 peer_id = ppdu_info->ppdu_stats.user_stats[i].peer_id; 1604 spin_lock_bh(&ab->base_lock); 1605 peer = ath12k_peer_find_by_id(ab, peer_id); 1606 if (!peer) { 1607 spin_unlock_bh(&ab->base_lock); 1608 continue; 1609 } 1610 1611 usr_stats = &ppdu_info->ppdu_stats.user_stats[i]; 1612 if (usr_stats->delay_ba) 1613 ath12k_copy_to_delay_stats(peer, usr_stats); 1614 spin_unlock_bh(&ab->base_lock); 1615 } 1616 } 1617 1618 /* restore all peers' data rate tlv to mu-bar tlv */ 1619 if (ppdu_info->frame_type == HTT_STATS_PPDU_FTYPE_BAR && 1620 (ppdu_info->tlv_bitmap & (1 << HTT_PPDU_STATS_TAG_USR_COMMON))) { 1621 for (i = 0; i < ppdu_info->bar_num_users; i++) { 1622 peer_id = ppdu_info->ppdu_stats.user_stats[i].peer_id; 1623 spin_lock_bh(&ab->base_lock); 1624 peer = ath12k_peer_find_by_id(ab, peer_id); 1625 if (!peer) { 1626 spin_unlock_bh(&ab->base_lock); 1627 continue; 1628 } 1629 1630 usr_stats = &ppdu_info->ppdu_stats.user_stats[i]; 1631 if (peer->delayba_flag) 1632 ath12k_copy_to_bar(peer, usr_stats); 1633 spin_unlock_bh(&ab->base_lock); 1634 } 1635 } 1636 1637 spin_unlock_bh(&ar->data_lock); 1638 1639 exit: 1640 rcu_read_unlock(); 1641 1642 return ret; 1643 } 1644 1645 static void ath12k_htt_mlo_offset_event_handler(struct ath12k_base *ab, 1646 struct sk_buff *skb) 1647 { 1648 struct ath12k_htt_mlo_offset_msg *msg; 1649 struct ath12k_pdev *pdev; 1650 struct ath12k *ar; 1651 u8 pdev_id; 1652 1653 msg = (struct ath12k_htt_mlo_offset_msg *)skb->data; 1654 pdev_id = u32_get_bits(__le32_to_cpu(msg->info), 1655 HTT_T2H_MLO_OFFSET_INFO_PDEV_ID); 1656 ar = ath12k_mac_get_ar_by_pdev_id(ab, pdev_id); 1657 1658 if (!ar) { 1659 ath12k_warn(ab, "invalid pdev id %d on htt mlo offset\n", pdev_id); 1660 return; 1661 } 1662 1663 spin_lock_bh(&ar->data_lock); 1664 pdev = ar->pdev; 1665 1666 pdev->timestamp.info = __le32_to_cpu(msg->info); 1667 pdev->timestamp.sync_timestamp_lo_us = __le32_to_cpu(msg->sync_timestamp_lo_us); 1668 pdev->timestamp.sync_timestamp_hi_us = __le32_to_cpu(msg->sync_timestamp_hi_us); 1669 pdev->timestamp.mlo_offset_lo = __le32_to_cpu(msg->mlo_offset_lo); 1670 pdev->timestamp.mlo_offset_hi = __le32_to_cpu(msg->mlo_offset_hi); 1671 pdev->timestamp.mlo_offset_clks = __le32_to_cpu(msg->mlo_offset_clks); 1672 pdev->timestamp.mlo_comp_clks = __le32_to_cpu(msg->mlo_comp_clks); 1673 pdev->timestamp.mlo_comp_timer = __le32_to_cpu(msg->mlo_comp_timer); 1674 1675 spin_unlock_bh(&ar->data_lock); 1676 } 1677 1678 void ath12k_dp_htt_htc_t2h_msg_handler(struct ath12k_base *ab, 1679 struct sk_buff *skb) 1680 { 1681 struct ath12k_dp *dp = &ab->dp; 1682 struct htt_resp_msg *resp = (struct htt_resp_msg *)skb->data; 1683 enum htt_t2h_msg_type type; 1684 u16 peer_id; 1685 u8 vdev_id; 1686 u8 mac_addr[ETH_ALEN]; 1687 u16 peer_mac_h16; 1688 u16 ast_hash = 0; 1689 u16 hw_peer_id; 1690 1691 type = le32_get_bits(resp->version_msg.version, HTT_T2H_MSG_TYPE); 1692 1693 ath12k_dbg(ab, ATH12K_DBG_DP_HTT, "dp_htt rx msg type :0x%0x\n", type); 1694 1695 switch (type) { 1696 case HTT_T2H_MSG_TYPE_VERSION_CONF: 1697 dp->htt_tgt_ver_major = le32_get_bits(resp->version_msg.version, 1698 HTT_T2H_VERSION_CONF_MAJOR); 1699 dp->htt_tgt_ver_minor = le32_get_bits(resp->version_msg.version, 1700 HTT_T2H_VERSION_CONF_MINOR); 1701 complete(&dp->htt_tgt_version_received); 1702 break; 1703 /* TODO: remove unused peer map versions after testing */ 1704 case HTT_T2H_MSG_TYPE_PEER_MAP: 1705 vdev_id = le32_get_bits(resp->peer_map_ev.info, 1706 HTT_T2H_PEER_MAP_INFO_VDEV_ID); 1707 peer_id = le32_get_bits(resp->peer_map_ev.info, 1708 HTT_T2H_PEER_MAP_INFO_PEER_ID); 1709 peer_mac_h16 = le32_get_bits(resp->peer_map_ev.info1, 1710 HTT_T2H_PEER_MAP_INFO1_MAC_ADDR_H16); 1711 ath12k_dp_get_mac_addr(le32_to_cpu(resp->peer_map_ev.mac_addr_l32), 1712 peer_mac_h16, mac_addr); 1713 ath12k_peer_map_event(ab, vdev_id, peer_id, mac_addr, 0, 0); 1714 break; 1715 case HTT_T2H_MSG_TYPE_PEER_MAP2: 1716 vdev_id = le32_get_bits(resp->peer_map_ev.info, 1717 HTT_T2H_PEER_MAP_INFO_VDEV_ID); 1718 peer_id = le32_get_bits(resp->peer_map_ev.info, 1719 HTT_T2H_PEER_MAP_INFO_PEER_ID); 1720 peer_mac_h16 = le32_get_bits(resp->peer_map_ev.info1, 1721 HTT_T2H_PEER_MAP_INFO1_MAC_ADDR_H16); 1722 ath12k_dp_get_mac_addr(le32_to_cpu(resp->peer_map_ev.mac_addr_l32), 1723 peer_mac_h16, mac_addr); 1724 ast_hash = le32_get_bits(resp->peer_map_ev.info2, 1725 HTT_T2H_PEER_MAP_INFO2_AST_HASH_VAL); 1726 hw_peer_id = le32_get_bits(resp->peer_map_ev.info1, 1727 HTT_T2H_PEER_MAP_INFO1_HW_PEER_ID); 1728 ath12k_peer_map_event(ab, vdev_id, peer_id, mac_addr, ast_hash, 1729 hw_peer_id); 1730 break; 1731 case HTT_T2H_MSG_TYPE_PEER_MAP3: 1732 vdev_id = le32_get_bits(resp->peer_map_ev.info, 1733 HTT_T2H_PEER_MAP_INFO_VDEV_ID); 1734 peer_id = le32_get_bits(resp->peer_map_ev.info, 1735 HTT_T2H_PEER_MAP_INFO_PEER_ID); 1736 peer_mac_h16 = le32_get_bits(resp->peer_map_ev.info1, 1737 HTT_T2H_PEER_MAP_INFO1_MAC_ADDR_H16); 1738 ath12k_dp_get_mac_addr(le32_to_cpu(resp->peer_map_ev.mac_addr_l32), 1739 peer_mac_h16, mac_addr); 1740 ath12k_peer_map_event(ab, vdev_id, peer_id, mac_addr, ast_hash, 1741 peer_id); 1742 break; 1743 case HTT_T2H_MSG_TYPE_PEER_UNMAP: 1744 case HTT_T2H_MSG_TYPE_PEER_UNMAP2: 1745 peer_id = le32_get_bits(resp->peer_unmap_ev.info, 1746 HTT_T2H_PEER_UNMAP_INFO_PEER_ID); 1747 ath12k_peer_unmap_event(ab, peer_id); 1748 break; 1749 case HTT_T2H_MSG_TYPE_PPDU_STATS_IND: 1750 ath12k_htt_pull_ppdu_stats(ab, skb); 1751 break; 1752 case HTT_T2H_MSG_TYPE_EXT_STATS_CONF: 1753 break; 1754 case HTT_T2H_MSG_TYPE_MLO_TIMESTAMP_OFFSET_IND: 1755 ath12k_htt_mlo_offset_event_handler(ab, skb); 1756 break; 1757 default: 1758 ath12k_dbg(ab, ATH12K_DBG_DP_HTT, "dp_htt event %d not handled\n", 1759 type); 1760 break; 1761 } 1762 1763 dev_kfree_skb_any(skb); 1764 } 1765 1766 static int ath12k_dp_rx_msdu_coalesce(struct ath12k *ar, 1767 struct sk_buff_head *msdu_list, 1768 struct sk_buff *first, struct sk_buff *last, 1769 u8 l3pad_bytes, int msdu_len) 1770 { 1771 struct ath12k_base *ab = ar->ab; 1772 struct sk_buff *skb; 1773 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(first); 1774 int buf_first_hdr_len, buf_first_len; 1775 struct hal_rx_desc *ldesc; 1776 int space_extra, rem_len, buf_len; 1777 u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; 1778 1779 /* As the msdu is spread across multiple rx buffers, 1780 * find the offset to the start of msdu for computing 1781 * the length of the msdu in the first buffer. 1782 */ 1783 buf_first_hdr_len = hal_rx_desc_sz + l3pad_bytes; 1784 buf_first_len = DP_RX_BUFFER_SIZE - buf_first_hdr_len; 1785 1786 if (WARN_ON_ONCE(msdu_len <= buf_first_len)) { 1787 skb_put(first, buf_first_hdr_len + msdu_len); 1788 skb_pull(first, buf_first_hdr_len); 1789 return 0; 1790 } 1791 1792 ldesc = (struct hal_rx_desc *)last->data; 1793 rxcb->is_first_msdu = ath12k_dp_rx_h_first_msdu(ab, ldesc); 1794 rxcb->is_last_msdu = ath12k_dp_rx_h_last_msdu(ab, ldesc); 1795 1796 /* MSDU spans over multiple buffers because the length of the MSDU 1797 * exceeds DP_RX_BUFFER_SIZE - HAL_RX_DESC_SIZE. So assume the data 1798 * in the first buf is of length DP_RX_BUFFER_SIZE - HAL_RX_DESC_SIZE. 1799 */ 1800 skb_put(first, DP_RX_BUFFER_SIZE); 1801 skb_pull(first, buf_first_hdr_len); 1802 1803 /* When an MSDU spread over multiple buffers MSDU_END 1804 * tlvs are valid only in the last buffer. Copy those tlvs. 1805 */ 1806 ath12k_dp_rx_desc_end_tlv_copy(ab, rxcb->rx_desc, ldesc); 1807 1808 space_extra = msdu_len - (buf_first_len + skb_tailroom(first)); 1809 if (space_extra > 0 && 1810 (pskb_expand_head(first, 0, space_extra, GFP_ATOMIC) < 0)) { 1811 /* Free up all buffers of the MSDU */ 1812 while ((skb = __skb_dequeue(msdu_list)) != NULL) { 1813 rxcb = ATH12K_SKB_RXCB(skb); 1814 if (!rxcb->is_continuation) { 1815 dev_kfree_skb_any(skb); 1816 break; 1817 } 1818 dev_kfree_skb_any(skb); 1819 } 1820 return -ENOMEM; 1821 } 1822 1823 rem_len = msdu_len - buf_first_len; 1824 while ((skb = __skb_dequeue(msdu_list)) != NULL && rem_len > 0) { 1825 rxcb = ATH12K_SKB_RXCB(skb); 1826 if (rxcb->is_continuation) 1827 buf_len = DP_RX_BUFFER_SIZE - hal_rx_desc_sz; 1828 else 1829 buf_len = rem_len; 1830 1831 if (buf_len > (DP_RX_BUFFER_SIZE - hal_rx_desc_sz)) { 1832 WARN_ON_ONCE(1); 1833 dev_kfree_skb_any(skb); 1834 return -EINVAL; 1835 } 1836 1837 skb_put(skb, buf_len + hal_rx_desc_sz); 1838 skb_pull(skb, hal_rx_desc_sz); 1839 skb_copy_from_linear_data(skb, skb_put(first, buf_len), 1840 buf_len); 1841 dev_kfree_skb_any(skb); 1842 1843 rem_len -= buf_len; 1844 if (!rxcb->is_continuation) 1845 break; 1846 } 1847 1848 return 0; 1849 } 1850 1851 static struct sk_buff *ath12k_dp_rx_get_msdu_last_buf(struct sk_buff_head *msdu_list, 1852 struct sk_buff *first) 1853 { 1854 struct sk_buff *skb; 1855 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(first); 1856 1857 if (!rxcb->is_continuation) 1858 return first; 1859 1860 skb_queue_walk(msdu_list, skb) { 1861 rxcb = ATH12K_SKB_RXCB(skb); 1862 if (!rxcb->is_continuation) 1863 return skb; 1864 } 1865 1866 return NULL; 1867 } 1868 1869 static void ath12k_dp_rx_h_csum_offload(struct ath12k *ar, struct sk_buff *msdu) 1870 { 1871 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 1872 struct ath12k_base *ab = ar->ab; 1873 bool ip_csum_fail, l4_csum_fail; 1874 1875 ip_csum_fail = ath12k_dp_rx_h_ip_cksum_fail(ab, rxcb->rx_desc); 1876 l4_csum_fail = ath12k_dp_rx_h_l4_cksum_fail(ab, rxcb->rx_desc); 1877 1878 msdu->ip_summed = (ip_csum_fail || l4_csum_fail) ? 