1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/kernel.h> 34 #include <sys/conf.h> 35 #include <sys/types.h> 36 #include <sys/bio.h> 37 #include <sys/bus.h> 38 #include <sys/devicestat.h> 39 #include <sys/errno.h> 40 #include <sys/fcntl.h> 41 #include <sys/malloc.h> 42 #include <sys/proc.h> 43 #include <sys/poll.h> 44 #include <sys/selinfo.h> 45 #include <sys/sdt.h> 46 #include <sys/sysent.h> 47 #include <sys/taskqueue.h> 48 #include <vm/uma.h> 49 #include <vm/vm.h> 50 #include <vm/vm_extern.h> 51 52 #include <machine/bus.h> 53 54 #include <cam/cam.h> 55 #include <cam/cam_ccb.h> 56 #include <cam/cam_periph.h> 57 #include <cam/cam_queue.h> 58 #include <cam/cam_xpt.h> 59 #include <cam/cam_xpt_periph.h> 60 #include <cam/cam_debug.h> 61 #include <cam/cam_compat.h> 62 #include <cam/cam_xpt_periph.h> 63 64 #include <cam/scsi/scsi_all.h> 65 #include <cam/scsi/scsi_pass.h> 66 67 typedef enum { 68 PASS_FLAG_OPEN = 0x01, 69 PASS_FLAG_LOCKED = 0x02, 70 PASS_FLAG_INVALID = 0x04, 71 PASS_FLAG_INITIAL_PHYSPATH = 0x08, 72 PASS_FLAG_ZONE_INPROG = 0x10, 73 PASS_FLAG_ZONE_VALID = 0x20, 74 PASS_FLAG_UNMAPPED_CAPABLE = 0x40, 75 PASS_FLAG_ABANDONED_REF_SET = 0x80 76 } pass_flags; 77 78 typedef enum { 79 PASS_STATE_NORMAL 80 } pass_state; 81 82 typedef enum { 83 PASS_CCB_BUFFER_IO, 84 PASS_CCB_QUEUED_IO 85 } pass_ccb_types; 86 87 #define ccb_type ppriv_field0 88 #define ccb_ioreq ppriv_ptr1 89 90 /* 91 * The maximum number of memory segments we preallocate. 92 */ 93 #define PASS_MAX_SEGS 16 94 95 typedef enum { 96 PASS_IO_NONE = 0x00, 97 PASS_IO_USER_SEG_MALLOC = 0x01, 98 PASS_IO_KERN_SEG_MALLOC = 0x02, 99 PASS_IO_ABANDONED = 0x04 100 } pass_io_flags; 101 102 struct pass_io_req { 103 union ccb ccb; 104 union ccb *alloced_ccb; 105 union ccb *user_ccb_ptr; 106 camq_entry user_periph_links; 107 ccb_ppriv_area user_periph_priv; 108 struct cam_periph_map_info mapinfo; 109 pass_io_flags flags; 110 ccb_flags data_flags; 111 int num_user_segs; 112 bus_dma_segment_t user_segs[PASS_MAX_SEGS]; 113 int num_kern_segs; 114 bus_dma_segment_t kern_segs[PASS_MAX_SEGS]; 115 bus_dma_segment_t *user_segptr; 116 bus_dma_segment_t *kern_segptr; 117 int num_bufs; 118 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 119 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 120 uint8_t *user_bufs[CAM_PERIPH_MAXMAPS]; 121 uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS]; 122 struct bintime start_time; 123 TAILQ_ENTRY(pass_io_req) links; 124 }; 125 126 struct pass_softc { 127 pass_state state; 128 pass_flags flags; 129 uint8_t pd_type; 130 int open_count; 131 u_int maxio; 132 struct devstat *device_stats; 133 struct cdev *dev; 134 struct cdev *alias_dev; 135 struct task add_physpath_task; 136 struct task shutdown_kqueue_task; 137 struct selinfo read_select; 138 TAILQ_HEAD(, pass_io_req) incoming_queue; 139 TAILQ_HEAD(, pass_io_req) active_queue; 140 TAILQ_HEAD(, pass_io_req) abandoned_queue; 141 TAILQ_HEAD(, pass_io_req) done_queue; 142 struct cam_periph *periph; 143 char zone_name[12]; 144 char io_zone_name[12]; 145 uma_zone_t pass_zone; 146 uma_zone_t pass_io_zone; 147 size_t io_zone_size; 148 }; 149 150 static d_open_t passopen; 151 static d_close_t passclose; 152 static d_ioctl_t passioctl; 153 static d_ioctl_t passdoioctl; 154 static d_poll_t passpoll; 155 static d_kqfilter_t passkqfilter; 156 static void passreadfiltdetach(struct knote *kn); 157 static int passreadfilt(struct knote *kn, long hint); 158 159 static periph_init_t passinit; 160 static periph_ctor_t passregister; 161 static periph_oninv_t passoninvalidate; 162 static periph_dtor_t passcleanup; 163 static periph_start_t passstart; 164 static void pass_shutdown_kqueue(void *context, int pending); 165 static void pass_add_physpath(void *context, int pending); 166 static void passasync(void *callback_arg, uint32_t code, 167 struct cam_path *path, void *arg); 168 static void passdone(struct cam_periph *periph, 169 union ccb *done_ccb); 170 static int passcreatezone(struct cam_periph *periph); 171 static void passiocleanup(struct pass_softc *softc, 172 struct pass_io_req *io_req); 173 static int passcopysglist(struct cam_periph *periph, 174 struct pass_io_req *io_req, 175 ccb_flags direction); 176 static int passmemsetup(struct cam_periph *periph, 177 struct pass_io_req *io_req); 178 static int passmemdone(struct cam_periph *periph, 179 struct pass_io_req *io_req); 180 static int passerror(union ccb *ccb, uint32_t cam_flags, 181 uint32_t sense_flags); 182 static int passsendccb(struct cam_periph *periph, union ccb *ccb, 183 union ccb *inccb); 184 static void passflags(union ccb *ccb, uint32_t *cam_flags, 185 uint32_t *sense_flags); 186 187 static struct periph_driver passdriver = 188 { 189 passinit, "pass", 190 TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0 191 }; 192 193 PERIPHDRIVER_DECLARE(pass, passdriver); 194 195 static struct cdevsw pass_cdevsw = { 196 .d_version = D_VERSION, 197 .d_flags = D_TRACKCLOSE, 198 .d_open = passopen, 199 .d_close = passclose, 200 .d_ioctl = passioctl, 201 .d_poll = passpoll, 202 .d_kqfilter = passkqfilter, 203 .d_name = "pass", 204 }; 205 206 static struct filterops passread_filtops = { 207 .f_isfd = 1, 208 .f_detach = passreadfiltdetach, 209 .f_event = passreadfilt 210 }; 211 212 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers"); 213 214 static void 215 passinit(void) 216 { 217 cam_status status; 218 219 /* 220 * Install a global async callback. This callback will 221 * receive async callbacks like "new device found". 222 */ 223 status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL); 224 225 if (status != CAM_REQ_CMP) { 226 printf("pass: Failed to attach master async callback " 227 "due to status 0x%x!\n", status); 228 } 229 230 } 231 232 static void 233 passrejectios(struct cam_periph *periph) 234 { 235 struct pass_io_req *io_req, *io_req2; 236 struct pass_softc *softc; 237 238 softc = (struct pass_softc *)periph->softc; 239 240 /* 241 * The user can no longer get status for I/O on the done queue, so 242 * clean up all outstanding I/O on the done queue. 243 */ 244 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 245 TAILQ_REMOVE(&softc->done_queue, io_req, links); 246 passiocleanup(softc, io_req); 247 uma_zfree(softc->pass_zone, io_req); 248 } 249 250 /* 251 * The underlying device is gone, so we can't issue these I/Os. 252 * The devfs node has been shut down, so we can't return status to 253 * the user. Free any I/O left on the incoming queue. 254 */ 255 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) { 256 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 257 passiocleanup(softc, io_req); 258 uma_zfree(softc->pass_zone, io_req); 259 } 260 261 /* 262 * Normally we would put I/Os on the abandoned queue and acquire a 263 * reference when we saw the final close. But, the device went 264 * away and devfs may have moved everything off to deadfs by the 265 * time the I/O done callback is called; as a result, we won't see 266 * any more closes. So, if we have any active I/Os, we need to put 267 * them on the abandoned queue. When the abandoned queue is empty, 268 * we'll release the remaining reference (see below) to the peripheral. 269 */ 270 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) { 271 TAILQ_REMOVE(&softc->active_queue, io_req, links); 272 io_req->flags |= PASS_IO_ABANDONED; 273 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links); 274 } 275 276 /* 277 * If we put any I/O on the abandoned queue, acquire a reference. 278 */ 279 if ((!TAILQ_EMPTY(&softc->abandoned_queue)) 280 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) { 281 cam_periph_doacquire(periph); 282 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 283 } 284 } 285 286 static void 287 passdevgonecb(void *arg) 288 { 289 struct cam_periph *periph; 290 struct mtx *mtx; 291 struct pass_softc *softc; 292 int i; 293 294 periph = (struct cam_periph *)arg; 295 mtx = cam_periph_mtx(periph); 296 mtx_lock(mtx); 297 298 softc = (struct pass_softc *)periph->softc; 299 KASSERT(softc->open_count >= 0, ("Negative open count %d", 300 softc->open_count)); 301 302 /* 303 * When we get this callback, we will get no more close calls from 304 * devfs. So if we have any dangling opens, we need to release the 305 * reference held for that particular context. 