1 /*- 2 * Implementation of Utility functions for all SCSI device types. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause 5 * 6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/param.h> 33 #include <sys/types.h> 34 #include <sys/stdint.h> 35 36 #ifdef _KERNEL 37 #include "opt_scsi.h" 38 39 #include <sys/systm.h> 40 #include <sys/libkern.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mutex.h> 45 #include <sys/sysctl.h> 46 #include <sys/ctype.h> 47 #else 48 #include <errno.h> 49 #include <stdio.h> 50 #include <stdlib.h> 51 #include <string.h> 52 #include <ctype.h> 53 #endif 54 55 #include <cam/cam.h> 56 #include <cam/cam_ccb.h> 57 #include <cam/cam_queue.h> 58 #include <cam/cam_xpt.h> 59 #include <cam/scsi/scsi_all.h> 60 #include <sys/ata.h> 61 #include <sys/sbuf.h> 62 63 #ifdef _KERNEL 64 #include <cam/cam_periph.h> 65 #include <cam/cam_xpt_sim.h> 66 #include <cam/cam_xpt_periph.h> 67 #include <cam/cam_xpt_internal.h> 68 #else 69 #include <camlib.h> 70 #include <stddef.h> 71 72 #ifndef FALSE 73 #define FALSE 0 74 #endif /* FALSE */ 75 #ifndef TRUE 76 #define TRUE 1 77 #endif /* TRUE */ 78 #define ERESTART -1 /* restart syscall */ 79 #define EJUSTRETURN -2 /* don't modify regs, just return */ 80 #endif /* !_KERNEL */ 81 82 /* 83 * This is the default number of milliseconds we wait for devices to settle 84 * after a SCSI bus reset. 85 */ 86 #ifndef SCSI_DELAY 87 #define SCSI_DELAY 2000 88 #endif 89 /* 90 * All devices need _some_ sort of bus settle delay, so we'll set it to 91 * a minimum value of 100ms. Note that this is pertinent only for SPI- 92 * not transport like Fibre Channel or iSCSI where 'delay' is completely 93 * meaningless. 94 */ 95 #ifndef SCSI_MIN_DELAY 96 #define SCSI_MIN_DELAY 100 97 #endif 98 /* 99 * Make sure the user isn't using seconds instead of milliseconds. 100 */ 101 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0) 102 #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value" 103 #endif 104 105 int scsi_delay; 106 107 static int ascentrycomp(const void *key, const void *member); 108 static int senseentrycomp(const void *key, const void *member); 109 static void fetchtableentries(int sense_key, int asc, int ascq, 110 struct scsi_inquiry_data *, 111 const struct sense_key_table_entry **, 112 const struct asc_table_entry **); 113 114 #ifdef _KERNEL 115 static void init_scsi_delay(void); 116 static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS); 117 static int set_scsi_delay(int delay); 118 #endif 119 120 #if !defined(SCSI_NO_OP_STRINGS) 121 122 #define D (1 << T_DIRECT) 123 #define T (1 << T_SEQUENTIAL) 124 #define L (1 << T_PRINTER) 125 #define P (1 << T_PROCESSOR) 126 #define W (1 << T_WORM) 127 #define R (1 << T_CDROM) 128 #define O (1 << T_OPTICAL) 129 #define M (1 << T_CHANGER) 130 #define A (1 << T_STORARRAY) 131 #define E (1 << T_ENCLOSURE) 132 #define B (1 << T_RBC) 133 #define K (1 << T_OCRW) 134 #define V (1 << T_ADC) 135 #define F (1 << T_OSD) 136 #define S (1 << T_SCANNER) 137 #define C (1 << T_COMM) 138 139 #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C) 140 141 static struct op_table_entry plextor_cd_ops[] = { 142 { 0xD8, R, "CD-DA READ" } 143 }; 144 145 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = { 146 { 147 /* 148 * I believe that 0xD8 is the Plextor proprietary command 149 * to read CD-DA data. I'm not sure which Plextor CDROM 150 * models support the command, though. I know for sure 151 * that the 4X, 8X, and 12X models do, and presumably the 152 * 12-20X does. I don't know about any earlier models, 153 * though. If anyone has any more complete information, 154 * feel free to change this quirk entry. 155 */ 156 {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"}, 157 nitems(plextor_cd_ops), 158 plextor_cd_ops 159 } 160 }; 161 162 static struct op_table_entry scsi_op_codes[] = { 163 /* 164 * From: http://www.t10.org/lists/op-num.txt 165 * Modifications by Kenneth Merry (ken@FreeBSD.ORG) 166 * and Jung-uk Kim (jkim@FreeBSD.org) 167 * 168 * Note: order is important in this table, scsi_op_desc() currently 169 * depends on the opcodes in the table being in order to save 170 * search time. 171 * Note: scanner and comm. devices are carried over from the previous 172 * version because they were removed in the latest spec. 173 */ 174 /* File: OP-NUM.TXT 175 * 176 * SCSI Operation Codes 177 * Numeric Sorted Listing 178 * as of 5/26/15 179 * 180 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 181 * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) ----------------- 182 * . L - PRINTER DEVICE (SSC) M = Mandatory 183 * . P - PROCESSOR DEVICE (SPC) O = Optional 184 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec. 185 * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete 186 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 187 * . . .M - MEDIA CHANGER DEVICE (SMC-2) 188 * . . . A - STORAGE ARRAY DEVICE (SCC-2) 189 * . . . .E - ENCLOSURE SERVICES DEVICE (SES) 190 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 191 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 192 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 193 * . . . . .F - OBJECT-BASED STORAGE (OSD) 194 * OP DTLPWROMAEBKVF Description 195 * -- -------------- ---------------------------------------------- */ 196 /* 00 MMMMMMMMMMMMMM TEST UNIT READY */ 197 { 0x00, ALL, "TEST UNIT READY" }, 198 /* 01 M REWIND */ 199 { 0x01, T, "REWIND" }, 200 /* 01 Z V ZZZZ REZERO UNIT */ 201 { 0x01, D | W | R | O | M, "REZERO UNIT" }, 202 /* 02 VVVVVV V */ 203 /* 03 MMMMMMMMMMOMMM REQUEST SENSE */ 204 { 0x03, ALL, "REQUEST SENSE" }, 205 /* 04 M OO FORMAT UNIT */ 206 { 0x04, D | R | O, "FORMAT UNIT" }, 207 /* 04 O FORMAT MEDIUM */ 208 { 0x04, T, "FORMAT MEDIUM" }, 209 /* 04 O FORMAT */ 210 { 0x04, L, "FORMAT" }, 211 /* 05 VMVVVV V READ BLOCK LIMITS */ 212 { 0x05, T, "READ BLOCK LIMITS" }, 213 /* 06 VVVVVV V */ 214 /* 07 OVV O OV REASSIGN BLOCKS */ 215 { 0x07, D | W | O, "REASSIGN BLOCKS" }, 216 /* 07 O INITIALIZE ELEMENT STATUS */ 217 { 0x07, M, "INITIALIZE ELEMENT STATUS" }, 218 /* 08 MOV O OV READ(6) */ 219 { 0x08, D | T | W | O, "READ(6)" }, 220 /* 08 O RECEIVE */ 221 { 0x08, P, "RECEIVE" }, 222 /* 08 GET MESSAGE(6) */ 223 { 0x08, C, "GET MESSAGE(6)" }, 224 /* 09 VVVVVV V */ 225 /* 0A OO O OV WRITE(6) */ 226 { 0x0A, D | T | W | O, "WRITE(6)" }, 227 /* 0A M SEND(6) */ 228 { 0x0A, P, "SEND(6)" }, 229 /* 0A SEND MESSAGE(6) */ 230 { 0x0A, C, "SEND MESSAGE(6)" }, 231 /* 0A M PRINT */ 232 { 0x0A, L, "PRINT" }, 233 /* 0B Z ZOZV SEEK(6) */ 234 { 0x0B, D | W | R | O, "SEEK(6)" }, 235 /* 0B O SET CAPACITY */ 236 { 0x0B, T, "SET CAPACITY" }, 237 /* 0B O SLEW AND PRINT */ 238 { 0x0B, L, "SLEW AND PRINT" }, 239 /* 0C VVVVVV V */ 240 /* 0D VVVVVV V */ 241 /* 0E VVVVVV V */ 242 /* 0F VOVVVV V READ REVERSE(6) */ 243 { 0x0F, T, "READ REVERSE(6)" }, 244 /* 10 VM VVV WRITE FILEMARKS(6) */ 245 { 0x10, T, "WRITE FILEMARKS(6)" }, 246 /* 10 O SYNCHRONIZE BUFFER */ 247 { 0x10, L, "SYNCHRONIZE BUFFER" }, 248 /* 11 VMVVVV SPACE(6) */ 249 { 0x11, T, "SPACE(6)" }, 250 /* 12 MMMMMMMMMMMMMM INQUIRY */ 251 { 0x12, ALL, "INQUIRY" }, 252 /* 13 V VVVV */ 253 /* 13 O VERIFY(6) */ 254 { 0x13, T, "VERIFY(6)" }, 255 /* 14 VOOVVV RECOVER BUFFERED DATA */ 256 { 0x14, T | L, "RECOVER BUFFERED DATA" }, 257 /* 15 OMO O OOOO OO MODE SELECT(6) */ 258 { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" }, 259 /* 16 ZZMZO OOOZ O RESERVE(6) */ 260 { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" }, 261 /* 16 Z RESERVE ELEMENT(6) */ 262 { 0x16, M, "RESERVE ELEMENT(6)" }, 263 /* 17 ZZMZO OOOZ O RELEASE(6) */ 264 { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" }, 265 /* 17 Z RELEASE ELEMENT(6) */ 266 { 0x17, M, "RELEASE ELEMENT(6)" }, 267 /* 18 ZZZZOZO Z COPY */ 268 { 0x18, D | T | L | P | W | R | O | K | S, "COPY" }, 269 /* 19 VMVVVV ERASE(6) */ 270 { 0x19, T, "ERASE(6)" }, 271 /* 1A OMO O OOOO OO MODE SENSE(6) */ 272 { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" }, 273 /* 1B O OOO O MO O START STOP UNIT */ 274 { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" }, 275 /* 1B O M LOAD UNLOAD */ 276 { 0x1B, T | V, "LOAD UNLOAD" }, 277 /* 1B SCAN */ 278 { 0x1B, S, "SCAN" }, 279 /* 1B O STOP PRINT */ 280 { 0x1B, L, "STOP PRINT" }, 281 /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */ 282 { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" }, 283 /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */ 284 { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" }, 285 /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */ 286 { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" }, 287 /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */ 288 { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" }, 289 /* 1F */ 290 /* 20 V VVV V */ 291 /* 21 V VVV V */ 292 /* 22 V VVV V */ 293 /* 23 V V V V */ 294 /* 23 O READ FORMAT CAPACITIES */ 295 { 0x23, R, "READ FORMAT CAPACITIES" }, 296 /* 24 V VV SET WINDOW */ 297 { 0x24, S, "SET WINDOW" }, 298 /* 25 M M M M READ CAPACITY(10) */ 299 { 0x25, D | W | O | B, "READ CAPACITY(10)" }, 300 /* 25 O READ CAPACITY */ 301 { 0x25, R, "READ CAPACITY" }, 302 /* 25 M READ CARD CAPACITY */ 303 { 0x25, K, "READ CARD CAPACITY" }, 304 /* 25 GET WINDOW */ 305 { 0x25, S, "GET WINDOW" }, 306 /* 26 V VV */ 307 /* 27 V VV */ 308 /* 28 M MOM MM READ(10) */ 309 { 0x28, D | W | R | O | B | K | S, "READ(10)" }, 310 /* 28 GET MESSAGE(10) */ 311 { 0x28, C, "GET MESSAGE(10)" }, 312 /* 29 V VVO READ GENERATION */ 313 { 0x29, O, "READ GENERATION" }, 314 /* 2A O MOM MO WRITE(10) */ 315 { 0x2A, D | W | R | O | B | K, "WRITE(10)" }, 316 /* 2A SEND(10) */ 317 { 0x2A, S, "SEND(10)" }, 318 /* 2A SEND MESSAGE(10) */ 319 { 0x2A, C, "SEND MESSAGE(10)" }, 320 /* 2B Z OOO O SEEK(10) */ 321 { 0x2B, D | W | R | O | K, "SEEK(10)" }, 322 /* 2B O LOCATE(10) */ 323 { 0x2B, T, "LOCATE(10)" }, 324 /* 2B O POSITION TO ELEMENT */ 325 { 0x2B, M, "POSITION TO ELEMENT" }, 326 /* 2C V OO ERASE(10) */ 327 { 0x2C, R | O, "ERASE(10)" }, 328 /* 2D O READ UPDATED BLOCK */ 329 { 0x2D, O, "READ UPDATED BLOCK" }, 330 /* 2D V */ 331 /* 2E O OOO MO WRITE AND VERIFY(10) */ 332 { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" }, 333 /* 2F O OOO VERIFY(10) */ 334 { 0x2F, D | W | R | O, "VERIFY(10)" }, 335 /* 30 Z ZZZ SEARCH DATA HIGH(10) */ 336 { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" }, 337 /* 31 Z ZZZ SEARCH DATA EQUAL(10) */ 338 { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" }, 339 /* 31 OBJECT POSITION */ 340 { 0x31, S, "OBJECT POSITION" }, 341 /* 32 Z ZZZ SEARCH DATA LOW(10) */ 342 { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" }, 343 /* 33 Z OZO SET LIMITS(10) */ 344 { 0x33, D | W | R | O, "SET LIMITS(10)" }, 345 /* 34 O O O O PRE-FETCH(10) */ 346 { 0x34, D | W | O | K, "PRE-FETCH(10)" }, 347 /* 34 M READ POSITION */ 348 { 0x34, T, "READ POSITION" }, 349 /* 34 GET DATA BUFFER STATUS */ 350 { 0x34, S, "GET DATA BUFFER STATUS" }, 351 /* 35 O OOO MO SYNCHRONIZE CACHE(10) */ 352 { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" }, 353 /* 36 Z O O O LOCK UNLOCK CACHE(10) */ 354 { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" }, 355 /* 37 O O READ DEFECT DATA(10) */ 356 { 0x37, D | O, "READ DEFECT DATA(10)" }, 357 /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */ 358 { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" }, 359 /* 38 O O O MEDIUM SCAN */ 360 { 0x38, W | O | K, "MEDIUM SCAN" }, 361 /* 39 ZZZZOZO Z COMPARE */ 362 { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" }, 363 /* 3A ZZZZOZO Z COPY AND VERIFY */ 364 { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" }, 365 /* 3B OOOOOOOOOOMOOO WRITE BUFFER */ 366 { 0x3B, ALL, "WRITE BUFFER" }, 367 /* 3C OOOOOOOOOO OOO READ BUFFER */ 368 { 0x3C, ALL & ~(B), "READ BUFFER" }, 369 /* 3D O UPDATE BLOCK */ 370 { 0x3D, O, "UPDATE BLOCK" }, 371 /* 3E O O O READ LONG(10) */ 372 { 0x3E, D | W | O, "READ LONG(10)" }, 373 /* 3F O O O WRITE LONG(10) */ 374 { 0x3F, D | W | O, "WRITE LONG(10)" }, 375 /* 40 ZZZZOZOZ CHANGE DEFINITION */ 376 { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" }, 377 /* 41 O WRITE SAME(10) */ 378 { 0x41, D, "WRITE SAME(10)" }, 379 /* 42 O UNMAP */ 380 { 0x42, D, "UNMAP" }, 381 /* 42 O READ SUB-CHANNEL */ 382 { 0x42, R, "READ SUB-CHANNEL" }, 383 /* 43 O READ TOC/PMA/ATIP */ 384 { 0x43, R, "READ TOC/PMA/ATIP" }, 385 /* 44 M M REPORT DENSITY SUPPORT */ 386 { 0x44, T | V, "REPORT DENSITY SUPPORT" }, 387 /* 44 READ HEADER */ 388 /* 45 O PLAY AUDIO(10) */ 389 { 0x45, R, "PLAY AUDIO(10)" }, 390 /* 46 M GET CONFIGURATION */ 391 { 0x46, R, "GET CONFIGURATION" }, 392 /* 47 O PLAY AUDIO MSF */ 393 { 0x47, R, "PLAY AUDIO MSF" }, 394 /* 48 O SANITIZE */ 395 { 0x48, D, "SANITIZE" }, 396 /* 49 */ 397 /* 4A M GET EVENT STATUS NOTIFICATION */ 398 { 0x4A, R, "GET EVENT STATUS NOTIFICATION" }, 399 /* 4B O PAUSE/RESUME */ 400 { 0x4B, R, "PAUSE/RESUME" }, 401 /* 4C OOOOO OOOO OOO LOG SELECT */ 402 { 0x4C, ALL & ~(R | B), "LOG SELECT" }, 403 /* 4D OOOOO OOOO OMO LOG SENSE */ 404 { 0x4D, ALL & ~(R | B), "LOG SENSE" }, 405 /* 4E O STOP PLAY/SCAN */ 406 { 0x4E, R, "STOP PLAY/SCAN" }, 407 /* 4F */ 408 /* 50 O XDWRITE(10) */ 409 { 0x50, D, "XDWRITE(10)" }, 410 /* 51 O XPWRITE(10) */ 411 { 0x51, D, "XPWRITE(10)" }, 412 /* 51 O READ DISC INFORMATION */ 413 { 0x51, R, "READ DISC INFORMATION" }, 414 /* 52 O XDREAD(10) */ 415 { 0x52, D, "XDREAD(10)" }, 416 /* 52 O READ TRACK INFORMATION */ 417 { 0x52, R, "READ TRACK INFORMATION" }, 418 /* 53 O XDWRITEREAD(10) */ 419 { 0x53, D, "XDWRITEREAD(10)" }, 420 /* 53 O RESERVE TRACK */ 421 { 0x53, R, "RESERVE TRACK" }, 422 /* 54 O SEND OPC INFORMATION */ 423 { 0x54, R, "SEND OPC INFORMATION" }, 424 /* 55 OOO OMOOOOMOMO MODE SELECT(10) */ 425 { 0x55, ALL & ~(P), "MODE SELECT(10)" }, 426 /* 56 ZZMZO OOOZ RESERVE(10) */ 427 { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" }, 428 /* 56 Z RESERVE ELEMENT(10) */ 429 { 0x56, M, "RESERVE ELEMENT(10)" }, 430 /* 57 ZZMZO OOOZ RELEASE(10) */ 431 { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" }, 432 /* 57 Z RELEASE ELEMENT(10) */ 433 { 0x57, M, "RELEASE ELEMENT(10)" }, 434 /* 58 O REPAIR TRACK */ 435 { 0x58, R, "REPAIR TRACK" }, 436 /* 59 */ 437 /* 5A OOO OMOOOOMOMO MODE SENSE(10) */ 438 { 0x5A, ALL & ~(P), "MODE SENSE(10)" }, 439 /* 5B O CLOSE TRACK/SESSION */ 440 { 0x5B, R, "CLOSE TRACK/SESSION" }, 441 /* 5C O READ BUFFER CAPACITY */ 442 { 0x5C, R, "READ BUFFER CAPACITY" }, 443 /* 5D O SEND CUE SHEET */ 444 { 0x5D, R, "SEND CUE SHEET" }, 445 /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */ 446 { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" }, 447 /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */ 448 { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" }, 449 /* 7E OO O OOOO O extended CDB */ 450 { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" }, 451 /* 7F O M variable length CDB (more than 16 bytes) */ 452 { 0x7F, D | F, "variable length CDB (more than 16 bytes)" }, 453 /* 80 Z XDWRITE EXTENDED(16) */ 454 { 0x80, D, "XDWRITE EXTENDED(16)" }, 455 /* 80 M WRITE FILEMARKS(16) */ 456 { 0x80, T, "WRITE FILEMARKS(16)" }, 457 /* 81 Z REBUILD(16) */ 458 { 0x81, D, "REBUILD(16)" }, 459 /* 81 O READ REVERSE(16) */ 460 { 0x81, T, "READ REVERSE(16)" }, 461 /* 82 Z REGENERATE(16) */ 462 { 0x82, D, "REGENERATE(16)" }, 463 /* 82 O ALLOW OVERWRITE */ 464 { 0x82, T, "ALLOW OVERWRITE" }, 465 /* 83 OOOOO O OO EXTENDED COPY */ 466 { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" }, 467 /* 84 OOOOO O OO RECEIVE COPY RESULTS */ 468 { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" }, 469 /* 85 O O O ATA COMMAND PASS THROUGH(16) */ 470 { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" }, 471 /* 86 OO OO OOOOOOO ACCESS CONTROL IN */ 472 { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" }, 473 /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */ 474 { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" }, 475 /* 88 MM O O O READ(16) */ 476 { 0x88, D | T | W | O | B, "READ(16)" }, 477 /* 89 O COMPARE AND WRITE*/ 478 { 0x89, D, "COMPARE AND WRITE" }, 479 /* 8A OM O O O WRITE(16) */ 480 { 0x8A, D | T | W | O | B, "WRITE(16)" }, 481 /* 8B O ORWRITE */ 482 { 0x8B, D, "ORWRITE" }, 483 /* 8C OO O OO O M READ ATTRIBUTE */ 484 { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" }, 485 /* 8D OO O OO O O WRITE ATTRIBUTE */ 486 { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" }, 487 /* 8E O O O O WRITE AND VERIFY(16) */ 488 { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" }, 489 /* 8F OO O O O VERIFY(16) */ 490 { 0x8F, D | T | W | O | B, "VERIFY(16)" }, 491 /* 90 O O O O PRE-FETCH(16) */ 492 { 0x90, D | W | O | B, "PRE-FETCH(16)" }, 493 /* 91 O O O O SYNCHRONIZE CACHE(16) */ 494 { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" }, 495 /* 91 O SPACE(16) */ 496 { 0x91, T, "SPACE(16)" }, 497 /* 92 Z O O LOCK UNLOCK CACHE(16) */ 498 { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" }, 499 /* 92 O LOCATE(16) */ 500 { 0x92, T, "LOCATE(16)" }, 501 /* 93 O WRITE SAME(16) */ 502 { 0x93, D, "WRITE SAME(16)" }, 503 /* 93 M ERASE(16) */ 504 { 0x93, T, "ERASE(16)" }, 505 /* 94 O ZBC OUT */ 506 { 0x94, ALL, "ZBC OUT" }, 507 /* 95 O ZBC IN */ 508 { 0x95, ALL, "ZBC IN" }, 509 /* 96 */ 510 /* 97 */ 511 /* 98 */ 512 /* 99 */ 513 /* 9A O WRITE STREAM(16) */ 514 { 0x9A, D, "WRITE STREAM(16)" }, 515 /* 9B OOOOOOOOOO OOO READ BUFFER(16) */ 516 { 0x9B, ALL & ~(B) , "READ BUFFER(16)" }, 517 /* 9C O WRITE ATOMIC(16) */ 518 { 0x9C, D, "WRITE ATOMIC(16)" }, 519 /* 9D SERVICE ACTION BIDIRECTIONAL */ 520 { 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" }, 521 /* XXX KDM ALL for this? op-num.txt defines it for none.. */ 522 /* 9E SERVICE ACTION IN(16) */ 523 { 0x9E, ALL, "SERVICE ACTION IN(16)" }, 524 /* 9F M SERVICE ACTION OUT(16) */ 525 { 0x9F, ALL, "SERVICE ACTION OUT(16)" }, 526 /* A0 MMOOO OMMM OMO REPORT LUNS */ 527 { 0xA0, ALL & ~(R | B), "REPORT LUNS" }, 528 /* A1 O BLANK */ 529 { 0xA1, R, "BLANK" }, 530 /* A1 O O ATA COMMAND PASS THROUGH(12) */ 531 { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" }, 532 /* A2 OO O O SECURITY PROTOCOL IN */ 533 { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" }, 534 /* A3 OOO O OOMOOOM MAINTENANCE (IN) */ 535 { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" }, 536 /* A3 O SEND KEY */ 537 { 0xA3, R, "SEND KEY" }, 538 /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */ 539 { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" }, 540 /* A4 O REPORT KEY */ 541 { 0xA4, R, "REPORT KEY" }, 542 /* A5 O O OM MOVE MEDIUM */ 543 { 0xA5, T | W | O | M, "MOVE MEDIUM" }, 544 /* A5 O PLAY AUDIO(12) */ 545 { 0xA5, R, "PLAY AUDIO(12)" }, 546 /* A6 O EXCHANGE MEDIUM */ 547 { 0xA6, M, "EXCHANGE MEDIUM" }, 548 /* A6 O LOAD/UNLOAD C/DVD */ 549 { 0xA6, R, "LOAD/UNLOAD C/DVD" }, 550 /* A7 ZZ O O MOVE MEDIUM ATTACHED */ 551 { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" }, 552 /* A7 O SET READ AHEAD */ 553 { 0xA7, R, "SET READ AHEAD" }, 554 /* A8 O OOO READ(12) */ 555 { 0xA8, D | W | R | O, "READ(12)" }, 556 /* A8 GET MESSAGE(12) */ 557 { 0xA8, C, "GET MESSAGE(12)" }, 558 /* A9 O SERVICE ACTION OUT(12) */ 559 { 0xA9, V, "SERVICE ACTION OUT(12)" }, 560 /* AA O OOO WRITE(12) */ 561 { 0xAA, D | W | R | O, "WRITE(12)" }, 562 /* AA SEND MESSAGE(12) */ 563 { 0xAA, C, "SEND MESSAGE(12)" }, 564 /* AB O O SERVICE ACTION IN(12) */ 565 { 0xAB, R | V, "SERVICE ACTION IN(12)" }, 566 /* AC O ERASE(12) */ 567 { 0xAC, O, "ERASE(12)" }, 568 /* AC O GET PERFORMANCE */ 569 { 0xAC, R, "GET PERFORMANCE" }, 570 /* AD O READ DVD STRUCTURE */ 571 { 0xAD, R, "READ DVD STRUCTURE" }, 572 /* AE O O O WRITE AND VERIFY(12) */ 573 { 0xAE, D | W | O, "WRITE AND VERIFY(12)" }, 574 /* AF O OZO VERIFY(12) */ 575 { 0xAF, D | W | R | O, "VERIFY(12)" }, 576 /* B0 ZZZ SEARCH DATA HIGH(12) */ 577 { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" }, 578 /* B1 ZZZ SEARCH DATA EQUAL(12) */ 579 { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" }, 580 /* B2 ZZZ SEARCH DATA LOW(12) */ 581 { 0xB2, W | R | O, "SEARCH DATA LOW(12)" }, 582 /* B3 Z OZO SET LIMITS(12) */ 583 { 0xB3, D | W | R | O, "SET LIMITS(12)" }, 584 /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */ 585 { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" }, 586 /* B5 OO O O SECURITY PROTOCOL OUT */ 587 { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" }, 588 /* B5 O REQUEST VOLUME ELEMENT ADDRESS */ 589 { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" }, 590 /* B6 O SEND VOLUME TAG */ 591 { 0xB6, M, "SEND VOLUME TAG" }, 592 /* B6 O SET STREAMING */ 593 { 0xB6, R, "SET STREAMING" }, 594 /* B7 O O READ DEFECT DATA(12) */ 595 { 0xB7, D | O, "READ DEFECT DATA(12)" }, 596 /* B8 O OZOM READ ELEMENT STATUS */ 597 { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" }, 598 /* B9 O READ CD MSF */ 599 { 0xB9, R, "READ CD MSF" }, 600 /* BA O O OOMO REDUNDANCY GROUP (IN) */ 601 { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" }, 602 /* BA O SCAN */ 603 { 0xBA, R, "SCAN" }, 604 /* BB O O OOOO REDUNDANCY GROUP (OUT) */ 605 { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" }, 606 /* BB O SET CD SPEED */ 607 { 0xBB, R, "SET CD SPEED" }, 608 /* BC O O OOMO SPARE (IN) */ 609 { 0xBC, D | W | O | M | A | E, "SPARE (IN)" }, 610 /* BD O O OOOO SPARE (OUT) */ 611 { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" }, 612 /* BD O MECHANISM STATUS */ 613 { 0xBD, R, "MECHANISM STATUS" }, 614 /* BE O O OOMO VOLUME SET (IN) */ 615 { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" }, 616 /* BE O READ CD */ 617 { 0xBE, R, "READ CD" }, 618 /* BF O O OOOO VOLUME SET (OUT) */ 619 { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" }, 620 /* BF O SEND DVD STRUCTURE */ 621 { 0xBF, R, "SEND DVD STRUCTURE" } 622 }; 623 624 const char * 625 scsi_op_desc(uint16_t opcode, struct scsi_inquiry_data *inq_data) 626 { 627 caddr_t match; 628 int i, j; 629 uint32_t opmask; 630 uint16_t pd_type; 631 int num_ops[2]; 632 struct op_table_entry *table[2]; 633 int num_tables; 634 635 /* 636 * If we've got inquiry data, use it to determine what type of 637 * device we're dealing with here. Otherwise, assume direct 638 * access. 639 */ 640 if (inq_data == NULL) { 641 pd_type = T_DIRECT; 642 match = NULL; 643 } else { 644 pd_type = SID_TYPE(inq_data); 645 646 match = cam_quirkmatch((caddr_t)inq_data, 647 (caddr_t)scsi_op_quirk_table, 648 nitems(scsi_op_quirk_table), 649 sizeof(*scsi_op_quirk_table), 650 scsi_inquiry_match); 651 } 652 653 if (match != NULL) { 654 table[0] = ((struct scsi_op_quirk_entry *)match)->op_table; 655 num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops; 656 table[1] = scsi_op_codes; 657 num_ops[1] = nitems(scsi_op_codes); 658 num_tables = 2; 659 } else { 660 /* 661 * If this is true, we have a vendor specific opcode that 662 * wasn't covered in the quirk table. 663 */ 664 if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80))) 665 return("Vendor Specific Command"); 666 667 table[0] = scsi_op_codes; 668 num_ops[0] = nitems(scsi_op_codes); 669 num_tables = 1; 670 } 671 672 /* RBC is 'Simplified' Direct Access Device */ 673 if (pd_type == T_RBC) 674 pd_type = T_DIRECT; 675 676 /* 677 * Host managed drives are direct access for the most part. 678 */ 679 if (pd_type == T_ZBC_HM) 680 pd_type = T_DIRECT; 681 682 /* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */ 683 if (pd_type == T_NODEVICE) 684 pd_type = T_DIRECT; 685 686 opmask = 1 << pd_type; 687 688 for (j = 0; j < num_tables; j++) { 689 for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){ 690 if ((table[j][i].opcode == opcode) 691 && ((table[j][i].opmask & opmask) != 0)) 692 return(table[j][i].desc); 693 } 694 } 695 696 /* 697 * If we can't find a match for the command in the table, we just 698 * assume it's a vendor specifc command. 699 */ 700 return("Vendor Specific Command"); 701 702 } 703 704 #else /* SCSI_NO_OP_STRINGS */ 705 706 const char * 707 scsi_op_desc(uint16_t opcode, struct scsi_inquiry_data *inq_data) 708 { 709 return(""); 710 } 711 712 #endif 713 714 #if !defined(SCSI_NO_SENSE_STRINGS) 715 #define SST(asc, ascq, action, desc) \ 716 asc, ascq, action, desc 717 #else 718 const char empty_string[] = ""; 719 720 #define SST(asc, ascq, action, desc) \ 721 asc, ascq, action, empty_string 722 #endif 723 724 const struct sense_key_table_entry sense_key_table[] = 725 { 726 { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" }, 727 { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" }, 728 { SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" }, 729 { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" }, 730 { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" }, 731 { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" }, 732 { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" }, 733 { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" }, 734 { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" }, 735 { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" }, 736 { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" }, 737 { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" }, 738 { SSD_KEY_EQUAL, SS_NOP, "EQUAL" }, 739 { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" }, 740 { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" }, 741 { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" } 742 }; 743 744 static struct asc_table_entry quantum_fireball_entries[] = { 745 { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 746 "Logical unit not ready, initializing cmd. required") } 747 }; 748 749 static struct asc_table_entry sony_mo_entries[] = { 750 { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 751 "Logical unit not ready, cause not reportable") } 752 }; 753 754 static struct asc_table_entry hgst_entries[] = { 755 { SST(0x04, 0xF0, SS_RDEF, 756 "Vendor Unique - Logical Unit Not Ready") }, 757 { SST(0x0A, 0x01, SS_RDEF, 758 "Unrecovered Super Certification Log Write Error") }, 759 { SST(0x0A, 0x02, SS_RDEF, 760 "Unrecovered Super Certification Log Read Error") }, 761 { SST(0x15, 0x03, SS_RDEF, 762 "Unrecovered Sector Error") }, 763 { SST(0x3E, 0x04, SS_RDEF, 764 "Unrecovered Self-Test Hard-Cache Test Fail") }, 765 { SST(0x3E, 0x05, SS_RDEF, 766 "Unrecovered Self-Test OTF-Cache Fail") }, 767 { SST(0x40, 0x00, SS_RDEF, 768 "Unrecovered SAT No Buffer Overflow Error") }, 769 { SST(0x40, 0x01, SS_RDEF, 770 "Unrecovered SAT Buffer Overflow Error") }, 771 { SST(0x40, 0x02, SS_RDEF, 772 "Unrecovered SAT No Buffer Overflow With ECS Fault") }, 773 { SST(0x40, 0x03, SS_RDEF, 774 "Unrecovered SAT Buffer Overflow With ECS Fault") }, 775 { SST(0x40, 0x81, SS_RDEF, 776 "DRAM Failure") }, 777 { SST(0x44, 0x0B, SS_RDEF, 778 "Vendor Unique - Internal Target Failure") }, 779 { SST(0x44, 0xF2, SS_RDEF, 780 "Vendor Unique - Internal Target Failure") }, 781 { SST(0x44, 0xF6, SS_RDEF, 782 "Vendor Unique - Internal Target Failure") }, 783 { SST(0x44, 0xF9, SS_RDEF, 784 "Vendor Unique - Internal Target Failure") }, 785 { SST(0x44, 0xFA, SS_RDEF, 786 "Vendor Unique - Internal Target Failure") }, 787 { SST(0x5D, 0x22, SS_RDEF, 788 "Extreme Over-Temperature Warning") }, 789 { SST(0x5D, 0x50, SS_RDEF, 790 "Load/Unload cycle Count Warning") }, 791 { SST(0x81, 0x00, SS_RDEF, 792 "Vendor Unique - Internal Logic Error") }, 793 { SST(0x85, 0x00, SS_RDEF, 794 "Vendor Unique - Internal Key Seed Error") }, 795 }; 796 797 static struct asc_table_entry seagate_entries[] = { 798 { SST(0x04, 0xF0, SS_RDEF, 799 "Logical Unit Not Ready, super certify in Progress") }, 800 { SST(0x08, 0x86, SS_RDEF, 801 "Write Fault Data Corruption") }, 802 { SST(0x09, 0x0D, SS_RDEF, 803 "Tracking Failure") }, 804 { SST(0x09, 0x0E, SS_RDEF, 805 "ETF Failure") }, 806 { SST(0x0B, 0x5D, SS_RDEF, 807 "Pre-SMART Warning") }, 808 { SST(0x0B, 0x85, SS_RDEF, 809 "5V Voltage Warning") }, 810 { SST(0x0B, 0x8C, SS_RDEF, 811 "12V Voltage Warning") }, 812 { SST(0x0C, 0xFF, SS_RDEF, 813 "Write Error - Too many error recovery revs") }, 814 { SST(0x11, 0xFF, SS_RDEF, 815 "Unrecovered Read Error - Too many error recovery revs") }, 816 { SST(0x19, 0x0E, SS_RDEF, 817 "Fewer than 1/2 defect list copies") }, 818 { SST(0x20, 0xF3, SS_RDEF, 819 "Illegal CDB linked to skip mask cmd") }, 820 { SST(0x24, 0xF0, SS_RDEF, 821 "Illegal byte in CDB, LBA not matching") }, 822 { SST(0x24, 0xF1, SS_RDEF, 823 "Illegal byte in CDB, LEN not matching") }, 824 { SST(0x24, 0xF2, SS_RDEF, 825 "Mask not matching transfer length") }, 826 { SST(0x24, 0xF3, SS_RDEF, 827 "Drive formatted without plist") }, 828 { SST(0x26, 0x95, SS_RDEF, 829 "Invalid Field Parameter - CAP File") }, 830 { SST(0x26, 0x96, SS_RDEF, 831 "Invalid Field Parameter - RAP File") }, 832 { SST(0x26, 0x97, SS_RDEF, 833 "Invalid Field Parameter - TMS Firmware Tag") }, 834 { SST(0x26, 0x98, SS_RDEF, 835 "Invalid Field Parameter - Check Sum") }, 836 { SST(0x26, 0x99, SS_RDEF, 837 "Invalid Field Parameter - Firmware Tag") }, 838 { SST(0x29, 0x08, SS_RDEF, 839 "Write Log Dump data") }, 840 { SST(0x29, 0x09, SS_RDEF, 841 "Write Log Dump data") }, 842 { SST(0x29, 0x0A, SS_RDEF, 843 "Reserved disk space") }, 844 { SST(0x29, 0x0B, SS_RDEF, 845 "SDBP") }, 846 { SST(0x29, 0x0C, SS_RDEF, 847 "SDBP") }, 848 { SST(0x31, 0x91, SS_RDEF, 849 "Format Corrupted World Wide Name (WWN) is Invalid") }, 850 { SST(0x32, 0x03, SS_RDEF, 851 "Defect List - Length exceeds Command Allocated Length") }, 852 { SST(0x33, 0x00, SS_RDEF, 853 "Flash not ready for access") }, 854 { SST(0x3F, 0x70, SS_RDEF, 855 "Invalid RAP block") }, 856 { SST(0x3F, 0x71, SS_RDEF, 857 "RAP/ETF mismatch") }, 858 { SST(0x3F, 0x90, SS_RDEF, 859 "Invalid CAP block") }, 860 { SST(0x3F, 0x91, SS_RDEF, 861 "World Wide Name (WWN) Mismatch") }, 862 { SST(0x40, 0x01, SS_RDEF, 863 "DRAM Parity Error") }, 864 { SST(0x40, 0x02, SS_RDEF, 865 "DRAM Parity Error") }, 866 { SST(0x42, 0x0A, SS_RDEF, 867 "Loopback Test") }, 868 { SST(0x42, 0x0B, SS_RDEF, 869 "Loopback Test") }, 870 { SST(0x44, 0xF2, SS_RDEF, 871 "Compare error during data integrity check") }, 872 { SST(0x44, 0xF6, SS_RDEF, 873 "Unrecoverable error during data integrity check") }, 874 { SST(0x47, 0x80, SS_RDEF, 875 "Fibre Channel Sequence Error") }, 876 { SST(0x4E, 0x01, SS_RDEF, 877 "Information Unit Too Short") }, 878 { SST(0x80, 0x00, SS_RDEF, 879 "General Firmware Error / Command Timeout") }, 880 { SST(0x80, 0x01, SS_RDEF, 881 "Command Timeout") }, 882 { SST(0x80, 0x02, SS_RDEF, 883 "Command Timeout") }, 884 { SST(0x80, 0x80, SS_RDEF, 885 "FC FIFO Error During Read Transfer") }, 886 { SST(0x80, 0x81, SS_RDEF, 887 "FC FIFO Error During Write Transfer") }, 888 { SST(0x80, 0x82, SS_RDEF, 889 "DISC FIFO Error During Read Transfer") }, 890 { SST(0x80, 0x83, SS_RDEF, 891 "DISC FIFO Error During Write Transfer") }, 892 { SST(0x80, 0x84, SS_RDEF, 893 "LBA Seeded LRC Error on Read") }, 894 { SST(0x80, 0x85, SS_RDEF, 895 "LBA Seeded LRC Error on Write") }, 896 { SST(0x80, 0x86, SS_RDEF, 897 "IOEDC Error on Read") }, 898 { SST(0x80, 0x87, SS_RDEF, 899 "IOEDC Error on Write") }, 900 { SST(0x80, 0x88, SS_RDEF, 901 "Host Parity Check Failed") }, 902 { SST(0x80, 0x89, SS_RDEF, 903 "IOEDC error on read detected by formatter") }, 904 { SST(0x80, 0x8A, SS_RDEF, 905 "Host Parity Errors / Host FIFO Initialization Failed") }, 906 { SST(0x80, 0x8B, SS_RDEF, 907 "Host Parity Errors") }, 908 { SST(0x80, 0x8C, SS_RDEF, 909 "Host Parity Errors") }, 910 { SST(0x80, 0x8D, SS_RDEF, 911 "Host Parity Errors") }, 912 { SST(0x81, 0x00, SS_RDEF, 913 "LA Check Failed") }, 914 { SST(0x82, 0x00, SS_RDEF, 915 "Internal client detected insufficient buffer") }, 916 { SST(0x84, 0x00, SS_RDEF, 917 "Scheduled Diagnostic And Repair") }, 918 }; 919 920 static struct scsi_sense_quirk_entry sense_quirk_table[] = { 921 { 922 /* 923 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b 924 * when they really should return 0x04 0x02. 