1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * Copyright (c) 1994-1995 Søren Schmidt 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer 13 * in this position and unchanged. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 37 #include <sys/param.h> 38 #include <sys/blist.h> 39 #include <sys/fcntl.h> 40 #if defined(__i386__) 41 #include <sys/imgact_aout.h> 42 #endif 43 #include <sys/jail.h> 44 #include <sys/kernel.h> 45 #include <sys/limits.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mman.h> 49 #include <sys/mount.h> 50 #include <sys/msgbuf.h> 51 #include <sys/mutex.h> 52 #include <sys/namei.h> 53 #include <sys/priv.h> 54 #include <sys/proc.h> 55 #include <sys/procctl.h> 56 #include <sys/reboot.h> 57 #include <sys/racct.h> 58 #include <sys/random.h> 59 #include <sys/resourcevar.h> 60 #include <sys/sched.h> 61 #include <sys/sdt.h> 62 #include <sys/signalvar.h> 63 #include <sys/stat.h> 64 #include <sys/syscallsubr.h> 65 #include <sys/sysctl.h> 66 #include <sys/sysproto.h> 67 #include <sys/systm.h> 68 #include <sys/time.h> 69 #include <sys/vmmeter.h> 70 #include <sys/vnode.h> 71 #include <sys/wait.h> 72 #include <sys/cpuset.h> 73 #include <sys/uio.h> 74 75 #include <security/mac/mac_framework.h> 76 77 #include <vm/vm.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_kern.h> 80 #include <vm/vm_map.h> 81 #include <vm/vm_extern.h> 82 #include <vm/vm_object.h> 83 #include <vm/swap_pager.h> 84 85 #ifdef COMPAT_LINUX32 86 #include <machine/../linux32/linux.h> 87 #include <machine/../linux32/linux32_proto.h> 88 #else 89 #include <machine/../linux/linux.h> 90 #include <machine/../linux/linux_proto.h> 91 #endif 92 93 #include <compat/linux/linux_dtrace.h> 94 #include <compat/linux/linux_file.h> 95 #include <compat/linux/linux_mib.h> 96 #include <compat/linux/linux_signal.h> 97 #include <compat/linux/linux_timer.h> 98 #include <compat/linux/linux_util.h> 99 #include <compat/linux/linux_sysproto.h> 100 #include <compat/linux/linux_emul.h> 101 #include <compat/linux/linux_misc.h> 102 103 /** 104 * Special DTrace provider for the linuxulator. 105 * 106 * In this file we define the provider for the entire linuxulator. All 107 * modules (= files of the linuxulator) use it. 108 * 109 * We define a different name depending on the emulated bitsize, see 110 * ../../<ARCH>/linux{,32}/linux.h, e.g.: 111 * native bitsize = linuxulator 112 * amd64, 32bit emulation = linuxulator32 113 */ 114 LIN_SDT_PROVIDER_DEFINE(LINUX_DTRACE); 115 116 int stclohz; /* Statistics clock frequency */ 117 118 static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = { 119 RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK, 120 RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE, 121 RLIMIT_MEMLOCK, RLIMIT_AS 122 }; 123 124 struct l_sysinfo { 125 l_long uptime; /* Seconds since boot */ 126 l_ulong loads[3]; /* 1, 5, and 15 minute load averages */ 127 #define LINUX_SYSINFO_LOADS_SCALE 65536 128 l_ulong totalram; /* Total usable main memory size */ 129 l_ulong freeram; /* Available memory size */ 130 l_ulong sharedram; /* Amount of shared memory */ 131 l_ulong bufferram; /* Memory used by buffers */ 132 l_ulong totalswap; /* Total swap space size */ 133 l_ulong freeswap; /* swap space still available */ 134 l_ushort procs; /* Number of current processes */ 135 l_ushort pads; 136 l_ulong totalbig; 137 l_ulong freebig; 138 l_uint mem_unit; 139 char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */ 140 }; 141 142 struct l_pselect6arg { 143 l_uintptr_t ss; 144 l_size_t ss_len; 145 }; 146 147 static int linux_utimensat_nsec_valid(l_long); 148 149 150 int 151 linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args) 152 { 153 struct l_sysinfo sysinfo; 154 vm_object_t object; 155 int i, j; 156 struct timespec ts; 157 158 bzero(&sysinfo, sizeof(sysinfo)); 159 getnanouptime(&ts); 160 if (ts.tv_nsec != 0) 161 ts.tv_sec++; 162 sysinfo.uptime = ts.tv_sec; 163 164 /* Use the information from the mib to get our load averages */ 165 for (i = 0; i < 3; i++) 166 sysinfo.loads[i] = averunnable.ldavg[i] * 167 LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale; 168 169 sysinfo.totalram = physmem * PAGE_SIZE; 170 sysinfo.freeram = sysinfo.totalram - vm_wire_count() * PAGE_SIZE; 171 172 sysinfo.sharedram = 0; 173 mtx_lock(&vm_object_list_mtx); 174 TAILQ_FOREACH(object, &vm_object_list, object_list) 175 if (object->shadow_count > 1) 176 sysinfo.sharedram += object->resident_page_count; 177 mtx_unlock(&vm_object_list_mtx); 178 179 sysinfo.sharedram *= PAGE_SIZE; 180 sysinfo.bufferram = 0; 181 182 swap_pager_status(&i, &j); 183 sysinfo.totalswap = i * PAGE_SIZE; 184 sysinfo.freeswap = (i - j) * PAGE_SIZE; 185 186 sysinfo.procs = nprocs; 187 188 /* The following are only present in newer Linux kernels. */ 189 sysinfo.totalbig = 0; 190 sysinfo.freebig = 0; 191 sysinfo.mem_unit = 1; 192 193 return (copyout(&sysinfo, args->info, sizeof(sysinfo))); 194 } 195 196 #ifdef LINUX_LEGACY_SYSCALLS 197 int 198 linux_alarm(struct thread *td, struct linux_alarm_args *args) 199 { 200 struct itimerval it, old_it; 201 u_int secs; 202 int error; 203 204 secs = args->secs; 205 /* 206 * Linux alarm() is always successful. Limit secs to INT32_MAX / 2 207 * to match kern_setitimer()'s limit to avoid error from it. 208 * 209 * XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit 210 * platforms. 211 */ 212 if (secs > INT32_MAX / 2) 213 secs = INT32_MAX / 2; 214 215 it.it_value.tv_sec = secs; 216 it.it_value.tv_usec = 0; 217 timevalclear(&it.it_interval); 218 error = kern_setitimer(td, ITIMER_REAL, &it, &old_it); 219 KASSERT(error == 0, ("kern_setitimer returns %d", error)); 220 221 if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) || 222 old_it.it_value.tv_usec >= 500000) 223 old_it.it_value.tv_sec++; 224 td->td_retval[0] = old_it.it_value.tv_sec; 225 return (0); 226 } 227 #endif 228 229 int 230 linux_brk(struct thread *td, struct linux_brk_args *args) 231 { 232 struct vmspace *vm = td->td_proc->p_vmspace; 233 uintptr_t new, old; 234 235 old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize); 236 new = (uintptr_t)args->dsend; 237 if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new)) 238 td->td_retval[0] = (register_t)new; 239 else 240 td->td_retval[0] = (register_t)old; 241 242 return (0); 243 } 244 245 #if defined(__i386__) 246 /* XXX: what about amd64/linux32? */ 247 248 int 249 linux_uselib(struct thread *td, struct linux_uselib_args *args) 250 { 251 struct nameidata ni; 252 struct vnode *vp; 253 struct exec *a_out; 254 vm_map_t map; 255 vm_map_entry_t entry; 256 struct vattr attr; 257 vm_offset_t vmaddr; 258 unsigned long file_offset; 259 unsigned long bss_size; 260 char *library; 261 ssize_t aresid; 262 int error; 263 bool locked, opened, textset; 264 265 LCONVPATHEXIST(td, args->library, &library); 266 267 a_out = NULL; 268 vp = NULL; 269 locked = false; 270 textset = false; 271 opened = false; 272 273 NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1, 274 UIO_SYSSPACE, library, td); 275 error = namei(&ni); 276 LFREEPATH(library); 277 if (error) 278 goto cleanup; 279 280 vp = ni.ni_vp; 281 NDFREE(&ni, NDF_ONLY_PNBUF); 282 283 /* 284 * From here on down, we have a locked vnode that must be unlocked. 285 * XXX: The code below largely duplicates exec_check_permissions(). 286 */ 287 locked = true; 288 289 /* Executable? */ 290 error = VOP_GETATTR(vp, &attr, td->td_ucred); 291 if (error) 292 goto cleanup; 293 294 if ((vp->v_mount->mnt_flag & MNT_NOEXEC) || 295 ((attr.va_mode & 0111) == 0) || (attr.va_type != VREG)) { 296 /* EACCESS is what exec(2) returns. */ 297 error = ENOEXEC; 298 goto cleanup; 299 } 300 301 /* Sensible size? */ 302 if (attr.va_size == 0) { 303 error = ENOEXEC; 304 goto cleanup; 305 } 306 307 /* Can we access it? */ 308 error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td); 309 if (error) 310 goto cleanup; 311 312 /* 313 * XXX: This should use vn_open() so that it is properly authorized, 314 * and to reduce code redundancy all over the place here. 315 * XXX: Not really, it duplicates far more of exec_check_permissions() 316 * than vn_open(). 