306 */ 307 for (i = 0; i < softc->open_count; i++) 308 cam_periph_release_locked(periph); 309 310 softc->open_count = 0; 311 312 /* 313 * Release the reference held for the device node, it is gone now. 314 * Accordingly, inform all queued I/Os of their fate. 315 */ 316 cam_periph_release_locked(periph); 317 passrejectios(periph); 318 319 /* 320 * We reference the SIM lock directly here, instead of using 321 * cam_periph_unlock(). The reason is that the final call to 322 * cam_periph_release_locked() above could result in the periph 323 * getting freed. If that is the case, dereferencing the periph 324 * with a cam_periph_unlock() call would cause a page fault. 325 */ 326 mtx_unlock(mtx); 327 328 /* 329 * We have to remove our kqueue context from a thread because it 330 * may sleep. It would be nice if we could get a callback from 331 * kqueue when it is done cleaning up resources. 332 */ 333 taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task); 334 } 335 336 static void 337 passoninvalidate(struct cam_periph *periph) 338 { 339 struct pass_softc *softc; 340 341 softc = (struct pass_softc *)periph->softc; 342 343 /* 344 * De-register any async callbacks. 345 */ 346 xpt_register_async(0, passasync, periph, periph->path); 347 348 softc->flags |= PASS_FLAG_INVALID; 349 350 /* 351 * Tell devfs this device has gone away, and ask for a callback 352 * when it has cleaned up its state. 353 */ 354 destroy_dev_sched_cb(softc->dev, passdevgonecb, periph); 355 } 356 357 static void 358 passcleanup(struct cam_periph *periph) 359 { 360 struct pass_softc *softc; 361 362 softc = (struct pass_softc *)periph->softc; 363 364 cam_periph_assert(periph, MA_OWNED); 365 KASSERT(TAILQ_EMPTY(&softc->active_queue), 366 ("%s called when there are commands on the active queue!\n", 367 __func__)); 368 KASSERT(TAILQ_EMPTY(&softc->abandoned_queue), 369 ("%s called when there are commands on the abandoned queue!\n", 370 __func__)); 371 KASSERT(TAILQ_EMPTY(&softc->incoming_queue), 372 ("%s called when there are commands on the incoming queue!\n", 373 __func__)); 374 KASSERT(TAILQ_EMPTY(&softc->done_queue), 375 ("%s called when there are commands on the done queue!\n", 376 __func__)); 377 378 devstat_remove_entry(softc->device_stats); 379 380 cam_periph_unlock(periph); 381 382 /* 383 * We call taskqueue_drain() for the physpath task to make sure it 384 * is complete. We drop the lock because this can potentially 385 * sleep. XXX KDM that is bad. Need a way to get a callback when 386 * a taskqueue is drained. 387 * 388 * Note that we don't drain the kqueue shutdown task queue. This 389 * is because we hold a reference on the periph for kqueue, and 390 * release that reference from the kqueue shutdown task queue. So 391 * we cannot come into this routine unless we've released that 392 * reference. Also, because that could be the last reference, we 393 * could be called from the cam_periph_release() call in 394 * pass_shutdown_kqueue(). In that case, the taskqueue_drain() 395 * would deadlock. It would be preferable if we had a way to 396 * get a callback when a taskqueue is done. 397 */ 398 taskqueue_drain(taskqueue_thread, &softc->add_physpath_task); 399 400 /* 401 * It should be safe to destroy the zones from here, because all 402 * of the references to this peripheral have been freed, and all 403 * I/O has been terminated and freed. We check the zones for NULL 404 * because they may not have been allocated yet if the device went 405 * away before any asynchronous I/O has been issued. 406 */ 407 if (softc->pass_zone != NULL) 408 uma_zdestroy(softc->pass_zone); 409 if (softc->pass_io_zone != NULL) 410 uma_zdestroy(softc->pass_io_zone); 411 412 cam_periph_lock(periph); 413 414 free(softc, M_DEVBUF); 415 } 416 417 static void 418 pass_shutdown_kqueue(void *context, int pending) 419 { 420 struct cam_periph *periph; 421 struct pass_softc *softc; 422 423 periph = context; 424 softc = periph->softc; 425 426 knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0); 427 knlist_destroy(&softc->read_select.si_note); 428 429 /* 430 * Release the reference we held for kqueue. 431 */ 432 cam_periph_release(periph); 433 } 434 435 static void 436 pass_add_physpath(void *context, int pending) 437 { 438 struct cam_periph *periph; 439 struct pass_softc *softc; 440 struct mtx *mtx; 441 char *physpath; 442 443 /* 444 * If we have one, create a devfs alias for our 445 * physical path. 446 */ 447 periph = context; 448 softc = periph->softc; 449 physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK); 450 mtx = cam_periph_mtx(periph); 451 mtx_lock(mtx); 452 453 if (periph->flags & CAM_PERIPH_INVALID) 454 goto out; 455 456 if (xpt_getattr(physpath, MAXPATHLEN, 457 "GEOM::physpath", periph->path) == 0 458 && strlen(physpath) != 0) { 459 mtx_unlock(mtx); 460 make_dev_physpath_alias(MAKEDEV_WAITOK | MAKEDEV_CHECKNAME, 461 &softc->alias_dev, softc->dev, 462 softc->alias_dev, physpath); 463 mtx_lock(mtx); 464 } 465 466 out: 467 /* 468 * Now that we've made our alias, we no longer have to have a 469 * reference to the device. 470 */ 471 if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0) 472 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH; 473 474 /* 475 * We always acquire a reference to the periph before queueing this 476 * task queue function, so it won't go away before we run. 477 */ 478 while (pending-- > 0) 479 cam_periph_release_locked(periph); 480 mtx_unlock(mtx); 481 482 free(physpath, M_DEVBUF); 483 } 484 485 static void 486 passasync(void *callback_arg, uint32_t code, 487 struct cam_path *path, void *arg) 488 { 489 struct cam_periph *periph; 490 491 periph = (struct cam_periph *)callback_arg; 492 493 switch (code) { 494 case AC_FOUND_DEVICE: 495 { 496 struct ccb_getdev *cgd; 497 cam_status status; 498 499 cgd = (struct ccb_getdev *)arg; 500 if (cgd == NULL) 501 break; 502 503 /* 504 * Allocate a peripheral instance for 505 * this device and start the probe 506 * process. 507 */ 508 status = cam_periph_alloc(passregister, passoninvalidate, 509 passcleanup, passstart, "pass", 510 CAM_PERIPH_BIO, path, 511 passasync, AC_FOUND_DEVICE, cgd); 512 513 if (status != CAM_REQ_CMP 514 && status != CAM_REQ_INPROG) { 515 const struct cam_status_entry *entry; 516 517 entry = cam_fetch_status_entry(status); 518 519 printf("passasync: Unable to attach new device " 520 "due to status %#x: %s\n", status, entry ? 521 entry->status_text : "Unknown"); 522 } 523 524 break; 525 } 526 case AC_ADVINFO_CHANGED: 527 { 528 uintptr_t buftype; 529 530 buftype = (uintptr_t)arg; 531 if (buftype == CDAI_TYPE_PHYS_PATH) { 532 struct pass_softc *softc; 533 534 softc = (struct pass_softc *)periph->softc; 535 /* 536 * Acquire a reference to the periph before we 537 * start the taskqueue, so that we don't run into 538 * a situation where the periph goes away before 539 * the task queue has a chance to run. 540 */ 541 if (cam_periph_acquire(periph) != 0) 542 break; 543 544 taskqueue_enqueue(taskqueue_thread, 545 &softc->add_physpath_task); 546 } 547 break; 548 } 549 default: 550 cam_periph_async(periph, code, path, arg); 551 break; 552 } 553 } 554 555 static cam_status 556 passregister(struct cam_periph *periph, void *arg) 557 { 558 struct pass_softc *softc; 559 struct ccb_getdev *cgd; 560 struct ccb_pathinq cpi; 561 struct make_dev_args args; 562 int error, no_tags; 563 564 cgd = (struct ccb_getdev *)arg; 565 if (cgd == NULL) { 566 printf("%s: no getdev CCB, can't register device\n", __func__); 567 return(CAM_REQ_CMP_ERR); 568 } 569 570 softc = (struct pass_softc *)malloc(sizeof(*softc), 571 M_DEVBUF, M_NOWAIT); 572 573 if (softc == NULL) { 574 printf("%s: Unable to probe new device. " 575 "Unable to allocate softc\n", __func__); 576 return(CAM_REQ_CMP_ERR); 577 } 578 579 bzero(softc, sizeof(*softc)); 580 softc->state = PASS_STATE_NORMAL; 581 if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI) 582 softc->pd_type = SID_TYPE(&cgd->inq_data); 583 else if (cgd->protocol == PROTO_SATAPM) 584 softc->pd_type = T_ENCLOSURE; 585 else 586 softc->pd_type = T_DIRECT; 587 588 periph->softc = softc; 589 softc->periph = periph; 590 TAILQ_INIT(&softc->incoming_queue); 591 TAILQ_INIT(&softc->active_queue); 592 TAILQ_INIT(&softc->abandoned_queue); 593 TAILQ_INIT(&softc->done_queue); 594 snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d", 595 periph->periph_name, periph->unit_number); 596 snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO", 597 periph->periph_name, periph->unit_number); 598 softc->io_zone_size = maxphys; 599 knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph)); 600 601 xpt_path_inq(&cpi, periph->path); 602 603 if (cpi.maxio == 0) 604 softc->maxio = DFLTPHYS; /* traditional default */ 605 else if (cpi.maxio > maxphys) 606 softc->maxio = maxphys; /* for safety */ 607 else 608 softc->maxio = cpi.maxio; /* real value */ 609 610 if (cpi.hba_misc & PIM_UNMAPPED) 611 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE; 612 613 /* 614 * We pass in 0 for a blocksize, since we don't 615 * know what the blocksize of this device is, if 616 * it even has a blocksize. 