925 */ 926 {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"}, 927 /*num_sense_keys*/0, 928 nitems(quantum_fireball_entries), 929 /*sense key entries*/NULL, 930 quantum_fireball_entries 931 }, 932 { 933 /* 934 * This Sony MO drive likes to return 0x04, 0x00 when it 935 * isn't spun up. 936 */ 937 {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"}, 938 /*num_sense_keys*/0, 939 nitems(sony_mo_entries), 940 /*sense key entries*/NULL, 941 sony_mo_entries 942 }, 943 { 944 /* 945 * HGST vendor-specific error codes 946 */ 947 {T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"}, 948 /*num_sense_keys*/0, 949 nitems(hgst_entries), 950 /*sense key entries*/NULL, 951 hgst_entries 952 }, 953 { 954 /* 955 * SEAGATE vendor-specific error codes 956 */ 957 {T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"}, 958 /*num_sense_keys*/0, 959 nitems(seagate_entries), 960 /*sense key entries*/NULL, 961 seagate_entries 962 } 963 }; 964 965 const u_int sense_quirk_table_size = nitems(sense_quirk_table); 966 967 static struct asc_table_entry asc_table[] = { 968 /* 969 * From: http://www.t10.org/lists/asc-num.txt 970 * Modifications by Jung-uk Kim (jkim@FreeBSD.org) 971 */ 972 /* 973 * File: ASC-NUM.TXT 974 * 975 * SCSI ASC/ASCQ Assignments 976 * Numeric Sorted Listing 977 * as of Sat Mar 25 2023 at 04:30 (using old columns) 978 * 979 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 980 * .T - SEQUENTIAL ACCESS DEVICE (SSC) ------------------- 981 * . L - PRINTER DEVICE (SSC) blank = reserved 982 * . P - PROCESSOR DEVICE (SPC) not blank = allowed 983 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) 984 * . . R - CD DEVICE (MMC) 985 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 986 * . . .M - MEDIA CHANGER DEVICE (SMC) 987 * . . . A - STORAGE ARRAY DEVICE (SCC) 988 * . . . E - ENCLOSURE SERVICES DEVICE (SES) 989 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 990 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 991 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 992 * . . . . .F - OBJECT-BASED STORAGE (OSD) 993 * DTLPWROMAEBKVF 994 * ASC ASCQ Action 995 * Description 996 */ 997 /* DTLPWROMAEBKVF */ 998 { SST(0x00, 0x00, SS_NOP, 999 "No additional sense information") }, 1000 /* T */ 1001 { SST(0x00, 0x01, SS_RDEF, 1002 "Filemark detected") }, 1003 /* T */ 1004 { SST(0x00, 0x02, SS_RDEF, 1005 "End-of-partition/medium detected") }, 1006 /* T */ 1007 { SST(0x00, 0x03, SS_RDEF, 1008 "Setmark detected") }, 1009 /* T */ 1010 { SST(0x00, 0x04, SS_RDEF, 1011 "Beginning-of-partition/medium detected") }, 1012 /* TL */ 1013 { SST(0x00, 0x05, SS_RDEF, 1014 "End-of-data detected") }, 1015 /* DTLPWROMAEBKVF */ 1016 { SST(0x00, 0x06, SS_RDEF, 1017 "I/O process terminated") }, 1018 /* T */ 1019 { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */ 1020 "Programmable early warning detected") }, 1021 /* R */ 1022 { SST(0x00, 0x11, SS_FATAL | EBUSY, 1023 "Audio play operation in progress") }, 1024 /* R */ 1025 { SST(0x00, 0x12, SS_NOP, 1026 "Audio play operation paused") }, 1027 /* R */ 1028 { SST(0x00, 0x13, SS_NOP, 1029 "Audio play operation successfully completed") }, 1030 /* R */ 1031 { SST(0x00, 0x14, SS_RDEF, 1032 "Audio play operation stopped due to error") }, 1033 /* R */ 1034 { SST(0x00, 0x15, SS_NOP, 1035 "No current audio status to return") }, 1036 /* DTLPWROMAEBKVF */ 1037 { SST(0x00, 0x16, SS_FATAL | EBUSY, 1038 "Operation in progress") }, 1039 /* DTL WROMAEBKVF */ 1040 { SST(0x00, 0x17, SS_RDEF, 1041 "Cleaning requested") }, 1042 /* T */ 1043 { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */ 1044 "Erase operation in progress") }, 1045 /* T */ 1046 { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */ 1047 "Locate operation in progress") }, 1048 /* T */ 1049 { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */ 1050 "Rewind operation in progress") }, 1051 /* T */ 1052 { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */ 1053 "Set capacity operation in progress") }, 1054 /* T */ 1055 { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */ 1056 "Verify operation in progress") }, 1057 /* DT B */ 1058 { SST(0x00, 0x1D, SS_NOP, 1059 "ATA pass through information available") }, 1060 /* DT R MAEBKV */ 1061 { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */ 1062 "Conflicting SA creation request") }, 1063 /* DT B */ 1064 { SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */ 1065 "Logical unit transitioning to another power condition") }, 1066 /* DT P B */ 1067 { SST(0x00, 0x20, SS_NOP, 1068 "Extended copy information available") }, 1069 /* D */ 1070 { SST(0x00, 0x21, SS_RDEF, /* XXX TBD */ 1071 "Atomic command aborted due to ACA") }, 1072 /* D */ 1073 { SST(0x00, 0x22, SS_RDEF, /* XXX TBD */ 1074 "Deferred microcode is pending") }, 1075 /* D */ 1076 { SST(0x00, 0x23, SS_RDEF, /* XXX TBD */ 1077 "Overlapping atomic command in progress") }, 1078 /* D W O BK */ 1079 { SST(0x01, 0x00, SS_RDEF, 1080 "No index/sector signal") }, 1081 /* D WRO BK */ 1082 { SST(0x02, 0x00, SS_FATAL | EIO, 1083 "No seek complete") }, 1084 /* DTL W O BK */ 1085 { SST(0x03, 0x00, SS_RDEF, 1086 "Peripheral device write fault") }, 1087 /* T */ 1088 { SST(0x03, 0x01, SS_RDEF, 1089 "No write current") }, 1090 /* T */ 1091 { SST(0x03, 0x02, SS_RDEF, 1092 "Excessive write errors") }, 1093 /* DTLPWROMAEBKVF */ 1094 { SST(0x04, 0x00, SS_RDEF, 1095 "Logical unit not ready, cause not reportable") }, 1096 /* DTLPWROMAEBKVF */ 1097 { SST(0x04, 0x01, SS_WAIT | EBUSY, 1098 "Logical unit is in process of becoming ready") }, 1099 /* DTLPWROMAEBKVF */ 1100 { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1101 "Logical unit not ready, initializing command required") }, 1102 /* DTLPWROMAEBKVF */ 1103 { SST(0x04, 0x03, SS_FATAL | ENXIO, 1104 "Logical unit not ready, manual intervention required") }, 1105 /* DTL RO B */ 1106 { SST(0x04, 0x04, SS_FATAL | EBUSY, 1107 "Logical unit not ready, format in progress") }, 1108 /* DT W O A BK F */ 1109 { SST(0x04, 0x05, SS_FATAL | EBUSY, 1110 "Logical unit not ready, rebuild in progress") }, 1111 /* DT W O A BK */ 1112 { SST(0x04, 0x06, SS_FATAL | EBUSY, 1113 "Logical unit not ready, recalculation in progress") }, 1114 /* DTLPWROMAEBKVF */ 1115 { SST(0x04, 0x07, SS_FATAL | EBUSY, 1116 "Logical unit not ready, operation in progress") }, 1117 /* R */ 1118 { SST(0x04, 0x08, SS_FATAL | EBUSY, 1119 "Logical unit not ready, long write in progress") }, 1120 /* DTLPWROMAEBKVF */ 1121 { SST(0x04, 0x09, SS_FATAL | EBUSY, 1122 "Logical unit not ready, self-test in progress") }, 1123 /* DTLPWROMAEBKVF */ 1124 { SST(0x04, 0x0A, SS_WAIT | ENXIO, 1125 "Logical unit not accessible, asymmetric access state transition")}, 1126 /* DTLPWROMAEBKVF */ 1127 { SST(0x04, 0x0B, SS_FATAL | ENXIO, 1128 "Logical unit not accessible, target port in standby state") }, 1129 /* DTLPWROMAEBKVF */ 1130 { SST(0x04, 0x0C, SS_FATAL | ENXIO, 1131 "Logical unit not accessible, target port in unavailable state") }, 1132 /* F */ 1133 { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */ 1134 "Logical unit not ready, structure check required") }, 1135 /* DTL WR MAEBKVF */ 1136 { SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */ 1137 "Logical unit not ready, security session in progress") }, 1138 /* DT WROM B */ 1139 { SST(0x04, 0x10, SS_FATAL | ENODEV, 1140 "Logical unit not ready, auxiliary memory not accessible") }, 1141 /* DT WRO AEB VF */ 1142 { SST(0x04, 0x11, SS_WAIT | ENXIO, 1143 "Logical unit not ready, notify (enable spinup) required") }, 1144 /* M V */ 1145 { SST(0x04, 0x12, SS_FATAL | ENXIO, 1146 "Logical unit not ready, offline") }, 1147 /* DT R MAEBKV */ 1148 { SST(0x04, 0x13, SS_WAIT | EBUSY, 1149 "Logical unit not ready, SA creation in progress") }, 1150 /* D B */ 1151 { SST(0x04, 0x14, SS_WAIT | ENOSPC, 1152 "Logical unit not ready, space allocation in progress") }, 1153 /* M */ 1154 { SST(0x04, 0x15, SS_FATAL | ENXIO, 1155 "Logical unit not ready, robotics disabled") }, 1156 /* M */ 1157 { SST(0x04, 0x16, SS_FATAL | ENXIO, 1158 "Logical unit not ready, configuration required") }, 1159 /* M */ 1160 { SST(0x04, 0x17, SS_FATAL | ENXIO, 1161 "Logical unit not ready, calibration required") }, 1162 /* M */ 1163 { SST(0x04, 0x18, SS_FATAL | ENXIO, 1164 "Logical unit not ready, a door is open") }, 1165 /* M */ 1166 { SST(0x04, 0x19, SS_FATAL | ENODEV, 1167 "Logical unit not ready, operating in sequential mode") }, 1168 /* DT B */ 1169 { SST(0x04, 0x1A, SS_WAIT | EBUSY, 1170 "Logical unit not ready, START/STOP UNIT command in progress") }, 1171 /* D B */ 1172 { SST(0x04, 0x1B, SS_WAIT | EBUSY, 1173 "Logical unit not ready, sanitize in progress") }, 1174 /* DT MAEB */ 1175 { SST(0x04, 0x1C, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1176 "Logical unit not ready, additional power use not yet granted") }, 1177 /* D */ 1178 { SST(0x04, 0x1D, SS_WAIT | EBUSY, 1179 "Logical unit not ready, configuration in progress") }, 1180 /* D */ 1181 { SST(0x04, 0x1E, SS_FATAL | ENXIO, 1182 "Logical unit not ready, microcode activation required") }, 1183 /* DTLPWROMAEBKVF */ 1184 { SST(0x04, 0x1F, SS_FATAL | ENXIO, 1185 "Logical unit not ready, microcode download required") }, 1186 /* DTLPWROMAEBKVF */ 1187 { SST(0x04, 0x20, SS_FATAL | ENXIO, 1188 "Logical unit not ready, logical unit reset required") }, 1189 /* DTLPWROMAEBKVF */ 1190 { SST(0x04, 0x21, SS_FATAL | ENXIO, 1191 "Logical unit not ready, hard reset required") }, 1192 /* DTLPWROMAEBKVF */ 1193 { SST(0x04, 0x22, SS_FATAL | ENXIO, 1194 "Logical unit not ready, power cycle required") }, 1195 /* D */ 1196 { SST(0x04, 0x23, SS_FATAL | ENXIO, 1197 "Logical unit not ready, affiliation required") }, 1198 /* D */ 1199 { SST(0x04, 0x24, SS_FATAL | EBUSY, 1200 "Depopulation in progress") }, 1201 /* D */ 1202 { SST(0x04, 0x25, SS_FATAL | EBUSY, 1203 "Depopulation restoration in progress") }, 1204 /* DTL WROMAEBKVF */ 1205 { SST(0x05, 0x00, SS_RDEF, 1206 "Logical unit does not respond to selection") }, 1207 /* D WROM BK */ 1208 { SST(0x06, 0x00, SS_RDEF, 1209 "No reference position found") }, 1210 /* DTL WROM BK */ 1211 { SST(0x07, 0x00, SS_RDEF, 1212 "Multiple peripheral devices selected") }, 1213 /* DTL WROMAEBKVF */ 1214 { SST(0x08, 0x00, SS_RDEF, 1215 "Logical unit communication failure") }, 1216 /* DTL WROMAEBKVF */ 1217 { SST(0x08, 0x01, SS_RDEF, 1218 "Logical unit communication time-out") }, 1219 /* DTL WROMAEBKVF */ 1220 { SST(0x08, 0x02, SS_RDEF, 1221 "Logical unit communication parity error") }, 1222 /* DT ROM BK */ 1223 { SST(0x08, 0x03, SS_RDEF, 1224 "Logical unit communication CRC error (Ultra-DMA/32)") }, 1225 /* DTLPWRO K */ 1226 { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */ 1227 "Unreachable copy target") }, 1228 /* DT WRO B */ 1229 { SST(0x09, 0x00, SS_RDEF, 1230 "Track following error") }, 1231 /* WRO K */ 1232 { SST(0x09, 0x01, SS_RDEF, 1233 "Tracking servo failure") }, 1234 /* WRO K */ 1235 { SST(0x09, 0x02, SS_RDEF, 1236 "Focus servo failure") }, 1237 /* WRO */ 1238 { SST(0x09, 0x03, SS_RDEF, 1239 "Spindle servo failure") }, 1240 /* DT WRO B */ 1241 { SST(0x09, 0x04, SS_RDEF, 1242 "Head select fault") }, 1243 /* DT RO B */ 1244 { SST(0x09, 0x05, SS_RDEF, 1245 "Vibration induced tracking error") }, 1246 /* DTLPWROMAEBKVF */ 1247 { SST(0x0A, 0x00, SS_FATAL | ENOSPC, 1248 "Error log overflow") }, 1249 /* DTLPWROMAEBKVF */ 1250 { SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1251 "Warning") }, 1252 /* DTLPWROMAEBKVF */ 1253 { SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1254 "Warning - specified temperature exceeded") }, 1255 /* DTLPWROMAEBKVF */ 1256 { SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1257 "Warning - enclosure degraded") }, 1258 /* DTLPWROMAEBKVF */ 1259 { SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1260 "Warning - background self-test failed") }, 1261 /* DTLPWRO AEBKVF */ 1262 { SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1263 "Warning - background pre-scan detected medium error") }, 1264 /* DTLPWRO AEBKVF */ 1265 { SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1266 "Warning - background medium scan detected medium error") }, 1267 /* DTLPWROMAEBKVF */ 1268 { SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1269 "Warning - non-volatile cache now volatile") }, 1270 /* DTLPWROMAEBKVF */ 1271 { SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1272 "Warning - degraded power to non-volatile cache") }, 1273 /* DTLPWROMAEBKVF */ 1274 { SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1275 "Warning - power loss expected") }, 1276 /* D */ 1277 { SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1278 "Warning - device statistics notification available") }, 1279 /* DTLPWROMAEBKV */ 1280 { SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE, 1281 "Warning - High critical temperature limit exceeded") }, 1282 /* DTLPWROMAEBKV */ 1283 { SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE, 1284 "Warning - Low critical temperature limit exceeded") }, 1285 /* DTLPWROMAEBKV */ 1286 { SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE, 1287 "Warning - High operating temperature limit exceeded") }, 1288 /* DTLPWROMAEBKV */ 1289 { SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE, 1290 "Warning - Low operating temperature limit exceeded") }, 1291 /* DTLPWROMAEBKV */ 1292 { SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE, 1293 "Warning - High citical humidity limit exceeded") }, 1294 /* DTLPWROMAEBKV */ 1295 { SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE, 1296 "Warning - Low citical humidity limit exceeded") }, 1297 /* DTLPWROMAEBKV */ 1298 { SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE, 1299 "Warning - High operating humidity limit exceeded") }, 1300 /* DTLPWROMAEBKV */ 1301 { SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE, 1302 "Warning - Low operating humidity limit exceeded") }, 1303 /* DTLPWROMAEBKVF */ 1304 { SST(0x0B, 0x12, SS_NOP | SSQ_PRINT_SENSE, 1305 "Warning - Microcode security at risk") }, 1306 /* DTLPWROMAEBKVF */ 1307 { SST(0x0B, 0x13, SS_NOP | SSQ_PRINT_SENSE, 1308 "Warning - Microcode digital signature validation failure") }, 1309 /* D */ 1310 { SST(0x0B, 0x14, SS_NOP | SSQ_PRINT_SENSE, 1311 "Warning - Physical element status change") }, 1312 /* T R */ 1313 { SST(0x0C, 0x00, SS_RDEF, 1314 "Write error") }, 1315 /* K */ 1316 { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1317 "Write error - recovered with auto reallocation") }, 1318 /* D W O BK */ 1319 { SST(0x0C, 0x02, SS_RDEF, 1320 "Write error - auto reallocation failed") }, 1321 /* D W O BK */ 1322 { SST(0x0C, 0x03, SS_RDEF, 1323 "Write error - recommend reassignment") }, 1324 /* DT W O B */ 1325 { SST(0x0C, 0x04, SS_RDEF, 1326 "Compression check miscompare error") }, 1327 /* DT W O B */ 1328 { SST(0x0C, 0x05, SS_RDEF, 1329 "Data expansion occurred during compression") }, 1330 /* DT W O B */ 1331 { SST(0x0C, 0x06, SS_RDEF, 1332 "Block not compressible") }, 1333 /* R */ 1334 { SST(0x0C, 0x07, SS_RDEF, 1335 "Write error - recovery needed") }, 1336 /* R */ 1337 { SST(0x0C, 0x08, SS_RDEF, 1338 "Write error - recovery failed") }, 1339 /* R */ 1340 { SST(0x0C, 0x09, SS_RDEF, 1341 "Write error - loss of streaming") }, 1342 /* R */ 1343 { SST(0x0C, 0x0A, SS_RDEF, 1344 "Write error - padding blocks added") }, 1345 /* DT WROM B */ 1346 { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */ 1347 "Auxiliary memory write error") }, 1348 /* DTLPWRO AEBKVF */ 1349 { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */ 1350 "Write error - unexpected unsolicited data") }, 1351 /* DTLPWRO AEBKVF */ 1352 { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */ 1353 "Write error - not enough unsolicited data") }, 1354 /* DT W O BK */ 1355 { SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */ 1356 "Multiple write errors") }, 1357 /* R */ 1358 { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */ 1359 "Defects in error window") }, 1360 /* D */ 1361 { SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */ 1362 "Incomplete multiple atomic write operations") }, 1363 /* D */ 1364 { SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */ 1365 "Write error - recovery scan needed") }, 1366 /* D */ 1367 { SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */ 1368 "Write error - insufficient zone resources") }, 1369 /* DTLPWRO A K */ 1370 { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */ 1371 "Error detected by third party temporary initiator") }, 1372 /* DTLPWRO A K */ 1373 { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */ 1374 "Third party device failure") }, 1375 /* DTLPWRO A K */ 1376 { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */ 1377 "Copy target device not reachable") }, 1378 /* DTLPWRO A K */ 1379 { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */ 1380 "Incorrect copy target device type") }, 1381 /* DTLPWRO A K */ 1382 { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */ 1383 "Copy target device data underrun") }, 1384 /* DTLPWRO A K */ 1385 { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */ 1386 "Copy target device data overrun") }, 1387 /* DT PWROMAEBK F */ 1388 { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */ 1389 "Invalid information unit") }, 1390 /* DT PWROMAEBK F */ 1391 { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */ 1392 "Information unit too short") }, 1393 /* DT PWROMAEBK F */ 1394 { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */ 1395 "Information unit too long") }, 1396 /* DT P R MAEBK F */ 1397 { SST(0x0E, 0x03, SS_FATAL | EINVAL, 1398 "Invalid field in command information unit") }, 1399 /* D W O BK */ 1400 { SST(0x10, 0x00, SS_RDEF, 1401 "ID CRC or ECC error") }, 1402 /* DT W O */ 1403 { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */ 1404 "Logical block guard check failed") }, 1405 /* DT W O */ 1406 { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */ 1407 "Logical block application tag check failed") }, 1408 /* DT W O */ 1409 { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */ 1410 "Logical block reference tag check failed") }, 1411 /* T */ 1412 { SST(0x10, 0x04, SS_RDEF, /* XXX TBD */ 1413 "Logical block protection error on recovered buffer data") }, 1414 /* T */ 1415 { SST(0x10, 0x05, SS_RDEF, /* XXX TBD */ 1416 "Logical block protection method error") }, 1417 /* DT WRO BK */ 1418 { SST(0x11, 0x00, SS_FATAL|EIO, 1419 "Unrecovered read error") }, 1420 /* DT WRO BK */ 1421 { SST(0x11, 0x01, SS_FATAL|EIO, 1422 "Read retries exhausted") }, 1423 /* DT WRO BK */ 1424 { SST(0x11, 0x02, SS_FATAL|EIO, 1425 "Error too long to correct") }, 1426 /* DT W O BK */ 1427 { SST(0x11, 0x03, SS_FATAL|EIO, 1428 "Multiple read errors") }, 1429 /* D W O BK */ 1430 { SST(0x11, 0x04, SS_FATAL|EIO, 1431 "Unrecovered read error - auto reallocate failed") }, 1432 /* WRO B */ 1433 { SST(0x11, 0x05, SS_FATAL|EIO, 1434 "L-EC uncorrectable error") }, 1435 /* WRO B */ 1436 { SST(0x11, 0x06, SS_FATAL|EIO, 1437 "CIRC unrecovered error") }, 1438 /* W O B */ 1439 { SST(0x11, 0x07, SS_RDEF, 1440 "Data re-synchronization error") }, 1441 /* T */ 1442 { SST(0x11, 0x08, SS_RDEF, 1443 "Incomplete block read") }, 1444 /* T */ 1445 { SST(0x11, 0x09, SS_RDEF, 1446 "No gap found") }, 1447 /* DT O BK */ 1448 { SST(0x11, 0x0A, SS_RDEF, 1449 "Miscorrected error") }, 1450 /* D W O BK */ 1451 { SST(0x11, 0x0B, SS_FATAL|EIO, 1452 "Unrecovered read error - recommend reassignment") }, 1453 /* D W O BK */ 1454 { SST(0x11, 0x0C, SS_FATAL|EIO, 1455 "Unrecovered read error - recommend rewrite the data") }, 1456 /* DT WRO B */ 1457 { SST(0x11, 0x0D, SS_RDEF, 1458 "De-compression CRC error") }, 1459 /* DT WRO B */ 1460 { SST(0x11, 0x0E, SS_RDEF, 1461 "Cannot decompress using declared algorithm") }, 1462 /* R */ 1463 { SST(0x11, 0x0F, SS_RDEF, 1464 "Error reading UPC/EAN number") }, 1465 /* R */ 1466 { SST(0x11, 0x10, SS_RDEF, 1467 "Error reading ISRC number") }, 1468 /* R */ 1469 { SST(0x11, 0x11, SS_RDEF, 1470 "Read error - loss of streaming") }, 1471 /* DT WROM B */ 1472 { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */ 1473 "Auxiliary memory read error") }, 1474 /* DTLPWRO AEBKVF */ 1475 { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */ 1476 "Read error - failed retransmission request") }, 1477 /* D */ 1478 { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */ 1479 "Read error - LBA marked bad by application client") }, 1480 /* D */ 1481 { SST(0x11, 0x15, SS_FATAL | EIO, 1482 "Write after sanitize required") }, 1483 /* D W O BK */ 1484 { SST(0x12, 0x00, SS_RDEF, 1485 "Address mark not found for ID field") }, 1486 /* D W O BK */ 1487 { SST(0x13, 0x00, SS_RDEF, 1488 "Address mark not found for data field") }, 1489 /* DTL WRO BK */ 1490 { SST(0x14, 0x00, SS_RDEF, 1491 "Recorded entity not found") }, 1492 /* DT WRO BK */ 1493 { SST(0x14, 0x01, SS_RDEF, 1494 "Record not found") }, 1495 /* T */ 1496 { SST(0x14, 0x02, SS_RDEF, 1497 "Filemark or setmark not found") }, 1498 /* T */ 1499 { SST(0x14, 0x03, SS_RDEF, 1500 "End-of-data not found") }, 1501 /* T */ 1502 { SST(0x14, 0x04, SS_RDEF, 1503 "Block sequence error") }, 1504 /* DT W O BK */ 1505 { SST(0x14, 0x05, SS_RDEF, 1506 "Record not found - recommend reassignment") }, 1507 /* DT W O BK */ 1508 { SST(0x14, 0x06, SS_RDEF, 1509 "Record not found - data auto-reallocated") }, 1510 /* T */ 1511 { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */ 1512 "Locate operation failure") }, 1513 /* DTL WROM BK */ 1514 { SST(0x15, 0x00, SS_RDEF, 1515 "Random positioning error") }, 1516 /* DTL WROM BK */ 1517 { SST(0x15, 0x01, SS_RDEF, 1518 "Mechanical positioning error") }, 1519 /* DT WRO BK */ 1520 { SST(0x15, 0x02, SS_RDEF, 1521 "Positioning error detected by read of medium") }, 1522 /* D W O BK */ 1523 { SST(0x16, 0x00, SS_RDEF, 1524 "Data synchronization mark error") }, 1525 /* D W O BK */ 1526 { SST(0x16, 0x01, SS_RDEF, 1527 "Data sync error - data rewritten") }, 1528 /* D W O BK */ 1529 { SST(0x16, 0x02, SS_RDEF, 1530 "Data sync error - recommend rewrite") }, 1531 /* D W O BK */ 1532 { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1533 "Data sync error - data auto-reallocated") }, 1534 /* D W O BK */ 1535 { SST(0x16, 0x04, SS_RDEF, 1536 "Data sync error - recommend reassignment") }, 1537 /* DT WRO BK */ 1538 { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1539 "Recovered data with no error correction applied") }, 1540 /* DT WRO BK */ 1541 { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1542 "Recovered data with retries") }, 1543 /* DT WRO BK */ 1544 { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1545 "Recovered data with positive head offset") }, 1546 /* DT WRO BK */ 1547 { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1548 "Recovered data with negative head offset") }, 1549 /* WRO B */ 1550 { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1551 "Recovered data with retries and/or CIRC applied") }, 1552 /* D WRO BK */ 1553 { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1554 "Recovered data using previous sector ID") }, 1555 /* D W O BK */ 1556 { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1557 "Recovered data without ECC - data auto-reallocated") }, 1558 /* D WRO BK */ 1559 { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1560 "Recovered data without ECC - recommend reassignment") }, 1561 /* D WRO BK */ 1562 { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1563 "Recovered data without ECC - recommend rewrite") }, 1564 /* D WRO BK */ 1565 { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1566 "Recovered data without ECC - data rewritten") }, 1567 /* DT WRO BK */ 1568 { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1569 "Recovered data with error correction applied") }, 1570 /* D WRO BK */ 1571 { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1572 "Recovered data with error corr. & retries applied") }, 1573 /* D WRO BK */ 1574 { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1575 "Recovered data - data auto-reallocated") }, 1576 /* R */ 1577 { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1578 "Recovered data with CIRC") }, 1579 /* R */ 1580 { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1581 "Recovered data with L-EC") }, 1582 /* D WRO BK */ 1583 { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1584 "Recovered data - recommend reassignment") }, 1585 /* D WRO BK */ 1586 { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1587 "Recovered data - recommend rewrite") }, 1588 /* D W O BK */ 1589 { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1590 "Recovered data with ECC - data rewritten") }, 1591 /* R */ 1592 { SST(0x18, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1593 "Recovered data with linking") }, 1594 /* D O K */ 1595 { SST(0x19, 0x00, SS_RDEF, 1596 "Defect list error") }, 1597 /* D O K */ 1598 { SST(0x19, 0x01, SS_RDEF, 1599 "Defect list not available") }, 1600 /* D O K */ 1601 { SST(0x19, 0x02, SS_RDEF, 1602 "Defect list error in primary list") }, 1603 /* D O K */ 1604 { SST(0x19, 0x03, SS_RDEF, 1605 "Defect list error in grown list") }, 1606 /* DTLPWROMAEBKVF */ 1607 { SST(0x1A, 0x00, SS_RDEF, 1608 "Parameter list length error") }, 1609 /* DTLPWROMAEBKVF */ 1610 { SST(0x1B, 0x00, SS_RDEF, 1611 "Synchronous data transfer error") }, 1612 /* D O BK */ 1613 { SST(0x1C, 0x00, SS_RDEF, 1614 "Defect list not found") }, 1615 /* D O BK */ 1616 { SST(0x1C, 0x01, SS_RDEF, 1617 "Primary defect list not found") }, 1618 /* D O BK */ 1619 { SST(0x1C, 0x02, SS_RDEF, 1620 "Grown defect list not found") }, 1621 /* DT WRO BK */ 1622 { SST(0x1D, 0x00, SS_FATAL, 1623 "Miscompare during verify operation") }, 1624 /* D B */ 1625 { SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */ 1626 "Miscomparable verify of unmapped LBA") }, 1627 /* D W O BK */ 1628 { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1629 "Recovered ID with ECC correction") }, 1630 /* D O K */ 1631 { SST(0x1F, 0x00, SS_RDEF, 1632 "Partial defect list transfer") }, 1633 /* DTLPWROMAEBKVF */ 1634 { SST(0x20, 0x00, SS_FATAL | EINVAL, 1635 "Invalid command operation code") }, 1636 /* DT PWROMAEBK */ 1637 { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */ 1638 "Access denied - initiator pending-enrolled") }, 1639 /* DT PWROMAEBK */ 1640 { SST(0x20, 0x02, SS_FATAL | EPERM, 1641 "Access denied - no access rights") }, 1642 /* DT PWROMAEBK */ 1643 { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */ 1644 "Access denied - invalid mgmt ID key") }, 1645 /* T */ 1646 { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */ 1647 "Illegal command while in write capable state") }, 1648 /* T */ 1649 { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */ 1650 "Obsolete") }, 1651 /* T */ 1652 { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */ 1653 "Illegal command while in explicit address mode") }, 1654 /* T */ 1655 { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */ 1656 "Illegal command while in implicit address mode") }, 1657 /* DT PWROMAEBK */ 1658 { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */ 1659 "Access denied - enrollment conflict") }, 1660 /* DT PWROMAEBK */ 1661 { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */ 1662 "Access denied - invalid LU identifier") }, 1663 /* DT PWROMAEBK */ 1664 { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */ 1665 "Access denied - invalid proxy token") }, 1666 /* DT PWROMAEBK */ 1667 { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */ 1668 "Access denied - ACL LUN conflict") }, 1669 /* T */ 1670 { SST(0x20, 0x0C, SS_FATAL | EINVAL, 1671 "Illegal command when not in append-only mode") }, 1672 /* D */ 1673 { SST(0x20, 0x0D, SS_FATAL | EINVAL, 1674 "Not an administrative logical unit") }, 1675 /* D */ 1676 { SST(0x20, 0x0E, SS_FATAL | EINVAL, 1677 "Not a subsidiary logical unit") }, 1678 /* D */ 1679 { SST(0x20, 0x0F, SS_FATAL | EINVAL, 1680 "Not a conglomerate logical unit") }, 1681 /* DT WRO BK */ 1682 { SST(0x21, 0x00, SS_FATAL | EINVAL, 1683 "Logical block address out of range") }, 1684 /* DT WROM BK */ 1685 { SST(0x21, 0x01, SS_FATAL | EINVAL, 1686 "Invalid element address") }, 1687 /* R */ 1688 { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */ 1689 "Invalid address for write") }, 1690 /* R */ 1691 { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */ 1692 "Invalid write crossing layer jump") }, 1693 /* D */ 1694 { SST(0x21, 0x04, SS_RDEF, /* XXX TBD */ 1695 "Unaligned write command") }, 1696 /* D */ 1697 { SST(0x21, 0x05, SS_RDEF, /* XXX TBD */ 1698 "Write boundary violation") }, 1699 /* D */ 1700 { SST(0x21, 0x06, SS_RDEF, /* XXX TBD */ 1701 "Attempt to read invalid data") }, 1702 /* D */ 1703 { SST(0x21, 0x07, SS_RDEF, /* XXX TBD */ 1704 "Read boundary violation") }, 1705 /* D */ 1706 { SST(0x21, 0x08, SS_FATAL | EINVAL, 1707 "Misaligned write command") }, 1708 /* D */ 1709 { SST(0x21, 0x09, SS_FATAL | EINVAL, 1710 "Attempt to access gap zone") }, 1711 /* D */ 1712 { SST(0x22, 0x00, SS_FATAL | EINVAL, 1713 "Illegal function (use 20 00, 24 00, or 26 00)") }, 1714 /* DT P B */ 1715 { SST(0x23, 0x00, SS_FATAL | EINVAL, 1716 "Invalid token operation, cause not reportable") }, 1717 /* DT P B */ 1718 { SST(0x23, 0x01, SS_FATAL | EINVAL, 1719 "Invalid token operation, unsupported token type") }, 1720 /* DT P B */ 1721 { SST(0x23, 0x02, SS_FATAL | EINVAL, 1722 "Invalid token operation, remote token usage not supported") }, 1723 /* DT P B */ 1724 { SST(0x23, 0x03, SS_FATAL | EINVAL, 1725 "Invalid token operation, remote ROD token creation not supported") }, 1726 /* DT P B */ 1727 { SST(0x23, 0x04, SS_FATAL | EINVAL, 1728 "Invalid token operation, token unknown") }, 1729 /* DT P B */ 1730 { SST(0x23, 0x05, SS_FATAL | EINVAL, 1731 "Invalid token operation, token corrupt") }, 1732 /* DT P B */ 1733 { SST(0x23, 0x06, SS_FATAL | EINVAL, 1734 "Invalid token operation, token revoked") }, 1735 /* DT P B */ 1736 { SST(0x23, 0x07, SS_FATAL | EINVAL, 1737 "Invalid token operation, token expired") }, 1738 /* DT P B */ 1739 { SST(0x23, 0x08, SS_FATAL | EINVAL, 1740 "Invalid token operation, token cancelled") }, 1741 /* DT P B */ 1742 { SST(0x23, 0x09, SS_FATAL | EINVAL, 1743 "Invalid token operation, token deleted") }, 1744 /* DT P B */ 1745 { SST(0x23, 0x0A, SS_FATAL | EINVAL, 1746 "Invalid token operation, invalid token length") }, 1747 /* DTLPWROMAEBKVF */ 1748 { SST(0x24, 0x00, SS_FATAL | EINVAL, 1749 "Invalid field in CDB") }, 1750 /* DTLPWRO AEBKVF */ 1751 { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */ 1752 "CDB decryption error") }, 1753 /* T */ 1754 { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */ 1755 "Obsolete") }, 1756 /* T */ 1757 { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */ 1758 "Obsolete") }, 1759 /* F */ 1760 { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */ 1761 "Security audit value frozen") }, 1762 /* F */ 1763 { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */ 1764 "Security working key frozen") }, 1765 /* F */ 1766 { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */ 1767 "NONCE not unique") }, 1768 /* F */ 1769 { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */ 1770 "NONCE timestamp out of range") }, 1771 /* DT R MAEBKV */ 1772 { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */ 1773 "Invalid XCDB") }, 1774 /* D */ 1775 { SST(0x24, 0x09, SS_FATAL | EINVAL, 1776 "Invalid fast format") }, 1777 /* DTLPWROMAEBKVF */ 1778 { SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST, 1779 "Logical unit not supported") }, 1780 /* DTLPWROMAEBKVF */ 1781 { SST(0x26, 0x00, SS_FATAL | EINVAL, 1782 "Invalid field in parameter list") }, 1783 /* DTLPWROMAEBKVF */ 1784 { SST(0x26, 0x01, SS_FATAL | EINVAL, 1785 "Parameter not supported") }, 1786 /* DTLPWROMAEBKVF */ 1787 { SST(0x26, 0x02, SS_FATAL | EINVAL, 1788 "Parameter value invalid") }, 1789 /* DTLPWROMAE K */ 1790 { SST(0x26, 0x03, SS_FATAL | EINVAL, 1791 "Threshold parameters not supported") }, 1792 /* DTLPWROMAEBKVF */ 1793 { SST(0x26, 0x04, SS_FATAL | EINVAL, 1794 "Invalid release of persistent reservation") }, 1795 /* DTLPWRO A BK */ 1796 { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */ 1797 "Data decryption error") }, 1798 /* DTLPWRO K */ 1799 { SST(0x26, 0x06, SS_FATAL | EINVAL, 1800 "Too many target descriptors") }, 1801 /* DTLPWRO K */ 1802 { SST(0x26, 0x07, SS_FATAL | EINVAL, 1803 "Unsupported target descriptor type code") }, 1804 /* DTLPWRO K */ 1805 { SST(0x26, 0x08, SS_FATAL | EINVAL, 1806 "Too many segment descriptors") }, 1807 /* DTLPWRO K */ 1808 { SST(0x26, 0x09, SS_FATAL | EINVAL, 1809 "Unsupported segment descriptor type code") }, 1810 /* DTLPWRO K */ 1811 { SST(0x26, 0x0A, SS_FATAL | EINVAL, 1812 "Unexpected inexact segment") }, 1813 /* DTLPWRO K */ 1814 { SST(0x26, 0x0B, SS_FATAL | EINVAL, 1815 "Inline data length exceeded") }, 1816 /* DTLPWRO K */ 1817 { SST(0x26, 0x0C, SS_FATAL | EINVAL, 1818 "Invalid operation for copy source or destination") }, 1819 /* DTLPWRO K */ 1820 { SST(0x26, 0x0D, SS_FATAL | EINVAL, 1821 "Copy segment granularity violation") }, 1822 /* DT PWROMAEBK */ 1823 { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */ 1824 "Invalid parameter while port is enabled") }, 1825 /* F */ 1826 { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */ 1827 "Invalid data-out buffer integrity check value") }, 1828 /* T */ 1829 { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */ 1830 "Data decryption key fail limit reached") }, 1831 /* T */ 1832 { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */ 1833 "Incomplete key-associated data set") }, 1834 /* T */ 1835 { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */ 1836 "Vendor specific key reference not found") }, 1837 /* D */ 1838 { SST(0x26, 0x13, SS_RDEF, /* XXX TBD */ 1839 "Application tag mode page is invalid") }, 1840 /* T */ 1841 { SST(0x26, 0x14, SS_RDEF, /* XXX TBD */ 1842 "Tape stream mirroring prevented") }, 1843 /* T */ 1844 { SST(0x26, 0x15, SS_FATAL | EINVAL, 1845 "Copy source or copy destination not authorized") }, 1846 /* D */ 1847 { SST(0x26, 0x16, SS_FATAL | EINVAL, 1848 "Fast copy not possible") }, 1849 /* DT WRO BK */ 1850 { SST(0x27, 0x00, SS_FATAL | EACCES, 1851 "Write protected") }, 1852 /* DT WRO BK */ 1853 { SST(0x27, 0x01, SS_FATAL | EACCES, 1854 "Hardware write protected") }, 1855 /* DT WRO BK */ 1856 { SST(0x27, 0x02, SS_FATAL | EACCES, 1857 "Logical unit software write protected") }, 1858 /* T R */ 1859 { SST(0x27, 0x03, SS_FATAL | EACCES, 1860 "Associated write protect") }, 1861 /* T R */ 1862 { SST(0x27, 0x04, SS_FATAL | EACCES, 1863 "Persistent write protect") }, 1864 /* T R */ 1865 { SST(0x27, 0x05, SS_FATAL | EACCES, 1866 "Permanent write protect") }, 1867 /* R F */ 1868 { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */ 1869 "Conditional write protect") }, 1870 /* D B */ 1871 { SST(0x27, 0x07, SS_FATAL | ENOSPC, 1872 "Space allocation failed write protect") }, 1873 /* D */ 1874 { SST(0x27, 0x08, SS_FATAL | EACCES, 1875 "Zone is read only") }, 1876 /* DTLPWROMAEBKVF */ 1877 { SST(0x28, 0x00, SS_FATAL | ENXIO, 1878 "Not ready to ready change, medium may have changed") }, 1879 /* DT WROM B */ 1880 { SST(0x28, 0x01, SS_FATAL | ENXIO, 1881 "Import or export element accessed") }, 1882 /* R */ 1883 { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */ 1884 "Format-layer may have changed") }, 1885 /* M */ 1886 { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */ 1887 "Import/export element accessed, medium changed") }, 1888 /* 1889 * XXX JGibbs - All of these should use the same errno, but I don't 1890 * think ENXIO is the correct choice. Should we borrow from 1891 * the networking errnos? ECONNRESET anyone? 1892 */ 1893 /* DTLPWROMAEBKVF */ 1894 { SST(0x29, 0x00, SS_FATAL | ENXIO, 1895 "Power on, reset, or bus device reset occurred") }, 1896 /* DTLPWROMAEBKVF */ 1897 { SST(0x29, 0x01, SS_RDEF, 1898 "Power on occurred") }, 1899 /* DTLPWROMAEBKVF */ 1900 { SST(0x29, 0x02, SS_RDEF, 1901 "SCSI bus reset occurred") }, 1902 /* DTLPWROMAEBKVF */ 1903 { SST(0x29, 0x03, SS_RDEF, 1904 "Bus device reset function occurred") }, 1905 /* DTLPWROMAEBKVF */ 1906 { SST(0x29, 0x04, SS_RDEF, 1907 "Device internal reset") }, 1908 /* DTLPWROMAEBKVF */ 1909 { SST(0x29, 0x05, SS_RDEF, 1910 "Transceiver mode changed to single-ended") }, 1911 /* DTLPWROMAEBKVF */ 1912 { SST(0x29, 0x06, SS_RDEF, 1913 "Transceiver mode changed to LVD") }, 1914 /* DTLPWROMAEBKVF */ 1915 { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */ 1916 "I_T nexus loss occurred") }, 1917 /* DTL WROMAEBKVF */ 1918 { SST(0x2A, 0x00, SS_RDEF, 1919 "Parameters changed") }, 1920 /* DTL WROMAEBKVF */ 1921 { SST(0x2A, 0x01, SS_RDEF, 1922 "Mode parameters changed") }, 1923 /* DTL WROMAE K */ 1924 { SST(0x2A, 0x02, SS_RDEF, 1925 "Log parameters changed") }, 1926 /* DTLPWROMAE K */ 1927 { SST(0x2A, 0x03, SS_RDEF, 1928 "Reservations preempted") }, 1929 /* DTLPWROMAE */ 1930 { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */ 1931 "Reservations released") }, 1932 /* DTLPWROMAE */ 1933 { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */ 1934 "Registrations preempted") }, 1935 /* DTLPWROMAEBKVF */ 1936 { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */ 1937 "Asymmetric access state changed") }, 1938 /* DTLPWROMAEBKVF */ 1939 { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */ 1940 "Implicit asymmetric access state transition failed") }, 1941 /* DT WROMAEBKVF */ 1942 { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */ 1943 "Priority changed") }, 1944 /* D */ 1945 { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */ 1946 "Capacity data has changed") }, 1947 /* DT */ 1948 { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */ 1949 "Error history I_T nexus cleared") }, 1950 /* DT */ 1951 { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */ 1952 "Error history snapshot released") }, 1953 /* F */ 1954 { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */ 1955 "Error recovery attributes have changed") }, 1956 /* T */ 1957 { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */ 1958 "Data encryption capabilities changed") }, 1959 /* DT M E V */ 1960 { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */ 1961 "Timestamp changed") }, 1962 /* T */ 1963 { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */ 1964 "Data encryption parameters changed by another I_T nexus") }, 1965 /* T */ 1966 { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */ 1967 "Data encryption parameters changed by vendor specific event") }, 1968 /* T */ 1969 { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */ 1970 "Data encryption key instance counter has changed") }, 1971 /* DT R MAEBKV */ 1972 { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */ 1973 "SA creation capabilities data has changed") }, 1974 /* T M V */ 1975 { SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */ 1976 "Medium removal prevention preempted") }, 1977 /* D */ 1978 { SST(0x2A, 0x16, SS_RDEF, /* XXX TBD */ 1979 "Zone reset write pointer recommended") }, 1980 /* DTLPWRO K */ 1981 { SST(0x2B, 0x00, SS_RDEF, 1982 "Copy cannot execute since host cannot disconnect") }, 1983 /* DTLPWROMAEBKVF */ 1984 { SST(0x2C, 0x00, SS_RDEF, 1985 "Command sequence error") }, 1986 /* */ 1987 { SST(0x2C, 0x01, SS_RDEF, 1988 "Too many windows specified") }, 1989 /* */ 1990 { SST(0x2C, 0x02, SS_RDEF, 1991 "Invalid combination of windows specified") }, 1992 /* R */ 1993 { SST(0x2C, 0x03, SS_RDEF, 1994 "Current program area is not empty") }, 1995 /* R */ 1996 { SST(0x2C, 0x04, SS_RDEF, 1997 "Current program area is empty") }, 1998 /* B */ 1999 { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */ 2000 "Illegal power condition request") }, 2001 /* R */ 2002 { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */ 2003 "Persistent prevent conflict") }, 2004 /* DTLPWROMAEBKVF */ 2005 { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */ 2006 "Previous busy status") }, 2007 /* DTLPWROMAEBKVF */ 2008 { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */ 2009 "Previous task set full status") }, 2010 /* DTLPWROM EBKVF */ 2011 { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */ 2012 "Previous reservation conflict status") }, 2013 /* F */ 2014 { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */ 2015 "Partition or collection contains user objects") }, 2016 /* T */ 2017 { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */ 2018 "Not reserved") }, 2019 /* D */ 2020 { SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */ 2021 "ORWRITE generation does not match") }, 2022 /* D */ 2023 { SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */ 2024 "Reset write pointer not allowed") }, 2025 /* D */ 2026 { SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */ 2027 "Zone is offline") }, 2028 /* D */ 2029 { SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */ 2030 "Stream not open") }, 2031 /* D */ 2032 { SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */ 2033 "Unwritten data in zone") }, 2034 /* D */ 2035 { SST(0x2C, 0x11, SS_FATAL | EINVAL, 2036 "Descriptor format sense data required") }, 2037 /* D */ 2038 { SST(0x2C, 0x12, SS_FATAL | EINVAL, 2039 "Zone is inactive") }, 2040 /* DTPEROMAEBKVF */ 2041 { SST(0x2C, 0x13, SS_FATAL | EINVAL, 2042 "Well known logical unit access required") }, 2043 /* T */ 2044 { SST(0x2D, 0x00, SS_RDEF, 2045 "Overwrite error on update in place") }, 2046 /* R */ 2047 { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */ 2048 "Insufficient time for operation") }, 2049 /* D */ 2050 { SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */ 2051 "Command timeout before processing") }, 2052 /* D */ 2053 { SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */ 2054 "Command timeout during processing") }, 2055 /* D */ 2056 { SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */ 2057 "Command timeout during processing due to error recovery") }, 2058 /* DTLPWROMAEBKVF */ 2059 { SST(0x2F, 0x00, SS_RDEF, 2060 "Commands cleared by another initiator") }, 2061 /* D */ 2062 { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */ 2063 "Commands cleared by power loss notification") }, 2064 /* DTLPWROMAEBKVF */ 2065 { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */ 2066 "Commands cleared by device server") }, 2067 /* DTLPWROMAEBKVF */ 2068 { SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */ 2069 "Some commands cleared by queuing layer event") }, 2070 /* DT WROM BK */ 2071 { SST(0x30, 0x00, SS_RDEF, 2072 "Incompatible medium installed") }, 2073 /* DT WRO BK */ 2074 { SST(0x30, 0x01, SS_RDEF, 2075 "Cannot read medium - unknown format") }, 2076 /* DT WRO BK */ 2077 { SST(0x30, 0x02, SS_RDEF, 2078 "Cannot read medium - incompatible format") }, 2079 /* DT R K */ 2080 { SST(0x30, 0x03, SS_RDEF, 2081 "Cleaning cartridge installed") }, 2082 /* DT WRO BK */ 2083 { SST(0x30, 0x04, SS_RDEF, 2084 "Cannot write medium - unknown format") }, 2085 /* DT WRO BK */ 2086 { SST(0x30, 0x05, SS_RDEF, 2087 "Cannot write medium - incompatible format") }, 2088 /* DT WRO B */ 2089 { SST(0x30, 0x06, SS_RDEF, 2090 "Cannot format medium - incompatible medium") }, 2091 /* DTL WROMAEBKVF */ 2092 { SST(0x30, 0x07, SS_RDEF, 2093 "Cleaning failure") }, 2094 /* R */ 2095 { SST(0x30, 0x08, SS_RDEF, 2096 "Cannot write - application code mismatch") }, 2097 /* R */ 2098 { SST(0x30, 0x09, SS_RDEF, 2099 "Current session not fixated for append") }, 2100 /* DT WRO AEBK */ 2101 { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */ 2102 "Cleaning request rejected") }, 2103 /* T */ 2104 { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */ 2105 "WORM medium - overwrite attempted") }, 2106 /* T */ 2107 { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */ 2108 "WORM medium - integrity check") }, 2109 /* R */ 2110 { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */ 2111 "Medium not formatted") }, 2112 /* M */ 2113 { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */ 2114 "Incompatible volume type") }, 2115 /* M */ 2116 { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */ 2117 "Incompatible volume qualifier") }, 2118 /* M */ 2119 { SST(0x30, 0x13, SS_RDEF, /* XXX TBD */ 2120 "Cleaning volume expired") }, 2121 /* DT WRO BK */ 2122 { SST(0x31, 0x00, SS_FATAL | ENXIO, 2123 "Medium format corrupted") }, 2124 /* D L RO B */ 2125 { SST(0x31, 0x01, SS_RDEF, 2126 "Format command failed") }, 2127 /* R */ 2128 { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */ 2129 "Zoned formatting failed due to spare linking") }, 2130 /* D B */ 2131 { SST(0x31, 0x03, SS_FATAL | EIO, 2132 "SANITIZE command failed") }, 2133 /* D */ 2134 { SST(0x31, 0x04, SS_FATAL | EIO, 2135 "Depopulation failed") }, 2136 /* D */ 2137 { SST(0x31, 0x05, SS_FATAL | EIO, 2138 "Depopulation restoration failed") }, 2139 /* D W O BK */ 2140 { SST(0x32, 0x00, SS_RDEF, 2141 "No defect spare location available") }, 2142 /* D W O BK */ 2143 { SST(0x32, 0x01, SS_RDEF, 2144 "Defect list update failure") }, 2145 /* T */ 2146 { SST(0x33, 0x00, SS_RDEF, 2147 "Tape length error") }, 2148 /* DTLPWROMAEBKVF */ 2149 { SST(0x34, 0x00, SS_RDEF, 2150 "Enclosure failure") }, 2151 /* DTLPWROMAEBKVF */ 2152 { SST(0x35, 0x00, SS_RDEF, 2153 "Enclosure services failure") }, 2154 /* DTLPWROMAEBKVF */ 2155 { SST(0x35, 0x01, SS_RDEF, 2156 "Unsupported enclosure function") }, 2157 /* DTLPWROMAEBKVF */ 2158 { SST(0x35, 0x02, SS_RDEF, 2159 "Enclosure services unavailable") }, 2160 /* DTLPWROMAEBKVF */ 2161 { SST(0x35, 0x03, SS_RDEF, 2162 "Enclosure services transfer failure") }, 2163 /* DTLPWROMAEBKVF */ 2164 { SST(0x35, 0x04, SS_RDEF, 2165 "Enclosure services transfer refused") }, 2166 /* DTL WROMAEBKVF */ 2167 { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */ 2168 "Enclosure services checksum error") }, 2169 /* L */ 2170 { SST(0x36, 0x00, SS_RDEF, 2171 "Ribbon, ink, or toner failure") }, 2172 /* DTL WROMAEBKVF */ 2173 { SST(0x37, 0x00, SS_RDEF, 2174 "Rounded parameter") }, 2175 /* B */ 2176 { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */ 2177 "Event status notification") }, 2178 /* B */ 2179 { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */ 2180 "ESN - power management class event") }, 2181 /* B */ 2182 { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */ 2183 "ESN - media class event") }, 2184 /* B */ 2185 { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */ 2186 "ESN - device busy class event") }, 2187 /* D */ 2188 { SST(0x38, 0x07, SS_RDEF, /* XXX TBD */ 2189 "Thin provisioning soft threshold reached") }, 2190 /* D */ 2191 { SST(0x38, 0x08, SS_NOP | SSQ_PRINT_SENSE, 2192 "Depopulation interrupted") }, 2193 /* DTL WROMAE K */ 2194 { SST(0x39, 0x00, SS_RDEF, 2195 "Saving parameters not supported") }, 2196 /* DTL WROM BK */ 2197 { SST(0x3A, 0x00, SS_FATAL | ENXIO, 2198 "Medium not present") }, 2199 /* DT WROM BK */ 2200 { SST(0x3A, 0x01, SS_FATAL | ENXIO, 2201 "Medium not present - tray closed") }, 2202 /* DT WROM BK */ 2203 { SST(0x3A, 0x02, SS_FATAL | ENXIO, 2204 "Medium not present - tray open") }, 2205 /* DT WROM B */ 2206 { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */ 2207 "Medium not present - loadable") }, 2208 /* DT WRO B */ 2209 { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */ 2210 "Medium not present - medium auxiliary memory accessible") }, 2211 /* TL */ 2212 { SST(0x3B, 0x00, SS_RDEF, 2213 "Sequential positioning error") }, 2214 /* T */ 2215 { SST(0x3B, 0x01, SS_RDEF, 2216 "Tape position error at beginning-of-medium") }, 2217 /* T */ 2218 { SST(0x3B, 0x02, SS_RDEF, 2219 "Tape position error at end-of-medium") }, 2220 /* L */ 2221 { SST(0x3B, 0x03, SS_RDEF, 2222 "Tape or electronic vertical forms unit not ready") }, 2223 /* L */ 2224 { SST(0x3B, 0x04, SS_RDEF, 2225 "Slew failure") }, 2226 /* L */ 2227 { SST(0x3B, 0x05, SS_RDEF, 2228 "Paper jam") }, 2229 /* L */ 2230 { SST(0x3B, 0x06, SS_RDEF, 2231 "Failed to sense top-of-form") }, 2232 /* L */ 2233 { SST(0x3B, 0x07, SS_RDEF, 2234 "Failed to sense bottom-of-form") }, 2235 /* T */ 2236 { SST(0x3B, 0x08, SS_RDEF, 2237 "Reposition error") }, 2238 /* */ 2239 { SST(0x3B, 0x09, SS_RDEF, 2240 "Read past end of medium") }, 2241 /* */ 2242 { SST(0x3B, 0x0A, SS_RDEF, 2243 "Read past beginning of medium") }, 2244 /* */ 2245 { SST(0x3B, 0x0B, SS_RDEF, 2246 "Position past end of medium") }, 2247 /* T */ 2248 { SST(0x3B, 0x0C, SS_RDEF, 2249 "Position past beginning of medium") }, 2250 /* DT WROM BK */ 2251 { SST(0x3B, 0x0D, SS_FATAL | ENOSPC, 2252 "Medium destination element full") }, 2253 /* DT WROM BK */ 2254 { SST(0x3B, 0x0E, SS_RDEF, 2255 "Medium source element empty") }, 2256 /* R */ 2257 { SST(0x3B, 0x0F, SS_RDEF, 2258 "End of medium reached") }, 2259 /* DT WROM BK */ 2260 { SST(0x3B, 0x11, SS_RDEF, 2261 "Medium magazine not accessible") }, 2262 /* DT WROM BK */ 2263 { SST(0x3B, 0x12, SS_RDEF, 2264 "Medium magazine removed") }, 2265 /* DT WROM BK */ 2266 { SST(0x3B, 0x13, SS_RDEF, 2267 "Medium magazine inserted") }, 2268 /* DT WROM BK */ 2269 { SST(0x3B, 0x14, SS_RDEF, 2270 "Medium magazine locked") }, 2271 /* DT WROM BK */ 2272 { SST(0x3B, 0x15, SS_RDEF, 2273 "Medium magazine unlocked") }, 2274 /* R */ 2275 { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */ 2276 "Mechanical positioning or changer error") }, 2277 /* F */ 2278 { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */ 2279 "Read past end of user object") }, 2280 /* M */ 2281 { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */ 2282 "Element disabled") }, 2283 /* M */ 2284 { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */ 2285 "Element enabled") }, 2286 /* M */ 2287 { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */ 2288 "Data transfer device removed") }, 2289 /* M */ 2290 { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */ 2291 "Data transfer device inserted") }, 2292 /* T */ 2293 { SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */ 2294 "Too many logical objects on partition to support operation") }, 2295 /* M */ 2296 { SST(0x3B, 0x20, SS_RDEF, /* XXX TBD */ 2297 "Element static information changed") }, 2298 /* DTLPWROMAE K */ 2299 { SST(0x3D, 0x00, SS_RDEF, 2300 "Invalid bits in IDENTIFY message") }, 2301 /* DTLPWROMAEBKVF */ 2302 { SST(0x3E, 0x00, SS_RDEF, 2303 "Logical unit has not self-configured yet") }, 2304 /* DTLPWROMAEBKVF */ 2305 { SST(0x3E, 0x01, SS_RDEF, 2306 "Logical unit failure") }, 2307 /* DTLPWROMAEBKVF */ 2308 { SST(0x3E, 0x02, SS_RDEF, 2309 "Timeout on logical unit") }, 2310 /* DTLPWROMAEBKVF */ 2311 { SST(0x3E, 0x03, SS_FATAL | ENXIO, 2312 "Logical unit failed self-test") }, 2313 /* DTLPWROMAEBKVF */ 2314 { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */ 2315 "Logical unit unable to update self-test log") }, 2316 /* DTLPWROMAEBKVF */ 2317 { SST(0x3F, 0x00, SS_RDEF, 2318 "Target operating conditions have changed") }, 2319 /* DTLPWROMAEBKVF */ 2320 { SST(0x3F, 0x01, SS_RDEF, 2321 "Microcode has been changed") }, 2322 /* DTLPWROM BK */ 2323 { SST(0x3F, 0x02, SS_RDEF, 2324 "Changed operating definition") }, 2325 /* DTLPWROMAEBKVF */ 2326 { SST(0x3F, 0x03, SS_RDEF, 2327 "INQUIRY data has changed") }, 2328 /* DT WROMAEBK */ 2329 { SST(0x3F, 0x04, SS_RDEF, 2330 "Component device attached") }, 2331 /* DT WROMAEBK */ 2332 { SST(0x3F, 0x05, SS_RDEF, 2333 "Device identifier changed") }, 2334 /* DT WROMAEB */ 2335 { SST(0x3F, 0x06, SS_RDEF, 2336 "Redundancy group created or modified") }, 2337 /* DT WROMAEB */ 2338 { SST(0x3F, 0x07, SS_RDEF, 2339 "Redundancy group deleted") }, 2340 /* DT WROMAEB */ 2341 { SST(0x3F, 0x08, SS_RDEF, 2342 "Spare created or modified") }, 2343 /* DT WROMAEB */ 2344 { SST(0x3F, 0x09, SS_RDEF, 2345 "Spare deleted") }, 2346 /* DT WROMAEBK */ 2347 { SST(0x3F, 0x0A, SS_RDEF, 2348 "Volume set created or modified") }, 2349 /* DT WROMAEBK */ 2350 { SST(0x3F, 0x0B, SS_RDEF, 2351 "Volume set deleted") }, 2352 /* DT WROMAEBK */ 2353 { SST(0x3F, 0x0C, SS_RDEF, 2354 "Volume set deassigned") }, 2355 /* DT WROMAEBK */ 2356 { SST(0x3F, 0x0D, SS_RDEF, 2357 "Volume set reassigned") }, 2358 /* DTLPWROMAE */ 2359 { SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN , 2360 "Reported LUNs data has changed") }, 2361 /* DTLPWROMAEBKVF */ 2362 { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */ 2363 "Echo buffer overwritten") }, 2364 /* DT WROM B */ 2365 { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */ 2366 "Medium loadable") }, 2367 /* DT WROM B */ 2368 { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */ 2369 "Medium auxiliary memory accessible") }, 2370 /* DTLPWR MAEBK F */ 2371 { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */ 2372 "iSCSI IP address added") }, 2373 /* DTLPWR MAEBK F */ 2374 { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */ 2375 "iSCSI IP address removed") }, 2376 /* DTLPWR MAEBK F */ 2377 { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */ 2378 "iSCSI IP address changed") }, 2379 /* DTLPWR MAEBK */ 2380 { SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */ 2381 "Inspect referrals sense descriptors") }, 2382 /* DTLPWROMAEBKVF */ 2383 { SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */ 2384 "Microcode has been changed without reset") }, 2385 /* D */ 2386 { SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */ 2387 "Zone transition to full") }, 2388 /* D */ 2389 { SST(0x3F, 0x18, SS_RDEF, /* XXX TBD */ 2390 "Bind completed") }, 2391 /* D */ 2392 { SST(0x3F, 0x19, SS_RDEF, /* XXX TBD */ 2393 "Bind redirected") }, 2394 /* D */ 2395 { SST(0x3F, 0x1A, SS_RDEF, /* XXX TBD */ 2396 "Subsidiary binding changed") }, 2397 { SST(0x40, 0x00, SS_FATAL | ENXIO, 2398 "RAM failure") }, /* deprecated - use 40 NN instead */ 2399 /* DTLPWROMAEBKVF */ 2400 { SST(0x40, 0x80, SS_FATAL | ENXIO, 2401 "Diagnostic failure: ASCQ = Component ID") }, 2402 /* DTLPWROMAEBKVF */ 2403 { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE, 2404 NULL) }, /* Range 0x80->0xFF */ 2405 /* D */ 2406 { SST(0x41, 0x00, SS_RDEF, 2407 "Data path failure") }, /* deprecated - use 40 NN instead */ 2408 /* D */ 2409 { SST(0x42, 0x00, SS_RDEF, 2410 "Power-on or self-test failure") }, 2411 /* deprecated - use 40 NN instead */ 2412 /* DTLPWROMAEBKVF */ 2413 { SST(0x43, 0x00, SS_RDEF, 2414 "Message error") }, 2415 /* DTLPWROMAEBKVF */ 2416 { SST(0x44, 0x00, SS_FATAL | ENXIO, 2417 "Internal target failure") }, 2418 /* DT P MAEBKVF */ 2419 { SST(0x44, 0x01, SS_RDEF, /* XXX TBD */ 2420 "Persistent reservation information lost") }, 2421 /* DT B */ 2422 { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */ 2423 "ATA device failed set features") }, 2424 /* DTLPWROMAEBKVF */ 2425 { SST(0x45, 0x00, SS_RDEF, 2426 "Select or reselect failure") }, 2427 /* DTLPWROM BK */ 2428 { SST(0x46, 0x00, SS_RDEF, 2429 "Unsuccessful soft reset") }, 2430 /* DTLPWROMAEBKVF */ 2431 { SST(0x47, 0x00, SS_RDEF, 2432 "SCSI parity error") }, 2433 /* DTLPWROMAEBKVF */ 2434 { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */ 2435 "Data phase CRC error detected") }, 2436 /* DTLPWROMAEBKVF */ 2437 { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */ 2438 "SCSI parity error detected during ST data phase") }, 2439 /* DTLPWROMAEBKVF */ 2440 { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */ 2441 "Information unit iuCRC error detected") }, 2442 /* DTLPWROMAEBKVF */ 2443 { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */ 2444 "Asynchronous information protection error detected") }, 2445 /* DTLPWROMAEBKVF */ 2446 { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */ 2447 "Protocol service CRC error") }, 2448 /* DT MAEBKVF */ 2449 { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */ 2450 "PHY test function in progress") }, 2451 /* DT PWROMAEBK */ 2452 { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */ 2453 "Some commands cleared by iSCSI protocol event") }, 2454 /* DTLPWROMAEBKVF */ 2455 { SST(0x48, 0x00, SS_RDEF, 2456 "Initiator detected error message received") }, 2457 /* DTLPWROMAEBKVF */ 2458 { SST(0x49, 0x00, SS_RDEF, 2459 "Invalid message error") }, 2460 /* DTLPWROMAEBKVF */ 2461 { SST(0x4A, 0x00, SS_RDEF, 2462 "Command phase error") }, 2463 /* DTLPWROMAEBKVF */ 2464 { SST(0x4B, 0x00, SS_RDEF, 2465 "Data phase error") }, 2466 /* DT PWROMAEBK */ 2467 { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */ 2468 "Invalid target port transfer tag received") }, 2469 /* DT PWROMAEBK */ 2470 { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */ 2471 "Too much write data") }, 2472 /* DT PWROMAEBK */ 2473 { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */ 2474 "ACK/NAK timeout") }, 2475 /* DT PWROMAEBK */ 2476 { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */ 2477 "NAK received") }, 2478 /* DT PWROMAEBK */ 2479 { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */ 2480 "Data offset error") }, 2481 /* DT