1879 CHECKSUM_NONE : CHECKSUM_UNNECESSARY; 1880 } 1881 1882 static int ath12k_dp_rx_crypto_mic_len(struct ath12k *ar, 1883 enum hal_encrypt_type enctype) 1884 { 1885 switch (enctype) { 1886 case HAL_ENCRYPT_TYPE_OPEN: 1887 case HAL_ENCRYPT_TYPE_TKIP_NO_MIC: 1888 case HAL_ENCRYPT_TYPE_TKIP_MIC: 1889 return 0; 1890 case HAL_ENCRYPT_TYPE_CCMP_128: 1891 return IEEE80211_CCMP_MIC_LEN; 1892 case HAL_ENCRYPT_TYPE_CCMP_256: 1893 return IEEE80211_CCMP_256_MIC_LEN; 1894 case HAL_ENCRYPT_TYPE_GCMP_128: 1895 case HAL_ENCRYPT_TYPE_AES_GCMP_256: 1896 return IEEE80211_GCMP_MIC_LEN; 1897 case HAL_ENCRYPT_TYPE_WEP_40: 1898 case HAL_ENCRYPT_TYPE_WEP_104: 1899 case HAL_ENCRYPT_TYPE_WEP_128: 1900 case HAL_ENCRYPT_TYPE_WAPI_GCM_SM4: 1901 case HAL_ENCRYPT_TYPE_WAPI: 1902 break; 1903 } 1904 1905 ath12k_warn(ar->ab, "unsupported encryption type %d for mic len\n", enctype); 1906 return 0; 1907 } 1908 1909 static int ath12k_dp_rx_crypto_param_len(struct ath12k *ar, 1910 enum hal_encrypt_type enctype) 1911 { 1912 switch (enctype) { 1913 case HAL_ENCRYPT_TYPE_OPEN: 1914 return 0; 1915 case HAL_ENCRYPT_TYPE_TKIP_NO_MIC: 1916 case HAL_ENCRYPT_TYPE_TKIP_MIC: 1917 return IEEE80211_TKIP_IV_LEN; 1918 case HAL_ENCRYPT_TYPE_CCMP_128: 1919 return IEEE80211_CCMP_HDR_LEN; 1920 case HAL_ENCRYPT_TYPE_CCMP_256: 1921 return IEEE80211_CCMP_256_HDR_LEN; 1922 case HAL_ENCRYPT_TYPE_GCMP_128: 1923 case HAL_ENCRYPT_TYPE_AES_GCMP_256: 1924 return IEEE80211_GCMP_HDR_LEN; 1925 case HAL_ENCRYPT_TYPE_WEP_40: 1926 case HAL_ENCRYPT_TYPE_WEP_104: 1927 case HAL_ENCRYPT_TYPE_WEP_128: 1928 case HAL_ENCRYPT_TYPE_WAPI_GCM_SM4: 1929 case HAL_ENCRYPT_TYPE_WAPI: 1930 break; 1931 } 1932 1933 ath12k_warn(ar->ab, "unsupported encryption type %d\n", enctype); 1934 return 0; 1935 } 1936 1937 static int ath12k_dp_rx_crypto_icv_len(struct ath12k *ar, 1938 enum hal_encrypt_type enctype) 1939 { 1940 switch (enctype) { 1941 case HAL_ENCRYPT_TYPE_OPEN: 1942 case HAL_ENCRYPT_TYPE_CCMP_128: 1943 case HAL_ENCRYPT_TYPE_CCMP_256: 1944 case HAL_ENCRYPT_TYPE_GCMP_128: 1945 case HAL_ENCRYPT_TYPE_AES_GCMP_256: 1946 return 0; 1947 case HAL_ENCRYPT_TYPE_TKIP_NO_MIC: 1948 case HAL_ENCRYPT_TYPE_TKIP_MIC: 1949 return IEEE80211_TKIP_ICV_LEN; 1950 case HAL_ENCRYPT_TYPE_WEP_40: 1951 case HAL_ENCRYPT_TYPE_WEP_104: 1952 case HAL_ENCRYPT_TYPE_WEP_128: 1953 case HAL_ENCRYPT_TYPE_WAPI_GCM_SM4: 1954 case HAL_ENCRYPT_TYPE_WAPI: 1955 break; 1956 } 1957 1958 ath12k_warn(ar->ab, "unsupported encryption type %d\n", enctype); 1959 return 0; 1960 } 1961 1962 static void ath12k_dp_rx_h_undecap_nwifi(struct ath12k *ar, 1963 struct sk_buff *msdu, 1964 enum hal_encrypt_type enctype, 1965 struct ieee80211_rx_status *status) 1966 { 1967 struct ath12k_base *ab = ar->ab; 1968 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 1969 u8 decap_hdr[DP_MAX_NWIFI_HDR_LEN]; 1970 struct ieee80211_hdr *hdr; 1971 size_t hdr_len; 1972 u8 *crypto_hdr; 1973 u16 qos_ctl; 1974 1975 /* pull decapped header */ 1976 hdr = (struct ieee80211_hdr *)msdu->data; 1977 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1978 skb_pull(msdu, hdr_len); 1979 1980 /* Rebuild qos header */ 1981 hdr->frame_control |= __cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 1982 1983 /* Reset the order bit as the HT_Control header is stripped */ 1984 hdr->frame_control &= ~(__cpu_to_le16(IEEE80211_FCTL_ORDER)); 1985 1986 qos_ctl = rxcb->tid; 1987 1988 if (ath12k_dp_rx_h_mesh_ctl_present(ab, rxcb->rx_desc)) 1989 qos_ctl |= IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT; 1990 1991 /* TODO: Add other QoS ctl fields when required */ 1992 1993 /* copy decap header before overwriting for reuse below */ 1994 memcpy(decap_hdr, hdr, hdr_len); 1995 1996 /* Rebuild crypto header for mac80211 use */ 1997 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 1998 crypto_hdr = skb_push(msdu, ath12k_dp_rx_crypto_param_len(ar, enctype)); 1999 ath12k_dp_rx_desc_get_crypto_header(ar->ab, 2000 rxcb->rx_desc, crypto_hdr, 2001 enctype); 2002 } 2003 2004 memcpy(skb_push(msdu, 2005 IEEE80211_QOS_CTL_LEN), &qos_ctl, 2006 IEEE80211_QOS_CTL_LEN); 2007 memcpy(skb_push(msdu, hdr_len), decap_hdr, hdr_len); 2008 } 2009 2010 static void ath12k_dp_rx_h_undecap_raw(struct ath12k *ar, struct sk_buff *msdu, 2011 enum hal_encrypt_type enctype, 2012 struct ieee80211_rx_status *status, 2013 bool decrypted) 2014 { 2015 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 2016 struct ieee80211_hdr *hdr; 2017 size_t hdr_len; 2018 size_t crypto_len; 2019 2020 if (!rxcb->is_first_msdu || 2021 !(rxcb->is_first_msdu && rxcb->is_last_msdu)) { 2022 WARN_ON_ONCE(1); 2023 return; 2024 } 2025 2026 skb_trim(msdu, msdu->len - FCS_LEN); 2027 2028 if (!decrypted) 2029 return; 2030 2031 hdr = (void *)msdu->data; 2032 2033 /* Tail */ 2034 if (status->flag & RX_FLAG_IV_STRIPPED) { 2035 skb_trim(msdu, msdu->len - 2036 ath12k_dp_rx_crypto_mic_len(ar, enctype)); 2037 2038 skb_trim(msdu, msdu->len - 2039 ath12k_dp_rx_crypto_icv_len(ar, enctype)); 2040 } else { 2041 /* MIC */ 2042 if (status->flag & RX_FLAG_MIC_STRIPPED) 2043 skb_trim(msdu, msdu->len - 2044 ath12k_dp_rx_crypto_mic_len(ar, enctype)); 2045 2046 /* ICV */ 2047 if (status->flag & RX_FLAG_ICV_STRIPPED) 2048 skb_trim(msdu, msdu->len - 2049 ath12k_dp_rx_crypto_icv_len(ar, enctype)); 2050 } 2051 2052 /* MMIC */ 2053 if ((status->flag & RX_FLAG_MMIC_STRIPPED) && 2054 !ieee80211_has_morefrags(hdr->frame_control) && 2055 enctype == HAL_ENCRYPT_TYPE_TKIP_MIC) 2056 skb_trim(msdu, msdu->len - IEEE80211_CCMP_MIC_LEN); 2057 2058 /* Head */ 2059 if (status->flag & RX_FLAG_IV_STRIPPED) { 2060 hdr_len = ieee80211_hdrlen(hdr->frame_control); 2061 crypto_len = ath12k_dp_rx_crypto_param_len(ar, enctype); 2062 2063 memmove(msdu->data + crypto_len, msdu->data, hdr_len); 2064 skb_pull(msdu, crypto_len); 2065 } 2066 } 2067 2068 static void ath12k_get_dot11_hdr_from_rx_desc(struct ath12k *ar, 2069 struct sk_buff *msdu, 2070 struct ath12k_skb_rxcb *rxcb, 2071 struct ieee80211_rx_status *status, 2072 enum hal_encrypt_type enctype) 2073 { 2074 struct hal_rx_desc *rx_desc = rxcb->rx_desc; 2075 struct ath12k_base *ab = ar->ab; 2076 size_t hdr_len, crypto_len; 2077 struct ieee80211_hdr *hdr; 2078 u16 qos_ctl; 2079 __le16 fc; 2080 u8 *crypto_hdr; 2081 2082 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 2083 crypto_len = ath12k_dp_rx_crypto_param_len(ar, enctype); 2084 crypto_hdr = skb_push(msdu, crypto_len); 2085 ath12k_dp_rx_desc_get_crypto_header(ab, rx_desc, crypto_hdr, enctype); 2086 } 2087 2088 fc = cpu_to_le16(ath12k_dp_rxdesc_get_mpdu_frame_ctrl(ab, rx_desc)); 2089 hdr_len = ieee80211_hdrlen(fc); 2090 skb_push(msdu, hdr_len); 2091 hdr = (struct ieee80211_hdr *)msdu->data; 2092 hdr->frame_control = fc; 2093 2094 /* Get wifi header from rx_desc */ 2095 ath12k_dp_rx_desc_get_dot11_hdr(ab, rx_desc, hdr); 2096 2097 if (rxcb->is_mcbc) 2098 status->flag &= ~RX_FLAG_PN_VALIDATED; 2099 2100 /* Add QOS header */ 2101 if (ieee80211_is_data_qos(hdr->frame_control)) { 2102 qos_ctl = rxcb->tid; 2103 if (ath12k_dp_rx_h_mesh_ctl_present(ab, rx_desc)) 2104 qos_ctl |= IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT; 2105 2106 /* TODO: Add other QoS ctl fields when required */ 2107 memcpy(msdu->data + (hdr_len - IEEE80211_QOS_CTL_LEN), 2108 &qos_ctl, IEEE80211_QOS_CTL_LEN); 2109 } 2110 } 2111 2112 static void ath12k_dp_rx_h_undecap_eth(struct ath12k *ar, 2113 struct sk_buff *msdu, 2114 enum hal_encrypt_type enctype, 2115 struct ieee80211_rx_status *status) 2116 { 2117 struct ieee80211_hdr *hdr; 2118 struct ethhdr *eth; 2119 u8 da[ETH_ALEN]; 2120 u8 sa[ETH_ALEN]; 2121 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 2122 struct ath12k_dp_rx_rfc1042_hdr rfc = {0xaa, 0xaa, 0x03, {0x00, 0x00, 0x00}}; 2123 2124 eth = (struct ethhdr *)msdu->data; 2125 ether_addr_copy(da, eth->h_dest); 2126 ether_addr_copy(sa, eth->h_source); 2127 rfc.snap_type = eth->h_proto; 2128 skb_pull(msdu, sizeof(*eth)); 2129 memcpy(skb_push(msdu, sizeof(rfc)), &rfc, 2130 sizeof(rfc)); 2131 ath12k_get_dot11_hdr_from_rx_desc(ar, msdu, rxcb, status, enctype); 2132 2133 /* original 802.11 header has a different DA and in 2134 * case of 4addr it may also have different SA 2135 */ 2136 hdr = (struct ieee80211_hdr *)msdu->data; 2137 ether_addr_copy(ieee80211_get_DA(hdr), da); 2138 ether_addr_copy(ieee80211_get_SA(hdr), sa); 2139 } 2140 2141 static void ath12k_dp_rx_h_undecap(struct ath12k *ar, struct sk_buff *msdu, 2142 struct hal_rx_desc *rx_desc, 2143 enum hal_encrypt_type enctype, 2144 struct ieee80211_rx_status *status, 2145 bool decrypted) 2146 { 2147 struct ath12k_base *ab = ar->ab; 2148 u8 decap; 2149 struct ethhdr *ehdr; 2150 2151 decap = ath12k_dp_rx_h_decap_type(ab, rx_desc); 2152 2153 switch (decap) { 2154 case DP_RX_DECAP_TYPE_NATIVE_WIFI: 2155 ath12k_dp_rx_h_undecap_nwifi(ar, msdu, enctype, status); 2156 break; 2157 case DP_RX_DECAP_TYPE_RAW: 2158 ath12k_dp_rx_h_undecap_raw(ar, msdu, enctype, status, 2159 decrypted); 2160 break; 2161 case DP_RX_DECAP_TYPE_ETHERNET2_DIX: 2162 ehdr = (struct ethhdr *)msdu->data; 2163 2164 /* mac80211 allows fast path only for authorized STA */ 2165 if (ehdr->h_proto == cpu_to_be16(ETH_P_PAE)) { 2166 ATH12K_SKB_RXCB(msdu)->is_eapol = true; 2167 ath12k_dp_rx_h_undecap_eth(ar, msdu, enctype, status); 2168 break; 2169 } 2170 2171 /* PN for mcast packets will be validated in mac80211; 2172 * remove eth header and add 802.11 header. 2173 */ 2174 if (ATH12K_SKB_RXCB(msdu)->is_mcbc && decrypted) 2175 ath12k_dp_rx_h_undecap_eth(ar, msdu, enctype, status); 2176 break; 2177 case DP_RX_DECAP_TYPE_8023: 2178 /* TODO: Handle undecap for these formats */ 2179 break; 2180 } 2181 } 2182 2183 struct ath12k_peer * 2184 ath12k_dp_rx_h_find_peer(struct ath12k_base *ab, struct sk_buff *msdu) 2185 { 2186 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 2187 struct hal_rx_desc *rx_desc = rxcb->rx_desc; 2188 struct ath12k_peer *peer = NULL; 2189 2190 lockdep_assert_held(&ab->base_lock); 2191 2192 if (rxcb->peer_id) 2193 peer = ath12k_peer_find_by_id(ab, rxcb->peer_id); 2194 2195 if (peer) 2196 return peer; 2197 2198 if (!rx_desc || !