1 /*- 2 * Copyright (c) 2017-2019 Hans Petter Selasky 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 #include <linux/workqueue.h> 29 #include <linux/wait.h> 30 #include <linux/compat.h> 31 #include <linux/spinlock.h> 32 #include <linux/rcupdate.h> 33 #include <linux/irq_work.h> 34 35 #include <sys/kernel.h> 36 37 /* 38 * Define all work struct states 39 */ 40 enum { 41 WORK_ST_IDLE, /* idle - not started */ 42 WORK_ST_TIMER, /* timer is being started */ 43 WORK_ST_TASK, /* taskqueue is being queued */ 44 WORK_ST_EXEC, /* callback is being called */ 45 WORK_ST_CANCEL, /* cancel is being requested */ 46 WORK_ST_MAX, 47 }; 48 49 /* 50 * Define global workqueues 51 */ 52 static struct workqueue_struct *linux_system_short_wq; 53 static struct workqueue_struct *linux_system_long_wq; 54 55 struct workqueue_struct *system_wq; 56 struct workqueue_struct *system_long_wq; 57 struct workqueue_struct *system_unbound_wq; 58 struct workqueue_struct *system_highpri_wq; 59 struct workqueue_struct *system_power_efficient_wq; 60 61 struct taskqueue *linux_irq_work_tq; 62 63 static int linux_default_wq_cpus = 4; 64 65 static void linux_delayed_work_timer_fn(void *); 66 67 /* 68 * This function atomically updates the work state and returns the 69 * previous state at the time of update. 70 */ 71 static uint8_t 72 linux_update_state(atomic_t *v, const uint8_t *pstate) 73 { 74 int c, old; 75 76 c = v->counter; 77 78 while ((old = atomic_cmpxchg(v, c, pstate[c])) != c) 79 c = old; 80 81 return (c); 82 } 83 84 /* 85 * A LinuxKPI task is allowed to free itself inside the callback function 86 * and cannot safely be referred after the callback function has 87 * completed. This function gives the linux_work_fn() function a hint, 88 * that the task is not going away and can have its state checked 89 * again. Without this extra hint LinuxKPI tasks cannot be serialized 90 * across multiple worker threads. 91 */ 92 static bool 93 linux_work_exec_unblock(struct work_struct *work) 94 { 95 struct workqueue_struct *wq; 96 struct work_exec *exec; 97 bool retval = false; 98 99 wq = work->work_queue; 100 if (unlikely(wq == NULL)) 101 goto done; 102 103 WQ_EXEC_LOCK(wq); 104 TAILQ_FOREACH(exec, &wq->exec_head, entry) { 105 if (exec->target == work) { 106 exec->target = NULL; 107 retval = true; 108 break; 109 } 110 } 111 WQ_EXEC_UNLOCK(wq); 112 done: 113 return (retval); 114 } 115 116 static void 117 linux_delayed_work_enqueue(struct delayed_work *dwork) 118 { 119 struct taskqueue *tq; 120 121 tq = dwork->work.work_queue->taskqueue; 122 taskqueue_enqueue(tq, &dwork->work.work_task); 123 } 124 125 /* 126 * This function queues the given work structure on the given 127 * workqueue. It returns non-zero if the work was successfully 128 * [re-]queued. Else the work is already pending for completion. 129 */ 130 bool 131 linux_queue_work_on(int cpu __unused, struct workqueue_struct *wq, 132 struct work_struct *work) 133 { 134 static const uint8_t states[WORK_ST_MAX] __aligned(8) = { 135 [WORK_ST_IDLE] = WORK_ST_TASK, /* start queuing task */ 136 [WORK_ST_TIMER] = WORK_ST_TIMER, /* NOP */ 137 [WORK_ST_TASK] = WORK_ST_TASK, /* NOP */ 138 [WORK_ST_EXEC] = WORK_ST_TASK, /* queue task another time */ 139 [WORK_ST_CANCEL] = WORK_ST_TASK, /* start queuing task again */ 140 }; 141 142 if (atomic_read(&wq->draining) != 0) 143 return (!work_pending(work)); 144 145 switch (linux_update_state(&work->state, states)) { 146 case WORK_ST_EXEC: 147 case WORK_ST_CANCEL: 148 if (linux_work_exec_unblock(work) != 0) 149 return (true); 150 /* FALLTHROUGH */ 151 case WORK_ST_IDLE: 152 work->work_queue = wq; 153 taskqueue_enqueue(wq->taskqueue, &work->work_task); 154 return (true); 155 default: 156 return (false); /* already on a queue */ 157 } 158 } 159 160 /* 161 * Callback func for linux_queue_rcu_work 162 */ 163 static void 164 rcu_work_func(struct rcu_head *rcu) 165 { 166 struct rcu_work *rwork; 167 168 rwork = container_of(rcu, struct rcu_work, rcu); 169 linux_queue_work_on(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 170 } 171 172 /* 173 * This function queue a work after a grace period 174 * If the work was already pending it returns false, 175 * if not it calls call_rcu and returns true. 176 */ 177 bool 178 linux_queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 179 { 180 181 if (!linux_work_pending(&rwork->work)) { 182 rwork->wq = wq; 183 linux_call_rcu(RCU_TYPE_REGULAR, &rwork->rcu, rcu_work_func); 184 return (true); 185 } 186 return (false); 187 } 188 189 /* 190 * This function waits for the last execution of a work and then 191 * flush the work. 192 * It returns true if the work was pending and we waited, it returns 193 * false otherwise. 194 */ 195 bool 196 linux_flush_rcu_work(struct rcu_work *rwork) 197 { 198 199 if (linux_work_pending(&rwork->work)) { 200 linux_rcu_barrier(RCU_TYPE_REGULAR); 201 linux_flush_work(&rwork->work); 202 return (true); 203 } 204 return (linux_flush_work(&rwork->work)); 205 } 206 207 /* 208 * This function queues the given work structure on the given 209 * workqueue after a given delay in ticks. It returns true if the 210 * work was successfully [re-]queued. Else the work is already pending 211 * for completion. 212 */ 213 bool 214 linux_queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 215 struct delayed_work *dwork, unsigned delay) 216 { 217 static const uint8_t states[WORK_ST_MAX] __aligned(8) = { 218 [WORK_ST_IDLE] = WORK_ST_TIMER, /* start timeout */ 219 [WORK_ST_TIMER] = WORK_ST_TIMER, /* NOP */ 220 [WORK_ST_TASK] = WORK_ST_TASK, /* NOP */ 221 [WORK_ST_EXEC] = WORK_ST_TIMER, /* start timeout */ 222 [WORK_ST_CANCEL] = WORK_ST_TIMER, /* start timeout */ 223 }; 224 bool res; 225 226 if (atomic_read(&wq->draining) != 0) 227 return (!work_pending(&dwork->work)); 228 229 mtx_lock(&dwork->timer.mtx); 230 switch (linux_update_state(&dwork->work.state, states)) { 231 case WORK_ST_EXEC: 232 case WORK_ST_CANCEL: 233 if (delay == 0 && linux_work_exec_unblock(&dwork->work)) { 234 dwork->timer.expires = jiffies; 235 res = true; 236 goto out; 237 } 238 /* FALLTHROUGH */ 239 case WORK_ST_IDLE: 240 dwork->work.work_queue = wq; 241 dwork->timer.expires = jiffies + delay; 242 243 if (delay == 0) { 244 linux_delayed_work_enqueue(dwork); 245 } else if (unlikely(cpu != WORK_CPU_UNBOUND)) { 246 callout_reset_on(&dwork->timer.callout, delay, 247 &linux_delayed_work_timer_fn, dwork, cpu); 248 } else { 249 callout_reset(&dwork->timer.callout, delay, 250 &linux_delayed_work_timer_fn, dwork); 251 } 252 res = true; 253 break; 254 default: 255 res = false; 256 break; 257 } 258 out: 259 mtx_unlock(&dwork->timer.mtx); 260 return (res); 261 } 262 263 void 264 linux_work_fn(void *context, int pending) 265 { 266 static const uint8_t states[WORK_ST_MAX] __aligned(8) = { 267 [WORK_ST_IDLE] = WORK_ST_IDLE, /* NOP */ 268 [WORK_ST_TIMER] = WORK_ST_EXEC, /* delayed work w/o timeout */ 269 [WORK_ST_TASK] = WORK_ST_EXEC, /* call callback */ 270 [WORK_ST_EXEC] = WORK_ST_IDLE, /* complete callback */ 