PWROMAEBK */ 2482 { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */ 2483 "Initiator response timeout") }, 2484 /* DT PWROMAEBK F */ 2485 { SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */ 2486 "Connection lost") }, 2487 /* DT PWROMAEBK F */ 2488 { SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */ 2489 "Data-in buffer overflow - data buffer size") }, 2490 /* DT PWROMAEBK F */ 2491 { SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */ 2492 "Data-in buffer overflow - data buffer descriptor area") }, 2493 /* DT PWROMAEBK F */ 2494 { SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */ 2495 "Data-in buffer error") }, 2496 /* DT PWROMAEBK F */ 2497 { SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */ 2498 "Data-out buffer overflow - data buffer size") }, 2499 /* DT PWROMAEBK F */ 2500 { SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */ 2501 "Data-out buffer overflow - data buffer descriptor area") }, 2502 /* DT PWROMAEBK F */ 2503 { SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */ 2504 "Data-out buffer error") }, 2505 /* DT PWROMAEBK F */ 2506 { SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */ 2507 "PCIe fabric error") }, 2508 /* DT PWROMAEBK F */ 2509 { SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */ 2510 "PCIe completion timeout") }, 2511 /* DT PWROMAEBK F */ 2512 { SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */ 2513 "PCIe completer abort") }, 2514 /* DT PWROMAEBK F */ 2515 { SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */ 2516 "PCIe poisoned TLP received") }, 2517 /* DT PWROMAEBK F */ 2518 { SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */ 2519 "PCIe ECRC check failed") }, 2520 /* DT PWROMAEBK F */ 2521 { SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */ 2522 "PCIe unsupported request") }, 2523 /* DT PWROMAEBK F */ 2524 { SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */ 2525 "PCIe ACS violation") }, 2526 /* DT PWROMAEBK F */ 2527 { SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */ 2528 "PCIe TLP prefix blocket") }, 2529 /* DTLPWROMAEBKVF */ 2530 { SST(0x4C, 0x00, SS_RDEF, 2531 "Logical unit failed self-configuration") }, 2532 /* DTLPWROMAEBKVF */ 2533 { SST(0x4D, 0x00, SS_RDEF, 2534 "Tagged overlapped commands: ASCQ = Queue tag ID") }, 2535 /* DTLPWROMAEBKVF */ 2536 { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE, 2537 NULL) }, /* Range 0x00->0xFF */ 2538 /* DTLPWROMAEBKVF */ 2539 { SST(0x4E, 0x00, SS_RDEF, 2540 "Overlapped commands attempted") }, 2541 /* T */ 2542 { SST(0x50, 0x00, SS_RDEF, 2543 "Write append error") }, 2544 /* T */ 2545 { SST(0x50, 0x01, SS_RDEF, 2546 "Write append position error") }, 2547 /* T */ 2548 { SST(0x50, 0x02, SS_RDEF, 2549 "Position error related to timing") }, 2550 /* T RO */ 2551 { SST(0x51, 0x00, SS_RDEF, 2552 "Erase failure") }, 2553 /* R */ 2554 { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */ 2555 "Erase failure - incomplete erase operation detected") }, 2556 /* T */ 2557 { SST(0x52, 0x00, SS_RDEF, 2558 "Cartridge fault") }, 2559 /* DTL WROM BK */ 2560 { SST(0x53, 0x00, SS_RDEF, 2561 "Media load or eject failed") }, 2562 /* T */ 2563 { SST(0x53, 0x01, SS_RDEF, 2564 "Unload tape failure") }, 2565 /* DT WROM BK */ 2566 { SST(0x53, 0x02, SS_RDEF, 2567 "Medium removal prevented") }, 2568 /* M */ 2569 { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */ 2570 "Medium removal prevented by data transfer element") }, 2571 /* T */ 2572 { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */ 2573 "Medium thread or unthread failure") }, 2574 /* M */ 2575 { SST(0x53, 0x05, SS_RDEF, /* XXX TBD */ 2576 "Volume identifier invalid") }, 2577 /* T */ 2578 { SST(0x53, 0x06, SS_RDEF, /* XXX TBD */ 2579 "Volume identifier missing") }, 2580 /* M */ 2581 { SST(0x53, 0x07, SS_RDEF, /* XXX TBD */ 2582 "Duplicate volume identifier") }, 2583 /* M */ 2584 { SST(0x53, 0x08, SS_RDEF, /* XXX TBD */ 2585 "Element status unknown") }, 2586 /* M */ 2587 { SST(0x53, 0x09, SS_RDEF, /* XXX TBD */ 2588 "Data transfer device error - load failed") }, 2589 /* M */ 2590 { SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */ 2591 "Data transfer device error - unload failed") }, 2592 /* M */ 2593 { SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */ 2594 "Data transfer device error - unload missing") }, 2595 /* M */ 2596 { SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */ 2597 "Data transfer device error - eject failed") }, 2598 /* M */ 2599 { SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */ 2600 "Data transfer device error - library communication failed") }, 2601 /* P */ 2602 { SST(0x54, 0x00, SS_RDEF, 2603 "SCSI to host system interface failure") }, 2604 /* P */ 2605 { SST(0x55, 0x00, SS_RDEF, 2606 "System resource failure") }, 2607 /* D O BK */ 2608 { SST(0x55, 0x01, SS_FATAL | ENOSPC, 2609 "System buffer full") }, 2610 /* DTLPWROMAE K */ 2611 { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */ 2612 "Insufficient reservation resources") }, 2613 /* DTLPWROMAE K */ 2614 { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */ 2615 "Insufficient resources") }, 2616 /* DTLPWROMAE K */ 2617 { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */ 2618 "Insufficient registration resources") }, 2619 /* DT PWROMAEBK */ 2620 { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */ 2621 "Insufficient access control resources") }, 2622 /* DT WROM B */ 2623 { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */ 2624 "Auxiliary memory out of space") }, 2625 /* F */ 2626 { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */ 2627 "Quota error") }, 2628 /* T */ 2629 { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */ 2630 "Maximum number of supplemental decryption keys exceeded") }, 2631 /* M */ 2632 { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */ 2633 "Medium auxiliary memory not accessible") }, 2634 /* M */ 2635 { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */ 2636 "Data currently unavailable") }, 2637 /* DTLPWROMAEBKVF */ 2638 { SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */ 2639 "Insufficient power for operation") }, 2640 /* DT P B */ 2641 { SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */ 2642 "Insufficient resources to create ROD") }, 2643 /* DT P B */ 2644 { SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */ 2645 "Insufficient resources to create ROD token") }, 2646 /* D */ 2647 { SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */ 2648 "Insufficient zone resources") }, 2649 /* D */ 2650 { SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */ 2651 "Insufficient zone resources to complete write") }, 2652 /* D */ 2653 { SST(0x55, 0x10, SS_RDEF, /* XXX TBD */ 2654 "Maximum number of streams open") }, 2655 /* D */ 2656 { SST(0x55, 0x11, SS_RDEF, /* XXX TBD */ 2657 "Insufficient resources to bind") }, 2658 /* R */ 2659 { SST(0x57, 0x00, SS_RDEF, 2660 "Unable to recover table-of-contents") }, 2661 /* O */ 2662 { SST(0x58, 0x00, SS_RDEF, 2663 "Generation does not exist") }, 2664 /* O */ 2665 { SST(0x59, 0x00, SS_RDEF, 2666 "Updated block read") }, 2667 /* DTLPWRO BK */ 2668 { SST(0x5A, 0x00, SS_RDEF, 2669 "Operator request or state change input") }, 2670 /* DT WROM BK */ 2671 { SST(0x5A, 0x01, SS_RDEF, 2672 "Operator medium removal request") }, 2673 /* DT WRO A BK */ 2674 { SST(0x5A, 0x02, SS_RDEF, 2675 "Operator selected write protect") }, 2676 /* DT WRO A BK */ 2677 { SST(0x5A, 0x03, SS_RDEF, 2678 "Operator selected write permit") }, 2679 /* DTLPWROM K */ 2680 { SST(0x5B, 0x00, SS_RDEF, 2681 "Log exception") }, 2682 /* DTLPWROM K */ 2683 { SST(0x5B, 0x01, SS_RDEF, 2684 "Threshold condition met") }, 2685 /* DTLPWROM K */ 2686 { SST(0x5B, 0x02, SS_RDEF, 2687 "Log counter at maximum") }, 2688 /* DTLPWROM K */ 2689 { SST(0x5B, 0x03, SS_RDEF, 2690 "Log list codes exhausted") }, 2691 /* D O */ 2692 { SST(0x5C, 0x00, SS_RDEF, 2693 "RPL status change") }, 2694 /* D O */ 2695 { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2696 "Spindles synchronized") }, 2697 /* D O */ 2698 { SST(0x5C, 0x02, SS_RDEF, 2699 "Spindles not synchronized") }, 2700 /* DTLPWROMAEBKVF */ 2701 { SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE, 2702 "Failure prediction threshold exceeded") }, 2703 /* R B */ 2704 { SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2705 "Media failure prediction threshold exceeded") }, 2706 /* R */ 2707 { SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE, 2708 "Logical unit failure prediction threshold exceeded") }, 2709 /* R */ 2710 { SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE, 2711 "Spare area exhaustion prediction threshold exceeded") }, 2712 /* D B */ 2713 { SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE, 2714 "Hardware impending failure general hard drive failure") }, 2715 /* D B */ 2716 { SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE, 2717 "Hardware impending failure drive error rate too high") }, 2718 /* D B */ 2719 { SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE, 2720 "Hardware impending failure data error rate too high") }, 2721 /* D B */ 2722 { SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE, 2723 "Hardware impending failure seek error rate too high") }, 2724 /* D B */ 2725 { SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE, 2726 "Hardware impending failure too many block reassigns") }, 2727 /* D B */ 2728 { SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE, 2729 "Hardware impending failure access times too high") }, 2730 /* D B */ 2731 { SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE, 2732 "Hardware impending failure start unit times too high") }, 2733 /* D B */ 2734 { SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE, 2735 "Hardware impending failure channel parametrics") }, 2736 /* D B */ 2737 { SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE, 2738 "Hardware impending failure controller detected") }, 2739 /* D B */ 2740 { SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE, 2741 "Hardware impending failure throughput performance") }, 2742 /* D B */ 2743 { SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE, 2744 "Hardware impending failure seek time performance") }, 2745 /* D B */ 2746 { SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE, 2747 "Hardware impending failure spin-up retry count") }, 2748 /* D B */ 2749 { SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE, 2750 "Hardware impending failure drive calibration retry count") }, 2751 /* D B */ 2752 { SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE, 2753 "Hardware impending failure power loss protection circuit") }, 2754 /* D B */ 2755 { SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE, 2756 "Controller impending failure general hard drive failure") }, 2757 /* D B */ 2758 { SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE, 2759 "Controller impending failure drive error rate too high") }, 2760 /* D B */ 2761 { SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE, 2762 "Controller impending failure data error rate too high") }, 2763 /* D B */ 2764 { SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE, 2765 "Controller impending failure seek error rate too high") }, 2766 /* D B */ 2767 { SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE, 2768 "Controller impending failure too many block reassigns") }, 2769 /* D B */ 2770 { SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE, 2771 "Controller impending failure access times too high") }, 2772 /* D B */ 2773 { SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE, 2774 "Controller impending failure start unit times too high") }, 2775 /* D B */ 2776 { SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE, 2777 "Controller impending failure channel parametrics") }, 2778 /* D B */ 2779 { SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE, 2780 "Controller impending failure controller detected") }, 2781 /* D B */ 2782 { SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE, 2783 "Controller impending failure throughput performance") }, 2784 /* D B */ 2785 { SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE, 2786 "Controller impending failure seek time performance") }, 2787 /* D B */ 2788 { SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE, 2789 "Controller impending failure spin-up retry count") }, 2790 /* D B */ 2791 { SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE, 2792 "Controller impending failure drive calibration retry count") }, 2793 /* D B */ 2794 { SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE, 2795 "Data channel impending failure general hard drive failure") }, 2796 /* D B */ 2797 { SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE, 2798 "Data channel impending failure drive error rate too high") }, 2799 /* D B */ 2800 { SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE, 2801 "Data channel impending failure data error rate too high") }, 2802 /* D B */ 2803 { SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE, 2804 "Data channel impending failure seek error rate too high") }, 2805 /* D B */ 2806 { SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE, 2807 "Data channel impending failure too many block reassigns") }, 2808 /* D B */ 2809 { SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE, 2810 "Data channel impending failure access times too high") }, 2811 /* D B */ 2812 { SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE, 2813 "Data channel impending failure start unit times too high") }, 2814 /* D B */ 2815 { SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE, 2816 "Data channel impending failure channel parametrics") }, 2817 /* D B */ 2818 { SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE, 2819 "Data channel impending failure controller detected") }, 2820 /* D B */ 2821 { SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE, 2822 "Data channel impending failure throughput performance") }, 2823 /* D B */ 2824 { SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE, 2825 "Data channel impending failure seek time performance") }, 2826 /* D B */ 2827 { SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE, 2828 "Data channel impending failure spin-up retry count") }, 2829 /* D B */ 2830 { SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE, 2831 "Data channel impending failure drive calibration retry count") }, 2832 /* D B */ 2833 { SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE, 2834 "Servo impending failure general hard drive failure") }, 2835 /* D B */ 2836 { SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE, 2837 "Servo impending failure drive error rate too high") }, 2838 /* D B */ 2839 { SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE, 2840 "Servo impending failure data error rate too high") }, 2841 /* D B */ 2842 { SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE, 2843 "Servo impending failure seek error rate too high") }, 2844 /* D B */ 2845 { SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE, 2846 "Servo impending failure too many block reassigns") }, 2847 /* D B */ 2848 { SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE, 2849 "Servo impending failure access times too high") }, 2850 /* D B */ 2851 { SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE, 2852 "Servo impending failure start unit times too high") }, 2853 /* D B */ 2854 { SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE, 2855 "Servo impending failure channel parametrics") }, 2856 /* D B */ 2857 { SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE, 2858 "Servo impending failure controller detected") }, 2859 /* D B */ 2860 { SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE, 2861 "Servo impending failure throughput performance") }, 2862 /* D B */ 2863 { SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE, 2864 "Servo impending failure seek time performance") }, 2865 /* D B */ 2866 { SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE, 2867 "Servo impending failure spin-up retry count") }, 2868 /* D B */ 2869 { SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE, 2870 "Servo impending failure drive calibration retry count") }, 2871 /* D B */ 2872 { SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE, 2873 "Spindle impending failure general hard drive failure") }, 2874 /* D B */ 2875 { SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE, 2876 "Spindle impending failure drive error rate too high") }, 2877 /* D B */ 2878 { SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE, 2879 "Spindle impending failure data error rate too high") }, 2880 /* D B */ 2881 { SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE, 2882 "Spindle impending failure seek error rate too high") }, 2883 /* D B */ 2884 { SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE, 2885 "Spindle impending failure too many block reassigns") }, 2886 /* D B */ 2887 { SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE, 2888 "Spindle impending failure access times too high") }, 2889 /* D B */ 2890 { SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE, 2891 "Spindle impending failure start unit times too high") }, 2892 /* D B */ 2893 { SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE, 2894 "Spindle impending failure channel parametrics") }, 2895 /* D B */ 2896 { SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE, 2897 "Spindle impending failure controller detected") }, 2898 /* D B */ 2899 { SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE, 2900 "Spindle impending failure throughput performance") }, 2901 /* D B */ 2902 { SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE, 2903 "Spindle impending failure seek time performance") }, 2904 /* D B */ 2905 { SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE, 2906 "Spindle impending failure spin-up retry count") }, 2907 /* D B */ 2908 { SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE, 2909 "Spindle impending failure drive calibration retry count") }, 2910 /* D B */ 2911 { SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE, 2912 "Firmware impending failure general hard drive failure") }, 2913 /* D B */ 2914 { SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE, 2915 "Firmware impending failure drive error rate too high") }, 2916 /* D B */ 2917 { SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE, 2918 "Firmware impending failure data error rate too high") }, 2919 /* D B */ 2920 { SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE, 2921 "Firmware impending failure seek error rate too high") }, 2922 /* D B */ 2923 { SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE, 2924 "Firmware impending failure too many block reassigns") }, 2925 /* D B */ 2926 { SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE, 2927 "Firmware impending failure access times too high") }, 2928 /* D B */ 2929 { SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE, 2930 "Firmware impending failure start unit times too high") }, 2931 /* D B */ 2932 { SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE, 2933 "Firmware impending failure channel parametrics") }, 2934 /* D B */ 2935 { SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE, 2936 "Firmware impending failure controller detected") }, 2937 /* D B */ 2938 { SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE, 2939 "Firmware impending failure throughput performance") }, 2940 /* D B */ 2941 { SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE, 2942 "Firmware impending failure seek time performance") }, 2943 /* D B */ 2944 { SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE, 2945 "Firmware impending failure spin-up retry count") }, 2946 /* D B */ 2947 { SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE, 2948 "Firmware impending failure drive calibration retry count") }, 2949 /* D B */ 2950 { SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE, 2951 "Media impending failure endurance limit met") }, 2952 /* DTLPWROMAEBKVF */ 2953 { SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE, 2954 "Failure prediction threshold exceeded (false)") }, 2955 /* DTLPWRO A K */ 2956 { SST(0x5E, 0x00, SS_RDEF, 2957 "Low power condition on") }, 2958 /* DTLPWRO A K */ 2959 { SST(0x5E, 0x01, SS_RDEF, 2960 "Idle condition activated by timer") }, 2961 /* DTLPWRO A K */ 2962 { SST(0x5E, 0x02, SS_RDEF, 2963 "Standby condition activated by timer") }, 2964 /* DTLPWRO A K */ 2965 { SST(0x5E, 0x03, SS_RDEF, 2966 "Idle condition activated by command") }, 2967 /* DTLPWRO A K */ 2968 { SST(0x5E, 0x04, SS_RDEF, 2969 "Standby condition activated by command") }, 2970 /* DTLPWRO A K */ 2971 { SST(0x5E, 0x05, SS_RDEF, 2972 "Idle-B condition activated by timer") }, 2973 /* DTLPWRO A K */ 2974 { SST(0x5E, 0x06, SS_RDEF, 2975 "Idle-B condition activated by command") }, 2976 /* DTLPWRO A K */ 2977 { SST(0x5E, 0x07, SS_RDEF, 2978 "Idle-C condition activated by timer") }, 2979 /* DTLPWRO A K */ 2980 { SST(0x5E, 0x08, SS_RDEF, 2981 "Idle-C condition activated by command") }, 2982 /* DTLPWRO A K */ 2983 { SST(0x5E, 0x09, SS_RDEF, 2984 "Standby-Y condition activated by timer") }, 2985 /* DTLPWRO A K */ 2986 { SST(0x5E, 0x0A, SS_RDEF, 2987 "Standby-Y condition activated by command") }, 2988 /* B */ 2989 { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */ 2990 "Power state change to active") }, 2991 /* B */ 2992 { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */ 2993 "Power state change to idle") }, 2994 /* B */ 2995 { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */ 2996 "Power state change to standby") }, 2997 /* B */ 2998 { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */ 2999 "Power state change to sleep") }, 3000 /* BK */ 3001 { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */ 3002 "Power state change to device control") }, 3003 /* */ 3004 { SST(0x60, 0x00, SS_RDEF, 3005 "Lamp failure") }, 3006 /* */ 3007 { SST(0x61, 0x00, SS_RDEF, 3008 "Video acquisition error") }, 3009 /* */ 3010 { SST(0x61, 0x01, SS_RDEF, 3011 "Unable to acquire video") }, 3012 /* */ 3013 { SST(0x61, 0x02, SS_RDEF, 3014 "Out of focus") }, 3015 /* */ 3016 { SST(0x62, 0x00, SS_RDEF, 3017 "Scan head positioning error") }, 3018 /* R */ 3019 { SST(0x63, 0x00, SS_RDEF, 3020 "End of user area encountered on this track") }, 3021 /* R */ 3022 { SST(0x63, 0x01, SS_FATAL | ENOSPC, 3023 "Packet does not fit in available space") }, 3024 /* R */ 3025 { SST(0x64, 0x00, SS_FATAL | ENXIO, 3026 "Illegal mode for this track") }, 3027 /* R */ 3028 { SST(0x64, 0x01, SS_RDEF, 3029 "Invalid packet size") }, 3030 /* DTLPWROMAEBKVF */ 3031 { SST(0x65, 0x00, SS_RDEF, 3032 "Voltage fault") }, 3033 /* */ 3034 { SST(0x66, 0x00, SS_RDEF, 3035 "Automatic document feeder cover up") }, 3036 /* */ 3037 { SST(0x66, 0x01, SS_RDEF, 3038 "Automatic document feeder lift up") }, 3039 /* */ 3040 { SST(0x66, 0x02, SS_RDEF, 3041 "Document jam in automatic document feeder") }, 3042 /* */ 3043 { SST(0x66, 0x03, SS_RDEF, 3044 "Document miss feed automatic in document feeder") }, 3045 /* A */ 3046 { SST(0x67, 0x00, SS_RDEF, 3047 "Configuration failure") }, 3048 /* A */ 3049 { SST(0x67, 0x01, SS_RDEF, 3050 "Configuration of incapable logical units failed") }, 3051 /* A */ 3052 { SST(0x67, 0x02, SS_RDEF, 3053 "Add logical unit failed") }, 3054 /* A */ 3055 { SST(0x67, 0x03, SS_RDEF, 3056 "Modification of logical unit failed") }, 3057 /* A */ 3058 { SST(0x67, 0x04, SS_RDEF, 3059 "Exchange of logical unit failed") }, 3060 /* A */ 3061 { SST(0x67, 0x05, SS_RDEF, 3062 "Remove of logical unit failed") }, 3063 /* A */ 3064 { SST(0x67, 0x06, SS_RDEF, 3065 "Attachment of logical unit failed") }, 3066 /* A */ 3067 { SST(0x67, 0x07, SS_RDEF, 3068 "Creation of logical unit failed") }, 3069 /* A */ 3070 { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */ 3071 "Assign failure occurred") }, 3072 /* A */ 3073 { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */ 3074 "Multiply assigned logical unit") }, 3075 /* DTLPWROMAEBKVF */ 3076 { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */ 3077 "Set target port groups command failed") }, 3078 /* DT B */ 3079 { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */ 3080 "ATA device feature not enabled") }, 3081 /* D */ 3082 { SST(0x67, 0x0C, SS_FATAL | EIO, 3083 "Command rejected") }, 3084 /* D */ 3085 { SST(0x67, 0x0D, SS_FATAL | EINVAL, 3086 "Explicit bind not allowed") }, 3087 /* A */ 3088 { SST(0x68, 0x00, SS_RDEF, 3089 "Logical unit not configured") }, 3090 /* D */ 3091 { SST(0x68, 0x01, SS_RDEF, 3092 "Subsidiary logical unit not configured") }, 3093 /* A */ 3094 { SST(0x69, 0x00, SS_RDEF, 3095 "Data loss on logical unit") }, 3096 /* A */ 3097 { SST(0x69, 0x01, SS_RDEF, 3098 "Multiple logical unit failures") }, 3099 /* A */ 3100 { SST(0x69, 0x02, SS_RDEF, 3101 "Parity/data mismatch") }, 3102 /* A */ 3103 { SST(0x6A, 0x00, SS_RDEF, 3104 "Informational, refer to log") }, 3105 /* A */ 3106 { SST(0x6B, 0x00, SS_RDEF, 3107 "State change has occurred") }, 3108 /* A */ 3109 { SST(0x6B, 0x01, SS_RDEF, 3110 "Redundancy level got better") }, 3111 /* A */ 3112 { SST(0x6B, 0x02, SS_RDEF, 3113 "Redundancy level got worse") }, 3114 /* A */ 3115 { SST(0x6C, 0x00, SS_RDEF, 3116 "Rebuild failure occurred") }, 3117 /* A */ 3118 { SST(0x6D, 0x00, SS_RDEF, 3119 "Recalculate failure occurred") }, 3120 /* A */ 3121 { SST(0x6E, 0x00, SS_RDEF, 3122 "Command to logical unit failed") }, 3123 /* R */ 3124 { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */ 3125 "Copy protection key exchange failure - authentication failure") }, 3126 /* R */ 3127 { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */ 3128 "Copy protection key exchange failure - key not present") }, 3129 /* R */ 3130 { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */ 3131 "Copy protection key exchange failure - key not established") }, 3132 /* R */ 3133 { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */ 3134 "Read of scrambled sector without authentication") }, 3135 /* R */ 3136 { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */ 3137 "Media region code is mismatched to logical unit region") }, 3138 /* R */ 3139 { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */ 3140 "Drive region must be permanent/region reset count error") }, 3141 /* R */ 3142 { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */ 3143 "Insufficient block count for binding NONCE recording") }, 3144 /* R */ 3145 { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */ 3146 "Conflict in binding NONCE recording") }, 3147 /* R */ 3148 { SST(0x6F, 0x08, SS_FATAL | EPERM, 3149 "Insufficient permission") }, 3150 /* R */ 3151 { SST(0x6F, 0x09, SS_FATAL | EINVAL, 3152 "Invalid drive-host pairing server") }, 3153 /* R */ 3154 { SST(0x6F, 0x0A, SS_RDEF, /* XXX TBD */ 3155 "Drive-host pairing suspended") }, 3156 /* T */ 3157 { SST(0x70, 0x00, SS_RDEF, 3158 "Decompression exception short: ASCQ = Algorithm ID") }, 3159 /* T */ 3160 { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE, 3161 NULL) }, /* Range 0x00 -> 0xFF */ 3162 /* T */ 3163 { SST(0x71, 0x00, SS_RDEF, 3164 "Decompression exception long: ASCQ = Algorithm ID") }, 3165 /* T */ 3166 { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE, 3167 NULL) }, /* Range 0x00 -> 0xFF */ 3168 /* R */ 3169 { SST(0x72, 0x00, SS_RDEF, 3170 "Session fixation error") }, 3171 /* R */ 3172 { SST(0x72, 0x01, SS_RDEF, 3173 "Session fixation error writing lead-in") }, 3174 /* R */ 3175 { SST(0x72, 0x02, SS_RDEF, 3176 "Session fixation error writing lead-out") }, 3177 /* R */ 3178 { SST(0x72, 0x03, SS_RDEF, 3179 "Session fixation error - incomplete track in session") }, 3180 /* R */ 3181 { SST(0x72, 0x04, SS_RDEF, 3182 "Empty or partially written reserved track") }, 3183 /* R */ 3184 { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */ 3185 "No more track reservations allowed") }, 3186 /* R */ 3187 { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */ 3188 "RMZ extension is not allowed") }, 3189 /* R */ 3190 { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */ 3191 "No more test zone extensions are allowed") }, 3192 /* R */ 3193 { SST(0x73, 0x00, SS_RDEF, 3194 "CD control error") }, 3195 /* R */ 3196 { SST(0x73, 0x01, SS_RDEF, 3197 "Power calibration area almost full") }, 3198 /* R */ 3199 { SST(0x73, 0x02, SS_FATAL | ENOSPC, 3200 "Power calibration area is full") }, 3201 /* R */ 3202 { SST(0x73, 0x03, SS_RDEF, 3203 "Power calibration area error") }, 3204 /* R */ 3205 { SST(0x73, 0x04, SS_RDEF, 3206 "Program memory area update failure") }, 3207 /* R */ 3208 { SST(0x73, 0x05, SS_RDEF, 3209 "Program memory area is full") }, 3210 /* R */ 3211 { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */ 3212 "RMA/PMA is almost full") }, 3213 /* R */ 3214 { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */ 3215 "Current power calibration area almost full") }, 3216 /* R */ 3217 { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */ 3218 "Current power calibration area is full") }, 3219 /* R */ 3220 { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */ 3221 "RDZ is full") }, 3222 /* T */ 3223 { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */ 3224 "Security error") }, 3225 /* T */ 3226 { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */ 3227 "Unable to decrypt data") }, 3228 /* T */ 3229 { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */ 3230 "Unencrypted data encountered while decrypting") }, 3231 /* T */ 3232 { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */ 3233 "Incorrect