1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * Copyright (c) 1994-1995 Søren Schmidt 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer 13 * in this position and unchanged. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 37 #include <sys/param.h> 38 #include <sys/blist.h> 39 #include <sys/fcntl.h> 40 #if defined(__i386__) 41 #include <sys/imgact_aout.h> 42 #endif 43 #include <sys/jail.h> 44 #include <sys/kernel.h> 45 #include <sys/limits.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mman.h> 49 #include <sys/mount.h> 50 #include <sys/msgbuf.h> 51 #include <sys/mutex.h> 52 #include <sys/namei.h> 53 #include <sys/priv.h> 54 #include <sys/proc.h> 55 #include <sys/procctl.h> 56 #include <sys/reboot.h> 57 #include <sys/racct.h> 58 #include <sys/random.h> 59 #include <sys/resourcevar.h> 60 #include <sys/sched.h> 61 #include <sys/sdt.h> 62 #include <sys/signalvar.h> 63 #include <sys/stat.h> 64 #include <sys/syscallsubr.h> 65 #include <sys/sysctl.h> 66 #include <sys/sysproto.h> 67 #include <sys/systm.h> 68 #include <sys/time.h> 69 #include <sys/vmmeter.h> 70 #include <sys/vnode.h> 71 #include <sys/wait.h> 72 #include <sys/cpuset.h> 73 #include <sys/uio.h> 74 75 #include <security/mac/mac_framework.h> 76 77 #include <vm/vm.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_kern.h> 80 #include <vm/vm_map.h> 81 #include <vm/vm_extern.h> 82 #include <vm/swap_pager.h> 83 84 #ifdef COMPAT_LINUX32 85 #include <machine/../linux32/linux.h> 86 #include <machine/../linux32/linux32_proto.h> 87 #else 88 #include <machine/../linux/linux.h> 89 #include <machine/../linux/linux_proto.h> 90 #endif 91 92 #include <compat/linux/linux_dtrace.h> 93 #include <compat/linux/linux_file.h> 94 #include <compat/linux/linux_mib.h> 95 #include <compat/linux/linux_signal.h> 96 #include <compat/linux/linux_timer.h> 97 #include <compat/linux/linux_util.h> 98 #include <compat/linux/linux_sysproto.h> 99 #include <compat/linux/linux_emul.h> 100 #include <compat/linux/linux_misc.h> 101 102 /** 103 * Special DTrace provider for the linuxulator. 104 * 105 * In this file we define the provider for the entire linuxulator. All 106 * modules (= files of the linuxulator) use it. 107 * 108 * We define a different name depending on the emulated bitsize, see 109 * ../../<ARCH>/linux{,32}/linux.h, e.g.: 110 * native bitsize = linuxulator 111 * amd64, 32bit emulation = linuxulator32 112 */ 113 LIN_SDT_PROVIDER_DEFINE(LINUX_DTRACE); 114 115 int stclohz; /* Statistics clock frequency */ 116 117 static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = { 118 RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK, 119 RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE, 120 RLIMIT_MEMLOCK, RLIMIT_AS 121 }; 122 123 struct l_sysinfo { 124 l_long uptime; /* Seconds since boot */ 125 l_ulong loads[3]; /* 1, 5, and 15 minute load averages */ 126 #define LINUX_SYSINFO_LOADS_SCALE 65536 127 l_ulong totalram; /* Total usable main memory size */ 128 l_ulong freeram; /* Available memory size */ 129 l_ulong sharedram; /* Amount of shared memory */ 130 l_ulong bufferram; /* Memory used by buffers */ 131 l_ulong totalswap; /* Total swap space size */ 132 l_ulong freeswap; /* swap space still available */ 133 l_ushort procs; /* Number of current processes */ 134 l_ushort pads; 135 l_ulong totalhigh; 136 l_ulong freehigh; 137 l_uint mem_unit; 138 char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */ 139 }; 140 141 struct l_pselect6arg { 142 l_uintptr_t ss; 143 l_size_t ss_len; 144 }; 145 146 static int linux_utimensat_nsec_valid(l_long); 147 148 149 int 150 linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args) 151 { 152 struct l_sysinfo sysinfo; 153 int i, j; 154 struct timespec ts; 155 156 bzero(&sysinfo, sizeof(sysinfo)); 157 getnanouptime(&ts); 158 if (ts.tv_nsec != 0) 159 ts.tv_sec++; 160 sysinfo.uptime = ts.tv_sec; 161 162 /* Use the information from the mib to get our load averages */ 163 for (i = 0; i < 3; i++) 164 sysinfo.loads[i] = averunnable.ldavg[i] * 165 LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale; 166 167 sysinfo.totalram = physmem * PAGE_SIZE; 168 sysinfo.freeram = (u_long)vm_free_count() * PAGE_SIZE; 169 170 /* 171 * sharedram counts pages allocated to named, swap-backed objects such 172 * as shared memory segments and tmpfs files. There is no cheap way to 173 * compute this, so just leave the field unpopulated. Linux itself only 174 * started setting this field in the 3.x timeframe. 175 */ 176 sysinfo.sharedram = 0; 177 sysinfo.bufferram = 0; 178 179 swap_pager_status(&i, &j); 180 sysinfo.totalswap = i * PAGE_SIZE; 181 sysinfo.freeswap = (i - j) * PAGE_SIZE; 182 183 sysinfo.procs = nprocs; 184 185 /* 186 * Platforms supported by the emulation layer do not have a notion of 187 * high memory. 188 */ 189 sysinfo.totalhigh = 0; 190 sysinfo.freehigh = 0; 191 192 sysinfo.mem_unit = 1; 193 194 return (copyout(&sysinfo, args->info, sizeof(sysinfo))); 195 } 196 197 #ifdef LINUX_LEGACY_SYSCALLS 198 int 199 linux_alarm(struct thread *td, struct linux_alarm_args *args) 200 { 201 struct itimerval it, old_it; 202 u_int secs; 203 int error; 204 205 secs = args->secs; 206 /* 207 * Linux alarm() is always successful. Limit secs to INT32_MAX / 2 208 * to match kern_setitimer()'s limit to avoid error from it. 209 * 210 * XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit 211 * platforms. 212 */ 213 if (secs > INT32_MAX / 2) 214 secs = INT32_MAX / 2; 215 216 it.it_value.tv_sec = secs; 217 it.it_value.tv_usec = 0; 218 timevalclear(&it.it_interval); 219 error = kern_setitimer(td, ITIMER_REAL, &it, &old_it); 220 KASSERT(error == 0, ("kern_setitimer returns %d", error)); 221 222 if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) || 223 old_it.it_value.tv_usec >= 500000) 224 old_it.it_value.tv_sec++; 225 td->td_retval[0] = old_it.it_value.tv_sec; 226 return (0); 227 } 228 #endif 229 230 int 231 linux_brk(struct thread *td, struct linux_brk_args *args) 232 { 233 struct vmspace *vm = td->td_proc->p_vmspace; 234 uintptr_t new, old; 235 236 old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize); 237 new = (uintptr_t)args->dsend; 238 if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new)) 239 td->td_retval[0] = (register_t)new; 240 else 241 td->td_retval[0] = (register_t)old; 242 243 return (0); 244 } 245 246 #if defined(__i386__) 247 /* XXX: what about amd64/linux32? */ 248 249 int 250 linux_uselib(struct thread *td, struct linux_uselib_args *args) 251 { 252 struct nameidata ni; 253 struct vnode *vp; 254 struct exec *a_out; 255 vm_map_t map; 256 vm_map_entry_t entry; 257 struct vattr attr; 258 vm_offset_t vmaddr; 259 unsigned long file_offset; 260 unsigned long bss_size; 261 char *library; 262 ssize_t aresid; 263 int error; 264 bool locked, opened, textset; 265 266 a_out = NULL; 267 vp = NULL; 268 locked = false; 269 textset = false; 270 opened = false; 271 272 if (!LUSECONVPATH(td)) { 273 NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1, 274 UIO_USERSPACE, args->library, td); 275 error = namei(&ni); 276 } else { 277 LCONVPATHEXIST(td, args->library, &library); 278 NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1, 279 UIO_SYSSPACE, library, td); 280 error = namei(&ni); 281 LFREEPATH(library); 282 } 283 if (error) 284 goto cleanup; 285 286 vp = ni.ni_vp; 287 NDFREE(&ni, NDF_ONLY_PNBUF); 288 289 /* 290 * From here on down, we have a locked vnode that must be unlocked. 291 * XXX: The code below largely duplicates exec_check_permissions(). 292 */ 293 locked = true; 294 295 /* Executable? */ 296 error = VOP_GETATTR(vp, &attr, td->td_ucred); 297 if (error) 298 goto cleanup; 299 300 if ((vp->v_mount->mnt_flag & MNT_NOEXEC) || 301 ((attr.va_mode & 0111) == 0) || (attr.va_type != VREG)) { 302 /* EACCESS is what exec(2) returns. */ 303 error = ENOEXEC; 304 goto cleanup; 305 } 306 307 /* Sensible size? */ 308 if (attr.va_size == 0) { 309 error = ENOEXEC; 310 goto cleanup; 311 } 312 313 /* Can we access it? */ 314 error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td); 315 if (error) 316 goto cleanup; 317 318 /* 319 * XXX: This should use vn_open() so that it is properly authorized, 320 * and to reduce code redundancy all over the place here. 321 * XXX: Not really, it duplicates far more of exec_check_permissions() 322 * than vn_open(). 