617 */ 618 cam_periph_unlock(periph); 619 no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0; 620 softc->device_stats = devstat_new_entry("pass", 621 periph->unit_number, 0, 622 DEVSTAT_NO_BLOCKSIZE 623 | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0), 624 softc->pd_type | 625 XPORT_DEVSTAT_TYPE(cpi.transport) | 626 DEVSTAT_TYPE_PASS, 627 DEVSTAT_PRIORITY_PASS); 628 629 /* 630 * Initialize the taskqueue handler for shutting down kqueue. 631 */ 632 TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0, 633 pass_shutdown_kqueue, periph); 634 635 /* 636 * Acquire a reference to the periph that we can release once we've 637 * cleaned up the kqueue. 638 */ 639 if (cam_periph_acquire(periph) != 0) { 640 xpt_print(periph->path, "%s: lost periph during " 641 "registration!\n", __func__); 642 cam_periph_lock(periph); 643 return (CAM_REQ_CMP_ERR); 644 } 645 646 /* 647 * Acquire a reference to the periph before we create the devfs 648 * instance for it. We'll release this reference once the devfs 649 * instance has been freed. 650 */ 651 if (cam_periph_acquire(periph) != 0) { 652 xpt_print(periph->path, "%s: lost periph during " 653 "registration!\n", __func__); 654 cam_periph_lock(periph); 655 return (CAM_REQ_CMP_ERR); 656 } 657 658 /* Register the device */ 659 make_dev_args_init(&args); 660 args.mda_devsw = &pass_cdevsw; 661 args.mda_unit = periph->unit_number; 662 args.mda_uid = UID_ROOT; 663 args.mda_gid = GID_OPERATOR; 664 args.mda_mode = 0600; 665 args.mda_si_drv1 = periph; 666 args.mda_flags = MAKEDEV_NOWAIT; 667 error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name, 668 periph->unit_number); 669 if (error != 0) { 670 cam_periph_lock(periph); 671 cam_periph_release_locked(periph); 672 return (CAM_REQ_CMP_ERR); 673 } 674 675 /* 676 * Hold a reference to the periph before we create the physical 677 * path alias so it can't go away. 678 */ 679 if (cam_periph_acquire(periph) != 0) { 680 xpt_print(periph->path, "%s: lost periph during " 681 "registration!\n", __func__); 682 cam_periph_lock(periph); 683 return (CAM_REQ_CMP_ERR); 684 } 685 686 cam_periph_lock(periph); 687 688 TASK_INIT(&softc->add_physpath_task, /*priority*/0, 689 pass_add_physpath, periph); 690 691 /* 692 * See if physical path information is already available. 693 */ 694 taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task); 695 696 /* 697 * Add an async callback so that we get notified if 698 * this device goes away or its physical path 699 * (stored in the advanced info data of the EDT) has 700 * changed. 701 */ 702 xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED, 703 passasync, periph, periph->path); 704 705 if (bootverbose) 706 xpt_announce_periph(periph, NULL); 707 708 return(CAM_REQ_CMP); 709 } 710 711 static int 712 passopen(struct cdev *dev, int flags, int fmt, struct thread *td) 713 { 714 struct cam_periph *periph; 715 struct pass_softc *softc; 716 int error; 717 718 periph = (struct cam_periph *)dev->si_drv1; 719 if (cam_periph_acquire(periph) != 0) 720 return (ENXIO); 721 722 cam_periph_lock(periph); 723 724 softc = (struct pass_softc *)periph->softc; 725 726 if (softc->flags & PASS_FLAG_INVALID) { 727 cam_periph_release_locked(periph); 728 cam_periph_unlock(periph); 729 return(ENXIO); 730 } 731 732 /* 733 * Don't allow access when we're running at a high securelevel. 734 */ 735 error = securelevel_gt(td->td_ucred, 1); 736 if (error) { 737 cam_periph_release_locked(periph); 738 cam_periph_unlock(periph); 739 return(error); 740 } 741 742 /* 743 * Only allow read-write access. 744 */ 745 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) { 746 cam_periph_release_locked(periph); 747 cam_periph_unlock(periph); 748 return(EPERM); 749 } 750 751 /* 752 * We don't allow nonblocking access. 753 */ 754 if ((flags & O_NONBLOCK) != 0) { 755 xpt_print(periph->path, "can't do nonblocking access\n"); 756 cam_periph_release_locked(periph); 757 cam_periph_unlock(periph); 758 return(EINVAL); 759 } 760 761 softc->open_count++; 762 763 cam_periph_unlock(periph); 764 765 return (error); 766 } 767 768 static int 769 passclose(struct cdev *dev, int flag, int fmt, struct thread *td) 770 { 771 struct cam_periph *periph; 772 struct pass_softc *softc; 773 struct mtx *mtx; 774 775 periph = (struct cam_periph *)dev->si_drv1; 776 mtx = cam_periph_mtx(periph); 777 mtx_lock(mtx); 778 779 softc = periph->softc; 780 softc->open_count--; 781 782 if (softc->open_count == 0) { 783 struct pass_io_req *io_req, *io_req2; 784 785 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 786 TAILQ_REMOVE(&softc->done_queue, io_req, links); 787 passiocleanup(softc, io_req); 788 uma_zfree(softc->pass_zone, io_req); 789 } 790 791 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, 792 io_req2) { 793 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 794 passiocleanup(softc, io_req); 795 uma_zfree(softc->pass_zone, io_req); 796 } 797 798 /* 799 * If there are any active I/Os, we need to forcibly acquire a 800 * reference to the peripheral so that we don't go away 801 * before they complete. We'll release the reference when 802 * the abandoned queue is empty. 803 */ 804 io_req = TAILQ_FIRST(&softc->active_queue); 805 if ((io_req != NULL) 806 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) { 807 cam_periph_doacquire(periph); 808 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 809 } 810 811 /* 812 * Since the I/O in the active queue is not under our 813 * control, just set a flag so that we can clean it up when 814 * it completes and put it on the abandoned queue. This 815 * will prevent our sending spurious completions in the 816 * event that the device is opened again before these I/Os 817 * complete. 818 */ 819 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, 820 io_req2) { 821 TAILQ_REMOVE(&softc->active_queue, io_req, links); 822 io_req->flags |= PASS_IO_ABANDONED; 823 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, 824 links); 825 } 826 } 827 828 cam_periph_release_locked(periph); 829 830 /* 831 * We reference the lock directly here, instead of using 832 * cam_periph_unlock(). The reason is that the call to 833 * cam_periph_release_locked() above could result in the periph 834 * getting freed. If that is the case, dereferencing the periph 835 * with a cam_periph_unlock() call would cause a page fault. 836 * 837 * cam_periph_release() avoids this problem using the same method, 838 * but we're manually acquiring and dropping the lock here to 839 * protect the open count and avoid another lock acquisition and 840 * release. 