(ath12k_dp_rxdesc_mac_addr2_valid(ab, rx_desc))) 2199 return NULL; 2200 2201 peer = ath12k_peer_find_by_addr(ab, 2202 ath12k_dp_rxdesc_get_mpdu_start_addr2(ab, 2203 rx_desc)); 2204 return peer; 2205 } 2206 2207 static void ath12k_dp_rx_h_mpdu(struct ath12k *ar, 2208 struct sk_buff *msdu, 2209 struct hal_rx_desc *rx_desc, 2210 struct ieee80211_rx_status *rx_status) 2211 { 2212 bool fill_crypto_hdr; 2213 struct ath12k_base *ab = ar->ab; 2214 struct ath12k_skb_rxcb *rxcb; 2215 enum hal_encrypt_type enctype; 2216 bool is_decrypted = false; 2217 struct ieee80211_hdr *hdr; 2218 struct ath12k_peer *peer; 2219 u32 err_bitmap; 2220 2221 /* PN for multicast packets will be checked in mac80211 */ 2222 rxcb = ATH12K_SKB_RXCB(msdu); 2223 fill_crypto_hdr = ath12k_dp_rx_h_is_da_mcbc(ar->ab, rx_desc); 2224 rxcb->is_mcbc = fill_crypto_hdr; 2225 2226 if (rxcb->is_mcbc) 2227 rxcb->peer_id = ath12k_dp_rx_h_peer_id(ar->ab, rx_desc); 2228 2229 spin_lock_bh(&ar->ab->base_lock); 2230 peer = ath12k_dp_rx_h_find_peer(ar->ab, msdu); 2231 if (peer) { 2232 if (rxcb->is_mcbc) 2233 enctype = peer->sec_type_grp; 2234 else 2235 enctype = peer->sec_type; 2236 } else { 2237 enctype = HAL_ENCRYPT_TYPE_OPEN; 2238 } 2239 spin_unlock_bh(&ar->ab->base_lock); 2240 2241 err_bitmap = ath12k_dp_rx_h_mpdu_err(ab, rx_desc); 2242 if (enctype != HAL_ENCRYPT_TYPE_OPEN && !err_bitmap) 2243 is_decrypted = ath12k_dp_rx_h_is_decrypted(ab, rx_desc); 2244 2245 /* Clear per-MPDU flags while leaving per-PPDU flags intact */ 2246 rx_status->flag &= ~(RX_FLAG_FAILED_FCS_CRC | 2247 RX_FLAG_MMIC_ERROR | 2248 RX_FLAG_DECRYPTED | 2249 RX_FLAG_IV_STRIPPED | 2250 RX_FLAG_MMIC_STRIPPED); 2251 2252 if (err_bitmap & HAL_RX_MPDU_ERR_FCS) 2253 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 2254 if (err_bitmap & HAL_RX_MPDU_ERR_TKIP_MIC) 2255 rx_status->flag |= RX_FLAG_MMIC_ERROR; 2256 2257 if (is_decrypted) { 2258 rx_status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MMIC_STRIPPED; 2259 2260 if (fill_crypto_hdr) 2261 rx_status->flag |= RX_FLAG_MIC_STRIPPED | 2262 RX_FLAG_ICV_STRIPPED; 2263 else 2264 rx_status->flag |= RX_FLAG_IV_STRIPPED | 2265 RX_FLAG_PN_VALIDATED; 2266 } 2267 2268 ath12k_dp_rx_h_csum_offload(ar, msdu); 2269 ath12k_dp_rx_h_undecap(ar, msdu, rx_desc, 2270 enctype, rx_status, is_decrypted); 2271 2272 if (!is_decrypted || fill_crypto_hdr) 2273 return; 2274 2275 if (ath12k_dp_rx_h_decap_type(ar->ab, rx_desc) != 2276 DP_RX_DECAP_TYPE_ETHERNET2_DIX) { 2277 hdr = (void *)msdu->data; 2278 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 2279 } 2280 } 2281 2282 static void ath12k_dp_rx_h_rate(struct ath12k *ar, struct hal_rx_desc *rx_desc, 2283 struct ieee80211_rx_status *rx_status) 2284 { 2285 struct ath12k_base *ab = ar->ab; 2286 struct ieee80211_supported_band *sband; 2287 enum rx_msdu_start_pkt_type pkt_type; 2288 u8 bw; 2289 u8 rate_mcs, nss; 2290 u8 sgi; 2291 bool is_cck; 2292 2293 pkt_type = ath12k_dp_rx_h_pkt_type(ab, rx_desc); 2294 bw = ath12k_dp_rx_h_rx_bw(ab, rx_desc); 2295 rate_mcs = ath12k_dp_rx_h_rate_mcs(ab, rx_desc); 2296 nss = ath12k_dp_rx_h_nss(ab, rx_desc); 2297 sgi = ath12k_dp_rx_h_sgi(ab, rx_desc); 2298 2299 switch (pkt_type) { 2300 case RX_MSDU_START_PKT_TYPE_11A: 2301 case RX_MSDU_START_PKT_TYPE_11B: 2302 is_cck = (pkt_type == RX_MSDU_START_PKT_TYPE_11B); 2303 sband = &ar->mac.sbands[rx_status->band]; 2304 rx_status->rate_idx = ath12k_mac_hw_rate_to_idx(sband, rate_mcs, 2305 is_cck); 2306 break; 2307 case RX_MSDU_START_PKT_TYPE_11N: 2308 rx_status->encoding = RX_ENC_HT; 2309 if (rate_mcs > ATH12K_HT_MCS_MAX) { 2310 ath12k_warn(ar->ab, 2311 "Received with invalid mcs in HT mode %d\n", 2312 rate_mcs); 2313 break; 2314 } 2315 rx_status->rate_idx = rate_mcs + (8 * (nss - 1)); 2316 if (sgi) 2317 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2318 rx_status->bw = ath12k_mac_bw_to_mac80211_bw(bw); 2319 break; 2320 case RX_MSDU_START_PKT_TYPE_11AC: 2321 rx_status->encoding = RX_ENC_VHT; 2322 rx_status->rate_idx = rate_mcs; 2323 if (rate_mcs > ATH12K_VHT_MCS_MAX) { 2324 ath12k_warn(ar->ab, 2325 "Received with invalid mcs in VHT mode %d\n", 2326 rate_mcs); 2327 break; 2328 } 2329 rx_status->nss = nss; 2330 if (sgi) 2331 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2332 rx_status->bw = ath12k_mac_bw_to_mac80211_bw(bw); 2333 break; 2334 case RX_MSDU_START_PKT_TYPE_11AX: 2335 rx_status->rate_idx = rate_mcs; 2336 if (rate_mcs > ATH12K_HE_MCS_MAX) { 2337 ath12k_warn(ar->ab, 2338 "Received with invalid mcs in HE mode %d\n", 2339 rate_mcs); 2340 break; 2341 } 2342 rx_status->encoding = RX_ENC_HE; 2343 rx_status->nss = nss; 2344 rx_status->he_gi = ath12k_he_gi_to_nl80211_he_gi(sgi); 2345 rx_status->bw = ath12k_mac_bw_to_mac80211_bw(bw); 2346 break; 2347 } 2348 } 2349 2350 void ath12k_dp_rx_h_ppdu(struct ath12k *ar, struct hal_rx_desc *rx_desc, 2351 struct ieee80211_rx_status *rx_status) 2352 { 2353 struct ath12k_base *ab = ar->ab; 2354 u8 channel_num; 2355 u32 center_freq, meta_data; 2356 struct ieee80211_channel *channel; 2357 2358 rx_status->freq = 0; 2359 rx_status->rate_idx = 0; 2360 rx_status->nss = 0; 2361 rx_status->encoding = RX_ENC_LEGACY; 2362 rx_status->bw = RATE_INFO_BW_20; 2363 rx_status->enc_flags = 0; 2364 2365 rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL; 2366 2367 meta_data = ath12k_dp_rx_h_freq(ab, rx_desc); 2368 channel_num = meta_data; 2369 center_freq = meta_data >> 16; 2370 2371 if (center_freq >= 5935 && center_freq <= 7105) { 2372 rx_status->band = NL80211_BAND_6GHZ; 2373 } else if (channel_num >= 1 && channel_num <= 14) { 2374 rx_status->band = NL80211_BAND_2GHZ; 2375 } else if (channel_num >= 36 && channel_num <= 173) { 2376 rx_status->band = NL80211_BAND_5GHZ; 2377 } else { 2378 spin_lock_bh(&ar->data_lock); 2379 channel = ar->rx_channel; 2380 if (channel) { 2381 rx_status->band = channel->band; 2382 channel_num = 2383 ieee80211_frequency_to_channel(channel->center_freq); 2384 } 2385 spin_unlock_bh(&ar->data_lock); 2386 ath12k_dbg_dump(ar->ab, ATH12K_DBG_DATA, NULL, "rx_desc: ", 2387 rx_desc, sizeof(*rx_desc)); 2388 } 2389 2390 rx_status->freq = ieee80211_channel_to_frequency(channel_num, 2391 rx_status->band); 2392 2393 ath12k_dp_rx_h_rate(ar, rx_desc, rx_status); 2394 } 2395 2396 static void ath12k_dp_rx_deliver_msdu(struct ath12k *ar, struct napi_struct *napi, 2397 struct sk_buff *msdu, 2398 struct ieee80211_rx_status *status) 2399 { 2400 struct ath12k_base *ab = ar->ab; 2401 static const struct ieee80211_radiotap_he known = { 2402 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 2403 IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN), 2404 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN), 2405 }; 2406 struct ieee80211_radiotap_he *he; 2407 struct ieee80211_rx_status *rx_status; 2408 struct ieee80211_sta *pubsta; 2409 struct ath12k_peer *peer; 2410 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 2411 u8 decap = DP_RX_DECAP_TYPE_RAW; 2412 bool is_mcbc = rxcb->is_mcbc; 2413 bool is_eapol = rxcb->is_eapol; 2414 2415 if (status->encoding == RX_ENC_HE && !(status->flag & RX_FLAG_RADIOTAP_HE) && 2416 !(status->flag & RX_FLAG_SKIP_MONITOR)) { 2417 he = skb_push(msdu, sizeof(known)); 2418 memcpy(he, &known, sizeof(known)); 2419 status->flag |= RX_FLAG_RADIOTAP_HE; 2420 } 2421 2422 if (!(status->flag & RX_FLAG_ONLY_MONITOR)) 2423 decap = ath12k_dp_rx_h_decap_type(ab, rxcb->rx_desc); 2424 2425 spin_lock_bh(&ab->base_lock); 2426 peer = ath12k_dp_rx_h_find_peer(ab, msdu); 2427 2428 pubsta = peer ? peer->sta : NULL; 2429 2430 spin_unlock_bh(&ab->base_lock); 2431 2432 ath12k_dbg(ab, ATH12K_DBG_DATA, 2433 "rx skb %pK len %u peer %pM %d %s sn %u %s%s%s%s%s%s%s%s rate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n", 2434 msdu, 2435 msdu->len, 2436 peer ? peer->addr : NULL, 2437 rxcb->tid, 2438 is_mcbc ? "mcast" : "ucast", 2439 ath12k_dp_rx_h_seq_no(ab, rxcb->rx_desc), 2440 (status->encoding == RX_ENC_LEGACY) ? "legacy" : "", 2441 (status->encoding == RX_ENC_HT) ? "ht" : "", 2442 (status->encoding == RX_ENC_VHT) ? "vht" : "", 2443 (status->encoding == RX_ENC_HE) ? "he" : "", 2444 (status->bw == RATE_INFO_BW_40) ? "40" : "", 2445 (status->bw == RATE_INFO_BW_80) ? "80" : "", 2446 (status->bw == RATE_INFO_BW_160) ? "160" : "", 2447 status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "", 2448 status->rate_idx, 2449 status->nss, 2450 status->freq, 2451 status->band, status->flag, 2452 !!(status->flag & RX_FLAG_FAILED_FCS_CRC), 2453 !!(status->flag & RX_FLAG_MMIC_ERROR), 2454 !!(status->flag & RX_FLAG_AMSDU_MORE)); 2455 2456 ath12k_dbg_dump(ab, ATH12K_DBG_DP_RX, NULL, "dp rx msdu: ", 2457 msdu->data, msdu->len); 2458 2459 rx_status = IEEE80211_SKB_RXCB(msdu); 2460 *rx_status = *status; 2461 2462 /* TODO: trace rx packet */ 2463 2464 /* PN for multicast packets are not validate in HW, 2465 * so skip 802.3 rx path 2466 * Also, fast_rx expects the STA to be authorized, hence 2467 * eapol packets are sent in slow path. 2468 */ 2469 if (decap == DP_RX_DECAP_TYPE_ETHERNET2_DIX && !is_eapol && 2470 !(is_mcbc && rx_status->flag & RX_FLAG_DECRYPTED)) 2471 rx_status->flag |= RX_FLAG_8023; 2472 2473 ieee80211_rx_napi(ar->hw, pubsta, msdu, napi); 2474 } 2475 2476 static int ath12k_dp_rx_process_msdu(struct ath12k *ar, 2477 struct sk_buff *msdu, 2478 struct sk_buff_head *msdu_list, 2479 struct ieee80211_rx_status *rx_status) 2480 { 2481 struct ath12k_base *ab = ar->ab; 2482 struct hal_rx_desc *rx_desc, *lrx_desc; 2483 struct ath12k_skb_rxcb *rxcb; 2484 struct sk_buff *last_buf; 2485 u8 l3_pad_bytes; 2486 u16 msdu_len; 2487 int ret; 2488 u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; 2489 2490 last_buf = ath12k_dp_rx_get_msdu_last_buf(msdu_list, msdu); 2491 if (!last_buf) { 2492 ath12k_warn(ab, 2493 "No valid Rx buffer to access MSDU_END tlv\n"); 2494 ret = -EIO; 2495 goto free_out; 2496 } 2497 2498 rx_desc = (struct hal_rx_desc *)msdu->data; 2499 lrx_desc = (struct hal_rx_desc *)last_buf->data; 2500 if (!ath12k_dp_rx_h_msdu_done(ab, lrx_desc)) { 2501 ath12k_warn(ab, "msdu_done bit in msdu_end is not set\n"); 2502 ret = -EIO; 2503 goto free_out; 2504 } 2505 2506 rxcb = ATH12K_SKB_RXCB(msdu); 2507 rxcb->rx_desc = rx_desc; 2508 msdu_len = ath12k_dp_rx_h_msdu_len(ab, lrx_desc); 2509 l3_pad_bytes = ath12k_dp_rx_h_l3pad(ab, lrx_desc); 2510 2511 if (rxcb->is_frag) { 2512 skb_pull(msdu, hal_rx_desc_sz); 2513 } else if (!rxcb->is_continuation) { 2514 if ((msdu_len + hal_rx_desc_sz) > DP_RX_BUFFER_SIZE) { 2515 ret = -EINVAL; 2516 ath12k_warn(ab, "invalid msdu len %u\n", msdu_len); 2517 ath12k_dbg_dump(ab, ATH12K_DBG_DATA, NULL, "", rx_desc, 2518 sizeof(*rx_desc)); 2519 goto free_out; 2520 } 2521 skb_put(msdu, hal_rx_desc_sz + l3_pad_bytes + msdu_len); 2522 skb_pull(msdu, hal_rx_desc_sz + l3_pad_bytes); 2523 } else { 2524 ret = ath12k_dp_rx_msdu_coalesce(ar, msdu_list, 2525 msdu, last_buf, 2526 l3_pad_bytes, msdu_len); 2527 if (ret) { 2528 ath12k_warn(ab, 2529 "failed to coalesce msdu rx buffer%d\n", ret); 2530 goto free_out; 2531 } 2532 } 2533 2534 ath12k_dp_rx_h_ppdu(ar, rx_desc, rx_status); 2535 ath12k_dp_rx_h_mpdu(ar, msdu, rx_desc, rx_status); 2536 2537 rx_status->flag |= RX_FLAG_SKIP_MONITOR | RX_FLAG_DUP_VALIDATED; 2538 2539 return 0; 2540 2541 free_out: 2542 return ret; 2543 } 2544 2545 static void ath12k_dp_rx_process_received_packets(struct ath12k_base *ab, 2546 struct napi_struct *napi, 2547 struct sk_buff_head *msdu_list, 2548 int ring_id) 2549 { 2550 struct ieee80211_rx_status rx_status = {0}; 2551 struct ath12k_skb_rxcb *rxcb; 2552 struct sk_buff *msdu; 2553 struct ath12k *ar; 2554 u8 mac_id, pdev_id; 2555 int ret; 2556 2557 if (skb_queue_empty(msdu_list)) 2558 return; 2559 2560 rcu_read_lock(); 2561 2562 while ((msdu = __skb_dequeue(msdu_list))) { 2563 rxcb = ATH12K_SKB_RXCB(msdu); 2564 mac_id = rxcb->mac_id; 2565 pdev_id = ath12k_hw_mac_id_to_pdev_id(ab->hw_params, mac_id); 2566 ar = ab->pdevs[pdev_id].ar; 2567 if (!rcu_dereference(ab->pdevs_active[pdev_id])) { 2568 dev_kfree_skb_any(msdu); 2569 continue; 2570 } 2571 2572 if (test_bit(ATH12K_CAC_RUNNING, &ar->dev_flags)) { 2573 dev_kfree_skb_any(msdu); 2574 continue; 2575 } 2576 2577 ret = ath12k_dp_rx_process_msdu(ar, msdu, msdu_list, &rx_status); 2578 if (ret) { 2579 ath12k_dbg(ab, ATH12K_DBG_DATA, 2580 "Unable to process msdu %d", ret); 2581 dev_kfree_skb_any(msdu); 2582 continue; 2583 } 2584 2585 ath12k_dp_rx_deliver_msdu(ar, napi, msdu, &rx_status); 2586 } 2587 2588 rcu_read_unlock(); 2589 } 2590 2591 int ath12k_dp_rx_process(struct ath12k_base *ab, int ring_id, 2592 struct napi_struct *napi, int budget) 2593 { 2594 struct ath12k_rx_desc_info *desc_info; 2595 struct ath12k_dp *dp = &ab->dp; 2596 struct dp_rxdma_ring *rx_ring = &dp->rx_refill_buf_ring; 2597 struct hal_reo_dest_ring *desc; 2598 int num_buffs_reaped = 0; 2599 struct sk_buff_head msdu_list; 2600 struct ath12k_skb_rxcb *rxcb; 2601 int total_msdu_reaped = 0; 2602 struct hal_srng *srng; 2603 struct sk_buff *msdu; 2604 bool done = false; 2605 int mac_id; 2606 u64 desc_va; 2607 2608 __skb_queue_head_init(&msdu_list); 2609 2610 srng = &ab->hal.srng_list[dp->reo_dst_ring[ring_id].ring_id]; 2611 2612 spin_lock_bh(&srng->lock); 2613 2614 try_again: 2615 ath12k_hal_srng_access_begin(ab, srng); 2616 2617 while ((desc = ath12k_hal_srng_dst_get_next_entry(ab, srng))) { 2618 enum hal_reo_dest_ring_push_reason push_reason; 2619 u32 cookie; 2620 2621 cookie = le32_get_bits(desc->buf_addr_info.info1, 2622 BUFFER_ADDR_INFO1_SW_COOKIE); 2623 2624 mac_id = le32_get_bits(desc->info0, 2625 HAL_REO_DEST_RING_INFO0_SRC_LINK_ID); 2626 2627 desc_va = ((u64)le32_to_cpu(desc->buf_va_hi) << 32 | 2628 le32_to_cpu(desc->buf_va_lo)); 2629 desc_info = (struct ath12k_rx_desc_info *)((unsigned long)desc_va); 2630 2631 /* retry manual desc retrieval */ 2632 if (!desc_info) { 2633 desc_info = ath12k_dp_get_rx_desc(ab, cookie); 2634 if (!desc_info) { 2635 ath12k_warn(ab, "Invalid cookie in manual desc retrieval"); 2636 continue; 2637 } 2638 } 2639 2640 if (desc_info->magic != ATH12K_DP_RX_DESC_MAGIC) 2641 ath12k_warn(ab, "Check HW CC implementation"); 2642 2643 msdu = desc_info->skb; 2644 desc_info->skb = NULL; 2645 2646 spin_lock_bh(&dp->rx_desc_lock); 2647 list_move_tail(&desc_info->list, &dp->rx_desc_free_list); 2648 spin_unlock_bh(&dp->rx_desc_lock); 2649 2650 rxcb = ATH12K_SKB_RXCB(msdu); 2651 dma_unmap_single(ab->dev, rxcb->paddr, 2652 msdu->len + skb_tailroom(msdu), 2653 DMA_FROM_DEVICE); 2654 2655 num_buffs_reaped++; 2656 2657 push_reason = le32_get_bits(desc->info0, 2658 HAL_REO_DEST_RING_INFO0_PUSH_REASON); 2659 if (push_reason != 2660 HAL_REO_DEST_RING_PUSH_REASON_ROUTING_INSTRUCTION) { 2661 dev_kfree_skb_any(msdu); 2662 ab->soc_stats.hal_reo_error[dp->reo_dst_ring[ring_id].ring_id]++; 2663 continue; 2664 } 2665 2666 rxcb->is_first_msdu = !!(le32_to_cpu(desc->rx_msdu_info.info0) & 2667 RX_MSDU_DESC_INFO0_FIRST_MSDU_IN_MPDU); 2668 rxcb->is_last_msdu = !!(le32_to_cpu(desc->rx_msdu_info.info0) & 2669 RX_MSDU_DESC_INFO0_LAST_MSDU_IN_MPDU); 2670 rxcb->is_continuation = !!(le32_to_cpu(desc->rx_msdu_info.info0) & 2671 RX_MSDU_DESC_INFO0_MSDU_CONTINUATION); 2672 rxcb->mac_id = mac_id; 2673 rxcb->peer_id = le32_get_bits(desc->rx_mpdu_info.peer_meta_data, 2674 RX_MPDU_DESC_META_DATA_PEER_ID); 2675 rxcb->tid = le32_get_bits(desc->rx_mpdu_info.info0, 2676 RX_MPDU_DESC_INFO0_TID); 2677 2678 __skb_queue_tail(&msdu_list, msdu); 2679 2680 if (!rxcb->is_continuation) { 2681 total_msdu_reaped++; 2682 done = true; 2683 } else { 2684 done = false; 2685 } 2686 2687 if (total_msdu_reaped >= budget) 2688 break; 2689 } 2690 2691 /* Hw might have updated the head pointer after we cached it. 2692 * In this case, even though there are entries in the ring we'll 2693 * get rx_desc NULL. Give the read another try with updated cached 2694 * head pointer so that we can reap complete MPDU in the current 2695 * rx processing. 2696 */ 2697 if (!done && ath12k_hal_srng_dst_num_free(ab, srng, true)) { 2698 ath12k_hal_srng_access_end(ab, srng); 2699 goto try_again; 2700 } 2701 2702 ath12k_hal_srng_access_end(ab, srng); 2703 2704 spin_unlock_bh(&srng->lock); 2705 2706 if (!total_msdu_reaped) 2707 goto exit; 2708 2709 /* TODO: Move to implicit BM? */ 2710 ath12k_dp_rx_bufs_replenish(ab, 0, rx_ring, num_buffs_reaped, 2711 ab->hw_params->hal_params->rx_buf_rbm, true); 2712 2713 ath12k_dp_rx_process_received_packets(ab, napi, &msdu_list, 2714 ring_id); 2715 2716 exit: 2717 return total_msdu_reaped; 2718 } 2719 2720 static void ath12k_dp_rx_frag_timer(struct timer_list *timer) 2721 { 2722 struct ath12k_dp_rx_tid *rx_tid = from_timer(rx_tid, timer, frag_timer); 2723 2724 spin_lock_bh(&rx_tid->ab->base_lock); 2725 if (rx_tid->last_frag_no && 2726 rx_tid->rx_frag_bitmap == GENMASK(rx_tid->last_frag_no, 0)) { 2727 spin_unlock_bh(&rx_tid->ab->base_lock); 2728 return; 2729 } 2730 ath12k_dp_rx_frags_cleanup(rx_tid, true); 2731 spin_unlock_bh(&rx_tid->ab->base_lock); 2732 } 2733 2734 int ath12k_dp_rx_peer_frag_setup(struct ath12k *ar, const u8 *peer_mac, int vdev_id) 2735 { 2736 struct ath12k_base *ab = ar->ab; 2737 struct crypto_shash *tfm; 2738 struct ath12k_peer *peer; 2739 struct ath12k_dp_rx_tid *rx_tid; 2740 int i; 2741 2742 tfm = crypto_alloc_shash("michael_mic", 0, 0); 2743 if (IS_ERR(tfm)) 2744 return PTR_ERR(tfm); 2745 2746 spin_lock_bh(&ab->base_lock); 2747 2748 peer = ath12k_peer_find(ab, vdev_id, peer_mac); 2749 if (!peer) { 2750 spin_unlock_bh(&ab->base_lock); 2751 ath12k_warn(ab, "failed to find the peer to set up fragment info\n"); 2752 return -ENOENT; 2753 } 2754 2755 for (i = 0; i <= IEEE80211_NUM_TIDS; i++) { 2756 rx_tid = &peer->rx_tid[i]; 2757 rx_tid->ab = ab; 2758 timer_setup(&rx_tid->frag_timer, ath12k_dp_rx_frag_timer, 0); 2759 skb_queue_head_init(&rx_tid->rx_frags); 2760 } 2761 2762 peer->tfm_mmic = tfm; 2763 spin_unlock_bh(&ab->base_lock); 2764 2765 return 0; 2766 } 2767 2768 static int ath12k_dp_rx_h_michael_mic(struct crypto_shash *tfm, u8 *key, 2769 struct ieee80211_hdr *hdr, u8 *data, 2770 size_t data_len, u8 *mic) 2771 { 2772 SHASH_DESC_ON_STACK(desc, tfm); 2773 u8 mic_hdr[16] = {0}; 2774 u8 tid = 0; 2775 int ret; 2776 2777 if (!tfm) 2778 return -EINVAL; 2779 2780 desc->tfm = tfm; 2781 2782 ret = crypto_shash_setkey(tfm, key, 8); 2783 if (ret) 2784 goto out; 2785 2786 ret = crypto_shash_init(desc); 2787 if (ret) 2788 goto out; 2789 2790 /* TKIP MIC header */ 2791 memcpy(mic_hdr, ieee80211_get_DA(hdr), ETH_ALEN); 2792 memcpy(mic_hdr + ETH_ALEN, ieee80211_get_SA(hdr), ETH_ALEN); 2793 if (ieee80211_is_data_qos(hdr->frame_control)) 2794 tid = ieee80211_get_tid(hdr); 2795 mic_hdr[12] = tid; 2796 2797 ret = crypto_shash_update(desc, mic_hdr, 16); 2798 if (ret) 2799 goto out; 2800 ret = crypto_shash_update(desc, data, data_len); 2801 if (ret) 2802 goto out; 2803 ret = crypto_shash_final(desc, mic); 2804 out: 2805 shash_desc_zero(desc); 2806 return ret; 2807 } 2808 2809 static int ath12k_dp_rx_h_verify_tkip_mic(struct ath12k *ar, struct ath12k_peer *peer, 2810 struct sk_buff *msdu) 2811 { 2812 struct ath12k_base *ab = ar->ab; 2813 struct hal_rx_desc *rx_desc = (struct hal_rx_desc *)msdu->data; 2814 struct ieee80211_rx_status *rxs = IEEE80211_SKB_RXCB(msdu); 2815 struct ieee80211_key_conf *key_conf; 2816 struct ieee80211_hdr *hdr; 2817 u8 mic[IEEE80211_CCMP_MIC_LEN]; 2818 int head_len, tail_len, ret; 2819 size_t data_len; 2820 u32 hdr_len, hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; 2821 u8 *key, *data; 2822 u8 key_idx; 2823 2824 if (ath12k_dp_rx_h_enctype(ab, rx_desc) != HAL_ENCRYPT_TYPE_TKIP_MIC) 2825 return 0; 2826 2827 hdr = (struct ieee80211_hdr *)(msdu->data + hal_rx_desc_sz); 2828 hdr_len = ieee80211_hdrlen(hdr->frame_control); 2829 head_len = hdr_len + hal_rx_desc_sz + IEEE80211_TKIP_IV_LEN; 2830 tail_len = IEEE80211_CCMP_MIC_LEN + IEEE80211_TKIP_ICV_LEN + FCS_LEN; 2831 2832 if (!is_multicast_ether_addr(hdr->addr1)) 2833 key_idx = peer->ucast_keyidx; 2834 else 2835 key_idx = peer->mcast_keyidx; 2836 2837 key_conf = peer->keys[key_idx]; 2838 2839 data = msdu->data + head_len; 2840 data_len = msdu->len - head_len - tail_len; 2841 key = &key_conf->key[NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY]; 2842 2843 ret = ath12k_dp_rx_h_michael_mic(peer->tfm_mmic, key, hdr, data, data_len, mic); 2844 if (ret || memcmp(mic, data + data_len, IEEE80211_CCMP_MIC_LEN)) 2845 goto mic_fail; 2846 2847 return 0; 2848 2849 mic_fail: 2850 (ATH12K_SKB_RXCB(msdu))->is_first_msdu = true; 2851 (ATH12K_SKB_RXCB(msdu))->is_last_msdu = true; 2852 2853 rxs->flag |= RX_FLAG_MMIC_ERROR | RX_FLAG_MMIC_STRIPPED | 2854 RX_FLAG_IV_STRIPPED | RX_FLAG_DECRYPTED; 2855 skb_pull(msdu, hal_rx_desc_sz); 2856 2857 ath12k_dp_rx_h_ppdu(ar, rx_desc, rxs); 2858 ath12k_dp_rx_h_undecap(ar, msdu, rx_desc, 2859 HAL_ENCRYPT_TYPE_TKIP_MIC, rxs, true); 2860 ieee80211_rx(ar->hw, msdu); 2861 return -EINVAL; 2862 } 2863 2864 static void ath12k_dp_rx_h_undecap_frag(struct ath12k *ar, struct sk_buff *msdu, 2865 enum hal_encrypt_type enctype, u32 flags) 2866 { 2867 struct ieee80211_hdr *hdr; 2868 size_t hdr_len; 2869 size_t crypto_len; 2870 u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; 2871 2872 if (!flags) 2873 return; 2874 2875 hdr = (struct ieee80211_hdr *)(msdu->data + hal_rx_desc_sz); 2876 2877 if (flags & RX_FLAG_MIC_STRIPPED) 2878 skb_trim(msdu, msdu->len - 2879 ath12k_dp_rx_crypto_mic_len(ar, enctype)); 2880 2881 if (flags & RX_FLAG_ICV_STRIPPED) 2882 skb_trim(msdu, msdu->len - 2883 ath12k_dp_rx_crypto_icv_len(ar, enctype)); 2884 2885 if (flags & RX_FLAG_IV_STRIPPED) { 2886 hdr_len = ieee80211_hdrlen(hdr->frame_control); 2887 crypto_len = ath12k_dp_rx_crypto_param_len(ar, enctype); 2888 2889 memmove(msdu->data + hal_rx_desc_sz + crypto_len, 2890 msdu->data + hal_rx_desc_sz, hdr_len); 2891 skb_pull(msdu, crypto_len); 2892 } 2893 } 2894 2895 static int ath12k_dp_rx_h_defrag(struct ath12k *ar, 2896 struct ath12k_peer *peer, 2897 struct ath12k_dp_rx_tid *rx_tid, 2898 struct sk_buff **defrag_skb) 2899 { 2900 struct ath12k_base *ab = ar->ab; 2901 struct hal_rx_desc *rx_desc; 2902 struct sk_buff *skb, *first_frag, *last_frag; 2903 struct ieee80211_hdr *hdr; 2904 enum hal_encrypt_type enctype; 2905 bool is_decrypted = false; 2906 int msdu_len = 0; 2907 int extra_space; 2908 u32 flags, hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; 2909 2910 first_frag = skb_peek(&rx_tid->rx_frags); 2911 last_frag = skb_peek_tail(&rx_tid->rx_frags); 2912 