271 [WORK_ST_CANCEL] = WORK_ST_EXEC, /* failed to cancel */ 272 }; 273 struct work_struct *work; 274 struct workqueue_struct *wq; 275 struct work_exec exec; 276 struct task_struct *task; 277 278 task = current; 279 280 /* setup local variables */ 281 work = context; 282 wq = work->work_queue; 283 284 /* store target pointer */ 285 exec.target = work; 286 287 /* insert executor into list */ 288 WQ_EXEC_LOCK(wq); 289 TAILQ_INSERT_TAIL(&wq->exec_head, &exec, entry); 290 while (1) { 291 switch (linux_update_state(&work->state, states)) { 292 case WORK_ST_TIMER: 293 case WORK_ST_TASK: 294 case WORK_ST_CANCEL: 295 WQ_EXEC_UNLOCK(wq); 296 297 /* set current work structure */ 298 task->work = work; 299 300 /* call work function */ 301 work->func(work); 302 303 /* set current work structure */ 304 task->work = NULL; 305 306 WQ_EXEC_LOCK(wq); 307 /* check if unblocked */ 308 if (exec.target != work) { 309 /* reapply block */ 310 exec.target = work; 311 break; 312 } 313 /* FALLTHROUGH */ 314 default: 315 goto done; 316 } 317 } 318 done: 319 /* remove executor from list */ 320 TAILQ_REMOVE(&wq->exec_head, &exec, entry); 321 WQ_EXEC_UNLOCK(wq); 322 } 323 324 void 325 linux_delayed_work_fn(void *context, int pending) 326 { 327 struct delayed_work *dwork = context; 328 329 /* 330 * Make sure the timer belonging to the delayed work gets 331 * drained before invoking the work function. Else the timer 332 * mutex may still be in use which can lead to use-after-free 333 * situations, because the work function might free the work 334 * structure before returning. 335 */ 336 callout_drain(&dwork->timer.callout); 337 338 linux_work_fn(&dwork->work, pending); 339 } 340 341 static void 342 linux_delayed_work_timer_fn(void *arg) 343 { 344 static const uint8_t states[WORK_ST_MAX] __aligned(8) = { 345 [WORK_ST_IDLE] = WORK_ST_IDLE, /* NOP */ 346 [WORK_ST_TIMER] = WORK_ST_TASK, /* start queueing task */ 347 [WORK_ST_TASK] = WORK_ST_TASK, /* NOP */ 348 [WORK_ST_EXEC] = WORK_ST_EXEC, /* NOP */ 349 [WORK_ST_CANCEL] = WORK_ST_TASK, /* failed to cancel */ 350 }; 351 struct delayed_work *dwork = arg; 352 353 switch (linux_update_state(&dwork->work.state, states)) { 354 case WORK_ST_TIMER: 355 case WORK_ST_CANCEL: 356 linux_delayed_work_enqueue(dwork); 357 break; 358 default: 359 break; 360 } 361 } 362 363 /* 364 * This function cancels the given work structure in a synchronous 365 * fashion. It returns non-zero if the work was successfully 366 * cancelled. Else the work was already cancelled. 367 */ 368 bool 369 linux_cancel_work_sync(struct work_struct *work) 370 { 371 static const uint8_t states[WORK_ST_MAX] __aligned(8) = { 372 [WORK_ST_IDLE] = WORK_ST_IDLE, /* NOP */ 373 [WORK_ST_TIMER] = WORK_ST_TIMER, /* can't happen */ 374 [WORK_ST_TASK] = WORK_ST_IDLE, /* cancel and drain */ 375 [WORK_ST_EXEC] = WORK_ST_IDLE, /* too late, drain */ 376 [WORK_ST_CANCEL] = WORK_ST_IDLE, /* cancel and drain */ 377 }; 378 struct taskqueue *tq; 379 bool retval = false; 380 381 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 382 "linux_cancel_work_sync() might sleep"); 383 retry: 384 switch (linux_update_state(&work->state, states)) { 385 case WORK_ST_IDLE: 386 case WORK_ST_TIMER: 387 return (retval); 388 case WORK_ST_EXEC: 389 tq = work->work_queue->taskqueue; 390 if (taskqueue_cancel(tq, &work->work_task, NULL) != 0) 391 taskqueue_drain(tq, &work->work_task); 392 goto retry; /* work may have restarted itself */ 393 default: 394 tq = work->work_queue->taskqueue; 395 if (taskqueue_cancel(tq, &work->work_task, NULL) != 0) 396 taskqueue_drain(tq, &work->work_task); 397 retval = true; 398 goto retry; 399 } 400 } 401 402 /* 403 * This function atomically stops the timer and callback. The timer 404 * callback will not be called after this function returns. This 405 * functions returns true when the timeout was cancelled. Else the 406 * timeout was not started or has already been called. 