323 */ 324 #ifdef MAC 325 error = mac_vnode_check_open(td->td_ucred, vp, VREAD); 326 if (error) 327 goto cleanup; 328 #endif 329 error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL); 330 if (error) 331 goto cleanup; 332 opened = true; 333 334 /* Pull in executable header into exec_map */ 335 error = vm_mmap(exec_map, (vm_offset_t *)&a_out, PAGE_SIZE, 336 VM_PROT_READ, VM_PROT_READ, 0, OBJT_VNODE, vp, 0); 337 if (error) 338 goto cleanup; 339 340 /* Is it a Linux binary ? */ 341 if (((a_out->a_magic >> 16) & 0xff) != 0x64) { 342 error = ENOEXEC; 343 goto cleanup; 344 } 345 346 /* 347 * While we are here, we should REALLY do some more checks 348 */ 349 350 /* Set file/virtual offset based on a.out variant. */ 351 switch ((int)(a_out->a_magic & 0xffff)) { 352 case 0413: /* ZMAGIC */ 353 file_offset = 1024; 354 break; 355 case 0314: /* QMAGIC */ 356 file_offset = 0; 357 break; 358 default: 359 error = ENOEXEC; 360 goto cleanup; 361 } 362 363 bss_size = round_page(a_out->a_bss); 364 365 /* Check various fields in header for validity/bounds. */ 366 if (a_out->a_text & PAGE_MASK || a_out->a_data & PAGE_MASK) { 367 error = ENOEXEC; 368 goto cleanup; 369 } 370 371 /* text + data can't exceed file size */ 372 if (a_out->a_data + a_out->a_text > attr.va_size) { 373 error = EFAULT; 374 goto cleanup; 375 } 376 377 /* 378 * text/data/bss must not exceed limits 379 * XXX - this is not complete. it should check current usage PLUS 380 * the resources needed by this library. 381 */ 382 PROC_LOCK(td->td_proc); 383 if (a_out->a_text > maxtsiz || 384 a_out->a_data + bss_size > lim_cur_proc(td->td_proc, RLIMIT_DATA) || 385 racct_set(td->td_proc, RACCT_DATA, a_out->a_data + 386 bss_size) != 0) { 387 PROC_UNLOCK(td->td_proc); 388 error = ENOMEM; 389 goto cleanup; 390 } 391 PROC_UNLOCK(td->td_proc); 392 393 /* 394 * Prevent more writers. 395 */ 396 error = VOP_SET_TEXT(vp); 397 if (error != 0) 398 goto cleanup; 399 textset = true; 400 401 /* 402 * Lock no longer needed 403 */ 404 locked = false; 405 VOP_UNLOCK(vp); 406 407 /* 408 * Check if file_offset page aligned. Currently we cannot handle 409 * misalinged file offsets, and so we read in the entire image 410 * (what a waste). 411 */ 412 if (file_offset & PAGE_MASK) { 413 /* Map text+data read/write/execute */ 414 415 /* a_entry is the load address and is page aligned */ 416 vmaddr = trunc_page(a_out->a_entry); 417 418 /* get anon user mapping, read+write+execute */ 419 error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0, 420 &vmaddr, a_out->a_text + a_out->a_data, 0, VMFS_NO_SPACE, 421 VM_PROT_ALL, VM_PROT_ALL, 0); 422 if (error) 423 goto cleanup; 424 425 error = vn_rdwr(UIO_READ, vp, (void *)vmaddr, file_offset, 426 a_out->a_text + a_out->a_data, UIO_USERSPACE, 0, 427 td->td_ucred, NOCRED, &aresid, td); 428 if (error != 0) 429 goto cleanup; 430 if (aresid != 0) { 431 error = ENOEXEC; 432 goto cleanup; 433 } 434 } else { 435 /* 436 * for QMAGIC, a_entry is 20 bytes beyond the load address 437 * to skip the executable header 438 */ 439 vmaddr = trunc_page(a_out->a_entry); 440 441 /* 442 * Map it all into the process's space as a single 443 * copy-on-write "data" segment. 444 */ 445 map = &td->td_proc->p_vmspace->vm_map; 446 error = vm_mmap(map, &vmaddr, 447 a_out->a_text + a_out->a_data, VM_PROT_ALL, VM_PROT_ALL, 448 MAP_PRIVATE | MAP_FIXED, OBJT_VNODE, vp, file_offset); 449 if (error) 450 goto cleanup; 451 vm_map_lock(map); 452 if (!vm_map_lookup_entry(map, vmaddr, &entry)) { 453 vm_map_unlock(map); 454 error = EDOOFUS; 455 goto cleanup; 456 } 457 entry->eflags |= MAP_ENTRY_VN_EXEC; 458 vm_map_unlock(map); 459 textset = false; 460 } 461 462 if (bss_size != 0) { 463 /* Calculate BSS start address */ 464 vmaddr = trunc_page(a_out->a_entry) + a_out->a_text + 465 a_out->a_data; 466 467 /* allocate some 'anon' space */ 468 error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0, 469 &vmaddr, bss_size, 0, VMFS_NO_SPACE, VM_PROT_ALL, 470 VM_PROT_ALL, 0); 471 if (error) 472 goto cleanup; 473 } 474 475 cleanup: 476 if (opened) { 477 if (locked) 478 VOP_UNLOCK(vp); 479 locked = false; 480 VOP_CLOSE(vp, FREAD, td->td_ucred, td); 481 } 482 if (textset) { 483 if (!locked) { 484 locked = true; 485 VOP_LOCK(vp, LK_SHARED | LK_RETRY); 486 } 487 VOP_UNSET_TEXT_CHECKED(vp); 488 } 489 if (locked) 490 VOP_UNLOCK(vp); 491 492 /* Release the temporary mapping. */ 493 if (a_out) 494 kmap_free_wakeup(exec_map, (vm_offset_t)a_out, PAGE_SIZE); 495 496 return (error); 497 } 498 499 #endif /* __i386__ */ 500 501 #ifdef LINUX_LEGACY_SYSCALLS 502 int 503 linux_select(struct thread *td, struct linux_select_args *args) 504 { 505 l_timeval ltv; 506 struct timeval tv0, tv1, utv, *tvp; 507 int error; 508 509 /* 510 * Store current time for computation of the amount of 511 * time left. 512 */ 513 if (args->timeout) { 514 if ((error = copyin(args->timeout, <v, sizeof(ltv)))) 515 goto select_out; 516 utv.tv_sec = ltv.tv_sec; 517 utv.tv_usec = ltv.tv_usec; 518 519 if (itimerfix(&utv)) { 520 /* 521 * The timeval was invalid. Convert it to something 522 * valid that will act as it does under Linux. 523 */ 524 utv.tv_sec += utv.tv_usec / 1000000; 525 utv.tv_usec %= 1000000; 526 if (utv.tv_usec < 0) { 527 utv.tv_sec -= 1; 528 utv.tv_usec += 1000000; 529 } 530 if (utv.tv_sec < 0) 531 timevalclear(&utv); 532 } 533 microtime(&tv0); 534 tvp = &utv; 535 } else 536 tvp = NULL; 537 538 error = kern_select(td, args->nfds, args->readfds, args->writefds, 539 args->exceptfds, tvp, LINUX_NFDBITS); 540 if (error) 541 goto select_out; 542 543 if (args->timeout) { 544 if (td->td_retval[0]) { 545 /* 546 * Compute how much time was left of the timeout, 547 * by subtracting the current time and the time 548 * before we started the call, and subtracting 549 * that result from the user-supplied value. 550 */ 551 microtime(&tv1); 552 timevalsub(&tv1, &tv0); 553 timevalsub(&utv, &tv1); 554 if (utv.tv_sec < 0) 555 timevalclear(&utv); 556 } else 557 timevalclear(&utv); 558 ltv.tv_sec = utv.tv_sec; 559 ltv.tv_usec = utv.tv_usec; 560 if ((error = copyout(<v, args->timeout, sizeof(ltv)))) 561 goto select_out; 562 } 563 564 select_out: 565 return (error); 566 } 567 #endif 568 569 int 570 linux_mremap(struct thread *td, struct linux_mremap_args *args) 571 { 572 uintptr_t addr; 573 size_t len; 574 int error = 0; 575 576 if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) { 577 td->td_retval[0] = 0; 578 return (EINVAL); 579 } 580 581 /* 582 * Check for the page alignment. 583 * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK. 584 */ 585 if (args->addr & PAGE_MASK) { 586 td->td_retval[0] = 0; 587 return (EINVAL); 588 } 589 590 args->new_len = round_page(args->new_len); 591 args->old_len = round_page(args->old_len); 592 593 if (args->new_len > args->old_len) { 594 td->td_retval[0] = 0; 595 return (ENOMEM); 596 } 597 598 if (args->new_len < args->old_len) { 599 addr = args->addr + args->new_len; 600 len = args->old_len - args->new_len; 601 error = kern_munmap(td, addr, len); 602 } 603 604 td->td_retval[0] = error ? 0 : (uintptr_t)args->addr; 605 return (error); 606 } 607 608 #define LINUX_MS_ASYNC 0x0001 609 #define LINUX_MS_INVALIDATE 0x0002 610 #define LINUX_MS_SYNC 0x0004 611 612 int 613 linux_msync(struct thread *td, struct linux_msync_args *args) 614 { 615 616 return (kern_msync(td, args->addr, args->len, 617 args->fl & ~LINUX_MS_SYNC)); 618 } 619 620 #ifdef LINUX_LEGACY_SYSCALLS 621 int 622 linux_time(struct thread *td, struct linux_time_args *args) 623 { 624 struct timeval tv; 625 l_time_t tm; 626 int error; 627 628 microtime(&tv); 629 tm = tv.tv_sec; 630 if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm)))) 631 return (error); 632 td->td_retval[0] = tm; 633 return (0); 634 } 635 #endif 636 637 struct l_times_argv { 638 l_clock_t tms_utime; 639 l_clock_t tms_stime; 640 l_clock_t tms_cutime; 641 l_clock_t tms_cstime; 642 }; 643 644 645 /* 646 * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value. 