317 */ 318 #ifdef MAC 319 error = mac_vnode_check_open(td->td_ucred, vp, VREAD); 320 if (error) 321 goto cleanup; 322 #endif 323 error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL); 324 if (error) 325 goto cleanup; 326 opened = true; 327 328 /* Pull in executable header into exec_map */ 329 error = vm_mmap(exec_map, (vm_offset_t *)&a_out, PAGE_SIZE, 330 VM_PROT_READ, VM_PROT_READ, 0, OBJT_VNODE, vp, 0); 331 if (error) 332 goto cleanup; 333 334 /* Is it a Linux binary ? */ 335 if (((a_out->a_magic >> 16) & 0xff) != 0x64) { 336 error = ENOEXEC; 337 goto cleanup; 338 } 339 340 /* 341 * While we are here, we should REALLY do some more checks 342 */ 343 344 /* Set file/virtual offset based on a.out variant. */ 345 switch ((int)(a_out->a_magic & 0xffff)) { 346 case 0413: /* ZMAGIC */ 347 file_offset = 1024; 348 break; 349 case 0314: /* QMAGIC */ 350 file_offset = 0; 351 break; 352 default: 353 error = ENOEXEC; 354 goto cleanup; 355 } 356 357 bss_size = round_page(a_out->a_bss); 358 359 /* Check various fields in header for validity/bounds. */ 360 if (a_out->a_text & PAGE_MASK || a_out->a_data & PAGE_MASK) { 361 error = ENOEXEC; 362 goto cleanup; 363 } 364 365 /* text + data can't exceed file size */ 366 if (a_out->a_data + a_out->a_text > attr.va_size) { 367 error = EFAULT; 368 goto cleanup; 369 } 370 371 /* 372 * text/data/bss must not exceed limits 373 * XXX - this is not complete. it should check current usage PLUS 374 * the resources needed by this library. 375 */ 376 PROC_LOCK(td->td_proc); 377 if (a_out->a_text > maxtsiz || 378 a_out->a_data + bss_size > lim_cur_proc(td->td_proc, RLIMIT_DATA) || 379 racct_set(td->td_proc, RACCT_DATA, a_out->a_data + 380 bss_size) != 0) { 381 PROC_UNLOCK(td->td_proc); 382 error = ENOMEM; 383 goto cleanup; 384 } 385 PROC_UNLOCK(td->td_proc); 386 387 /* 388 * Prevent more writers. 389 */ 390 error = VOP_SET_TEXT(vp); 391 if (error != 0) 392 goto cleanup; 393 textset = true; 394 395 /* 396 * Lock no longer needed 397 */ 398 locked = false; 399 VOP_UNLOCK(vp); 400 401 /* 402 * Check if file_offset page aligned. Currently we cannot handle 403 * misalinged file offsets, and so we read in the entire image 404 * (what a waste). 405 */ 406 if (file_offset & PAGE_MASK) { 407 /* Map text+data read/write/execute */ 408 409 /* a_entry is the load address and is page aligned */ 410 vmaddr = trunc_page(a_out->a_entry); 411 412 /* get anon user mapping, read+write+execute */ 413 error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0, 414 &vmaddr, a_out->a_text + a_out->a_data, 0, VMFS_NO_SPACE, 415 VM_PROT_ALL, VM_PROT_ALL, 0); 416 if (error) 417 goto cleanup; 418 419 error = vn_rdwr(UIO_READ, vp, (void *)vmaddr, file_offset, 420 a_out->a_text + a_out->a_data, UIO_USERSPACE, 0, 421 td->td_ucred, NOCRED, &aresid, td); 422 if (error != 0) 423 goto cleanup; 424 if (aresid != 0) { 425 error = ENOEXEC; 426 goto cleanup; 427 } 428 } else { 429 /* 430 * for QMAGIC, a_entry is 20 bytes beyond the load address 431 * to skip the executable header 432 */ 433 vmaddr = trunc_page(a_out->a_entry); 434 435 /* 436 * Map it all into the process's space as a single 437 * copy-on-write "data" segment. 438 */ 439 map = &td->td_proc->p_vmspace->vm_map; 440 error = vm_mmap(map, &vmaddr, 441 a_out->a_text + a_out->a_data, VM_PROT_ALL, VM_PROT_ALL, 442 MAP_PRIVATE | MAP_FIXED, OBJT_VNODE, vp, file_offset); 443 if (error) 444 goto cleanup; 445 vm_map_lock(map); 446 if (!vm_map_lookup_entry(map, vmaddr, &entry)) { 447 vm_map_unlock(map); 448 error = EDOOFUS; 449 goto cleanup; 450 } 451 entry->eflags |= MAP_ENTRY_VN_EXEC; 452 vm_map_unlock(map); 453 textset = false; 454 } 455 456 if (bss_size != 0) { 457 /* Calculate BSS start address */ 458 vmaddr = trunc_page(a_out->a_entry) + a_out->a_text + 459 a_out->a_data; 460 461 /* allocate some 'anon' space */ 462 error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0, 463 &vmaddr, bss_size, 0, VMFS_NO_SPACE, VM_PROT_ALL, 464 VM_PROT_ALL, 0); 465 if (error) 466 goto cleanup; 467 } 468 469 cleanup: 470 if (opened) { 471 if (locked) 472 VOP_UNLOCK(vp); 473 locked = false; 474 VOP_CLOSE(vp, FREAD, td->td_ucred, td); 475 } 476 if (textset) { 477 if (!locked) { 478 locked = true; 479 VOP_LOCK(vp, LK_SHARED | LK_RETRY); 480 } 481 VOP_UNSET_TEXT_CHECKED(vp); 482 } 483 if (locked) 484 VOP_UNLOCK(vp); 485 486 /* Release the temporary mapping. */ 487 if (a_out) 488 kmap_free_wakeup(exec_map, (vm_offset_t)a_out, PAGE_SIZE); 489 490 return (error); 491 } 492 493 #endif /* __i386__ */ 494 495 #ifdef LINUX_LEGACY_SYSCALLS 496 int 497 linux_select(struct thread *td, struct linux_select_args *args) 498 { 499 l_timeval ltv; 500 struct timeval tv0, tv1, utv, *tvp; 501 int error; 502 503 /* 504 * Store current time for computation of the amount of 505 * time left. 506 */ 507 if (args->timeout) { 508 if ((error = copyin(args->timeout, <v, sizeof(ltv)))) 509 goto select_out; 510 utv.tv_sec = ltv.tv_sec; 511 utv.tv_usec = ltv.tv_usec; 512 513 if (itimerfix(&utv)) { 514 /* 515 * The timeval was invalid. Convert it to something 516 * valid that will act as it does under Linux. 517 */ 518 utv.tv_sec += utv.tv_usec / 1000000; 519 utv.tv_usec %= 1000000; 520 if (utv.tv_usec < 0) { 521 utv.tv_sec -= 1; 522 utv.tv_usec += 1000000; 523 } 524 if (utv.tv_sec < 0) 525 timevalclear(&utv); 526 } 527 microtime(&tv0); 528 tvp = &utv; 529 } else 530 tvp = NULL; 531 532 error = kern_select(td, args->nfds, args->readfds, args->writefds, 533 args->exceptfds, tvp, LINUX_NFDBITS); 534 if (error) 535 goto select_out; 536 537 if (args->timeout) { 538 if (td->td_retval[0]) { 539 /* 540 * Compute how much time was left of the timeout, 541 * by subtracting the current time and the time 542 * before we started the call, and subtracting 543 * that result from the user-supplied value. 544 */ 545 microtime(&tv1); 546 timevalsub(&tv1, &tv0); 547 timevalsub(&utv, &tv1); 548 if (utv.tv_sec < 0) 549 timevalclear(&utv); 550 } else 551 timevalclear(&utv); 552 ltv.tv_sec = utv.tv_sec; 553 ltv.tv_usec = utv.tv_usec; 554 if ((error = copyout(<v, args->timeout, sizeof(ltv)))) 555 goto select_out; 556 } 557 558 select_out: 559 return (error); 560 } 561 #endif 562 563 int 564 linux_mremap(struct thread *td, struct linux_mremap_args *args) 565 { 566 uintptr_t addr; 567 size_t len; 568 int error = 0; 569 570 if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) { 571 td->td_retval[0] = 0; 572 return (EINVAL); 573 } 574 575 /* 576 * Check for the page alignment. 577 * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK. 578 */ 579 if (args->addr & PAGE_MASK) { 580 td->td_retval[0] = 0; 581 return (EINVAL); 582 } 583 584 args->new_len = round_page(args->new_len); 585 args->old_len = round_page(args->old_len); 586 587 if (args->new_len > args->old_len) { 588 td->td_retval[0] = 0; 589 return (ENOMEM); 590 } 591 592 if (args->new_len < args->old_len) { 593 addr = args->addr + args->new_len; 594 len = args->old_len - args->new_len; 595 error = kern_munmap(td, addr, len); 596 } 597 598 td->td_retval[0] = error ? 