2913 skb_queue_walk(&rx_tid->rx_frags, skb) { 2914 flags = 0; 2915 rx_desc = (struct hal_rx_desc *)skb->data; 2916 hdr = (struct ieee80211_hdr *)(skb->data + hal_rx_desc_sz); 2917 2918 enctype = ath12k_dp_rx_h_enctype(ab, rx_desc); 2919 if (enctype != HAL_ENCRYPT_TYPE_OPEN) 2920 is_decrypted = ath12k_dp_rx_h_is_decrypted(ab, 2921 rx_desc); 2922 2923 if (is_decrypted) { 2924 if (skb != first_frag) 2925 flags |= RX_FLAG_IV_STRIPPED; 2926 if (skb != last_frag) 2927 flags |= RX_FLAG_ICV_STRIPPED | 2928 RX_FLAG_MIC_STRIPPED; 2929 } 2930 2931 /* RX fragments are always raw packets */ 2932 if (skb != last_frag) 2933 skb_trim(skb, skb->len - FCS_LEN); 2934 ath12k_dp_rx_h_undecap_frag(ar, skb, enctype, flags); 2935 2936 if (skb != first_frag) 2937 skb_pull(skb, hal_rx_desc_sz + 2938 ieee80211_hdrlen(hdr->frame_control)); 2939 msdu_len += skb->len; 2940 } 2941 2942 extra_space = msdu_len - (DP_RX_BUFFER_SIZE + skb_tailroom(first_frag)); 2943 if (extra_space > 0 && 2944 (pskb_expand_head(first_frag, 0, extra_space, GFP_ATOMIC) < 0)) 2945 return -ENOMEM; 2946 2947 __skb_unlink(first_frag, &rx_tid->rx_frags); 2948 while ((skb = __skb_dequeue(&rx_tid->rx_frags))) { 2949 skb_put_data(first_frag, skb->data, skb->len); 2950 dev_kfree_skb_any(skb); 2951 } 2952 2953 hdr = (struct ieee80211_hdr *)(first_frag->data + hal_rx_desc_sz); 2954 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); 2955 ATH12K_SKB_RXCB(first_frag)->is_frag = 1; 2956 2957 if (ath12k_dp_rx_h_verify_tkip_mic(ar, peer, first_frag)) 2958 first_frag = NULL; 2959 2960 *defrag_skb = first_frag; 2961 return 0; 2962 } 2963 2964 static int ath12k_dp_rx_h_defrag_reo_reinject(struct ath12k *ar, 2965 struct ath12k_dp_rx_tid *rx_tid, 2966 struct sk_buff *defrag_skb) 2967 { 2968 struct ath12k_base *ab = ar->ab; 2969 struct ath12k_dp *dp = &ab->dp; 2970 struct hal_rx_desc *rx_desc = (struct hal_rx_desc *)defrag_skb->data; 2971 struct hal_reo_entrance_ring *reo_ent_ring; 2972 struct hal_reo_dest_ring *reo_dest_ring; 2973 struct dp_link_desc_bank *link_desc_banks; 2974 struct hal_rx_msdu_link *msdu_link; 2975 struct hal_rx_msdu_details *msdu0; 2976 struct hal_srng *srng; 2977 dma_addr_t link_paddr, buf_paddr; 2978 u32 desc_bank, msdu_info, msdu_ext_info, mpdu_info; 2979 u32 cookie, hal_rx_desc_sz, dest_ring_info0; 2980 int ret; 2981 struct ath12k_rx_desc_info *desc_info; 2982 u8 dst_ind; 2983 2984 hal_rx_desc_sz = ab->hw_params->hal_desc_sz; 2985 link_desc_banks = dp->link_desc_banks; 2986 reo_dest_ring = rx_tid->dst_ring_desc; 2987 2988 ath12k_hal_rx_reo_ent_paddr_get(ab, &reo_dest_ring->buf_addr_info, 2989 &link_paddr, &cookie); 2990 desc_bank = u32_get_bits(cookie, DP_LINK_DESC_BANK_MASK); 2991 2992 #if defined(__linux__) 2993 msdu_link = (struct hal_rx_msdu_link *)(link_desc_banks[desc_bank].vaddr + 2994 (link_paddr - link_desc_banks[desc_bank].paddr)); 2995 #elif defined(__FreeBSD__) 2996 msdu_link = (struct hal_rx_msdu_link *)((uintptr_t)link_desc_banks[desc_bank].vaddr + 2997 (link_paddr - link_desc_banks[desc_bank].paddr)); 2998 #endif 2999 msdu0 = &msdu_link->msdu_link[0]; 3000 msdu_ext_info = le32_to_cpu(msdu0->rx_msdu_ext_info.info0); 3001 dst_ind = u32_get_bits(msdu_ext_info, RX_MSDU_EXT_DESC_INFO0_REO_DEST_IND); 3002 3003 memset(msdu0, 0, sizeof(*msdu0)); 3004 3005 msdu_info = u32_encode_bits(1, RX_MSDU_DESC_INFO0_FIRST_MSDU_IN_MPDU) | 3006 u32_encode_bits(1, RX_MSDU_DESC_INFO0_LAST_MSDU_IN_MPDU) | 3007 u32_encode_bits(0, RX_MSDU_DESC_INFO0_MSDU_CONTINUATION) | 3008 u32_encode_bits(defrag_skb->len - hal_rx_desc_sz, 3009 RX_MSDU_DESC_INFO0_MSDU_LENGTH) | 3010 u32_encode_bits(1, RX_MSDU_DESC_INFO0_VALID_SA) | 3011 u32_encode_bits(1, RX_MSDU_DESC_INFO0_VALID_DA); 3012 msdu0->rx_msdu_info.info0 = cpu_to_le32(msdu_info); 3013 msdu0->rx_msdu_ext_info.info0 = cpu_to_le32(msdu_ext_info); 3014 3015 /* change msdu len in hal rx desc */ 3016 ath12k_dp_rxdesc_set_msdu_len(ab, rx_desc, defrag_skb->len - hal_rx_desc_sz); 3017 3018 buf_paddr = dma_map_single(ab->dev, defrag_skb->data, 3019 defrag_skb->len + skb_tailroom(defrag_skb), 3020 DMA_FROM_DEVICE); 3021 if (dma_mapping_error(ab->dev, buf_paddr)) 3022 return -ENOMEM; 3023 3024 spin_lock_bh(&dp->rx_desc_lock); 3025 desc_info = list_first_entry_or_null(&dp->rx_desc_free_list, 3026 struct ath12k_rx_desc_info, 3027 list); 3028 if (!desc_info) { 3029 spin_unlock_bh(&dp->rx_desc_lock); 3030 ath12k_warn(ab, "failed to find rx desc for reinject\n"); 3031 ret = -ENOMEM; 3032 goto err_unmap_dma; 3033 } 3034 3035 desc_info->skb = defrag_skb; 3036 3037 list_del(&desc_info->list); 3038 list_add_tail(&desc_info->list, &dp->rx_desc_used_list); 3039 spin_unlock_bh(&dp->rx_desc_lock); 3040 3041 ATH12K_SKB_RXCB(defrag_skb)->paddr = buf_paddr; 3042 3043 ath12k_hal_rx_buf_addr_info_set(&msdu0->buf_addr_info, buf_paddr, 3044 desc_info->cookie, 3045 HAL_RX_BUF_RBM_SW3_BM); 3046 3047 /* Fill mpdu details into reo entrace ring */ 3048 srng = &ab->hal.srng_list[dp->reo_reinject_ring.ring_id]; 3049 3050 spin_lock_bh(&srng->lock); 3051 ath12k_hal_srng_access_begin(ab, srng); 3052 3053 reo_ent_ring = ath12k_hal_srng_src_get_next_entry(ab, srng); 3054 if (!reo_ent_ring) { 3055 ath12k_hal_srng_access_end(ab, srng); 3056 spin_unlock_bh(&srng->lock); 3057 ret = -ENOSPC; 3058 goto err_free_desc; 3059 } 3060 memset(reo_ent_ring, 0, sizeof(*reo_ent_ring)); 3061 3062 ath12k_hal_rx_buf_addr_info_set(&reo_ent_ring->buf_addr_info, link_paddr, 3063 cookie, 3064 HAL_RX_BUF_RBM_WBM_CHIP0_IDLE_DESC_LIST); 3065 3066 mpdu_info = u32_encode_bits(1, RX_MPDU_DESC_INFO0_MSDU_COUNT) | 3067 u32_encode_bits(0, RX_MPDU_DESC_INFO0_FRAG_FLAG) | 3068 u32_encode_bits(1, RX_MPDU_DESC_INFO0_RAW_MPDU) | 3069 u32_encode_bits(1, RX_MPDU_DESC_INFO0_VALID_PN) | 3070 u32_encode_bits(rx_tid->tid, RX_MPDU_DESC_INFO0_TID); 3071 3072 reo_ent_ring->rx_mpdu_info.info0 = cpu_to_le32(mpdu_info); 3073 reo_ent_ring->rx_mpdu_info.peer_meta_data = 3074 reo_dest_ring->rx_mpdu_info.peer_meta_data; 3075 3076 /* Firmware expects physical address to be filled in queue_addr_lo in 3077 * the MLO scenario and in case of non MLO peer meta data needs to be 3078 * filled. 3079 * TODO: Need to handle for MLO scenario. 3080 */ 3081 reo_ent_ring->queue_addr_lo = reo_dest_ring->rx_mpdu_info.peer_meta_data; 3082 reo_ent_ring->info0 = le32_encode_bits(dst_ind, 3083 HAL_REO_ENTR_RING_INFO0_DEST_IND); 3084 3085 reo_ent_ring->info1 = le32_encode_bits(rx_tid->cur_sn, 3086 HAL_REO_ENTR_RING_INFO1_MPDU_SEQ_NUM); 3087 dest_ring_info0 = le32_get_bits(reo_dest_ring->info0, 3088 HAL_REO_DEST_RING_INFO0_SRC_LINK_ID); 3089 reo_ent_ring->info2 = 3090 cpu_to_le32(u32_get_bits(dest_ring_info0, 3091 HAL_REO_ENTR_RING_INFO2_SRC_LINK_ID)); 3092 3093 ath12k_hal_srng_access_end(ab, srng); 3094 spin_unlock_bh(&srng->lock); 3095 3096 return 0; 3097 3098 err_free_desc: 3099 spin_lock_bh(&dp->rx_desc_lock); 3100 list_del(&desc_info->list); 3101 list_add_tail(&desc_info->list, &dp->rx_desc_free_list); 3102 desc_info->skb = NULL; 3103 spin_unlock_bh(&dp->rx_desc_lock); 3104 err_unmap_dma: 3105 dma_unmap_single(ab->dev, buf_paddr, defrag_skb->len + skb_tailroom(defrag_skb), 3106 DMA_FROM_DEVICE); 3107 return ret; 3108 } 3109 3110 static int ath12k_dp_rx_h_cmp_frags(struct ath12k_base *ab, 3111 struct sk_buff *a, struct sk_buff *b) 3112 { 3113 int frag1, frag2; 3114 3115 frag1 = ath12k_dp_rx_h_frag_no(ab, a); 3116 frag2 = ath12k_dp_rx_h_frag_no(ab, b); 3117 3118 return frag1 - frag2; 3119 } 3120 3121 static void ath12k_dp_rx_h_sort_frags(struct ath12k_base *ab, 3122 struct sk_buff_head *frag_list, 3123 struct sk_buff *cur_frag) 3124 { 3125 struct sk_buff *skb; 3126 int cmp; 3127 3128 skb_queue_walk(frag_list, skb) { 3129 cmp = ath12k_dp_rx_h_cmp_frags(ab, skb, cur_frag); 3130 if (cmp < 0) 3131 continue; 3132 __skb_queue_before(frag_list, skb, cur_frag); 3133 return; 3134 } 3135 __skb_queue_tail(frag_list, cur_frag); 3136 } 3137 3138 static u64 ath12k_dp_rx_h_get_pn(struct ath12k *ar, struct sk_buff *skb) 3139 { 3140 struct ieee80211_hdr *hdr; 3141 u64 pn = 0; 3142 u8 *ehdr; 3143 u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; 3144 3145 hdr = (struct ieee80211_hdr *)(skb->data + hal_rx_desc_sz); 3146 ehdr = skb->data + hal_rx_desc_sz + ieee80211_hdrlen(hdr->frame_control); 3147 3148 pn = ehdr[0]; 3149 pn |= (u64)ehdr[1] << 8; 3150 pn |= (u64)ehdr[4] << 16; 3151 pn |= (u64)ehdr[5] << 24; 3152 pn |= (u64)ehdr[6] << 32; 3153 pn |= (u64)ehdr[7] << 40; 3154 3155 return pn; 3156 } 3157 3158 static bool 3159 ath12k_dp_rx_h_defrag_validate_incr_pn(struct ath12k *ar, struct ath12k_dp_rx_tid *rx_tid) 3160 { 3161 struct ath12k_base *ab = ar->ab; 3162 enum hal_encrypt_type encrypt_type; 3163 struct sk_buff *first_frag, *skb; 3164 struct hal_rx_desc *desc; 3165 u64 last_pn; 3166 u64 cur_pn; 3167 3168 first_frag = skb_peek(&rx_tid->rx_frags); 3169 desc = (struct hal_rx_desc *)first_frag->data; 3170 3171 encrypt_type = ath12k_dp_rx_h_enctype(ab, desc); 3172 if (encrypt_type != HAL_ENCRYPT_TYPE_CCMP_128 && 3173 encrypt_type != HAL_ENCRYPT_TYPE_CCMP_256 && 3174 encrypt_type != HAL_ENCRYPT_TYPE_GCMP_128 && 3175 encrypt_type != HAL_ENCRYPT_TYPE_AES_GCMP_256) 3176 return true; 3177 3178 last_pn = ath12k_dp_rx_h_get_pn(ar, first_frag); 3179 skb_queue_walk(&rx_tid->rx_frags, skb) { 3180 if (skb == first_frag) 3181 continue; 3182 3183 cur_pn = ath12k_dp_rx_h_get_pn(ar, skb); 3184 if (cur_pn != last_pn + 1) 3185 return false; 3186 last_pn = cur_pn; 3187 } 3188 return true; 3189 } 3190 3191 static int ath12k_dp_rx_frag_h_mpdu(struct ath12k *ar, 3192 struct sk_buff *msdu, 3193 struct hal_reo_dest_ring *ring_desc) 3194 { 3195 struct ath12k_base *ab = ar->ab; 3196 struct hal_rx_desc *rx_desc; 3197 struct ath12k_peer *peer; 3198 struct ath12k_dp_rx_tid *rx_tid; 3199 struct sk_buff *defrag_skb = NULL; 3200 u32 peer_id; 3201 u16 seqno, frag_no; 3202 u8 tid; 3203 int ret = 0; 3204 bool more_frags; 3205 3206 rx_desc = (struct hal_rx_desc *)msdu->data; 3207 peer_id = ath12k_dp_rx_h_peer_id(ab, rx_desc); 3208 tid = ath12k_dp_rx_h_tid(ab, rx_desc); 3209 seqno = ath12k_dp_rx_h_seq_no(ab, rx_desc); 3210 frag_no = ath12k_dp_rx_h_frag_no(ab, msdu); 3211 more_frags = ath12k_dp_rx_h_more_frags(ab, msdu); 3212 3213 if (!ath12k_dp_rx_h_seq_ctrl_valid(ab, rx_desc) || 3214 !ath12k_dp_rx_h_fc_valid(ab, rx_desc) || 3215 tid > IEEE80211_NUM_TIDS) 3216 return -EINVAL; 3217 3218 /* received unfragmented packet in reo 3219 * exception ring, this shouldn't happen 3220 * as these packets typically come from 3221 * reo2sw srngs. 