841 */ 842 mtx_unlock(mtx); 843 844 return (0); 845 } 846 847 static void 848 passstart(struct cam_periph *periph, union ccb *start_ccb) 849 { 850 struct pass_softc *softc; 851 852 softc = (struct pass_softc *)periph->softc; 853 854 switch (softc->state) { 855 case PASS_STATE_NORMAL: { 856 struct pass_io_req *io_req; 857 858 /* 859 * Check for any queued I/O requests that require an 860 * allocated slot. 861 */ 862 io_req = TAILQ_FIRST(&softc->incoming_queue); 863 if (io_req == NULL) { 864 xpt_release_ccb(start_ccb); 865 break; 866 } 867 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 868 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 869 /* 870 * Merge the user's CCB into the allocated CCB. 871 */ 872 xpt_merge_ccb(start_ccb, &io_req->ccb); 873 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO; 874 start_ccb->ccb_h.ccb_ioreq = io_req; 875 start_ccb->ccb_h.cbfcnp = passdone; 876 io_req->alloced_ccb = start_ccb; 877 binuptime(&io_req->start_time); 878 devstat_start_transaction(softc->device_stats, 879 &io_req->start_time); 880 881 xpt_action(start_ccb); 882 883 /* 884 * If we have any more I/O waiting, schedule ourselves again. 885 */ 886 if (!TAILQ_EMPTY(&softc->incoming_queue)) 887 xpt_schedule(periph, CAM_PRIORITY_NORMAL); 888 break; 889 } 890 default: 891 break; 892 } 893 } 894 895 static void 896 passdone(struct cam_periph *periph, union ccb *done_ccb) 897 { 898 struct pass_softc *softc; 899 struct ccb_scsiio *csio; 900 901 softc = (struct pass_softc *)periph->softc; 902 903 cam_periph_assert(periph, MA_OWNED); 904 905 csio = &done_ccb->csio; 906 switch (csio->ccb_h.ccb_type) { 907 case PASS_CCB_QUEUED_IO: { 908 struct pass_io_req *io_req; 909 910 io_req = done_ccb->ccb_h.ccb_ioreq; 911 #if 0 912 xpt_print(periph->path, "%s: called for user CCB %p\n", 913 __func__, io_req->user_ccb_ptr); 914 #endif 915 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) && 916 ((io_req->flags & PASS_IO_ABANDONED) == 0)) { 917 int error; 918 uint32_t cam_flags, sense_flags; 919 920 passflags(done_ccb, &cam_flags, &sense_flags); 921 error = passerror(done_ccb, cam_flags, sense_flags); 922 923 if (error == ERESTART) { 924 KASSERT(((sense_flags & SF_NO_RETRY) == 0), 925 ("passerror returned ERESTART with no retry requested\n")); 926 return; 927 } 928 } 929 930 /* 931 * Copy the allocated CCB contents back to the malloced CCB 932 * so we can give status back to the user when he requests it. 933 */ 934 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb)); 935 936 /* 937 * Log data/transaction completion with devstat(9). 938 */ 939 switch (done_ccb->ccb_h.func_code) { 940 case XPT_SCSI_IO: 941 devstat_end_transaction(softc->device_stats, 942 done_ccb->csio.dxfer_len - done_ccb->csio.resid, 943 done_ccb->csio.tag_action & 0x3, 944 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 945 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 946 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 947 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 948 &io_req->start_time); 949 break; 950 case XPT_ATA_IO: 951 devstat_end_transaction(softc->device_stats, 952 done_ccb->ataio.dxfer_len - done_ccb->ataio.resid, 953 0, /* Not used in ATA */ 954 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 955 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 956 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 957 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 958 &io_req->start_time); 959 break; 960 case XPT_SMP_IO: 961 /* 962 * XXX KDM this isn't quite right, but there isn't 963 * currently an easy way to represent a bidirectional 964 * transfer in devstat. The only way to do it 965 * and have the byte counts come out right would 966 * mean that we would have to record two 967 * transactions, one for the request and one for the 968 * response. For now, so that we report something, 969 * just treat the entire thing as a read. 970 */ 971 devstat_end_transaction(softc->device_stats, 972 done_ccb->smpio.smp_request_len + 973 done_ccb->smpio.smp_response_len, 974 DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL, 975 &io_req->start_time); 976 break; 977 default: 978 devstat_end_transaction(softc->device_stats, 0, 979 DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL, 980 &io_req->start_time); 981 break; 982 } 983 984 /* 985 * In the normal case, take the completed I/O off of the 986 * active queue and put it on the done queue. Notitfy the 987 * user that we have a completed I/O. 988 */ 989 if ((io_req->flags & PASS_IO_ABANDONED) == 0) { 990 TAILQ_REMOVE(&softc->active_queue, io_req, links); 991 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 992 selwakeuppri(&softc->read_select, PRIBIO); 993 KNOTE_LOCKED(&softc->read_select.si_note, 0); 994 } else { 995 /* 996 * In the case of an abandoned I/O (final close 997 * without fetching the I/O), take it off of the 998 * abandoned queue and free it. 999 */ 1000 TAILQ_REMOVE(&softc->abandoned_queue, io_req, links); 1001 passiocleanup(softc, io_req); 1002 uma_zfree(softc->pass_zone, io_req); 1003 1004 /* 1005 * Release the done_ccb here, since we may wind up 1006 * freeing the peripheral when we decrement the 1007 * reference count below. 1008 */ 1009 xpt_release_ccb(done_ccb); 1010 1011 /* 1012 * If the abandoned queue is empty, we can release 1013 * our reference to the periph since we won't have 1014 * any more completions coming. 1015 */ 1016 if ((TAILQ_EMPTY(&softc->abandoned_queue)) 1017 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) { 1018 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET; 1019 cam_periph_release_locked(periph); 1020 } 1021 1022 /* 1023 * We have already released the CCB, so we can 1024 * return. 1025 */ 1026 return; 1027 } 1028 break; 1029 } 1030 } 1031 xpt_release_ccb(done_ccb); 1032 } 1033 1034 static int 1035 passcreatezone(struct cam_periph *periph) 1036 { 1037 struct pass_softc *softc; 1038 int error; 1039 1040 error = 0; 1041 softc = (struct pass_softc *)periph->softc; 1042 1043 cam_periph_assert(periph, MA_OWNED); 1044 KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 1045 ("%s called when the pass(4) zone is valid!\n", __func__)); 1046 KASSERT((softc->pass_zone == NULL), 1047 ("%s called when the pass(4) zone is allocated!\n", __func__)); 1048 1049 if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) { 1050 /* 1051 * We're the first context through, so we need to create 1052 * the pass(4) UMA zone for I/O requests. 1053 */ 1054 softc->flags |= PASS_FLAG_ZONE_INPROG; 1055 1056 /* 1057 * uma_zcreate() does a blocking (M_WAITOK) allocation, 1058 * so we cannot hold a mutex while we call it. 1059 */ 1060 cam_periph_unlock(periph); 1061 1062 softc->pass_zone = uma_zcreate(softc->zone_name, 1063 sizeof(struct pass_io_req), NULL, NULL, NULL, NULL, 1064 /*align*/ 0, /*flags*/ 0); 1065 1066 softc->pass_io_zone = uma_zcreate(softc->io_zone_name, 1067 softc->io_zone_size, NULL, NULL, NULL, NULL, 1068 /*align*/ 0, /*flags*/ 0); 1069 1070 cam_periph_lock(periph); 1071 1072 if ((softc->pass_zone == NULL) 1073 || (softc->pass_io_zone == NULL)) { 1074 if (softc->pass_zone == NULL) 1075 xpt_print(periph->path, "unable to allocate " 1076 "IO Req UMA zone\n"); 1077 else 1078 xpt_print(periph->path, "unable to allocate " 1079 "IO UMA zone\n"); 1080 softc->flags &= ~PASS_FLAG_ZONE_INPROG; 1081 goto bailout; 1082 } 1083 1084 /* 1085 * Set the flags appropriately and notify any other waiters. 1086 */ 1087 softc->flags &= ~PASS_FLAG_ZONE_INPROG; 1088 softc->flags |= PASS_FLAG_ZONE_VALID; 1089 wakeup(&softc->pass_zone); 1090 } else { 1091 /* 1092 * In this case, the UMA zone has not yet been created, but 1093 * another context is in the process of creating it. We 1094 * need to sleep until the creation is either done or has 1095 * failed. 