1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_ffclock.h" 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_ktrace.h" 34 35 #define __ELF_WORD_SIZE 32 36 37 #ifdef COMPAT_FREEBSD11 38 #define _WANT_FREEBSD11_KEVENT 39 #endif 40 41 #include <sys/param.h> 42 #include <sys/bus.h> 43 #include <sys/capsicum.h> 44 #include <sys/clock.h> 45 #include <sys/exec.h> 46 #include <sys/fcntl.h> 47 #include <sys/filedesc.h> 48 #include <sys/imgact.h> 49 #include <sys/jail.h> 50 #include <sys/kernel.h> 51 #include <sys/limits.h> 52 #include <sys/linker.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/file.h> /* Must come after sys/malloc.h */ 56 #include <sys/imgact.h> 57 #include <sys/mbuf.h> 58 #include <sys/mman.h> 59 #include <sys/module.h> 60 #include <sys/mount.h> 61 #include <sys/mutex.h> 62 #include <sys/namei.h> 63 #include <sys/priv.h> 64 #include <sys/proc.h> 65 #include <sys/procctl.h> 66 #include <sys/ptrace.h> 67 #include <sys/reboot.h> 68 #include <sys/resource.h> 69 #include <sys/resourcevar.h> 70 #include <sys/selinfo.h> 71 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 72 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 73 #include <sys/signal.h> 74 #include <sys/signalvar.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/stat.h> 78 #include <sys/syscall.h> 79 #include <sys/syscallsubr.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/sysproto.h> 83 #include <sys/systm.h> 84 #include <sys/thr.h> 85 #include <sys/timerfd.h> 86 #include <sys/timex.h> 87 #include <sys/unistd.h> 88 #include <sys/ucontext.h> 89 #include <sys/ucred.h> 90 #include <sys/vnode.h> 91 #include <sys/wait.h> 92 #include <sys/ipc.h> 93 #include <sys/msg.h> 94 #include <sys/sem.h> 95 #include <sys/shm.h> 96 #include <sys/timeffc.h> 97 #ifdef KTRACE 98 #include <sys/ktrace.h> 99 #endif 100 101 #ifdef INET 102 #include <netinet/in.h> 103 #endif 104 105 #include <vm/vm.h> 106 #include <vm/vm_param.h> 107 #include <vm/pmap.h> 108 #include <vm/vm_map.h> 109 #include <vm/vm_object.h> 110 #include <vm/vm_extern.h> 111 112 #include <machine/cpu.h> 113 #include <machine/elf.h> 114 #ifdef __amd64__ 115 #include <machine/md_var.h> 116 #endif 117 118 #include <security/audit/audit.h> 119 #include <security/mac/mac_syscalls.h> 120 121 #include <compat/freebsd32/freebsd32_util.h> 122 #include <compat/freebsd32/freebsd32.h> 123 #include <compat/freebsd32/freebsd32_ipc.h> 124 #include <compat/freebsd32/freebsd32_misc.h> 125 #include <compat/freebsd32/freebsd32_signal.h> 126 #include <compat/freebsd32/freebsd32_proto.h> 127 128 int compat_freebsd_32bit = 1; 129 130 static void 131 register_compat32_feature(void *arg) 132 { 133 if (!compat_freebsd_32bit) 134 return; 135 136 FEATURE_ADD("compat_freebsd32", "Compatible with 32-bit FreeBSD"); 137 FEATURE_ADD("compat_freebsd_32bit", 138 "Compatible with 32-bit FreeBSD (legacy feature name)"); 139 } 140 SYSINIT(freebsd32, SI_SUB_EXEC, SI_ORDER_ANY, register_compat32_feature, 141 NULL); 142 143 struct ptrace_io_desc32 { 144 int piod_op; 145 uint32_t piod_offs; 146 uint32_t piod_addr; 147 uint32_t piod_len; 148 }; 149 150 struct ptrace_vm_entry32 { 151 int pve_entry; 152 int pve_timestamp; 153 uint32_t pve_start; 154 uint32_t pve_end; 155 uint32_t pve_offset; 156 u_int pve_prot; 157 u_int pve_pathlen; 158 int32_t pve_fileid; 159 u_int pve_fsid; 160 uint32_t pve_path; 161 }; 162 163 #ifdef __amd64__ 164 CTASSERT(sizeof(struct timeval32) == 8); 165 CTASSERT(sizeof(struct timespec32) == 8); 166 CTASSERT(sizeof(struct itimerval32) == 16); 167 CTASSERT(sizeof(struct bintime32) == 12); 168 #else 169 CTASSERT(sizeof(struct timeval32) == 16); 170 CTASSERT(sizeof(struct timespec32) == 16); 171 CTASSERT(sizeof(struct itimerval32) == 32); 172 CTASSERT(sizeof(struct bintime32) == 16); 173 #endif 174 CTASSERT(sizeof(struct ostatfs32) == 256); 175 #ifdef __amd64__ 176 CTASSERT(sizeof(struct rusage32) == 72); 177 #else 178 CTASSERT(sizeof(struct rusage32) == 88); 179 #endif 180 CTASSERT(sizeof(struct sigaltstack32) == 12); 181 #ifdef __amd64__ 182 CTASSERT(sizeof(struct kevent32) == 56); 183 #else 184 CTASSERT(sizeof(struct kevent32) == 64); 185 #endif 186 CTASSERT(sizeof(struct iovec32) == 8); 187 CTASSERT(sizeof(struct msghdr32) == 28); 188 #ifdef __amd64__ 189 CTASSERT(sizeof(struct stat32) == 208); 190 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 191 #else 192 CTASSERT(sizeof(struct stat32) == 224); 193 CTASSERT(sizeof(struct freebsd11_stat32) == 120); 194 #endif 195 CTASSERT(sizeof(struct sigaction32) == 24); 196 197 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 198 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 199 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 200 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 201 202 void 203 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 204 { 205 206 TV_CP(*s, *s32, ru_utime); 207 TV_CP(*s, *s32, ru_stime); 208 CP(*s, *s32, ru_maxrss); 209 CP(*s, *s32, ru_ixrss); 210 CP(*s, *s32, ru_idrss); 211 CP(*s, *s32, ru_isrss); 212 CP(*s, *s32, ru_minflt); 213 CP(*s, *s32, ru_majflt); 214 CP(*s, *s32, ru_nswap); 215 CP(*s, *s32, ru_inblock); 216 CP(*s, *s32, ru_oublock); 217 CP(*s, *s32, ru_msgsnd); 218 CP(*s, *s32, ru_msgrcv); 219 CP(*s, *s32, ru_nsignals); 220 CP(*s, *s32, ru_nvcsw); 221 CP(*s, *s32, ru_nivcsw); 222 } 223 224 int 225 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 226 { 227 int error, status; 228 struct rusage32 ru32; 229 struct rusage ru, *rup; 230 231 if (uap->rusage != NULL) 232 rup = &ru; 233 else 234 rup = NULL; 235 error = kern_wait(td, uap->pid, &status, uap->options, rup); 236 if (error) 237 return (error); 238 if (uap->status != NULL) 239 error = copyout(&status, uap->status, sizeof(status)); 240 if (uap->rusage != NULL && error == 0) { 241 freebsd32_rusage_out(&ru, &ru32); 242 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 243 } 244 return (error); 245 } 246 247 int 248 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 249 { 250 struct __wrusage32 wru32; 251 struct __wrusage wru, *wrup; 252 struct __siginfo32 si32; 253 struct __siginfo si, *sip; 254 int error, status; 255 256 if (uap->wrusage != NULL) 257 wrup = &wru; 258 else 259 wrup = NULL; 260 if (uap->info != NULL) { 261 sip = &si; 262 bzero(sip, sizeof(*sip)); 263 } else 264 sip = NULL; 265 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 266 &status, uap->options, wrup, sip); 267 if (error != 0) 268 return (error); 269 if (uap->status != NULL) 270 error = copyout(&status, uap->status, sizeof(status)); 271 if (uap->wrusage != NULL && error == 0) { 272 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 273 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 274 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 275 } 276 if (uap->info != NULL && error == 0) { 277 siginfo_to_siginfo32 (&si, &si32); 278 error = copyout(&si32, uap->info, sizeof(si32)); 279 } 280 return (error); 281 } 282 283 #ifdef COMPAT_FREEBSD4 284 static void 285 copy_statfs(struct statfs *in, struct ostatfs32 *out) 286 { 287 288 statfs_scale_blocks(in, INT32_MAX); 289 bzero(out, sizeof(*out)); 290 CP(*in, *out, f_bsize); 291 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 292 CP(*in, *out, f_blocks); 293 CP(*in, *out, f_bfree); 294 CP(*in, *out, f_bavail); 295 out->f_files = MIN(in->f_files, INT32_MAX); 296 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 297 CP(*in, *out, f_fsid); 298 CP(*in, *out, f_owner); 299 CP(*in, *out, f_type); 300 CP(*in, *out, f_flags); 301 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 302 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 303 strlcpy(out->f_fstypename, 304 in->f_fstypename, MFSNAMELEN); 305 strlcpy(out->f_mntonname, 306 in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 307 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 308 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 309 strlcpy(out->f_mntfromname, 310 in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 311 } 312 #endif 313 314 int 315 freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap) 316 { 317 size_t count; 318 int error; 319 320 if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX) 321 return (EINVAL); 322 error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count, 323 UIO_USERSPACE, uap->mode); 324 if (error == 0) 325 td->td_retval[0] = count; 326 return (error); 327 } 328 329 #ifdef COMPAT_FREEBSD4 330 int 331 freebsd4_freebsd32_getfsstat(struct thread *td, 332 struct freebsd4_freebsd32_getfsstat_args *uap) 333 { 334 struct statfs *buf, *sp; 335 struct ostatfs32 stat32; 336 size_t count, size, copycount; 337 int error; 338 339 count = uap->bufsize / sizeof(struct ostatfs32); 340 size = count * sizeof(struct statfs); 341 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 342 if (size > 0) { 343 sp = buf; 344 copycount = count; 345 while (copycount > 0 && error == 0) { 346 copy_statfs(sp, &stat32); 347 error = copyout(&stat32, uap->buf, sizeof(stat32)); 348 sp++; 349 uap->buf++; 350 copycount--; 351 } 352 free(buf, M_STATFS); 353 } 354 if (error == 0) 355 td->td_retval[0] = count; 356 return (error); 357 } 358 #endif 359 360 #ifdef COMPAT_FREEBSD11 361 int 362 freebsd11_freebsd32_getfsstat(struct thread *td, 363 struct freebsd11_freebsd32_getfsstat_args *uap) 364 { 365 return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize, 366 uap->mode)); 367 } 368 #endif 369 370 int 371 freebsd32_sigaltstack(struct thread *td, 372 struct freebsd32_sigaltstack_args *uap) 373 { 374 struct sigaltstack32 s32; 375 struct sigaltstack ss, oss, *ssp; 376 int error; 377 378 if (uap->ss != NULL) { 379 error = copyin(uap->ss, &s32, sizeof(s32)); 380 if (error) 381 return (error); 382 PTRIN_CP(s32, ss, ss_sp); 383 CP(s32, ss, ss_size); 384 CP(s32, ss, ss_flags); 385 ssp = &ss; 386 } else 387 ssp = NULL; 388 error = kern_sigaltstack(td, ssp, &oss); 389 if (error == 0 && uap->oss != NULL) { 390 PTROUT_CP(oss, s32, ss_sp); 391 CP(oss, s32, ss_size); 392 CP(oss, s32, ss_flags); 393 error = copyout(&s32, uap->oss, sizeof(s32)); 394 } 395 return (error); 396 } 397 398 /* 399 * Custom version of exec_copyin_args() so that we can translate 400 * the pointers. 401 */ 402 int 403 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 404 uint32_t *argv, uint32_t *envv) 405 { 406 char *argp, *envp; 407 uint32_t *p32, arg; 408 int error; 409 410 bzero(args, sizeof(*args)); 411 if (argv == NULL) 412 return (EFAULT); 413 414 /* 415 * Allocate demand-paged memory for the file name, argument, and 416 * environment strings. 417 */ 418 error = exec_alloc_args(args); 419 if (error != 0) 420 return (error); 421 422 /* 423 * Copy the file name. 424 */ 425 error = exec_args_add_fname(args, fname, UIO_USERSPACE); 426 if (error != 0) 427 goto err_exit; 428 429 /* 430 * extract arguments first 431 */ 432 p32 = argv; 433 for (;;) { 434 error = copyin(p32++, &arg, sizeof(arg)); 435 if (error) 436 goto err_exit; 437 if (arg == 0) 438 break; 439 argp = PTRIN(arg); 440 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 441 if (error != 0) 442 goto err_exit; 443 } 444 445 /* 446 * extract environment strings 447 */ 448 if (envv) { 449 p32 = envv; 450 for (;;) { 451 error = copyin(p32++, &arg, sizeof(arg)); 452 if (error) 453 goto err_exit; 454 if (arg == 0) 455 break; 456 envp = PTRIN(arg); 457 error = exec_args_add_env(args, envp, UIO_USERSPACE); 458 if (error != 0) 459 goto err_exit; 460 } 461 } 462 463 return (0); 464 465 err_exit: 466 exec_free_args(args); 467 return (error); 468 } 469 470 int 471 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 472 { 473 struct image_args eargs; 474 struct vmspace *oldvmspace; 475 int error; 476 477 error = pre_execve(td, &oldvmspace); 478 if (error != 0) 479 return (error); 480 error = freebsd32_exec_copyin_args(&eargs, uap->fname, uap->argv, 481 uap->envv); 482 if (error == 0) 483 error = kern_execve(td, &eargs, NULL, oldvmspace); 484 post_execve(td, error, oldvmspace); 485 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 486 return (error); 487 } 488 489 int 490 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 491 { 492 struct image_args eargs; 493 struct vmspace *oldvmspace; 494 int error; 495 496 error = pre_execve(td, &oldvmspace); 497 if (error != 0) 498 return (error); 499 error = freebsd32_exec_copyin_args(&eargs, NULL, uap->argv, uap->envv); 500 if (error == 0) { 501 eargs.fd = uap->fd; 502 error = kern_execve(td, &eargs, NULL, oldvmspace); 503 } 504 post_execve(td, error, oldvmspace); 505 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 506 return (error); 507 } 508 509 int 510 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 511 { 512 513 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 514 uap->mode, PAIR32TO64(dev_t, uap->dev))); 515 } 516 517 int 518 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 519 { 520 int prot; 521 522 prot = uap->prot; 523 #if defined(__amd64__) 524 if (i386_read_exec && (prot & PROT_READ) != 0) 525 prot |= PROT_EXEC; 526 #endif 527 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 528 prot, 0)); 529 } 530 531 int 532 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 533 { 534 int prot; 535 536 prot = uap->prot; 537 #if defined(__amd64__) 538 if (i386_read_exec && (prot & PROT_READ)) 539 prot |= PROT_EXEC; 540 #endif 541 542 return (kern_mmap(td, &(struct mmap_req){ 543 .mr_hint = (uintptr_t)uap->addr, 544 .mr_len = uap->len, 545 .mr_prot = prot, 546 .mr_flags = uap->flags, 547 .mr_fd = uap->fd, 548 .mr_pos = PAIR32TO64(off_t, uap->pos), 549 })); 550 } 551 552 #ifdef COMPAT_FREEBSD6 553 int 554 freebsd6_freebsd32_mmap(struct thread *td, 555 struct freebsd6_freebsd32_mmap_args *uap) 556 { 557 int prot; 558 559 prot = uap->prot; 560 #if defined(__amd64__) 561 if (i386_read_exec && (prot & PROT_READ)) 562 prot |= PROT_EXEC; 563 #endif 564 565 return (kern_mmap(td, &(struct mmap_req){ 566 .mr_hint = (uintptr_t)uap->addr, 567 .mr_len = uap->len, 568 .mr_prot = prot, 569 .mr_flags = uap->flags, 570 .mr_fd = uap->fd, 571 .mr_pos = PAIR32TO64(off_t, uap->pos), 572 })); 573 } 574 #endif 575 576 #ifdef COMPAT_43 577 int 578 ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap) 579 { 580 return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot, 581 uap->flags, uap->fd, uap->pos)); 582 } 583 #endif 584 585 int 586 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 587 { 588 struct itimerval itv, oitv, *itvp; 589 struct itimerval32 i32; 590 int error; 591 592 if (uap->itv != NULL) { 593 error = copyin(uap->itv, &i32, sizeof(i32)); 594 if (error) 595 return (error); 596 TV_CP(i32, itv, it_interval); 597 TV_CP(i32, itv, it_value); 598 itvp = &itv; 599 } else 600 itvp = NULL; 601 error = kern_setitimer(td, uap->which, itvp, &oitv); 602 if (error || uap->oitv == NULL) 603 return (error); 604 TV_CP(oitv, i32, it_interval); 605 TV_CP(oitv, i32, it_value); 606 return (copyout(&i32, uap->oitv, sizeof(i32))); 607 } 608 609 int 610 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 611 { 612 struct itimerval itv; 613 struct itimerval32 i32; 614 int error; 615 616 error = kern_getitimer(td, uap->which, &itv); 617 if (error || uap->itv == NULL) 618 return (error); 619 TV_CP(itv, i32, it_interval); 620 TV_CP(itv, i32, it_value); 621 return (copyout(&i32, uap->itv, sizeof(i32))); 622 } 623 624 int 625 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 626 { 627 struct timeval32 tv32; 628 struct timeval tv, *tvp; 629 int error; 630 631 if (uap->tv != NULL) { 632 error = copyin(uap->tv, &tv32, sizeof(tv32)); 633 if (error) 634 return (error); 635 CP(tv32, tv, tv_sec); 636 CP(tv32, tv, tv_usec); 637 tvp = &tv; 638 } else 639 tvp = NULL; 640 /* 641 * XXX Do pointers need PTRIN()? 