3222 */ 3223 if (WARN_ON_ONCE(!frag_no && !more_frags)) 3224 return -EINVAL; 3225 3226 spin_lock_bh(&ab->base_lock); 3227 peer = ath12k_peer_find_by_id(ab, peer_id); 3228 if (!peer) { 3229 ath12k_warn(ab, "failed to find the peer to de-fragment received fragment peer_id %d\n", 3230 peer_id); 3231 ret = -ENOENT; 3232 goto out_unlock; 3233 } 3234 rx_tid = &peer->rx_tid[tid]; 3235 3236 if ((!skb_queue_empty(&rx_tid->rx_frags) && seqno != rx_tid->cur_sn) || 3237 skb_queue_empty(&rx_tid->rx_frags)) { 3238 /* Flush stored fragments and start a new sequence */ 3239 ath12k_dp_rx_frags_cleanup(rx_tid, true); 3240 rx_tid->cur_sn = seqno; 3241 } 3242 3243 if (rx_tid->rx_frag_bitmap & BIT(frag_no)) { 3244 /* Fragment already present */ 3245 ret = -EINVAL; 3246 goto out_unlock; 3247 } 3248 3249 if (frag_no > __fls(rx_tid->rx_frag_bitmap)) 3250 __skb_queue_tail(&rx_tid->rx_frags, msdu); 3251 else 3252 ath12k_dp_rx_h_sort_frags(ab, &rx_tid->rx_frags, msdu); 3253 3254 rx_tid->rx_frag_bitmap |= BIT(frag_no); 3255 if (!more_frags) 3256 rx_tid->last_frag_no = frag_no; 3257 3258 if (frag_no == 0) { 3259 rx_tid->dst_ring_desc = kmemdup(ring_desc, 3260 sizeof(*rx_tid->dst_ring_desc), 3261 GFP_ATOMIC); 3262 if (!rx_tid->dst_ring_desc) { 3263 ret = -ENOMEM; 3264 goto out_unlock; 3265 } 3266 } else { 3267 ath12k_dp_rx_link_desc_return(ab, ring_desc, 3268 HAL_WBM_REL_BM_ACT_PUT_IN_IDLE); 3269 } 3270 3271 if (!rx_tid->last_frag_no || 3272 rx_tid->rx_frag_bitmap != GENMASK(rx_tid->last_frag_no, 0)) { 3273 mod_timer(&rx_tid->frag_timer, jiffies + 3274 ATH12K_DP_RX_FRAGMENT_TIMEOUT_MS); 3275 goto out_unlock; 3276 } 3277 3278 spin_unlock_bh(&ab->base_lock); 3279 del_timer_sync(&rx_tid->frag_timer); 3280 spin_lock_bh(&ab->base_lock); 3281 3282 peer = ath12k_peer_find_by_id(ab, peer_id); 3283 if (!peer) 3284 goto err_frags_cleanup; 3285 3286 if (!ath12k_dp_rx_h_defrag_validate_incr_pn(ar, rx_tid)) 3287 goto err_frags_cleanup; 3288 3289 if (ath12k_dp_rx_h_defrag(ar, peer, rx_tid, &defrag_skb)) 3290 goto err_frags_cleanup; 3291 3292 if (!defrag_skb) 3293 goto err_frags_cleanup; 3294 3295 if (ath12k_dp_rx_h_defrag_reo_reinject(ar, rx_tid, defrag_skb)) 3296 goto err_frags_cleanup; 3297 3298 ath12k_dp_rx_frags_cleanup(rx_tid, false); 3299 goto out_unlock; 3300 3301 err_frags_cleanup: 3302 dev_kfree_skb_any(defrag_skb); 3303 ath12k_dp_rx_frags_cleanup(rx_tid, true); 3304 out_unlock: 3305 spin_unlock_bh(&ab->base_lock); 3306 return ret; 3307 } 3308 3309 static int 3310 ath12k_dp_process_rx_err_buf(struct ath12k *ar, struct hal_reo_dest_ring *desc, 3311 bool drop, u32 cookie) 3312 { 3313 struct ath12k_base *ab = ar->ab; 3314 struct sk_buff *msdu; 3315 struct ath12k_skb_rxcb *rxcb; 3316 struct hal_rx_desc *rx_desc; 3317 u16 msdu_len; 3318 u32 hal_rx_desc_sz = ab->hw_params->hal_desc_sz; 3319 struct ath12k_rx_desc_info *desc_info; 3320 u64 desc_va; 3321 3322 desc_va = ((u64)le32_to_cpu(desc->buf_va_hi) << 32 | 3323 le32_to_cpu(desc->buf_va_lo)); 3324 desc_info = (struct ath12k_rx_desc_info *)((unsigned long)desc_va); 3325 3326 /* retry manual desc retrieval */ 3327 if (!desc_info) { 3328 desc_info = ath12k_dp_get_rx_desc(ab, cookie); 3329 if (!desc_info) { 3330 ath12k_warn(ab, "Invalid cookie in manual desc retrieval"); 3331 return -EINVAL; 3332 } 3333 } 3334 3335 if (desc_info->magic != ATH12K_DP_RX_DESC_MAGIC) 3336 ath12k_warn(ab, " RX Exception, Check HW CC implementation"); 3337 3338 msdu = desc_info->skb; 3339 desc_info->skb = NULL; 3340 spin_lock_bh(&ab->dp.rx_desc_lock); 3341 list_move_tail(&desc_info->list, &ab->dp.rx_desc_free_list); 3342 spin_unlock_bh(&ab->dp.rx_desc_lock); 3343 3344 rxcb = ATH12K_SKB_RXCB(msdu); 3345 dma_unmap_single(ar->ab->dev, rxcb->paddr, 3346 msdu->len + skb_tailroom(msdu), 3347 DMA_FROM_DEVICE); 3348 3349 if (drop) { 3350 dev_kfree_skb_any(msdu); 3351 return 0; 3352 } 3353 3354 rcu_read_lock(); 3355 if (!rcu_dereference(ar->ab->pdevs_active[ar->pdev_idx])) { 3356 dev_kfree_skb_any(msdu); 3357 goto exit; 3358 } 3359 3360 if (test_bit(ATH12K_CAC_RUNNING, &ar->dev_flags)) { 3361 dev_kfree_skb_any(msdu); 3362 goto exit; 3363 } 3364 3365 rx_desc = (struct hal_rx_desc *)msdu->data; 3366 msdu_len = ath12k_dp_rx_h_msdu_len(ar->ab, rx_desc); 3367 if ((msdu_len + hal_rx_desc_sz) > DP_RX_BUFFER_SIZE) { 3368 ath12k_warn(ar->ab, "invalid msdu leng %u", msdu_len); 3369 ath12k_dbg_dump(ar->ab, ATH12K_DBG_DATA, NULL, "", rx_desc, 3370 sizeof(*rx_desc)); 3371 dev_kfree_skb_any(msdu); 3372 goto exit; 3373 } 3374 3375 skb_put(msdu, hal_rx_desc_sz + msdu_len); 3376 3377 if (ath12k_dp_rx_frag_h_mpdu(ar, msdu, desc)) { 3378 dev_kfree_skb_any(msdu); 3379 ath12k_dp_rx_link_desc_return(ar->ab, desc, 3380 HAL_WBM_REL_BM_ACT_PUT_IN_IDLE); 3381 } 3382 exit: 3383 rcu_read_unlock(); 3384 return 0; 3385 } 3386 3387 int ath12k_dp_rx_process_err(struct ath12k_base *ab, struct napi_struct *napi, 3388 int budget) 3389 { 3390 u32 msdu_cookies[HAL_NUM_RX_MSDUS_PER_LINK_DESC]; 3391 struct dp_link_desc_bank *link_desc_banks; 3392 enum hal_rx_buf_return_buf_manager rbm; 3393 struct hal_rx_msdu_link *link_desc_va; 3394 int tot_n_bufs_reaped, quota, ret, i; 3395 struct hal_reo_dest_ring *reo_desc; 3396 struct dp_rxdma_ring *rx_ring; 3397 struct dp_srng *reo_except; 3398 u32 desc_bank, num_msdus; 3399 struct hal_srng *srng; 3400 struct ath12k_dp *dp; 3401 int mac_id; 3402 struct ath12k *ar; 3403 dma_addr_t paddr; 3404 bool is_frag; 3405 bool drop = false; 3406 int pdev_id; 3407 3408 tot_n_bufs_reaped = 0; 3409 quota = budget; 3410 3411 dp = &ab->dp; 3412 reo_except = &dp->reo_except_ring; 3413 link_desc_banks = dp->link_desc_banks; 3414 3415 srng = &ab->hal.srng_list[reo_except->ring_id]; 3416 3417 spin_lock_bh(&srng->lock); 3418 3419 ath12k_hal_srng_access_begin(ab, srng); 3420 3421 while (budget && 3422 (reo_desc = ath12k_hal_srng_dst_get_next_entry(ab, srng))) { 3423 ab->soc_stats.err_ring_pkts++; 3424 ret = ath12k_hal_desc_reo_parse_err(ab, reo_desc, &paddr, 3425 &desc_bank); 3426 if (ret) { 3427 ath12k_warn(ab, "failed to parse error reo desc %d\n", 3428 ret); 3429 continue; 3430 } 3431 #if defined(__linux__) 3432 link_desc_va = link_desc_banks[desc_bank].vaddr + 3433 (paddr - link_desc_banks[desc_bank].paddr); 3434 #elif defined(__FreeBSD__) 3435 link_desc_va = (void *)((uintptr_t)link_desc_banks[desc_bank].vaddr + 3436 (paddr - link_desc_banks[desc_bank].paddr)); 3437 #endif 3438 ath12k_hal_rx_msdu_link_info_get(link_desc_va, &num_msdus, msdu_cookies, 3439 &rbm); 3440 if (rbm != HAL_RX_BUF_RBM_WBM_CHIP0_IDLE_DESC_LIST && 3441 rbm != HAL_RX_BUF_RBM_SW3_BM && 3442 rbm != ab->hw_params->hal_params->rx_buf_rbm) { 3443 ab->soc_stats.invalid_rbm++; 3444 ath12k_warn(ab, "invalid return buffer manager %d\n", rbm); 3445 ath12k_dp_rx_link_desc_return(ab, reo_desc, 3446 HAL_WBM_REL_BM_ACT_REL_MSDU); 3447 continue; 3448 } 3449 3450 is_frag = !!(le32_to_cpu(reo_desc->rx_mpdu_info.info0) & 3451 RX_MPDU_DESC_INFO0_FRAG_FLAG); 3452 3453 /* Process only rx fragments with one msdu per link desc below, and drop 3454 * msdu's indicated due to error reasons. 3455 */ 3456 if (!is_frag || num_msdus > 1) { 3457 drop = true; 3458 /* Return the link desc back to wbm idle list */ 3459 ath12k_dp_rx_link_desc_return(ab, reo_desc, 3460 HAL_WBM_REL_BM_ACT_PUT_IN_IDLE); 3461 } 3462 3463 for (i = 0; i < num_msdus; i++) { 3464 mac_id = le32_get_bits(reo_desc->info0, 3465 HAL_REO_DEST_RING_INFO0_SRC_LINK_ID); 3466 3467 pdev_id = ath12k_hw_mac_id_to_pdev_id(ab->hw_params, mac_id); 3468 ar = ab->pdevs[pdev_id].ar; 3469 3470 if (!ath12k_dp_process_rx_err_buf(ar, reo_desc, drop, 3471 msdu_cookies[i])) 3472 tot_n_bufs_reaped++; 3473 } 3474 3475 if (tot_n_bufs_reaped >= quota) { 3476 tot_n_bufs_reaped = quota; 3477 goto exit; 3478 } 3479 3480 budget = quota - tot_n_bufs_reaped; 3481 } 3482 3483 exit: 3484 ath12k_hal_srng_access_end(ab, srng); 3485 3486 spin_unlock_bh(&srng->lock); 3487 3488 rx_ring = &dp->rx_refill_buf_ring; 3489 3490 ath12k_dp_rx_bufs_replenish(ab, 0, rx_ring, tot_n_bufs_reaped, 3491 ab->hw_params->hal_params->rx_buf_rbm, true); 3492 3493 return tot_n_bufs_reaped; 3494 } 3495 3496 static void ath12k_dp_rx_null_q_desc_sg_drop(struct ath12k *ar, 3497 int msdu_len, 3498 struct sk_buff_head *msdu_list) 3499 { 3500 struct sk_buff *skb, *tmp; 3501 struct ath12k_skb_rxcb *rxcb; 3502 int n_buffs; 3503 3504 n_buffs = DIV_ROUND_UP(msdu_len, 3505 (DP_RX_BUFFER_SIZE - ar->ab->hw_params->hal_desc_sz)); 3506 3507 skb_queue_walk_safe(msdu_list, skb, tmp) { 3508 rxcb = ATH12K_SKB_RXCB(skb); 3509 if (rxcb->err_rel_src == HAL_WBM_REL_SRC_MODULE_REO && 3510 rxcb->err_code == HAL_REO_DEST_RING_ERROR_CODE_DESC_ADDR_ZERO) { 3511 if (!n_buffs) 3512 break; 3513 __skb_unlink(skb, msdu_list); 3514 dev_kfree_skb_any(skb); 3515 n_buffs--; 3516 } 3517 } 3518 } 3519 3520 static int ath12k_dp_rx_h_null_q_desc(struct ath12k *ar, struct sk_buff *msdu, 3521 struct ieee80211_rx_status *status, 3522 struct sk_buff_head *msdu_list) 3523 { 3524 struct ath12k_base *ab = ar->ab; 3525 u16 msdu_len, peer_id; 3526 struct hal_rx_desc *desc = (struct hal_rx_desc *)msdu->data; 3527 u8 l3pad_bytes; 3528 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 3529 u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; 3530 3531 msdu_len = ath12k_dp_rx_h_msdu_len(ab, desc); 3532 peer_id = ath12k_dp_rx_h_peer_id(ab, desc); 3533 3534 spin_lock(&ab->base_lock); 3535 if (!ath12k_peer_find_by_id(ab, peer_id)) { 3536 spin_unlock(&ab->base_lock); 3537 ath12k_dbg(ab, ATH12K_DBG_DATA, "invalid peer id received in wbm err pkt%d\n", 3538 peer_id); 3539 return -EINVAL; 3540 } 3541 spin_unlock(&ab->base_lock); 3542 3543 if (!rxcb->is_frag && ((msdu_len + hal_rx_desc_sz) > DP_RX_BUFFER_SIZE)) { 3544 /* First buffer will be freed by the caller, so deduct it's length */ 3545 msdu_len = msdu_len - (DP_RX_BUFFER_SIZE - hal_rx_desc_sz); 3546 ath12k_dp_rx_null_q_desc_sg_drop(ar, msdu_len, msdu_list); 3547 return -EINVAL; 3548 } 3549 3550 /* Even after cleaning up the sg buffers in the msdu list with above check 3551 * any msdu received with continuation flag needs to be dropped as invalid. 3552 * This protects against some random err frame with continuation flag. 3553 */ 3554 if (rxcb->is_continuation) 3555 return -EINVAL; 3556 3557 if (!ath12k_dp_rx_h_msdu_done(ab, desc)) { 3558 ath12k_warn(ar->ab, 3559 "msdu_done bit not set in null_q_des processing\n"); 3560 __skb_queue_purge(msdu_list); 3561 return -EIO; 3562 } 3563 3564 /* Handle NULL queue descriptor violations arising out a missing 3565 * REO queue for a given peer or a given TID. This typically 3566 * may happen if a packet is received on a QOS enabled TID before the 3567 * ADDBA negotiation for that TID, when the TID queue is setup. Or 3568 * it may also happen for MC/BC frames if they are not routed to the 3569 * non-QOS TID queue, in the absence of any other default TID queue. 