0 : (uintptr_t)args->addr; 599 return (error); 600 } 601 602 #define LINUX_MS_ASYNC 0x0001 603 #define LINUX_MS_INVALIDATE 0x0002 604 #define LINUX_MS_SYNC 0x0004 605 606 int 607 linux_msync(struct thread *td, struct linux_msync_args *args) 608 { 609 610 return (kern_msync(td, args->addr, args->len, 611 args->fl & ~LINUX_MS_SYNC)); 612 } 613 614 #ifdef LINUX_LEGACY_SYSCALLS 615 int 616 linux_time(struct thread *td, struct linux_time_args *args) 617 { 618 struct timeval tv; 619 l_time_t tm; 620 int error; 621 622 microtime(&tv); 623 tm = tv.tv_sec; 624 if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm)))) 625 return (error); 626 td->td_retval[0] = tm; 627 return (0); 628 } 629 #endif 630 631 struct l_times_argv { 632 l_clock_t tms_utime; 633 l_clock_t tms_stime; 634 l_clock_t tms_cutime; 635 l_clock_t tms_cstime; 636 }; 637 638 639 /* 640 * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value. 641 * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK 642 * auxiliary vector entry. 643 */ 644 #define CLK_TCK 100 645 646 #define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK)) 647 #define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz)) 648 649 #define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER_2004000 ? \ 650 CONVNTCK(r) : CONVOTCK(r)) 651 652 int 653 linux_times(struct thread *td, struct linux_times_args *args) 654 { 655 struct timeval tv, utime, stime, cutime, cstime; 656 struct l_times_argv tms; 657 struct proc *p; 658 int error; 659 660 if (args->buf != NULL) { 661 p = td->td_proc; 662 PROC_LOCK(p); 663 PROC_STATLOCK(p); 664 calcru(p, &utime, &stime); 665 PROC_STATUNLOCK(p); 666 calccru(p, &cutime, &cstime); 667 PROC_UNLOCK(p); 668 669 tms.tms_utime = CONVTCK(utime); 670 tms.tms_stime = CONVTCK(stime); 671 672 tms.tms_cutime = CONVTCK(cutime); 673 tms.tms_cstime = CONVTCK(cstime); 674 675 if ((error = copyout(&tms, args->buf, sizeof(tms)))) 676 return (error); 677 } 678 679 microuptime(&tv); 680 td->td_retval[0] = (int)CONVTCK(tv); 681 return (0); 682 } 683 684 int 685 linux_newuname(struct thread *td, struct linux_newuname_args *args) 686 { 687 struct l_new_utsname utsname; 688 char osname[LINUX_MAX_UTSNAME]; 689 char osrelease[LINUX_MAX_UTSNAME]; 690 char *p; 691 692 linux_get_osname(td, osname); 693 linux_get_osrelease(td, osrelease); 694 695 bzero(&utsname, sizeof(utsname)); 696 strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME); 697 getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME); 698 getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME); 699 strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME); 700 strlcpy(utsname.version, version, LINUX_MAX_UTSNAME); 701 for (p = utsname.version; *p != '\0'; ++p) 702 if (*p == '\n') { 703 *p = '\0'; 704 break; 705 } 706 strlcpy(utsname.machine, linux_kplatform, LINUX_MAX_UTSNAME); 707 708 return (copyout(&utsname, args->buf, sizeof(utsname))); 709 } 710 711 struct l_utimbuf { 712 l_time_t l_actime; 713 l_time_t l_modtime; 714 }; 715 716 #ifdef LINUX_LEGACY_SYSCALLS 717 int 718 linux_utime(struct thread *td, struct linux_utime_args *args) 719 { 720 struct timeval tv[2], *tvp; 721 struct l_utimbuf lut; 722 char *fname; 723 int error; 724 725 LCONVPATHEXIST(td, args->fname, &fname); 726 727 if (args->times) { 728 if ((error = copyin(args->times, &lut, sizeof lut))) { 729 LFREEPATH(fname); 730 return (error); 731 } 732 tv[0].tv_sec = lut.l_actime; 733 tv[0].tv_usec = 0; 734 tv[1].tv_sec = lut.l_modtime; 735 tv[1].tv_usec = 0; 736 tvp = tv; 737 } else 738 tvp = NULL; 739 740 error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp, 741 UIO_SYSSPACE); 742 LFREEPATH(fname); 743 return (error); 744 } 745 #endif 746 747 #ifdef LINUX_LEGACY_SYSCALLS 748 int 749 linux_utimes(struct thread *td, struct linux_utimes_args *args) 750 { 751 l_timeval ltv[2]; 752 struct timeval tv[2], *tvp = NULL; 753 char *fname; 754 int error; 755 756 LCONVPATHEXIST(td, args->fname, &fname); 757 758 if (args->tptr != NULL) { 759 if ((error = copyin(args->tptr, ltv, sizeof ltv))) { 760 LFREEPATH(fname); 761 return (error); 762 } 763 tv[0].tv_sec = ltv[0].tv_sec; 764 tv[0].tv_usec = ltv[0].tv_usec; 765 tv[1].tv_sec = ltv[1].tv_sec; 766 tv[1].tv_usec = ltv[1].tv_usec; 767 tvp = tv; 768 } 769 770 error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, 771 tvp, UIO_SYSSPACE); 772 LFREEPATH(fname); 773 return (error); 774 } 775 #endif 776 777 static int 778 linux_utimensat_nsec_valid(l_long nsec) 779 { 780 781 if (nsec == LINUX_UTIME_OMIT || nsec == LINUX_UTIME_NOW) 782 return (0); 783 if (nsec >= 0 && nsec <= 999999999) 784 return (0); 785 return (1); 786 } 787 788 int 789 linux_utimensat(struct thread *td, struct linux_utimensat_args *args) 790 { 791 struct l_timespec l_times[2]; 792 struct timespec times[2], *timesp = NULL; 793 char *path = NULL; 794 int error, dfd, flags = 0; 795 796 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 797 798 if (args->flags & ~LINUX_AT_SYMLINK_NOFOLLOW) 799 return (EINVAL); 800 801 if (args->times != NULL) { 802 error = copyin(args->times, l_times, sizeof(l_times)); 803 if (error != 0) 804 return (error); 805 806 if (linux_utimensat_nsec_valid(l_times[0].tv_nsec) != 0 || 807 linux_utimensat_nsec_valid(l_times[1].tv_nsec) != 0) 808 return (EINVAL); 809 810 times[0].tv_sec = l_times[0].tv_sec; 811 switch (l_times[0].tv_nsec) 812 { 813 case LINUX_UTIME_OMIT: 814 times[0].tv_nsec = UTIME_OMIT; 815 break; 816 case LINUX_UTIME_NOW: 817 times[0].tv_nsec = UTIME_NOW; 818 break; 819 default: 820 times[0].tv_nsec = l_times[0].tv_nsec; 821 } 822 823 times[1].tv_sec = l_times[1].tv_sec; 824 switch (l_times[1].tv_nsec) 825 { 826 case LINUX_UTIME_OMIT: 827 times[1].tv_nsec = UTIME_OMIT; 828 break; 829 case LINUX_UTIME_NOW: 830 times[1].tv_nsec = UTIME_NOW; 831 break; 832 default: 833 times[1].tv_nsec = l_times[1].tv_nsec; 834 break; 835 } 836 timesp = times; 837 838 /* This breaks POSIX, but is what the Linux kernel does 839 * _on purpose_ (documented in the man page for utimensat(2)), 840 * so we must follow that behaviour. */ 841 if (times[0].tv_nsec == UTIME_OMIT && 842 times[1].tv_nsec == UTIME_OMIT) 843 return (0); 844 } 845 846 if (args->pathname != NULL) 847 LCONVPATHEXIST_AT(td, args->pathname, &path, dfd); 848 else if (args->flags != 0) 849 return (EINVAL); 850 851 if (args->flags & LINUX_AT_SYMLINK_NOFOLLOW) 852 flags |= AT_SYMLINK_NOFOLLOW; 853 854 if (path == NULL) 855 error = kern_futimens(td, dfd, timesp, UIO_SYSSPACE); 856 else { 857 error = kern_utimensat(td, dfd, path, UIO_SYSSPACE, timesp, 858 UIO_SYSSPACE, flags); 859 LFREEPATH(path); 860 } 861 862 return (error); 863 } 864 865 #ifdef LINUX_LEGACY_SYSCALLS 866 int 867 linux_futimesat(struct thread *td, struct linux_futimesat_args *args) 868 { 869 l_timeval ltv[2]; 870 struct timeval tv[2], *tvp = NULL; 871 char *fname; 872 int error, dfd; 873 874 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 875 LCONVPATHEXIST_AT(td, args->filename, &fname, dfd); 876 877 if (args->utimes != NULL) { 878 if ((error = copyin(args->utimes, ltv, sizeof ltv))) { 879 LFREEPATH(fname); 880 return (error); 881 } 882 tv[0].tv_sec = ltv[0].tv_sec; 883 tv[0].tv_usec = ltv[0].tv_usec; 884 tv[1].tv_sec = ltv[1].tv_sec; 885 tv[1].tv_usec = ltv[1].tv_usec; 886 tvp = tv; 887 } 888 889 error = kern_utimesat(td, dfd, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE); 890 LFREEPATH(fname); 891 return (error); 892 } 893 #endif 894 895 static int 896 linux_common_wait(struct thread *td, int pid, int *statusp, 897 int options, struct __wrusage *wrup) 898 { 899 siginfo_t siginfo; 900 idtype_t idtype; 901 id_t id; 902 int error, status, tmpstat; 903 904 if (pid == WAIT_ANY) { 905 idtype = P_ALL; 906 id = 0; 907 } else if (pid < 0) { 908 idtype = P_PGID; 909 id = (id_t)-pid; 910 } else { 911 idtype = P_PID; 912 id = (id_t)pid; 913 } 914 915 /* 916 * For backward compatibility we implicitly add flags WEXITED 917 * and WTRAPPED here. 918 */ 919 options |= WEXITED | WTRAPPED; 920 error = kern_wait6(td, idtype, id, &status, options, wrup, &siginfo); 921 if (error) 922 return (error); 923 924 if (statusp) { 925 tmpstat = status & 0xffff; 926 if (WIFSIGNALED(tmpstat)) { 927 tmpstat = (tmpstat & 0xffffff80) | 928 bsd_to_linux_signal(WTERMSIG(tmpstat)); 