647 * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK 648 * auxiliary vector entry. 649 */ 650 #define CLK_TCK 100 651 652 #define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK)) 653 #define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz)) 654 655 #define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER_2004000 ? \ 656 CONVNTCK(r) : CONVOTCK(r)) 657 658 int 659 linux_times(struct thread *td, struct linux_times_args *args) 660 { 661 struct timeval tv, utime, stime, cutime, cstime; 662 struct l_times_argv tms; 663 struct proc *p; 664 int error; 665 666 if (args->buf != NULL) { 667 p = td->td_proc; 668 PROC_LOCK(p); 669 PROC_STATLOCK(p); 670 calcru(p, &utime, &stime); 671 PROC_STATUNLOCK(p); 672 calccru(p, &cutime, &cstime); 673 PROC_UNLOCK(p); 674 675 tms.tms_utime = CONVTCK(utime); 676 tms.tms_stime = CONVTCK(stime); 677 678 tms.tms_cutime = CONVTCK(cutime); 679 tms.tms_cstime = CONVTCK(cstime); 680 681 if ((error = copyout(&tms, args->buf, sizeof(tms)))) 682 return (error); 683 } 684 685 microuptime(&tv); 686 td->td_retval[0] = (int)CONVTCK(tv); 687 return (0); 688 } 689 690 int 691 linux_newuname(struct thread *td, struct linux_newuname_args *args) 692 { 693 struct l_new_utsname utsname; 694 char osname[LINUX_MAX_UTSNAME]; 695 char osrelease[LINUX_MAX_UTSNAME]; 696 char *p; 697 698 linux_get_osname(td, osname); 699 linux_get_osrelease(td, osrelease); 700 701 bzero(&utsname, sizeof(utsname)); 702 strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME); 703 getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME); 704 getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME); 705 strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME); 706 strlcpy(utsname.version, version, LINUX_MAX_UTSNAME); 707 for (p = utsname.version; *p != '\0'; ++p) 708 if (*p == '\n') { 709 *p = '\0'; 710 break; 711 } 712 #if defined(__amd64__) 713 /* 714 * On amd64, Linux uname(2) needs to return "x86_64" 715 * for both 64-bit and 32-bit applications. On 32-bit, 716 * the string returned by getauxval(AT_PLATFORM) needs 717 * to remain "i686", though. 718 */ 719 strlcpy(utsname.machine, "x86_64", LINUX_MAX_UTSNAME); 720 #else 721 strlcpy(utsname.machine, linux_kplatform, LINUX_MAX_UTSNAME); 722 #endif 723 724 return (copyout(&utsname, args->buf, sizeof(utsname))); 725 } 726 727 struct l_utimbuf { 728 l_time_t l_actime; 729 l_time_t l_modtime; 730 }; 731 732 #ifdef LINUX_LEGACY_SYSCALLS 733 int 734 linux_utime(struct thread *td, struct linux_utime_args *args) 735 { 736 struct timeval tv[2], *tvp; 737 struct l_utimbuf lut; 738 char *fname; 739 int error; 740 bool convpath; 741 742 convpath = LUSECONVPATH(td); 743 if (convpath) 744 LCONVPATHEXIST(td, args->fname, &fname); 745 746 if (args->times) { 747 if ((error = copyin(args->times, &lut, sizeof lut))) { 748 if (convpath) 749 LFREEPATH(fname); 750 return (error); 751 } 752 tv[0].tv_sec = lut.l_actime; 753 tv[0].tv_usec = 0; 754 tv[1].tv_sec = lut.l_modtime; 755 tv[1].tv_usec = 0; 756 tvp = tv; 757 } else 758 tvp = NULL; 759 760 if (!convpath) { 761 error = kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE, 762 tvp, UIO_SYSSPACE); 763 } else { 764 error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp, 765 UIO_SYSSPACE); 766 LFREEPATH(fname); 767 } 768 return (error); 769 } 770 #endif 771 772 #ifdef LINUX_LEGACY_SYSCALLS 773 int 774 linux_utimes(struct thread *td, struct linux_utimes_args *args) 775 { 776 l_timeval ltv[2]; 777 struct timeval tv[2], *tvp = NULL; 778 char *fname; 779 int error; 780 bool convpath; 781 782 convpath = LUSECONVPATH(td); 783 if (convpath) 784 LCONVPATHEXIST(td, args->fname, &fname); 785 786 if (args->tptr != NULL) { 787 if ((error = copyin(args->tptr, ltv, sizeof ltv))) { 788 LFREEPATH(fname); 789 return (error); 790 } 791 tv[0].tv_sec = ltv[0].tv_sec; 792 tv[0].tv_usec = ltv[0].tv_usec; 793 tv[1].tv_sec = ltv[1].tv_sec; 794 tv[1].tv_usec = ltv[1].tv_usec; 795 tvp = tv; 796 } 797 798 if (!convpath) { 799 error = kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE, 800 tvp, UIO_SYSSPACE); 801 } else { 802 error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, 803 tvp, UIO_SYSSPACE); 804 LFREEPATH(fname); 805 } 806 return (error); 807 } 808 #endif 809 810 static int 811 linux_utimensat_nsec_valid(l_long nsec) 812 { 813 814 if (nsec == LINUX_UTIME_OMIT || nsec == LINUX_UTIME_NOW) 815 return (0); 816 if (nsec >= 0 && nsec <= 999999999) 817 return (0); 818 return (1); 819 } 820 821 int 822 linux_utimensat(struct thread *td, struct linux_utimensat_args *args) 823 { 824 struct l_timespec l_times[2]; 825 struct timespec times[2], *timesp = NULL; 826 char *path = NULL; 827 int error, dfd, flags = 0; 828 829 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 830 831 if (args->flags & ~LINUX_AT_SYMLINK_NOFOLLOW) 832 return (EINVAL); 833 834 if (args->times != NULL) { 835 error = copyin(args->times, l_times, sizeof(l_times)); 836 if (error != 0) 837 return (error); 838 839 if (linux_utimensat_nsec_valid(l_times[0].tv_nsec) != 0 || 840 linux_utimensat_nsec_valid(l_times[1].tv_nsec) != 0) 841 return (EINVAL); 842 843 times[0].tv_sec = l_times[0].tv_sec; 844 switch (l_times[0].tv_nsec) 845 { 846 case LINUX_UTIME_OMIT: 847 times[0].tv_nsec = UTIME_OMIT; 848 break; 849 case LINUX_UTIME_NOW: 850 times[0].tv_nsec = UTIME_NOW; 851 break; 852 default: 853 times[0].tv_nsec = l_times[0].tv_nsec; 854 } 855 856 times[1].tv_sec = l_times[1].tv_sec; 857 switch (l_times[1].tv_nsec) 858 { 859 case LINUX_UTIME_OMIT: 860 times[1].tv_nsec = UTIME_OMIT; 861 break; 862 case LINUX_UTIME_NOW: 863 times[1].tv_nsec = UTIME_NOW; 864 break; 865 default: 866 times[1].tv_nsec = l_times[1].tv_nsec; 867 break; 868 } 869 timesp = times; 870 871 /* This breaks POSIX, but is what the Linux kernel does 872 * _on purpose_ (documented in the man page for utimensat(2)), 873 * so we must follow that behaviour. */ 874 if (times[0].tv_nsec == UTIME_OMIT && 875 times[1].tv_nsec == UTIME_OMIT) 876 return (0); 877 } 878 879 if (args->pathname != NULL) 880 LCONVPATHEXIST_AT(td, args->pathname, &path, dfd); 881 else if (args->flags != 0) 882 return (EINVAL); 883 884 if (args->flags & LINUX_AT_SYMLINK_NOFOLLOW) 885 flags |= AT_SYMLINK_NOFOLLOW; 886 887 if (path == NULL) 888 error = kern_futimens(td, dfd, timesp, UIO_SYSSPACE); 889 else { 890 error = kern_utimensat(td, dfd, path, UIO_SYSSPACE, timesp, 891 UIO_SYSSPACE, flags); 892 LFREEPATH(path); 893 } 894 895 return (error); 896 } 897 898 #ifdef LINUX_LEGACY_SYSCALLS 899 int 900 linux_futimesat(struct thread *td, struct linux_futimesat_args *args) 901 { 902 l_timeval ltv[2]; 903 struct timeval tv[2], *tvp = NULL; 904 char *fname; 905 int error, dfd; 906 bool convpath; 907 908 convpath = LUSECONVPATH(td); 909 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 910 if (convpath) 911 LCONVPATHEXIST_AT(td, args->filename, &fname, dfd); 912 913 if (args->utimes != NULL) { 914 if ((error = copyin(args->utimes, ltv, sizeof ltv))) { 915 if (convpath) 916 LFREEPATH(fname); 917 return (error); 918 } 919 tv[0].tv_sec = ltv[0].tv_sec; 920 tv[0].tv_usec = ltv[0].tv_usec; 921 tv[1].tv_sec = ltv[1].tv_sec; 922 tv[1].tv_usec = ltv[1].tv_usec; 923 tvp = tv; 924 } 925 926 if (!convpath) { 927 error = kern_utimesat(td, dfd, args->filename, UIO_USERSPACE, 928 tvp, UIO_SYSSPACE); 929 } else { 930 error = kern_utimesat(td, dfd, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE); 931 LFREEPATH(fname); 932 } 933 return (error); 934 } 935 #endif 936 937 static int 938 linux_common_wait(struct thread *td, int pid, int *statusp, 939 int options, struct __wrusage *wrup) 940 { 941 siginfo_t siginfo; 942 idtype_t idtype; 943 id_t id; 944 int error, status, tmpstat; 945 946 if (pid == WAIT_ANY) { 947 idtype = P_ALL; 948 