data encryption key") }, 3234 /* T */ 3235 { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */ 3236 "Cryptographic integrity validation failed") }, 3237 /* T */ 3238 { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */ 3239 "Error decrypting data") }, 3240 /* T */ 3241 { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */ 3242 "Unknown signature verification key") }, 3243 /* T */ 3244 { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */ 3245 "Encryption parameters not useable") }, 3246 /* DT R M E VF */ 3247 { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */ 3248 "Digital signature validation failure") }, 3249 /* T */ 3250 { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */ 3251 "Encryption mode mismatch on read") }, 3252 /* T */ 3253 { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */ 3254 "Encrypted block not raw read enabled") }, 3255 /* T */ 3256 { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */ 3257 "Incorrect encryption parameters") }, 3258 /* DT R MAEBKV */ 3259 { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */ 3260 "Unable to decrypt parameter list") }, 3261 /* T */ 3262 { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */ 3263 "Encryption algorithm disabled") }, 3264 /* DT R MAEBKV */ 3265 { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */ 3266 "SA creation parameter value invalid") }, 3267 /* DT R MAEBKV */ 3268 { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */ 3269 "SA creation parameter value rejected") }, 3270 /* DT R MAEBKV */ 3271 { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */ 3272 "Invalid SA usage") }, 3273 /* T */ 3274 { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */ 3275 "Data encryption configuration prevented") }, 3276 /* DT R MAEBKV */ 3277 { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */ 3278 "SA creation parameter not supported") }, 3279 /* DT R MAEBKV */ 3280 { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */ 3281 "Authentication failed") }, 3282 /* V */ 3283 { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */ 3284 "External data encryption key manager access error") }, 3285 /* V */ 3286 { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */ 3287 "External data encryption key manager error") }, 3288 /* V */ 3289 { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */ 3290 "External data encryption key not found") }, 3291 /* V */ 3292 { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */ 3293 "External data encryption request not authorized") }, 3294 /* T */ 3295 { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */ 3296 "External data encryption control timeout") }, 3297 /* T */ 3298 { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */ 3299 "External data encryption control error") }, 3300 /* DT R M E V */ 3301 { SST(0x74, 0x71, SS_FATAL | EACCES, 3302 "Logical unit access not authorized") }, 3303 /* D */ 3304 { SST(0x74, 0x79, SS_FATAL | EACCES, 3305 "Security conflict in translated device") } 3306 }; 3307 3308 const u_int asc_table_size = nitems(asc_table); 3309 3310 struct asc_key 3311 { 3312 int asc; 3313 int ascq; 3314 }; 3315 3316 static int 3317 ascentrycomp(const void *key, const void *member) 3318 { 3319 int asc; 3320 int ascq; 3321 const struct asc_table_entry *table_entry; 3322 3323 asc = ((const struct asc_key *)key)->asc; 3324 ascq = ((const struct asc_key *)key)->ascq; 3325 table_entry = (const struct asc_table_entry *)member; 3326 3327 if (asc >= table_entry->asc) { 3328 if (asc > table_entry->asc) 3329 return (1); 3330 3331 if (ascq <= table_entry->ascq) { 3332 /* Check for ranges */ 3333 if (ascq == table_entry->ascq 3334 || ((table_entry->action & SSQ_RANGE) != 0 3335 && ascq >= (table_entry - 1)->ascq)) 3336 return (0); 3337 return (-1); 3338 } 3339 return (1); 3340 } 3341 return (-1); 3342 } 3343 3344 static int 3345 senseentrycomp(const void *key, const void *member) 3346 { 3347 int sense_key; 3348 const struct sense_key_table_entry *table_entry; 3349 3350 sense_key = *((const int *)key); 3351 table_entry = (const struct sense_key_table_entry *)member; 3352 3353 if (sense_key >= table_entry->sense_key) { 3354 if (sense_key == table_entry->sense_key) 3355 return (0); 3356 return (1); 3357 } 3358 return (-1); 3359 } 3360 3361 static void 3362 fetchtableentries(int sense_key, int asc, int ascq, 3363 struct scsi_inquiry_data *inq_data, 3364 const struct sense_key_table_entry **sense_entry, 3365 const struct asc_table_entry **asc_entry) 3366 { 3367 caddr_t match; 3368 const struct asc_table_entry *asc_tables[2]; 3369 const struct sense_key_table_entry *sense_tables[2]; 3370 struct asc_key asc_ascq; 3371 size_t asc_tables_size[2]; 3372 size_t sense_tables_size[2]; 3373 int num_asc_tables; 3374 int num_sense_tables; 3375 int i; 3376 3377 /* Default to failure */ 3378 *sense_entry = NULL; 3379 *asc_entry = NULL; 3380 match = NULL; 3381 if (inq_data != NULL) 3382 match = cam_quirkmatch((caddr_t)inq_data, 3383 (caddr_t)sense_quirk_table, 3384 sense_quirk_table_size, 3385 sizeof(*sense_quirk_table), 3386 scsi_inquiry_match); 3387 3388 if (match != NULL) { 3389 struct scsi_sense_quirk_entry *quirk; 3390 3391 quirk = (struct scsi_sense_quirk_entry *)match; 3392 asc_tables[0] = quirk->asc_info; 3393 asc_tables_size[0] = quirk->num_ascs; 3394 asc_tables[1] = asc_table; 3395 asc_tables_size[1] = asc_table_size; 3396 num_asc_tables = 2; 3397 sense_tables[0] = quirk->sense_key_info; 3398 sense_tables_size[0] = quirk->num_sense_keys; 3399 sense_tables[1] = sense_key_table; 3400 sense_tables_size[1] = nitems(sense_key_table); 3401 num_sense_tables = 2; 3402 } else { 3403 asc_tables[0] = asc_table; 3404 asc_tables_size[0] = asc_table_size; 3405 num_asc_tables = 1; 3406 sense_tables[0] = sense_key_table; 3407 sense_tables_size[0] = nitems(sense_key_table); 3408 num_sense_tables = 1; 3409 } 3410 3411 asc_ascq.asc = asc; 3412 asc_ascq.ascq = ascq; 3413 for (i = 0; i < num_asc_tables; i++) { 3414 void *found_entry; 3415 3416 found_entry = bsearch(&asc_ascq, asc_tables[i], 3417 asc_tables_size[i], 3418 sizeof(**asc_tables), 3419 ascentrycomp); 3420 3421 if (found_entry) { 3422 /* 3423 * If we get to the SSQ_RANGE entry, we're one too 3424 * far. The prior entry is the interesting one, since it 3425 * contains the string to print, etc. Only the top end 3426 * range is interesting in this entry. 3427 */ 3428 *asc_entry = (struct asc_table_entry *)found_entry; 3429 if (((*asc_entry)->action & SSQ_RANGE) != 0) 3430 (*asc_entry)--; 3431 break; 3432 } 3433 } 3434 3435 for (i = 0; i < num_sense_tables; i++) { 3436 void *found_entry; 3437 3438 found_entry = bsearch(&sense_key, sense_tables[i], 3439 sense_tables_size[i], 3440 sizeof(**sense_tables), 3441 senseentrycomp); 3442 3443 if (found_entry) { 3444 *sense_entry = 3445 (struct sense_key_table_entry *)found_entry; 3446 break; 3447 } 3448 } 3449 } 3450 3451 void 3452 scsi_sense_desc(int sense_key, int asc, int ascq, 3453 struct scsi_inquiry_data *inq_data, 3454 const char **sense_key_desc, const char **asc_desc) 3455 { 3456 const struct asc_table_entry *asc_entry; 3457 const struct sense_key_table_entry *sense_entry; 3458 3459 fetchtableentries(sense_key, asc, ascq, 3460 inq_data, 3461 &sense_entry, 3462 &asc_entry); 3463 3464 if (sense_entry != NULL) 3465 *sense_key_desc = sense_entry->desc; 3466 else 3467 *sense_key_desc = "Invalid Sense Key"; 3468 3469 if (asc_entry != NULL) 3470 *asc_desc = asc_entry->desc; 3471 else if (asc >= 0x80 && asc <= 0xff) 3472 *asc_desc = "Vendor Specific ASC"; 3473 else if (ascq >= 0x80 && ascq <= 0xff) 3474 *asc_desc = "Vendor Specific ASCQ"; 3475 else 3476 *asc_desc = "Reserved ASC/ASCQ pair"; 3477 } 3478 3479 /* 3480 * Given sense and device type information, return the appropriate action. 3481 * If we do not understand the specific error as identified by the ASC/ASCQ 3482 * pair, fall back on the more generic actions derived from the sense key. 3483 */ 3484 scsi_sense_action 3485 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data, 3486 uint32_t sense_flags) 3487 { 3488 const struct asc_table_entry *asc_entry; 3489 const struct sense_key_table_entry *sense_entry; 3490 int error_code, sense_key, asc, ascq; 3491 scsi_sense_action action; 3492 3493 if (!scsi_extract_sense_ccb((union ccb *)csio, 3494 &error_code, &sense_key, &asc, &ascq)) { 3495 action = SS_RDEF; 3496 } else if ((error_code == SSD_DEFERRED_ERROR) 3497 || (error_code == SSD_DESC_DEFERRED_ERROR)) { 3498 /* 3499 * XXX dufault@FreeBSD.org 3500 * This error doesn't relate to the command associated 3501 * with this request sense. A deferred error is an error 3502 * for a command that has already returned GOOD status 3503 * (see SCSI2 8.2.14.2). 3504 * 3505 * By my reading of that section, it looks like the current 3506 * command has been cancelled, we should now clean things up 3507 * (hopefully recovering any lost data) and then retry the 3508 * current command. There are two easy choices, both wrong: 3509 * 3510 * 1. Drop through (like we had been doing), thus treating 3511 * this as if the error were for the current command and 3512 * return and stop the current command. 3513 * 3514 * 2. Issue a retry (like I made it do) thus hopefully 3515 * recovering the current transfer, and ignoring the 3516 * fact that we've dropped a command. 3517 * 3518 * These should probably be handled in a device specific 3519 * sense handler or punted back up to a user mode daemon 3520 */ 3521 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3522 } else { 3523 fetchtableentries(sense_key, asc, ascq, 3524 inq_data, 3525 &sense_entry, 3526 &asc_entry); 3527 3528 /* 3529 * Override the 'No additional Sense' entry (0,0) 3530 * with the error action of the sense key. 3531 */ 3532 if (asc_entry != NULL 3533 && (asc != 0 || ascq != 0)) 3534 action = asc_entry->action; 3535 else if (sense_entry != NULL) 3536 action = sense_entry->action; 3537 else 3538 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3539 3540 if (sense_key == SSD_KEY_RECOVERED_ERROR) { 3541 /* 3542 * The action succeeded but the device wants 3543 * the user to know that some recovery action 3544 * was required. 3545 */ 3546 action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK); 3547 action |= SS_NOP|SSQ_PRINT_SENSE; 3548 } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) { 3549 if ((sense_flags & SF_QUIET_IR) != 0) 3550 action &= ~SSQ_PRINT_SENSE; 3551 } else if (sense_key == SSD_KEY_UNIT_ATTENTION) { 3552 if ((sense_flags & SF_RETRY_UA) != 0 3553 && (action & SS_MASK) == SS_FAIL) { 3554 action &= ~(SS_MASK|SSQ_MASK); 3555 action |= SS_RETRY|SSQ_DECREMENT_COUNT| 3556 SSQ_PRINT_SENSE; 3557 } 3558 action |= SSQ_UA; 3559 } 3560 } 3561 if ((action & SS_MASK) >= SS_START && 3562 (sense_flags & SF_NO_RECOVERY)) { 3563 action &= ~SS_MASK; 3564 action |= SS_FAIL; 3565 } else if ((action & SS_MASK) == SS_RETRY && 3566 (sense_flags & SF_NO_RETRY)) { 3567 action &= ~SS_MASK; 3568 action |= SS_FAIL; 3569 } 3570 if ((sense_flags & SF_PRINT_ALWAYS) != 0) 3571 action |= SSQ_PRINT_SENSE; 3572 else if ((sense_flags & SF_NO_PRINT) != 0) 3573 action &= ~SSQ_PRINT_SENSE; 3574 3575 return (action); 3576 } 3577 3578 char * 3579 scsi_cdb_string(uint8_t *cdb_ptr, char *cdb_string, size_t len) 3580 { 3581 struct sbuf sb; 3582 int error; 3583 3584 if (len == 0) 3585 return (""); 3586 3587 sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN); 3588 3589 scsi_cdb_sbuf(cdb_ptr, &sb); 3590 3591 /* ENOMEM just means that the fixed buffer is full, OK to ignore */ 3592 error = sbuf_finish(&sb); 3593 if (error != 0 && 3594 #ifdef _KERNEL 3595 error != ENOMEM) 3596 #else 3597 errno != ENOMEM) 3598 #endif 3599 return (""); 3600 3601 return(sbuf_data(&sb)); 3602 } 3603 3604 void 3605 scsi_cdb_sbuf(uint8_t *cdb_ptr, struct sbuf *sb) 3606 { 3607 uint8_t cdb_len; 3608 int i; 3609 3610 if (cdb_ptr == NULL) 3611 return; 3612 3613 /* 3614 * This is taken from the SCSI-3 draft spec. 3615 * (T10/1157D revision 0.3) 3616 * The top 3 bits of an opcode are the group code. The next 5 bits 3617 * are the command code. 3618 * Group 0: six byte commands 3619 * Group 1: ten byte commands 3620 * Group 2: ten byte commands 3621 * Group 3: reserved 3622 * Group 4: sixteen byte commands 3623 * Group 5: twelve byte commands 3624 * Group 6: vendor specific 3625 * Group 7: vendor specific 3626 */ 3627 switch((*cdb_ptr >> 5) & 0x7) { 3628 case 0: 3629 cdb_len = 6; 3630 break; 3631 case 1: 3632 case 2: 3633 cdb_len = 10; 3634 break; 3635 case 3: 3636 case 6: 3637 case 7: 3638 /* in this case, just print out the opcode */ 3639 cdb_len = 1; 3640 break; 3641 case 4: 3642 cdb_len = 16; 3643 break; 3644 case 5: 3645 cdb_len = 12; 3646 break; 3647 } 3648 3649 for (i = 0; i < cdb_len; i++) 3650 sbuf_printf(sb, "%02hhx ", cdb_ptr[i]); 3651 3652 return; 3653 } 3654 3655 const char * 3656 scsi_status_string(struct ccb_scsiio *csio) 3657 { 3658 switch(csio->scsi_status) { 3659 case SCSI_STATUS_OK: 3660 return("OK"); 3661 case SCSI_STATUS_CHECK_COND: 3662 return("Check Condition"); 3663 case SCSI_STATUS_BUSY: 3664 return("Busy"); 3665 case SCSI_STATUS_INTERMED: 3666 return("Intermediate"); 3667 case SCSI_STATUS_INTERMED_COND_MET: 3668 return("Intermediate-Condition Met"); 3669 case SCSI_STATUS_RESERV_CONFLICT: 3670 return("Reservation Conflict"); 3671 case SCSI_STATUS_CMD_TERMINATED: 3672 return("Command Terminated"); 3673 case SCSI_STATUS_QUEUE_FULL: 3674 return("Queue Full"); 3675 case SCSI_STATUS_ACA_ACTIVE: 3676 return("ACA Active"); 3677 case SCSI_STATUS_TASK_ABORTED: 3678 return("Task Aborted"); 3679 default: { 3680 static char unkstr[64]; 3681 snprintf(unkstr, sizeof(unkstr), "Unknown %#x", 3682 csio->scsi_status); 3683 return(unkstr); 3684 } 3685 } 3686 } 3687 3688 /* 3689 * scsi_command_string() returns 0 for success and -1 for failure. 3690 */ 3691 #ifdef _KERNEL 3692 int 3693 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb) 3694 #else /* !_KERNEL */ 3695 int 3696 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio, 3697 struct sbuf *sb) 3698 #endif /* _KERNEL/!_KERNEL */ 3699 { 3700 struct scsi_inquiry_data *inq_data; 3701 #ifdef _KERNEL 3702 struct ccb_getdev *cgd; 3703 #endif /* _KERNEL */ 3704 3705 #ifdef _KERNEL 3706 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 3707 return(-1); 3708 /* 3709 * Get the device information. 3710 */ 3711 xpt_setup_ccb(&cgd->ccb_h, 3712 csio->ccb_h.path, 3713 CAM_PRIORITY_NORMAL); 3714 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 3715 xpt_action((union ccb *)cgd); 3716 3717 /* 3718 * If the device is unconfigured, just pretend that it is a hard 3719 * drive. scsi_op_desc() needs this. 3720 */ 3721 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 3722 cgd->inq_data.device = T_DIRECT; 3723 3724 inq_data = &cgd->inq_data; 3725 3726 #else /* !_KERNEL */ 3727 3728 inq_data = &device->inq_data; 3729 3730 #endif /* _KERNEL/!_KERNEL */ 3731 3732 sbuf_printf(sb, "%s. CDB: ", 3733 scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data)); 3734 scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb); 3735 3736 #ifdef _KERNEL 3737 xpt_free_ccb((union ccb *)cgd); 3738 #endif 3739 3740 return(0); 3741 } 3742 3743 /* 3744 * Iterate over sense descriptors. Each descriptor is passed into iter_func(). 3745 * If iter_func() returns 0, list traversal continues. If iter_func() 3746 * returns non-zero, list traversal is stopped. 3747 */ 3748 void 3749 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len, 3750 int (*iter_func)(struct scsi_sense_data_desc *sense, 3751 u_int, struct scsi_sense_desc_header *, 3752 void *), void *arg) 3753 { 3754 int cur_pos; 3755 int desc_len; 3756 3757 /* 3758 * First make sure the extra length field is present. 3759 */ 3760 if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0) 3761 return; 3762 3763 /* 3764 * The length of data actually returned may be different than the 3765 * extra_len recorded in the structure. 3766 */ 3767 desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc); 3768 3769 /* 3770 * Limit this further by the extra length reported, and the maximum 3771 * allowed extra length. 3772 */ 3773 desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX)); 3774 3775 /* 3776 * Subtract the size of the header from the descriptor length. 3777 * This is to ensure that we have at least the header left, so we 3778 * don't have to check that inside the loop. This can wind up 3779 * being a negative value. 3780 */ 3781 desc_len -= sizeof(struct scsi_sense_desc_header); 3782 3783 for (cur_pos = 0; cur_pos < desc_len;) { 3784 struct scsi_sense_desc_header *header; 3785 3786 header = (struct scsi_sense_desc_header *) 3787 &sense->sense_desc[cur_pos]; 3788 3789 /* 3790 * Check to make sure we have the entire descriptor. We 3791 * don't call iter_func() unless we do. 3792 * 3793 * Note that although cur_pos is at the beginning of the 3794 * descriptor, desc_len already has the header length 3795 * subtracted. So the comparison of the length in the 3796 * header (which does not include the header itself) to 3797 * desc_len - cur_pos is correct. 3798 */ 3799 if (header->length > (desc_len - cur_pos)) 3800 break; 3801 3802 if (iter_func(sense, sense_len, header, arg) != 0) 3803 break; 3804 3805 cur_pos += sizeof(*header) + header->length; 3806 } 3807 } 3808 3809 struct scsi_find_desc_info { 3810 uint8_t desc_type; 3811 struct scsi_sense_desc_header *header; 3812 }; 3813 3814 static int 3815 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 3816 struct scsi_sense_desc_header *header, void *arg) 3817 { 3818 struct scsi_find_desc_info *desc_info; 3819 3820 desc_info = (struct scsi_find_desc_info *)arg; 3821 3822 if (header->desc_type == desc_info->desc_type) { 3823 desc_info->header = header; 3824 3825 /* We found the descriptor, tell the iterator to stop. */ 3826 return (1); 3827 } else 3828 return (0); 3829 } 3830 3831 /* 3832 * Given a descriptor type, return a pointer to it if it is in the sense 3833 * data and not truncated. Avoiding truncating sense data will simplify 3834 * things significantly for the caller. 3835 */ 3836 uint8_t * 3837 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len, 3838 uint8_t desc_type) 3839 { 3840 struct scsi_find_desc_info desc_info; 3841 3842 desc_info.desc_type = desc_type; 3843 desc_info.header = NULL; 3844 3845 scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info); 3846 3847 return ((uint8_t *)desc_info.header); 3848 } 3849 3850 /* 3851 * Fill in SCSI descriptor sense data with the specified parameters. 3852 */ 3853 static void 3854 scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data, 3855 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3856 int sense_key, int asc, int ascq, va_list ap) 3857 { 3858 struct scsi_sense_data_desc *sense; 3859 scsi_sense_elem_type elem_type; 3860 int space, len; 3861 uint8_t *desc, *data; 3862 3863 memset(sense_data, 0, sizeof(*sense_data)); 3864 sense = (struct scsi_sense_data_desc *)sense_data; 3865 if (current_error != 0) 3866 sense->error_code = SSD_DESC_CURRENT_ERROR; 3867 else 3868 sense->error_code = SSD_DESC_DEFERRED_ERROR; 3869 sense->sense_key = sense_key; 3870 sense->add_sense_code = asc; 3871 sense->add_sense_code_qual = ascq; 3872 sense->flags = 0; 3873 3874 desc = &sense->sense_desc[0]; 3875 space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc); 3876 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 3877 SSD_ELEM_NONE) { 3878 if (elem_type >= SSD_ELEM_MAX) { 3879 printf("%s: invalid sense type %d\n", __func__, 3880 elem_type); 3881 break; 3882 } 3883 len = va_arg(ap, int); 3884 data = va_arg(ap, uint8_t *); 3885 3886 switch (elem_type) { 3887 case SSD_ELEM_SKIP: 3888 break; 3889 case SSD_ELEM_DESC: 3890 if (space < len) { 3891 sense->flags |= SSDD_SDAT_OVFL; 3892 break; 3893 } 3894 bcopy(data, desc, len); 3895 desc += len; 3896 space -= len; 3897 break; 3898 case SSD_ELEM_SKS: { 3899 struct scsi_sense_sks *sks = (void *)desc; 3900 3901 if (len > sizeof(sks->sense_key_spec)) 3902 break; 3903 if (space < sizeof(*sks)) { 3904 sense->flags |= SSDD_SDAT_OVFL; 3905 break; 3906 } 3907 sks->desc_type = SSD_DESC_SKS; 3908 sks->length = sizeof(*sks) - 3909 (offsetof(struct scsi_sense_sks, length) + 1); 3910 bcopy(data, &sks->sense_key_spec, len); 3911 desc += sizeof(*sks); 3912 space -= sizeof(*sks); 3913 break; 3914 } 3915 case SSD_ELEM_COMMAND: { 3916 struct scsi_sense_command *cmd = (void *)desc; 3917 3918 if (len > sizeof(cmd->command_info)) 3919 break; 3920 if (space < sizeof(*cmd)) { 3921 sense->flags |= SSDD_SDAT_OVFL; 3922 break; 3923 } 3924 cmd->desc_type = SSD_DESC_COMMAND; 3925 cmd->length = sizeof(*cmd) - 3926 (offsetof(struct scsi_sense_command, length) + 1); 3927 bcopy(data, &cmd->command_info[ 3928 sizeof(cmd->command_info) - len], len); 3929 desc += sizeof(*cmd); 3930 space -= sizeof(*cmd); 3931 break; 3932 } 3933 case SSD_ELEM_INFO: { 3934 struct scsi_sense_info *info = (void *)desc; 3935 3936 if (len > sizeof(info->info)) 3937 break; 3938 if (space < sizeof(*info)) { 3939 sense->flags |= SSDD_SDAT_OVFL; 3940 break; 3941 } 3942 info->desc_type = SSD_DESC_INFO; 3943 info->length = sizeof(*info) - 3944 (offsetof(struct scsi_sense_info, length) + 1); 3945 info->byte2 = SSD_INFO_VALID; 3946 bcopy(data, &info->info[sizeof(info->info) - len], len); 3947 desc += sizeof(*info); 3948 space -= sizeof(*info); 3949 break; 3950 } 3951 case SSD_ELEM_FRU: { 3952 struct scsi_sense_fru *fru = (void *)desc; 3953 3954 if (len > sizeof(fru->fru)) 3955 break; 3956 if (space < sizeof(*fru)) { 3957 sense->flags |= SSDD_SDAT_OVFL; 3958 break; 3959 } 3960 fru->desc_type = SSD_DESC_FRU; 3961 fru->length = sizeof(*fru) - 3962 (offsetof(struct scsi_sense_fru, length) + 1); 3963 fru->fru = *data; 3964 desc += sizeof(*fru); 3965 space -= sizeof(*fru); 3966 break; 3967 } 3968 case SSD_ELEM_STREAM: { 3969 struct scsi_sense_stream *stream = (void *)desc; 3970 3971 if (len > sizeof(stream->byte3)) 3972 break; 3973 if (space < sizeof(*stream)) { 3974 sense->flags |= SSDD_SDAT_OVFL; 3975 break; 3976 } 3977 stream->desc_type = SSD_DESC_STREAM; 3978 stream->length = sizeof(*stream) - 3979 (offsetof(struct scsi_sense_stream, length) + 1); 3980 stream->byte3 = *data; 3981 desc += sizeof(*stream); 3982 space -= sizeof(*stream); 3983 break; 3984 } 3985 default: 3986 /* 3987 * We shouldn't get here, but if we do, do nothing. 3988 * We've already consumed the arguments above. 3989 */ 3990 break; 3991 } 3992 } 3993 sense->extra_len = desc - &sense->sense_desc[0]; 3994 *sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 + 3995 sense->extra_len; 3996 } 3997 3998 /* 3999 * Fill in SCSI fixed sense data with the specified parameters. 4000 */ 4001 static void 4002 scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data, 4003 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 4004 int sense_key, int asc, int ascq, va_list ap) 4005 { 4006 struct scsi_sense_data_fixed *sense; 4007 scsi_sense_elem_type elem_type; 4008 uint8_t *data; 4009 int len; 4010 4011 memset(sense_data, 0, sizeof(*sense_data)); 4012 sense = (struct scsi_sense_data_fixed *)sense_data; 4013 if (current_error != 0) 4014 sense->error_code = SSD_CURRENT_ERROR; 4015 else 4016 sense->error_code = SSD_DEFERRED_ERROR; 4017 sense->flags = sense_key & SSD_KEY; 4018 sense->extra_len = 0; 4019 if (*sense_len >= 13) { 4020 sense->add_sense_code = asc; 4021 sense->extra_len = MAX(sense->extra_len, 5); 4022 } else 4023 sense->flags |= SSD_SDAT_OVFL; 4024 if (*sense_len >= 14) { 4025 sense->add_sense_code_qual = ascq; 4026 sense->extra_len = MAX(sense->extra_len, 6); 4027 } else 4028 sense->flags |= SSD_SDAT_OVFL; 4029 4030 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 4031 SSD_ELEM_NONE) { 4032 if (elem_type >= SSD_ELEM_MAX) { 4033 printf("%s: invalid sense type %d\n", __func__, 4034 elem_type); 4035 break; 4036 } 4037 len = va_arg(ap, int); 4038 data = va_arg(ap, uint8_t *); 4039 4040 switch (elem_type) { 4041 case SSD_ELEM_SKIP: 4042 break; 4043 case SSD_ELEM_SKS: 4044 if (len > sizeof(sense->sense_key_spec)) 4045 break; 4046 if (*sense_len < 18) { 4047 sense->flags |= SSD_SDAT_OVFL; 4048 break; 4049 } 4050 bcopy(data, &sense->sense_key_spec[0], len); 4051 sense->extra_len = MAX(sense->extra_len, 10); 4052 break; 4053 case SSD_ELEM_COMMAND: 4054 if (*sense_len < 12) { 4055 sense->flags |= SSD_SDAT_OVFL; 4056 break; 4057 } 4058 if (len > sizeof(sense->cmd_spec_info)) { 4059 data += len - sizeof(sense->cmd_spec_info); 4060 len = sizeof(sense->cmd_spec_info); 4061 } 4062 bcopy(data, &sense->cmd_spec_info[ 4063 sizeof(sense->cmd_spec_info) - len], len); 4064 sense->extra_len = MAX(sense->extra_len, 4); 4065 break; 4066 case SSD_ELEM_INFO: 4067 /* Set VALID bit only if no overflow. */ 4068 sense->error_code |= SSD_ERRCODE_VALID; 4069 while (len > sizeof(sense->info)) { 4070 if (data[0] != 0) 4071 sense->error_code &= ~SSD_ERRCODE_VALID; 4072 data ++; 4073 len --; 4074 } 4075 bcopy(data, &sense->info[sizeof(sense->info) - len], len); 4076 break; 4077 case SSD_ELEM_FRU: 4078 if (*sense_len < 15) { 4079 sense->flags |= SSD_SDAT_OVFL; 4080 break; 4081 } 4082 sense->fru = *data; 4083 sense->extra_len = MAX(sense->extra_len, 7); 4084 break; 4085 case SSD_ELEM_STREAM: 4086 sense->flags |= *data & 4087 (SSD_ILI | SSD_EOM | SSD_FILEMARK); 4088 break; 4089 default: 4090 4091 /* 4092 * We can't handle that in fixed format. Skip it. 4093 */ 4094 break; 4095 } 4096 } 4097 *sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 + 4098 sense->extra_len; 4099 } 4100 4101 /* 4102 * Fill in SCSI sense data with the specified parameters. This routine can 4103 * fill in either fixed or descriptor type sense data. 4104 */ 4105 void 4106 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len, 4107 scsi_sense_data_type sense_format, int current_error, 4108 int sense_key, int asc, int ascq, va_list ap) 4109 { 4110 4111 if (*sense_len > SSD_FULL_SIZE) 4112 *sense_len = SSD_FULL_SIZE; 4113 if (sense_format == SSD_TYPE_DESC) 4114 scsi_set_sense_data_desc_va(sense_data, sense_len, 4115 sense_format, current_error, sense_key, asc, ascq, ap); 4116 else 4117 scsi_set_sense_data_fixed_va(sense_data, sense_len, 4118 sense_format, current_error, sense_key, asc, ascq, ap); 4119 } 4120 4121 void 4122 scsi_set_sense_data(struct scsi_sense_data *sense_data, 4123 scsi_sense_data_type sense_format, int current_error, 4124 int sense_key, int asc, int ascq, ...) 4125 { 4126 va_list ap; 4127 u_int sense_len = SSD_FULL_SIZE; 4128 4129 va_start(ap, ascq); 4130 scsi_set_sense_data_va(sense_data, &sense_len, sense_format, 4131 current_error, sense_key, asc, ascq, ap); 4132 va_end(ap); 4133 } 4134 4135 void 4136 scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len, 4137 scsi_sense_data_type sense_format, int current_error, 4138 int sense_key, int asc, int ascq, ...) 4139 { 4140 va_list ap; 4141 4142 va_start(ap, ascq); 4143 scsi_set_sense_data_va(sense_data, sense_len, sense_format, 4144 current_error, sense_key, asc, ascq, ap); 4145 va_end(ap); 4146 } 4147 4148 /* 4149 * Get sense information for three similar sense data types. 