1096 */ 1097 while ((softc->flags & PASS_FLAG_ZONE_INPROG) 1098 && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) { 1099 error = msleep(&softc->pass_zone, 1100 cam_periph_mtx(periph), PRIBIO, 1101 "paszon", 0); 1102 if (error != 0) 1103 goto bailout; 1104 } 1105 /* 1106 * If the zone creation failed, no luck for the user. 1107 */ 1108 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){ 1109 error = ENOMEM; 1110 goto bailout; 1111 } 1112 } 1113 bailout: 1114 return (error); 1115 } 1116 1117 static void 1118 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req) 1119 { 1120 union ccb *ccb; 1121 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1122 int i, numbufs; 1123 1124 ccb = &io_req->ccb; 1125 1126 switch (ccb->ccb_h.func_code) { 1127 case XPT_DEV_MATCH: 1128 numbufs = min(io_req->num_bufs, 2); 1129 1130 if (numbufs == 1) { 1131 data_ptrs[0] = (uint8_t **)&ccb->cdm.matches; 1132 } else { 1133 data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns; 1134 data_ptrs[1] = (uint8_t **)&ccb->cdm.matches; 1135 } 1136 break; 1137 case XPT_SCSI_IO: 1138 case XPT_CONT_TARGET_IO: 1139 data_ptrs[0] = &ccb->csio.data_ptr; 1140 numbufs = min(io_req->num_bufs, 1); 1141 break; 1142 case XPT_ATA_IO: 1143 data_ptrs[0] = &ccb->ataio.data_ptr; 1144 numbufs = min(io_req->num_bufs, 1); 1145 break; 1146 case XPT_SMP_IO: 1147 numbufs = min(io_req->num_bufs, 2); 1148 data_ptrs[0] = &ccb->smpio.smp_request; 1149 data_ptrs[1] = &ccb->smpio.smp_response; 1150 break; 1151 case XPT_DEV_ADVINFO: 1152 numbufs = min(io_req->num_bufs, 1); 1153 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1154 break; 1155 case XPT_NVME_IO: 1156 case XPT_NVME_ADMIN: 1157 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1158 numbufs = min(io_req->num_bufs, 1); 1159 break; 1160 default: 1161 /* allow ourselves to be swapped once again */ 1162 return; 1163 break; /* NOTREACHED */ 1164 } 1165 1166 if (io_req->flags & PASS_IO_USER_SEG_MALLOC) { 1167 free(io_req->user_segptr, M_SCSIPASS); 1168 io_req->user_segptr = NULL; 1169 } 1170 1171 /* 1172 * We only want to free memory we malloced. 1173 */ 1174 if (io_req->data_flags == CAM_DATA_VADDR) { 1175 for (i = 0; i < io_req->num_bufs; i++) { 1176 if (io_req->kern_bufs[i] == NULL) 1177 continue; 1178 1179 free(io_req->kern_bufs[i], M_SCSIPASS); 1180 io_req->kern_bufs[i] = NULL; 1181 } 1182 } else if (io_req->data_flags == CAM_DATA_SG) { 1183 for (i = 0; i < io_req->num_kern_segs; i++) { 1184 if ((uint8_t *)(uintptr_t) 1185 io_req->kern_segptr[i].ds_addr == NULL) 1186 continue; 1187 1188 uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t) 1189 io_req->kern_segptr[i].ds_addr); 1190 io_req->kern_segptr[i].ds_addr = 0; 1191 } 1192 } 1193 1194 if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) { 1195 free(io_req->kern_segptr, M_SCSIPASS); 1196 io_req->kern_segptr = NULL; 1197 } 1198 1199 if (io_req->data_flags != CAM_DATA_PADDR) { 1200 for (i = 0; i < numbufs; i++) { 1201 /* 1202 * Restore the user's buffer pointers to their 1203 * previous values. 1204 */ 1205 if (io_req->user_bufs[i] != NULL) 1206 *data_ptrs[i] = io_req->user_bufs[i]; 1207 } 1208 } 1209 1210 } 1211 1212 static int 1213 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req, 1214 ccb_flags direction) 1215 { 1216 bus_size_t kern_watermark, user_watermark, len_to_copy; 1217 bus_dma_segment_t *user_sglist, *kern_sglist; 1218 int i, j, error; 1219 1220 error = 0; 1221 kern_watermark = 0; 1222 user_watermark = 0; 1223 len_to_copy = 0; 1224 user_sglist = io_req->user_segptr; 1225 kern_sglist = io_req->kern_segptr; 1226 1227 for (i = 0, j = 0; i < io_req->num_user_segs && 1228 j < io_req->num_kern_segs;) { 1229 uint8_t *user_ptr, *kern_ptr; 1230 1231 len_to_copy = min(user_sglist[i].ds_len -user_watermark, 1232 kern_sglist[j].ds_len - kern_watermark); 1233 1234 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr; 1235 user_ptr = user_ptr + user_watermark; 1236 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr; 1237 kern_ptr = kern_ptr + kern_watermark; 1238 1239 user_watermark += len_to_copy; 1240 kern_watermark += len_to_copy; 1241 1242 if (direction == CAM_DIR_IN) { 1243 error = copyout(kern_ptr, user_ptr, len_to_copy); 1244 if (error != 0) { 1245 xpt_print(periph->path, "%s: copyout of %u " 1246 "bytes from %p to %p failed with " 1247 "error %d\n", __func__, len_to_copy, 1248 kern_ptr, user_ptr, error); 1249 goto bailout; 1250 } 1251 } else { 1252 error = copyin(user_ptr, kern_ptr, len_to_copy); 1253 if (error != 0) { 1254 xpt_print(periph->path, "%s: copyin of %u " 1255 "bytes from %p to %p failed with " 1256 "error %d\n", __func__, len_to_copy, 1257 user_ptr, kern_ptr, error); 1258 goto bailout; 1259 } 1260 } 1261 1262 if (user_sglist[i].ds_len == user_watermark) { 1263 i++; 1264 user_watermark = 0; 1265 } 1266 1267 if (kern_sglist[j].ds_len == kern_watermark) { 1268 j++; 1269 kern_watermark = 0; 1270 } 1271 } 1272 1273 bailout: 1274 1275 return (error); 1276 } 1277 1278 static int 1279 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req) 1280 { 1281 union ccb *ccb; 1282 struct pass_softc *softc; 1283 int numbufs, i; 1284 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1285 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 1286 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 1287 uint32_t num_segs; 1288 uint16_t *seg_cnt_ptr; 1289 size_t maxmap; 1290 int error; 1291 1292 cam_periph_assert(periph, MA_NOTOWNED); 1293 1294 softc = periph->softc; 1295 1296 error = 0; 1297 ccb = &io_req->ccb; 1298 maxmap = 0; 1299 num_segs = 0; 1300 seg_cnt_ptr = NULL; 1301 1302 switch(ccb->ccb_h.func_code) { 1303 case XPT_DEV_MATCH: 1304 if (ccb->cdm.match_buf_len == 0) { 1305 printf("%s: invalid match buffer length 0\n", __func__); 1306 return(EINVAL); 1307 } 1308 if (ccb->cdm.pattern_buf_len > 0) { 1309 data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns; 1310 lengths[0] = ccb->cdm.pattern_buf_len; 1311 dirs[0] = CAM_DIR_OUT; 1312 data_ptrs[1] = (uint8_t **)&ccb->cdm.matches; 1313 lengths[1] = ccb->cdm.match_buf_len; 1314 dirs[1] = CAM_DIR_IN; 1315 numbufs = 2; 1316 } else { 1317 data_ptrs[0] = (uint8_t **)&ccb->cdm.matches; 1318 lengths[0] = ccb->cdm.match_buf_len; 1319 dirs[0] = CAM_DIR_IN; 1320 numbufs = 1; 1321 } 1322 io_req->data_flags = CAM_DATA_VADDR; 1323 break; 1324 case XPT_SCSI_IO: 1325 case XPT_CONT_TARGET_IO: 1326 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1327 return(0); 1328 1329 /* 1330 * The user shouldn't be able to supply a bio. 1331 */ 1332 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO) 1333 return (EINVAL); 1334 1335 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; 1336 1337 data_ptrs[0] = &ccb->csio.data_ptr; 1338 lengths[0] = ccb->csio.dxfer_len; 1339 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1340 num_segs = ccb->csio.sglist_cnt; 1341 seg_cnt_ptr = &ccb->csio.sglist_cnt; 1342 numbufs = 1; 1343 maxmap = softc->maxio; 1344 break; 1345 case XPT_ATA_IO: 1346 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1347 return(0); 1348 1349 /* 1350 * We only support a single virtual address for ATA I/O. 1351 */ 1352 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 1353 return (EINVAL); 1354 1355 io_req->data_flags = CAM_DATA_VADDR; 1356 1357 data_ptrs[0] = &ccb->ataio.data_ptr; 1358 lengths[0] = ccb->ataio.dxfer_len; 1359 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1360 numbufs = 1; 1361 maxmap = softc->maxio; 1362 break; 1363 case XPT_SMP_IO: 1364 io_req->data_flags = CAM_DATA_VADDR; 1365 1366 data_ptrs[0] = &ccb->smpio.smp_request; 1367 lengths[0] = ccb->smpio.smp_request_len; 1368 dirs[0] = CAM_DIR_OUT; 1369 data_ptrs[1] = &ccb->smpio.smp_response; 1370 lengths[1] = ccb->smpio.smp_response_len; 1371 dirs[1] = CAM_DIR_IN; 1372 numbufs = 2; 1373 maxmap = softc->maxio; 1374 break; 1375 case XPT_DEV_ADVINFO: 1376 if (ccb->cdai.bufsiz == 0) 1377 return (0); 1378 1379 io_req->data_flags = CAM_DATA_VADDR; 1380 1381 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1382 lengths[0] = ccb->cdai.bufsiz; 1383 dirs[0] = CAM_DIR_IN; 1384 numbufs = 1; 1385 break; 1386 case XPT_NVME_ADMIN: 1387 case XPT_NVME_IO: 1388 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1389 return (0); 1390 1391 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; 1392 1393 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1394 lengths[0] = ccb->nvmeio.dxfer_len; 1395 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1396 num_segs = ccb->nvmeio.sglist_cnt; 1397 seg_cnt_ptr = &ccb->nvmeio.sglist_cnt; 1398 numbufs = 1; 1399 maxmap = softc->maxio; 1400 break; 1401 default: 1402 return(EINVAL); 1403 break; /* NOTREACHED */ 1404 } 1405 1406 io_req->num_bufs = numbufs; 1407 1408 /* 1409 * If there is a maximum, check to make sure that the user's 1410 * request fits within the limit. In general, we should only have 1411 * a maximum length for requests that go to hardware. Otherwise it 1412 * is whatever we're able to malloc. 