id = 0; 949 } else if (pid < 0) { 950 idtype = P_PGID; 951 id = (id_t)-pid; 952 } else { 953 idtype = P_PID; 954 id = (id_t)pid; 955 } 956 957 /* 958 * For backward compatibility we implicitly add flags WEXITED 959 * and WTRAPPED here. 960 */ 961 options |= WEXITED | WTRAPPED; 962 error = kern_wait6(td, idtype, id, &status, options, wrup, &siginfo); 963 if (error) 964 return (error); 965 966 if (statusp) { 967 tmpstat = status & 0xffff; 968 if (WIFSIGNALED(tmpstat)) { 969 tmpstat = (tmpstat & 0xffffff80) | 970 bsd_to_linux_signal(WTERMSIG(tmpstat)); 971 } else if (WIFSTOPPED(tmpstat)) { 972 tmpstat = (tmpstat & 0xffff00ff) | 973 (bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8); 974 #if defined(__amd64__) && !defined(COMPAT_LINUX32) 975 if (WSTOPSIG(status) == SIGTRAP) { 976 tmpstat = linux_ptrace_status(td, 977 siginfo.si_pid, tmpstat); 978 } 979 #endif 980 } else if (WIFCONTINUED(tmpstat)) { 981 tmpstat = 0xffff; 982 } 983 error = copyout(&tmpstat, statusp, sizeof(int)); 984 } 985 986 return (error); 987 } 988 989 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 990 int 991 linux_waitpid(struct thread *td, struct linux_waitpid_args *args) 992 { 993 struct linux_wait4_args wait4_args; 994 995 wait4_args.pid = args->pid; 996 wait4_args.status = args->status; 997 wait4_args.options = args->options; 998 wait4_args.rusage = NULL; 999 1000 return (linux_wait4(td, &wait4_args)); 1001 } 1002 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 1003 1004 int 1005 linux_wait4(struct thread *td, struct linux_wait4_args *args) 1006 { 1007 int error, options; 1008 struct __wrusage wru, *wrup; 1009 1010 if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG | 1011 LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL)) 1012 return (EINVAL); 1013 1014 options = WEXITED; 1015 linux_to_bsd_waitopts(args->options, &options); 1016 1017 if (args->rusage != NULL) 1018 wrup = &wru; 1019 else 1020 wrup = NULL; 1021 error = linux_common_wait(td, args->pid, args->status, options, wrup); 1022 if (error != 0) 1023 return (error); 1024 if (args->rusage != NULL) 1025 error = linux_copyout_rusage(&wru.wru_self, args->rusage); 1026 return (error); 1027 } 1028 1029 int 1030 linux_waitid(struct thread *td, struct linux_waitid_args *args) 1031 { 1032 int status, options, sig; 1033 struct __wrusage wru; 1034 siginfo_t siginfo; 1035 l_siginfo_t lsi; 1036 idtype_t idtype; 1037 struct proc *p; 1038 int error; 1039 1040 options = 0; 1041 linux_to_bsd_waitopts(args->options, &options); 1042 1043 if (options & ~(WNOHANG | WNOWAIT | WEXITED | WUNTRACED | WCONTINUED)) 1044 return (EINVAL); 1045 if (!(options & (WEXITED | WUNTRACED | WCONTINUED))) 1046 return (EINVAL); 1047 1048 switch (args->idtype) { 1049 case LINUX_P_ALL: 1050 idtype = P_ALL; 1051 break; 1052 case LINUX_P_PID: 1053 if (args->id <= 0) 1054 return (EINVAL); 1055 idtype = P_PID; 1056 break; 1057 case LINUX_P_PGID: 1058 if (args->id <= 0) 1059 return (EINVAL); 1060 idtype = P_PGID; 1061 break; 1062 default: 1063 return (EINVAL); 1064 } 1065 1066 error = kern_wait6(td, idtype, args->id, &status, options, 1067 &wru, &siginfo); 1068 if (error != 0) 1069 return (error); 1070 if (args->rusage != NULL) { 1071 error = linux_copyout_rusage(&wru.wru_children, 1072 args->rusage); 1073 if (error != 0) 1074 return (error); 1075 } 1076 if (args->info != NULL) { 1077 p = td->td_proc; 1078 bzero(&lsi, sizeof(lsi)); 1079 if (td->td_retval[0] != 0) { 1080 sig = bsd_to_linux_signal(siginfo.si_signo); 1081 siginfo_to_lsiginfo(&siginfo, &lsi, sig); 1082 } 1083 error = copyout(&lsi, args->info, sizeof(lsi)); 1084 } 1085 td->td_retval[0] = 0; 1086 1087 return (error); 1088 } 1089 1090 #ifdef LINUX_LEGACY_SYSCALLS 1091 int 1092 linux_mknod(struct thread *td, struct linux_mknod_args *args) 1093 { 1094 char *path; 1095 int error; 1096 enum uio_seg seg; 1097 bool convpath; 1098 1099 convpath = LUSECONVPATH(td); 1100 if (!convpath) { 1101 path = args->path; 1102 seg = UIO_USERSPACE; 1103 } else { 1104 LCONVPATHCREAT(td, args->path, &path); 1105 seg = UIO_SYSSPACE; 1106 } 1107 1108 switch (args->mode & S_IFMT) { 1109 case S_IFIFO: 1110 case S_IFSOCK: 1111 error = kern_mkfifoat(td, AT_FDCWD, path, seg, 1112 args->mode); 1113 break; 1114 1115 case S_IFCHR: 1116 case S_IFBLK: 1117 error = kern_mknodat(td, AT_FDCWD, path, seg, 1118 args->mode, args->dev); 1119 break; 1120 1121 case S_IFDIR: 1122 error = EPERM; 1123 break; 1124 1125 case 0: 1126 args->mode |= S_IFREG; 1127 /* FALLTHROUGH */ 1128 case S_IFREG: 1129 error = kern_openat(td, AT_FDCWD, path, seg, 1130 O_WRONLY | O_CREAT | O_TRUNC, args->mode); 1131 if (error == 0) 1132 kern_close(td, td->td_retval[0]); 1133 break; 1134 1135 default: 1136 error = EINVAL; 1137 break; 1138 } 1139 if (convpath) 1140 LFREEPATH(path); 1141 return (error); 1142 } 1143 #endif 1144 1145 int 1146 linux_mknodat(struct thread *td, struct linux_mknodat_args *args) 1147 { 1148 char *path; 1149 int error, dfd; 1150 enum uio_seg seg; 1151 bool convpath; 1152 1153 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 1154 1155 convpath = LUSECONVPATH(td); 1156 if (!convpath) { 1157 path = __DECONST(char *, args->filename); 1158 seg = UIO_USERSPACE; 1159 } else { 1160 LCONVPATHCREAT_AT(td, args->filename, &path, dfd); 1161 seg = UIO_SYSSPACE; 1162 } 1163 1164 switch (args->mode & S_IFMT) { 1165 case S_IFIFO: 1166 case S_IFSOCK: 1167 error = kern_mkfifoat(td, dfd, path, seg, args->mode); 1168 break; 1169 1170 case S_IFCHR: 1171 case S_IFBLK: 1172 error = kern_mknodat(td, dfd, path, seg, args->mode, 1173 args->dev); 1174 break; 1175 1176 case S_IFDIR: 1177 error = EPERM; 1178 break; 1179 1180 case 0: 1181 args->mode |= S_IFREG; 1182 /* FALLTHROUGH */ 1183 case S_IFREG: 1184 error = kern_openat(td, dfd, path, seg, 1185 O_WRONLY | O_CREAT | O_TRUNC, args->mode); 1186 if (error == 0) 1187 kern_close(td, td->td_retval[0]); 1188 break; 1189 1190 default: 1191 error = EINVAL; 1192 break; 1193 } 1194 if (convpath) 1195 LFREEPATH(path); 1196 return (error); 1197 } 1198 1199 /* 1200 * UGH! This is just about the dumbest idea I've ever heard!! 1201 */ 1202 int 1203 linux_personality(struct thread *td, struct linux_personality_args *args) 1204 { 1205 struct linux_pemuldata *pem; 1206 struct proc *p = td->td_proc; 1207 uint32_t old; 1208 1209 PROC_LOCK(p); 1210 pem = pem_find(p); 1211 old = pem->persona; 1212 if (args->per != 0xffffffff) 1213 pem->persona = args->per; 1214 PROC_UNLOCK(p); 1215 1216 td->td_retval[0] = old; 1217 return (0); 1218 } 1219 1220 struct l_itimerval { 1221 l_timeval it_interval; 1222 l_timeval it_value; 1223 }; 1224 1225 #define B2L_ITIMERVAL(bip, lip) \ 1226 (bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \ 1227 (bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \ 1228 (bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \ 1229 (bip)->it_value.tv_usec = (lip)->it_value.tv_usec; 1230 1231 int 1232 linux_setitimer(struct thread *td, struct linux_setitimer_args *uap) 1233 { 1234 int error; 1235 struct l_itimerval ls; 1236 struct itimerval aitv, oitv; 1237 1238 if (uap->itv == NULL) { 1239 uap->itv = uap->oitv; 1240 return (linux_getitimer(td, (struct linux_getitimer_args *)uap)); 1241 } 1242 1243 error = copyin(uap->itv, &ls, sizeof(ls)); 1244 if (error != 0) 1245 return (error); 1246 B2L_ITIMERVAL(&aitv, &ls); 1247 error = kern_setitimer(td, uap->which, &aitv, &oitv); 1248 if (error != 0 || uap->oitv == NULL) 1249 return (error); 1250 B2L_ITIMERVAL(&ls, &oitv); 1251 1252 return (copyout(&ls, uap->oitv, sizeof(ls))); 1253 } 1254 1255 int 1256 linux_getitimer(struct thread *td, struct linux_getitimer_args *uap) 1257 { 1258 int error; 1259 struct l_itimerval ls; 1260 struct itimerval aitv; 1261 1262 error = kern_getitimer(td, uap->which, &aitv); 1263 if (error != 0) 1264 return (error); 1265 B2L_ITIMERVAL(&ls, &aitv); 1266 return (copyout(&ls, uap->itv, sizeof(ls))); 1267 } 1268 1269 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 1270 int 1271 linux_nice(struct thread *td, struct