4150 */ 4151 int 4152 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len, 4153 uint8_t info_type, uint64_t *info, int64_t *signed_info) 4154 { 4155 scsi_sense_data_type sense_type; 4156 4157 if (sense_len == 0) 4158 goto bailout; 4159 4160 sense_type = scsi_sense_type(sense_data); 4161 4162 switch (sense_type) { 4163 case SSD_TYPE_DESC: { 4164 struct scsi_sense_data_desc *sense; 4165 uint8_t *desc; 4166 4167 sense = (struct scsi_sense_data_desc *)sense_data; 4168 4169 desc = scsi_find_desc(sense, sense_len, info_type); 4170 if (desc == NULL) 4171 goto bailout; 4172 4173 switch (info_type) { 4174 case SSD_DESC_INFO: { 4175 struct scsi_sense_info *info_desc; 4176 4177 info_desc = (struct scsi_sense_info *)desc; 4178 4179 if ((info_desc->byte2 & SSD_INFO_VALID) == 0) 4180 goto bailout; 4181 4182 *info = scsi_8btou64(info_desc->info); 4183 if (signed_info != NULL) 4184 *signed_info = *info; 4185 break; 4186 } 4187 case SSD_DESC_COMMAND: { 4188 struct scsi_sense_command *cmd_desc; 4189 4190 cmd_desc = (struct scsi_sense_command *)desc; 4191 4192 *info = scsi_8btou64(cmd_desc->command_info); 4193 if (signed_info != NULL) 4194 *signed_info = *info; 4195 break; 4196 } 4197 case SSD_DESC_FRU: { 4198 struct scsi_sense_fru *fru_desc; 4199 4200 fru_desc = (struct scsi_sense_fru *)desc; 4201 4202 if (fru_desc->fru == 0) 4203 goto bailout; 4204 4205 *info = fru_desc->fru; 4206 if (signed_info != NULL) 4207 *signed_info = (int8_t)fru_desc->fru; 4208 break; 4209 } 4210 default: 4211 goto bailout; 4212 break; 4213 } 4214 break; 4215 } 4216 case SSD_TYPE_FIXED: { 4217 struct scsi_sense_data_fixed *sense; 4218 4219 sense = (struct scsi_sense_data_fixed *)sense_data; 4220 4221 switch (info_type) { 4222 case SSD_DESC_INFO: { 4223 uint32_t info_val; 4224 4225 if ((sense->error_code & SSD_ERRCODE_VALID) == 0) 4226 goto bailout; 4227 4228 if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0) 4229 goto bailout; 4230 4231 info_val = scsi_4btoul(sense->info); 4232 4233 *info = info_val; 4234 if (signed_info != NULL) 4235 *signed_info = (int32_t)info_val; 4236 break; 4237 } 4238 case SSD_DESC_COMMAND: { 4239 uint32_t cmd_val; 4240 4241 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, 4242 cmd_spec_info) == 0) 4243 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0)) 4244 goto bailout; 4245 4246 cmd_val = scsi_4btoul(sense->cmd_spec_info); 4247 if (cmd_val == 0) 4248 goto bailout; 4249 4250 *info = cmd_val; 4251 if (signed_info != NULL) 4252 *signed_info = (int32_t)cmd_val; 4253 break; 4254 } 4255 case SSD_DESC_FRU: 4256 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0) 4257 || (SSD_FIXED_IS_FILLED(sense, fru) == 0)) 4258 goto bailout; 4259 4260 if (sense->fru == 0) 4261 goto bailout; 4262 4263 *info = sense->fru; 4264 if (signed_info != NULL) 4265 *signed_info = (int8_t)sense->fru; 4266 break; 4267 default: 4268 goto bailout; 4269 break; 4270 } 4271 break; 4272 } 4273 default: 4274 goto bailout; 4275 break; 4276 } 4277 4278 return (0); 4279 bailout: 4280 return (1); 4281 } 4282 4283 int 4284 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks) 4285 { 4286 scsi_sense_data_type sense_type; 4287 4288 if (sense_len == 0) 4289 goto bailout; 4290 4291 sense_type = scsi_sense_type(sense_data); 4292 4293 switch (sense_type) { 4294 case SSD_TYPE_DESC: { 4295 struct scsi_sense_data_desc *sense; 4296 struct scsi_sense_sks *desc; 4297 4298 sense = (struct scsi_sense_data_desc *)sense_data; 4299 4300 desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len, 4301 SSD_DESC_SKS); 4302 if (desc == NULL) 4303 goto bailout; 4304 4305 if ((desc->sense_key_spec[0] & SSD_SKS_VALID) == 0) 4306 goto bailout; 4307 4308 bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec)); 4309 break; 4310 } 4311 case SSD_TYPE_FIXED: { 4312 struct scsi_sense_data_fixed *sense; 4313 4314 sense = (struct scsi_sense_data_fixed *)sense_data; 4315 4316 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0) 4317 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0)) 4318 goto bailout; 4319 4320 if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0) 4321 goto bailout; 4322 4323 bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec)); 4324 break; 4325 } 4326 default: 4327 goto bailout; 4328 break; 4329 } 4330 return (0); 4331 bailout: 4332 return (1); 4333 } 4334 4335 /* 4336 * Provide a common interface for fixed and descriptor sense to detect 4337 * whether we have block-specific sense information. It is clear by the 4338 * presence of the block descriptor in descriptor mode, but we have to 4339 * infer from the inquiry data and ILI bit in fixed mode. 4340 */ 4341 int 4342 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len, 4343 struct scsi_inquiry_data *inq_data, uint8_t *block_bits) 4344 { 4345 scsi_sense_data_type sense_type; 4346 4347 if (inq_data != NULL) { 4348 switch (SID_TYPE(inq_data)) { 4349 case T_DIRECT: 4350 case T_RBC: 4351 case T_ZBC_HM: 4352 break; 4353 default: 4354 goto bailout; 4355 break; 4356 } 4357 } 4358 4359 sense_type = scsi_sense_type(sense_data); 4360 4361 switch (sense_type) { 4362 case SSD_TYPE_DESC: { 4363 struct scsi_sense_data_desc *sense; 4364 struct scsi_sense_block *block; 4365 4366 sense = (struct scsi_sense_data_desc *)sense_data; 4367 4368 block = (struct scsi_sense_block *)scsi_find_desc(sense, 4369 sense_len, SSD_DESC_BLOCK); 4370 if (block == NULL) 4371 goto bailout; 4372 4373 *block_bits = block->byte3; 4374 break; 4375 } 4376 case SSD_TYPE_FIXED: { 4377 struct scsi_sense_data_fixed *sense; 4378 4379 sense = (struct scsi_sense_data_fixed *)sense_data; 4380 4381 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4382 goto bailout; 4383 4384 *block_bits = sense->flags & SSD_ILI; 4385 break; 4386 } 4387 default: 4388 goto bailout; 4389 break; 4390 } 4391 return (0); 4392 bailout: 4393 return (1); 4394 } 4395 4396 int 4397 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len, 4398 struct scsi_inquiry_data *inq_data, uint8_t *stream_bits) 4399 { 4400 scsi_sense_data_type sense_type; 4401 4402 if (inq_data != NULL) { 4403 switch (SID_TYPE(inq_data)) { 4404 case T_SEQUENTIAL: 4405 break; 4406 default: 4407 goto bailout; 4408 break; 4409 } 4410 } 4411 4412 sense_type = scsi_sense_type(sense_data); 4413 4414 switch (sense_type) { 4415 case SSD_TYPE_DESC: { 4416 struct scsi_sense_data_desc *sense; 4417 struct scsi_sense_stream *stream; 4418 4419 sense = (struct scsi_sense_data_desc *)sense_data; 4420 4421 stream = (struct scsi_sense_stream *)scsi_find_desc(sense, 4422 sense_len, SSD_DESC_STREAM); 4423 if (stream == NULL) 4424 goto bailout; 4425 4426 *stream_bits = stream->byte3; 4427 break; 4428 } 4429 case SSD_TYPE_FIXED: { 4430 struct scsi_sense_data_fixed *sense; 4431 4432 sense = (struct scsi_sense_data_fixed *)sense_data; 4433 4434 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4435 goto bailout; 4436 4437 *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK); 4438 break; 4439 } 4440 default: 4441 goto bailout; 4442 break; 4443 } 4444 return (0); 4445 bailout: 4446 return (1); 4447 } 4448 4449 void 4450 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4451 struct scsi_inquiry_data *inq_data, uint64_t info) 4452 { 4453 sbuf_printf(sb, "Info: %#jx", info); 4454 } 4455 4456 void 4457 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4458 struct scsi_inquiry_data *inq_data, uint64_t csi) 4459 { 4460 sbuf_printf(sb, "Command Specific Info: %#jx", csi); 4461 } 4462 4463 void 4464 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress) 4465 { 4466 sbuf_printf(sb, "Progress: %d%% (%d/%d) complete", 4467 (progress * 100) / SSD_SKS_PROGRESS_DENOM, 4468 progress, SSD_SKS_PROGRESS_DENOM); 4469 } 4470 4471 /* 4472 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success. 4473 */ 4474 int 4475 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks) 4476 { 4477 4478 switch (sense_key) { 4479 case SSD_KEY_ILLEGAL_REQUEST: { 4480 struct scsi_sense_sks_field *field; 4481 int bad_command; 4482 char tmpstr[40]; 4483 4484 /*Field Pointer*/ 4485 field = (struct scsi_sense_sks_field *)sks; 4486 4487 if (field->byte0 & SSD_SKS_FIELD_CMD) 4488 bad_command = 1; 4489 else 4490 bad_command = 0; 4491 4492 tmpstr[0] = '\0'; 4493 4494 /* Bit pointer is valid */ 4495 if (field->byte0 & SSD_SKS_BPV) 4496 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4497 field->byte0 & SSD_SKS_BIT_VALUE); 4498 4499 sbuf_printf(sb, "%s byte %d %sis invalid", 4500 bad_command ? "Command" : "Data", 4501 scsi_2btoul(field->field), tmpstr); 4502 break; 4503 } 4504 case SSD_KEY_UNIT_ATTENTION: { 4505 struct scsi_sense_sks_overflow *overflow; 4506 4507 overflow = (struct scsi_sense_sks_overflow *)sks; 4508 4509 /*UA Condition Queue Overflow*/ 4510 sbuf_printf(sb, "Unit Attention Condition Queue %s", 4511 (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ? 4512 "Overflowed" : "Did Not Overflow??"); 4513 break; 4514 } 4515 case SSD_KEY_RECOVERED_ERROR: 4516 case SSD_KEY_HARDWARE_ERROR: 4517 case SSD_KEY_MEDIUM_ERROR: { 4518 struct scsi_sense_sks_retry *retry; 4519 4520 /*Actual Retry Count*/ 4521 retry = (struct scsi_sense_sks_retry *)sks; 4522 4523 sbuf_printf(sb, "Actual Retry Count: %d", 4524 scsi_2btoul(retry->actual_retry_count)); 4525 break; 4526 } 4527 case SSD_KEY_NO_SENSE: 4528 case SSD_KEY_NOT_READY: { 4529 struct scsi_sense_sks_progress *progress; 4530 int progress_val; 4531 4532 /*Progress Indication*/ 4533 progress = (struct scsi_sense_sks_progress *)sks; 4534 progress_val = scsi_2btoul(progress->progress); 4535 4536 scsi_progress_sbuf(sb, progress_val); 4537 break; 4538 } 4539 case SSD_KEY_COPY_ABORTED: { 4540 struct scsi_sense_sks_segment *segment; 4541 char tmpstr[40]; 4542 4543 /*Segment Pointer*/ 4544 segment = (struct scsi_sense_sks_segment *)sks; 4545 4546 tmpstr[0] = '\0'; 4547 4548 if (segment->byte0 & SSD_SKS_SEGMENT_BPV) 4549 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4550 segment->byte0 & SSD_SKS_SEGMENT_BITPTR); 4551 4552 sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 & 4553 SSD_SKS_SEGMENT_SD) ? "Segment" : "Data", 4554 scsi_2btoul(segment->field), tmpstr); 4555 break; 4556 } 4557 default: 4558 sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0], 4559 scsi_2btoul(&sks[1])); 4560 break; 4561 } 4562 4563 return (0); 4564 } 4565 4566 void 4567 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru) 4568 { 4569 sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru); 4570 } 4571 4572 void 4573 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits) 4574 { 4575 int need_comma; 4576 4577 need_comma = 0; 4578 /* 4579 * XXX KDM this needs more descriptive decoding. 4580 */ 4581 sbuf_cat(sb, "Stream Command Sense Data: "); 4582 if (stream_bits & SSD_DESC_STREAM_FM) { 4583 sbuf_cat(sb, "Filemark"); 4584 need_comma = 1; 4585 } 4586 4587 if (stream_bits & SSD_DESC_STREAM_EOM) { 4588 sbuf_printf(sb, "%sEOM", (need_comma) ? "," : ""); 4589 need_comma = 1; 4590 } 4591 4592 if (stream_bits & SSD_DESC_STREAM_ILI) 4593 sbuf_printf(sb, "%sILI", (need_comma) ? "," : ""); 4594 } 4595 4596 void 4597 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits) 4598 { 4599 4600 sbuf_cat(sb, "Block Command Sense Data: "); 4601 if (block_bits & SSD_DESC_BLOCK_ILI) 4602 sbuf_cat(sb, "ILI"); 4603 } 4604 4605 void 4606 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4607 u_int sense_len, uint8_t *cdb, int cdb_len, 4608 struct scsi_inquiry_data *inq_data, 4609 struct scsi_sense_desc_header *header) 4610 { 4611 struct scsi_sense_info *info; 4612 4613 info = (struct scsi_sense_info *)header; 4614 4615 if ((info->byte2 & SSD_INFO_VALID) == 0) 4616 return; 4617 4618 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info)); 4619 } 4620 4621 void 4622 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4623 u_int sense_len, uint8_t *cdb, int cdb_len, 4624 struct scsi_inquiry_data *inq_data, 4625 struct scsi_sense_desc_header *header) 4626 { 4627 struct scsi_sense_command *command; 4628 4629 command = (struct scsi_sense_command *)header; 4630 4631 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, 4632 scsi_8btou64(command->command_info)); 4633 } 4634 4635 void 4636 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4637 u_int sense_len, uint8_t *cdb, int cdb_len, 4638 struct scsi_inquiry_data *inq_data, 4639 struct scsi_sense_desc_header *header) 4640 { 4641 struct scsi_sense_sks *sks; 4642 int error_code, sense_key, asc, ascq; 4643 4644 sks = (struct scsi_sense_sks *)header; 4645 4646 if ((sks->sense_key_spec[0] & SSD_SKS_VALID) == 0) 4647 return; 4648 4649 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4650 &asc, &ascq, /*show_errors*/ 1); 4651 4652 scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec); 4653 } 4654 4655 void 4656 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4657 u_int sense_len, uint8_t *cdb, int cdb_len, 4658 struct scsi_inquiry_data *inq_data, 4659 struct scsi_sense_desc_header *header) 4660 { 4661 struct scsi_sense_fru *fru; 4662 4663 fru = (struct scsi_sense_fru *)header; 4664 4665 if (fru->fru == 0) 4666 return; 4667 4668 scsi_fru_sbuf(sb, (uint64_t)fru->fru); 4669 } 4670 4671 void 4672 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4673 u_int sense_len, uint8_t *cdb, int cdb_len, 4674 struct scsi_inquiry_data *inq_data, 4675 struct scsi_sense_desc_header *header) 4676 { 4677 struct scsi_sense_stream *stream; 4678 4679 stream = (struct scsi_sense_stream *)header; 4680 scsi_stream_sbuf(sb, stream->byte3); 4681 } 4682 4683 void 4684 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4685 u_int sense_len, uint8_t *cdb, int cdb_len, 4686 struct scsi_inquiry_data *inq_data, 4687 struct scsi_sense_desc_header *header) 4688 { 4689 struct scsi_sense_block *block; 4690 4691 block = (struct scsi_sense_block *)header; 4692 scsi_block_sbuf(sb, block->byte3); 4693 } 4694 4695 void 4696 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4697 u_int sense_len, uint8_t *cdb, int cdb_len, 4698 struct scsi_inquiry_data *inq_data, 4699 struct scsi_sense_desc_header *header) 4700 { 4701 struct scsi_sense_progress *progress; 4702 const char *sense_key_desc; 4703 const char *asc_desc; 4704 int progress_val; 4705 4706 progress = (struct scsi_sense_progress *)header; 4707 4708 /* 4709 * Get descriptions for the sense key, ASC, and ASCQ in the 4710 * progress descriptor. These could be different than the values 4711 * in the overall sense data. 4712 */ 4713 scsi_sense_desc(progress->sense_key, progress->add_sense_code, 4714 progress->add_sense_code_qual, inq_data, 4715 &sense_key_desc, &asc_desc); 4716 4717 progress_val = scsi_2btoul(progress->progress); 4718 4719 /* 4720 * The progress indicator is for the operation described by the 4721 * sense key, ASC, and ASCQ in the descriptor. 4722 */ 4723 sbuf_cat(sb, sense_key_desc); 4724 sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code, 4725 progress->add_sense_code_qual, asc_desc); 4726 scsi_progress_sbuf(sb, progress_val); 4727 } 4728 4729 void 4730 scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4731 u_int sense_len, uint8_t *cdb, int cdb_len, 4732 struct scsi_inquiry_data *inq_data, 4733 struct scsi_sense_desc_header *header) 4734 { 4735 struct scsi_sense_ata_ret_desc *res; 4736 4737 res = (struct scsi_sense_ata_ret_desc *)header; 4738 4739 sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ", 4740 res->status, 4741 (res->status & 0x80) ? "BSY " : "", 4742 (res->status & 0x40) ? "DRDY " : "", 4743 (res->status & 0x20) ? "DF " : "", 4744 (res->status & 0x10) ? "SERV " : "", 4745 (res->status & 0x08) ? "DRQ " : "", 4746 (res->status & 0x04) ? "CORR " : "", 4747 (res->status & 0x02) ? "IDX " : "", 4748 (res->status & 0x01) ? "ERR" : ""); 4749 if (res->status & 1) { 4750 sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ", 4751 res->error, 4752 (res->error & 0x80) ? "ICRC " : "", 4753 (res->error & 0x40) ? "UNC " : "", 4754 (res->error & 0x20) ? "MC " : "", 4755 (res->error & 0x10) ? "IDNF " : "", 4756 (res->error & 0x08) ? "MCR " : "", 4757 (res->error & 0x04) ? "ABRT " : "", 4758 (res->error & 0x02) ? "NM " : "", 4759 (res->error & 0x01) ? "ILI" : ""); 4760 } 4761 4762 if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) { 4763 sbuf_printf(sb, "count: %02x%02x, ", 4764 res->count_15_8, res->count_7_0); 4765 sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ", 4766 res->lba_47_40, res->lba_39_32, res->lba_31_24, 4767 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4768 } else { 4769 sbuf_printf(sb, "count: %02x, ", res->count_7_0); 4770 sbuf_printf(sb, "LBA: %02x%02x%02x, ", 4771 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4772 } 4773 sbuf_printf(sb, "device: %02x, ", res->device); 4774 } 4775 4776 void 4777 scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4778 u_int sense_len, uint8_t *cdb, int cdb_len, 4779 struct scsi_inquiry_data *inq_data, 4780 struct scsi_sense_desc_header *header) 4781 { 4782 struct scsi_sense_forwarded *forwarded; 4783 const char *sense_key_desc; 4784 const char *asc_desc; 4785 int error_code, sense_key, asc, ascq; 4786 4787 forwarded = (struct scsi_sense_forwarded *)header; 4788 scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data, 4789 forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1); 4790 scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc); 4791 4792 sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ", 4793 sense_key_desc, asc, ascq, asc_desc); 4794 } 4795 4796 /* 4797 * Generic sense descriptor printing routine. This is used when we have 4798 * not yet implemented a specific printing routine for this descriptor. 4799 */ 4800 void 4801 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4802 u_int sense_len, uint8_t *cdb, int cdb_len, 4803 struct scsi_inquiry_data *inq_data, 4804 struct scsi_sense_desc_header *header) 4805 { 4806 int i; 4807 uint8_t *buf_ptr; 4808 4809 sbuf_printf(sb, "Descriptor %#x:", header->desc_type); 4810 4811 buf_ptr = (uint8_t *)&header[1]; 4812 4813 for (i = 0; i < header->length; i++, buf_ptr++) 4814 sbuf_printf(sb, " %02x", *buf_ptr); 4815 } 4816 4817 /* 4818 * Keep this list in numeric order. This speeds the array traversal. 4819 */ 4820 struct scsi_sense_desc_printer { 4821 uint8_t desc_type; 4822 /* 4823 * The function arguments here are the superset of what is needed 4824 * to print out various different descriptors. Command and 4825 * information descriptors need inquiry data and command type. 4826 * Sense key specific descriptors need the sense key. 4827 * 4828 * The sense, cdb, and inquiry data arguments may be NULL, but the 4829 * information printed may not be fully decoded as a result. 4830 */ 4831 void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense, 4832 u_int sense_len, uint8_t *cdb, int cdb_len, 4833 struct scsi_inquiry_data *inq_data, 4834 struct scsi_sense_desc_header *header); 4835 } scsi_sense_printers[] = { 4836 {SSD_DESC_INFO, scsi_sense_info_sbuf}, 4837 {SSD_DESC_COMMAND, scsi_sense_command_sbuf}, 4838 {SSD_DESC_SKS, scsi_sense_sks_sbuf}, 4839 {SSD_DESC_FRU, scsi_sense_fru_sbuf}, 4840 {SSD_DESC_STREAM, scsi_sense_stream_sbuf}, 4841 {SSD_DESC_BLOCK, scsi_sense_block_sbuf}, 4842 {SSD_DESC_ATA, scsi_sense_ata_sbuf}, 4843 {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf}, 4844 {SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf} 4845 }; 4846 4847 void 4848 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4849 u_int sense_len, uint8_t *cdb, int cdb_len, 4850 struct scsi_inquiry_data *inq_data, 4851 struct scsi_sense_desc_header *header) 4852 { 4853 u_int i; 4854 4855 for (i = 0; i < nitems(scsi_sense_printers); i++) { 4856 struct scsi_sense_desc_printer *printer; 4857 4858 printer = &scsi_sense_printers[i]; 4859 4860 /* 4861 * The list is sorted, so quit if we've passed our 4862 * descriptor number. 4863 */ 4864 if (printer->desc_type > header->desc_type) 4865 break; 4866 4867 if (printer->desc_type != header->desc_type) 4868 continue; 4869 4870 printer->print_func(sb, sense, sense_len, cdb, cdb_len, 4871 inq_data, header); 4872 4873 return; 4874 } 4875 4876 /* 4877 * No specific printing routine, so use the generic routine. 4878 */ 4879 scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len, 4880 inq_data, header); 4881 } 4882 4883 scsi_sense_data_type 4884 scsi_sense_type(struct scsi_sense_data *sense_data) 4885 { 4886 switch (sense_data->error_code & SSD_ERRCODE) { 4887 case SSD_DESC_CURRENT_ERROR: 4888 case SSD_DESC_DEFERRED_ERROR: 4889 return (SSD_TYPE_DESC); 4890 break; 4891 case SSD_CURRENT_ERROR: 4892 case SSD_DEFERRED_ERROR: 4893 return (SSD_TYPE_FIXED); 4894 break; 4895 default: 4896 break; 4897 } 4898 4899 return (SSD_TYPE_NONE); 4900 } 4901 4902 struct scsi_print_sense_info { 4903 struct sbuf *sb; 4904 char *path_str; 4905 uint8_t *cdb; 4906 int cdb_len; 4907 struct scsi_inquiry_data *inq_data; 4908 }; 4909 4910 static int 4911 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 4912 struct scsi_sense_desc_header *header, void *arg) 4913 { 4914 struct scsi_print_sense_info *print_info; 4915 4916 print_info = (struct scsi_print_sense_info *)arg; 4917 4918 switch (header->desc_type) { 4919 case SSD_DESC_INFO: 4920 case SSD_DESC_FRU: 4921 case SSD_DESC_COMMAND: 4922 case SSD_DESC_SKS: 4923 case SSD_DESC_BLOCK: 4924 case SSD_DESC_STREAM: 4925 /* 4926 * We have already printed these descriptors, if they are 4927 * present. 4928 */ 4929 break; 4930 default: { 4931 sbuf_printf(print_info->sb, "%s", print_info->path_str); 4932 scsi_sense_desc_sbuf(print_info->sb, 4933 (struct scsi_sense_data *)sense, sense_len, 4934 print_info->cdb, print_info->cdb_len, 4935 print_info->inq_data, header); 4936 sbuf_putc(print_info->sb, '\n'); 4937 break; 4938 } 4939 } 4940 4941 /* 4942 * Tell the iterator that we want to see more descriptors if they 4943 * are present. 4944 */ 4945 return (0); 4946 } 4947 4948 void 4949 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len, 4950 struct sbuf *sb, char *path_str, 4951 struct scsi_inquiry_data *inq_data, uint8_t *cdb, 4952 int cdb_len) 4953 { 4954 int error_code, sense_key, asc, ascq; 4955 4956 sbuf_cat(sb, path_str); 4957 4958 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4959 &asc, &ascq, /*show_errors*/ 1); 4960 4961 sbuf_cat(sb, "SCSI sense: "); 4962 switch (error_code) { 4963 case SSD_DEFERRED_ERROR: 4964 case SSD_DESC_DEFERRED_ERROR: 4965 sbuf_cat(sb, "Deferred error: "); 4966 4967 /* FALLTHROUGH */ 4968 case SSD_CURRENT_ERROR: 4969 case SSD_DESC_CURRENT_ERROR: 4970 { 4971 struct scsi_sense_data_desc *desc_sense; 4972 struct scsi_print_sense_info print_info; 4973 const char *sense_key_desc; 4974 const char *asc_desc; 4975 uint8_t sks[3]; 4976 uint64_t val; 4977 uint8_t bits; 4978 4979 /* 4980 * Get descriptions for the sense key, ASC, and ASCQ. If 4981 * these aren't present in the sense data (i.e. the sense 4982 * data isn't long enough), the -1 values that 4983 * scsi_extract_sense_len() returns will yield default 4984 * or error descriptions. 4985 */ 4986 scsi_sense_desc(sense_key, asc, ascq, inq_data, 4987 &sense_key_desc, &asc_desc); 4988 4989 /* 4990 * We first print the sense key and ASC/ASCQ. 4991 */ 4992 sbuf_cat(sb, sense_key_desc); 4993 sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc); 4994 4995 /* 4996 * Print any block or stream device-specific information. 4997 */ 4998 if (scsi_get_block_info(sense, sense_len, inq_data, 4999 &bits) == 0 && bits != 0) { 5000 sbuf_cat(sb, path_str); 5001 scsi_block_sbuf(sb, bits); 5002 sbuf_putc(sb, '\n'); 5003 } else if (scsi_get_stream_info(sense, sense_len, inq_data, 5004 &bits) == 0 && bits != 0) { 5005 sbuf_cat(sb, path_str); 5006 scsi_stream_sbuf(sb, bits); 5007 sbuf_putc(sb, '\n'); 5008 } 5009 5010 /* 5011 * Print the info field. 5012 */ 5013 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, 5014 &val, NULL) == 0) { 5015 sbuf_cat(sb, path_str); 5016 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val); 5017 sbuf_putc(sb, '\n'); 5018 } 5019 5020 /* 5021 * Print the FRU. 5022 */ 5023 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU, 5024 &val, NULL) == 0) { 5025 sbuf_cat(sb, path_str); 5026 scsi_fru_sbuf(sb, val); 5027 sbuf_putc(sb, '\n'); 5028 } 5029 5030 /* 5031 * Print any command-specific information. 5032 */ 5033 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND, 5034 &val, NULL) == 0) { 5035 sbuf_cat(sb, path_str); 5036 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val); 5037 sbuf_putc(sb, '\n'); 5038 } 5039 5040 /* 5041 * Print out any sense-key-specific information. 5042 */ 5043 if (scsi_get_sks(sense, sense_len, sks) == 0) { 5044 sbuf_cat(sb, path_str); 5045 scsi_sks_sbuf(sb, sense_key, sks); 5046 sbuf_putc(sb, '\n'); 5047 } 5048 5049 /* 5050 * If this is fixed sense, we're done. If we have 5051 * descriptor sense, we might have more information 5052 * available. 5053 */ 5054 if (scsi_sense_type(sense) != SSD_TYPE_DESC) 5055 break; 5056 5057 desc_sense = (struct scsi_sense_data_desc *)sense; 5058 5059 print_info.sb = sb; 5060 print_info.path_str = path_str; 5061 print_info.cdb = cdb; 5062 print_info.cdb_len = cdb_len; 5063 print_info.inq_data = inq_data; 5064 5065 /* 5066 * Print any sense descriptors that we have not already printed. 5067 */ 5068 scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func, 5069 &print_info); 5070 break; 5071 } 5072 case -1: 5073 /* 5074 * scsi_extract_sense_len() sets values to -1 if the 5075 * show_errors flag is set and they aren't present in the 5076 * sense data. This means that sense_len is 0. 5077 */ 5078 sbuf_cat(sb, "No sense data present\n"); 5079 break; 5080 default: { 5081 sbuf_printf(sb, "Error code 0x%x", error_code); 5082 if (sense->error_code & SSD_ERRCODE_VALID) { 5083 struct scsi_sense_data_fixed *fixed_sense; 5084 5085 fixed_sense = (struct scsi_sense_data_fixed *)sense; 5086 5087 if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){ 5088 uint32_t info; 5089 5090 info = scsi_4btoul(fixed_sense->info); 5091 5092 sbuf_printf(sb, " at block no. %d (decimal)", 5093 info); 5094 } 5095 } 5096 sbuf_putc(sb, '\n'); 5097 break; 5098 } 5099 } 5100 } 5101 5102 /* 5103 * scsi_sense_sbuf() returns 0 for success and -1 for failure. 5104 */ 5105 #ifdef _KERNEL 5106 int 5107 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb, 5108 scsi_sense_string_flags flags) 5109 #else /* !_KERNEL */ 5110 int 5111 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio, 5112 struct sbuf *sb, scsi_sense_string_flags flags) 5113 #endif /* _KERNEL/!_KERNEL */ 5114 { 5115 struct scsi_sense_data *sense; 5116 struct scsi_inquiry_data *inq_data; 5117 #ifdef _KERNEL 5118 struct ccb_getdev *cgd; 5119 #endif /* _KERNEL */ 5120 char path_str[64]; 5121 5122 #ifndef _KERNEL 5123 if (device == NULL) 5124 return(-1); 5125 #endif /* !_KERNEL */ 5126 if ((csio == NULL) || (sb == NULL)) 5127 return(-1); 5128 5129 /* 5130 * If the CDB is a physical address, we can't deal with it.. 5131 */ 5132 if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0) 5133 flags &= ~SSS_FLAG_PRINT_COMMAND; 5134 5135 #ifdef _KERNEL 5136 xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str)); 5137 #else /* !_KERNEL */ 5138 cam_path_string(device, path_str, sizeof(path_str)); 5139 #endif /* _KERNEL/!_KERNEL */ 5140 5141 #ifdef _KERNEL 5142 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 5143 return(-1); 5144 /* 5145 * Get the device information. 5146 */ 5147 xpt_setup_ccb(&cgd->ccb_h, 5148 csio->ccb_h.path, 5149 CAM_PRIORITY_NORMAL); 5150 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 5151 xpt_action((union ccb *)cgd); 5152 5153 /* 5154 * If the device is unconfigured, just pretend that it is a hard 5155 * drive. scsi_op_desc() needs this. 5156 */ 5157 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 5158 cgd->inq_data.device = T_DIRECT; 5159 5160 inq_data = &cgd->inq_data; 5161 5162 #else /* !_KERNEL */ 5163 5164 inq_data = &device->inq_data; 5165 5166 #endif /* _KERNEL/!_KERNEL */ 5167 5168 sense = NULL; 5169 5170 if (flags & SSS_FLAG_PRINT_COMMAND) { 5171 sbuf_cat(sb, path_str); 5172 5173 #ifdef _KERNEL 5174 scsi_command_string(csio, sb); 5175 #else /* !_KERNEL */ 5176 scsi_command_string(device, csio, sb); 5177 #endif /* _KERNEL/!_KERNEL */ 5178 sbuf_putc(sb, '\n'); 5179 } 5180 5181 /* 5182 * If the sense data is a physical pointer, forget it. 5183 */ 5184 if (csio->ccb_h.flags & CAM_SENSE_PTR) { 5185 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5186 #ifdef _KERNEL 5187 xpt_free_ccb((union ccb*)cgd); 5188 #endif /* _KERNEL/!_KERNEL */ 5189 return(-1); 5190 } else { 5191 /* 5192 * bcopy the pointer to avoid unaligned access 5193 * errors on finicky architectures. We don't 5194 * ensure that the sense data is pointer aligned. 5195 */ 5196 bcopy((struct scsi_sense_data **)&csio->sense_data, 5197 &sense, sizeof(struct scsi_sense_data *)); 5198 } 5199 } else { 5200 /* 5201 * If the physical sense flag is set, but the sense pointer 5202 * is not also set, we assume that the user is an idiot and 5203 * return. (Well, okay, it could be that somehow, the 5204 * entire csio is physical, but we would have probably core 5205 * dumped on one of the bogus pointer deferences above 5206 * already.) 5207 */ 5208 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5209 #ifdef _KERNEL 5210 xpt_free_ccb((union ccb*)cgd); 5211 #endif /* _KERNEL/!_KERNEL */ 5212 return(-1); 5213 } else 5214 sense = &csio->sense_data; 5215 } 5216 5217 scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb, 5218 path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len); 5219 5220 #ifdef _KERNEL 5221 xpt_free_ccb((union ccb*)cgd); 5222 #endif /* _KERNEL/!_KERNEL */ 5223 return(0); 5224 } 5225 5226 #ifdef _KERNEL 5227 char * 5228 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len) 5229 #else /* !_KERNEL */ 5230 char * 5231 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio, 5232 char *str, int str_len) 5233 #endif /* _KERNEL/!_KERNEL */ 5234 { 5235 struct sbuf sb; 5236 5237 sbuf_new(&sb, str, str_len, 0); 5238 5239 #ifdef _KERNEL 5240 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5241 #else /* !_KERNEL */ 5242 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5243 #endif /* _KERNEL/!_KERNEL */ 5244 5245 sbuf_finish(&sb); 5246 5247 return(sbuf_data(&sb)); 5248 } 5249 5250 #ifdef _KERNEL 5251 void 5252 scsi_sense_print(struct ccb_scsiio *csio) 5253 { 5254 struct sbuf sb; 5255 char str[512]; 5256 5257 sbuf_new(&sb, str, sizeof(str), 0); 5258 5259 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5260 5261 sbuf_finish(&sb); 5262 5263 sbuf_putbuf(&sb); 5264 } 5265 5266 #else /* !_KERNEL */ 5267 void 5268 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio, 5269 FILE *ofile) 5270 { 5271 struct sbuf sb; 5272 char str[512]; 5273 5274 if ((device == NULL) || (csio == NULL) || (ofile == NULL)) 5275 return; 5276 5277 sbuf_new(&sb, str, sizeof(str), 0); 5278 5279 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5280 5281 sbuf_finish(&sb); 5282 5283 fprintf(ofile, "%s", sbuf_data(&sb)); 5284 } 5285 5286 #endif /* _KERNEL/!_KERNEL */ 5287 5288 /* 5289 * Extract basic sense information. This is backward-compatible with the 5290 * previous implementation. For new implementations, 5291 * scsi_extract_sense_len() is recommended. 5292 */ 5293 void 5294 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code, 5295 int *sense_key, int *asc, int *ascq) 5296 { 5297 scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code, 5298 sense_key, asc, ascq, /*show_errors*/ 0); 5299 } 5300 5301 /* 5302 * Extract basic sense information from SCSI I/O CCB structure. 