642 */ 643 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 644 sizeof(int32_t) * 8)); 645 } 646 647 int 648 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 649 { 650 struct timespec32 ts32; 651 struct timespec ts; 652 struct timeval tv, *tvp; 653 sigset_t set, *uset; 654 int error; 655 656 if (uap->ts != NULL) { 657 error = copyin(uap->ts, &ts32, sizeof(ts32)); 658 if (error != 0) 659 return (error); 660 CP(ts32, ts, tv_sec); 661 CP(ts32, ts, tv_nsec); 662 TIMESPEC_TO_TIMEVAL(&tv, &ts); 663 tvp = &tv; 664 } else 665 tvp = NULL; 666 if (uap->sm != NULL) { 667 error = copyin(uap->sm, &set, sizeof(set)); 668 if (error != 0) 669 return (error); 670 uset = &set; 671 } else 672 uset = NULL; 673 /* 674 * XXX Do pointers need PTRIN()? 675 */ 676 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 677 uset, sizeof(int32_t) * 8); 678 return (error); 679 } 680 681 static void 682 freebsd32_kevent_to_kevent32(const struct kevent *kevp, struct kevent32 *ks32) 683 { 684 uint64_t e; 685 int j; 686 687 CP(*kevp, *ks32, ident); 688 CP(*kevp, *ks32, filter); 689 CP(*kevp, *ks32, flags); 690 CP(*kevp, *ks32, fflags); 691 #if BYTE_ORDER == LITTLE_ENDIAN 692 ks32->data1 = kevp->data; 693 ks32->data2 = kevp->data >> 32; 694 #else 695 ks32->data1 = kevp->data >> 32; 696 ks32->data2 = kevp->data; 697 #endif 698 PTROUT_CP(*kevp, *ks32, udata); 699 for (j = 0; j < nitems(kevp->ext); j++) { 700 e = kevp->ext[j]; 701 #if BYTE_ORDER == LITTLE_ENDIAN 702 ks32->ext64[2 * j] = e; 703 ks32->ext64[2 * j + 1] = e >> 32; 704 #else 705 ks32->ext64[2 * j] = e >> 32; 706 ks32->ext64[2 * j + 1] = e; 707 #endif 708 } 709 } 710 711 void 712 freebsd32_kinfo_knote_to_32(const struct kinfo_knote *kin, 713 struct kinfo_knote32 *kin32) 714 { 715 memset(kin32, 0, sizeof(*kin32)); 716 CP(*kin, *kin32, knt_kq_fd); 717 freebsd32_kevent_to_kevent32(&kin->knt_event, &kin32->knt_event); 718 CP(*kin, *kin32, knt_status); 719 CP(*kin, *kin32, knt_extdata); 720 switch (kin->knt_extdata) { 721 case KNOTE_EXTDATA_NONE: 722 break; 723 case KNOTE_EXTDATA_VNODE: 724 CP(*kin, *kin32, knt_vnode.knt_vnode_type); 725 #if BYTE_ORDER == LITTLE_ENDIAN 726 kin32->knt_vnode.knt_vnode_fsid[0] = kin->knt_vnode. 727 knt_vnode_fsid; 728 kin32->knt_vnode.knt_vnode_fsid[1] = kin->knt_vnode. 729 knt_vnode_fsid >> 32; 730 kin32->knt_vnode.knt_vnode_fileid[0] = kin->knt_vnode. 731 knt_vnode_fileid; 732 kin32->knt_vnode.knt_vnode_fileid[1] = kin->knt_vnode. 733 knt_vnode_fileid >> 32; 734 #else 735 kin32->knt_vnode.knt_vnode_fsid[1] = kin->knt_vnode. 736 knt_vnode_fsid; 737 kin32->knt_vnode.knt_vnode_fsid[0] = kin->knt_vnode. 738 knt_vnode_fsid >> 32; 739 kin32->knt_vnode.knt_vnode_fileid[1] = kin->knt_vnode. 740 knt_vnode_fileid; 741 kin32->knt_vnode.knt_vnode_fileid[0] = kin->knt_vnode. 742 knt_vnode_fileid >> 32; 743 #endif 744 memcpy(kin32->knt_vnode.knt_vnode_fullpath, 745 kin->knt_vnode.knt_vnode_fullpath, PATH_MAX); 746 break; 747 case KNOTE_EXTDATA_PIPE: 748 #if BYTE_ORDER == LITTLE_ENDIAN 749 kin32->knt_pipe.knt_pipe_ino[0] = kin->knt_pipe.knt_pipe_ino; 750 kin32->knt_pipe.knt_pipe_ino[1] = kin->knt_pipe. 751 knt_pipe_ino >> 32; 752 #else 753 kin32->knt_pipe.knt_pipe_ino[1] = kin->knt_pipe.knt_pipe_ino; 754 kin32->knt_pipe.knt_pipe_ino[0] = kin->knt_pipe. 755 knt_pipe_ino >> 32; 756 #endif 757 break; 758 } 759 } 760 761 /* 762 * Copy 'count' items into the destination list pointed to by uap->eventlist. 763 */ 764 static int 765 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 766 { 767 struct freebsd32_kevent_args *uap; 768 struct kevent32 ks32[KQ_NEVENTS]; 769 int i, error; 770 771 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 772 uap = (struct freebsd32_kevent_args *)arg; 773 774 for (i = 0; i < count; i++) 775 freebsd32_kevent_to_kevent32(&kevp[i], &ks32[i]); 776 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 777 if (error == 0) 778 uap->eventlist += count; 779 return (error); 780 } 781 782 /* 783 * Copy 'count' items from the list pointed to by uap->changelist. 784 */ 785 static int 786 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 787 { 788 struct freebsd32_kevent_args *uap; 789 struct kevent32 ks32[KQ_NEVENTS]; 790 uint64_t e; 791 int i, j, error; 792 793 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 794 uap = (struct freebsd32_kevent_args *)arg; 795 796 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 797 if (error) 798 goto done; 799 uap->changelist += count; 800 801 for (i = 0; i < count; i++) { 802 CP(ks32[i], kevp[i], ident); 803 CP(ks32[i], kevp[i], filter); 804 CP(ks32[i], kevp[i], flags); 805 CP(ks32[i], kevp[i], fflags); 806 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 807 PTRIN_CP(ks32[i], kevp[i], udata); 808 for (j = 0; j < nitems(kevp->ext); j++) { 809 #if BYTE_ORDER == LITTLE_ENDIAN 810 e = ks32[i].ext64[2 * j + 1]; 811 e <<= 32; 812 e += ks32[i].ext64[2 * j]; 813 #else 814 e = ks32[i].ext64[2 * j]; 815 e <<= 32; 816 e += ks32[i].ext64[2 * j + 1]; 817 #endif 818 kevp[i].ext[j] = e; 819 } 820 } 821 done: 822 return (error); 823 } 824 825 int 826 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 827 { 828 struct timespec32 ts32; 829 struct timespec ts, *tsp; 830 struct kevent_copyops k_ops = { 831 .arg = uap, 832 .k_copyout = freebsd32_kevent_copyout, 833 .k_copyin = freebsd32_kevent_copyin, 834 }; 835 #ifdef KTRACE 836 struct kevent32 *eventlist = uap->eventlist; 837 #endif 838 int error; 839 840 if (uap->timeout) { 841 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 842 if (error) 843 return (error); 844 CP(ts32, ts, tv_sec); 845 CP(ts32, ts, tv_nsec); 846 tsp = &ts; 847 } else 848 tsp = NULL; 849 #ifdef KTRACE 850 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 851 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 852 uap->nchanges, sizeof(struct kevent32)); 853 #endif 854 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 855 &k_ops, tsp); 856 #ifdef KTRACE 857 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 858 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 859 td->td_retval[0], sizeof(struct kevent32)); 860 #endif 861 return (error); 862 } 863 864 #ifdef COMPAT_FREEBSD11 865 static int 866 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 867 { 868 struct freebsd11_freebsd32_kevent_args *uap; 869 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 870 int i, error; 871 872 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 873 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 874 875 for (i = 0; i < count; i++) { 876 CP(kevp[i], ks32[i], ident); 877 CP(kevp[i], ks32[i], filter); 878 CP(kevp[i], ks32[i], flags); 879 CP(kevp[i], ks32[i], fflags); 880 CP(kevp[i], ks32[i], data); 881 PTROUT_CP(kevp[i], ks32[i], udata); 882 } 883 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 884 if (error == 0) 885 uap->eventlist += count; 886 return (error); 887 } 888 889 /* 890 * Copy 'count' items from the list pointed to by uap->changelist. 891 */ 892 static int 893 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 894 { 895 struct freebsd11_freebsd32_kevent_args *uap; 896 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 897 int i, j, error; 898 899 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 900 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 901 902 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 903 if (error) 904 goto done; 905 uap->changelist += count; 906 907 for (i = 0; i < count; i++) { 908 CP(ks32[i], kevp[i], ident); 909 CP(ks32[i], kevp[i], filter); 910 CP(ks32[i], kevp[i], flags); 911 CP(ks32[i], kevp[i], fflags); 912 CP(ks32[i], kevp[i], data); 913 PTRIN_CP(ks32[i], kevp[i], udata); 914 for (j = 0; j < nitems(kevp->ext); j++) 915 kevp[i].ext[j] = 0; 916 } 917 done: 918 return (error); 919 } 920 921 int 922 freebsd11_freebsd32_kevent(struct thread *td, 923 struct freebsd11_freebsd32_kevent_args *uap) 924 { 925 struct timespec32 ts32; 926 struct timespec ts, *tsp; 927 struct kevent_copyops k_ops = { 928 .arg = uap, 929 .k_copyout = freebsd32_kevent11_copyout, 930 .k_copyin = freebsd32_kevent11_copyin, 931 }; 932 #ifdef KTRACE 933 struct freebsd11_kevent32 *eventlist = uap->eventlist; 934 #endif 935 int error; 936 937 if (uap->timeout) { 938 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 939 if (error) 940 return (error); 941 CP(ts32, ts, tv_sec); 942 CP(ts32, ts, tv_nsec); 943 tsp = &ts; 944 } else 945 tsp = NULL; 946 #ifdef KTRACE 947 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 948 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 949 uap->changelist, uap->nchanges, 950 sizeof(struct freebsd11_kevent32)); 951 #endif 952 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 953 &k_ops, tsp); 954 #ifdef KTRACE 955 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 956 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 957 eventlist, td->td_retval[0], 958 sizeof(struct freebsd11_kevent32)); 959 #endif 960 return (error); 961 } 962 #endif 963 964 int 965 freebsd32_gettimeofday(struct thread *td, 966 struct freebsd32_gettimeofday_args *uap) 967 { 968 struct timeval atv; 969 struct timeval32 atv32; 970 struct timezone rtz; 971 int error = 0; 972 973 if (uap->tp) { 974 microtime(&atv); 975 CP(atv, atv32, tv_sec); 976 CP(atv, atv32, tv_usec); 977 error = copyout(&atv32, uap->tp, sizeof (atv32)); 978 } 979 if (error == 0 && uap->tzp != NULL) { 980 rtz.tz_minuteswest = 0; 981 rtz.tz_dsttime = 0; 982 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 983 } 984 return (error); 985 } 986 987 int 988 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 989 { 990 struct rusage32 s32; 991 struct rusage s; 992 int error; 993 994 error = kern_getrusage(td, uap->who, &s); 995 if (error == 0) { 996 freebsd32_rusage_out(&s, &s32); 997 error = copyout(&s32, uap->rusage, sizeof(s32)); 998 } 999 return (error); 1000 } 1001 1002 static void 1003 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 1004 struct ptrace_lwpinfo32 *pl32) 1005 { 1006 1007 bzero(pl32, sizeof(*pl32)); 1008 pl32->pl_lwpid = pl->pl_lwpid; 1009 pl32->pl_event = pl->pl_event; 1010 pl32->pl_flags = pl->pl_flags; 1011 pl32->pl_sigmask = pl->pl_sigmask; 1012 pl32->pl_siglist = pl->pl_siglist; 1013 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 1014 strcpy(pl32->pl_tdname, pl->pl_tdname); 1015 pl32->pl_child_pid = pl->pl_child_pid; 1016 pl32->pl_syscall_code = pl->pl_syscall_code; 1017 pl32->pl_syscall_narg = pl->pl_syscall_narg; 1018 } 1019 1020 static void 1021 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 1022 struct ptrace_sc_ret32 *psr32) 1023 { 1024 1025 bzero(psr32, sizeof(*psr32)); 1026 psr32->sr_retval[0] = psr->sr_retval[0]; 1027 psr32->sr_retval[1] = psr->sr_retval[1]; 1028 psr32->sr_error = psr->sr_error; 1029 } 1030 1031 int 1032 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) 1033 { 1034 union { 1035 struct ptrace_io_desc piod; 1036 struct ptrace_lwpinfo pl; 1037 struct ptrace_vm_entry pve; 1038 struct ptrace_coredump pc; 1039 struct ptrace_sc_remote sr; 1040 struct dbreg32 dbreg; 1041 struct fpreg32 fpreg; 1042 struct reg32 reg; 1043 struct iovec vec; 1044 register_t args[nitems(td->td_sa.args)]; 1045 struct ptrace_sc_ret psr; 1046 int ptevents; 1047 } r; 1048 union { 1049 struct ptrace_io_desc32 piod; 1050 struct ptrace_lwpinfo32 pl; 1051 struct ptrace_vm_entry32 pve; 1052 struct ptrace_coredump32 pc; 1053 struct ptrace_sc_remote32 sr; 1054 uint32_t args[nitems(td->td_sa.args)]; 1055 struct ptrace_sc_ret32 psr; 1056 struct iovec32 vec; 1057 } r32; 1058 syscallarg_t pscr_args[nitems(td->td_sa.args)]; 1059 u_int pscr_args32[nitems(td->td_sa.args)]; 1060 void *addr; 1061 int data, error, i; 1062 1063 if (!allow_ptrace) 1064 return (ENOSYS); 1065 error = 0; 1066 1067 AUDIT_ARG_PID(uap->pid); 1068 AUDIT_ARG_CMD(uap->req); 1069 AUDIT_ARG_VALUE(uap->data); 1070 addr = &r; 1071 data = uap->data; 1072 switch (uap->req) { 1073 case PT_GET_EVENT_MASK: 1074 case PT_GET_SC_ARGS: 1075 case PT_GET_SC_RET: 1076 break; 1077 case PT_LWPINFO: 1078 if (uap->data > sizeof(r32.pl)) 1079 return (EINVAL); 1080 1081 /* 1082 * Pass size of native structure in 'data'. Truncate 1083 * if necessary to avoid siginfo. 