linux_nice_args *args) 1272 { 1273 1274 return (kern_setpriority(td, PRIO_PROCESS, 0, args->inc)); 1275 } 1276 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 1277 1278 int 1279 linux_setgroups(struct thread *td, struct linux_setgroups_args *args) 1280 { 1281 struct ucred *newcred, *oldcred; 1282 l_gid_t *linux_gidset; 1283 gid_t *bsd_gidset; 1284 int ngrp, error; 1285 struct proc *p; 1286 1287 ngrp = args->gidsetsize; 1288 if (ngrp < 0 || ngrp >= ngroups_max + 1) 1289 return (EINVAL); 1290 linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK); 1291 error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t)); 1292 if (error) 1293 goto out; 1294 newcred = crget(); 1295 crextend(newcred, ngrp + 1); 1296 p = td->td_proc; 1297 PROC_LOCK(p); 1298 oldcred = p->p_ucred; 1299 crcopy(newcred, oldcred); 1300 1301 /* 1302 * cr_groups[0] holds egid. Setting the whole set from 1303 * the supplied set will cause egid to be changed too. 1304 * Keep cr_groups[0] unchanged to prevent that. 1305 */ 1306 1307 if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) { 1308 PROC_UNLOCK(p); 1309 crfree(newcred); 1310 goto out; 1311 } 1312 1313 if (ngrp > 0) { 1314 newcred->cr_ngroups = ngrp + 1; 1315 1316 bsd_gidset = newcred->cr_groups; 1317 ngrp--; 1318 while (ngrp >= 0) { 1319 bsd_gidset[ngrp + 1] = linux_gidset[ngrp]; 1320 ngrp--; 1321 } 1322 } else 1323 newcred->cr_ngroups = 1; 1324 1325 setsugid(p); 1326 proc_set_cred(p, newcred); 1327 PROC_UNLOCK(p); 1328 crfree(oldcred); 1329 error = 0; 1330 out: 1331 free(linux_gidset, M_LINUX); 1332 return (error); 1333 } 1334 1335 int 1336 linux_getgroups(struct thread *td, struct linux_getgroups_args *args) 1337 { 1338 struct ucred *cred; 1339 l_gid_t *linux_gidset; 1340 gid_t *bsd_gidset; 1341 int bsd_gidsetsz, ngrp, error; 1342 1343 cred = td->td_ucred; 1344 bsd_gidset = cred->cr_groups; 1345 bsd_gidsetsz = cred->cr_ngroups - 1; 1346 1347 /* 1348 * cr_groups[0] holds egid. Returning the whole set 1349 * here will cause a duplicate. Exclude cr_groups[0] 1350 * to prevent that. 1351 */ 1352 1353 if ((ngrp = args->gidsetsize) == 0) { 1354 td->td_retval[0] = bsd_gidsetsz; 1355 return (0); 1356 } 1357 1358 if (ngrp < bsd_gidsetsz) 1359 return (EINVAL); 1360 1361 ngrp = 0; 1362 linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset), 1363 M_LINUX, M_WAITOK); 1364 while (ngrp < bsd_gidsetsz) { 1365 linux_gidset[ngrp] = bsd_gidset[ngrp + 1]; 1366 ngrp++; 1367 } 1368 1369 error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t)); 1370 free(linux_gidset, M_LINUX); 1371 if (error) 1372 return (error); 1373 1374 td->td_retval[0] = ngrp; 1375 return (0); 1376 } 1377 1378 int 1379 linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args) 1380 { 1381 struct rlimit bsd_rlim; 1382 struct l_rlimit rlim; 1383 u_int which; 1384 int error; 1385 1386 if (args->resource >= LINUX_RLIM_NLIMITS) 1387 return (EINVAL); 1388 1389 which = linux_to_bsd_resource[args->resource]; 1390 if (which == -1) 1391 return (EINVAL); 1392 1393 error = copyin(args->rlim, &rlim, sizeof(rlim)); 1394 if (error) 1395 return (error); 1396 1397 bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur; 1398 bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max; 1399 return (kern_setrlimit(td, which, &bsd_rlim)); 1400 } 1401 1402 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 1403 int 1404 linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args) 1405 { 1406 struct l_rlimit rlim; 1407 struct rlimit bsd_rlim; 1408 u_int which; 1409 1410 if (args->resource >= LINUX_RLIM_NLIMITS) 1411 return (EINVAL); 1412 1413 which = linux_to_bsd_resource[args->resource]; 1414 if (which == -1) 1415 return (EINVAL); 1416 1417 lim_rlimit(td, which, &bsd_rlim); 1418 1419 #ifdef COMPAT_LINUX32 1420 rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur; 1421 if (rlim.rlim_cur == UINT_MAX) 1422 rlim.rlim_cur = INT_MAX; 1423 rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max; 1424 if (rlim.rlim_max == UINT_MAX) 1425 rlim.rlim_max = INT_MAX; 1426 #else 1427 rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur; 1428 if (rlim.rlim_cur == ULONG_MAX) 1429 rlim.rlim_cur = LONG_MAX; 1430 rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max; 1431 if (rlim.rlim_max == ULONG_MAX) 1432 rlim.rlim_max = LONG_MAX; 1433 #endif 1434 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1435 } 1436 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 1437 1438 int 1439 linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args) 1440 { 1441 struct l_rlimit rlim; 1442 struct rlimit bsd_rlim; 1443 u_int which; 1444 1445 if (args->resource >= LINUX_RLIM_NLIMITS) 1446 return (EINVAL); 1447 1448 which = linux_to_bsd_resource[args->resource]; 1449 if (which == -1) 1450 return (EINVAL); 1451 1452 lim_rlimit(td, which, &bsd_rlim); 1453 1454 rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur; 1455 rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max; 1456 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1457 } 1458 1459 int 1460 linux_sched_setscheduler(struct thread *td, 1461 struct linux_sched_setscheduler_args *args) 1462 { 1463 struct sched_param sched_param; 1464 struct thread *tdt; 1465 int error, policy; 1466 1467 switch (args->policy) { 1468 case LINUX_SCHED_OTHER: 1469 policy = SCHED_OTHER; 1470 break; 1471 case LINUX_SCHED_FIFO: 1472 policy = SCHED_FIFO; 1473 break; 1474 case LINUX_SCHED_RR: 1475 policy = SCHED_RR; 1476 break; 1477 default: 1478 return (EINVAL); 1479 } 1480 1481 error = copyin(args->param, &sched_param, sizeof(sched_param)); 1482 if (error) 1483 return (error); 1484 1485 if (linux_map_sched_prio) { 1486 switch (policy) { 1487 case SCHED_OTHER: 1488 if (sched_param.sched_priority != 0) 1489 return (EINVAL); 1490 1491 sched_param.sched_priority = 1492 PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE; 1493 break; 1494 case SCHED_FIFO: 1495 case SCHED_RR: 1496 if (sched_param.sched_priority < 1 || 1497 sched_param.sched_priority >= LINUX_MAX_RT_PRIO) 1498 return (EINVAL); 1499 1500 /* 1501 * Map [1, LINUX_MAX_RT_PRIO - 1] to 1502 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down). 1503 */ 1504 sched_param.sched_priority = 1505 (sched_param.sched_priority - 1) * 1506 (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) / 1507 (LINUX_MAX_RT_PRIO - 1); 1508 break; 1509 } 1510 } 1511 1512 tdt = linux_tdfind(td, args->pid, -1); 1513 if (tdt == NULL) 1514 return (ESRCH); 1515 1516 error = kern_sched_setscheduler(td, tdt, policy, &sched_param); 1517 PROC_UNLOCK(tdt->td_proc); 1518 return (error); 1519 } 1520 1521 int 1522 linux_sched_getscheduler(struct thread *td, 1523 struct linux_sched_getscheduler_args *args) 1524 { 1525 struct thread *tdt; 1526 int error, policy; 1527 1528 tdt = linux_tdfind(td, args->pid, -1); 1529 if (tdt == NULL) 1530 return (ESRCH); 1531 1532 error = kern_sched_getscheduler(td, tdt, &policy); 1533 PROC_UNLOCK(tdt->td_proc); 1534 1535 switch (policy) { 1536 case SCHED_OTHER: 1537 td->td_retval[0] = LINUX_SCHED_OTHER; 1538 break; 1539 case SCHED_FIFO: 1540 td->td_retval[0] = LINUX_SCHED_FIFO; 1541 break; 1542 case SCHED_RR: 1543 td->td_retval[0] = LINUX_SCHED_RR; 1544 break; 1545 } 1546 return (error); 1547 } 1548 1549 int 1550 linux_sched_get_priority_max(struct thread *td, 1551 struct linux_sched_get_priority_max_args *args) 1552 { 1553 struct sched_get_priority_max_args bsd; 1554 1555 if (linux_map_sched_prio) { 1556 switch (args->policy) { 1557 case LINUX_SCHED_OTHER: 1558 td->td_retval[0] = 0; 1559 return (0); 1560 case LINUX_SCHED_FIFO: 1561 case LINUX_SCHED_RR: 1562 td->td_retval[0] = LINUX_MAX_RT_PRIO - 1; 1563 return (0); 1564 default: 1565 return (EINVAL); 1566 } 1567 } 1568 1569 switch (args->policy) { 1570 case LINUX_SCHED_OTHER: 1571 bsd.policy = SCHED_OTHER; 1572 break; 1573 case LINUX_SCHED_FIFO: 1574 bsd.policy = SCHED_FIFO; 1575 break; 1576 case LINUX_SCHED_RR: 1577 bsd.policy = SCHED_RR; 1578 break; 1579 default: 1580 return (EINVAL); 1581 } 1582 return (sys_sched_get_priority_max(td, &bsd)); 