929 } else if (WIFSTOPPED(tmpstat)) { 930 tmpstat = (tmpstat & 0xffff00ff) | 931 (bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8); 932 #if defined(__amd64__) && !defined(COMPAT_LINUX32) 933 if (WSTOPSIG(status) == SIGTRAP) { 934 tmpstat = linux_ptrace_status(td, 935 siginfo.si_pid, tmpstat); 936 } 937 #endif 938 } else if (WIFCONTINUED(tmpstat)) { 939 tmpstat = 0xffff; 940 } 941 error = copyout(&tmpstat, statusp, sizeof(int)); 942 } 943 944 return (error); 945 } 946 947 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 948 int 949 linux_waitpid(struct thread *td, struct linux_waitpid_args *args) 950 { 951 struct linux_wait4_args wait4_args; 952 953 wait4_args.pid = args->pid; 954 wait4_args.status = args->status; 955 wait4_args.options = args->options; 956 wait4_args.rusage = NULL; 957 958 return (linux_wait4(td, &wait4_args)); 959 } 960 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 961 962 int 963 linux_wait4(struct thread *td, struct linux_wait4_args *args) 964 { 965 int error, options; 966 struct __wrusage wru, *wrup; 967 968 if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG | 969 LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL)) 970 return (EINVAL); 971 972 options = WEXITED; 973 linux_to_bsd_waitopts(args->options, &options); 974 975 if (args->rusage != NULL) 976 wrup = &wru; 977 else 978 wrup = NULL; 979 error = linux_common_wait(td, args->pid, args->status, options, wrup); 980 if (error != 0) 981 return (error); 982 if (args->rusage != NULL) 983 error = linux_copyout_rusage(&wru.wru_self, args->rusage); 984 return (error); 985 } 986 987 int 988 linux_waitid(struct thread *td, struct linux_waitid_args *args) 989 { 990 int status, options, sig; 991 struct __wrusage wru; 992 siginfo_t siginfo; 993 l_siginfo_t lsi; 994 idtype_t idtype; 995 struct proc *p; 996 int error; 997 998 options = 0; 999 linux_to_bsd_waitopts(args->options, &options); 1000 1001 if (options & ~(WNOHANG | WNOWAIT | WEXITED | WUNTRACED | WCONTINUED)) 1002 return (EINVAL); 1003 if (!(options & (WEXITED | WUNTRACED | WCONTINUED))) 1004 return (EINVAL); 1005 1006 switch (args->idtype) { 1007 case LINUX_P_ALL: 1008 idtype = P_ALL; 1009 break; 1010 case LINUX_P_PID: 1011 if (args->id <= 0) 1012 return (EINVAL); 1013 idtype = P_PID; 1014 break; 1015 case LINUX_P_PGID: 1016 if (args->id <= 0) 1017 return (EINVAL); 1018 idtype = P_PGID; 1019 break; 1020 default: 1021 return (EINVAL); 1022 } 1023 1024 error = kern_wait6(td, idtype, args->id, &status, options, 1025 &wru, &siginfo); 1026 if (error != 0) 1027 return (error); 1028 if (args->rusage != NULL) { 1029 error = linux_copyout_rusage(&wru.wru_children, 1030 args->rusage); 1031 if (error != 0) 1032 return (error); 1033 } 1034 if (args->info != NULL) { 1035 p = td->td_proc; 1036 bzero(&lsi, sizeof(lsi)); 1037 if (td->td_retval[0] != 0) { 1038 sig = bsd_to_linux_signal(siginfo.si_signo); 1039 siginfo_to_lsiginfo(&siginfo, &lsi, sig); 1040 } 1041 error = copyout(&lsi, args->info, sizeof(lsi)); 1042 } 1043 td->td_retval[0] = 0; 1044 1045 return (error); 1046 } 1047 1048 #ifdef LINUX_LEGACY_SYSCALLS 1049 int 1050 linux_mknod(struct thread *td, struct linux_mknod_args *args) 1051 { 1052 char *path; 1053 int error; 1054 1055 LCONVPATHCREAT(td, args->path, &path); 1056 1057 switch (args->mode & S_IFMT) { 1058 case S_IFIFO: 1059 case S_IFSOCK: 1060 error = kern_mkfifoat(td, AT_FDCWD, path, UIO_SYSSPACE, 1061 args->mode); 1062 break; 1063 1064 case S_IFCHR: 1065 case S_IFBLK: 1066 error = kern_mknodat(td, AT_FDCWD, path, UIO_SYSSPACE, 1067 args->mode, args->dev); 1068 break; 1069 1070 case S_IFDIR: 1071 error = EPERM; 1072 break; 1073 1074 case 0: 1075 args->mode |= S_IFREG; 1076 /* FALLTHROUGH */ 1077 case S_IFREG: 1078 error = kern_openat(td, AT_FDCWD, path, UIO_SYSSPACE, 1079 O_WRONLY | O_CREAT | O_TRUNC, args->mode); 1080 if (error == 0) 1081 kern_close(td, td->td_retval[0]); 1082 break; 1083 1084 default: 1085 error = EINVAL; 1086 break; 1087 } 1088 LFREEPATH(path); 1089 return (error); 1090 } 1091 #endif 1092 1093 int 1094 linux_mknodat(struct thread *td, struct linux_mknodat_args *args) 1095 { 1096 char *path; 1097 int error, dfd; 1098 1099 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; 1100 LCONVPATHCREAT_AT(td, args->filename, &path, dfd); 1101 1102 switch (args->mode & S_IFMT) { 1103 case S_IFIFO: 1104 case S_IFSOCK: 1105 error = kern_mkfifoat(td, dfd, path, UIO_SYSSPACE, args->mode); 1106 break; 1107 1108 case S_IFCHR: 1109 case S_IFBLK: 1110 error = kern_mknodat(td, dfd, path, UIO_SYSSPACE, args->mode, 1111 args->dev); 1112 break; 1113 1114 case S_IFDIR: 1115 error = EPERM; 1116 break; 1117 1118 case 0: 1119 args->mode |= S_IFREG; 1120 /* FALLTHROUGH */ 1121 case S_IFREG: 1122 error = kern_openat(td, dfd, path, UIO_SYSSPACE, 1123 O_WRONLY | O_CREAT | O_TRUNC, args->mode); 1124 if (error == 0) 1125 kern_close(td, td->td_retval[0]); 1126 break; 1127 1128 default: 1129 error = EINVAL; 1130 break; 1131 } 1132 LFREEPATH(path); 1133 return (error); 1134 } 1135 1136 /* 1137 * UGH! This is just about the dumbest idea I've ever heard!! 1138 */ 1139 int 1140 linux_personality(struct thread *td, struct linux_personality_args *args) 1141 { 1142 struct linux_pemuldata *pem; 1143 struct proc *p = td->td_proc; 1144 uint32_t old; 1145 1146 PROC_LOCK(p); 1147 pem = pem_find(p); 1148 old = pem->persona; 1149 if (args->per != 0xffffffff) 1150 pem->persona = args->per; 1151 PROC_UNLOCK(p); 1152 1153 td->td_retval[0] = old; 1154 return (0); 1155 } 1156 1157 struct l_itimerval { 1158 l_timeval it_interval; 1159 l_timeval it_value; 1160 }; 1161 1162 #define B2L_ITIMERVAL(bip, lip) \ 1163 (bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \ 1164 (bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \ 1165 (bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \ 1166 (bip)->it_value.tv_usec = (lip)->it_value.tv_usec; 1167 1168 int 1169 linux_setitimer(struct thread *td, struct linux_setitimer_args *uap) 1170 { 1171 int error; 1172 struct l_itimerval ls; 1173 struct itimerval aitv, oitv; 1174 1175 if (uap->itv == NULL) { 1176 uap->itv = uap->oitv; 1177 return (linux_getitimer(td, (struct linux_getitimer_args *)uap)); 1178 } 1179 1180 error = copyin(uap->itv, &ls, sizeof(ls)); 1181 if (error != 0) 1182 return (error); 1183 B2L_ITIMERVAL(&aitv, &ls); 1184 error = kern_setitimer(td, uap->which, &aitv, &oitv); 1185 if (error != 0 || uap->oitv == NULL) 1186 return (error); 1187 B2L_ITIMERVAL(&ls, &oitv); 1188 1189 return (copyout(&ls, uap->oitv, sizeof(ls))); 1190 } 1191 1192 int 1193 linux_getitimer(struct thread *td, struct linux_getitimer_args *uap) 1194 { 1195 int error; 1196 struct l_itimerval ls; 1197 struct itimerval aitv; 1198 1199 error = kern_getitimer(td, uap->which, &aitv); 1200 if (error != 0) 1201 return (error); 1202 B2L_ITIMERVAL(&ls, &aitv); 1203 return (copyout(&ls, uap->itv, sizeof(ls))); 1204 } 1205 1206 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 1207 int 1208 linux_nice(struct thread *td, struct linux_nice_args *args) 1209 { 1210 1211 return (kern_setpriority(td, PRIO_PROCESS, 0, args->inc)); 1212 } 1213 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 1214 1215 int 1216 linux_setgroups(struct thread *td, struct linux_setgroups_args *args) 1217 { 1218 struct ucred *newcred, *oldcred; 1219 l_gid_t *linux_gidset; 1220 gid_t *bsd_gidset; 1221 int ngrp, error; 1222 struct proc *p; 1223 1224 ngrp = args->gidsetsize; 1225 if (ngrp < 0 || ngrp >= ngroups_max + 1) 1226 return (EINVAL); 1227 linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK); 1228 error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t)); 1229 if (error) 1230 goto out; 1231 newcred = crget(); 1232 crextend(newcred, ngrp + 1); 1233 p = td->td_proc; 1234 PROC_LOCK(p); 1235 oldcred = p->p_ucred; 1236 