407 */ 408 static inline bool 409 linux_cancel_timer(struct delayed_work *dwork, bool drain) 410 { 411 bool cancelled; 412 413 mtx_lock(&dwork->timer.mtx); 414 cancelled = (callout_stop(&dwork->timer.callout) == 1); 415 mtx_unlock(&dwork->timer.mtx); 416 417 /* check if we should drain */ 418 if (drain) 419 callout_drain(&dwork->timer.callout); 420 return (cancelled); 421 } 422 423 /* 424 * This function cancels the given delayed work structure in a 425 * non-blocking fashion. It returns non-zero if the work was 426 * successfully cancelled. Else the work may still be busy or already 427 * cancelled. 428 */ 429 bool 430 linux_cancel_delayed_work(struct delayed_work *dwork) 431 { 432 static const uint8_t states[WORK_ST_MAX] __aligned(8) = { 433 [WORK_ST_IDLE] = WORK_ST_IDLE, /* NOP */ 434 [WORK_ST_TIMER] = WORK_ST_CANCEL, /* try to cancel */ 435 [WORK_ST_TASK] = WORK_ST_CANCEL, /* try to cancel */ 436 [WORK_ST_EXEC] = WORK_ST_EXEC, /* NOP */ 437 [WORK_ST_CANCEL] = WORK_ST_CANCEL, /* NOP */ 438 }; 439 struct taskqueue *tq; 440 bool cancelled; 441 442 mtx_lock(&dwork->timer.mtx); 443 switch (linux_update_state(&dwork->work.state, states)) { 444 case WORK_ST_TIMER: 445 case WORK_ST_CANCEL: 446 cancelled = (callout_stop(&dwork->timer.callout) == 1); 447 if (cancelled) { 448 atomic_cmpxchg(&dwork->work.state, 449 WORK_ST_CANCEL, WORK_ST_IDLE); 450 mtx_unlock(&dwork->timer.mtx); 451 return (true); 452 } 453 /* FALLTHROUGH */ 454 case WORK_ST_TASK: 455 tq = dwork->work.work_queue->taskqueue; 456 if (taskqueue_cancel(tq, &dwork->work.work_task, NULL) == 0) { 457 atomic_cmpxchg(&dwork->work.state, 458 WORK_ST_CANCEL, WORK_ST_IDLE); 459 mtx_unlock(&dwork->timer.mtx); 460 return (true); 461 } 462 /* FALLTHROUGH */ 463 default: 464 mtx_unlock(&dwork->timer.mtx); 465 return (false); 466 } 467 } 468 469 /* 470 * This function cancels the given work structure in a synchronous 471 * fashion. It returns true if the work was successfully 472 * cancelled. Else the work was already cancelled. 473 */ 474 static bool 475 linux_cancel_delayed_work_sync_int(struct delayed_work *dwork) 476 { 477 static const uint8_t states[WORK_ST_MAX] __aligned(8) = { 478 [WORK_ST_IDLE] = WORK_ST_IDLE, /* NOP */ 479 [WORK_ST_TIMER] = WORK_ST_IDLE, /* cancel and drain */ 480 [WORK_ST_TASK] = WORK_ST_IDLE, /* cancel and drain */ 481 [WORK_ST_EXEC] = WORK_ST_IDLE, /* too late, drain */ 482 [WORK_ST_CANCEL] = WORK_ST_IDLE, /* cancel and drain */ 483 }; 484 struct taskqueue *tq; 485 int ret, state; 486 bool cancelled; 487 488 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 489 "linux_cancel_delayed_work_sync() might sleep"); 490 mtx_lock(&dwork->timer.mtx); 491 492 state = linux_update_state(&dwork->work.state, states); 493 switch (state) { 494 case WORK_ST_IDLE: 495 mtx_unlock(&dwork->timer.mtx); 496 return (false); 497 case WORK_ST_TIMER: 498 case WORK_ST_CANCEL: 499 cancelled = (callout_stop(&dwork->timer.callout) == 1); 500 501 tq = dwork->work.work_queue->taskqueue; 502 ret = taskqueue_cancel(tq, &dwork->work.work_task, NULL); 503 mtx_unlock(&dwork->timer.mtx); 