1084 */ 1085 data = sizeof(r.pl); 1086 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + 1087 sizeof(struct __siginfo32)) 1088 data = offsetof(struct ptrace_lwpinfo, pl_siginfo); 1089 break; 1090 case PT_GETREGS: 1091 bzero(&r.reg, sizeof(r.reg)); 1092 break; 1093 case PT_GETFPREGS: 1094 bzero(&r.fpreg, sizeof(r.fpreg)); 1095 break; 1096 case PT_GETDBREGS: 1097 bzero(&r.dbreg, sizeof(r.dbreg)); 1098 break; 1099 case PT_SETREGS: 1100 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 1101 break; 1102 case PT_SETFPREGS: 1103 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 1104 break; 1105 case PT_SETDBREGS: 1106 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 1107 break; 1108 case PT_GETREGSET: 1109 case PT_SETREGSET: 1110 error = copyin(uap->addr, &r32.vec, sizeof(r32.vec)); 1111 if (error != 0) 1112 break; 1113 1114 r.vec.iov_len = r32.vec.iov_len; 1115 r.vec.iov_base = PTRIN(r32.vec.iov_base); 1116 break; 1117 case PT_SET_EVENT_MASK: 1118 if (uap->data != sizeof(r.ptevents)) 1119 error = EINVAL; 1120 else 1121 error = copyin(uap->addr, &r.ptevents, uap->data); 1122 break; 1123 case PT_IO: 1124 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); 1125 if (error) 1126 break; 1127 CP(r32.piod, r.piod, piod_op); 1128 PTRIN_CP(r32.piod, r.piod, piod_offs); 1129 PTRIN_CP(r32.piod, r.piod, piod_addr); 1130 CP(r32.piod, r.piod, piod_len); 1131 break; 1132 case PT_VM_ENTRY: 1133 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); 1134 if (error) 1135 break; 1136 1137 CP(r32.pve, r.pve, pve_entry); 1138 CP(r32.pve, r.pve, pve_timestamp); 1139 CP(r32.pve, r.pve, pve_start); 1140 CP(r32.pve, r.pve, pve_end); 1141 CP(r32.pve, r.pve, pve_offset); 1142 CP(r32.pve, r.pve, pve_prot); 1143 CP(r32.pve, r.pve, pve_pathlen); 1144 CP(r32.pve, r.pve, pve_fileid); 1145 CP(r32.pve, r.pve, pve_fsid); 1146 PTRIN_CP(r32.pve, r.pve, pve_path); 1147 break; 1148 case PT_COREDUMP: 1149 if (uap->data != sizeof(r32.pc)) 1150 error = EINVAL; 1151 else 1152 error = copyin(uap->addr, &r32.pc, uap->data); 1153 CP(r32.pc, r.pc, pc_fd); 1154 CP(r32.pc, r.pc, pc_flags); 1155 r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit); 1156 data = sizeof(r.pc); 1157 break; 1158 case PT_SC_REMOTE: 1159 if (uap->data != sizeof(r32.sr)) { 1160 error = EINVAL; 1161 break; 1162 } 1163 error = copyin(uap->addr, &r32.sr, uap->data); 1164 if (error != 0) 1165 break; 1166 CP(r32.sr, r.sr, pscr_syscall); 1167 CP(r32.sr, r.sr, pscr_nargs); 1168 if (r.sr.pscr_nargs > nitems(td->td_sa.args)) { 1169 error = EINVAL; 1170 break; 1171 } 1172 error = copyin(PTRIN(r32.sr.pscr_args), pscr_args32, 1173 sizeof(u_int) * r32.sr.pscr_nargs); 1174 if (error != 0) 1175 break; 1176 for (i = 0; i < r32.sr.pscr_nargs; i++) 1177 pscr_args[i] = pscr_args32[i]; 1178 r.sr.pscr_args = pscr_args; 1179 break; 1180 default: 1181 addr = uap->addr; 1182 break; 1183 } 1184 if (error) 1185 return (error); 1186 1187 error = kern_ptrace(td, uap->req, uap->pid, addr, data); 1188 if (error) 1189 return (error); 1190 1191 switch (uap->req) { 1192 case PT_VM_ENTRY: 1193 CP(r.pve, r32.pve, pve_entry); 1194 CP(r.pve, r32.pve, pve_timestamp); 1195 CP(r.pve, r32.pve, pve_start); 1196 CP(r.pve, r32.pve, pve_end); 1197 CP(r.pve, r32.pve, pve_offset); 1198 CP(r.pve, r32.pve, pve_prot); 1199 CP(r.pve, r32.pve, pve_pathlen); 1200 CP(r.pve, r32.pve, pve_fileid); 1201 CP(r.pve, r32.pve, pve_fsid); 1202 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); 1203 break; 1204 case PT_IO: 1205 CP(r.piod, r32.piod, piod_len); 1206 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); 1207 break; 1208 case PT_GETREGS: 1209 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 1210 break; 1211 case PT_GETFPREGS: 1212 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 1213 break; 1214 case PT_GETDBREGS: 1215 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 1216 break; 1217 case PT_GETREGSET: 1218 r32.vec.iov_len = r.vec.iov_len; 1219 error = copyout(&r32.vec, uap->addr, sizeof(r32.vec)); 1220 break; 1221 case PT_GET_EVENT_MASK: 1222 /* NB: The size in uap->data is validated in kern_ptrace(). */ 1223 error = copyout(&r.ptevents, uap->addr, uap->data); 1224 break; 1225 case PT_LWPINFO: 1226 ptrace_lwpinfo_to32(&r.pl, &r32.pl); 1227 error = copyout(&r32.pl, uap->addr, uap->data); 1228 break; 1229 case PT_GET_SC_ARGS: 1230 for (i = 0; i < nitems(r.args); i++) 1231 r32.args[i] = (uint32_t)r.args[i]; 1232 error = copyout(r32.args, uap->addr, MIN(uap->data, 1233 sizeof(r32.args))); 1234 break; 1235 case PT_GET_SC_RET: 1236 ptrace_sc_ret_to32(&r.psr, &r32.psr); 1237 error = copyout(&r32.psr, uap->addr, MIN(uap->data, 1238 sizeof(r32.psr))); 1239 break; 1240 case PT_SC_REMOTE: 1241 ptrace_sc_ret_to32(&r.sr.pscr_ret, &r32.sr.pscr_ret); 1242 error = copyout(&r32.sr.pscr_ret, uap->addr + 1243 offsetof(struct ptrace_sc_remote32, pscr_ret), 1244 sizeof(r32.psr)); 1245 break; 1246 } 1247 1248 return (error); 1249 } 1250 1251 int 1252 freebsd32_copyinuio(const struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 1253 { 1254 struct iovec32 iov32; 1255 struct iovec *iov; 1256 struct uio *uio; 1257 int error, i; 1258 1259 *uiop = NULL; 1260 if (iovcnt > UIO_MAXIOV) 1261 return (EINVAL); 1262 uio = allocuio(iovcnt); 1263 iov = uio->uio_iov; 1264 for (i = 0; i < iovcnt; i++) { 1265 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 1266 if (error) { 1267 freeuio(uio); 1268 return (error); 1269 } 1270 iov[i].iov_base = PTRIN(iov32.iov_base); 1271 iov[i].iov_len = iov32.iov_len; 1272 } 1273 uio->uio_iovcnt = iovcnt; 1274 uio->uio_segflg = UIO_USERSPACE; 1275 uio->uio_offset = -1; 1276 uio->uio_resid = 0; 1277 for (i = 0; i < iovcnt; i++) { 1278 if (iov->iov_len > INT_MAX - uio->uio_resid) { 1279 freeuio(uio); 1280 return (EINVAL); 1281 } 1282 uio->uio_resid += iov->iov_len; 1283 iov++; 1284 } 1285 *uiop = uio; 1286 return (0); 1287 } 1288 1289 int 1290 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 1291 { 1292 struct uio *auio; 1293 int error; 1294 1295 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1296 if (error) 1297 return (error); 1298 error = kern_readv(td, uap->fd, auio); 1299 freeuio(auio); 1300 return (error); 1301 } 1302 1303 int 1304 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 1305 { 1306 struct uio *auio; 1307 int error; 1308 1309 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1310 if (error) 1311 return (error); 1312 error = kern_writev(td, uap->fd, auio); 1313 freeuio(auio); 1314 return (error); 1315 } 1316 1317 int 1318 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 1319 { 1320 struct uio *auio; 1321 int error; 1322 1323 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1324 if (error) 1325 return (error); 1326 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1327 freeuio(auio); 1328 return (error); 1329 } 1330 1331 int 1332 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 1333 { 1334 struct uio *auio; 1335 int error; 1336 1337 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1338 if (error) 1339 return (error); 1340 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1341 freeuio(auio); 1342 return (error); 1343 } 1344 1345 int 1346 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 1347 int error) 1348 { 1349 struct iovec32 iov32; 1350 struct iovec *iov; 1351 u_int iovlen; 1352 int i; 1353 1354 *iovp = NULL; 1355 if (iovcnt > UIO_MAXIOV) 1356 return (error); 1357 iovlen = iovcnt * sizeof(struct iovec); 1358 iov = malloc(iovlen, M_IOV, M_WAITOK); 1359 for (i = 0; i < iovcnt; i++) { 1360 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1361 if (error) { 1362 free(iov, M_IOV); 1363 return (error); 1364 } 1365 iov[i].iov_base = PTRIN(iov32.iov_base); 1366 iov[i].iov_len = iov32.iov_len; 1367 } 1368 *iovp = iov; 1369 return (0); 1370 } 1371 1372 static int 1373 freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg) 1374 { 1375 struct msghdr32 m32; 1376 int error; 1377 1378 error = copyin(msg32, &m32, sizeof(m32)); 1379 if (error) 1380 return (error); 1381 msg->msg_name = PTRIN(m32.msg_name); 1382 msg->msg_namelen = m32.msg_namelen; 1383 msg->msg_iov = PTRIN(m32.msg_iov); 1384 msg->msg_iovlen = m32.msg_iovlen; 1385 msg->msg_control = PTRIN(m32.msg_control); 1386 msg->msg_controllen = m32.msg_controllen; 1387 msg->msg_flags = m32.msg_flags; 1388 return (0); 1389 } 1390 1391 static int 1392 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1393 { 1394 struct msghdr32 m32; 1395 int error; 1396 1397 m32.msg_name = PTROUT(msg->msg_name); 1398 m32.msg_namelen = msg->msg_namelen; 1399 m32.msg_iov = PTROUT(msg->msg_iov); 1400 m32.msg_iovlen = msg->msg_iovlen; 1401 m32.msg_control = PTROUT(msg->msg_control); 1402 m32.msg_controllen = msg->msg_controllen; 1403 m32.msg_flags = msg->msg_flags; 1404 error = copyout(&m32, msg32, sizeof(m32)); 1405 return (error); 1406 } 1407 1408 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1409 #define FREEBSD32_ALIGN(p) \ 1410 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1411 #define FREEBSD32_CMSG_SPACE(l) \ 1412 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1413 1414 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1415 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1416 1417 static size_t 1418 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1419 { 1420 size_t copylen; 1421 union { 1422 struct timespec32 ts; 1423 struct timeval32 tv; 1424 struct bintime32 bt; 1425 } tmp32; 1426 1427 union { 1428 struct timespec ts; 1429 struct timeval tv; 1430 struct bintime bt; 1431 } *in; 1432 1433 in = data; 1434 copylen = 0; 1435 switch (cm->cmsg_level) { 1436 case SOL_SOCKET: 1437 switch (cm->cmsg_type) { 1438 case SCM_TIMESTAMP: 1439 TV_CP(*in, tmp32, tv); 1440 copylen = sizeof(tmp32.tv); 1441 break; 1442 1443 case SCM_BINTIME: 1444 BT_CP(*in, tmp32, bt); 1445 copylen = sizeof(tmp32.bt); 1446 break; 1447 1448 case SCM_REALTIME: 1449 case SCM_MONOTONIC: 1450 TS_CP(*in, tmp32, ts); 1451 copylen = sizeof(tmp32.ts); 1452 break; 1453 1454 default: 1455 break; 1456 } 1457 1458 default: 1459 break; 1460 } 1461 1462 if (copylen == 0) 1463 return (datalen); 1464 1465 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1466 1467 bcopy(&tmp32, data, copylen); 1468 return (copylen); 1469 } 1470 1471 static int 1472 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1473 { 1474 struct cmsghdr *cm; 1475 void *data; 1476 socklen_t clen, datalen, datalen_out, oldclen; 1477 int error; 1478 caddr_t ctlbuf; 1479 int len, copylen; 1480 struct mbuf *m; 1481 error = 0; 1482 1483 len = msg->msg_controllen; 1484 msg->msg_controllen = 0; 1485 1486 ctlbuf = msg->msg_control; 1487 for (m = control; m != NULL && len > 0; m = m->m_next) { 1488 cm = mtod(m, struct cmsghdr *); 1489 clen = m->m_len; 1490 while (cm != NULL) { 1491 if (sizeof(struct cmsghdr) > clen || 1492 cm->cmsg_len > clen) { 1493 error = EINVAL; 1494 break; 1495 } 1496 1497 data = CMSG_DATA(cm); 1498 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1499 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1500 1501 /* 1502 * Copy out the message header. Preserve the native 1503 * message size in case we need to inspect the message 1504 * contents later. 1505 */ 1506 copylen = sizeof(struct cmsghdr); 1507 if (len < copylen) { 1508 msg->msg_flags |= MSG_CTRUNC; 1509 m_dispose_extcontrolm(m); 1510 goto exit; 1511 } 1512 oldclen = cm->cmsg_len; 1513 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1514 datalen_out; 1515 error = copyout(cm, ctlbuf, copylen); 1516 cm->cmsg_len = oldclen; 1517 if (error != 0) 1518 goto exit; 1519 1520 ctlbuf += FREEBSD32_ALIGN(copylen); 1521 len -= FREEBSD32_ALIGN(copylen); 1522 1523 copylen = datalen_out; 1524 if (len < copylen) { 1525 msg->msg_flags |= MSG_CTRUNC; 1526 m_dispose_extcontrolm(m); 1527 break; 1528 } 1529 1530 /* Copy out the message data. */ 1531 error = copyout(data, ctlbuf, copylen); 1532 if (error) 1533 goto exit; 1534 1535 ctlbuf += FREEBSD32_ALIGN(copylen); 1536 len -= FREEBSD32_ALIGN(copylen); 1537 1538 if (CMSG_SPACE(datalen) < clen) { 1539 clen -= CMSG_SPACE(datalen); 1540 cm = (struct cmsghdr *) 1541 ((caddr_t)cm + CMSG_SPACE(datalen)); 1542 } else { 1543 clen = 0; 1544 cm = NULL; 1545 } 1546 1547 msg->msg_controllen += 1548 FREEBSD32_CMSG_SPACE(datalen_out); 1549 } 1550 } 1551 if (len == 0 && m != NULL) { 1552 msg->msg_flags |= MSG_CTRUNC; 1553 m_dispose_extcontrolm(m); 1554 } 1555 1556 exit: 1557 return (error); 1558 } 1559 1560 int 1561 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap) 1562 { 1563 struct msghdr msg; 1564 struct iovec *uiov, *iov; 1565 struct mbuf *control = NULL; 1566 struct mbuf **controlp; 1567 int error; 1568 1569 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1570 if (error) 1571 return (error); 1572 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1573 EMSGSIZE); 1574 if (error) 1575 return (error); 1576 msg.msg_flags = uap->flags; 1577 uiov = msg.msg_iov; 1578 msg.msg_iov = iov; 1579 1580 controlp = (msg.msg_control != NULL) ? &control : NULL; 1581 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1582 if (error == 0) { 1583 msg.msg_iov = uiov; 1584 1585 if (control != NULL) 1586 error = freebsd32_copy_msg_out(&msg, control); 1587 else 1588 msg.msg_controllen = 0; 1589 1590 if (error == 0) 1591 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1592 } 1593 free(iov, M_IOV); 1594 1595 if (control != NULL) { 1596 if (error != 0) 1597 m_dispose_extcontrolm(control); 1598 m_freem(control); 1599 } 1600 1601 return (error); 1602 } 1603 1604 #ifdef COMPAT_43 1605 int 1606 ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap) 1607 { 1608 return (ENOSYS); 1609 } 1610 #endif 1611 1612 /* 1613 * Copy-in the array of control messages constructed using alignment 1614 * and padding suitable for a 32-bit environment and construct an 1615 * mbuf using alignment and padding suitable for a 64-bit kernel. 