1413 */ 1414 for (i = 0; i < numbufs; i++) { 1415 io_req->user_bufs[i] = *data_ptrs[i]; 1416 io_req->dirs[i] = dirs[i]; 1417 io_req->lengths[i] = lengths[i]; 1418 1419 if (maxmap == 0) 1420 continue; 1421 1422 if (lengths[i] <= maxmap) 1423 continue; 1424 1425 xpt_print(periph->path, "%s: data length %u > max allowed %u " 1426 "bytes\n", __func__, lengths[i], maxmap); 1427 error = EINVAL; 1428 goto bailout; 1429 } 1430 1431 switch (io_req->data_flags) { 1432 case CAM_DATA_VADDR: 1433 /* Map or copy the buffer into kernel address space */ 1434 for (i = 0; i < numbufs; i++) { 1435 uint8_t *tmp_buf; 1436 1437 /* 1438 * If for some reason no length is specified, we 1439 * don't need to allocate anything. 1440 */ 1441 if (io_req->lengths[i] == 0) 1442 continue; 1443 1444 tmp_buf = malloc(lengths[i], M_SCSIPASS, 1445 M_WAITOK | M_ZERO); 1446 io_req->kern_bufs[i] = tmp_buf; 1447 *data_ptrs[i] = tmp_buf; 1448 1449 #if 0 1450 xpt_print(periph->path, "%s: malloced %p len %u, user " 1451 "buffer %p, operation: %s\n", __func__, 1452 tmp_buf, lengths[i], io_req->user_bufs[i], 1453 (dirs[i] == CAM_DIR_IN) ? "read" : "write"); 1454 #endif 1455 /* 1456 * We only need to copy in if the user is writing. 1457 */ 1458 if (dirs[i] != CAM_DIR_OUT) 1459 continue; 1460 1461 error = copyin(io_req->user_bufs[i], 1462 io_req->kern_bufs[i], lengths[i]); 1463 if (error != 0) { 1464 xpt_print(periph->path, "%s: copy of user " 1465 "buffer from %p to %p failed with " 1466 "error %d\n", __func__, 1467 io_req->user_bufs[i], 1468 io_req->kern_bufs[i], error); 1469 goto bailout; 1470 } 1471 } 1472 break; 1473 case CAM_DATA_PADDR: 1474 /* Pass down the pointer as-is */ 1475 break; 1476 case CAM_DATA_SG: { 1477 size_t sg_length, size_to_go, alloc_size; 1478 uint32_t num_segs_needed; 1479 1480 /* 1481 * Copy the user S/G list in, and then copy in the 1482 * individual segments. 1483 */ 1484 /* 1485 * We shouldn't see this, but check just in case. 1486 */ 1487 if (numbufs != 1) { 1488 xpt_print(periph->path, "%s: cannot currently handle " 1489 "more than one S/G list per CCB\n", __func__); 1490 error = EINVAL; 1491 goto bailout; 1492 } 1493 1494 /* 1495 * We have to have at least one segment. 1496 */ 1497 if (num_segs == 0) { 1498 xpt_print(periph->path, "%s: CAM_DATA_SG flag set, " 1499 "but sglist_cnt=0!\n", __func__); 1500 error = EINVAL; 1501 goto bailout; 1502 } 1503 1504 /* 1505 * Make sure the user specified the total length and didn't 1506 * just leave it to us to decode the S/G list. 1507 */ 1508 if (lengths[0] == 0) { 1509 xpt_print(periph->path, "%s: no dxfer_len specified, " 1510 "but CAM_DATA_SG flag is set!\n", __func__); 1511 error = EINVAL; 1512 goto bailout; 1513 } 1514 1515 /* 1516 * We allocate buffers in io_zone_size increments for an 1517 * S/G list. This will generally be maxphys. 1518 */ 1519 if (lengths[0] <= softc->io_zone_size) 1520 num_segs_needed = 1; 1521 else { 1522 num_segs_needed = lengths[0] / softc->io_zone_size; 1523 if ((lengths[0] % softc->io_zone_size) != 0) 1524 num_segs_needed++; 1525 } 1526 1527 /* Figure out the size of the S/G list */ 1528 sg_length = num_segs * sizeof(bus_dma_segment_t); 1529 io_req->num_user_segs = num_segs; 1530 io_req->num_kern_segs = num_segs_needed; 1531 1532 /* Save the user's S/G list pointer for later restoration */ 1533 io_req->user_bufs[0] = *data_ptrs[0]; 1534 1535 /* 1536 * If we have enough segments allocated by default to handle 1537 * the length of the user's S/G list, 1538 */ 1539 if (num_segs > PASS_MAX_SEGS) { 1540 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1541 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1542 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1543 } else 1544 io_req->user_segptr = io_req->user_segs; 1545 1546 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1547 if (error != 0) { 1548 xpt_print(periph->path, "%s: copy of user S/G list " 1549 "from %p to %p failed with error %d\n", 1550 __func__, *data_ptrs[0], io_req->user_segptr, 1551 error); 1552 goto bailout; 1553 } 1554 1555 if (num_segs_needed > PASS_MAX_SEGS) { 1556 io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) * 1557 num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO); 1558 io_req->flags |= PASS_IO_KERN_SEG_MALLOC; 1559 } else { 1560 io_req->kern_segptr = io_req->kern_segs; 1561 } 1562 1563 /* 1564 * Allocate the kernel S/G list. 1565 */ 1566 for (size_to_go = lengths[0], i = 0; 1567 size_to_go > 0 && i < num_segs_needed; 1568 i++, size_to_go -= alloc_size) { 1569 uint8_t *kern_ptr; 1570 1571 alloc_size = min(size_to_go, softc->io_zone_size); 1572 kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK); 1573 io_req->kern_segptr[i].ds_addr = 1574 (bus_addr_t)(uintptr_t)kern_ptr; 1575 io_req->kern_segptr[i].ds_len = alloc_size; 1576 } 1577 if (size_to_go > 0) { 1578 printf("%s: size_to_go = %zu, software error!\n", 1579 __func__, size_to_go); 1580 error = EINVAL; 1581 goto bailout; 1582 } 1583 1584 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr; 1585 *seg_cnt_ptr = io_req->num_kern_segs; 1586 1587 /* 1588 * We only need to copy data here if the user is writing. 1589 */ 1590 if (dirs[0] == CAM_DIR_OUT) 1591 error = passcopysglist(periph, io_req, dirs[0]); 1592 break; 1593 } 1594 case CAM_DATA_SG_PADDR: { 1595 size_t sg_length; 1596 1597 /* 1598 * We shouldn't see this, but check just in case. 1599 */ 1600 if (numbufs != 1) { 1601 printf("%s: cannot currently handle more than one " 1602 "S/G list per CCB\n", __func__); 1603 error = EINVAL; 1604 goto bailout; 1605 } 1606 1607 /* 1608 * We have to have at least one segment. 1609 */ 1610 if (num_segs == 0) { 1611 xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag " 1612 "set, but sglist_cnt=0!\n", __func__); 1613 error = EINVAL; 1614 goto bailout; 1615 } 1616 1617 /* 1618 * Make sure the user specified the total length and didn't 1619 * just leave it to us to decode the S/G list. 1620 */ 1621 if (lengths[0] == 0) { 1622 xpt_print(periph->path, "%s: no dxfer_len specified, " 1623 "but CAM_DATA_SG flag is set!\n", __func__); 1624 error = EINVAL; 1625 goto bailout; 1626 } 1627 1628 /* Figure out the size of the S/G list */ 1629 sg_length = num_segs * sizeof(bus_dma_segment_t); 1630 io_req->num_user_segs = num_segs; 1631 io_req->num_kern_segs = io_req->num_user_segs; 1632 1633 /* Save the user's S/G list pointer for later restoration */ 1634 io_req->user_bufs[0] = *data_ptrs[0]; 1635 1636 if (num_segs > PASS_MAX_SEGS) { 1637 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1638 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1639 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1640 } else 1641 io_req->user_segptr = io_req->user_segs; 1642 1643 io_req->kern_segptr = io_req->user_segptr; 1644 1645 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1646 if (error != 0) { 1647 xpt_print(periph->path, "%s: copy of user S/G list " 1648 "from %p to %p failed with error %d\n", 1649 __func__, *data_ptrs[0], io_req->user_segptr, 1650 error); 1651 goto bailout; 1652 } 1653 break; 1654 } 1655 default: 1656 case CAM_DATA_BIO: 1657 /* 1658 * A user shouldn't be attaching a bio to the CCB. It 1659 * isn't a user-accessible structure. 1660 */ 1661 error = EINVAL; 1662 break; 1663 } 1664 1665 bailout: 1666 if (error != 0) 1667 passiocleanup(softc, io_req); 1668 1669 return (error); 1670 } 1671 1672 static int 1673 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req) 1674 { 1675 struct pass_softc *softc; 1676 int error; 1677 int i; 1678 1679 error = 0; 1680 softc = (struct pass_softc *)periph->softc; 1681 1682 switch (io_req->data_flags) { 1683 case CAM_DATA_VADDR: 1684 /* 1685 * Copy back to the user buffer if this was a read. 1686 */ 1687 for (i = 0; i < io_req->num_bufs; i++) { 1688 if (io_req->dirs[i] != CAM_DIR_IN) 1689 continue; 1690 1691 error = copyout(io_req->kern_bufs[i], 1692 io_req->user_bufs[i], io_req->lengths[i]); 1693 if (error != 0) { 1694 xpt_print(periph->path, "Unable to copy %u " 1695 "bytes from %p to user address %p\n", 1696 io_req->lengths[i], 1697 io_req->kern_bufs[i], 1698 io_req->user_bufs[i]); 1699 goto bailout; 1700 } 1701 } 1702 break; 1703 case CAM_DATA_PADDR: 1704 /* Do nothing. The pointer is a physical address already */ 1705 break; 1706 case CAM_DATA_SG: 1707 /* 1708 * Copy back to the user buffer if this was a read. 1709 * Restore the user's S/G list buffer pointer. 