3570 * This error can show up both in a REO destination or WBM release ring. 3571 */ 3572 3573 if (rxcb->is_frag) { 3574 skb_pull(msdu, hal_rx_desc_sz); 3575 } else { 3576 l3pad_bytes = ath12k_dp_rx_h_l3pad(ab, desc); 3577 3578 if ((hal_rx_desc_sz + l3pad_bytes + msdu_len) > DP_RX_BUFFER_SIZE) 3579 return -EINVAL; 3580 3581 skb_put(msdu, hal_rx_desc_sz + l3pad_bytes + msdu_len); 3582 skb_pull(msdu, hal_rx_desc_sz + l3pad_bytes); 3583 } 3584 ath12k_dp_rx_h_ppdu(ar, desc, status); 3585 3586 ath12k_dp_rx_h_mpdu(ar, msdu, desc, status); 3587 3588 rxcb->tid = ath12k_dp_rx_h_tid(ab, desc); 3589 3590 /* Please note that caller will having the access to msdu and completing 3591 * rx with mac80211. Need not worry about cleaning up amsdu_list. 3592 */ 3593 3594 return 0; 3595 } 3596 3597 static bool ath12k_dp_rx_h_reo_err(struct ath12k *ar, struct sk_buff *msdu, 3598 struct ieee80211_rx_status *status, 3599 struct sk_buff_head *msdu_list) 3600 { 3601 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 3602 bool drop = false; 3603 3604 ar->ab->soc_stats.reo_error[rxcb->err_code]++; 3605 3606 switch (rxcb->err_code) { 3607 case HAL_REO_DEST_RING_ERROR_CODE_DESC_ADDR_ZERO: 3608 if (ath12k_dp_rx_h_null_q_desc(ar, msdu, status, msdu_list)) 3609 drop = true; 3610 break; 3611 case HAL_REO_DEST_RING_ERROR_CODE_PN_CHECK_FAILED: 3612 /* TODO: Do not drop PN failed packets in the driver; 3613 * instead, it is good to drop such packets in mac80211 3614 * after incrementing the replay counters. 3615 */ 3616 fallthrough; 3617 default: 3618 /* TODO: Review other errors and process them to mac80211 3619 * as appropriate. 3620 */ 3621 drop = true; 3622 break; 3623 } 3624 3625 return drop; 3626 } 3627 3628 static void ath12k_dp_rx_h_tkip_mic_err(struct ath12k *ar, struct sk_buff *msdu, 3629 struct ieee80211_rx_status *status) 3630 { 3631 struct ath12k_base *ab = ar->ab; 3632 u16 msdu_len; 3633 struct hal_rx_desc *desc = (struct hal_rx_desc *)msdu->data; 3634 u8 l3pad_bytes; 3635 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 3636 u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; 3637 3638 rxcb->is_first_msdu = ath12k_dp_rx_h_first_msdu(ab, desc); 3639 rxcb->is_last_msdu = ath12k_dp_rx_h_last_msdu(ab, desc); 3640 3641 l3pad_bytes = ath12k_dp_rx_h_l3pad(ab, desc); 3642 msdu_len = ath12k_dp_rx_h_msdu_len(ab, desc); 3643 skb_put(msdu, hal_rx_desc_sz + l3pad_bytes + msdu_len); 3644 skb_pull(msdu, hal_rx_desc_sz + l3pad_bytes); 3645 3646 ath12k_dp_rx_h_ppdu(ar, desc, status); 3647 3648 status->flag |= (RX_FLAG_MMIC_STRIPPED | RX_FLAG_MMIC_ERROR | 3649 RX_FLAG_DECRYPTED); 3650 3651 ath12k_dp_rx_h_undecap(ar, msdu, desc, 3652 HAL_ENCRYPT_TYPE_TKIP_MIC, status, false); 3653 } 3654 3655 static bool ath12k_dp_rx_h_rxdma_err(struct ath12k *ar, struct sk_buff *msdu, 3656 struct ieee80211_rx_status *status) 3657 { 3658 struct ath12k_base *ab = ar->ab; 3659 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 3660 struct hal_rx_desc *rx_desc = (struct hal_rx_desc *)msdu->data; 3661 bool drop = false; 3662 u32 err_bitmap; 3663 3664 ar->ab->soc_stats.rxdma_error[rxcb->err_code]++; 3665 3666 switch (rxcb->err_code) { 3667 case HAL_REO_ENTR_RING_RXDMA_ECODE_DECRYPT_ERR: 3668 case HAL_REO_ENTR_RING_RXDMA_ECODE_TKIP_MIC_ERR: 3669 err_bitmap = ath12k_dp_rx_h_mpdu_err(ab, rx_desc); 3670 if (err_bitmap & HAL_RX_MPDU_ERR_TKIP_MIC) { 3671 ath12k_dp_rx_h_tkip_mic_err(ar, msdu, status); 3672 break; 3673 } 3674 fallthrough; 3675 default: 3676 /* TODO: Review other rxdma error code to check if anything is 3677 * worth reporting to mac80211 3678 */ 3679 drop = true; 3680 break; 3681 } 3682 3683 return drop; 3684 } 3685 3686 static void ath12k_dp_rx_wbm_err(struct ath12k *ar, 3687 struct napi_struct *napi, 3688 struct sk_buff *msdu, 3689 struct sk_buff_head *msdu_list) 3690 { 3691 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 3692 struct ieee80211_rx_status rxs = {0}; 3693 bool drop = true; 3694 3695 switch (rxcb->err_rel_src) { 3696 case HAL_WBM_REL_SRC_MODULE_REO: 3697 drop = ath12k_dp_rx_h_reo_err(ar, msdu, &rxs, msdu_list); 3698 break; 3699 case HAL_WBM_REL_SRC_MODULE_RXDMA: 3700 drop = ath12k_dp_rx_h_rxdma_err(ar, msdu, &rxs); 3701 break; 3702 default: 3703 /* msdu will get freed */ 3704 break; 3705 } 3706 3707 if (drop) { 3708 dev_kfree_skb_any(msdu); 3709 return; 3710 } 3711 3712 ath12k_dp_rx_deliver_msdu(ar, napi, msdu, &rxs); 3713 } 3714 3715 int ath12k_dp_rx_process_wbm_err(struct ath12k_base *ab, 3716 struct napi_struct *napi, int budget) 3717 { 3718 struct ath12k *ar; 3719 struct ath12k_dp *dp = &ab->dp; 3720 struct dp_rxdma_ring *rx_ring; 3721 struct hal_rx_wbm_rel_info err_info; 3722 struct hal_srng *srng; 3723 struct sk_buff *msdu; 3724 struct sk_buff_head msdu_list[MAX_RADIOS]; 3725 struct ath12k_skb_rxcb *rxcb; 3726 void *rx_desc; 3727 int mac_id; 3728 int num_buffs_reaped = 0; 3729 struct ath12k_rx_desc_info *desc_info; 3730 int ret, i; 3731 3732 for (i = 0; i < ab->num_radios; i++) 3733 __skb_queue_head_init(&msdu_list[i]); 3734 3735 srng = &ab->hal.srng_list[dp->rx_rel_ring.ring_id]; 3736 rx_ring = &dp->rx_refill_buf_ring; 3737 3738 spin_lock_bh(&srng->lock); 3739 3740 ath12k_hal_srng_access_begin(ab, srng); 3741 3742 while (budget) { 3743 rx_desc = ath12k_hal_srng_dst_get_next_entry(ab, srng); 3744 if (!rx_desc) 3745 break; 3746 3747 ret = ath12k_hal_wbm_desc_parse_err(ab, rx_desc, &err_info); 3748 if (ret) { 3749 ath12k_warn(ab, 3750 "failed to parse rx error in wbm_rel ring desc %d\n", 3751 ret); 3752 continue; 3753 } 3754 3755 desc_info = (struct ath12k_rx_desc_info *)err_info.rx_desc; 3756 3757 /* retry manual desc retrieval if hw cc is not done */ 3758 if (!desc_info) { 3759 desc_info = ath12k_dp_get_rx_desc(ab, err_info.cookie); 3760 if (!desc_info) { 3761 ath12k_warn(ab, "Invalid cookie in manual desc retrieval"); 3762 continue; 3763 } 3764 } 3765 3766 /* FIXME: Extract mac id correctly. Since descs are not tied 3767 * to mac, we can extract from vdev id in ring desc. 3768 */ 3769 mac_id = 0; 3770 3771 if (desc_info->magic != ATH12K_DP_RX_DESC_MAGIC) 3772 ath12k_warn(ab, "WBM RX err, Check HW CC implementation"); 3773 3774 msdu = desc_info->skb; 3775 desc_info->skb = NULL; 3776 3777 spin_lock_bh(&dp->rx_desc_lock); 3778 list_move_tail(&desc_info->list, &dp->rx_desc_free_list); 3779 spin_unlock_bh(&dp->rx_desc_lock); 3780 3781 rxcb = ATH12K_SKB_RXCB(msdu); 3782 dma_unmap_single(ab->dev, rxcb->paddr, 3783 msdu->len + skb_tailroom(msdu), 3784 DMA_FROM_DEVICE); 3785 3786 num_buffs_reaped++; 3787 3788 if (!err_info.continuation) 3789 budget--; 3790 3791 if (err_info.push_reason != 3792 HAL_REO_DEST_RING_PUSH_REASON_ERR_DETECTED) { 3793 dev_kfree_skb_any(msdu); 3794 continue; 3795 } 3796 3797 rxcb->err_rel_src = err_info.err_rel_src; 3798 rxcb->err_code = err_info.err_code; 3799 rxcb->rx_desc = (struct hal_rx_desc *)msdu->data; 3800 __skb_queue_tail(&msdu_list[mac_id], msdu); 3801 3802 rxcb->is_first_msdu = err_info.first_msdu; 3803 rxcb->is_last_msdu = err_info.last_msdu; 3804 rxcb->is_continuation = err_info.continuation; 3805 } 3806 3807 ath12k_hal_srng_access_end(ab, srng); 3808 3809 spin_unlock_bh(&srng->lock); 3810 3811 if (!num_buffs_reaped) 3812 goto done; 3813 3814 ath12k_dp_rx_bufs_replenish(ab, 0, rx_ring, num_buffs_reaped, 3815 ab->hw_params->hal_params->rx_buf_rbm, true); 3816 3817 rcu_read_lock(); 3818 for (i = 0; i < ab->num_radios; i++) { 3819 if (!rcu_dereference(ab->pdevs_active[i])) { 3820 __skb_queue_purge(&msdu_list[i]); 3821 continue; 3822 } 3823 3824 ar = ab->pdevs[i].ar; 3825 3826 if (test_bit(ATH12K_CAC_RUNNING, &ar->dev_flags)) { 3827 __skb_queue_purge(&msdu_list[i]); 3828 continue; 3829 } 3830 3831 while ((msdu = __skb_dequeue(&msdu_list[i])) != NULL) 3832 ath12k_dp_rx_wbm_err(ar, napi, msdu, &msdu_list[i]); 3833 } 3834 rcu_read_unlock(); 3835 done: 3836 return num_buffs_reaped; 3837 } 3838 3839 void ath12k_dp_rx_process_reo_status(struct ath12k_base *ab) 3840 { 3841 struct ath12k_dp *dp = &ab->dp; 3842 struct hal_tlv_64_hdr *hdr; 3843 struct hal_srng *srng; 3844 struct ath12k_dp_rx_reo_cmd *cmd, *tmp; 3845 bool found = false; 3846 u16 tag; 3847 struct hal_reo_status reo_status; 3848 3849 srng = &ab->hal.srng_list[dp->reo_status_ring.ring_id]; 3850 3851 memset(&reo_status, 0, sizeof(reo_status)); 3852 3853 spin_lock_bh(&srng->lock); 3854 3855 ath12k_hal_srng_access_begin(ab, srng); 3856 3857 while ((hdr = ath12k_hal_srng_dst_get_next_entry(ab, srng))) { 3858 tag = u64_get_bits(hdr->tl, HAL_SRNG_TLV_HDR_TAG); 3859 3860 switch (tag) { 3861 case HAL_REO_GET_QUEUE_STATS_STATUS: 3862 ath12k_hal_reo_status_queue_stats(ab, hdr, 3863 &reo_status); 3864 break; 3865 case HAL_REO_FLUSH_QUEUE_STATUS: 3866 ath12k_hal_reo_flush_queue_status(ab, hdr, 3867 &reo_status); 3868 break; 3869 case HAL_REO_FLUSH_CACHE_STATUS: 3870 ath12k_hal_reo_flush_cache_status(ab, hdr, 3871 &reo_status); 3872 break; 3873 case HAL_REO_UNBLOCK_CACHE_STATUS: 3874 ath12k_hal_reo_unblk_cache_status(ab, hdr, 3875 &reo_status); 3876 break; 3877 case HAL_REO_FLUSH_TIMEOUT_LIST_STATUS: 3878 ath12k_hal_reo_flush_timeout_list_status(ab, hdr, 3879 &reo_status); 3880 break; 3881 case HAL_REO_DESCRIPTOR_THRESHOLD_REACHED_STATUS: 3882 ath12k_hal_reo_desc_thresh_reached_status(ab, hdr, 3883 &reo_status); 3884 break; 3885 case HAL_REO_UPDATE_RX_REO_QUEUE_STATUS: 3886 ath12k_hal_reo_update_rx_reo_queue_status(ab, hdr, 3887 &reo_status); 3888 break; 3889 default: 3890 ath12k_warn(ab, "Unknown reo status type %d\n", tag); 3891 continue; 3892 } 3893 3894 spin_lock_bh(&dp->reo_cmd_lock); 3895 list_for_each_entry_safe(cmd, tmp, &dp->reo_cmd_list, list) { 3896 if (reo_status.uniform_hdr.cmd_num == cmd->cmd_num) { 3897 found = true; 3898 list_del(&cmd->list); 3899 break; 3900 } 3901 } 3902 spin_unlock_bh(&dp->reo_cmd_lock); 3903 3904 if (found) { 3905 cmd->handler(dp, (void *)&cmd->data, 3906 reo_status.uniform_hdr.cmd_status); 3907 kfree(cmd); 3908 } 3909 3910 found = false; 3911 } 3912 3913 ath12k_hal_srng_access_end(ab, srng); 3914 3915 spin_unlock_bh(&srng->lock); 3916 } 3917 3918 void ath12k_dp_rx_free(struct ath12k_base *ab) 3919 { 3920 struct ath12k_dp *dp = &ab->dp; 3921 int i; 3922 