1616 * The alignment and padding are defined indirectly by CMSG_DATA(), 1617 * CMSG_SPACE() and CMSG_LEN(). 1618 */ 1619 static int 1620 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1621 { 1622 struct cmsghdr *cm; 1623 struct mbuf *m; 1624 void *in, *in1, *md; 1625 u_int msglen, outlen; 1626 int error; 1627 1628 /* Enforce the size limit of the native implementation. */ 1629 if (buflen > MCLBYTES) 1630 return (EINVAL); 1631 1632 in = malloc(buflen, M_TEMP, M_WAITOK); 1633 error = copyin(buf, in, buflen); 1634 if (error != 0) 1635 goto out; 1636 1637 /* 1638 * Make a pass over the input buffer to determine the amount of space 1639 * required for 64 bit-aligned copies of the control messages. 1640 */ 1641 in1 = in; 1642 outlen = 0; 1643 while (buflen > 0) { 1644 if (buflen < sizeof(*cm)) { 1645 error = EINVAL; 1646 break; 1647 } 1648 cm = (struct cmsghdr *)in1; 1649 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm)) || 1650 cm->cmsg_len > buflen) { 1651 error = EINVAL; 1652 break; 1653 } 1654 msglen = FREEBSD32_ALIGN(cm->cmsg_len); 1655 if (msglen < cm->cmsg_len) { 1656 error = EINVAL; 1657 break; 1658 } 1659 /* The native ABI permits the final padding to be omitted. */ 1660 if (msglen > buflen) 1661 msglen = buflen; 1662 buflen -= msglen; 1663 1664 in1 = (char *)in1 + msglen; 1665 outlen += CMSG_ALIGN(sizeof(*cm)) + 1666 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); 1667 } 1668 if (error != 0) 1669 goto out; 1670 1671 /* 1672 * Allocate up to MJUMPAGESIZE space for the re-aligned and 1673 * re-padded control messages. This allows a full MCLBYTES of 1674 * 32-bit sized and aligned messages to fit and avoids an ABI 1675 * mismatch with the native implementation. 1676 */ 1677 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); 1678 if (m == NULL) { 1679 error = EINVAL; 1680 goto out; 1681 } 1682 m->m_len = outlen; 1683 md = mtod(m, void *); 1684 1685 /* 1686 * Make a second pass over input messages, copying them into the output 1687 * buffer. 1688 */ 1689 in1 = in; 1690 while (outlen > 0) { 1691 /* Copy the message header and align the length field. */ 1692 cm = md; 1693 memcpy(cm, in1, sizeof(*cm)); 1694 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); 1695 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; 1696 1697 /* Copy the message body. */ 1698 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); 1699 md = (char *)md + CMSG_ALIGN(sizeof(*cm)); 1700 memcpy(md, in1, msglen); 1701 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); 1702 md = (char *)md + CMSG_ALIGN(msglen); 1703 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), 1704 ("outlen %u underflow, msglen %u", outlen, msglen)); 1705 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); 1706 } 1707 1708 *mp = m; 1709 out: 1710 free(in, M_TEMP); 1711 return (error); 1712 } 1713 1714 int 1715 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap) 1716 { 1717 struct msghdr msg; 1718 struct iovec *iov; 1719 struct mbuf *control = NULL; 1720 struct sockaddr *to = NULL; 1721 int error; 1722 1723 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1724 if (error) 1725 return (error); 1726 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1727 EMSGSIZE); 1728 if (error) 1729 return (error); 1730 msg.msg_iov = iov; 1731 if (msg.msg_name != NULL) { 1732 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1733 if (error) { 1734 to = NULL; 1735 goto out; 1736 } 1737 msg.msg_name = to; 1738 } 1739 1740 if (msg.msg_control) { 1741 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1742 error = EINVAL; 1743 goto out; 1744 } 1745 1746 error = freebsd32_copyin_control(&control, msg.msg_control, 1747 msg.msg_controllen); 1748 if (error) 1749 goto out; 1750 1751 msg.msg_control = NULL; 1752 msg.msg_controllen = 0; 1753 } 1754 1755 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1756 UIO_USERSPACE); 1757 1758 out: 1759 free(iov, M_IOV); 1760 if (to) 1761 free(to, M_SONAME); 1762 return (error); 1763 } 1764 1765 #ifdef COMPAT_43 1766 int 1767 ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap) 1768 { 1769 return (ENOSYS); 1770 } 1771 #endif 1772 1773 1774 int 1775 freebsd32_settimeofday(struct thread *td, 1776 struct freebsd32_settimeofday_args *uap) 1777 { 1778 struct timeval32 tv32; 1779 struct timeval tv, *tvp; 1780 struct timezone tz, *tzp; 1781 int error; 1782 1783 if (uap->tv) { 1784 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1785 if (error) 1786 return (error); 1787 CP(tv32, tv, tv_sec); 1788 CP(tv32, tv, tv_usec); 1789 tvp = &tv; 1790 } else 1791 tvp = NULL; 1792 if (uap->tzp) { 1793 error = copyin(uap->tzp, &tz, sizeof(tz)); 1794 if (error) 1795 return (error); 1796 tzp = &tz; 1797 } else 1798 tzp = NULL; 1799 return (kern_settimeofday(td, tvp, tzp)); 1800 } 1801 1802 int 1803 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1804 { 1805 struct timeval32 s32[2]; 1806 struct timeval s[2], *sp; 1807 int error; 1808 1809 if (uap->tptr != NULL) { 1810 error = copyin(uap->tptr, s32, sizeof(s32)); 1811 if (error) 1812 return (error); 1813 CP(s32[0], s[0], tv_sec); 1814 CP(s32[0], s[0], tv_usec); 1815 CP(s32[1], s[1], tv_sec); 1816 CP(s32[1], s[1], tv_usec); 1817 sp = s; 1818 } else 1819 sp = NULL; 1820 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1821 sp, UIO_SYSSPACE)); 1822 } 1823 1824 int 1825 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1826 { 1827 struct timeval32 s32[2]; 1828 struct timeval s[2], *sp; 1829 int error; 1830 1831 if (uap->tptr != NULL) { 1832 error = copyin(uap->tptr, s32, sizeof(s32)); 1833 if (error) 1834 return (error); 1835 CP(s32[0], s[0], tv_sec); 1836 CP(s32[0], s[0], tv_usec); 1837 CP(s32[1], s[1], tv_sec); 1838 CP(s32[1], s[1], tv_usec); 1839 sp = s; 1840 } else 1841 sp = NULL; 1842 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1843 } 1844 1845 int 1846 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1847 { 1848 struct timeval32 s32[2]; 1849 struct timeval s[2], *sp; 1850 int error; 1851 1852 if (uap->tptr != NULL) { 1853 error = copyin(uap->tptr, s32, sizeof(s32)); 1854 if (error) 1855 return (error); 1856 CP(s32[0], s[0], tv_sec); 1857 CP(s32[0], s[0], tv_usec); 1858 CP(s32[1], s[1], tv_sec); 1859 CP(s32[1], s[1], tv_usec); 1860 sp = s; 1861 } else 1862 sp = NULL; 1863 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1864 } 1865 1866 int 1867 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1868 { 1869 struct timeval32 s32[2]; 1870 struct timeval s[2], *sp; 1871 int error; 1872 1873 if (uap->times != NULL) { 1874 error = copyin(uap->times, s32, sizeof(s32)); 1875 if (error) 1876 return (error); 1877 CP(s32[0], s[0], tv_sec); 1878 CP(s32[0], s[0], tv_usec); 1879 CP(s32[1], s[1], tv_sec); 1880 CP(s32[1], s[1], tv_usec); 1881 sp = s; 1882 } else 1883 sp = NULL; 1884 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1885 sp, UIO_SYSSPACE)); 1886 } 1887 1888 int 1889 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1890 { 1891 struct timespec32 ts32[2]; 1892 struct timespec ts[2], *tsp; 1893 int error; 1894 1895 if (uap->times != NULL) { 1896 error = copyin(uap->times, ts32, sizeof(ts32)); 1897 if (error) 1898 return (error); 1899 CP(ts32[0], ts[0], tv_sec); 1900 CP(ts32[0], ts[0], tv_nsec); 1901 CP(ts32[1], ts[1], tv_sec); 1902 CP(ts32[1], ts[1], tv_nsec); 1903 tsp = ts; 1904 } else 1905 tsp = NULL; 1906 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1907 } 1908 1909 int 1910 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1911 { 1912 struct timespec32 ts32[2]; 1913 struct timespec ts[2], *tsp; 1914 int error; 1915 1916 if (uap->times != NULL) { 1917 error = copyin(uap->times, ts32, sizeof(ts32)); 1918 if (error) 1919 return (error); 1920 CP(ts32[0], ts[0], tv_sec); 1921 CP(ts32[0], ts[0], tv_nsec); 1922 CP(ts32[1], ts[1], tv_sec); 1923 CP(ts32[1], ts[1], tv_nsec); 1924 tsp = ts; 1925 } else 1926 tsp = NULL; 1927 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1928 tsp, UIO_SYSSPACE, uap->flag)); 1929 } 1930 1931 int 1932 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1933 { 1934 struct timeval32 tv32; 1935 struct timeval delta, olddelta, *deltap; 1936 int error; 1937 1938 if (uap->delta) { 1939 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1940 if (error) 1941 return (error); 1942 CP(tv32, delta, tv_sec); 1943 CP(tv32, delta, tv_usec); 1944 deltap = δ 1945 } else 1946 deltap = NULL; 1947 error = kern_adjtime(td, deltap, &olddelta); 1948 if (uap->olddelta && error == 0) { 1949 CP(olddelta, tv32, tv_sec); 1950 CP(olddelta, tv32, tv_usec); 1951 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1952 } 1953 return (error); 1954 } 1955 1956 #ifdef COMPAT_FREEBSD4 1957 int 1958 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1959 { 1960 struct ostatfs32 s32; 1961 struct statfs *sp; 1962 int error; 1963 1964 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1965 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1966 if (error == 0) { 1967 copy_statfs(sp, &s32); 1968 error = copyout(&s32, uap->buf, sizeof(s32)); 1969 } 1970 free(sp, M_STATFS); 1971 return (error); 1972 } 1973 #endif 1974 1975 #ifdef COMPAT_FREEBSD4 1976 int 1977 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1978 { 1979 struct ostatfs32 s32; 1980 struct statfs *sp; 1981 int error; 1982 1983 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1984 error = kern_fstatfs(td, uap->fd, sp); 1985 if (error == 0) { 1986 copy_statfs(sp, &s32); 1987 error = copyout(&s32, uap->buf, sizeof(s32)); 1988 } 1989 free(sp, M_STATFS); 1990 return (error); 1991 } 1992 #endif 1993 1994 #ifdef COMPAT_FREEBSD4 1995 int 1996 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1997 { 1998 struct ostatfs32 s32; 1999 struct statfs *sp; 2000 fhandle_t fh; 2001 int error; 2002 2003 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 2004 return (error); 2005 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 2006 error = kern_fhstatfs(td, fh, sp); 2007 if (error == 0) { 2008 copy_statfs(sp, &s32); 2009 error = copyout(&s32, uap->buf, sizeof(s32)); 2010 } 2011 free(sp, M_STATFS); 2012 return (error); 2013 } 2014 #endif 2015 2016 int 2017 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 2018 { 2019 2020 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 2021 PAIR32TO64(off_t, uap->offset))); 2022 } 2023 2024 int 2025 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 2026 { 2027 2028 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2029 PAIR32TO64(off_t, uap->offset))); 2030 } 2031 2032 #ifdef COMPAT_43 2033 int 2034 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 2035 { 2036 2037 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 2038 } 2039 #endif 2040 2041 int 2042 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 2043 { 2044 int error; 2045 off_t pos; 2046 2047 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2048 uap->whence); 2049 /* Expand the quad return into two parts for eax and edx */ 2050 pos = td->td_uretoff.tdu_off; 2051 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2052 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2053 return error; 2054 } 2055 2056 int 2057 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 2058 { 2059 2060 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2061 PAIR32TO64(off_t, uap->length))); 2062 } 2063 2064 #ifdef COMPAT_43 2065 int 2066 ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap) 2067 { 2068 return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length)); 2069 } 2070 #endif 2071 2072 int 2073 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 2074 { 2075 2076 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2077 } 2078 2079 #ifdef COMPAT_43 2080 int 2081 ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap) 2082 { 2083 return (kern_ftruncate(td, uap->fd, uap->length)); 2084 } 2085 2086 int 2087 ofreebsd32_getdirentries(struct thread *td, 2088 struct ofreebsd32_getdirentries_args *uap) 2089 { 2090 struct ogetdirentries_args ap; 2091 int error; 2092 long loff; 2093 int32_t loff_cut; 2094 2095 ap.fd = uap->fd; 2096 ap.buf = uap->buf; 2097 ap.count = uap->count; 2098 ap.basep = NULL; 2099 error = kern_ogetdirentries(td, &ap, &loff); 2100 if (error == 0) { 2101 loff_cut = loff; 2102 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 2103 } 2104 return (error); 2105 } 2106 #endif 2107 2108 #if defined(COMPAT_FREEBSD11) 2109 int 2110 freebsd11_freebsd32_getdirentries(struct thread *td, 2111 struct freebsd11_freebsd32_getdirentries_args *uap) 2112 { 2113 long base; 2114 int32_t base32; 2115 int error; 2116 2117 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 2118 &base, NULL); 2119 if (error) 2120 return (error); 2121 if (uap->basep != NULL) { 2122 base32 = base; 2123 error = copyout(&base32, uap->basep, sizeof(int32_t)); 2124 } 2125 return (error); 2126 } 2127 #endif /* COMPAT_FREEBSD11 */ 2128 2129 #ifdef COMPAT_FREEBSD6 2130 /* versions with the 'int pad' argument */ 2131 int 2132 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 2133 { 2134 2135 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 2136 PAIR32TO64(off_t, uap->offset))); 2137 } 2138 2139 int 2140 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 2141 { 2142 2143 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2144 PAIR32TO64(off_t, uap->offset))); 2145 } 2146 2147 int 2148 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 2149 { 2150 int error; 2151 off_t pos; 2152 2153 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2154 uap->whence); 2155 /* Expand the quad return into two parts for eax and edx */ 2156 pos = *(off_t *)(td->td_retval); 2157 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2158 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2159 return error; 2160 } 2161 2162 int 2163 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 2164 { 2165 2166 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2167 PAIR32TO64(off_t, uap->length))); 2168 } 2169 2170 int 2171 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 2172 { 2173 2174 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2175 } 2176 #endif /* COMPAT_FREEBSD6 */ 2177 2178 struct sf_hdtr32 { 2179 uint32_t headers; 2180 int hdr_cnt; 2181 uint32_t trailers; 2182 int trl_cnt; 2183 }; 2184 2185 static int 2186 freebsd32_do_sendfile(struct thread *td, 2187 struct freebsd32_sendfile_args *uap, int compat) 2188 { 2189 struct sf_hdtr32 hdtr32; 2190 struct sf_hdtr hdtr; 2191 struct uio *hdr_uio, *trl_uio; 2192 struct file *fp; 2193 cap_rights_t rights; 2194 struct iovec32 *iov32; 2195 off_t offset, sbytes; 2196 int error; 2197 2198 offset = PAIR32TO64(off_t, uap->offset); 2199 if (offset < 0) 2200 return (EINVAL); 2201 2202 hdr_uio = trl_uio = NULL; 2203 2204 if (uap->hdtr != NULL) { 2205 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 2206 if (error) 2207 goto out; 2208 PTRIN_CP(hdtr32, hdtr, headers); 2209 CP(hdtr32, hdtr, hdr_cnt); 2210 PTRIN_CP(hdtr32, hdtr, trailers); 2211 CP(hdtr32, hdtr, trl_cnt); 2212 2213 if (hdtr.headers != NULL) { 2214 iov32 = PTRIN(hdtr32.headers); 2215 error = freebsd32_copyinuio(iov32, 2216 hdtr32.hdr_cnt, &hdr_uio); 2217 if (error) 2218 goto out; 2219 #ifdef COMPAT_FREEBSD4 2220 /* 2221 * In FreeBSD < 5.0 the nbytes to send also included 2222 * the header. If compat is specified subtract the 2223 * header size from nbytes. 