5303 */ 5304 int 5305 scsi_extract_sense_ccb(union ccb *ccb, 5306 int *error_code, int *sense_key, int *asc, int *ascq) 5307 { 5308 struct scsi_sense_data *sense_data; 5309 5310 /* Make sure there are some sense data we can access. */ 5311 if (ccb->ccb_h.func_code != XPT_SCSI_IO || 5312 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR || 5313 (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) || 5314 (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 || 5315 (ccb->ccb_h.flags & CAM_SENSE_PHYS)) 5316 return (0); 5317 5318 if (ccb->ccb_h.flags & CAM_SENSE_PTR) 5319 bcopy((struct scsi_sense_data **)&ccb->csio.sense_data, 5320 &sense_data, sizeof(struct scsi_sense_data *)); 5321 else 5322 sense_data = &ccb->csio.sense_data; 5323 scsi_extract_sense_len(sense_data, 5324 ccb->csio.sense_len - ccb->csio.sense_resid, 5325 error_code, sense_key, asc, ascq, 1); 5326 if (*error_code == -1) 5327 return (0); 5328 return (1); 5329 } 5330 5331 /* 5332 * Extract basic sense information. If show_errors is set, sense values 5333 * will be set to -1 if they are not present. 5334 */ 5335 void 5336 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len, 5337 int *error_code, int *sense_key, int *asc, int *ascq, 5338 int show_errors) 5339 { 5340 /* 5341 * If we have no length, we have no sense. 5342 */ 5343 if (sense_len == 0) { 5344 if (show_errors == 0) { 5345 *error_code = 0; 5346 *sense_key = 0; 5347 *asc = 0; 5348 *ascq = 0; 5349 } else { 5350 *error_code = -1; 5351 *sense_key = -1; 5352 *asc = -1; 5353 *ascq = -1; 5354 } 5355 return; 5356 } 5357 5358 *error_code = sense_data->error_code & SSD_ERRCODE; 5359 5360 switch (*error_code) { 5361 case SSD_DESC_CURRENT_ERROR: 5362 case SSD_DESC_DEFERRED_ERROR: { 5363 struct scsi_sense_data_desc *sense; 5364 5365 sense = (struct scsi_sense_data_desc *)sense_data; 5366 5367 if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key)) 5368 *sense_key = sense->sense_key & SSD_KEY; 5369 else 5370 *sense_key = (show_errors) ? -1 : 0; 5371 5372 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code)) 5373 *asc = sense->add_sense_code; 5374 else 5375 *asc = (show_errors) ? -1 : 0; 5376 5377 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual)) 5378 *ascq = sense->add_sense_code_qual; 5379 else 5380 *ascq = (show_errors) ? -1 : 0; 5381 break; 5382 } 5383 case SSD_CURRENT_ERROR: 5384 case SSD_DEFERRED_ERROR: 5385 default: { 5386 struct scsi_sense_data_fixed *sense; 5387 5388 sense = (struct scsi_sense_data_fixed *)sense_data; 5389 5390 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags)) 5391 *sense_key = sense->flags & SSD_KEY; 5392 else 5393 *sense_key = (show_errors) ? -1 : 0; 5394 5395 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code)) 5396 && (SSD_FIXED_IS_FILLED(sense, add_sense_code))) 5397 *asc = sense->add_sense_code; 5398 else 5399 *asc = (show_errors) ? -1 : 0; 5400 5401 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual)) 5402 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual))) 5403 *ascq = sense->add_sense_code_qual; 5404 else 5405 *ascq = (show_errors) ? -1 : 0; 5406 break; 5407 } 5408 } 5409 } 5410 5411 int 5412 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len, 5413 int show_errors) 5414 { 5415 int error_code, sense_key, asc, ascq; 5416 5417 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5418 &sense_key, &asc, &ascq, show_errors); 5419 5420 return (sense_key); 5421 } 5422 5423 int 5424 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len, 5425 int show_errors) 5426 { 5427 int error_code, sense_key, asc, ascq; 5428 5429 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5430 &sense_key, &asc, &ascq, show_errors); 5431 5432 return (asc); 5433 } 5434 5435 int 5436 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len, 5437 int show_errors) 5438 { 5439 int error_code, sense_key, asc, ascq; 5440 5441 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5442 &sense_key, &asc, &ascq, show_errors); 5443 5444 return (ascq); 5445 } 5446 5447 /* 5448 * This function currently requires at least 36 bytes, or 5449 * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this 5450 * function needs more or less data in the future, another length should be 5451 * defined in scsi_all.h to indicate the minimum amount of data necessary 5452 * for this routine to function properly. 5453 */ 5454 void 5455 scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5456 { 5457 uint8_t type; 5458 char *dtype, *qtype; 5459 5460 type = SID_TYPE(inq_data); 5461 5462 /* 5463 * Figure out basic device type and qualifier. 5464 */ 5465 if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) { 5466 qtype = " (vendor-unique qualifier)"; 5467 } else { 5468 switch (SID_QUAL(inq_data)) { 5469 case SID_QUAL_LU_CONNECTED: 5470 qtype = ""; 5471 break; 5472 5473 case SID_QUAL_LU_OFFLINE: 5474 qtype = " (offline)"; 5475 break; 5476 5477 case SID_QUAL_RSVD: 5478 qtype = " (reserved qualifier)"; 5479 break; 5480 default: 5481 case SID_QUAL_BAD_LU: 5482 qtype = " (LUN not supported)"; 5483 break; 5484 } 5485 } 5486 5487 switch (type) { 5488 case T_DIRECT: 5489 dtype = "Direct Access"; 5490 break; 5491 case T_SEQUENTIAL: 5492 dtype = "Sequential Access"; 5493 break; 5494 case T_PRINTER: 5495 dtype = "Printer"; 5496 break; 5497 case T_PROCESSOR: 5498 dtype = "Processor"; 5499 break; 5500 case T_WORM: 5501 dtype = "WORM"; 5502 break; 5503 case T_CDROM: 5504 dtype = "CD-ROM"; 5505 break; 5506 case T_SCANNER: 5507 dtype = "Scanner"; 5508 break; 5509 case T_OPTICAL: 5510 dtype = "Optical"; 5511 break; 5512 case T_CHANGER: 5513 dtype = "Changer"; 5514 break; 5515 case T_COMM: 5516 dtype = "Communication"; 5517 break; 5518 case T_STORARRAY: 5519 dtype = "Storage Array"; 5520 break; 5521 case T_ENCLOSURE: 5522 dtype = "Enclosure Services"; 5523 break; 5524 case T_RBC: 5525 dtype = "Simplified Direct Access"; 5526 break; 5527 case T_OCRW: 5528 dtype = "Optical Card Read/Write"; 5529 break; 5530 case T_OSD: 5531 dtype = "Object-Based Storage"; 5532 break; 5533 case T_ADC: 5534 dtype = "Automation/Drive Interface"; 5535 break; 5536 case T_ZBC_HM: 5537 dtype = "Host Managed Zoned Block"; 5538 break; 5539 case T_NODEVICE: 5540 dtype = "Uninstalled"; 5541 break; 5542 default: 5543 dtype = "unknown"; 5544 break; 5545 } 5546 5547 scsi_print_inquiry_short_sbuf(sb, inq_data); 5548 5549 sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype); 5550 5551 if (SID_ANSI_REV(inq_data) == SCSI_REV_0) 5552 sbuf_cat(sb, "SCSI "); 5553 else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) { 5554 sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data)); 5555 } else { 5556 sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2); 5557 } 5558 sbuf_printf(sb, "device%s\n", qtype); 5559 } 5560 5561 void 5562 scsi_print_inquiry(struct scsi_inquiry_data *inq_data) 5563 { 5564 struct sbuf sb; 5565 char buffer[120]; 5566 5567 sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN); 5568 scsi_print_inquiry_sbuf(&sb, inq_data); 5569 sbuf_finish(&sb); 5570 sbuf_putbuf(&sb); 5571 } 5572 5573 void 5574 scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5575 { 5576 5577 sbuf_putc(sb, '<'); 5578 cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0); 5579 sbuf_putc(sb, ' '); 5580 cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0); 5581 sbuf_putc(sb, ' '); 5582 cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0); 5583 sbuf_cat(sb, "> "); 5584 } 5585 5586 void 5587 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data) 5588 { 5589 struct sbuf sb; 5590 char buffer[84]; 5591 5592 sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN); 5593 scsi_print_inquiry_short_sbuf(&sb, inq_data); 5594 sbuf_finish(&sb); 5595 sbuf_putbuf(&sb); 5596 } 5597 5598 /* 5599 * Table of syncrates that don't follow the "divisible by 4" 5600 * rule. This table will be expanded in future SCSI specs. 5601 */ 5602 static struct { 5603 u_int period_factor; 5604 u_int period; /* in 100ths of ns */ 5605 } scsi_syncrates[] = { 5606 { 0x08, 625 }, /* FAST-160 */ 5607 { 0x09, 1250 }, /* FAST-80 */ 5608 { 0x0a, 2500 }, /* FAST-40 40MHz */ 5609 { 0x0b, 3030 }, /* FAST-40 33MHz */ 5610 { 0x0c, 5000 } /* FAST-20 */ 5611 }; 5612 5613 /* 5614 * Return the frequency in kHz corresponding to the given 5615 * sync period factor. 5616 */ 5617 u_int 5618 scsi_calc_syncsrate(u_int period_factor) 5619 { 5620 u_int i; 5621 u_int num_syncrates; 5622 5623 /* 5624 * It's a bug if period is zero, but if it is anyway, don't 5625 * die with a divide fault- instead return something which 5626 * 'approximates' async 5627 */ 5628 if (period_factor == 0) { 5629 return (3300); 5630 } 5631 5632 num_syncrates = nitems(scsi_syncrates); 5633 /* See if the period is in the "exception" table */ 5634 for (i = 0; i < num_syncrates; i++) { 5635 if (period_factor == scsi_syncrates[i].period_factor) { 5636 /* Period in kHz */ 5637 return (100000000 / scsi_syncrates[i].period); 5638 } 5639 } 5640 5641 /* 5642 * Wasn't in the table, so use the standard 5643 * 4 times conversion. 5644 */ 5645 return (10000000 / (period_factor * 4 * 10)); 5646 } 5647 5648 /* 5649 * Return the SCSI sync parameter that corresponds to 5650 * the passed in period in 10ths of ns. 5651 */ 5652 u_int 5653 scsi_calc_syncparam(u_int period) 5654 { 5655 u_int i; 5656 u_int num_syncrates; 5657 5658 if (period == 0) 5659 return (~0); /* Async */ 5660 5661 /* Adjust for exception table being in 100ths. */ 5662 period *= 10; 5663 num_syncrates = nitems(scsi_syncrates); 5664 /* See if the period is in the "exception" table */ 5665 for (i = 0; i < num_syncrates; i++) { 5666 if (period <= scsi_syncrates[i].period) { 5667 /* Period in 100ths of ns */ 5668 return (scsi_syncrates[i].period_factor); 5669 } 5670 } 5671 5672 /* 5673 * Wasn't in the table, so use the standard 5674 * 1/4 period in ns conversion. 5675 */ 5676 return (period/400); 5677 } 5678 5679 int 5680 scsi_devid_is_naa_ieee_reg(uint8_t *bufp) 5681 { 5682 struct scsi_vpd_id_descriptor *descr; 5683 struct scsi_vpd_id_naa_basic *naa; 5684 int n; 5685 5686 descr = (struct scsi_vpd_id_descriptor *)bufp; 5687 naa = (struct scsi_vpd_id_naa_basic *)descr->identifier; 5688 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5689 return 0; 5690 if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg)) 5691 return 0; 5692 n = naa->naa >> SVPD_ID_NAA_NAA_SHIFT; 5693 if (n != SVPD_ID_NAA_LOCAL_REG && n != SVPD_ID_NAA_IEEE_REG) 5694 return 0; 5695 return 1; 5696 } 5697 5698 int 5699 scsi_devid_is_sas_target(uint8_t *bufp) 5700 { 5701 struct scsi_vpd_id_descriptor *descr; 5702 5703 descr = (struct scsi_vpd_id_descriptor *)bufp; 5704 if (!scsi_devid_is_naa_ieee_reg(bufp)) 5705 return 0; 5706 if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */ 5707 return 0; 5708 if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS) 5709 return 0; 5710 return 1; 5711 } 5712 5713 int 5714 scsi_devid_is_lun_eui64(uint8_t *bufp) 5715 { 5716 struct scsi_vpd_id_descriptor *descr; 5717 5718 descr = (struct scsi_vpd_id_descriptor *)bufp; 5719 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5720 return 0; 5721 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64) 5722 return 0; 5723 return 1; 5724 } 5725 5726 int 5727 scsi_devid_is_lun_naa(uint8_t *bufp) 5728 { 5729 struct scsi_vpd_id_descriptor *descr; 5730 5731 descr = (struct scsi_vpd_id_descriptor *)bufp; 5732 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5733 return 0; 5734 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5735 return 0; 5736 return 1; 5737 } 5738 5739 int 5740 scsi_devid_is_lun_t10(uint8_t *bufp) 5741 { 5742 struct scsi_vpd_id_descriptor *descr; 5743 5744 descr = (struct scsi_vpd_id_descriptor *)bufp; 5745 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5746 return 0; 5747 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10) 5748 return 0; 5749 return 1; 5750 } 5751 5752 int 5753 scsi_devid_is_lun_name(uint8_t *bufp) 5754 { 5755 struct scsi_vpd_id_descriptor *descr; 5756 5757 descr = (struct scsi_vpd_id_descriptor *)bufp; 5758 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5759 return 0; 5760 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME) 5761 return 0; 5762 return 1; 5763 } 5764 5765 int 5766 scsi_devid_is_lun_md5(uint8_t *bufp) 5767 { 5768 struct scsi_vpd_id_descriptor *descr; 5769 5770 descr = (struct scsi_vpd_id_descriptor *)bufp; 5771 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5772 return 0; 5773 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID) 5774 return 0; 5775 return 1; 5776 } 5777 5778 int 5779 scsi_devid_is_lun_uuid(uint8_t *bufp) 5780 { 5781 struct scsi_vpd_id_descriptor *descr; 5782 5783 descr = (struct scsi_vpd_id_descriptor *)bufp; 5784 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5785 return 0; 5786 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID) 5787 return 0; 5788 return 1; 5789 } 5790 5791 int 5792 scsi_devid_is_port_naa(uint8_t *bufp) 5793 { 5794 struct scsi_vpd_id_descriptor *descr; 5795 5796 descr = (struct scsi_vpd_id_descriptor *)bufp; 5797 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT) 5798 return 0; 5799 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5800 return 0; 5801 return 1; 5802 } 5803 5804 struct scsi_vpd_id_descriptor * 5805 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len, 5806 scsi_devid_checkfn_t ck_fn) 5807 { 5808 uint8_t *desc_buf_end; 5809 5810 desc_buf_end = (uint8_t *)desc + len; 5811 5812 for (; desc->identifier <= desc_buf_end && 5813 desc->identifier + desc->length <= desc_buf_end; 5814 desc = (struct scsi_vpd_id_descriptor *)(desc->identifier 5815 + desc->length)) { 5816 if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0) 5817 return (desc); 5818 } 5819 return (NULL); 5820 } 5821 5822 struct scsi_vpd_id_descriptor * 5823 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len, 5824 scsi_devid_checkfn_t ck_fn) 5825 { 5826 uint32_t len; 5827 5828 if (page_len < sizeof(*id)) 5829 return (NULL); 5830 len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id)); 5831 return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *) 5832 id->desc_list, len, ck_fn)); 5833 } 5834 5835 int 5836 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr, 5837 uint32_t valid_len) 5838 { 5839 switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) { 5840 case SCSI_PROTO_FC: { 5841 struct scsi_transportid_fcp *fcp; 5842 uint64_t n_port_name; 5843 5844 fcp = (struct scsi_transportid_fcp *)hdr; 5845 5846 n_port_name = scsi_8btou64(fcp->n_port_name); 5847 5848 sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name); 5849 break; 5850 } 5851 case SCSI_PROTO_SPI: { 5852 struct scsi_transportid_spi *spi; 5853 5854 spi = (struct scsi_transportid_spi *)hdr; 5855 5856 sbuf_printf(sb, "SPI address: %u,%u", 5857 scsi_2btoul(spi->scsi_addr), 5858 scsi_2btoul(spi->rel_trgt_port_id)); 5859 break; 5860 } 5861 case SCSI_PROTO_SSA: 5862 /* 5863 * XXX KDM there is no transport ID defined in SPC-4 for 5864 * SSA. 5865 */ 5866 break; 5867 case SCSI_PROTO_1394: { 5868 struct scsi_transportid_1394 *sbp; 5869 uint64_t eui64; 5870 5871 sbp = (struct scsi_transportid_1394 *)hdr; 5872 5873 eui64 = scsi_8btou64(sbp->eui64); 5874 sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64); 5875 break; 5876 } 5877 case SCSI_PROTO_RDMA: { 5878 struct scsi_transportid_rdma *rdma; 5879 unsigned int i; 5880 5881 rdma = (struct scsi_transportid_rdma *)hdr; 5882 5883 sbuf_cat(sb, "RDMA address: 0x"); 5884 for (i = 0; i < sizeof(rdma->initiator_port_id); i++) 5885 sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]); 5886 break; 5887 } 5888 case SCSI_PROTO_ISCSI: { 5889 uint32_t add_len, i; 5890 uint8_t *iscsi_name = NULL; 5891 int nul_found = 0; 5892 5893 sbuf_cat(sb, "iSCSI address: "); 5894 if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5895 SCSI_TRN_ISCSI_FORMAT_DEVICE) { 5896 struct scsi_transportid_iscsi_device *dev; 5897 5898 dev = (struct scsi_transportid_iscsi_device *)hdr; 5899 5900 /* 5901 * Verify how much additional data we really have. 5902 */ 5903 add_len = scsi_2btoul(dev->additional_length); 5904 add_len = MIN(add_len, valid_len - 5905 __offsetof(struct scsi_transportid_iscsi_device, 5906 iscsi_name)); 5907 iscsi_name = &dev->iscsi_name[0]; 5908 5909 } else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5910 SCSI_TRN_ISCSI_FORMAT_PORT) { 5911 struct scsi_transportid_iscsi_port *port; 5912 5913 port = (struct scsi_transportid_iscsi_port *)hdr; 5914 5915 add_len = scsi_2btoul(port->additional_length); 5916 add_len = MIN(add_len, valid_len - 5917 __offsetof(struct scsi_transportid_iscsi_port, 5918 iscsi_name)); 5919 iscsi_name = &port->iscsi_name[0]; 5920 } else { 5921 sbuf_printf(sb, "unknown format %x", 5922 (hdr->format_protocol & 5923 SCSI_TRN_FORMAT_MASK) >> 5924 SCSI_TRN_FORMAT_SHIFT); 5925 break; 5926 } 5927 if (add_len == 0) { 5928 sbuf_cat(sb, "not enough data"); 5929 break; 5930 } 5931 /* 5932 * This is supposed to be a NUL-terminated ASCII 5933 * string, but you never know. So we're going to 5934 * check. We need to do this because there is no 5935 * sbuf equivalent of strncat(). 5936 */ 5937 for (i = 0; i < add_len; i++) { 5938 if (iscsi_name[i] == '\0') { 5939 nul_found = 1; 5940 break; 5941 } 5942 } 5943 /* 5944 * If there is a NUL in the name, we can just use 5945 * sbuf_cat(). Otherwise we need to use sbuf_bcat(). 5946 */ 5947 if (nul_found != 0) 5948 sbuf_cat(sb, iscsi_name); 5949 else 5950 sbuf_bcat(sb, iscsi_name, add_len); 5951 break; 5952 } 5953 case SCSI_PROTO_SAS: { 5954 struct scsi_transportid_sas *sas; 5955 uint64_t sas_addr; 5956 5957 sas = (struct scsi_transportid_sas *)hdr; 5958 5959 sas_addr = scsi_8btou64(sas->sas_address); 5960 sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr); 5961 break; 5962 } 5963 case SCSI_PROTO_ADITP: 5964 case SCSI_PROTO_ATA: 5965 case SCSI_PROTO_UAS: 5966 /* 5967 * No Transport ID format for ADI, ATA or USB is defined in 5968 * SPC-4. 5969 */ 5970 sbuf_printf(sb, "No known Transport ID format for protocol " 5971 "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5972 break; 5973 case SCSI_PROTO_SOP: { 5974 struct scsi_transportid_sop *sop; 5975 struct scsi_sop_routing_id_norm *rid; 5976 5977 sop = (struct scsi_transportid_sop *)hdr; 5978 rid = (struct scsi_sop_routing_id_norm *)sop->routing_id; 5979 5980 /* 5981 * Note that there is no alternate format specified in SPC-4 5982 * for the PCIe routing ID, so we don't really have a way 5983 * to know whether the second byte of the routing ID is 5984 * a device and function or just a function. So we just 5985 * assume bus,device,function. 5986 */ 5987 sbuf_printf(sb, "SOP Routing ID: %u,%u,%u", 5988 rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT, 5989 rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX); 5990 break; 5991 } 5992 case SCSI_PROTO_NONE: 5993 default: 5994 sbuf_printf(sb, "Unknown protocol %#x", 5995 hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5996 break; 5997 } 5998 5999 return (0); 6000 } 6001 6002 struct scsi_nv scsi_proto_map[] = { 6003 { "fcp", SCSI_PROTO_FC }, 6004 { "spi", SCSI_PROTO_SPI }, 6005 { "ssa", SCSI_PROTO_SSA }, 6006 { "sbp", SCSI_PROTO_1394 }, 6007 { "1394", SCSI_PROTO_1394 }, 6008 { "srp", SCSI_PROTO_RDMA }, 6009 { "rdma", SCSI_PROTO_RDMA }, 6010 { "iscsi", SCSI_PROTO_ISCSI }, 6011 { "iqn", SCSI_PROTO_ISCSI }, 6012 { "sas", SCSI_PROTO_SAS }, 6013 { "aditp", SCSI_PROTO_ADITP }, 6014 { "ata", SCSI_PROTO_ATA }, 6015 { "uas", SCSI_PROTO_UAS }, 6016 { "usb", SCSI_PROTO_UAS }, 6017 { "sop", SCSI_PROTO_SOP } 6018 }; 6019 6020 const char * 6021 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value) 6022 { 6023 int i; 6024 6025 for (i = 0; i < num_table_entries; i++) { 6026 if (table[i].value == value) 6027 return (table[i].name); 6028 } 6029 6030 return (NULL); 6031 } 6032 6033 /* 6034 * Given a name/value table, find a value matching the given name. 6035 * Return values: 6036 * SCSI_NV_FOUND - match found 6037 * SCSI_NV_AMBIGUOUS - more than one match, none of them exact 6038 * SCSI_NV_NOT_FOUND - no match found 6039 */ 6040 scsi_nv_status 6041 scsi_get_nv(struct scsi_nv *table, int num_table_entries, 6042 char *name, int *table_entry, scsi_nv_flags flags) 6043 { 6044 int i, num_matches = 0; 6045 6046 for (i = 0; i < num_table_entries; i++) { 6047 size_t table_len, name_len; 6048 6049 table_len = strlen(table[i].name); 6050 name_len = strlen(name); 6051 6052 if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0) 6053 && (strncasecmp(table[i].name, name, name_len) == 0)) 6054 || (((flags & SCSI_NV_FLAG_IG_CASE) == 0) 6055 && (strncmp(table[i].name, name, name_len) == 0))) { 6056 *table_entry = i; 6057 6058 /* 6059 * Check for an exact match. If we have the same 6060 * number of characters in the table as the argument, 6061 * and we already know they're the same, we have 6062 * an exact match. 6063 */ 6064 if (table_len == name_len) 6065 return (SCSI_NV_FOUND); 6066 6067 /* 6068 * Otherwise, bump up the number of matches. We'll 6069 * see later how many we have. 6070 */ 6071 num_matches++; 6072 } 6073 } 6074 6075 if (num_matches > 1) 6076 return (SCSI_NV_AMBIGUOUS); 6077 else if (num_matches == 1) 6078 return (SCSI_NV_FOUND); 6079 else 6080 return (SCSI_NV_NOT_FOUND); 6081 } 6082 6083 /* 6084 * Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are 6085 * all 64-bit numbers, the code is similar. 6086 */ 6087 int 6088 scsi_parse_transportid_64bit(int proto_id, char *id_str, 6089 struct scsi_transportid_header **hdr, 6090 unsigned int *alloc_len, 6091 #ifdef _KERNEL 6092 struct malloc_type *type, int flags, 6093 #endif 6094 char *error_str, int error_str_len) 6095 { 6096 uint64_t value; 6097 char *endptr; 6098 int retval; 6099 size_t alloc_size; 6100 6101 retval = 0; 6102 6103 value = strtouq(id_str, &endptr, 0); 6104 if (*endptr != '\0') { 6105 if (error_str != NULL) { 6106 snprintf(error_str, error_str_len, "%s: error " 6107 "parsing ID %s, 64-bit number required", 6108 __func__, id_str); 6109 } 6110 retval = 1; 6111 goto bailout; 6112 } 6113 6114 switch (proto_id) { 6115 case SCSI_PROTO_FC: 6116 alloc_size = sizeof(struct scsi_transportid_fcp); 6117 break; 6118 case SCSI_PROTO_1394: 6119 alloc_size = sizeof(struct scsi_transportid_1394); 6120 break; 6121 case SCSI_PROTO_SAS: 6122 alloc_size = sizeof(struct scsi_transportid_sas); 6123 break; 6124 default: 6125 if (error_str != NULL) { 6126 snprintf(error_str, error_str_len, "%s: unsupported " 6127 "protocol %d", __func__, proto_id); 6128 } 6129 retval = 1; 6130 goto bailout; 6131 break; /* NOTREACHED */ 6132 } 6133 #ifdef _KERNEL 6134 *hdr = malloc(alloc_size, type, flags); 6135 #else /* _KERNEL */ 6136 *hdr = malloc(alloc_size); 6137 #endif /*_KERNEL */ 6138 if (*hdr == NULL) { 6139 if (error_str != NULL) { 6140 snprintf(error_str, error_str_len, "%s: unable to " 6141 "allocate %zu bytes", __func__, alloc_size); 6142 } 6143 retval = 1; 6144 goto bailout; 6145 } 6146 6147 *alloc_len = alloc_size; 6148 6149 bzero(*hdr, alloc_size); 6150 6151 switch (proto_id) { 6152 case SCSI_PROTO_FC: { 6153 struct scsi_transportid_fcp *fcp; 6154 6155 fcp = (struct scsi_transportid_fcp *)(*hdr); 6156 fcp->format_protocol = SCSI_PROTO_FC | 6157 SCSI_TRN_FCP_FORMAT_DEFAULT; 6158 scsi_u64to8b(value, fcp->n_port_name); 6159 break; 6160 } 6161 case SCSI_PROTO_1394: { 6162 struct scsi_transportid_1394 *sbp; 6163 6164 sbp = (struct scsi_transportid_1394 *)(*hdr); 6165 sbp->format_protocol = SCSI_PROTO_1394 | 6166 SCSI_TRN_1394_FORMAT_DEFAULT; 6167 scsi_u64to8b(value, sbp->eui64); 6168 break; 6169 } 6170 case SCSI_PROTO_SAS: { 6171 struct scsi_transportid_sas *sas; 6172 6173 sas = (struct scsi_transportid_sas *)(*hdr); 6174 sas->format_protocol = SCSI_PROTO_SAS | 6175 SCSI_TRN_SAS_FORMAT_DEFAULT; 6176 scsi_u64to8b(value, sas->sas_address); 6177 break; 6178 } 6179 default: 6180 break; 6181 } 6182 bailout: 6183 return (retval); 6184 } 6185 6186 /* 6187 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port 6188 */ 6189 int 6190 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr, 6191 unsigned int *alloc_len, 6192 #ifdef _KERNEL 6193 struct malloc_type *type, int flags, 6194 #endif 6195 char *error_str, int error_str_len) 6196 { 6197 unsigned long scsi_addr, target_port; 6198 struct scsi_transportid_spi *spi; 6199 char *tmpstr, *endptr; 6200 int retval; 6201 6202 retval = 0; 6203 6204 tmpstr = strsep(&id_str, ","); 6205 if (tmpstr == NULL) { 6206 if (error_str != NULL) { 6207 snprintf(error_str, error_str_len, 6208 "%s: no ID found", __func__); 6209 } 6210 retval = 1; 6211 goto bailout; 6212 } 6213 scsi_addr = strtoul(tmpstr, &endptr, 0); 6214 if (*endptr != '\0') { 6215 if (error_str != NULL) { 6216 snprintf(error_str, error_str_len, "%s: error " 6217 "parsing SCSI ID %s, number required", 6218 __func__, tmpstr); 6219 } 6220 retval = 1; 6221 goto bailout; 6222 } 6223 6224 if (id_str == NULL) { 6225 if (error_str != NULL) { 6226 snprintf(error_str, error_str_len, "%s: no relative " 6227 "target port found", __func__); 6228 } 6229 retval = 1; 6230 goto bailout; 6231 } 6232 6233 target_port = strtoul(id_str, &endptr, 0); 6234 if (*endptr != '\0') { 6235 if (error_str != NULL) { 6236 snprintf(error_str, error_str_len, "%s: error " 6237 "parsing relative target port %s, number " 6238 "required", __func__, id_str); 6239 } 6240 retval = 1; 6241 goto bailout; 6242 } 6243 #ifdef _KERNEL 6244 spi = malloc(sizeof(*spi), type, flags); 6245 #else 6246 spi = malloc(sizeof(*spi)); 6247 #endif 6248 if (spi == NULL) { 6249 if (error_str != NULL) { 6250 snprintf(error_str, error_str_len, "%s: unable to " 6251 "allocate %zu bytes", __func__, 6252 sizeof(*spi)); 6253 } 6254 retval = 1; 6255 goto bailout; 6256 } 6257 *alloc_len = sizeof(*spi); 6258 bzero(spi, sizeof(*spi)); 6259 6260 spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT; 6261 scsi_ulto2b(scsi_addr, spi->scsi_addr); 6262 scsi_ulto2b(target_port, spi->rel_trgt_port_id); 6263 6264 *hdr = (struct scsi_transportid_header *)spi; 6265 bailout: 6266 return (retval); 6267 } 6268 6269 /* 6270 * Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits, 6271 * optionally prefixed by "0x" or "0X". 6272 */ 6273 int 6274 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr, 6275 unsigned int *alloc_len, 6276 #ifdef _KERNEL 6277 struct malloc_type *type, int flags, 6278 #endif 6279 char *error_str, int error_str_len) 6280 { 6281 struct scsi_transportid_rdma *rdma; 6282 int retval; 6283 size_t id_len, rdma_id_size; 6284 uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN]; 6285 char *tmpstr; 6286 unsigned int i, j; 6287 6288 retval = 0; 6289 id_len = strlen(id_str); 6290 rdma_id_size = SCSI_TRN_RDMA_PORT_LEN; 6291 6292 /* 6293 * Check the size. It needs to be either 32 or 34 characters long. 6294 */ 6295 if ((id_len != (rdma_id_size * 2)) 6296 && (id_len != ((rdma_id_size * 2) + 2))) { 6297 if (error_str != NULL) { 6298 snprintf(error_str, error_str_len, "%s: RDMA ID " 6299 "must be 32 hex digits (0x prefix " 6300 "optional), only %zu seen", __func__, id_len); 6301 } 6302 retval = 1; 6303 goto bailout; 6304 } 6305 6306 tmpstr = id_str; 6307 /* 6308 * If the user gave us 34 characters, the string needs to start 6309 * with '0x'. 6310 */ 6311 if (id_len == ((rdma_id_size * 2) + 2)) { 6312 if ((tmpstr[0] == '0') 6313 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) { 6314 tmpstr += 2; 6315 } else { 6316 if (error_str != NULL) { 6317 snprintf(error_str, error_str_len, "%s: RDMA " 6318 "ID prefix, if used, must be \"0x\", " 6319 "got %s", __func__, tmpstr); 6320 } 6321 retval = 1; 6322 goto bailout; 6323 } 6324 } 6325 bzero(rdma_id, sizeof(rdma_id)); 6326 6327 /* 6328 * Convert ASCII hex into binary bytes. There is no standard 6329 * 128-bit integer type, and so no strtou128t() routine to convert 6330 * from hex into a large integer. In the end, we're not going to 6331 * an integer, but rather to a byte array, so that and the fact 6332 * that we require the user to give us 32 hex digits simplifies the 6333 * logic. 6334 */ 6335 for (i = 0; i < (rdma_id_size * 2); i++) { 6336 int cur_shift; 6337 unsigned char c; 6338 6339 /* Increment the byte array one for every 2 hex digits */ 6340 j = i >> 1; 6341 6342 /* 6343 * The first digit in every pair is the most significant 6344 * 4 bits. The second is the least significant 4 bits. 6345 */ 6346 if ((i % 2) == 0) 6347 cur_shift = 4; 6348 else 6349 cur_shift = 0; 6350 6351 c = tmpstr[i]; 6352 /* Convert the ASCII hex character into a number */ 6353 if (isdigit(c)) 6354 c -= '0'; 6355 else if (isalpha(c)) 6356 c -= isupper(c) ? 'A' - 10 : 'a' - 10; 6357 else { 6358 if (error_str != NULL) { 6359 snprintf(error_str, error_str_len, "%s: " 6360 "RDMA ID must be hex digits, got " 6361 "invalid character %c", __func__, 6362 tmpstr[i]); 6363 } 6364 retval = 1; 6365 goto bailout; 6366 } 6367 /* 6368 * The converted number can't be less than 0; the type is 6369 * unsigned, and the subtraction logic will not give us 6370 * a negative number. So we only need to make sure that 6371 * the value is not greater than 0xf. (i.e. make sure the 6372 * user didn't give us a value like "0x12jklmno"). 6373 */ 6374 if (c > 0xf) { 6375 if (error_str != NULL) { 6376 snprintf(error_str, error_str_len, "%s: " 6377 "RDMA ID must be hex digits, got " 6378 "invalid character %c", __func__, 6379 tmpstr[i]); 6380 } 6381 retval = 1; 6382 goto bailout; 6383 } 6384 6385 rdma_id[j] |= c << cur_shift; 6386 } 6387 6388 #ifdef _KERNEL 6389 rdma = malloc(sizeof(*rdma), type, flags); 6390 #else 6391 rdma = malloc(sizeof(*rdma)); 6392 #endif 6393 if (rdma == NULL) { 6394 if (error_str != NULL) { 6395 snprintf(error_str, error_str_len, "%s: unable to " 6396 "allocate %zu bytes", __func__, 6397 sizeof(*rdma)); 6398 } 6399 retval = 1; 6400 goto bailout; 6401 } 6402 *alloc_len = sizeof(*rdma); 6403 bzero(rdma, *alloc_len); 6404 6405 rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT; 6406 bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN); 6407 6408 *hdr = (struct scsi_transportid_header *)rdma; 6409 6410 bailout: 6411 return (retval); 6412 } 6413 6414 /* 6415 * Parse an iSCSI name. The format is either just the name: 6416 * 6417 * iqn.2012-06.com.example:target0 6418 * or the name, separator and initiator session ID: 6419 * 6420 * iqn.2012-06.com.example:target0,i,0x123 6421 * 6422 * The separator format is exact. 