1583 } 1584 1585 int 1586 linux_sched_get_priority_min(struct thread *td, 1587 struct linux_sched_get_priority_min_args *args) 1588 { 1589 struct sched_get_priority_min_args bsd; 1590 1591 if (linux_map_sched_prio) { 1592 switch (args->policy) { 1593 case LINUX_SCHED_OTHER: 1594 td->td_retval[0] = 0; 1595 return (0); 1596 case LINUX_SCHED_FIFO: 1597 case LINUX_SCHED_RR: 1598 td->td_retval[0] = 1; 1599 return (0); 1600 default: 1601 return (EINVAL); 1602 } 1603 } 1604 1605 switch (args->policy) { 1606 case LINUX_SCHED_OTHER: 1607 bsd.policy = SCHED_OTHER; 1608 break; 1609 case LINUX_SCHED_FIFO: 1610 bsd.policy = SCHED_FIFO; 1611 break; 1612 case LINUX_SCHED_RR: 1613 bsd.policy = SCHED_RR; 1614 break; 1615 default: 1616 return (EINVAL); 1617 } 1618 return (sys_sched_get_priority_min(td, &bsd)); 1619 } 1620 1621 #define REBOOT_CAD_ON 0x89abcdef 1622 #define REBOOT_CAD_OFF 0 1623 #define REBOOT_HALT 0xcdef0123 1624 #define REBOOT_RESTART 0x01234567 1625 #define REBOOT_RESTART2 0xA1B2C3D4 1626 #define REBOOT_POWEROFF 0x4321FEDC 1627 #define REBOOT_MAGIC1 0xfee1dead 1628 #define REBOOT_MAGIC2 0x28121969 1629 #define REBOOT_MAGIC2A 0x05121996 1630 #define REBOOT_MAGIC2B 0x16041998 1631 1632 int 1633 linux_reboot(struct thread *td, struct linux_reboot_args *args) 1634 { 1635 struct reboot_args bsd_args; 1636 1637 if (args->magic1 != REBOOT_MAGIC1) 1638 return (EINVAL); 1639 1640 switch (args->magic2) { 1641 case REBOOT_MAGIC2: 1642 case REBOOT_MAGIC2A: 1643 case REBOOT_MAGIC2B: 1644 break; 1645 default: 1646 return (EINVAL); 1647 } 1648 1649 switch (args->cmd) { 1650 case REBOOT_CAD_ON: 1651 case REBOOT_CAD_OFF: 1652 return (priv_check(td, PRIV_REBOOT)); 1653 case REBOOT_HALT: 1654 bsd_args.opt = RB_HALT; 1655 break; 1656 case REBOOT_RESTART: 1657 case REBOOT_RESTART2: 1658 bsd_args.opt = 0; 1659 break; 1660 case REBOOT_POWEROFF: 1661 bsd_args.opt = RB_POWEROFF; 1662 break; 1663 default: 1664 return (EINVAL); 1665 } 1666 return (sys_reboot(td, &bsd_args)); 1667 } 1668 1669 1670 int 1671 linux_getpid(struct thread *td, struct linux_getpid_args *args) 1672 { 1673 1674 td->td_retval[0] = td->td_proc->p_pid; 1675 1676 return (0); 1677 } 1678 1679 int 1680 linux_gettid(struct thread *td, struct linux_gettid_args *args) 1681 { 1682 struct linux_emuldata *em; 1683 1684 em = em_find(td); 1685 KASSERT(em != NULL, ("gettid: emuldata not found.\n")); 1686 1687 td->td_retval[0] = em->em_tid; 1688 1689 return (0); 1690 } 1691 1692 1693 int 1694 linux_getppid(struct thread *td, struct linux_getppid_args *args) 1695 { 1696 1697 td->td_retval[0] = kern_getppid(td); 1698 return (0); 1699 } 1700 1701 int 1702 linux_getgid(struct thread *td, struct linux_getgid_args *args) 1703 { 1704 1705 td->td_retval[0] = td->td_ucred->cr_rgid; 1706 return (0); 1707 } 1708 1709 int 1710 linux_getuid(struct thread *td, struct linux_getuid_args *args) 1711 { 1712 1713 td->td_retval[0] = td->td_ucred->cr_ruid; 1714 return (0); 1715 } 1716 1717 int 1718 linux_getsid(struct thread *td, struct linux_getsid_args *args) 1719 { 1720 1721 return (kern_getsid(td, args->pid)); 1722 } 1723 1724 int 1725 linux_nosys(struct thread *td, struct nosys_args *ignore) 1726 { 1727 1728 return (ENOSYS); 1729 } 1730 1731 int 1732 linux_getpriority(struct thread *td, struct linux_getpriority_args *args) 1733 { 1734 int error; 1735 1736 error = kern_getpriority(td, args->which, args->who); 1737 td->td_retval[0] = 20 - td->td_retval[0]; 1738 return (error); 1739 } 1740 1741 int 1742 linux_sethostname(struct thread *td, struct linux_sethostname_args *args) 1743 { 1744 int name[2]; 1745 1746 name[0] = CTL_KERN; 1747 name[1] = KERN_HOSTNAME; 1748 return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname, 1749 args->len, 0, 0)); 1750 } 1751 1752 int 1753 linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args) 1754 { 1755 int name[2]; 1756 1757 name[0] = CTL_KERN; 1758 name[1] = KERN_NISDOMAINNAME; 1759 return (userland_sysctl(td, name, 2, 0, 0, 0, args->name, 1760 args->len, 0, 0)); 1761 } 1762 1763 int 1764 linux_exit_group(struct thread *td, struct linux_exit_group_args *args) 1765 { 1766 1767 LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid, 1768 args->error_code); 1769 1770 /* 1771 * XXX: we should send a signal to the parent if 1772 * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?) 1773 * as it doesnt occur often. 1774 */ 1775 exit1(td, args->error_code, 0); 1776 /* NOTREACHED */ 1777 } 1778 1779 #define _LINUX_CAPABILITY_VERSION_1 0x19980330 1780 #define _LINUX_CAPABILITY_VERSION_2 0x20071026 1781 #define _LINUX_CAPABILITY_VERSION_3 0x20080522 1782 1783 struct l_user_cap_header { 1784 l_int version; 1785 l_int pid; 1786 }; 1787 1788 struct l_user_cap_data { 1789 l_int effective; 1790 l_int permitted; 1791 l_int inheritable; 1792 }; 1793 1794 int 1795 linux_capget(struct thread *td, struct linux_capget_args *uap) 1796 { 1797 struct l_user_cap_header luch; 1798 struct l_user_cap_data lucd[2]; 1799 int error, u32s; 1800 1801 if (uap->hdrp == NULL) 1802 return (EFAULT); 1803 1804 error = copyin(uap->hdrp, &luch, sizeof(luch)); 1805 if (error != 0) 1806 return (error); 1807 1808 switch (luch.version) { 1809 case _LINUX_CAPABILITY_VERSION_1: 1810 u32s = 1; 1811 break; 1812 case _LINUX_CAPABILITY_VERSION_2: 1813 case _LINUX_CAPABILITY_VERSION_3: 1814 u32s = 2; 1815 break; 1816 default: 1817 luch.version = _LINUX_CAPABILITY_VERSION_1; 1818 error = copyout(&luch, uap->hdrp, sizeof(luch)); 1819 if (error) 1820 return (error); 1821 return (EINVAL); 1822 } 1823 1824 if (luch.pid) 1825 return (EPERM); 1826 1827 if (uap->datap) { 1828 /* 1829 * The current implementation doesn't support setting 1830 * a capability (it's essentially a stub) so indicate 1831 * that no capabilities are currently set or available 1832 * to request. 1833 */ 1834 memset(&lucd, 0, u32s * sizeof(lucd[0])); 1835 error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0])); 1836 } 1837 1838 return (error); 1839 } 1840 1841 int 1842 linux_capset(struct thread *td, struct linux_capset_args *uap) 1843 { 1844 struct l_user_cap_header luch; 1845 struct l_user_cap_data lucd[2]; 1846 int error, i, u32s; 1847 1848 if (uap->hdrp == NULL || uap->datap == NULL) 1849 return (EFAULT); 1850 1851 error = copyin(uap->hdrp, &luch, sizeof(luch)); 1852 if (error != 0) 1853 return (error); 1854 1855 switch (luch.version) { 1856 case _LINUX_CAPABILITY_VERSION_1: 1857 u32s = 1; 1858 break; 1859 case _LINUX_CAPABILITY_VERSION_2: 1860 case _LINUX_CAPABILITY_VERSION_3: 1861 u32s = 2; 1862 break; 1863 default: 1864 luch.version = _LINUX_CAPABILITY_VERSION_1; 1865 error = copyout(&luch, uap->hdrp, sizeof(luch)); 1866 if (error) 1867 return (error); 1868 return (EINVAL); 1869 } 1870 1871 if (luch.pid) 1872 return (EPERM); 1873 1874 error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0])); 1875 if (error != 0) 1876 return (error); 1877 1878 /* We currently don't support setting any capabilities. */ 1879 for (i = 0; i < u32s; i++) { 1880 if (lucd[i].effective || lucd[i].permitted || 1881 lucd[i].inheritable) { 1882 linux_msg(td, 1883 "capset[%d] effective=0x%x, permitted=0x%x, " 1884 "inheritable=0x%x is not implemented", i, 1885 (int)lucd[i].effective, (int)lucd[i].permitted, 1886 (int)lucd[i].inheritable); 1887 return (EPERM); 1888 } 1889 } 1890 1891 return (0); 1892 } 1893 1894 int 1895 linux_prctl(struct thread *td, struct linux_prctl_args *args) 1896 { 1897 int error = 0, max_size; 1898 struct proc *p = td->td_proc; 1899 char comm[LINUX_MAX_COMM_LEN]; 1900 int pdeath_signal; 1901 1902 switch (args->option) { 1903 case LINUX_PR_SET_PDEATHSIG: 1904 if (!LINUX_SIG_VALID(args->arg2)) 1905 return (EINVAL); 1906 pdeath_signal = linux_to_bsd_signal(args->arg2); 1907 return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL, 1908 &pdeath_signal)); 1909 case LINUX_PR_GET_PDEATHSIG: 1910 error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS, 1911 &pdeath_signal); 1912 if (error != 0) 1913 return (error); 1914 pdeath_signal = bsd_to_linux_signal(pdeath_signal); 1915 return (copyout(&pdeath_signal, 1916 (void *)(register_t)args->arg2, 1917 sizeof(pdeath_signal))); 1918 break; 1919 case LINUX_PR_GET_KEEPCAPS: 1920 /* 1921 * Indicate that we always clear the effective and 1922 * permitted capability sets when the user id becomes 1923 * non-zero (actually the capability sets are simply 1924 * always zero in the current implementation). 