crcopy(newcred, oldcred); 1237 1238 /* 1239 * cr_groups[0] holds egid. Setting the whole set from 1240 * the supplied set will cause egid to be changed too. 1241 * Keep cr_groups[0] unchanged to prevent that. 1242 */ 1243 1244 if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) { 1245 PROC_UNLOCK(p); 1246 crfree(newcred); 1247 goto out; 1248 } 1249 1250 if (ngrp > 0) { 1251 newcred->cr_ngroups = ngrp + 1; 1252 1253 bsd_gidset = newcred->cr_groups; 1254 ngrp--; 1255 while (ngrp >= 0) { 1256 bsd_gidset[ngrp + 1] = linux_gidset[ngrp]; 1257 ngrp--; 1258 } 1259 } else 1260 newcred->cr_ngroups = 1; 1261 1262 setsugid(p); 1263 proc_set_cred(p, newcred); 1264 PROC_UNLOCK(p); 1265 crfree(oldcred); 1266 error = 0; 1267 out: 1268 free(linux_gidset, M_LINUX); 1269 return (error); 1270 } 1271 1272 int 1273 linux_getgroups(struct thread *td, struct linux_getgroups_args *args) 1274 { 1275 struct ucred *cred; 1276 l_gid_t *linux_gidset; 1277 gid_t *bsd_gidset; 1278 int bsd_gidsetsz, ngrp, error; 1279 1280 cred = td->td_ucred; 1281 bsd_gidset = cred->cr_groups; 1282 bsd_gidsetsz = cred->cr_ngroups - 1; 1283 1284 /* 1285 * cr_groups[0] holds egid. Returning the whole set 1286 * here will cause a duplicate. Exclude cr_groups[0] 1287 * to prevent that. 1288 */ 1289 1290 if ((ngrp = args->gidsetsize) == 0) { 1291 td->td_retval[0] = bsd_gidsetsz; 1292 return (0); 1293 } 1294 1295 if (ngrp < bsd_gidsetsz) 1296 return (EINVAL); 1297 1298 ngrp = 0; 1299 linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset), 1300 M_LINUX, M_WAITOK); 1301 while (ngrp < bsd_gidsetsz) { 1302 linux_gidset[ngrp] = bsd_gidset[ngrp + 1]; 1303 ngrp++; 1304 } 1305 1306 error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t)); 1307 free(linux_gidset, M_LINUX); 1308 if (error) 1309 return (error); 1310 1311 td->td_retval[0] = ngrp; 1312 return (0); 1313 } 1314 1315 int 1316 linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args) 1317 { 1318 struct rlimit bsd_rlim; 1319 struct l_rlimit rlim; 1320 u_int which; 1321 int error; 1322 1323 if (args->resource >= LINUX_RLIM_NLIMITS) 1324 return (EINVAL); 1325 1326 which = linux_to_bsd_resource[args->resource]; 1327 if (which == -1) 1328 return (EINVAL); 1329 1330 error = copyin(args->rlim, &rlim, sizeof(rlim)); 1331 if (error) 1332 return (error); 1333 1334 bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur; 1335 bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max; 1336 return (kern_setrlimit(td, which, &bsd_rlim)); 1337 } 1338 1339 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) 1340 int 1341 linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args) 1342 { 1343 struct l_rlimit rlim; 1344 struct rlimit bsd_rlim; 1345 u_int which; 1346 1347 if (args->resource >= LINUX_RLIM_NLIMITS) 1348 return (EINVAL); 1349 1350 which = linux_to_bsd_resource[args->resource]; 1351 if (which == -1) 1352 return (EINVAL); 1353 1354 lim_rlimit(td, which, &bsd_rlim); 1355 1356 #ifdef COMPAT_LINUX32 1357 rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur; 1358 if (rlim.rlim_cur == UINT_MAX) 1359 rlim.rlim_cur = INT_MAX; 1360 rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max; 1361 if (rlim.rlim_max == UINT_MAX) 1362 rlim.rlim_max = INT_MAX; 1363 #else 1364 rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur; 1365 if (rlim.rlim_cur == ULONG_MAX) 1366 rlim.rlim_cur = LONG_MAX; 1367 rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max; 1368 if (rlim.rlim_max == ULONG_MAX) 1369 rlim.rlim_max = LONG_MAX; 1370 #endif 1371 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1372 } 1373 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ 1374 1375 int 1376 linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args) 1377 { 1378 struct l_rlimit rlim; 1379 struct rlimit bsd_rlim; 1380 u_int which; 1381 1382 if (args->resource >= LINUX_RLIM_NLIMITS) 1383 return (EINVAL); 1384 1385 which = linux_to_bsd_resource[args->resource]; 1386 if (which == -1) 1387 return (EINVAL); 1388 1389 lim_rlimit(td, which, &bsd_rlim); 1390 1391 rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur; 1392 rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max; 1393 return (copyout(&rlim, args->rlim, sizeof(rlim))); 1394 } 1395 1396 int 1397 linux_sched_setscheduler(struct thread *td, 1398 struct linux_sched_setscheduler_args *args) 1399 { 1400 struct sched_param sched_param; 1401 struct thread *tdt; 1402 int error, policy; 1403 1404 switch (args->policy) { 1405 case LINUX_SCHED_OTHER: 1406 policy = SCHED_OTHER; 1407 break; 1408 case LINUX_SCHED_FIFO: 1409 policy = SCHED_FIFO; 1410 break; 1411 case LINUX_SCHED_RR: 1412 policy = SCHED_RR; 1413 break; 1414 default: 1415 return (EINVAL); 1416 } 1417 1418 error = copyin(args->param, &sched_param, sizeof(sched_param)); 1419 if (error) 1420 return (error); 1421 1422 if (linux_map_sched_prio) { 1423 switch (policy) { 1424 case SCHED_OTHER: 1425 if (sched_param.sched_priority != 0) 1426 return (EINVAL); 1427 1428 sched_param.sched_priority = 1429 PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE; 1430 break; 1431 case SCHED_FIFO: 1432 case SCHED_RR: 1433 if (sched_param.sched_priority < 1 || 1434 sched_param.sched_priority >= LINUX_MAX_RT_PRIO) 1435 return (EINVAL); 1436 1437 /* 1438 * Map [1, LINUX_MAX_RT_PRIO - 1] to 1439 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down). 1440 */ 1441 sched_param.sched_priority = 1442 (sched_param.sched_priority - 1) * 1443 (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) / 1444 (LINUX_MAX_RT_PRIO - 1); 1445 break; 1446 } 1447 } 1448 1449 tdt = linux_tdfind(td, args->pid, -1); 1450 if (tdt == NULL) 1451 return (ESRCH); 1452 1453 error = kern_sched_setscheduler(td, tdt, policy, &sched_param); 1454 PROC_UNLOCK(tdt->td_proc); 1455 return (error); 1456 } 1457 1458 int 1459 linux_sched_getscheduler(struct thread *td, 1460 struct linux_sched_getscheduler_args *args) 1461 { 1462 struct thread *tdt; 1463 int error, policy; 1464 1465 tdt = linux_tdfind(td, args->pid, -1); 1466 if (tdt == NULL) 1467 return (ESRCH); 1468 1469 error = kern_sched_getscheduler(td, tdt, &policy); 1470 PROC_UNLOCK(tdt->td_proc); 1471 1472 switch (policy) { 1473 case SCHED_OTHER: 1474 td->td_retval[0] = LINUX_SCHED_OTHER; 1475 break; 1476 case SCHED_FIFO: 1477 td->td_retval[0] = LINUX_SCHED_FIFO; 1478 break; 1479 case SCHED_RR: 1480 td->td_retval[0] = LINUX_SCHED_RR; 1481 break; 1482 } 1483 return (error); 1484 } 1485 1486 int 1487 linux_sched_get_priority_max(struct thread *td, 1488 struct linux_sched_get_priority_max_args *args) 1489 { 1490 struct sched_get_priority_max_args bsd; 1491 1492 if (linux_map_sched_prio) { 1493 switch (args->policy) { 1494 case LINUX_SCHED_OTHER: 1495 td->td_retval[0] = 0; 1496 return (0); 1497 case LINUX_SCHED_FIFO: 1498 case LINUX_SCHED_RR: 1499 td->td_retval[0] = LINUX_MAX_RT_PRIO - 1; 1500 return (0); 1501 default: 1502 return (EINVAL); 1503 } 1504 } 1505 1506 switch (args->policy) { 1507 case LINUX_SCHED_OTHER: 1508 bsd.policy = SCHED_OTHER; 1509 break; 1510 case LINUX_SCHED_FIFO: 1511 bsd.policy = SCHED_FIFO; 1512 break; 1513 case LINUX_SCHED_RR: 1514 bsd.policy = SCHED_RR; 1515 break; 1516 default: 1517 return (EINVAL); 1518 } 1519 return (sys_sched_get_priority_max(td, &bsd)); 1520 } 1521 1522 int 1523 linux_sched_get_priority_min(struct thread *td, 1524 struct linux_sched_get_priority_min_args *args) 1525 { 1526 struct sched_get_priority_min_args bsd; 1527 1528 if (linux_map_sched_prio) { 1529 switch (args->policy) { 1530 case LINUX_SCHED_OTHER: 1531 td->td_retval[0] = 0; 1532 return (0); 1533 case LINUX_SCHED_FIFO: 1534 case LINUX_SCHED_RR: 1535 td->td_retval[0] = 1; 1536 return (0); 1537 default: 1538 return (EINVAL); 1539 } 1540 } 1541 1542 switch (args->policy) { 1543 case LINUX_SCHED_OTHER: 1544 bsd.policy = SCHED_OTHER; 1545 break; 1546 case