1710 */ 1711 if (io_req->dirs[0] == CAM_DIR_IN) 1712 error = passcopysglist(periph, io_req, io_req->dirs[0]); 1713 break; 1714 case CAM_DATA_SG_PADDR: 1715 /* 1716 * Restore the user's S/G list buffer pointer. No need to 1717 * copy. 1718 */ 1719 break; 1720 default: 1721 case CAM_DATA_BIO: 1722 error = EINVAL; 1723 break; 1724 } 1725 1726 bailout: 1727 /* 1728 * Reset the user's pointers to their original values and free 1729 * allocated memory. 1730 */ 1731 passiocleanup(softc, io_req); 1732 1733 return (error); 1734 } 1735 1736 static int 1737 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1738 { 1739 int error; 1740 1741 if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 1742 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl); 1743 } 1744 return (error); 1745 } 1746 1747 static int 1748 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1749 { 1750 struct cam_periph *periph; 1751 struct pass_softc *softc; 1752 int error; 1753 uint32_t priority; 1754 1755 periph = (struct cam_periph *)dev->si_drv1; 1756 cam_periph_lock(periph); 1757 softc = (struct pass_softc *)periph->softc; 1758 1759 error = 0; 1760 1761 switch (cmd) { 1762 case CAMIOCOMMAND: 1763 { 1764 union ccb *inccb; 1765 union ccb *ccb; 1766 int ccb_malloced; 1767 1768 inccb = (union ccb *)addr; 1769 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1770 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 1771 inccb->csio.bio = NULL; 1772 #endif 1773 1774 if (inccb->ccb_h.flags & CAM_UNLOCKED) { 1775 error = EINVAL; 1776 break; 1777 } 1778 1779 /* 1780 * Some CCB types, like scan bus and scan lun can only go 1781 * through the transport layer device. 1782 */ 1783 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1784 xpt_print(periph->path, "CCB function code %#x is " 1785 "restricted to the XPT device\n", 1786 inccb->ccb_h.func_code); 1787 error = ENODEV; 1788 break; 1789 } 1790 1791 /* Compatibility for RL/priority-unaware code. */ 1792 priority = inccb->ccb_h.pinfo.priority; 1793 if (priority <= CAM_PRIORITY_OOB) 1794 priority += CAM_PRIORITY_OOB + 1; 1795 1796 /* 1797 * Non-immediate CCBs need a CCB from the per-device pool 1798 * of CCBs, which is scheduled by the transport layer. 1799 * Immediate CCBs and user-supplied CCBs should just be 1800 * malloced. 1801 */ 1802 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED) 1803 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) { 1804 ccb = cam_periph_getccb(periph, priority); 1805 ccb_malloced = 0; 1806 } else { 1807 ccb = xpt_alloc_ccb_nowait(); 1808 1809 if (ccb != NULL) 1810 xpt_setup_ccb(&ccb->ccb_h, periph->path, 1811 priority); 1812 ccb_malloced = 1; 1813 } 1814 1815 if (ccb == NULL) { 1816 xpt_print(periph->path, "unable to allocate CCB\n"); 1817 error = ENOMEM; 1818 break; 1819 } 1820 1821 error = passsendccb(periph, ccb, inccb); 1822 1823 if (ccb_malloced) 1824 xpt_free_ccb(ccb); 1825 else 1826 xpt_release_ccb(ccb); 1827 1828 break; 1829 } 1830 case CAMIOQUEUE: 1831 { 1832 struct pass_io_req *io_req; 1833 union ccb **user_ccb, *ccb; 1834 xpt_opcode fc; 1835 1836 #ifdef COMPAT_FREEBSD32 1837 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 1838 error = ENOTTY; 1839 goto bailout; 1840 } 1841 #endif 1842 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) { 1843 error = passcreatezone(periph); 1844 if (error != 0) 1845 goto bailout; 1846 } 1847 1848 /* 1849 * We're going to do a blocking allocation for this I/O 1850 * request, so we have to drop the lock. 1851 */ 1852 cam_periph_unlock(periph); 1853 1854 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO); 1855 ccb = &io_req->ccb; 1856 user_ccb = (union ccb **)addr; 1857 1858 /* 1859 * Unlike the CAMIOCOMMAND ioctl above, we only have a 1860 * pointer to the user's CCB, so we have to copy the whole 1861 * thing in to a buffer we have allocated (above) instead 1862 * of allowing the ioctl code to malloc a buffer and copy 1863 * it in. 1864 * 1865 * This is an advantage for this asynchronous interface, 1866 * since we don't want the memory to get freed while the 1867 * CCB is outstanding. 1868 */ 1869 #if 0 1870 xpt_print(periph->path, "Copying user CCB %p to " 1871 "kernel address %p\n", *user_ccb, ccb); 1872 #endif 1873 error = copyin(*user_ccb, ccb, sizeof(*ccb)); 1874 if (error != 0) { 1875 xpt_print(periph->path, "Copy of user CCB %p to " 1876 "kernel address %p failed with error %d\n", 1877 *user_ccb, ccb, error); 1878 goto camioqueue_error; 1879 } 1880 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1881 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 1882 ccb->csio.bio = NULL; 1883 #endif 1884 1885 if (ccb->ccb_h.flags & CAM_UNLOCKED) { 1886 error = EINVAL; 1887 goto camioqueue_error; 1888 } 1889 1890 if (ccb->ccb_h.flags & CAM_CDB_POINTER) { 1891 if (ccb->csio.cdb_len > IOCDBLEN) { 1892 error = EINVAL; 1893 goto camioqueue_error; 1894 } 1895 error = copyin(ccb->csio.cdb_io.cdb_ptr, 1896 ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len); 1897 if (error != 0) 1898 goto camioqueue_error; 1899 ccb->ccb_h.flags &= ~CAM_CDB_POINTER; 1900 } 1901 1902 /* 1903 * Some CCB types, like scan bus and scan lun can only go 1904 * through the transport layer device. 1905 */ 1906 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1907 xpt_print(periph->path, "CCB function code %#x is " 1908 "restricted to the XPT device\n", 1909 ccb->ccb_h.func_code); 1910 error = ENODEV; 1911 goto camioqueue_error; 1912 } 1913 1914 /* 1915 * Save the user's CCB pointer as well as his linked list 1916 * pointers and peripheral private area so that we can 1917 * restore these later. 1918 */ 1919 io_req->user_ccb_ptr = *user_ccb; 1920 io_req->user_periph_links = ccb->ccb_h.periph_links; 1921 io_req->user_periph_priv = ccb->ccb_h.periph_priv; 1922 1923 /* 1924 * Now that we've saved the user's values, we can set our 1925 * own peripheral private entry. 1926 */ 1927 ccb->ccb_h.ccb_ioreq = io_req; 1928 1929 /* Compatibility for RL/priority-unaware code. */ 1930 priority = ccb->ccb_h.pinfo.priority; 1931 if (priority <= CAM_PRIORITY_OOB) 1932 priority += CAM_PRIORITY_OOB + 1; 1933 1934 /* 1935 * Setup fields in the CCB like the path and the priority. 1936 * The path in particular cannot be done in userland, since 1937 * it is a pointer to a kernel data structure. 1938 */ 1939 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority, 1940 ccb->ccb_h.flags); 1941 1942 /* 1943 * Setup our done routine. There is no way for the user to 1944 * have a valid pointer here. 1945 */ 1946 ccb->ccb_h.cbfcnp = passdone; 1947 1948 fc = ccb->ccb_h.func_code; 1949 /* 1950 * If this function code has memory that can be mapped in 1951 * or out, we need to call passmemsetup(). 1952 */ 1953 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) 1954 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH) 1955 || (fc == XPT_DEV_ADVINFO) 1956 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) { 1957 error = passmemsetup(periph, io_req); 1958 if (error != 0) 1959 goto camioqueue_error; 1960 } else 1961 io_req->mapinfo.num_bufs_used = 0; 1962 1963 cam_periph_lock(periph); 1964 1965 /* 1966 * Everything goes on the incoming queue initially. 1967 */ 1968 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links); 1969 1970 /* 1971 * If the CCB is queued, and is not a user CCB, then 1972 * we need to allocate a slot for it. Call xpt_schedule() 1973 * so that our start routine will get called when a CCB is 1974 * available. 1975 */ 1976 if ((fc & XPT_FC_QUEUED) 1977 && ((fc & XPT_FC_USER_CCB) == 0)) { 1978 xpt_schedule(periph, priority); 1979 break; 1980 } 1981 1982 /* 1983 * At this point, the CCB in question is either an 1984 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB 1985 * and therefore should be malloced, not allocated via a slot. 1986 * Remove the CCB from the incoming queue and add it to the 1987 * active queue. 