3923 ath12k_dp_srng_cleanup(ab, &dp->rx_refill_buf_ring.refill_buf_ring); 3924 3925 for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { 3926 if (ab->hw_params->rx_mac_buf_ring) 3927 ath12k_dp_srng_cleanup(ab, &dp->rx_mac_buf_ring[i]); 3928 } 3929 3930 for (i = 0; i < ab->hw_params->num_rxdma_dst_ring; i++) 3931 ath12k_dp_srng_cleanup(ab, &dp->rxdma_err_dst_ring[i]); 3932 3933 ath12k_dp_srng_cleanup(ab, &dp->rxdma_mon_buf_ring.refill_buf_ring); 3934 ath12k_dp_srng_cleanup(ab, &dp->tx_mon_buf_ring.refill_buf_ring); 3935 3936 ath12k_dp_rxdma_buf_free(ab); 3937 } 3938 3939 void ath12k_dp_rx_pdev_free(struct ath12k_base *ab, int mac_id) 3940 { 3941 struct ath12k *ar = ab->pdevs[mac_id].ar; 3942 3943 ath12k_dp_rx_pdev_srng_free(ar); 3944 } 3945 3946 int ath12k_dp_rxdma_ring_sel_config_qcn9274(struct ath12k_base *ab) 3947 { 3948 struct ath12k_dp *dp = &ab->dp; 3949 struct htt_rx_ring_tlv_filter tlv_filter = {0}; 3950 u32 ring_id; 3951 int ret; 3952 u32 hal_rx_desc_sz = ab->hw_params->hal_desc_sz; 3953 3954 ring_id = dp->rx_refill_buf_ring.refill_buf_ring.ring_id; 3955 3956 tlv_filter.rx_filter = HTT_RX_TLV_FLAGS_RXDMA_RING; 3957 tlv_filter.pkt_filter_flags2 = HTT_RX_FP_CTRL_PKT_FILTER_TLV_FLAGS2_BAR; 3958 tlv_filter.pkt_filter_flags3 = HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_MCAST | 3959 HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_UCAST | 3960 HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_NULL_DATA; 3961 tlv_filter.offset_valid = true; 3962 tlv_filter.rx_packet_offset = hal_rx_desc_sz; 3963 3964 tlv_filter.rx_mpdu_start_offset = 3965 ab->hw_params->hal_ops->rx_desc_get_mpdu_start_offset(); 3966 tlv_filter.rx_msdu_end_offset = 3967 ab->hw_params->hal_ops->rx_desc_get_msdu_end_offset(); 3968 3969 /* TODO: Selectively subscribe to required qwords within msdu_end 3970 * and mpdu_start and setup the mask in below msg 3971 * and modify the rx_desc struct 3972 */ 3973 ret = ath12k_dp_tx_htt_rx_filter_setup(ab, ring_id, 0, 3974 HAL_RXDMA_BUF, 3975 DP_RXDMA_REFILL_RING_SIZE, 3976 &tlv_filter); 3977 3978 return ret; 3979 } 3980 3981 int ath12k_dp_rxdma_ring_sel_config_wcn7850(struct ath12k_base *ab) 3982 { 3983 struct ath12k_dp *dp = &ab->dp; 3984 struct htt_rx_ring_tlv_filter tlv_filter = {0}; 3985 u32 ring_id; 3986 int ret; 3987 u32 hal_rx_desc_sz = ab->hw_params->hal_desc_sz; 3988 int i; 3989 3990 ring_id = dp->rx_refill_buf_ring.refill_buf_ring.ring_id; 3991 3992 tlv_filter.rx_filter = HTT_RX_TLV_FLAGS_RXDMA_RING; 3993 tlv_filter.pkt_filter_flags2 = HTT_RX_FP_CTRL_PKT_FILTER_TLV_FLAGS2_BAR; 3994 tlv_filter.pkt_filter_flags3 = HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_MCAST | 3995 HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_UCAST | 3996 HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_NULL_DATA; 3997 tlv_filter.offset_valid = true; 3998 tlv_filter.rx_packet_offset = hal_rx_desc_sz; 3999 4000 tlv_filter.rx_header_offset = offsetof(struct hal_rx_desc_wcn7850, pkt_hdr_tlv); 4001 4002 tlv_filter.rx_mpdu_start_offset = 4003 ab->hw_params->hal_ops->rx_desc_get_mpdu_start_offset(); 4004 tlv_filter.rx_msdu_end_offset = 4005 ab->hw_params->hal_ops->rx_desc_get_msdu_end_offset(); 4006 4007 /* TODO: Selectively subscribe to required qwords within msdu_end 4008 * and mpdu_start and setup the mask in below msg 4009 * and modify the rx_desc struct 4010 */ 4011 4012 for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { 4013 ring_id = dp->rx_mac_buf_ring[i].ring_id; 4014 ret = ath12k_dp_tx_htt_rx_filter_setup(ab, ring_id, i, 4015 HAL_RXDMA_BUF, 4016 DP_RXDMA_REFILL_RING_SIZE, 4017 &tlv_filter); 4018 } 4019 4020 return ret; 4021 } 4022 4023 int ath12k_dp_rx_htt_setup(struct ath12k_base *ab) 4024 { 4025 struct ath12k_dp *dp = &ab->dp; 4026 u32 ring_id; 4027 int i, ret; 4028 4029 /* TODO: Need to verify the HTT setup for QCN9224 */ 4030 ring_id = dp->rx_refill_buf_ring.refill_buf_ring.ring_id; 4031 ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, 0, HAL_RXDMA_BUF); 4032 if (ret) { 4033 ath12k_warn(ab, "failed to configure rx_refill_buf_ring %d\n", 4034 ret); 4035 return ret; 4036 } 4037 4038 if (ab->hw_params->rx_mac_buf_ring) { 4039 for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { 4040 ring_id = dp->rx_mac_buf_ring[i].ring_id; 4041 ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, 4042 i, HAL_RXDMA_BUF); 4043 if (ret) { 4044 ath12k_warn(ab, "failed to configure rx_mac_buf_ring%d %d\n", 4045 i, ret); 4046 return ret; 4047 } 4048 } 4049 } 4050 4051 for (i = 0; i < ab->hw_params->num_rxdma_dst_ring; i++) { 4052 ring_id = dp->rxdma_err_dst_ring[i].ring_id; 4053 ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, 4054 i, HAL_RXDMA_DST); 4055 if (ret) { 4056 ath12k_warn(ab, "failed to configure rxdma_err_dest_ring%d %d\n", 4057 i, ret); 4058 return ret; 4059 } 4060 } 4061 4062 if (ab->hw_params->rxdma1_enable) { 4063 ring_id = dp->rxdma_mon_buf_ring.refill_buf_ring.ring_id; 4064 ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, 4065 0, HAL_RXDMA_MONITOR_BUF); 4066 if (ret) { 4067 ath12k_warn(ab, "failed to configure rxdma_mon_buf_ring %d\n", 4068 ret); 4069 return ret; 4070 } 4071 4072 ring_id = dp->tx_mon_buf_ring.refill_buf_ring.ring_id; 4073 ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, 4074 0, HAL_TX_MONITOR_BUF); 4075 if (ret) { 4076 ath12k_warn(ab, "failed to configure rxdma_mon_buf_ring %d\n", 4077 ret); 4078 return ret; 4079 } 4080 } 4081 4082 ret = ab->hw_params->hw_ops->rxdma_ring_sel_config(ab); 4083 if (ret) { 4084 ath12k_warn(ab, "failed to setup rxdma ring selection config\n"); 4085 return ret; 4086 } 4087 4088 return 0; 4089 } 4090 4091 int ath12k_dp_rx_alloc(struct ath12k_base *ab) 4092 { 4093 struct ath12k_dp *dp = &ab->dp; 4094 int i, ret; 4095 4096 idr_init(&dp->rx_refill_buf_ring.bufs_idr); 4097 spin_lock_init(&dp->rx_refill_buf_ring.idr_lock); 4098 4099 idr_init(&dp->rxdma_mon_buf_ring.bufs_idr); 4100 spin_lock_init(&dp->rxdma_mon_buf_ring.idr_lock); 4101 4102 idr_init(&dp->tx_mon_buf_ring.bufs_idr); 4103 spin_lock_init(&dp->tx_mon_buf_ring.idr_lock); 4104 4105 ret = ath12k_dp_srng_setup(ab, 4106 &dp->rx_refill_buf_ring.refill_buf_ring, 4107 HAL_RXDMA_BUF, 0, 0, 4108 DP_RXDMA_BUF_RING_SIZE); 4109 if (ret) { 4110 ath12k_warn(ab, "failed to setup rx_refill_buf_ring\n"); 4111 return ret; 4112 } 4113 4114 if (ab->hw_params->rx_mac_buf_ring) { 4115 for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { 4116 ret = ath12k_dp_srng_setup(ab, 4117 &dp->rx_mac_buf_ring[i], 4118 HAL_RXDMA_BUF, 1, 4119 i, 1024); 4120 if (ret) { 4121 ath12k_warn(ab, "failed to setup rx_mac_buf_ring %d\n", 4122 i); 4123 return ret; 4124 } 4125 } 4126 } 4127 4128 for (i = 0; i < ab->hw_params->num_rxdma_dst_ring; i++) { 4129 ret = ath12k_dp_srng_setup(ab, &dp->rxdma_err_dst_ring[i], 4130 HAL_RXDMA_DST, 0, i, 4131 DP_RXDMA_ERR_DST_RING_SIZE); 4132 if (ret) { 4133 ath12k_warn(ab, "failed to setup rxdma_err_dst_ring %d\n", i); 4134 return ret; 4135 } 4136 } 4137 4138 if (ab->hw_params->rxdma1_enable) { 4139 ret = ath12k_dp_srng_setup(ab, 4140 &dp->rxdma_mon_buf_ring.refill_buf_ring, 4141 HAL_RXDMA_MONITOR_BUF, 0, 0, 4142 DP_RXDMA_MONITOR_BUF_RING_SIZE); 4143 if (ret) { 4144 ath12k_warn(ab, "failed to setup HAL_RXDMA_MONITOR_BUF\n"); 4145 return ret; 4146 } 4147 4148 ret = ath12k_dp_srng_setup(ab, 4149 &dp->tx_mon_buf_ring.refill_buf_ring, 4150 HAL_TX_MONITOR_BUF, 0, 0, 4151 DP_TX_MONITOR_BUF_RING_SIZE); 4152 if (ret) { 4153 ath12k_warn(ab, "failed to setup DP_TX_MONITOR_BUF_RING_SIZE\n"); 4154 return ret; 4155 } 4156 } 4157 4158 ret = ath12k_dp_rxdma_buf_setup(ab); 4159 if (ret) { 4160 ath12k_warn(ab, "failed to setup rxdma ring\n"); 4161 return ret; 4162 } 4163 4164 return 0; 4165 } 4166 4167 int ath12k_dp_rx_pdev_alloc(struct ath12k_base *ab, int mac_id) 4168 { 4169 struct ath12k *ar = ab->pdevs[mac_id].ar; 4170 struct ath12k_pdev_dp *dp = &ar->dp; 4171 u32 ring_id; 4172 int i; 4173 int ret; 4174 4175 if (!ab->hw_params->rxdma1_enable) 4176 goto out; 4177 4178 ret = ath12k_dp_rx_pdev_srng_alloc(ar); 4179 if (ret) { 4180 ath12k_warn(ab, "failed to setup rx srngs\n"); 4181 return ret; 4182 } 4183 4184 for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { 4185 ring_id = dp->rxdma_mon_dst_ring[i].ring_id; 4186 ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, 4187 mac_id + i, 4188 HAL_RXDMA_MONITOR_DST); 4189 if (ret) { 4190 ath12k_warn(ab, 4191 "failed to configure rxdma_mon_dst_ring %d %d\n", 4192 i, ret); 4193 return ret; 4194 } 4195 4196 ring_id = dp->tx_mon_dst_ring[i].ring_id; 4197 ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, 4198 mac_id + i, 4199 HAL_TX_MONITOR_DST); 4200 if (ret) { 4201 ath12k_warn(ab, 4202 "failed to configure tx_mon_dst_ring %d %d\n", 4203 i, ret); 4204 return ret; 4205 } 4206 } 4207 out: 4208 return 0; 4209 } 4210 4211 static int ath12k_dp_rx_pdev_mon_status_attach(struct ath12k *ar) 4212 { 4213 struct ath12k_pdev_dp *dp = &ar->dp; 4214 struct ath12k_mon_data *pmon = (struct ath12k_mon_data *)&dp->mon_data; 4215 4216 skb_queue_head_init(&pmon->rx_status_q); 4217 4218 pmon->mon_ppdu_status = DP_PPDU_STATUS_START; 4219 4220 memset(&pmon->rx_mon_stats, 0, 4221 sizeof(pmon->rx_mon_stats)); 4222 return 0; 4223 } 4224 4225 int ath12k_dp_rx_pdev_mon_attach(struct ath12k *ar) 4226 { 4227 struct ath12k_pdev_dp *dp = &ar->dp; 4228 struct ath12k_mon_data *pmon = &dp->mon_data; 4229 int ret = 0; 4230 4231 ret = ath12k_dp_rx_pdev_mon_status_attach(ar); 4232 if (ret) { 4233 ath12k_warn(ar->ab, "pdev_mon_status_attach() failed"); 4234 return ret; 4235 } 4236 4237 /* if rxdma1_enable is false, no need to setup 4238 * rxdma_mon_desc_ring. 4239 */ 4240 if (!ar->ab->hw_params->rxdma1_enable) 4241 return 0; 4242 4243 pmon->mon_last_linkdesc_paddr = 0; 4244 pmon->mon_last_buf_cookie = DP_RX_DESC_COOKIE_MAX + 1; 4245 spin_lock_init(&pmon->mon_lock); 4246 4247 return 0; 4248 } 4249 4250 int ath12k_dp_rx_pktlog_start(struct ath12k_base *ab) 4251 { 4252 /* start reap timer */ 4253 mod_timer(&ab->mon_reap_timer, 4254 jiffies + msecs_to_jiffies(ATH12K_MON_TIMER_INTERVAL)); 4255 4256 return 0; 4257 } 4258 4259 int ath12k_dp_rx_pktlog_stop(struct ath12k_base *ab, bool stop_timer) 4260 { 4261 int ret; 4262 4263 if (stop_timer) 4264 del_timer_sync(&ab->mon_reap_timer); 4265 4266 /* reap all the monitor related rings */ 4267 ret = ath12k_dp_purge_mon_ring(ab); 4268 if (ret) { 4269 ath12k_warn(ab, "failed to purge dp mon ring: %d\n", ret); 4270 return ret; 4271 } 4272 4273 return 0; 4274 } 4275