LINUX_SCHED_FIFO: 1547 bsd.policy = SCHED_FIFO; 1548 break; 1549 case LINUX_SCHED_RR: 1550 bsd.policy = SCHED_RR; 1551 break; 1552 default: 1553 return (EINVAL); 1554 } 1555 return (sys_sched_get_priority_min(td, &bsd)); 1556 } 1557 1558 #define REBOOT_CAD_ON 0x89abcdef 1559 #define REBOOT_CAD_OFF 0 1560 #define REBOOT_HALT 0xcdef0123 1561 #define REBOOT_RESTART 0x01234567 1562 #define REBOOT_RESTART2 0xA1B2C3D4 1563 #define REBOOT_POWEROFF 0x4321FEDC 1564 #define REBOOT_MAGIC1 0xfee1dead 1565 #define REBOOT_MAGIC2 0x28121969 1566 #define REBOOT_MAGIC2A 0x05121996 1567 #define REBOOT_MAGIC2B 0x16041998 1568 1569 int 1570 linux_reboot(struct thread *td, struct linux_reboot_args *args) 1571 { 1572 struct reboot_args bsd_args; 1573 1574 if (args->magic1 != REBOOT_MAGIC1) 1575 return (EINVAL); 1576 1577 switch (args->magic2) { 1578 case REBOOT_MAGIC2: 1579 case REBOOT_MAGIC2A: 1580 case REBOOT_MAGIC2B: 1581 break; 1582 default: 1583 return (EINVAL); 1584 } 1585 1586 switch (args->cmd) { 1587 case REBOOT_CAD_ON: 1588 case REBOOT_CAD_OFF: 1589 return (priv_check(td, PRIV_REBOOT)); 1590 case REBOOT_HALT: 1591 bsd_args.opt = RB_HALT; 1592 break; 1593 case REBOOT_RESTART: 1594 case REBOOT_RESTART2: 1595 bsd_args.opt = 0; 1596 break; 1597 case REBOOT_POWEROFF: 1598 bsd_args.opt = RB_POWEROFF; 1599 break; 1600 default: 1601 return (EINVAL); 1602 } 1603 return (sys_reboot(td, &bsd_args)); 1604 } 1605 1606 1607 int 1608 linux_getpid(struct thread *td, struct linux_getpid_args *args) 1609 { 1610 1611 td->td_retval[0] = td->td_proc->p_pid; 1612 1613 return (0); 1614 } 1615 1616 int 1617 linux_gettid(struct thread *td, struct linux_gettid_args *args) 1618 { 1619 struct linux_emuldata *em; 1620 1621 em = em_find(td); 1622 KASSERT(em != NULL, ("gettid: emuldata not found.\n")); 1623 1624 td->td_retval[0] = em->em_tid; 1625 1626 return (0); 1627 } 1628 1629 1630 int 1631 linux_getppid(struct thread *td, struct linux_getppid_args *args) 1632 { 1633 1634 td->td_retval[0] = kern_getppid(td); 1635 return (0); 1636 } 1637 1638 int 1639 linux_getgid(struct thread *td, struct linux_getgid_args *args) 1640 { 1641 1642 td->td_retval[0] = td->td_ucred->cr_rgid; 1643 return (0); 1644 } 1645 1646 int 1647 linux_getuid(struct thread *td, struct linux_getuid_args *args) 1648 { 1649 1650 td->td_retval[0] = td->td_ucred->cr_ruid; 1651 return (0); 1652 } 1653 1654 int 1655 linux_getsid(struct thread *td, struct linux_getsid_args *args) 1656 { 1657 1658 return (kern_getsid(td, args->pid)); 1659 } 1660 1661 int 1662 linux_nosys(struct thread *td, struct nosys_args *ignore) 1663 { 1664 1665 return (ENOSYS); 1666 } 1667 1668 int 1669 linux_getpriority(struct thread *td, struct linux_getpriority_args *args) 1670 { 1671 int error; 1672 1673 error = kern_getpriority(td, args->which, args->who); 1674 td->td_retval[0] = 20 - td->td_retval[0]; 1675 return (error); 1676 } 1677 1678 int 1679 linux_sethostname(struct thread *td, struct linux_sethostname_args *args) 1680 { 1681 int name[2]; 1682 1683 name[0] = CTL_KERN; 1684 name[1] = KERN_HOSTNAME; 1685 return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname, 1686 args->len, 0, 0)); 1687 } 1688 1689 int 1690 linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args) 1691 { 1692 int name[2]; 1693 1694 name[0] = CTL_KERN; 1695 name[1] = KERN_NISDOMAINNAME; 1696 return (userland_sysctl(td, name, 2, 0, 0, 0, args->name, 1697 args->len, 0, 0)); 1698 } 1699 1700 int 1701 linux_exit_group(struct thread *td, struct linux_exit_group_args *args) 1702 { 1703 1704 LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid, 1705 args->error_code); 1706 1707 /* 1708 * XXX: we should send a signal to the parent if 1709 * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?) 1710 * as it doesnt occur often. 1711 */ 1712 exit1(td, args->error_code, 0); 1713 /* NOTREACHED */ 1714 } 1715 1716 #define _LINUX_CAPABILITY_VERSION_1 0x19980330 1717 #define _LINUX_CAPABILITY_VERSION_2 0x20071026 1718 #define _LINUX_CAPABILITY_VERSION_3 0x20080522 1719 1720 struct l_user_cap_header { 1721 l_int version; 1722 l_int pid; 1723 }; 1724 1725 struct l_user_cap_data { 1726 l_int effective; 1727 l_int permitted; 1728 l_int inheritable; 1729 }; 1730 1731 int 1732 linux_capget(struct thread *td, struct linux_capget_args *uap) 1733 { 1734 struct l_user_cap_header luch; 1735 struct l_user_cap_data lucd[2]; 1736 int error, u32s; 1737 1738 if (uap->hdrp == NULL) 1739 return (EFAULT); 1740 1741 error = copyin(uap->hdrp, &luch, sizeof(luch)); 1742 if (error != 0) 1743 return (error); 1744 1745 switch (luch.version) { 1746 case _LINUX_CAPABILITY_VERSION_1: 1747 u32s = 1; 1748 break; 1749 case _LINUX_CAPABILITY_VERSION_2: 1750 case _LINUX_CAPABILITY_VERSION_3: 1751 u32s = 2; 1752 break; 1753 default: 1754 luch.version = _LINUX_CAPABILITY_VERSION_1; 1755 error = copyout(&luch, uap->hdrp, sizeof(luch)); 1756 if (error) 1757 return (error); 1758 return (EINVAL); 1759 } 1760 1761 if (luch.pid) 1762 return (EPERM); 1763 1764 if (uap->datap) { 1765 /* 1766 * The current implementation doesn't support setting 1767 * a capability (it's essentially a stub) so indicate 1768 * that no capabilities are currently set or available 1769 * to request. 1770 */ 1771 memset(&lucd, 0, u32s * sizeof(lucd[0])); 1772 error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0])); 1773 } 1774 1775 return (error); 1776 } 1777 1778 int 1779 linux_capset(struct thread *td, struct linux_capset_args *uap) 1780 { 1781 struct l_user_cap_header luch; 1782 struct l_user_cap_data lucd[2]; 1783 int error, i, u32s; 1784 1785 if (uap->hdrp == NULL || uap->datap == NULL) 1786 return (EFAULT); 1787 1788 error = copyin(uap->hdrp, &luch, sizeof(luch)); 1789 if (error != 0) 1790 return (error); 1791 1792 switch (luch.version) { 1793 case _LINUX_CAPABILITY_VERSION_1: 1794 u32s = 1; 1795 break; 1796 case _LINUX_CAPABILITY_VERSION_2: 1797 case _LINUX_CAPABILITY_VERSION_3: 1798 u32s = 2; 1799 break; 1800 default: 1801 luch.version = _LINUX_CAPABILITY_VERSION_1; 1802 error = copyout(&luch, uap->hdrp, sizeof(luch)); 1803 if (error) 1804 return (error); 1805 return (EINVAL); 1806 } 1807 1808 if (luch.pid) 1809 return (EPERM); 1810 1811 error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0])); 1812 if (error != 0) 1813 return (error); 1814 1815 /* We currently don't support setting any capabilities. */ 1816 for (i = 0; i < u32s; i++) { 1817 if (lucd[i].effective || lucd[i].permitted || 1818 lucd[i].inheritable) { 1819 linux_msg(td, 1820 "capset[%d] effective=0x%x, permitted=0x%x, " 1821 "inheritable=0x%x is not implemented", i, 1822 (int)lucd[i].effective, (int)lucd[i].permitted, 1823 (int)lucd[i].inheritable); 1824 return (EPERM); 1825 } 1826 } 1827 1828 return (0); 1829 } 1830 1831 int 1832 linux_prctl(struct thread *td, struct linux_prctl_args *args) 1833 { 1834 int error = 0, max_size; 1835 struct proc *p = td->td_proc; 1836 char comm[LINUX_MAX_COMM_LEN]; 1837 int pdeath_signal; 1838 1839 switch (args->option) { 1840 case LINUX_PR_SET_PDEATHSIG: 1841 if (!LINUX_SIG_VALID(args->arg2)) 1842 return (EINVAL); 1843 pdeath_signal = linux_to_bsd_signal(args->arg2); 1844 return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL, 1845 &pdeath_signal)); 1846 case LINUX_PR_GET_PDEATHSIG: 1847 error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS, 1848 &pdeath_signal); 1849 if (error != 0) 1850 return (error); 1851 pdeath_signal = bsd_to_linux_signal(pdeath_signal); 1852 return (copyout(&pdeath_signal, 1853 (void *)(register_t)args->arg2, 1854 sizeof(pdeath_signal))); 1855 break; 1856 case LINUX_PR_GET_KEEPCAPS: 1857 /* 1858 * Indicate that we always clear the effective and 1859 * permitted capability sets when the user id becomes 1860 * non-zero (actually the capability sets are simply 1861 * always zero in the current implementation). 