1988 */ 1989 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 1990 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 1991 1992 xpt_action(ccb); 1993 1994 /* 1995 * If this is not a queued CCB (i.e. it is an immediate CCB), 1996 * then it is already done. We need to put it on the done 1997 * queue for the user to fetch. 1998 */ 1999 if ((fc & XPT_FC_QUEUED) == 0) { 2000 TAILQ_REMOVE(&softc->active_queue, io_req, links); 2001 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 2002 } 2003 break; 2004 2005 camioqueue_error: 2006 uma_zfree(softc->pass_zone, io_req); 2007 cam_periph_lock(periph); 2008 break; 2009 } 2010 case CAMIOGET: 2011 { 2012 union ccb **user_ccb; 2013 struct pass_io_req *io_req; 2014 int old_error; 2015 2016 #ifdef COMPAT_FREEBSD32 2017 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 2018 error = ENOTTY; 2019 goto bailout; 2020 } 2021 #endif 2022 user_ccb = (union ccb **)addr; 2023 old_error = 0; 2024 2025 io_req = TAILQ_FIRST(&softc->done_queue); 2026 if (io_req == NULL) { 2027 error = ENOENT; 2028 break; 2029 } 2030 2031 /* 2032 * Remove the I/O from the done queue. 2033 */ 2034 TAILQ_REMOVE(&softc->done_queue, io_req, links); 2035 2036 /* 2037 * We have to drop the lock during the copyout because the 2038 * copyout can result in VM faults that require sleeping. 2039 */ 2040 cam_periph_unlock(periph); 2041 2042 /* 2043 * Do any needed copies (e.g. for reads) and revert the 2044 * pointers in the CCB back to the user's pointers. 2045 */ 2046 error = passmemdone(periph, io_req); 2047 2048 old_error = error; 2049 2050 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links; 2051 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv; 2052 2053 #if 0 2054 xpt_print(periph->path, "Copying to user CCB %p from " 2055 "kernel address %p\n", *user_ccb, &io_req->ccb); 2056 #endif 2057 2058 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb)); 2059 if (error != 0) { 2060 xpt_print(periph->path, "Copy to user CCB %p from " 2061 "kernel address %p failed with error %d\n", 2062 *user_ccb, &io_req->ccb, error); 2063 } 2064 2065 /* 2066 * Prefer the first error we got back, and make sure we 2067 * don't overwrite bad status with good. 2068 */ 2069 if (old_error != 0) 2070 error = old_error; 2071 2072 cam_periph_lock(periph); 2073 2074 /* 2075 * At this point, if there was an error, we could potentially 2076 * re-queue the I/O and try again. But why? The error 2077 * would almost certainly happen again. We might as well 2078 * not leak memory. 2079 */ 2080 uma_zfree(softc->pass_zone, io_req); 2081 break; 2082 } 2083 default: 2084 error = cam_periph_ioctl(periph, cmd, addr, passerror); 2085 break; 2086 } 2087 2088 bailout: 2089 cam_periph_unlock(periph); 2090 2091 return(error); 2092 } 2093 2094 static int 2095 passpoll(struct cdev *dev, int poll_events, struct thread *td) 2096 { 2097 struct cam_periph *periph; 2098 struct pass_softc *softc; 2099 int revents; 2100 2101 periph = (struct cam_periph *)dev->si_drv1; 2102 softc = (struct pass_softc *)periph->softc; 2103 2104 revents = poll_events & (POLLOUT | POLLWRNORM); 2105 if ((poll_events & (POLLIN | POLLRDNORM)) != 0) { 2106 cam_periph_lock(periph); 2107 2108 if (!TAILQ_EMPTY(&softc->done_queue)) { 2109 revents |= poll_events & (POLLIN | POLLRDNORM); 2110 } 2111 cam_periph_unlock(periph); 2112 if (revents == 0) 2113 selrecord(td, &softc->read_select); 2114 } 2115 2116 return (revents); 2117 } 2118 2119 static int 2120 passkqfilter(struct cdev *dev, struct knote *kn) 2121 { 2122 struct cam_periph *periph; 2123 struct pass_softc *softc; 2124 2125 periph = (struct cam_periph *)dev->si_drv1; 2126 softc = (struct pass_softc *)periph->softc; 2127 2128 kn->kn_hook = (caddr_t)periph; 2129 kn->kn_fop = &passread_filtops; 2130 knlist_add(&softc->read_select.si_note, kn, 0); 2131 2132 return (0); 2133 } 2134 2135 static void 2136 passreadfiltdetach(struct knote *kn) 2137 { 2138 struct cam_periph *periph; 2139 struct pass_softc *softc; 2140 2141 periph = (struct cam_periph *)kn->kn_hook; 2142 softc = (struct pass_softc *)periph->softc; 2143 2144 knlist_remove(&softc->read_select.si_note, kn, 0); 2145 } 2146 2147 static int 2148 passreadfilt(struct knote *kn, long hint) 2149 { 2150 struct cam_periph *periph; 2151 struct pass_softc *softc; 2152 int retval; 2153 2154 periph = (struct cam_periph *)kn->kn_hook; 2155 softc = (struct pass_softc *)periph->softc; 2156 2157 cam_periph_assert(periph, MA_OWNED); 2158 2159 if (TAILQ_EMPTY(&softc->done_queue)) 2160 retval = 0; 2161 else 2162 retval = 1; 2163 2164 return (retval); 2165 } 2166 2167 /* 2168 * Generally, "ccb" should be the CCB supplied by the kernel. "inccb" 2169 * should be the CCB that is copied in from the user. 2170 */ 2171 static int 2172 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb) 2173 { 2174 struct pass_softc *softc; 2175 struct cam_periph_map_info mapinfo; 2176 uint8_t *cmd; 2177 xpt_opcode fc; 2178 int error; 2179 2180 softc = (struct pass_softc *)periph->softc; 2181 2182 /* 2183 * There are some fields in the CCB header that need to be 2184 * preserved, the rest we get from the user. 2185 */ 2186 xpt_merge_ccb(ccb, inccb); 2187 2188 if (ccb->ccb_h.flags & CAM_CDB_POINTER) { 2189 cmd = __builtin_alloca(ccb->csio.cdb_len); 2190 error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len); 2191 if (error) 2192 return (error); 2193 ccb->csio.cdb_io.cdb_ptr = cmd; 2194 } 2195 2196 /* 2197 * Let cam_periph_mapmem do a sanity check on the data pointer format. 2198 * Even if no data transfer is needed, it's a cheap check and it 2199 * simplifies the code. 2200 */ 2201 fc = ccb->ccb_h.func_code; 2202 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO) 2203 || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO) 2204 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) { 2205 bzero(&mapinfo, sizeof(mapinfo)); 2206 2207 /* 2208 * cam_periph_mapmem calls into proc and vm functions that can 2209 * sleep as well as trigger I/O, so we can't hold the lock. 2210 * Dropping it here is reasonably safe. 2211 */ 2212 cam_periph_unlock(periph); 2213 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio); 2214 cam_periph_lock(periph); 2215 2216 /* 2217 * cam_periph_mapmem returned an error, we can't continue. 2218 * Return the error to the user. 2219 */ 2220 if (error) 2221 return(error); 2222 } else 2223 /* Ensure that the unmap call later on is a no-op. */ 2224 mapinfo.num_bufs_used = 0; 2225 2226 /* 2227 * If the user wants us to perform any error recovery, then honor 2228 * that request. Otherwise, it's up to the user to perform any 2229 * error recovery. 2230 */ 2231 { 2232 uint32_t cam_flags, sense_flags; 2233 2234 passflags(ccb, &cam_flags, &sense_flags); 2235 cam_periph_runccb(ccb, passerror, cam_flags, 2236 sense_flags, softc->device_stats); 2237 } 2238 2239 cam_periph_unlock(periph); 2240 cam_periph_unmapmem(ccb, &mapinfo); 2241 cam_periph_lock(periph); 2242 2243 ccb->ccb_h.cbfcnp = NULL; 2244 ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv; 2245 bcopy(ccb, inccb, sizeof(union ccb)); 2246 2247 return(0); 2248 } 2249 2250 /* 2251 * Set the cam_flags and sense_flags based on whether or not the request wants 2252 * error recovery. In order to log errors via devctl, we need to do at least 2253 * minimal recovery. We do this by not retrying unit attention (we let the 2254 * requester do it, or not, if appropriate) and specifically asking for no 2255 * recovery, like we do during device probing. 2256 */ 2257 static void 2258 passflags(union ccb *ccb, uint32_t *cam_flags, uint32_t *sense_flags) 2259 { 2260 if ((ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) != 0) { 2261 *cam_flags = CAM_RETRY_SELTO; 2262 *sense_flags = SF_RETRY_UA | SF_NO_PRINT; 2263 } else { 2264 *cam_flags = 0; 2265 *sense_flags = SF_NO_RETRY | SF_NO_RECOVERY | SF_NO_PRINT; 2266 } 2267 } 2268 2269 static int 2270 passerror(union ccb *ccb, uint32_t cam_flags, uint32_t sense_flags) 2271 { 2272 2273 return(cam_periph_error(ccb, cam_flags, sense_flags)); 2274 } 2275