1925 */ 1926 td->td_retval[0] = 0; 1927 break; 1928 case LINUX_PR_SET_KEEPCAPS: 1929 /* 1930 * Ignore requests to keep the effective and permitted 1931 * capability sets when the user id becomes non-zero. 1932 */ 1933 break; 1934 case LINUX_PR_SET_NAME: 1935 /* 1936 * To be on the safe side we need to make sure to not 1937 * overflow the size a Linux program expects. We already 1938 * do this here in the copyin, so that we don't need to 1939 * check on copyout. 1940 */ 1941 max_size = MIN(sizeof(comm), sizeof(p->p_comm)); 1942 error = copyinstr((void *)(register_t)args->arg2, comm, 1943 max_size, NULL); 1944 1945 /* Linux silently truncates the name if it is too long. */ 1946 if (error == ENAMETOOLONG) { 1947 /* 1948 * XXX: copyinstr() isn't documented to populate the 1949 * array completely, so do a copyin() to be on the 1950 * safe side. This should be changed in case 1951 * copyinstr() is changed to guarantee this. 1952 */ 1953 error = copyin((void *)(register_t)args->arg2, comm, 1954 max_size - 1); 1955 comm[max_size - 1] = '\0'; 1956 } 1957 if (error) 1958 return (error); 1959 1960 PROC_LOCK(p); 1961 strlcpy(p->p_comm, comm, sizeof(p->p_comm)); 1962 PROC_UNLOCK(p); 1963 break; 1964 case LINUX_PR_GET_NAME: 1965 PROC_LOCK(p); 1966 strlcpy(comm, p->p_comm, sizeof(comm)); 1967 PROC_UNLOCK(p); 1968 error = copyout(comm, (void *)(register_t)args->arg2, 1969 strlen(comm) + 1); 1970 break; 1971 default: 1972 error = EINVAL; 1973 break; 1974 } 1975 1976 return (error); 1977 } 1978 1979 int 1980 linux_sched_setparam(struct thread *td, 1981 struct linux_sched_setparam_args *uap) 1982 { 1983 struct sched_param sched_param; 1984 struct thread *tdt; 1985 int error, policy; 1986 1987 error = copyin(uap->param, &sched_param, sizeof(sched_param)); 1988 if (error) 1989 return (error); 1990 1991 tdt = linux_tdfind(td, uap->pid, -1); 1992 if (tdt == NULL) 1993 return (ESRCH); 1994 1995 if (linux_map_sched_prio) { 1996 error = kern_sched_getscheduler(td, tdt, &policy); 1997 if (error) 1998 goto out; 1999 2000 switch (policy) { 2001 case SCHED_OTHER: 2002 if (sched_param.sched_priority != 0) { 2003 error = EINVAL; 2004 goto out; 2005 } 2006 sched_param.sched_priority = 2007 PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE; 2008 break; 2009 case SCHED_FIFO: 2010 case SCHED_RR: 2011 if (sched_param.sched_priority < 1 || 2012 sched_param.sched_priority >= LINUX_MAX_RT_PRIO) { 2013 error = EINVAL; 2014 goto out; 2015 } 2016 /* 2017 * Map [1, LINUX_MAX_RT_PRIO - 1] to 2018 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down). 2019 */ 2020 sched_param.sched_priority = 2021 (sched_param.sched_priority - 1) * 2022 (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) / 2023 (LINUX_MAX_RT_PRIO - 1); 2024 break; 2025 } 2026 } 2027 2028 error = kern_sched_setparam(td, tdt, &sched_param); 2029 out: PROC_UNLOCK(tdt->td_proc); 2030 return (error); 2031 } 2032 2033 int 2034 linux_sched_getparam(struct thread *td, 2035 struct linux_sched_getparam_args *uap) 2036 { 2037 struct sched_param sched_param; 2038 struct thread *tdt; 2039 int error, policy; 2040 2041 tdt = linux_tdfind(td, uap->pid, -1); 2042 if (tdt == NULL) 2043 return (ESRCH); 2044 2045 error = kern_sched_getparam(td, tdt, &sched_param); 2046 if (error) { 2047 PROC_UNLOCK(tdt->td_proc); 2048 return (error); 2049 } 2050 2051 if (linux_map_sched_prio) { 2052 error = kern_sched_getscheduler(td, tdt, &policy); 2053 PROC_UNLOCK(tdt->td_proc); 2054 if (error) 2055 return (error); 2056 2057 switch (policy) { 2058 case SCHED_OTHER: 2059 sched_param.sched_priority = 0; 2060 break; 2061 case SCHED_FIFO: 2062 case SCHED_RR: 2063 /* 2064 * Map [0, RTP_PRIO_MAX - RTP_PRIO_MIN] to 2065 * [1, LINUX_MAX_RT_PRIO - 1] (rounding up). 2066 */ 2067 sched_param.sched_priority = 2068 (sched_param.sched_priority * 2069 (LINUX_MAX_RT_PRIO - 1) + 2070 (RTP_PRIO_MAX - RTP_PRIO_MIN - 1)) / 2071 (RTP_PRIO_MAX - RTP_PRIO_MIN) + 1; 2072 break; 2073 } 2074 } else 2075 PROC_UNLOCK(tdt->td_proc); 2076 2077 error = copyout(&sched_param, uap->param, sizeof(sched_param)); 2078 return (error); 2079 } 2080 2081 /* 2082 * Get affinity of a process. 2083 */ 2084 int 2085 linux_sched_getaffinity(struct thread *td, 2086 struct linux_sched_getaffinity_args *args) 2087 { 2088 int error; 2089 struct thread *tdt; 2090 2091 if (args->len < sizeof(cpuset_t)) 2092 return (EINVAL); 2093 2094 tdt = linux_tdfind(td, args->pid, -1); 2095 if (tdt == NULL) 2096 return (ESRCH); 2097 2098 PROC_UNLOCK(tdt->td_proc); 2099 2100 error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID, 2101 tdt->td_tid, sizeof(cpuset_t), (cpuset_t *)args->user_mask_ptr); 2102 if (error == 0) 2103 td->td_retval[0] = sizeof(cpuset_t); 2104 2105 return (error); 2106 } 2107 2108 /* 2109 * Set affinity of a process. 2110 */ 2111 int 2112 linux_sched_setaffinity(struct thread *td, 2113 struct linux_sched_setaffinity_args *args) 2114 { 2115 struct thread *tdt; 2116 2117 if (args->len < sizeof(cpuset_t)) 2118 return (EINVAL); 2119 2120 tdt = linux_tdfind(td, args->pid, -1); 2121 if (tdt == NULL) 2122 return (ESRCH); 2123 2124 PROC_UNLOCK(tdt->td_proc); 2125 2126 return (kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID, 2127 tdt->td_tid, sizeof(cpuset_t), (cpuset_t *) args->user_mask_ptr)); 2128 } 2129 2130 struct linux_rlimit64 { 2131 uint64_t rlim_cur; 2132 uint64_t rlim_max; 2133 }; 2134 2135 int 2136 linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args) 2137 { 2138 struct rlimit rlim, nrlim; 2139 struct linux_rlimit64 lrlim; 2140 struct proc *p; 2141 u_int which; 2142 int flags; 2143 int error; 2144 2145 if (args->resource >= LINUX_RLIM_NLIMITS) 2146 return (EINVAL); 2147 2148 which = linux_to_bsd_resource[args->resource]; 2149 if (which == -1) 2150 return (EINVAL); 2151 2152 if (args->new != NULL) { 2153 /* 2154 * Note. Unlike FreeBSD where rlim is signed 64-bit Linux 2155 * rlim is unsigned 64-bit. FreeBSD treats negative limits 2156 * as INFINITY so we do not need a conversion even. 2157 */ 2158 error = copyin(args->new, &nrlim, sizeof(nrlim)); 2159 if (error != 0) 2160 return (error); 2161 } 2162 2163 flags = PGET_HOLD | PGET_NOTWEXIT; 2164 if (args->new != NULL) 2165 flags |= PGET_CANDEBUG; 2166 else 2167 flags |= PGET_CANSEE; 2168 if (args->pid == 0) { 2169 p = td->td_proc; 2170 PHOLD(p); 2171 } else { 2172 error = pget(args->pid, flags, &p); 2173 if (error != 0) 2174 return (error); 2175 } 2176 if (args->old != NULL) { 2177 PROC_LOCK(p); 2178 lim_rlimit_proc(p, which, &rlim); 2179 PROC_UNLOCK(p); 2180 if (rlim.rlim_cur == RLIM_INFINITY) 2181 lrlim.rlim_cur = LINUX_RLIM_INFINITY; 2182 else 2183 lrlim.rlim_cur = rlim.rlim_cur; 2184 if (rlim.rlim_max == RLIM_INFINITY) 2185 lrlim.rlim_max = LINUX_RLIM_INFINITY; 2186 else 2187 lrlim.rlim_max = rlim.rlim_max; 2188 error = copyout(&lrlim, args->old, sizeof(lrlim)); 2189 if (error != 0) 2190 goto out; 2191 } 2192 2193 if (args->new != NULL) 2194 error = kern_proc_setrlimit(td, p, which, &nrlim); 2195 2196 out: 2197 PRELE(p); 2198 return (error); 2199 } 2200 2201 int 2202 linux_pselect6(struct thread *td, struct linux_pselect6_args *args) 2203 { 2204 struct timeval utv, tv0, tv1, *tvp; 2205 struct l_pselect6arg lpse6; 2206 struct l_timespec lts; 2207 struct timespec uts; 2208 l_sigset_t l_ss; 2209 sigset_t *ssp; 2210 sigset_t ss; 2211 int error; 2212 2213 ssp = NULL; 2214 if (args->sig != NULL) { 2215 error = copyin(args->sig, &lpse6, sizeof(lpse6)); 2216 if (error != 0) 2217 return (error); 2218 if (lpse6.ss_len != sizeof(l_ss)) 2219 return (EINVAL); 2220 if (lpse6.ss != 0) { 2221 error = copyin(PTRIN(lpse6.ss), &l_ss, 2222 sizeof(l_ss)); 2223 if (error != 0) 2224 return (error); 2225 linux_to_bsd_sigset(&l_ss, &ss); 2226 ssp = &ss; 2227 } 2228 } 2229 2230 /* 2231 * Currently glibc changes nanosecond number to microsecond. 