1862 */ 1863 td->td_retval[0] = 0; 1864 break; 1865 case LINUX_PR_SET_KEEPCAPS: 1866 /* 1867 * Ignore requests to keep the effective and permitted 1868 * capability sets when the user id becomes non-zero. 1869 */ 1870 break; 1871 case LINUX_PR_SET_NAME: 1872 /* 1873 * To be on the safe side we need to make sure to not 1874 * overflow the size a Linux program expects. We already 1875 * do this here in the copyin, so that we don't need to 1876 * check on copyout. 1877 */ 1878 max_size = MIN(sizeof(comm), sizeof(p->p_comm)); 1879 error = copyinstr((void *)(register_t)args->arg2, comm, 1880 max_size, NULL); 1881 1882 /* Linux silently truncates the name if it is too long. */ 1883 if (error == ENAMETOOLONG) { 1884 /* 1885 * XXX: copyinstr() isn't documented to populate the 1886 * array completely, so do a copyin() to be on the 1887 * safe side. This should be changed in case 1888 * copyinstr() is changed to guarantee this. 1889 */ 1890 error = copyin((void *)(register_t)args->arg2, comm, 1891 max_size - 1); 1892 comm[max_size - 1] = '\0'; 1893 } 1894 if (error) 1895 return (error); 1896 1897 PROC_LOCK(p); 1898 strlcpy(p->p_comm, comm, sizeof(p->p_comm)); 1899 PROC_UNLOCK(p); 1900 break; 1901 case LINUX_PR_GET_NAME: 1902 PROC_LOCK(p); 1903 strlcpy(comm, p->p_comm, sizeof(comm)); 1904 PROC_UNLOCK(p); 1905 error = copyout(comm, (void *)(register_t)args->arg2, 1906 strlen(comm) + 1); 1907 break; 1908 default: 1909 error = EINVAL; 1910 break; 1911 } 1912 1913 return (error); 1914 } 1915 1916 int 1917 linux_sched_setparam(struct thread *td, 1918 struct linux_sched_setparam_args *uap) 1919 { 1920 struct sched_param sched_param; 1921 struct thread *tdt; 1922 int error, policy; 1923 1924 error = copyin(uap->param, &sched_param, sizeof(sched_param)); 1925 if (error) 1926 return (error); 1927 1928 tdt = linux_tdfind(td, uap->pid, -1); 1929 if (tdt == NULL) 1930 return (ESRCH); 1931 1932 if (linux_map_sched_prio) { 1933 error = kern_sched_getscheduler(td, tdt, &policy); 1934 if (error) 1935 goto out; 1936 1937 switch (policy) { 1938 case SCHED_OTHER: 1939 if (sched_param.sched_priority != 0) { 1940 error = EINVAL; 1941 goto out; 1942 } 1943 sched_param.sched_priority = 1944 PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE; 1945 break; 1946 case SCHED_FIFO: 1947 case SCHED_RR: 1948 if (sched_param.sched_priority < 1 || 1949 sched_param.sched_priority >= LINUX_MAX_RT_PRIO) { 1950 error = EINVAL; 1951 goto out; 1952 } 1953 /* 1954 * Map [1, LINUX_MAX_RT_PRIO - 1] to 1955 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down). 1956 */ 1957 sched_param.sched_priority = 1958 (sched_param.sched_priority - 1) * 1959 (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) / 1960 (LINUX_MAX_RT_PRIO - 1); 1961 break; 1962 } 1963 } 1964 1965 error = kern_sched_setparam(td, tdt, &sched_param); 1966 out: PROC_UNLOCK(tdt->td_proc); 1967 return (error); 1968 } 1969 1970 int 1971 linux_sched_getparam(struct thread *td, 1972 struct linux_sched_getparam_args *uap) 1973 { 1974 struct sched_param sched_param; 1975 struct thread *tdt; 1976 int error, policy; 1977 1978 tdt = linux_tdfind(td, uap->pid, -1); 1979 if (tdt == NULL) 1980 return (ESRCH); 1981 1982 error = kern_sched_getparam(td, tdt, &sched_param); 1983 if (error) { 1984 PROC_UNLOCK(tdt->td_proc); 1985 return (error); 1986 } 1987 1988 if (linux_map_sched_prio) { 1989 error = kern_sched_getscheduler(td, tdt, &policy); 1990 PROC_UNLOCK(tdt->td_proc); 1991 if (error) 1992 return (error); 1993 1994 switch (policy) { 1995 case SCHED_OTHER: 1996 sched_param.sched_priority = 0; 1997 break; 1998 case SCHED_FIFO: 1999 case SCHED_RR: 2000 /* 2001 * Map [0, RTP_PRIO_MAX - RTP_PRIO_MIN] to 2002 * [1, LINUX_MAX_RT_PRIO - 1] (rounding up). 2003 */ 2004 sched_param.sched_priority = 2005 (sched_param.sched_priority * 2006 (LINUX_MAX_RT_PRIO - 1) + 2007 (RTP_PRIO_MAX - RTP_PRIO_MIN - 1)) / 2008 (RTP_PRIO_MAX - RTP_PRIO_MIN) + 1; 2009 break; 2010 } 2011 } else 2012 PROC_UNLOCK(tdt->td_proc); 2013 2014 error = copyout(&sched_param, uap->param, sizeof(sched_param)); 2015 return (error); 2016 } 2017 2018 /* 2019 * Get affinity of a process. 2020 */ 2021 int 2022 linux_sched_getaffinity(struct thread *td, 2023 struct linux_sched_getaffinity_args *args) 2024 { 2025 int error; 2026 struct thread *tdt; 2027 2028 if (args->len < sizeof(cpuset_t)) 2029 return (EINVAL); 2030 2031 tdt = linux_tdfind(td, args->pid, -1); 2032 if (tdt == NULL) 2033 return (ESRCH); 2034 2035 PROC_UNLOCK(tdt->td_proc); 2036 2037 error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID, 2038 tdt->td_tid, sizeof(cpuset_t), (cpuset_t *)args->user_mask_ptr); 2039 if (error == 0) 2040 td->td_retval[0] = sizeof(cpuset_t); 2041 2042 return (error); 2043 } 2044 2045 /* 2046 * Set affinity of a process. 2047 */ 2048 int 2049 linux_sched_setaffinity(struct thread *td, 2050 struct linux_sched_setaffinity_args *args) 2051 { 2052 struct thread *tdt; 2053 2054 if (args->len < sizeof(cpuset_t)) 2055 return (EINVAL); 2056 2057 tdt = linux_tdfind(td, args->pid, -1); 2058 if (tdt == NULL) 2059 return (ESRCH); 2060 2061 PROC_UNLOCK(tdt->td_proc); 2062 2063 return (kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID, 2064 tdt->td_tid, sizeof(cpuset_t), (cpuset_t *) args->user_mask_ptr)); 2065 } 2066 2067 struct linux_rlimit64 { 2068 uint64_t rlim_cur; 2069 uint64_t rlim_max; 2070 }; 2071 2072 int 2073 linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args) 2074 { 2075 struct rlimit rlim, nrlim; 2076 struct linux_rlimit64 lrlim; 2077 struct proc *p; 2078 u_int which; 2079 int flags; 2080 int error; 2081 2082 if (args->resource >= LINUX_RLIM_NLIMITS) 2083 return (EINVAL); 2084 2085 which = linux_to_bsd_resource[args->resource]; 2086 if (which == -1) 2087 return (EINVAL); 2088 2089 if (args->new != NULL) { 2090 /* 2091 * Note. Unlike FreeBSD where rlim is signed 64-bit Linux 2092 * rlim is unsigned 64-bit. FreeBSD treats negative limits 2093 * as INFINITY so we do not need a conversion even. 2094 */ 2095 error = copyin(args->new, &nrlim, sizeof(nrlim)); 2096 if (error != 0) 2097 return (error); 2098 } 2099 2100 flags = PGET_HOLD | PGET_NOTWEXIT; 2101 if (args->new != NULL) 2102 flags |= PGET_CANDEBUG; 2103 else 2104 flags |= PGET_CANSEE; 2105 if (args->pid == 0) { 2106 p = td->td_proc; 2107 PHOLD(p); 2108 } else { 2109 error = pget(args->pid, flags, &p); 2110 if (error != 0) 2111 return (error); 2112 } 2113 if (args->old != NULL) { 2114 PROC_LOCK(p); 2115 lim_rlimit_proc(p, which, &rlim); 2116 PROC_UNLOCK(p); 2117 if (rlim.rlim_cur == RLIM_INFINITY) 2118 lrlim.rlim_cur = LINUX_RLIM_INFINITY; 2119 else 2120 lrlim.rlim_cur = rlim.rlim_cur; 2121 if (rlim.rlim_max == RLIM_INFINITY) 2122 lrlim.rlim_max = LINUX_RLIM_INFINITY; 2123 else 2124 lrlim.rlim_max = rlim.rlim_max; 2125 error = copyout(&lrlim, args->old, sizeof(lrlim)); 2126 if (error != 0) 2127 goto out; 2128 } 2129 2130 if (args->new != NULL) 2131 error = kern_proc_setrlimit(td, p, which, &nrlim); 2132 2133 out: 2134 PRELE(p); 2135 return (error); 2136 } 2137 2138 int 2139 linux_pselect6(struct thread *td, struct linux_pselect6_args *args) 2140 { 2141 struct timeval utv, tv0, tv1, *tvp; 2142 struct l_pselect6arg lpse6; 2143 struct l_timespec lts; 2144 struct timespec uts; 2145 l_sigset_t l_ss; 2146 sigset_t *ssp; 2147 sigset_t ss; 2148 int error; 2149 2150 ssp = NULL; 2151 if (args->sig != NULL) { 2152 error = copyin(args->sig, &lpse6, sizeof(lpse6)); 2153 if (error != 0) 2154 return (error); 2155 if (lpse6.ss_len != sizeof(l_ss)) 2156 return (EINVAL); 2157 if (lpse6.ss != 0) { 2158 error = copyin(PTRIN(lpse6.ss), &l_ss, 2159 sizeof(l_ss)); 2160 if (error != 0) 2161 return (error); 2162 linux_to_bsd_sigset(&l_ss, &ss); 2163 ssp = &ss; 2164 } 2165 } 2166 2167 /* 2168 * Currently glibc changes nanosecond number to microsecond. 