504 505 callout_drain(&dwork->timer.callout); 506 taskqueue_drain(tq, &dwork->work.work_task); 507 return (cancelled || (ret != 0)); 508 default: 509 tq = dwork->work.work_queue->taskqueue; 510 ret = taskqueue_cancel(tq, &dwork->work.work_task, NULL); 511 mtx_unlock(&dwork->timer.mtx); 512 if (ret != 0) 513 taskqueue_drain(tq, &dwork->work.work_task); 514 return (ret != 0); 515 } 516 } 517 518 bool 519 linux_cancel_delayed_work_sync(struct delayed_work *dwork) 520 { 521 bool res; 522 523 res = false; 524 while (linux_cancel_delayed_work_sync_int(dwork)) 525 res = true; 526 return (res); 527 } 528 529 /* 530 * This function waits until the given work structure is completed. 531 * It returns non-zero if the work was successfully 532 * waited for. Else the work was not waited for. 533 */ 534 bool 535 linux_flush_work(struct work_struct *work) 536 { 537 struct taskqueue *tq; 538 bool retval; 539 540 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 541 "linux_flush_work() might sleep"); 542 543 switch (atomic_read(&work->state)) { 544 case WORK_ST_IDLE: 545 return (false); 546 default: 547 tq = work->work_queue->taskqueue; 548 retval = taskqueue_poll_is_busy(tq, &work->work_task); 549 taskqueue_drain(tq, &work->work_task); 550 return (retval); 551 } 552 } 553 554 /* 555 * This function waits until the given delayed work structure is 556 * completed. It returns non-zero if the work was successfully waited 557 * for. Else the work was not waited for. 558 */ 559 bool 560 linux_flush_delayed_work(struct delayed_work *dwork) 561 { 562 struct taskqueue *tq; 563 bool retval; 564 565 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 566 "linux_flush_delayed_work() might sleep"); 567 568 switch (atomic_read(&dwork->work.state)) { 569 case WORK_ST_IDLE: 570 return (false); 571 case WORK_ST_TIMER: 572 if (linux_cancel_timer(dwork, 1)) 573 linux_delayed_work_enqueue(dwork); 574 /* FALLTHROUGH */ 575 default: 576 tq = dwork->work.work_queue->taskqueue; 577 retval = taskqueue_poll_is_busy(tq, &dwork->work.work_task); 578 taskqueue_drain(tq, &dwork->work.work_task); 579 return (retval); 580 } 581 } 582 583 /* 584 * This function returns true if the given work is pending, and not 585 * yet executing: 586 */ 587 bool 588 linux_work_pending(struct work_struct *work) 589 { 590 switch (atomic_read(&work->state)) { 591 case WORK_ST_TIMER: 592 case WORK_ST_TASK: 593 case WORK_ST_CANCEL: 594 return (true); 595 default: 596 return (false); 597 } 598 } 599 600 /* 601 * This function returns true if the given work is busy. 602 */ 603 bool 604 linux_work_busy(struct work_struct *work) 605 { 606 struct taskqueue *tq; 607 608 switch (atomic_read(&work->state)) { 609 case WORK_ST_IDLE: 610 return (false); 611 case WORK_ST_EXEC: 612 tq = work->work_queue->taskqueue; 613 return (taskqueue_poll_is_busy(tq, &work->work_task)); 614 default: 615 return (true); 616 } 617 } 618 619 struct workqueue_struct * 620 linux_create_workqueue_common(const char *name, int cpus) 621 { 622 struct workqueue_struct *wq; 623 624 /* 625 * If zero CPUs are specified use the default number of CPUs: 626 */ 627 if (cpus == 0) 628 cpus = linux_default_wq_cpus; 629 630 wq = kmalloc(sizeof(*wq), M_WAITOK | M_ZERO); 631 wq->taskqueue = taskqueue_create(name, M_WAITOK, 632 taskqueue_thread_enqueue, &wq->taskqueue); 633 atomic_set(&wq->draining, 0); 634 taskqueue_start_threads(&wq->taskqueue, cpus, PWAIT, "%s", name); 635 TAILQ_INIT(&wq->exec_head); 636 mtx_init(&wq->exec_mtx, "linux_wq_exec", NULL, MTX_DEF); 