2224 */ 2225 if (compat) { 2226 if (uap->nbytes > hdr_uio->uio_resid) 2227 uap->nbytes -= hdr_uio->uio_resid; 2228 else 2229 uap->nbytes = 0; 2230 } 2231 #endif 2232 } 2233 if (hdtr.trailers != NULL) { 2234 iov32 = PTRIN(hdtr32.trailers); 2235 error = freebsd32_copyinuio(iov32, 2236 hdtr32.trl_cnt, &trl_uio); 2237 if (error) 2238 goto out; 2239 } 2240 } 2241 2242 AUDIT_ARG_FD(uap->fd); 2243 2244 if ((error = fget_read(td, uap->fd, 2245 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0) 2246 goto out; 2247 2248 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 2249 uap->nbytes, &sbytes, uap->flags, td); 2250 fdrop(fp, td); 2251 2252 if (uap->sbytes != NULL) 2253 (void)copyout(&sbytes, uap->sbytes, sizeof(off_t)); 2254 2255 out: 2256 if (hdr_uio) 2257 freeuio(hdr_uio); 2258 if (trl_uio) 2259 freeuio(trl_uio); 2260 return (error); 2261 } 2262 2263 #ifdef COMPAT_FREEBSD4 2264 int 2265 freebsd4_freebsd32_sendfile(struct thread *td, 2266 struct freebsd4_freebsd32_sendfile_args *uap) 2267 { 2268 return (freebsd32_do_sendfile(td, 2269 (struct freebsd32_sendfile_args *)uap, 1)); 2270 } 2271 #endif 2272 2273 int 2274 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 2275 { 2276 2277 return (freebsd32_do_sendfile(td, uap, 0)); 2278 } 2279 2280 static void 2281 copy_stat(struct stat *in, struct stat32 *out) 2282 { 2283 2284 #ifndef __amd64__ 2285 /* 2286 * 32-bit architectures other than i386 have 64-bit time_t. This 2287 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2288 * and 4 bytes of padding. Zero the padding holes in struct stat32. 2289 */ 2290 bzero(&out->st_atim, sizeof(out->st_atim)); 2291 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2292 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2293 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2294 #endif 2295 CP(*in, *out, st_dev); 2296 CP(*in, *out, st_ino); 2297 CP(*in, *out, st_mode); 2298 CP(*in, *out, st_nlink); 2299 CP(*in, *out, st_uid); 2300 CP(*in, *out, st_gid); 2301 CP(*in, *out, st_rdev); 2302 TS_CP(*in, *out, st_atim); 2303 TS_CP(*in, *out, st_mtim); 2304 TS_CP(*in, *out, st_ctim); 2305 CP(*in, *out, st_size); 2306 CP(*in, *out, st_blocks); 2307 CP(*in, *out, st_blksize); 2308 CP(*in, *out, st_flags); 2309 CP(*in, *out, st_gen); 2310 CP(*in, *out, st_filerev); 2311 CP(*in, *out, st_bsdflags); 2312 TS_CP(*in, *out, st_birthtim); 2313 out->st_padding1 = 0; 2314 #ifdef __STAT32_TIME_T_EXT 2315 out->st_atim_ext = 0; 2316 out->st_mtim_ext = 0; 2317 out->st_ctim_ext = 0; 2318 out->st_btim_ext = 0; 2319 #endif 2320 bzero(out->st_spare, sizeof(out->st_spare)); 2321 } 2322 2323 #ifdef COMPAT_43 2324 static void 2325 copy_ostat(struct stat *in, struct ostat32 *out) 2326 { 2327 2328 bzero(out, sizeof(*out)); 2329 CP(*in, *out, st_dev); 2330 CP(*in, *out, st_ino); 2331 CP(*in, *out, st_mode); 2332 CP(*in, *out, st_nlink); 2333 CP(*in, *out, st_uid); 2334 CP(*in, *out, st_gid); 2335 CP(*in, *out, st_rdev); 2336 out->st_size = MIN(in->st_size, INT32_MAX); 2337 TS_CP(*in, *out, st_atim); 2338 TS_CP(*in, *out, st_mtim); 2339 TS_CP(*in, *out, st_ctim); 2340 CP(*in, *out, st_blksize); 2341 CP(*in, *out, st_blocks); 2342 CP(*in, *out, st_flags); 2343 CP(*in, *out, st_gen); 2344 } 2345 #endif 2346 2347 #ifdef COMPAT_43 2348 int 2349 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2350 { 2351 struct stat sb; 2352 struct ostat32 sb32; 2353 int error; 2354 2355 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2356 if (error) 2357 return (error); 2358 copy_ostat(&sb, &sb32); 2359 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2360 return (error); 2361 } 2362 #endif 2363 2364 int 2365 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2366 { 2367 struct stat ub; 2368 struct stat32 ub32; 2369 int error; 2370 2371 error = kern_fstat(td, uap->fd, &ub); 2372 if (error) 2373 return (error); 2374 copy_stat(&ub, &ub32); 2375 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2376 return (error); 2377 } 2378 2379 #ifdef COMPAT_43 2380 int 2381 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2382 { 2383 struct stat ub; 2384 struct ostat32 ub32; 2385 int error; 2386 2387 error = kern_fstat(td, uap->fd, &ub); 2388 if (error) 2389 return (error); 2390 copy_ostat(&ub, &ub32); 2391 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2392 return (error); 2393 } 2394 #endif 2395 2396 int 2397 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2398 { 2399 struct stat ub; 2400 struct stat32 ub32; 2401 int error; 2402 2403 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2404 &ub); 2405 if (error) 2406 return (error); 2407 copy_stat(&ub, &ub32); 2408 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2409 return (error); 2410 } 2411 2412 #ifdef COMPAT_43 2413 int 2414 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2415 { 2416 struct stat sb; 2417 struct ostat32 sb32; 2418 int error; 2419 2420 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2421 UIO_USERSPACE, &sb); 2422 if (error) 2423 return (error); 2424 copy_ostat(&sb, &sb32); 2425 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2426 return (error); 2427 } 2428 #endif 2429 2430 int 2431 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2432 { 2433 struct stat sb; 2434 struct stat32 sb32; 2435 struct fhandle fh; 2436 int error; 2437 2438 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2439 if (error != 0) 2440 return (error); 2441 error = kern_fhstat(td, fh, &sb); 2442 if (error != 0) 2443 return (error); 2444 copy_stat(&sb, &sb32); 2445 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2446 return (error); 2447 } 2448 2449 #if defined(COMPAT_FREEBSD11) 2450 extern int ino64_trunc_error; 2451 2452 static int 2453 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2454 { 2455 2456 #ifndef __amd64__ 2457 /* 2458 * 32-bit architectures other than i386 have 64-bit time_t. This 2459 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2460 * and 4 bytes of padding. Zero the padding holes in freebsd11_stat32. 2461 */ 2462 bzero(&out->st_atim, sizeof(out->st_atim)); 2463 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2464 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2465 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2466 #endif 2467 2468 CP(*in, *out, st_ino); 2469 if (in->st_ino != out->st_ino) { 2470 switch (ino64_trunc_error) { 2471 default: 2472 case 0: 2473 break; 2474 case 1: 2475 return (EOVERFLOW); 2476 case 2: 2477 out->st_ino = UINT32_MAX; 2478 break; 2479 } 2480 } 2481 CP(*in, *out, st_nlink); 2482 if (in->st_nlink != out->st_nlink) { 2483 switch (ino64_trunc_error) { 2484 default: 2485 case 0: 2486 break; 2487 case 1: 2488 return (EOVERFLOW); 2489 case 2: 2490 out->st_nlink = UINT16_MAX; 2491 break; 2492 } 2493 } 2494 out->st_dev = in->st_dev; 2495 if (out->st_dev != in->st_dev) { 2496 switch (ino64_trunc_error) { 2497 default: 2498 break; 2499 case 1: 2500 return (EOVERFLOW); 2501 } 2502 } 2503 CP(*in, *out, st_mode); 2504 CP(*in, *out, st_uid); 2505 CP(*in, *out, st_gid); 2506 out->st_rdev = in->st_rdev; 2507 if (out->st_rdev != in->st_rdev) { 2508 switch (ino64_trunc_error) { 2509 default: 2510 break; 2511 case 1: 2512 return (EOVERFLOW); 2513 } 2514 } 2515 TS_CP(*in, *out, st_atim); 2516 TS_CP(*in, *out, st_mtim); 2517 TS_CP(*in, *out, st_ctim); 2518 CP(*in, *out, st_size); 2519 CP(*in, *out, st_blocks); 2520 CP(*in, *out, st_blksize); 2521 CP(*in, *out, st_flags); 2522 CP(*in, *out, st_gen); 2523 TS_CP(*in, *out, st_birthtim); 2524 out->st_lspare = 0; 2525 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2526 sizeof(*out) - offsetof(struct freebsd11_stat32, 2527 st_birthtim) - sizeof(out->st_birthtim)); 2528 return (0); 2529 } 2530 2531 int 2532 freebsd11_freebsd32_stat(struct thread *td, 2533 struct freebsd11_freebsd32_stat_args *uap) 2534 { 2535 struct stat sb; 2536 struct freebsd11_stat32 sb32; 2537 int error; 2538 2539 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2540 if (error != 0) 2541 return (error); 2542 error = freebsd11_cvtstat32(&sb, &sb32); 2543 if (error == 0) 2544 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2545 return (error); 2546 } 2547 2548 int 2549 freebsd11_freebsd32_fstat(struct thread *td, 2550 struct freebsd11_freebsd32_fstat_args *uap) 2551 { 2552 struct stat sb; 2553 struct freebsd11_stat32 sb32; 2554 int error; 2555 2556 error = kern_fstat(td, uap->fd, &sb); 2557 if (error != 0) 2558 return (error); 2559 error = freebsd11_cvtstat32(&sb, &sb32); 2560 if (error == 0) 2561 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2562 return (error); 2563 } 2564 2565 int 2566 freebsd11_freebsd32_fstatat(struct thread *td, 2567 struct freebsd11_freebsd32_fstatat_args *uap) 2568 { 2569 struct stat sb; 2570 struct freebsd11_stat32 sb32; 2571 int error; 2572 2573 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2574 &sb); 2575 if (error != 0) 2576 return (error); 2577 error = freebsd11_cvtstat32(&sb, &sb32); 2578 if (error == 0) 2579 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2580 return (error); 2581 } 2582 2583 int 2584 freebsd11_freebsd32_lstat(struct thread *td, 2585 struct freebsd11_freebsd32_lstat_args *uap) 2586 { 2587 struct stat sb; 2588 struct freebsd11_stat32 sb32; 2589 int error; 2590 2591 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2592 UIO_USERSPACE, &sb); 2593 if (error != 0) 2594 return (error); 2595 error = freebsd11_cvtstat32(&sb, &sb32); 2596 if (error == 0) 2597 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2598 return (error); 2599 } 2600 2601 int 2602 freebsd11_freebsd32_fhstat(struct thread *td, 2603 struct freebsd11_freebsd32_fhstat_args *uap) 2604 { 2605 struct stat sb; 2606 struct freebsd11_stat32 sb32; 2607 struct fhandle fh; 2608 int error; 2609 2610 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2611 if (error != 0) 2612 return (error); 2613 error = kern_fhstat(td, fh, &sb); 2614 if (error != 0) 2615 return (error); 2616 error = freebsd11_cvtstat32(&sb, &sb32); 2617 if (error == 0) 2618 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2619 return (error); 2620 } 2621 2622 static int 2623 freebsd11_cvtnstat32(struct stat *sb, struct nstat32 *nsb32) 2624 { 2625 struct nstat nsb; 2626 int error; 2627 2628 error = freebsd11_cvtnstat(sb, &nsb); 2629 if (error != 0) 2630 return (error); 2631 2632 bzero(nsb32, sizeof(*nsb32)); 2633 CP(nsb, *nsb32, st_dev); 2634 CP(nsb, *nsb32, st_ino); 2635 CP(nsb, *nsb32, st_mode); 2636 CP(nsb, *nsb32, st_nlink); 2637 CP(nsb, *nsb32, st_uid); 2638 CP(nsb, *nsb32, st_gid); 2639 CP(nsb, *nsb32, st_rdev); 2640 CP(nsb, *nsb32, st_atim.tv_sec); 2641 CP(nsb, *nsb32, st_atim.tv_nsec); 2642 CP(nsb, *nsb32, st_mtim.tv_sec); 2643 CP(nsb, *nsb32, st_mtim.tv_nsec); 2644 CP(nsb, *nsb32, st_ctim.tv_sec); 2645 CP(nsb, *nsb32, st_ctim.tv_nsec); 2646 CP(nsb, *nsb32, st_size); 2647 CP(nsb, *nsb32, st_blocks); 2648 CP(nsb, *nsb32, st_blksize); 2649 CP(nsb, *nsb32, st_flags); 2650 CP(nsb, *nsb32, st_gen); 2651 CP(nsb, *nsb32, st_birthtim.tv_sec); 2652 CP(nsb, *nsb32, st_birthtim.tv_nsec); 2653 return (0); 2654 } 2655 2656 int 2657 freebsd11_freebsd32_nstat(struct thread *td, 2658 struct freebsd11_freebsd32_nstat_args *uap) 2659 { 2660 struct stat sb; 2661 struct nstat32 nsb; 2662 int error; 2663 2664 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2665 if (error != 0) 2666 return (error); 2667 error = freebsd11_cvtnstat32(&sb, &nsb); 2668 if (error != 0) 2669 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2670 return (error); 2671 } 2672 2673 int 2674 freebsd11_freebsd32_nlstat(struct thread *td, 2675 struct freebsd11_freebsd32_nlstat_args *uap) 2676 { 2677 struct stat sb; 2678 struct nstat32 nsb; 2679 int error; 2680 2681 