2232 * This mean losing precision but for now it is hardly seen. 2233 */ 2234 if (args->tsp != NULL) { 2235 error = copyin(args->tsp, <s, sizeof(lts)); 2236 if (error != 0) 2237 return (error); 2238 error = linux_to_native_timespec(&uts, <s); 2239 if (error != 0) 2240 return (error); 2241 2242 TIMESPEC_TO_TIMEVAL(&utv, &uts); 2243 if (itimerfix(&utv)) 2244 return (EINVAL); 2245 2246 microtime(&tv0); 2247 tvp = &utv; 2248 } else 2249 tvp = NULL; 2250 2251 error = kern_pselect(td, args->nfds, args->readfds, args->writefds, 2252 args->exceptfds, tvp, ssp, LINUX_NFDBITS); 2253 2254 if (error == 0 && args->tsp != NULL) { 2255 if (td->td_retval[0] != 0) { 2256 /* 2257 * Compute how much time was left of the timeout, 2258 * by subtracting the current time and the time 2259 * before we started the call, and subtracting 2260 * that result from the user-supplied value. 2261 */ 2262 2263 microtime(&tv1); 2264 timevalsub(&tv1, &tv0); 2265 timevalsub(&utv, &tv1); 2266 if (utv.tv_sec < 0) 2267 timevalclear(&utv); 2268 } else 2269 timevalclear(&utv); 2270 2271 TIMEVAL_TO_TIMESPEC(&utv, &uts); 2272 2273 error = native_to_linux_timespec(<s, &uts); 2274 if (error == 0) 2275 error = copyout(<s, args->tsp, sizeof(lts)); 2276 } 2277 2278 return (error); 2279 } 2280 2281 int 2282 linux_ppoll(struct thread *td, struct linux_ppoll_args *args) 2283 { 2284 struct timespec ts0, ts1; 2285 struct l_timespec lts; 2286 struct timespec uts, *tsp; 2287 l_sigset_t l_ss; 2288 sigset_t *ssp; 2289 sigset_t ss; 2290 int error; 2291 2292 if (args->sset != NULL) { 2293 if (args->ssize != sizeof(l_ss)) 2294 return (EINVAL); 2295 error = copyin(args->sset, &l_ss, sizeof(l_ss)); 2296 if (error) 2297 return (error); 2298 linux_to_bsd_sigset(&l_ss, &ss); 2299 ssp = &ss; 2300 } else 2301 ssp = NULL; 2302 if (args->tsp != NULL) { 2303 error = copyin(args->tsp, <s, sizeof(lts)); 2304 if (error) 2305 return (error); 2306 error = linux_to_native_timespec(&uts, <s); 2307 if (error != 0) 2308 return (error); 2309 2310 nanotime(&ts0); 2311 tsp = &uts; 2312 } else 2313 tsp = NULL; 2314 2315 error = kern_poll(td, args->fds, args->nfds, tsp, ssp); 2316 2317 if (error == 0 && args->tsp != NULL) { 2318 if (td->td_retval[0]) { 2319 nanotime(&ts1); 2320 timespecsub(&ts1, &ts0, &ts1); 2321 timespecsub(&uts, &ts1, &uts); 2322 if (uts.tv_sec < 0) 2323 timespecclear(&uts); 2324 } else 2325 timespecclear(&uts); 2326 2327 error = native_to_linux_timespec(<s, &uts); 2328 if (error == 0) 2329 error = copyout(<s, args->tsp, sizeof(lts)); 2330 } 2331 2332 return (error); 2333 } 2334 2335 int 2336 linux_sched_rr_get_interval(struct thread *td, 2337 struct linux_sched_rr_get_interval_args *uap) 2338 { 2339 struct timespec ts; 2340 struct l_timespec lts; 2341 struct thread *tdt; 2342 int error; 2343 2344 /* 2345 * According to man in case the invalid pid specified 2346 * EINVAL should be returned. 2347 */ 2348 if (uap->pid < 0) 2349 return (EINVAL); 2350 2351 tdt = linux_tdfind(td, uap->pid, -1); 2352 if (tdt == NULL) 2353 return (ESRCH); 2354 2355 error = kern_sched_rr_get_interval_td(td, tdt, &ts); 2356 PROC_UNLOCK(tdt->td_proc); 2357 if (error != 0) 2358 return (error); 2359 error = native_to_linux_timespec(<s, &ts); 2360 if (error != 0) 2361 return (error); 2362 return (copyout(<s, uap->interval, sizeof(lts))); 2363 } 2364 2365 /* 2366 * In case when the Linux thread is the initial thread in 2367 * the thread group thread id is equal to the process id. 2368 * Glibc depends on this magic (assert in pthread_getattr_np.c). 2369 */ 2370 struct thread * 2371 linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid) 2372 { 2373 struct linux_emuldata *em; 2374 struct thread *tdt; 2375 struct proc *p; 2376 2377 tdt = NULL; 2378 if (tid == 0 || tid == td->td_tid) { 2379 tdt = td; 2380 PROC_LOCK(tdt->td_proc); 2381 } else if (tid > PID_MAX) 2382 tdt = tdfind(tid, pid); 2383 else { 2384 /* 2385 * Initial thread where the tid equal to the pid. 2386 */ 2387 p = pfind(tid); 2388 if (p != NULL) { 2389 if (SV_PROC_ABI(p) != SV_ABI_LINUX) { 2390 /* 2391 * p is not a Linuxulator process. 2392 */ 2393 PROC_UNLOCK(p); 2394 return (NULL); 2395 } 2396 FOREACH_THREAD_IN_PROC(p, tdt) { 2397 em = em_find(tdt); 2398 if (tid == em->em_tid) 2399 return (tdt); 2400 } 2401 PROC_UNLOCK(p); 2402 } 2403 return (NULL); 2404 } 2405 2406 return (tdt); 2407 } 2408 2409 void 2410 linux_to_bsd_waitopts(int options, int *bsdopts) 2411 { 2412 2413 if (options & LINUX_WNOHANG) 2414 *bsdopts |= WNOHANG; 2415 if (options & LINUX_WUNTRACED) 2416 *bsdopts |= WUNTRACED; 2417 if (options & LINUX_WEXITED) 2418 *bsdopts |= WEXITED; 2419 if (options & LINUX_WCONTINUED) 2420 *bsdopts |= WCONTINUED; 2421 if (options & LINUX_WNOWAIT) 2422 *bsdopts |= WNOWAIT; 2423 2424 if (options & __WCLONE) 2425 *bsdopts |= WLINUXCLONE; 2426 } 2427 2428 int 2429 linux_getrandom(struct thread *td, struct linux_getrandom_args *args) 2430 { 2431 struct uio uio; 2432 struct iovec iov; 2433 int error; 2434 2435 if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM)) 2436 return (EINVAL); 2437 if (args->count > INT_MAX) 2438 args->count = INT_MAX; 2439 2440 iov.iov_base = args->buf; 2441 iov.iov_len = args->count; 2442 2443 uio.uio_iov = &iov; 2444 uio.uio_iovcnt = 1; 2445 uio.uio_resid = iov.iov_len; 2446 uio.uio_segflg = UIO_USERSPACE; 2447 uio.uio_rw = UIO_READ; 2448 uio.uio_td = td; 2449 2450 error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK); 2451 if (error == 0) 2452 td->td_retval[0] = args->count - uio.uio_resid; 2453 return (error); 2454 } 2455 2456 int 2457 linux_mincore(struct thread *td, struct linux_mincore_args *args) 2458 { 2459 2460 /* Needs to be page-aligned */ 2461 if (args->start & PAGE_MASK) 2462 return (EINVAL); 2463 return (kern_mincore(td, args->start, args->len, args->vec)); 2464 } 2465 2466 #define SYSLOG_TAG "<6>" 2467 2468 int 2469 linux_syslog(struct thread *td, struct linux_syslog_args *args) 2470 { 2471 char buf[128], *src, *dst; 2472 u_int seq; 2473 int buflen, error; 2474 2475 if (args->type != LINUX_SYSLOG_ACTION_READ_ALL) { 2476 linux_msg(td, "syslog unsupported type 0x%x", args->type); 2477 return (EINVAL); 2478 } 2479 2480 if (args->len < 6) { 2481 td->td_retval[0] = 0; 2482 return (0); 2483 } 2484 2485 error = priv_check(td, PRIV_MSGBUF); 2486 if (error) 2487 return (error); 2488 2489 mtx_lock(&msgbuf_lock); 2490 msgbuf_peekbytes(msgbufp, NULL, 0, &seq); 2491 mtx_unlock(&msgbuf_lock); 2492 2493 dst = args->buf; 2494 error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG)); 2495 /* The -1 is to skip the trailing '\0'. */ 2496 dst += sizeof(SYSLOG_TAG) - 1; 2497 2498 while (error == 0) { 2499 mtx_lock(&msgbuf_lock); 2500 buflen = msgbuf_peekbytes(msgbufp, buf, sizeof(buf), &seq); 2501 mtx_unlock(&msgbuf_lock); 2502 2503 if (buflen == 0) 2504 break; 2505 2506 for (src = buf; src < buf + buflen && error == 0; src++) { 2507 if (*src == '\0') 2508 continue; 2509 2510 if (dst >= args->buf + args->len) 2511 goto out; 2512 2513 error = copyout(src, dst, 1); 2514 dst++; 2515 2516 if (*src == '\n' && *(src + 1) != '<' && 2517 dst + sizeof(SYSLOG_TAG) < args->buf + args->len) { 2518 error = copyout(&SYSLOG_TAG, 2519 dst, sizeof(SYSLOG_TAG)); 2520 dst += sizeof(SYSLOG_TAG) - 1; 2521 } 2522 } 2523 } 2524 out: 2525 td->td_retval[0] = dst - args->buf; 2526 return (error); 2527 } 2528 2529 int 2530 linux_getcpu(struct thread *td, struct linux_getcpu_args *args) 2531 { 2532 int cpu, error, node; 2533 2534 cpu = td->td_oncpu; /* Make sure it doesn't change during copyout(9) */ 2535 error = 0; 2536 node = cpuid_to_pcpu[cpu]->pc_domain; 2537 2538 if (args->cpu != NULL) 2539 error = copyout(&cpu, args->cpu, sizeof(l_int)); 2540 if (args->node != NULL) 2541 error = copyout(&node, args->node, sizeof(l_int)); 2542 return (error); 2543 } 2544