637 638 return (wq); 639 } 640 641 void 642 linux_destroy_workqueue(struct workqueue_struct *wq) 643 { 644 atomic_inc(&wq->draining); 645 drain_workqueue(wq); 646 taskqueue_free(wq->taskqueue); 647 mtx_destroy(&wq->exec_mtx); 648 kfree(wq); 649 } 650 651 void 652 linux_init_delayed_work(struct delayed_work *dwork, work_func_t func) 653 { 654 memset(dwork, 0, sizeof(*dwork)); 655 dwork->work.func = func; 656 TASK_INIT(&dwork->work.work_task, 0, linux_delayed_work_fn, dwork); 657 mtx_init(&dwork->timer.mtx, spin_lock_name("lkpi-dwork"), NULL, 658 MTX_DEF | MTX_NOWITNESS); 659 callout_init_mtx(&dwork->timer.callout, &dwork->timer.mtx, 0); 660 } 661 662 struct work_struct * 663 linux_current_work(void) 664 { 665 return (current->work); 666 } 667 668 static void 669 linux_work_init(void *arg) 670 { 671 int max_wq_cpus = mp_ncpus + 1; 672 673 /* avoid deadlock when there are too few threads */ 674 if (max_wq_cpus < 4) 675 max_wq_cpus = 4; 676 677 /* set default number of CPUs */ 678 linux_default_wq_cpus = max_wq_cpus; 679 680 linux_system_short_wq = alloc_workqueue("linuxkpi_short_wq", 0, max_wq_cpus); 681 linux_system_long_wq = alloc_workqueue("linuxkpi_long_wq", 0, max_wq_cpus); 682 683 /* populate the workqueue pointers */ 684 system_long_wq = linux_system_long_wq; 685 system_wq = linux_system_short_wq; 686 system_power_efficient_wq = linux_system_short_wq; 687 system_unbound_wq = linux_system_short_wq; 688 system_highpri_wq = linux_system_short_wq; 689 } 690 SYSINIT(linux_work_init, SI_SUB_TASKQ, SI_ORDER_THIRD, linux_work_init, NULL); 691 692 static void 693 linux_work_uninit(void *arg) 694 { 695 destroy_workqueue(linux_system_short_wq); 696 destroy_workqueue(linux_system_long_wq); 697 698 /* clear workqueue pointers */ 699 system_long_wq = NULL; 700 system_wq = NULL; 701 system_power_efficient_wq = NULL; 702 system_unbound_wq = NULL; 703 system_highpri_wq = NULL; 704 } 705 SYSUNINIT(linux_work_uninit, SI_SUB_TASKQ, SI_ORDER_THIRD, linux_work_uninit, NULL); 706 707 void 708 linux_irq_work_fn(void *context, int pending) 709 { 710 struct irq_work *irqw = context; 711 712 irqw->func(irqw); 713 } 714 715 static void 716 linux_irq_work_init_fn(void *context, int pending) 717 { 718 /* 719 * LinuxKPI performs lazy allocation of memory structures required by 720 * current on the first access to it. As some irq_work clients read 721 * it with spinlock taken, we have to preallocate td_lkpi_task before 722 * first call to irq_work_queue(). As irq_work uses a single thread, 723 * it is enough to read current once at SYSINIT stage. 724 */ 725 if (current == NULL) 726 panic("irq_work taskqueue is not initialized"); 727 } 728 static struct task linux_irq_work_init_task = 729 TASK_INITIALIZER(0, linux_irq_work_init_fn, &linux_irq_work_init_task); 730 731 static void 732 linux_irq_work_init(void *arg) 733 { 734 linux_irq_work_tq = taskqueue_create_fast("linuxkpi_irq_wq", 735 M_WAITOK, taskqueue_thread_enqueue, &linux_irq_work_tq); 736 taskqueue_start_threads(&linux_irq_work_tq, 1, PWAIT, 737 "linuxkpi_irq_wq"); 738 taskqueue_enqueue(linux_irq_work_tq, &linux_irq_work_init_task); 739 } 740 SYSINIT(linux_irq_work_init, SI_SUB_TASKQ, SI_ORDER_SECOND, 741 linux_irq_work_init, NULL); 742 743 static void 744 linux_irq_work_uninit(void *arg) 745 { 746 taskqueue_drain_all(linux_irq_work_tq); 747 taskqueue_free(linux_irq_work_tq); 748 } 749 SYSUNINIT(linux_irq_work_uninit, SI_SUB_TASKQ, SI_ORDER_SECOND, 750 linux_irq_work_uninit, NULL); 751