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2682 UIO_USERSPACE, &sb); 2683 if (error != 0) 2684 return (error); 2685 error = freebsd11_cvtnstat32(&sb, &nsb); 2686 if (error == 0) 2687 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2688 return (error); 2689 } 2690 2691 int 2692 freebsd11_freebsd32_nfstat(struct thread *td, 2693 struct freebsd11_freebsd32_nfstat_args *uap) 2694 { 2695 struct nstat32 nub; 2696 struct stat ub; 2697 int error; 2698 2699 error = kern_fstat(td, uap->fd, &ub); 2700 if (error != 0) 2701 return (error); 2702 error = freebsd11_cvtnstat32(&ub, &nub); 2703 if (error == 0) 2704 error = copyout(&nub, uap->sb, sizeof(nub)); 2705 return (error); 2706 } 2707 #endif 2708 2709 int 2710 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2711 { 2712 int error, name[CTL_MAXNAME]; 2713 size_t j, oldlen; 2714 uint32_t tmp; 2715 2716 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2717 return (EINVAL); 2718 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2719 if (error) 2720 return (error); 2721 if (uap->oldlenp) { 2722 error = fueword32(uap->oldlenp, &tmp); 2723 oldlen = tmp; 2724 } else { 2725 oldlen = 0; 2726 } 2727 if (error != 0) 2728 return (EFAULT); 2729 error = userland_sysctl(td, name, uap->namelen, 2730 uap->old, &oldlen, 1, 2731 uap->new, uap->newlen, &j, SCTL_MASK32); 2732 if (error) 2733 return (error); 2734 if (uap->oldlenp != NULL && suword32(uap->oldlenp, j) != 0) 2735 error = EFAULT; 2736 return (error); 2737 } 2738 2739 int 2740 freebsd32___sysctlbyname(struct thread *td, 2741 struct freebsd32___sysctlbyname_args *uap) 2742 { 2743 size_t oldlen, rv; 2744 int error; 2745 uint32_t tmp; 2746 2747 if (uap->oldlenp != NULL) { 2748 error = fueword32(uap->oldlenp, &tmp); 2749 oldlen = tmp; 2750 } else { 2751 error = oldlen = 0; 2752 } 2753 if (error != 0) 2754 return (EFAULT); 2755 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, 2756 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); 2757 if (error != 0) 2758 return (error); 2759 if (uap->oldlenp != NULL && suword32(uap->oldlenp, rv) != 0) 2760 error = EFAULT; 2761 return (error); 2762 } 2763 2764 int 2765 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2766 { 2767 uint32_t version; 2768 int error; 2769 struct jail j; 2770 2771 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2772 if (error) 2773 return (error); 2774 2775 switch (version) { 2776 case 0: 2777 { 2778 /* FreeBSD single IPv4 jails. */ 2779 struct jail32_v0 j32_v0; 2780 2781 bzero(&j, sizeof(struct jail)); 2782 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2783 if (error) 2784 return (error); 2785 CP(j32_v0, j, version); 2786 PTRIN_CP(j32_v0, j, path); 2787 PTRIN_CP(j32_v0, j, hostname); 2788 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2789 break; 2790 } 2791 2792 case 1: 2793 /* 2794 * Version 1 was used by multi-IPv4 jail implementations 2795 * that never made it into the official kernel. 2796 */ 2797 return (EINVAL); 2798 2799 case 2: /* JAIL_API_VERSION */ 2800 { 2801 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2802 struct jail32 j32; 2803 2804 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2805 if (error) 2806 return (error); 2807 CP(j32, j, version); 2808 PTRIN_CP(j32, j, path); 2809 PTRIN_CP(j32, j, hostname); 2810 PTRIN_CP(j32, j, jailname); 2811 CP(j32, j, ip4s); 2812 CP(j32, j, ip6s); 2813 PTRIN_CP(j32, j, ip4); 2814 PTRIN_CP(j32, j, ip6); 2815 break; 2816 } 2817 2818 default: 2819 /* Sci-Fi jails are not supported, sorry. */ 2820 return (EINVAL); 2821 } 2822 return (kern_jail(td, &j)); 2823 } 2824 2825 int 2826 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2827 { 2828 struct uio *auio; 2829 int error; 2830 2831 /* Check that we have an even number of iovecs. */ 2832 if (uap->iovcnt & 1) 2833 return (EINVAL); 2834 2835 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2836 if (error) 2837 return (error); 2838 error = kern_jail_set(td, auio, uap->flags); 2839 freeuio(auio); 2840 return (error); 2841 } 2842 2843 int 2844 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2845 { 2846 struct iovec32 iov32; 2847 struct uio *auio; 2848 int error, i; 2849 2850 /* Check that we have an even number of iovecs. */ 2851 if (uap->iovcnt & 1) 2852 return (EINVAL); 2853 2854 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2855 if (error) 2856 return (error); 2857 error = kern_jail_get(td, auio, uap->flags); 2858 if (error == 0) 2859 for (i = 0; i < uap->iovcnt; i++) { 2860 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2861 CP(auio->uio_iov[i], iov32, iov_len); 2862 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2863 if (error != 0) 2864 break; 2865 } 2866 freeuio(auio); 2867 return (error); 2868 } 2869 2870 int 2871 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2872 { 2873 struct sigaction32 s32; 2874 struct sigaction sa, osa, *sap; 2875 int error; 2876 2877 if (uap->act) { 2878 error = copyin(uap->act, &s32, sizeof(s32)); 2879 if (error) 2880 return (error); 2881 sa.sa_handler = PTRIN(s32.sa_u); 2882 CP(s32, sa, sa_flags); 2883 CP(s32, sa, sa_mask); 2884 sap = &sa; 2885 } else 2886 sap = NULL; 2887 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2888 if (error == 0 && uap->oact != NULL) { 2889 s32.sa_u = PTROUT(osa.sa_handler); 2890 CP(osa, s32, sa_flags); 2891 CP(osa, s32, sa_mask); 2892 error = copyout(&s32, uap->oact, sizeof(s32)); 2893 } 2894 return (error); 2895 } 2896 2897 #ifdef COMPAT_FREEBSD4 2898 int 2899 freebsd4_freebsd32_sigaction(struct thread *td, 2900 struct freebsd4_freebsd32_sigaction_args *uap) 2901 { 2902 struct sigaction32 s32; 2903 struct sigaction sa, osa, *sap; 2904 int error; 2905 2906 if (uap->act) { 2907 error = copyin(uap->act, &s32, sizeof(s32)); 2908 if (error) 2909 return (error); 2910 sa.sa_handler = PTRIN(s32.sa_u); 2911 CP(s32, sa, sa_flags); 2912 CP(s32, sa, sa_mask); 2913 sap = &sa; 2914 } else 2915 sap = NULL; 2916 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2917 if (error == 0 && uap->oact != NULL) { 2918 s32.sa_u = PTROUT(osa.sa_handler); 2919 CP(osa, s32, sa_flags); 2920 CP(osa, s32, sa_mask); 2921 error = copyout(&s32, uap->oact, sizeof(s32)); 2922 } 2923 return (error); 2924 } 2925 #endif 2926 2927 #ifdef COMPAT_43 2928 struct osigaction32 { 2929 uint32_t sa_u; 2930 osigset_t sa_mask; 2931 int sa_flags; 2932 }; 2933 2934 #define ONSIG 32 2935 2936 int 2937 ofreebsd32_sigaction(struct thread *td, 2938 struct ofreebsd32_sigaction_args *uap) 2939 { 2940 struct osigaction32 s32; 2941 struct sigaction sa, osa, *sap; 2942 int error; 2943 2944 if (uap->signum <= 0 || uap->signum >= ONSIG) 2945 return (EINVAL); 2946 2947 if (uap->nsa) { 2948 error = copyin(uap->nsa, &s32, sizeof(s32)); 2949 if (error) 2950 return (error); 2951 sa.sa_handler = PTRIN(s32.sa_u); 2952 CP(s32, sa, sa_flags); 2953 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2954 sap = &sa; 2955 } else 2956 sap = NULL; 2957 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2958 if (error == 0 && uap->osa != NULL) { 2959 s32.sa_u = PTROUT(osa.sa_handler); 2960 CP(osa, s32, sa_flags); 2961 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2962 error = copyout(&s32, uap->osa, sizeof(s32)); 2963 } 2964 return (error); 2965 } 2966 2967 struct sigvec32 { 2968 uint32_t sv_handler; 2969 int sv_mask; 2970 int sv_flags; 2971 }; 2972 2973 int 2974 ofreebsd32_sigvec(struct thread *td, 2975 struct ofreebsd32_sigvec_args *uap) 2976 { 2977 struct sigvec32 vec; 2978 struct sigaction sa, osa, *sap; 2979 int error; 2980 2981 if (uap->signum <= 0 || uap->signum >= ONSIG) 2982 return (EINVAL); 2983 2984 if (uap->nsv) { 2985 error = copyin(uap->nsv, &vec, sizeof(vec)); 2986 if (error) 2987 return (error); 2988 sa.sa_handler = PTRIN(vec.sv_handler); 2989 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2990 sa.sa_flags = vec.sv_flags; 2991 sa.sa_flags ^= SA_RESTART; 2992 sap = &sa; 2993 } else 2994 sap = NULL; 2995 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2996 if (error == 0 && uap->osv != NULL) { 2997 vec.sv_handler = PTROUT(osa.sa_handler); 2998 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2999 vec.sv_flags = osa.sa_flags; 3000 vec.sv_flags &= ~SA_NOCLDWAIT; 3001 vec.sv_flags ^= SA_RESTART; 3002 error = copyout(&vec, uap->osv, sizeof(vec)); 3003 } 3004 return (error); 3005 } 3006 3007 struct sigstack32 { 3008 uint32_t ss_sp; 3009 int ss_onstack; 3010 }; 3011 3012 int 3013 ofreebsd32_sigstack(struct thread *td, 3014 struct ofreebsd32_sigstack_args *uap) 3015 { 3016 struct sigstack32 s32; 3017 struct sigstack nss, oss; 3018 int error = 0, unss; 3019 3020 if (uap->nss != NULL) { 3021 error = copyin(uap->nss, &s32, sizeof(s32)); 3022 if (error) 3023 return (error); 3024 nss.ss_sp = PTRIN(s32.ss_sp); 3025 CP(s32, nss, ss_onstack); 3026 unss = 1; 3027 } else { 3028 unss = 0; 3029 } 3030 oss.ss_sp = td->td_sigstk.ss_sp; 3031 oss.ss_onstack = sigonstack(cpu_getstack(td)); 3032 if (unss) { 3033 td->td_sigstk.ss_sp = nss.ss_sp; 3034 td->td_sigstk.ss_size = 0; 3035 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 3036 td->td_pflags |= TDP_ALTSTACK; 3037 } 3038 if (uap->oss != NULL) { 3039 s32.ss_sp = PTROUT(oss.ss_sp); 3040 CP(oss, s32, ss_onstack); 3041 error = copyout(&s32, uap->oss, sizeof(s32)); 3042 } 3043 return (error); 3044 } 3045 #endif 3046 3047 int 3048 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 3049 { 3050 3051 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 3052 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 3053 } 3054 3055 int 3056 freebsd32_clock_nanosleep(struct thread *td, 3057 struct freebsd32_clock_nanosleep_args *uap) 3058 { 3059 int error; 3060 3061 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 3062 uap->rqtp, uap->rmtp); 3063 return (kern_posix_error(td, error)); 3064 } 3065 3066 static int 3067 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 3068 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 3069 { 3070 struct timespec32 rmt32, rqt32; 3071 struct timespec rmt, rqt; 3072 int error, error2; 3073 3074 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 3075 if (error) 3076 return (error); 3077 3078 CP(rqt32, rqt, tv_sec); 3079 CP(rqt32, rqt, tv_nsec); 3080 3081 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 3082 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 3083 CP(rmt, rmt32, tv_sec); 3084 CP(rmt, rmt32, tv_nsec); 3085 3086 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 3087 if (error2 != 0) 3088 error = error2; 3089 } 3090 return (error); 3091 } 3092 3093 int 3094 freebsd32_clock_gettime(struct thread *td, 3095 struct freebsd32_clock_gettime_args *uap) 3096 { 3097 struct timespec ats; 3098 struct timespec32 ats32; 3099 int error; 3100 3101 error = kern_clock_gettime(td, uap->clock_id, &ats); 3102 if (error == 0) { 3103 CP(ats, ats32, tv_sec); 3104 CP(ats, ats32, tv_nsec); 3105 error = copyout(&ats32, uap->tp, sizeof(ats32)); 3106 } 3107 return (error); 3108 } 3109 3110 int 3111 freebsd32_clock_settime(struct thread *td, 3112 struct freebsd32_clock_settime_args *uap) 3113 { 3114 struct timespec ats; 3115 struct timespec32 ats32; 3116 int error; 3117 3118 error = copyin(uap->tp, &ats32, sizeof(ats32)); 3119 if (error) 3120 return (error); 3121 CP(ats32, ats, tv_sec); 3122 CP(ats32, ats, tv_nsec); 3123 3124 return (kern_clock_settime(td, uap->clock_id, &ats)); 3125 } 3126 3127 int 3128 freebsd32_clock_getres(struct thread *td, 3129 struct freebsd32_clock_getres_args *uap) 3130 { 3131 struct timespec ts; 3132 struct timespec32 ts32; 3133 int error; 3134 3135 if (uap->tp == NULL) 3136 return (0); 3137 error = kern_clock_getres(td, uap->clock_id, &ts); 3138 if (error == 0) { 3139 CP(ts, ts32, tv_sec); 3140 CP(ts, ts32, tv_nsec); 3141 error = copyout(&ts32, uap->tp, sizeof(ts32)); 3142 } 3143 return (error); 3144 } 3145 3146 int freebsd32_ktimer_create(struct thread *td, 3147 struct freebsd32_ktimer_create_args *uap) 3148 { 3149 struct sigevent32 ev32; 3150 struct sigevent ev, *evp; 3151 int error, id; 3152 3153 if (uap->evp == NULL) { 3154 evp = NULL; 3155 } else { 3156 evp = &ev; 3157 error = copyin(uap->evp, &ev32, sizeof(ev32)); 3158 if (error != 0) 3159 return (error); 3160 error = convert_sigevent32(&ev32, &ev); 3161 if (error != 0) 3162 return (error); 3163 } 3164 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 3165 if (error == 0) { 3166 error = copyout(&id, uap->timerid, sizeof(int)); 3167 if (error != 0) 3168 kern_ktimer_delete(td, id); 3169 } 3170 return (error); 3171 } 3172 3173 int 3174 freebsd32_ktimer_settime(struct thread *td, 3175 struct freebsd32_ktimer_settime_args *uap) 3176 { 3177 struct itimerspec32 val32, oval32; 3178 struct itimerspec val, oval, *ovalp; 3179 int error; 3180 3181 error = copyin(uap->value, &val32, sizeof(val32)); 3182 if (error != 0) 3183 return (error); 3184 ITS_CP(val32, val); 3185 ovalp = uap->ovalue != NULL ? &oval : NULL; 3186 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 3187 if (error == 0 && uap->ovalue != NULL) { 3188 ITS_CP(oval, oval32); 3189 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 3190 } 3191 return (error); 3192 } 3193 3194 int 3195 freebsd32_ktimer_gettime(struct thread *td, 3196 struct freebsd32_ktimer_gettime_args *uap) 3197 { 3198 struct itimerspec32 val32; 3199 struct itimerspec val; 3200 int error; 3201 3202 error = kern_ktimer_gettime(td, uap->timerid, &val); 3203 if (error == 0) { 3204 ITS_CP(val, val32); 3205 error = copyout(&val32, uap->value, sizeof(val32)); 3206 } 3207 return (error); 3208 } 3209 3210 int 3211 freebsd32_timerfd_gettime(struct thread *td, 3212 struct freebsd32_timerfd_gettime_args *uap) 3213 { 3214 struct itimerspec curr_value; 3215 struct itimerspec32 curr_value32; 3216 int error; 3217 3218 error = kern_timerfd_gettime(td, uap->fd, &curr_value); 3219 if (error == 0) { 3220 CP(curr_value, curr_value32, it_value.tv_sec); 3221 CP(curr_value, curr_value32, it_value.tv_nsec); 3222 CP(curr_value, curr_value32, it_interval.tv_sec); 3223 CP(curr_value, curr_value32, it_interval.tv_nsec); 3224 error = copyout(&curr_value32, uap->curr_value, 3225 sizeof(curr_value32)); 3226 } 3227 3228 return (error); 3229 } 3230 3231 int 3232 freebsd32_timerfd_settime(struct thread *td, 3233 struct freebsd32_timerfd_settime_args *uap) 3234 { 3235 struct itimerspec new_value, old_value; 3236 struct itimerspec32 new_value32, old_value32; 3237 int error; 3238 3239 error = copyin(uap->new_value, &new_value32, sizeof(new_value32)); 3240 if (error != 0) 3241 return (error); 3242 CP(new_value32, new_value, it_value.tv_sec); 3243 CP(new_value32, new_value, it_value.tv_nsec); 3244 CP(new_value32, new_value, it_interval.tv_sec); 3245 CP(new_value32, new_value, it_interval.tv_nsec); 3246 if (uap->old_value == NULL) { 3247 error = kern_timerfd_settime(td, uap->fd, uap->flags, 3248 &new_value, NULL); 3249 } else { 3250 error = kern_timerfd_settime(td, uap->fd, uap->flags, 3251 &new_value, &old_value); 3252 if (error == 0) { 3253 CP(old_value, old_value32, it_value.tv_sec); 3254 CP(old_value, old_value32, it_value.tv_nsec); 3255 CP(old_value, old_value32, it_interval.tv_sec); 3256 CP(old_value, old_value32, it_interval.tv_nsec); 3257 error = copyout(&old_value32, uap->old_value, 3258 sizeof(old_value32)); 3259 } 3260 } 3261 return (error); 3262 } 3263 3264 int 3265 freebsd32_clock_getcpuclockid2(struct thread *td, 3266 struct freebsd32_clock_getcpuclockid2_args *uap) 3267 { 3268 clockid_t clk_id; 3269 int error; 3270 3271 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 3272 uap->which, &clk_id); 3273 if (error == 0) 3274 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 3275 return (error); 3276 } 3277 3278 int 3279 freebsd32_thr_new(struct thread *td, 3280 struct freebsd32_thr_new_args *uap) 3281 { 3282 struct thr_param32 param32; 3283 struct thr_param param; 3284 int error; 3285 3286 if (uap->param_size < 0 || 3287 uap->param_size > sizeof(struct thr_param32)) 3288 return (EINVAL); 3289 bzero(¶m, sizeof(struct thr_param)); 3290 bzero(¶m32, sizeof(struct thr_param32)); 3291 error = copyin(uap->param, ¶m32, uap->param_size); 3292 if (error != 0) 3293 return (error); 3294 param.start_func = PTRIN(param32.start_func); 3295 param.arg = PTRIN(param32.arg); 3296 param.stack_base = PTRIN(param32.stack_base); 3297 param.stack_size = param32.stack_size; 3298 param.tls_base = PTRIN(param32.tls_base); 3299 param.tls_size = param32.tls_size; 3300 param.child_tid = PTRIN(param32.child_tid); 3301 param.parent_tid = PTRIN(param32.parent_tid); 3302 param.flags = param32.flags; 3303 param.rtp = PTRIN(param32.rtp); 3304 param.spare[0] = PTRIN(param32.spare[0]); 3305 param.spare[1] = PTRIN(param32.spare[1]); 3306 param.spare[2] = PTRIN(param32.spare[2]); 3307 3308 return (kern_thr_new(td, ¶m)); 3309 } 3310 3311 int 3312 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 3313 { 3314 struct timespec32 ts32; 3315 struct timespec ts, *tsp; 3316 int error; 3317 3318 error = 0; 3319 tsp = NULL; 3320 if (uap->timeout != NULL) { 3321 error = copyin((const void *)uap->timeout, (void *)&ts32, 3322 sizeof(struct timespec32)); 3323 if (error != 0) 3324 return (error); 3325 ts.tv_sec = ts32.tv_sec; 3326 ts.tv_nsec = ts32.tv_nsec; 3327 tsp = &ts; 3328 } 3329 return (kern_thr_suspend(td, tsp)); 3330 } 3331 3332 void 3333 siginfo_to_siginfo32(const siginfo_t *src, struct __siginfo32 *dst) 3334 { 3335 bzero(dst, sizeof(*dst)); 3336 dst->si_signo = src->si_signo; 3337 dst->si_errno = src->si_errno; 3338 dst->si_code = src->si_code; 3339 dst->si_pid = src->si_pid; 3340 dst->si_uid = src->si_uid; 3341 dst->si_status = src->si_status; 3342 dst->si_addr = (uintptr_t)src->si_addr; 3343 dst->si_value.sival_int = src->si_value.sival_int; 3344 dst->si_timerid = src->si_timerid; 3345 dst->si_overrun = src->si_overrun; 3346 } 3347 3348 #ifndef _FREEBSD32_SYSPROTO_H_ 3349 struct freebsd32_sigqueue_args { 3350 pid_t pid; 3351 int signum; 3352 /* union sigval32 */ int value; 3353 }; 3354 #endif 3355 int 3356 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 3357 { 3358 union sigval sv; 3359 3360 /* 3361 * On 32-bit ABIs, sival_int and sival_ptr are the same. 3362 * On 64-bit little-endian ABIs, the low bits are the same. 3363 * In 64-bit big-endian ABIs, sival_int overlaps with 3364 * sival_ptr's HIGH bits. We choose to support sival_int 3365 * rather than sival_ptr in this case as it seems to be 3366 * more common. 3367 */ 3368 bzero(&sv, sizeof(sv)); 3369 sv.sival_int = (uint32_t)(uint64_t)uap->value; 3370 3371 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 3372 } 3373 3374 int 3375 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 3376 { 3377 struct timespec32 ts32; 3378 struct timespec ts; 3379 struct timespec *timeout; 3380 sigset_t set; 3381 ksiginfo_t ksi; 3382 struct __siginfo32 si32; 3383 int error; 3384 3385 if (uap->timeout) { 3386 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3387 if (error) 3388 return (error); 3389 ts.tv_sec = ts32.tv_sec; 3390 ts.tv_nsec = ts32.tv_nsec; 3391 timeout = &ts; 3392 } else 3393 timeout = NULL; 3394 3395 error = copyin(uap->set, &set, sizeof(set)); 3396 if (error) 3397 return (error); 3398 3399 error = kern_sigtimedwait(td, set, &ksi, timeout); 3400 if (error) 3401 return (error); 3402 3403 if (uap->info) { 3404 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3405 error = copyout(&si32, uap->info, sizeof(struct __siginfo32)); 3406 } 3407 3408 if (error == 0) 3409 td->td_retval[0] = ksi.ksi_signo; 3410 return (error); 3411 } 3412 3413 /* 3414 * MPSAFE 3415 */ 3416 int 3417 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 3418 { 3419 ksiginfo_t ksi; 3420 struct __siginfo32 si32; 3421 sigset_t set; 3422 int error; 3423 3424 error = copyin(uap->set, &set, sizeof(set)); 3425 if (error) 3426 return (error); 3427 3428 error = kern_sigtimedwait(td, set, &ksi, NULL); 3429 if (error) 3430 return (error); 3431 3432 if (uap->info) { 3433 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3434 error = copyout(&si32, uap->info, sizeof(struct __siginfo32)); 3435 } 3436 if (error == 0) 3437 td->td_retval[0] = ksi.ksi_signo; 3438 return (error); 3439 } 3440 3441 int 3442 freebsd32_cpuset_setid(struct thread *td, 3443 struct freebsd32_cpuset_setid_args *uap) 3444 { 3445 3446 return (kern_cpuset_setid(td, uap->which, 3447 PAIR32TO64(id_t, uap->id), uap->setid)); 3448 } 3449 3450 int 3451 freebsd32_cpuset_getid(struct thread *td, 3452 struct freebsd32_cpuset_getid_args *uap) 3453 { 3454 3455 return (kern_cpuset_getid(td, uap->level, uap->which, 3456 PAIR32TO64(id_t, uap->id), uap->setid)); 3457 } 3458 3459 static int 3460 copyin32_set(const void *u, void *k, size_t size) 3461 { 3462 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3463 int rv; 3464 struct bitset *kb = k; 3465 int *p; 3466 3467 rv = copyin(u, k, size); 3468 if (rv != 0) 3469 return (rv); 3470 3471 p = (int *)kb->__bits; 3472 /* Loop through swapping words. 3473 * `size' is in bytes, we need bits. */ 3474 for (int i = 0; i < __bitset_words(size * 8); i++) { 3475 int tmp = p[0]; 3476 p[0] = p[1]; 3477 p[1] = tmp; 3478 p += 2; 3479 } 3480 return (0); 3481 #else 3482 return (copyin(u, k, size)); 3483 #endif 3484 } 3485 3486 static int 3487 copyout32_set(const void *k, void *u, size_t size) 3488 { 3489 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3490 const struct bitset *kb = k; 3491 struct bitset *ub = u; 3492 const int *kp = (const int *)kb->__bits; 3493 int *up = (int *)ub->__bits; 3494 int rv; 3495 3496 for (int i = 0; i < __bitset_words(CPU_SETSIZE); i++) { 3497 /* `size' is in bytes, we need bits. */ 3498 for (int i = 0; i < __bitset_words(size * 8); i++) { 3499 rv = suword32(up, kp[1]); 3500 if (rv == 0) 3501 rv = suword32(up + 1, kp[0]); 3502 if (rv != 0) 3503 return (EFAULT); 3504 } 3505 } 3506 return (0); 3507 #else 3508 return (copyout(k, u, size)); 3509 #endif 3510 } 3511 3512 static const struct cpuset_copy_cb cpuset_copy32_cb = { 3513 .cpuset_copyin = copyin32_set, 3514 .cpuset_copyout = copyout32_set 3515 }; 3516 3517 int 3518 freebsd32_cpuset_getaffinity(struct thread *td, 3519 struct freebsd32_cpuset_getaffinity_args *uap) 3520 { 3521 3522 return (user_cpuset_getaffinity(td, uap->level, uap->which, 3523 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3524 &cpuset_copy32_cb)); 3525 } 3526 3527 int 3528 freebsd32_cpuset_setaffinity(struct thread *td, 3529 struct freebsd32_cpuset_setaffinity_args *uap) 3530 { 3531 3532 return (user_cpuset_setaffinity(td, uap->level, uap->which, 3533 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3534 &cpuset_copy32_cb)); 3535 } 3536 3537 int 3538 freebsd32_cpuset_getdomain(struct thread *td, 3539 struct freebsd32_cpuset_getdomain_args *uap) 3540 { 3541 3542 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3543 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3544 &cpuset_copy32_cb)); 3545 } 3546 3547 int 3548 freebsd32_cpuset_setdomain(struct thread *td, 3549 struct freebsd32_cpuset_setdomain_args *uap) 3550 { 3551 3552 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3553 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3554 &cpuset_copy32_cb)); 3555 } 3556 3557 int 3558 freebsd32_nmount(struct thread *td, 3559 struct freebsd32_nmount_args /* { 3560 struct iovec *iovp; 3561 unsigned int iovcnt; 3562 int flags; 3563 } */ *uap) 3564 { 3565 struct uio *auio; 3566 uint64_t flags; 3567 int error; 3568 3569 /* 3570 * Mount flags are now 64-bits. On 32-bit archtectures only 3571 * 32-bits are passed in, but from here on everything handles 3572 * 64-bit flags correctly. 3573 */ 3574 flags = uap->flags; 3575 3576 AUDIT_ARG_FFLAGS(flags); 3577 3578 /* 3579 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3580 * userspace to set this flag, but we must filter it out if we want 3581 * MNT_UPDATE on the root file system to work. 3582 * MNT_ROOTFS should only be set by the kernel when mounting its 3583 * root file system. 3584 */ 3585 flags &= ~MNT_ROOTFS; 3586 3587 /* 3588 * check that we have an even number of iovec's 3589 * and that we have at least two options. 3590 */ 3591 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3592 return (EINVAL); 3593 3594 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3595 if (error) 3596 return (error); 3597 error = vfs_donmount(td, flags, auio); 3598 3599 freeuio(auio); 3600 return error; 3601 } 3602 3603 #if 0 3604 int 3605 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3606 { 3607 struct yyy32 *p32, s32; 3608 struct yyy *p = NULL, s; 3609 struct xxx_arg ap; 3610 int error; 3611 3612 if (uap->zzz) { 3613 error = copyin(uap->zzz, &s32, sizeof(s32)); 3614 if (error) 3615 return (error); 3616 /* translate in */ 3617 p = &s; 3618 } 3619 error = kern_xxx(td, p); 3620 if (error) 3621 return (error); 3622 if (uap->zzz) { 3623 /* translate out */ 3624 error = copyout(&s32, p32, sizeof(s32)); 3625 } 3626 return (error); 3627 } 3628 #endif 3629 3630 int 3631 syscall32_module_handler(struct module *mod, int what, void *arg) 3632 { 3633 3634 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3635 } 3636 3637 int 3638 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3639 { 3640 3641 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3642 } 3643 3644 int 3645 syscall32_helper_unregister(struct syscall_helper_data *sd) 3646 { 3647 3648 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3649 } 3650 3651 int 3652 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 3653 { 3654 struct sysentvec *sysent; 3655 int argc, envc, i; 3656 uint32_t *vectp; 3657 char *stringp; 3658 uintptr_t destp, ustringp; 3659 struct freebsd32_ps_strings *arginfo; 3660 char canary[sizeof(long) * 8]; 3661 int32_t pagesizes32[MAXPAGESIZES]; 3662 size_t execpath_len; 3663 int error, szsigcode; 3664 3665 sysent = imgp->sysent; 3666 3667 arginfo = (struct freebsd32_ps_strings *)PROC_PS_STRINGS(imgp->proc); 3668 imgp->ps_strings = arginfo; 3669 destp = (uintptr_t)arginfo; 3670 3671 /* 3672 * Install sigcode. 3673 */ 3674 if (!PROC_HAS_SHP(imgp->proc)) { 3675 szsigcode = *sysent->sv_szsigcode; 3676 destp -= szsigcode; 3677 destp = rounddown2(destp, sizeof(uint32_t)); 3678 error = copyout(sysent->sv_sigcode, (void *)destp, 3679 szsigcode); 3680 if (error != 0) 3681 return (error); 3682 } 3683 3684 /* 3685 * Copy the image path for the rtld. 3686 */ 3687 if (imgp->execpath != NULL && imgp->auxargs != NULL) { 3688 execpath_len = strlen(imgp->execpath) + 1; 3689 destp -= execpath_len; 3690 imgp->execpathp = (void *)destp; 3691 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 3692 if (error != 0) 3693 return (error); 3694 } 3695 3696 /* 3697 * Prepare the canary for SSP. 3698 */ 3699 arc4rand(canary, sizeof(canary), 0); 3700 destp -= sizeof(canary); 3701 imgp->canary = (void *)destp; 3702 error = copyout(canary, imgp->canary, sizeof(canary)); 3703 if (error != 0) 3704 return (error); 3705 imgp->canarylen = sizeof(canary); 3706 3707 /* 3708 * Prepare the pagesizes array. 3709 */ 3710 for (i = 0; i < MAXPAGESIZES; i++) 3711 pagesizes32[i] = (uint32_t)pagesizes[i]; 3712 destp -= sizeof(pagesizes32); 3713 destp = rounddown2(destp, sizeof(uint32_t)); 3714 imgp->pagesizes = (void *)destp; 3715 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); 3716 if (error != 0) 3717 return (error); 3718 imgp->pagesizeslen = sizeof(pagesizes32); 3719 3720 /* 3721 * Allocate room for the argument and environment strings. 3722 */ 3723 destp -= ARG_MAX - imgp->args->stringspace; 3724 destp = rounddown2(destp, sizeof(uint32_t)); 3725 ustringp = destp; 3726 3727 if (imgp->auxargs) { 3728 /* 3729 * Allocate room on the stack for the ELF auxargs 3730 * array. It has up to AT_COUNT entries. 