2169 * This mean losing precision but for now it is hardly seen. 2170 */ 2171 if (args->tsp != NULL) { 2172 error = copyin(args->tsp, <s, sizeof(lts)); 2173 if (error != 0) 2174 return (error); 2175 error = linux_to_native_timespec(&uts, <s); 2176 if (error != 0) 2177 return (error); 2178 2179 TIMESPEC_TO_TIMEVAL(&utv, &uts); 2180 if (itimerfix(&utv)) 2181 return (EINVAL); 2182 2183 microtime(&tv0); 2184 tvp = &utv; 2185 } else 2186 tvp = NULL; 2187 2188 error = kern_pselect(td, args->nfds, args->readfds, args->writefds, 2189 args->exceptfds, tvp, ssp, LINUX_NFDBITS); 2190 2191 if (error == 0 && args->tsp != NULL) { 2192 if (td->td_retval[0] != 0) { 2193 /* 2194 * Compute how much time was left of the timeout, 2195 * by subtracting the current time and the time 2196 * before we started the call, and subtracting 2197 * that result from the user-supplied value. 2198 */ 2199 2200 microtime(&tv1); 2201 timevalsub(&tv1, &tv0); 2202 timevalsub(&utv, &tv1); 2203 if (utv.tv_sec < 0) 2204 timevalclear(&utv); 2205 } else 2206 timevalclear(&utv); 2207 2208 TIMEVAL_TO_TIMESPEC(&utv, &uts); 2209 2210 error = native_to_linux_timespec(<s, &uts); 2211 if (error == 0) 2212 error = copyout(<s, args->tsp, sizeof(lts)); 2213 } 2214 2215 return (error); 2216 } 2217 2218 int 2219 linux_ppoll(struct thread *td, struct linux_ppoll_args *args) 2220 { 2221 struct timespec ts0, ts1; 2222 struct l_timespec lts; 2223 struct timespec uts, *tsp; 2224 l_sigset_t l_ss; 2225 sigset_t *ssp; 2226 sigset_t ss; 2227 int error; 2228 2229 if (args->sset != NULL) { 2230 if (args->ssize != sizeof(l_ss)) 2231 return (EINVAL); 2232 error = copyin(args->sset, &l_ss, sizeof(l_ss)); 2233 if (error) 2234 return (error); 2235 linux_to_bsd_sigset(&l_ss, &ss); 2236 ssp = &ss; 2237 } else 2238 ssp = NULL; 2239 if (args->tsp != NULL) { 2240 error = copyin(args->tsp, <s, sizeof(lts)); 2241 if (error) 2242 return (error); 2243 error = linux_to_native_timespec(&uts, <s); 2244 if (error != 0) 2245 return (error); 2246 2247 nanotime(&ts0); 2248 tsp = &uts; 2249 } else 2250 tsp = NULL; 2251 2252 error = kern_poll(td, args->fds, args->nfds, tsp, ssp); 2253 2254 if (error == 0 && args->tsp != NULL) { 2255 if (td->td_retval[0]) { 2256 nanotime(&ts1); 2257 timespecsub(&ts1, &ts0, &ts1); 2258 timespecsub(&uts, &ts1, &uts); 2259 if (uts.tv_sec < 0) 2260 timespecclear(&uts); 2261 } else 2262 timespecclear(&uts); 2263 2264 error = native_to_linux_timespec(<s, &uts); 2265 if (error == 0) 2266 error = copyout(<s, args->tsp, sizeof(lts)); 2267 } 2268 2269 return (error); 2270 } 2271 2272 int 2273 linux_sched_rr_get_interval(struct thread *td, 2274 struct linux_sched_rr_get_interval_args *uap) 2275 { 2276 struct timespec ts; 2277 struct l_timespec lts; 2278 struct thread *tdt; 2279 int error; 2280 2281 /* 2282 * According to man in case the invalid pid specified 2283 * EINVAL should be returned. 2284 */ 2285 if (uap->pid < 0) 2286 return (EINVAL); 2287 2288 tdt = linux_tdfind(td, uap->pid, -1); 2289 if (tdt == NULL) 2290 return (ESRCH); 2291 2292 error = kern_sched_rr_get_interval_td(td, tdt, &ts); 2293 PROC_UNLOCK(tdt->td_proc); 2294 if (error != 0) 2295 return (error); 2296 error = native_to_linux_timespec(<s, &ts); 2297 if (error != 0) 2298 return (error); 2299 return (copyout(<s, uap->interval, sizeof(lts))); 2300 } 2301 2302 /* 2303 * In case when the Linux thread is the initial thread in 2304 * the thread group thread id is equal to the process id. 2305 * Glibc depends on this magic (assert in pthread_getattr_np.c). 2306 */ 2307 struct thread * 2308 linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid) 2309 { 2310 struct linux_emuldata *em; 2311 struct thread *tdt; 2312 struct proc *p; 2313 2314 tdt = NULL; 2315 if (tid == 0 || tid == td->td_tid) { 2316 tdt = td; 2317 PROC_LOCK(tdt->td_proc); 2318 } else if (tid > PID_MAX) 2319 tdt = tdfind(tid, pid); 2320 else { 2321 /* 2322 * Initial thread where the tid equal to the pid. 2323 */ 2324 p = pfind(tid); 2325 if (p != NULL) { 2326 if (SV_PROC_ABI(p) != SV_ABI_LINUX) { 2327 /* 2328 * p is not a Linuxulator process. 2329 */ 2330 PROC_UNLOCK(p); 2331 return (NULL); 2332 } 2333 FOREACH_THREAD_IN_PROC(p, tdt) { 2334 em = em_find(tdt); 2335 if (tid == em->em_tid) 2336 return (tdt); 2337 } 2338 PROC_UNLOCK(p); 2339 } 2340 return (NULL); 2341 } 2342 2343 return (tdt); 2344 } 2345 2346 void 2347 linux_to_bsd_waitopts(int options, int *bsdopts) 2348 { 2349 2350 if (options & LINUX_WNOHANG) 2351 *bsdopts |= WNOHANG; 2352 if (options & LINUX_WUNTRACED) 2353 *bsdopts |= WUNTRACED; 2354 if (options & LINUX_WEXITED) 2355 *bsdopts |= WEXITED; 2356 if (options & LINUX_WCONTINUED) 2357 *bsdopts |= WCONTINUED; 2358 if (options & LINUX_WNOWAIT) 2359 *bsdopts |= WNOWAIT; 2360 2361 if (options & __WCLONE) 2362 *bsdopts |= WLINUXCLONE; 2363 } 2364 2365 int 2366 linux_getrandom(struct thread *td, struct linux_getrandom_args *args) 2367 { 2368 struct uio uio; 2369 struct iovec iov; 2370 int error; 2371 2372 if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM)) 2373 return (EINVAL); 2374 if (args->count > INT_MAX) 2375 args->count = INT_MAX; 2376 2377 iov.iov_base = args->buf; 2378 iov.iov_len = args->count; 2379 2380 uio.uio_iov = &iov; 2381 uio.uio_iovcnt = 1; 2382 uio.uio_resid = iov.iov_len; 2383 uio.uio_segflg = UIO_USERSPACE; 2384 uio.uio_rw = UIO_READ; 2385 uio.uio_td = td; 2386 2387 error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK); 2388 if (error == 0) 2389 td->td_retval[0] = args->count - uio.uio_resid; 2390 return (error); 2391 } 2392 2393 int 2394 linux_mincore(struct thread *td, struct linux_mincore_args *args) 2395 { 2396 2397 /* Needs to be page-aligned */ 2398 if (args->start & PAGE_MASK) 2399 return (EINVAL); 2400 return (kern_mincore(td, args->start, args->len, args->vec)); 2401 } 2402 2403 #define SYSLOG_TAG "<6>" 2404 2405 int 2406 linux_syslog(struct thread *td, struct linux_syslog_args *args) 2407 { 2408 char buf[128], *src, *dst; 2409 u_int seq; 2410 int buflen, error; 2411 2412 if (args->type != LINUX_SYSLOG_ACTION_READ_ALL) { 2413 linux_msg(td, "syslog unsupported type 0x%x", args->type); 2414 return (EINVAL); 2415 } 2416 2417 if (args->len < 6) { 2418 td->td_retval[0] = 0; 2419 return (0); 2420 } 2421 2422 error = priv_check(td, PRIV_MSGBUF); 2423 if (error) 2424 return (error); 2425 2426 mtx_lock(&msgbuf_lock); 2427 msgbuf_peekbytes(msgbufp, NULL, 0, &seq); 2428 mtx_unlock(&msgbuf_lock); 2429 2430 dst = args->buf; 2431 error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG)); 2432 /* The -1 is to skip the trailing '\0'. */ 2433 dst += sizeof(SYSLOG_TAG) - 1; 2434 2435 while (error == 0) { 2436 mtx_lock(&msgbuf_lock); 2437 buflen = msgbuf_peekbytes(msgbufp, buf, sizeof(buf), &seq); 2438 mtx_unlock(&msgbuf_lock); 2439 2440 if (buflen == 0) 2441 break; 2442 2443 for (src = buf; src < buf + buflen && error == 0; src++) { 2444 if (*src == '\0') 2445 continue; 2446 2447 if (dst >= args->buf + args->len) 2448 goto out; 2449 2450 error = copyout(src, dst, 1); 2451 dst++; 2452 2453 if (*src == '\n' && *(src + 1) != '<' && 2454 dst + sizeof(SYSLOG_TAG) < args->buf + args->len) { 2455 error = copyout(&SYSLOG_TAG, 2456 dst, sizeof(SYSLOG_TAG)); 2457 dst += sizeof(SYSLOG_TAG) - 1; 2458 } 2459 } 2460 } 2461 out: 2462 td->td_retval[0] = dst - args->buf; 2463 return (error); 2464 } 2465 2466 int 2467 linux_getcpu(struct thread *td, struct linux_getcpu_args *args) 2468 { 2469 int cpu, error, node; 2470 2471 cpu = td->td_oncpu; /* Make sure it doesn't change during copyout(9) */ 2472 error = 0; 2473 node = cpuid_to_pcpu[cpu]->pc_domain; 2474 2475 if (args->cpu != NULL) 2476 error = copyout(&cpu, args->cpu, sizeof(l_int)); 2477 if (args->node != NULL) 2478 error = copyout(&node, args->node, sizeof(l_int)); 2479 return (error); 2480 } 2481