3731 */ 3732 destp -= AT_COUNT * sizeof(Elf32_Auxinfo); 3733 destp = rounddown2(destp, sizeof(uint32_t)); 3734 } 3735 3736 vectp = (uint32_t *)destp; 3737 3738 /* 3739 * Allocate room for the argv[] and env vectors including the 3740 * terminating NULL pointers. 3741 */ 3742 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3743 3744 /* 3745 * vectp also becomes our initial stack base 3746 */ 3747 *stack_base = (uintptr_t)vectp; 3748 3749 stringp = imgp->args->begin_argv; 3750 argc = imgp->args->argc; 3751 envc = imgp->args->envc; 3752 /* 3753 * Copy out strings - arguments and environment. 3754 */ 3755 error = copyout(stringp, (void *)ustringp, 3756 ARG_MAX - imgp->args->stringspace); 3757 if (error != 0) 3758 return (error); 3759 3760 /* 3761 * Fill in "ps_strings" struct for ps, w, etc. 3762 */ 3763 imgp->argv = vectp; 3764 if (suword32(&arginfo->ps_argvstr, (uint32_t)(intptr_t)vectp) != 0 || 3765 suword32(&arginfo->ps_nargvstr, argc) != 0) 3766 return (EFAULT); 3767 3768 /* 3769 * Fill in argument portion of vector table. 3770 */ 3771 for (; argc > 0; --argc) { 3772 if (suword32(vectp++, ustringp) != 0) 3773 return (EFAULT); 3774 while (*stringp++ != 0) 3775 ustringp++; 3776 ustringp++; 3777 } 3778 3779 /* a null vector table pointer separates the argp's from the envp's */ 3780 if (suword32(vectp++, 0) != 0) 3781 return (EFAULT); 3782 3783 imgp->envv = vectp; 3784 if (suword32(&arginfo->ps_envstr, (uint32_t)(intptr_t)vectp) != 0 || 3785 suword32(&arginfo->ps_nenvstr, envc) != 0) 3786 return (EFAULT); 3787 3788 /* 3789 * Fill in environment portion of vector table. 3790 */ 3791 for (; envc > 0; --envc) { 3792 if (suword32(vectp++, ustringp) != 0) 3793 return (EFAULT); 3794 while (*stringp++ != 0) 3795 ustringp++; 3796 ustringp++; 3797 } 3798 3799 /* end of vector table is a null pointer */ 3800 if (suword32(vectp, 0) != 0) 3801 return (EFAULT); 3802 3803 if (imgp->auxargs) { 3804 vectp++; 3805 error = imgp->sysent->sv_copyout_auxargs(imgp, 3806 (uintptr_t)vectp); 3807 if (error != 0) 3808 return (error); 3809 } 3810 3811 return (0); 3812 } 3813 3814 int 3815 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3816 { 3817 struct kld_file_stat *stat; 3818 struct kld_file_stat32 *stat32; 3819 int error, version; 3820 3821 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3822 != 0) 3823 return (error); 3824 if (version != sizeof(struct kld_file_stat_1_32) && 3825 version != sizeof(struct kld_file_stat32)) 3826 return (EINVAL); 3827 3828 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3829 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3830 error = kern_kldstat(td, uap->fileid, stat); 3831 if (error == 0) { 3832 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3833 CP(*stat, *stat32, refs); 3834 CP(*stat, *stat32, id); 3835 PTROUT_CP(*stat, *stat32, address); 3836 CP(*stat, *stat32, size); 3837 bcopy(&stat->pathname[0], &stat32->pathname[0], 3838 sizeof(stat->pathname)); 3839 stat32->version = version; 3840 error = copyout(stat32, uap->stat, version); 3841 } 3842 free(stat, M_TEMP); 3843 free(stat32, M_TEMP); 3844 return (error); 3845 } 3846 3847 int 3848 freebsd32_posix_fallocate(struct thread *td, 3849 struct freebsd32_posix_fallocate_args *uap) 3850 { 3851 int error; 3852 3853 error = kern_posix_fallocate(td, uap->fd, 3854 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3855 return (kern_posix_error(td, error)); 3856 } 3857 3858 int 3859 freebsd32_posix_fadvise(struct thread *td, 3860 struct freebsd32_posix_fadvise_args *uap) 3861 { 3862 int error; 3863 3864 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3865 PAIR32TO64(off_t, uap->len), uap->advice); 3866 return (kern_posix_error(td, error)); 3867 } 3868 3869 int 3870 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3871 { 3872 3873 CP(*sig32, *sig, sigev_notify); 3874 switch (sig->sigev_notify) { 3875 case SIGEV_NONE: 3876 break; 3877 case SIGEV_THREAD_ID: 3878 CP(*sig32, *sig, sigev_notify_thread_id); 3879 /* FALLTHROUGH */ 3880 case SIGEV_SIGNAL: 3881 CP(*sig32, *sig, sigev_signo); 3882 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3883 break; 3884 case SIGEV_KEVENT: 3885 CP(*sig32, *sig, sigev_notify_kqueue); 3886 CP(*sig32, *sig, sigev_notify_kevent_flags); 3887 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3888 break; 3889 default: 3890 return (EINVAL); 3891 } 3892 return (0); 3893 } 3894 3895 int 3896 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3897 { 3898 void *data; 3899 union { 3900 struct procctl_reaper_status rs; 3901 struct procctl_reaper_pids rp; 3902 struct procctl_reaper_kill rk; 3903 } x; 3904 union { 3905 struct procctl_reaper_pids32 rp; 3906 } x32; 3907 int error, error1, flags, signum; 3908 3909 if (uap->com >= PROC_PROCCTL_MD_MIN) 3910 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3911 uap->com, PTRIN(uap->data))); 3912 3913 switch (uap->com) { 3914 case PROC_ASLR_CTL: 3915 case PROC_PROTMAX_CTL: 3916 case PROC_SPROTECT: 3917 case PROC_STACKGAP_CTL: 3918 case PROC_TRACE_CTL: 3919 case PROC_TRAPCAP_CTL: 3920 case PROC_NO_NEW_PRIVS_CTL: 3921 case PROC_WXMAP_CTL: 3922 case PROC_LOGSIGEXIT_CTL: 3923 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3924 if (error != 0) 3925 return (error); 3926 data = &flags; 3927 break; 3928 case PROC_REAP_ACQUIRE: 3929 case PROC_REAP_RELEASE: 3930 if (uap->data != NULL) 3931 return (EINVAL); 3932 data = NULL; 3933 break; 3934 case PROC_REAP_STATUS: 3935 data = &x.rs; 3936 break; 3937 case PROC_REAP_GETPIDS: 3938 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3939 if (error != 0) 3940 return (error); 3941 CP(x32.rp, x.rp, rp_count); 3942 PTRIN_CP(x32.rp, x.rp, rp_pids); 3943 data = &x.rp; 3944 break; 3945 case PROC_REAP_KILL: 3946 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3947 if (error != 0) 3948 return (error); 3949 data = &x.rk; 3950 break; 3951 case PROC_ASLR_STATUS: 3952 case PROC_PROTMAX_STATUS: 3953 case PROC_STACKGAP_STATUS: 3954 case PROC_TRACE_STATUS: 3955 case PROC_TRAPCAP_STATUS: 3956 case PROC_NO_NEW_PRIVS_STATUS: 3957 case PROC_WXMAP_STATUS: 3958 case PROC_LOGSIGEXIT_STATUS: 3959 data = &flags; 3960 break; 3961 case PROC_PDEATHSIG_CTL: 3962 error = copyin(uap->data, &signum, sizeof(signum)); 3963 if (error != 0) 3964 return (error); 3965 data = &signum; 3966 break; 3967 case PROC_PDEATHSIG_STATUS: 3968 data = &signum; 3969 break; 3970 default: 3971 return (EINVAL); 3972 } 3973 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3974 uap->com, data); 3975 switch (uap->com) { 3976 case PROC_REAP_STATUS: 3977 if (error == 0) 3978 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3979 break; 3980 case PROC_REAP_KILL: 3981 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3982 if (error == 0) 3983 error = error1; 3984 break; 3985 case PROC_ASLR_STATUS: 3986 case PROC_PROTMAX_STATUS: 3987 case PROC_STACKGAP_STATUS: 3988 case PROC_TRACE_STATUS: 3989 case PROC_TRAPCAP_STATUS: 3990 case PROC_NO_NEW_PRIVS_STATUS: 3991 case PROC_WXMAP_STATUS: 3992 case PROC_LOGSIGEXIT_STATUS: 3993 if (error == 0) 3994 error = copyout(&flags, uap->data, sizeof(flags)); 3995 break; 3996 case PROC_PDEATHSIG_STATUS: 3997 if (error == 0) 3998 error = copyout(&signum, uap->data, sizeof(signum)); 3999 break; 4000 } 4001 return (error); 4002 } 4003 4004 int 4005 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 4006 { 4007 intptr_t tmp; 4008 4009 switch (uap->cmd) { 4010 /* 4011 * Do unsigned conversion for arg when operation 4012 * interprets it as flags or pointer. 4013 */ 4014 case F_SETLK_REMOTE: 4015 case F_SETLKW: 4016 case F_SETLK: 4017 case F_GETLK: 4018 case F_SETFD: 4019 case F_SETFL: 4020 case F_OGETLK: 4021 case F_OSETLK: 4022 case F_OSETLKW: 4023 case F_KINFO: 4024 tmp = (unsigned int)(uap->arg); 4025 break; 4026 default: 4027 tmp = uap->arg; 4028 break; 4029 } 4030 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 4031 } 4032 4033 int 4034 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 4035 { 4036 struct timespec32 ts32; 4037 struct timespec ts, *tsp; 4038 sigset_t set, *ssp; 4039 int error; 4040 4041 if (uap->ts != NULL) { 4042 error = copyin(uap->ts, &ts32, sizeof(ts32)); 4043 if (error != 0) 4044 return (error); 4045 CP(ts32, ts, tv_sec); 4046 CP(ts32, ts, tv_nsec); 4047 tsp = &ts; 4048 } else 4049 tsp = NULL; 4050 if (uap->set != NULL) { 4051 error = copyin(uap->set, &set, sizeof(set)); 4052 if (error != 0) 4053 return (error); 4054 ssp = &set; 4055 } else 4056 ssp = NULL; 4057 4058 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 4059 } 4060 4061 int 4062 freebsd32_sched_rr_get_interval(struct thread *td, 4063 struct freebsd32_sched_rr_get_interval_args *uap) 4064 { 4065 struct timespec ts; 4066 struct timespec32 ts32; 4067 int error; 4068 4069 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 4070 if (error == 0) { 4071 CP(ts, ts32, tv_sec); 4072 CP(ts, ts32, tv_nsec); 4073 error = copyout(&ts32, uap->interval, sizeof(ts32)); 4074 } 4075 return (error); 4076 } 4077 4078 static void 4079 timex_to_32(struct timex32 *dst, struct timex *src) 4080 { 4081 CP(*src, *dst, modes); 4082 CP(*src, *dst, offset); 4083 CP(*src, *dst, freq); 4084 CP(*src, *dst, maxerror); 4085 CP(*src, *dst, esterror); 4086 CP(*src, *dst, status); 4087 CP(*src, *dst, constant); 4088 CP(*src, *dst, precision); 4089 CP(*src, *dst, tolerance); 4090 CP(*src, *dst, ppsfreq); 4091 CP(*src, *dst, jitter); 4092 CP(*src, *dst, shift); 4093 CP(*src, *dst, stabil); 4094 CP(*src, *dst, jitcnt); 4095 CP(*src, *dst, calcnt); 4096 CP(*src, *dst, errcnt); 4097 CP(*src, *dst, stbcnt); 4098 } 4099 4100 static void 4101 timex_from_32(struct timex *dst, struct timex32 *src) 4102 { 4103 CP(*src, *dst, modes); 4104 CP(*src, *dst, offset); 4105 CP(*src, *dst, freq); 4106 CP(*src, *dst, maxerror); 4107 CP(*src, *dst, esterror); 4108 CP(*src, *dst, status); 4109 CP(*src, *dst, constant); 4110 CP(*src, *dst, precision); 4111 CP(*src, *dst, tolerance); 4112 CP(*src, *dst, ppsfreq); 4113 CP(*src, *dst, jitter); 4114 CP(*src, *dst, shift); 4115 CP(*src, *dst, stabil); 4116 CP(*src, *dst, jitcnt); 4117 CP(*src, *dst, calcnt); 4118 CP(*src, *dst, errcnt); 4119 CP(*src, *dst, stbcnt); 4120 } 4121 4122 int 4123 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap) 4124 { 4125 struct timex tx; 4126 struct timex32 tx32; 4127 int error, retval; 4128 4129 error = copyin(uap->tp, &tx32, sizeof(tx32)); 4130 if (error == 0) { 4131 timex_from_32(&tx, &tx32); 4132 error = kern_ntp_adjtime(td, &tx, &retval); 4133 if (error == 0) { 4134 timex_to_32(&tx32, &tx); 4135 error = copyout(&tx32, uap->tp, sizeof(tx32)); 4136 if (error == 0) 4137 td->td_retval[0] = retval; 4138 } 4139 } 4140 return (error); 4141 } 4142 4143 #ifdef FFCLOCK 4144 extern struct mtx ffclock_mtx; 4145 extern struct ffclock_estimate ffclock_estimate; 4146 extern int8_t ffclock_updated; 4147 4148 int 4149 freebsd32_ffclock_setestimate(struct thread *td, 4150 struct freebsd32_ffclock_setestimate_args *uap) 4151 { 4152 struct ffclock_estimate cest; 4153 struct ffclock_estimate32 cest32; 4154 int error; 4155 4156 /* Reuse of PRIV_CLOCK_SETTIME. */ 4157 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 4158 return (error); 4159 4160 if ((error = copyin(uap->cest, &cest32, 4161 sizeof(struct ffclock_estimate32))) != 0) 4162 return (error); 4163 4164 CP(cest.update_time, cest32.update_time, sec); 4165 memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t)); 4166 CP(cest, cest32, update_ffcount); 4167 CP(cest, cest32, leapsec_next); 4168 CP(cest, cest32, period); 4169 CP(cest, cest32, errb_abs); 4170 CP(cest, cest32, errb_rate); 4171 CP(cest, cest32, status); 4172 CP(cest, cest32, leapsec_total); 4173 CP(cest, cest32, leapsec); 4174 4175 mtx_lock(&ffclock_mtx); 4176 memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate)); 4177 ffclock_updated++; 4178 mtx_unlock(&ffclock_mtx); 4179 return (error); 4180 } 4181 4182 int 4183 freebsd32_ffclock_getestimate(struct thread *td, 4184 struct freebsd32_ffclock_getestimate_args *uap) 4185 { 4186 struct ffclock_estimate cest; 4187 struct ffclock_estimate32 cest32; 4188 int error; 4189 4190 mtx_lock(&ffclock_mtx); 4191 memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 4192 mtx_unlock(&ffclock_mtx); 4193 4194 CP(cest32.update_time, cest.update_time, sec); 4195 memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t)); 4196 CP(cest32, cest, update_ffcount); 4197 CP(cest32, cest, leapsec_next); 4198 CP(cest32, cest, period); 4199 CP(cest32, cest, errb_abs); 4200 CP(cest32, cest, errb_rate); 4201 CP(cest32, cest, status); 4202 CP(cest32, cest, leapsec_total); 4203 CP(cest32, cest, leapsec); 4204 4205 error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32)); 4206 return (error); 4207 } 4208 #else /* !FFCLOCK */ 4209 int 4210 freebsd32_ffclock_setestimate(struct thread *td, 4211 struct freebsd32_ffclock_setestimate_args *uap) 4212 { 4213 return (ENOSYS); 4214 } 4215 4216 int 4217 freebsd32_ffclock_getestimate(struct thread *td, 4218 struct freebsd32_ffclock_getestimate_args *uap) 4219 { 4220 return (ENOSYS); 4221 } 4222 #endif /* FFCLOCK */ 4223 4224 #ifdef COMPAT_43 4225 int 4226 ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap) 4227 { 4228 int name[] = { CTL_KERN, KERN_HOSTID }; 4229 long hostid; 4230 4231 hostid = uap->hostid; 4232 return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid, 4233 sizeof(hostid), NULL, 0)); 4234 } 4235 #endif 4236 4237 int 4238 freebsd32_setcred(struct thread *td, struct freebsd32_setcred_args *uap) 4239 { 4240 /* Last argument is 'is_32bit'. */ 4241 return (user_setcred(td, uap->flags, uap->wcred, uap->size, true)); 4242 } 4243