6423 */ 6424 int 6425 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr, 6426 unsigned int *alloc_len, 6427 #ifdef _KERNEL 6428 struct malloc_type *type, int flags, 6429 #endif 6430 char *error_str, int error_str_len) 6431 { 6432 size_t id_len, sep_len, id_size, name_len; 6433 int retval; 6434 unsigned int i, sep_pos, sep_found; 6435 const char *sep_template = ",i,0x"; 6436 const char *iqn_prefix = "iqn."; 6437 struct scsi_transportid_iscsi_device *iscsi; 6438 6439 retval = 0; 6440 sep_found = 0; 6441 6442 id_len = strlen(id_str); 6443 sep_len = strlen(sep_template); 6444 6445 /* 6446 * The separator is defined as exactly ',i,0x'. Any other commas, 6447 * or any other form, is an error. So look for a comma, and once 6448 * we find that, the next few characters must match the separator 6449 * exactly. Once we get through the separator, there should be at 6450 * least one character. 6451 */ 6452 for (i = 0, sep_pos = 0; i < id_len; i++) { 6453 if (sep_pos == 0) { 6454 if (id_str[i] == sep_template[sep_pos]) 6455 sep_pos++; 6456 6457 continue; 6458 } 6459 if (sep_pos < sep_len) { 6460 if (id_str[i] == sep_template[sep_pos]) { 6461 sep_pos++; 6462 continue; 6463 } 6464 if (error_str != NULL) { 6465 snprintf(error_str, error_str_len, "%s: " 6466 "invalid separator in iSCSI name " 6467 "\"%s\"", 6468 __func__, id_str); 6469 } 6470 retval = 1; 6471 goto bailout; 6472 } else { 6473 sep_found = 1; 6474 break; 6475 } 6476 } 6477 6478 /* 6479 * Check to see whether we have a separator but no digits after it. 6480 */ 6481 if ((sep_pos != 0) 6482 && (sep_found == 0)) { 6483 if (error_str != NULL) { 6484 snprintf(error_str, error_str_len, "%s: no digits " 6485 "found after separator in iSCSI name \"%s\"", 6486 __func__, id_str); 6487 } 6488 retval = 1; 6489 goto bailout; 6490 } 6491 6492 /* 6493 * The incoming ID string has the "iqn." prefix stripped off. We 6494 * need enough space for the base structure (the structures are the 6495 * same for the two iSCSI forms), the prefix, the ID string and a 6496 * terminating NUL. 6497 */ 6498 id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1; 6499 6500 #ifdef _KERNEL 6501 iscsi = malloc(id_size, type, flags); 6502 #else 6503 iscsi = malloc(id_size); 6504 #endif 6505 if (iscsi == NULL) { 6506 if (error_str != NULL) { 6507 snprintf(error_str, error_str_len, "%s: unable to " 6508 "allocate %zu bytes", __func__, id_size); 6509 } 6510 retval = 1; 6511 goto bailout; 6512 } 6513 *alloc_len = id_size; 6514 bzero(iscsi, id_size); 6515 6516 iscsi->format_protocol = SCSI_PROTO_ISCSI; 6517 if (sep_found == 0) 6518 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE; 6519 else 6520 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT; 6521 name_len = id_size - sizeof(*iscsi); 6522 scsi_ulto2b(name_len, iscsi->additional_length); 6523 snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str); 6524 6525 *hdr = (struct scsi_transportid_header *)iscsi; 6526 6527 bailout: 6528 return (retval); 6529 } 6530 6531 /* 6532 * Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be 6533 * of the form 'bus,device,function' or 'bus,function'. 6534 */ 6535 int 6536 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr, 6537 unsigned int *alloc_len, 6538 #ifdef _KERNEL 6539 struct malloc_type *type, int flags, 6540 #endif 6541 char *error_str, int error_str_len) 6542 { 6543 struct scsi_transportid_sop *sop; 6544 unsigned long bus, device, function; 6545 char *tmpstr, *endptr; 6546 int retval, device_spec; 6547 6548 retval = 0; 6549 device_spec = 0; 6550 device = 0; 6551 6552 tmpstr = strsep(&id_str, ","); 6553 if ((tmpstr == NULL) 6554 || (*tmpstr == '\0')) { 6555 if (error_str != NULL) { 6556 snprintf(error_str, error_str_len, "%s: no ID found", 6557 __func__); 6558 } 6559 retval = 1; 6560 goto bailout; 6561 } 6562 bus = strtoul(tmpstr, &endptr, 0); 6563 if (*endptr != '\0') { 6564 if (error_str != NULL) { 6565 snprintf(error_str, error_str_len, "%s: error " 6566 "parsing PCIe bus %s, number required", 6567 __func__, tmpstr); 6568 } 6569 retval = 1; 6570 goto bailout; 6571 } 6572 if ((id_str == NULL) 6573 || (*id_str == '\0')) { 6574 if (error_str != NULL) { 6575 snprintf(error_str, error_str_len, "%s: no PCIe " 6576 "device or function found", __func__); 6577 } 6578 retval = 1; 6579 goto bailout; 6580 } 6581 tmpstr = strsep(&id_str, ","); 6582 function = strtoul(tmpstr, &endptr, 0); 6583 if (*endptr != '\0') { 6584 if (error_str != NULL) { 6585 snprintf(error_str, error_str_len, "%s: error " 6586 "parsing PCIe device/function %s, number " 6587 "required", __func__, tmpstr); 6588 } 6589 retval = 1; 6590 goto bailout; 6591 } 6592 /* 6593 * Check to see whether the user specified a third value. If so, 6594 * the second is the device. 6595 */ 6596 if (id_str != NULL) { 6597 if (*id_str == '\0') { 6598 if (error_str != NULL) { 6599 snprintf(error_str, error_str_len, "%s: " 6600 "no PCIe function found", __func__); 6601 } 6602 retval = 1; 6603 goto bailout; 6604 } 6605 device = function; 6606 device_spec = 1; 6607 function = strtoul(id_str, &endptr, 0); 6608 if (*endptr != '\0') { 6609 if (error_str != NULL) { 6610 snprintf(error_str, error_str_len, "%s: " 6611 "error parsing PCIe function %s, " 6612 "number required", __func__, id_str); 6613 } 6614 retval = 1; 6615 goto bailout; 6616 } 6617 } 6618 if (bus > SCSI_TRN_SOP_BUS_MAX) { 6619 if (error_str != NULL) { 6620 snprintf(error_str, error_str_len, "%s: bus value " 6621 "%lu greater than maximum %u", __func__, 6622 bus, SCSI_TRN_SOP_BUS_MAX); 6623 } 6624 retval = 1; 6625 goto bailout; 6626 } 6627 6628 if ((device_spec != 0) 6629 && (device > SCSI_TRN_SOP_DEV_MASK)) { 6630 if (error_str != NULL) { 6631 snprintf(error_str, error_str_len, "%s: device value " 6632 "%lu greater than maximum %u", __func__, 6633 device, SCSI_TRN_SOP_DEV_MAX); 6634 } 6635 retval = 1; 6636 goto bailout; 6637 } 6638 6639 if (((device_spec != 0) 6640 && (function > SCSI_TRN_SOP_FUNC_NORM_MAX)) 6641 || ((device_spec == 0) 6642 && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) { 6643 if (error_str != NULL) { 6644 snprintf(error_str, error_str_len, "%s: function value " 6645 "%lu greater than maximum %u", __func__, 6646 function, (device_spec == 0) ? 6647 SCSI_TRN_SOP_FUNC_ALT_MAX : 6648 SCSI_TRN_SOP_FUNC_NORM_MAX); 6649 } 6650 retval = 1; 6651 goto bailout; 6652 } 6653 6654 #ifdef _KERNEL 6655 sop = malloc(sizeof(*sop), type, flags); 6656 #else 6657 sop = malloc(sizeof(*sop)); 6658 #endif 6659 if (sop == NULL) { 6660 if (error_str != NULL) { 6661 snprintf(error_str, error_str_len, "%s: unable to " 6662 "allocate %zu bytes", __func__, sizeof(*sop)); 6663 } 6664 retval = 1; 6665 goto bailout; 6666 } 6667 *alloc_len = sizeof(*sop); 6668 bzero(sop, sizeof(*sop)); 6669 sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT; 6670 if (device_spec != 0) { 6671 struct scsi_sop_routing_id_norm rid; 6672 6673 rid.bus = bus; 6674 rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function; 6675 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6676 sizeof(sop->routing_id))); 6677 } else { 6678 struct scsi_sop_routing_id_alt rid; 6679 6680 rid.bus = bus; 6681 rid.function = function; 6682 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6683 sizeof(sop->routing_id))); 6684 } 6685 6686 *hdr = (struct scsi_transportid_header *)sop; 6687 bailout: 6688 return (retval); 6689 } 6690 6691 /* 6692 * transportid_str: NUL-terminated string with format: protcol,id 6693 * The ID is protocol specific. 6694 * hdr: Storage will be allocated for the transport ID. 6695 * alloc_len: The amount of memory allocated is returned here. 6696 * type: Malloc bucket (kernel only). 6697 * flags: Malloc flags (kernel only). 6698 * error_str: If non-NULL, it will contain error information (without 6699 * a terminating newline) if an error is returned. 6700 * error_str_len: Allocated length of the error string. 6701 * 6702 * Returns 0 for success, non-zero for failure. 6703 */ 6704 int 6705 scsi_parse_transportid(char *transportid_str, 6706 struct scsi_transportid_header **hdr, 6707 unsigned int *alloc_len, 6708 #ifdef _KERNEL 6709 struct malloc_type *type, int flags, 6710 #endif 6711 char *error_str, int error_str_len) 6712 { 6713 char *tmpstr; 6714 scsi_nv_status status; 6715 u_int num_proto_entries; 6716 int retval, table_entry; 6717 6718 retval = 0; 6719 table_entry = 0; 6720 6721 /* 6722 * We do allow a period as well as a comma to separate the protocol 6723 * from the ID string. This is to accommodate iSCSI names, which 6724 * start with "iqn.". 6725 */ 6726 tmpstr = strsep(&transportid_str, ",."); 6727 if (tmpstr == NULL) { 6728 if (error_str != NULL) { 6729 snprintf(error_str, error_str_len, 6730 "%s: transportid_str is NULL", __func__); 6731 } 6732 retval = 1; 6733 goto bailout; 6734 } 6735 6736 num_proto_entries = nitems(scsi_proto_map); 6737 status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr, 6738 &table_entry, SCSI_NV_FLAG_IG_CASE); 6739 if (status != SCSI_NV_FOUND) { 6740 if (error_str != NULL) { 6741 snprintf(error_str, error_str_len, "%s: %s protocol " 6742 "name %s", __func__, 6743 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" : 6744 "invalid", tmpstr); 6745 } 6746 retval = 1; 6747 goto bailout; 6748 } 6749 switch (scsi_proto_map[table_entry].value) { 6750 case SCSI_PROTO_FC: 6751 case SCSI_PROTO_1394: 6752 case SCSI_PROTO_SAS: 6753 retval = scsi_parse_transportid_64bit( 6754 scsi_proto_map[table_entry].value, transportid_str, hdr, 6755 alloc_len, 6756 #ifdef _KERNEL 6757 type, flags, 6758 #endif 6759 error_str, error_str_len); 6760 break; 6761 case SCSI_PROTO_SPI: 6762 retval = scsi_parse_transportid_spi(transportid_str, hdr, 6763 alloc_len, 6764 #ifdef _KERNEL 6765 type, flags, 6766 #endif 6767 error_str, error_str_len); 6768 break; 6769 case SCSI_PROTO_RDMA: 6770 retval = scsi_parse_transportid_rdma(transportid_str, hdr, 6771 alloc_len, 6772 #ifdef _KERNEL 6773 type, flags, 6774 #endif 6775 error_str, error_str_len); 6776 break; 6777 case SCSI_PROTO_ISCSI: 6778 retval = scsi_parse_transportid_iscsi(transportid_str, hdr, 6779 alloc_len, 6780 #ifdef _KERNEL 6781 type, flags, 6782 #endif 6783 error_str, error_str_len); 6784 break; 6785 case SCSI_PROTO_SOP: 6786 retval = scsi_parse_transportid_sop(transportid_str, hdr, 6787 alloc_len, 6788 #ifdef _KERNEL 6789 type, flags, 6790 #endif 6791 error_str, error_str_len); 6792 break; 6793 case SCSI_PROTO_SSA: 6794 case SCSI_PROTO_ADITP: 6795 case SCSI_PROTO_ATA: 6796 case SCSI_PROTO_UAS: 6797 case SCSI_PROTO_NONE: 6798 default: 6799 /* 6800 * There is no format defined for a Transport ID for these 6801 * protocols. So even if the user gives us something, we 6802 * have no way to turn it into a standard SCSI Transport ID. 6803 */ 6804 retval = 1; 6805 if (error_str != NULL) { 6806 snprintf(error_str, error_str_len, "%s: no Transport " 6807 "ID format exists for protocol %s", 6808 __func__, tmpstr); 6809 } 6810 goto bailout; 6811 break; /* NOTREACHED */ 6812 } 6813 bailout: 6814 return (retval); 6815 } 6816 6817 struct scsi_attrib_table_entry scsi_mam_attr_table[] = { 6818 { SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6819 "Remaining Capacity in Partition", 6820 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL }, 6821 { SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6822 "Maximum Capacity in Partition", 6823 /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6824 { SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX, 6825 "TapeAlert Flags", 6826 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6827 { SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE, 6828 "Load Count", 6829 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6830 { SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE, 6831 "MAM Space Remaining", 6832 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6833 /*parse_str*/ NULL }, 6834 { SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6835 "Assigning Organization", 6836 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6837 /*parse_str*/ NULL }, 6838 { SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6839 "Format Density Code", 6840 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6841 { SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE, 6842 "Initialization Count", 6843 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6844 { SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE, 6845 "Volume Identifier", 6846 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6847 /*parse_str*/ NULL }, 6848 { SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX, 6849 "Volume Change Reference", 6850 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6851 /*parse_str*/ NULL }, 6852 { SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE, 6853 "Device Vendor/Serial at Last Load", 6854 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6855 /*parse_str*/ NULL }, 6856 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE, 6857 "Device Vendor/Serial at Last Load - 1", 6858 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6859 /*parse_str*/ NULL }, 6860 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE, 6861 "Device Vendor/Serial at Last Load - 2", 6862 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6863 /*parse_str*/ NULL }, 6864 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE, 6865 "Device Vendor/Serial at Last Load - 3", 6866 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6867 /*parse_str*/ NULL }, 6868 { SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE, 6869 "Total MB Written in Medium Life", 6870 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6871 /*parse_str*/ NULL }, 6872 { SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE, 6873 "Total MB Read in Medium Life", 6874 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6875 /*parse_str*/ NULL }, 6876 { SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE, 6877 "Total MB Written in Current/Last Load", 6878 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6879 /*parse_str*/ NULL }, 6880 { SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE, 6881 "Total MB Read in Current/Last Load", 6882 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6883 /*parse_str*/ NULL }, 6884 { SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6885 "Logical Position of First Encrypted Block", 6886 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6887 /*parse_str*/ NULL }, 6888 { SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6889 "Logical Position of First Unencrypted Block after First " 6890 "Encrypted Block", 6891 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6892 /*parse_str*/ NULL }, 6893 { SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6894 "Medium Usage History", 6895 /*suffix*/ NULL, /*to_str*/ NULL, 6896 /*parse_str*/ NULL }, 6897 { SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6898 "Partition Usage History", 6899 /*suffix*/ NULL, /*to_str*/ NULL, 6900 /*parse_str*/ NULL }, 6901 { SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE, 6902 "Medium Manufacturer", 6903 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6904 /*parse_str*/ NULL }, 6905 { SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE, 6906 "Medium Serial Number", 6907 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6908 /*parse_str*/ NULL }, 6909 { SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE, 6910 "Medium Length", 6911 /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf, 6912 /*parse_str*/ NULL }, 6913 { SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 | 6914 SCSI_ATTR_FLAG_FP_1DIGIT, 6915 "Medium Width", 6916 /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf, 6917 /*parse_str*/ NULL }, 6918 { SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6919 "Assigning Organization", 6920 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6921 /*parse_str*/ NULL }, 6922 { SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6923 "Medium Density Code", 6924 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6925 /*parse_str*/ NULL }, 6926 { SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE, 6927 "Medium Manufacture Date", 6928 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6929 /*parse_str*/ NULL }, 6930 { SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE, 6931 "MAM Capacity", 6932 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6933 /*parse_str*/ NULL }, 6934 { SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX, 6935 "Medium Type", 6936 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6937 /*parse_str*/ NULL }, 6938 { SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX, 6939 "Medium Type Information", 6940 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6941 /*parse_str*/ NULL }, 6942 { SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE, 6943 "Medium Serial Number", 6944 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6945 /*parse_str*/ NULL }, 6946 { SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE, 6947 "Application Vendor", 6948 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6949 /*parse_str*/ NULL }, 6950 { SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE, 6951 "Application Name", 6952 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6953 /*parse_str*/ NULL }, 6954 { SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE, 6955 "Application Version", 6956 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6957 /*parse_str*/ NULL }, 6958 { SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE, 6959 "User Medium Text Label", 6960 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6961 /*parse_str*/ NULL }, 6962 { SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE, 6963 "Date and Time Last Written", 6964 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6965 /*parse_str*/ NULL }, 6966 { SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX, 6967 "Text Localization Identifier", 6968 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6969 /*parse_str*/ NULL }, 6970 { SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE, 6971 "Barcode", 6972 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6973 /*parse_str*/ NULL }, 6974 { SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE, 6975 "Owning Host Textual Name", 6976 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6977 /*parse_str*/ NULL }, 6978 { SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE, 6979 "Media Pool", 6980 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6981 /*parse_str*/ NULL }, 6982 { SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE, 6983 "Partition User Text Label", 6984 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6985 /*parse_str*/ NULL }, 6986 { SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE, 6987 "Load/Unload at Partition", 6988 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6989 /*parse_str*/ NULL }, 6990 { SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE, 6991 "Application Format Version", 6992 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6993 /*parse_str*/ NULL }, 6994 { SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE, 6995 "Volume Coherency Information", 6996 /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf, 6997 /*parse_str*/ NULL }, 6998 { 0x0ff1, SCSI_ATTR_FLAG_NONE, 6999 "Spectra MLM Creation", 7000 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7001 /*parse_str*/ NULL }, 7002 { 0x0ff2, SCSI_ATTR_FLAG_NONE, 7003 "Spectra MLM C3", 7004 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7005 /*parse_str*/ NULL }, 7006 { 0x0ff3, SCSI_ATTR_FLAG_NONE, 7007 "Spectra MLM RW", 7008 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7009 /*parse_str*/ NULL }, 7010 { 0x0ff4, SCSI_ATTR_FLAG_NONE, 7011 "Spectra MLM SDC List", 7012 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7013 /*parse_str*/ NULL }, 7014 { 0x0ff7, SCSI_ATTR_FLAG_NONE, 7015 "Spectra MLM Post Scan", 7016 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7017 /*parse_str*/ NULL }, 7018 { 0x0ffe, SCSI_ATTR_FLAG_NONE, 7019 "Spectra MLM Checksum", 7020 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7021 /*parse_str*/ NULL }, 7022 { 0x17f1, SCSI_ATTR_FLAG_NONE, 7023 "Spectra MLM Creation", 7024 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7025 /*parse_str*/ NULL }, 7026 { 0x17f2, SCSI_ATTR_FLAG_NONE, 7027 "Spectra MLM C3", 7028 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7029 /*parse_str*/ NULL }, 7030 { 0x17f3, SCSI_ATTR_FLAG_NONE, 7031 "Spectra MLM RW", 7032 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7033 /*parse_str*/ NULL }, 7034 { 0x17f4, SCSI_ATTR_FLAG_NONE, 7035 "Spectra MLM SDC List", 7036 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7037 /*parse_str*/ NULL }, 7038 { 0x17f7, SCSI_ATTR_FLAG_NONE, 7039 "Spectra MLM Post Scan", 7040 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7041 /*parse_str*/ NULL }, 7042 { 0x17ff, SCSI_ATTR_FLAG_NONE, 7043 "Spectra MLM Checksum", 7044 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7045 /*parse_str*/ NULL }, 7046 }; 7047 7048 /* 7049 * Print out Volume Coherency Information (Attribute 0x080c). 7050 * This field has two variable length members, including one at the 7051 * beginning, so it isn't practical to have a fixed structure definition. 7052 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25, 7053 * 2013. 7054 */ 7055 int 7056 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7057 uint32_t valid_len, uint32_t flags, 7058 uint32_t output_flags, char *error_str, 7059 int error_str_len) 7060 { 7061 size_t avail_len; 7062 uint32_t field_size; 7063 uint64_t tmp_val; 7064 uint8_t *cur_ptr; 7065 int retval; 7066 int vcr_len, as_len; 7067 7068 retval = 0; 7069 tmp_val = 0; 7070 7071 field_size = scsi_2btoul(hdr->length); 7072 avail_len = valid_len - sizeof(*hdr); 7073 if (field_size > avail_len) { 7074 if (error_str != NULL) { 7075 snprintf(error_str, error_str_len, "Available " 7076 "length of attribute ID 0x%.4x %zu < field " 7077 "length %u", scsi_2btoul(hdr->id), avail_len, 7078 field_size); 7079 } 7080 retval = 1; 7081 goto bailout; 7082 } else if (field_size == 0) { 7083 /* 7084 * It isn't clear from the spec whether a field length of 7085 * 0 is invalid here. It probably is, but be lenient here 7086 * to avoid inconveniencing the user. 7087 */ 7088 goto bailout; 7089 } 7090 cur_ptr = hdr->attribute; 7091 vcr_len = *cur_ptr; 7092 cur_ptr++; 7093 7094 sbuf_cat(sb, "\n\tVolume Change Reference Value:"); 7095 7096 switch (vcr_len) { 7097 case 0: 7098 if (error_str != NULL) { 7099 snprintf(error_str, error_str_len, "Volume Change " 7100 "Reference value has length of 0"); 7101 } 7102 retval = 1; 7103 goto bailout; 7104 break; /*NOTREACHED*/ 7105 case 1: 7106 tmp_val = *cur_ptr; 7107 break; 7108 case 2: 7109 tmp_val = scsi_2btoul(cur_ptr); 7110 break; 7111 case 3: 7112 tmp_val = scsi_3btoul(cur_ptr); 7113 break; 7114 case 4: 7115 tmp_val = scsi_4btoul(cur_ptr); 7116 break; 7117 case 8: 7118 tmp_val = scsi_8btou64(cur_ptr); 7119 break; 7120 default: 7121 sbuf_putc(sb, '\n'); 7122 sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0); 7123 break; 7124 } 7125 if (vcr_len <= 8) 7126 sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val); 7127 7128 cur_ptr += vcr_len; 7129 tmp_val = scsi_8btou64(cur_ptr); 7130 sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val); 7131 7132 cur_ptr += sizeof(tmp_val); 7133 tmp_val = scsi_8btou64(cur_ptr); 7134 sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n", 7135 (uintmax_t)tmp_val); 7136 7137 /* 7138 * Figure out how long the Application Client Specific Information 7139 * is and produce a hexdump. 7140 */ 7141 cur_ptr += sizeof(tmp_val); 7142 as_len = scsi_2btoul(cur_ptr); 7143 cur_ptr += sizeof(uint16_t); 7144 sbuf_cat(sb, "\tApplication Client Specific Information: "); 7145 if (((as_len == SCSI_LTFS_VER0_LEN) 7146 || (as_len == SCSI_LTFS_VER1_LEN)) 7147 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) { 7148 sbuf_cat(sb, "LTFS\n"); 7149 cur_ptr += SCSI_LTFS_STR_LEN + 1; 7150 if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0') 7151 cur_ptr[SCSI_LTFS_UUID_LEN] = '\0'; 7152 sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr); 7153 cur_ptr += SCSI_LTFS_UUID_LEN + 1; 7154 /* XXX KDM check the length */ 7155 sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr); 7156 } else { 7157 sbuf_cat(sb, "Unknown\n"); 7158 sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0); 7159 } 7160 7161 bailout: 7162 return (retval); 7163 } 7164 7165 int 7166 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7167 uint32_t valid_len, uint32_t flags, 7168 uint32_t output_flags, char *error_str, 7169 int error_str_len) 7170 { 7171 size_t avail_len; 7172 uint32_t field_size; 7173 struct scsi_attrib_vendser *vendser; 7174 cam_strvis_flags strvis_flags; 7175 int retval = 0; 7176 7177 field_size = scsi_2btoul(hdr->length); 7178 avail_len = valid_len - sizeof(*hdr); 7179 if (field_size > avail_len) { 7180 if (error_str != NULL) { 7181 snprintf(error_str, error_str_len, "Available " 7182 "length of attribute ID 0x%.4x %zu < field " 7183 "length %u", scsi_2btoul(hdr->id), avail_len, 7184 field_size); 7185 } 7186 retval = 1; 7187 goto bailout; 7188 } else if (field_size == 0) { 7189 /* 7190 * A field size of 0 doesn't make sense here. The device 7191 * can at least give you the vendor ID, even if it can't 7192 * give you the serial number. 7193 */ 7194 if (error_str != NULL) { 7195 snprintf(error_str, error_str_len, "The length of " 7196 "attribute ID 0x%.4x is 0", 7197 scsi_2btoul(hdr->id)); 7198 } 7199 retval = 1; 7200 goto bailout; 7201 } 7202 vendser = (struct scsi_attrib_vendser *)hdr->attribute; 7203 7204 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7205 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7206 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7207 break; 7208 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7209 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7210 break; 7211 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7212 default: 7213 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7214 break; 7215 } 7216 cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor), 7217 strvis_flags); 7218 sbuf_putc(sb, ' '); 7219 cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num), 7220 strvis_flags); 7221 bailout: 7222 return (retval); 7223 } 7224 7225 int 7226 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7227 uint32_t valid_len, uint32_t flags, 7228 uint32_t output_flags, char *error_str, 7229 int error_str_len) 7230 { 7231 uint32_t field_size; 7232 ssize_t avail_len; 7233 uint32_t print_len; 7234 uint8_t *num_ptr; 7235 int retval = 0; 7236 7237 field_size = scsi_2btoul(hdr->length); 7238 avail_len = valid_len - sizeof(*hdr); 7239 print_len = MIN(avail_len, field_size); 7240 num_ptr = hdr->attribute; 7241 7242 if (print_len > 0) { 7243 sbuf_putc(sb, '\n'); 7244 sbuf_hexdump(sb, num_ptr, print_len, NULL, 0); 7245 } 7246 7247 return (retval); 7248 } 7249 7250 int 7251 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7252 uint32_t valid_len, uint32_t flags, 7253 uint32_t output_flags, char *error_str, 7254 int error_str_len) 7255 { 7256 uint64_t print_number; 7257 size_t avail_len; 7258 uint32_t number_size; 7259 int retval = 0; 7260 7261 number_size = scsi_2btoul(hdr->length); 7262 7263 avail_len = valid_len - sizeof(*hdr); 7264 if (avail_len < number_size) { 7265 if (error_str != NULL) { 7266 snprintf(error_str, error_str_len, "Available " 7267 "length of attribute ID 0x%.4x %zu < field " 7268 "length %u", scsi_2btoul(hdr->id), avail_len, 7269 number_size); 7270 } 7271 retval = 1; 7272 goto bailout; 7273 } 7274 7275 switch (number_size) { 7276 case 0: 7277 /* 7278 * We don't treat this as an error, since there may be 7279 * scenarios where a device reports a field but then gives 7280 * a length of 0. See the note in scsi_attrib_ascii_sbuf(). 7281 */ 7282 goto bailout; 7283 break; /*NOTREACHED*/ 7284 case 1: 7285 print_number = hdr->attribute[0]; 7286 break; 7287 case 2: 7288 print_number = scsi_2btoul(hdr->attribute); 7289 break; 7290 case 3: 7291 print_number = scsi_3btoul(hdr->attribute); 7292 break; 7293 case 4: 7294 print_number = scsi_4btoul(hdr->attribute); 7295 break; 7296 case 8: 7297 print_number = scsi_8btou64(hdr->attribute); 7298 break; 7299 default: 7300 /* 7301 * If we wind up here, the number is too big to print 7302 * normally, so just do a hexdump. 7303 */ 7304 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7305 flags, output_flags, 7306 error_str, error_str_len); 7307 goto bailout; 7308 break; 7309 } 7310 7311 if (flags & SCSI_ATTR_FLAG_FP) { 7312 #ifndef _KERNEL 7313 long double num_float; 7314 7315 num_float = (long double)print_number; 7316 7317 if (flags & SCSI_ATTR_FLAG_DIV_10) 7318 num_float /= 10; 7319 7320 sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ? 7321 1 : 0, num_float); 7322 #else /* _KERNEL */ 7323 sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ? 7324 (print_number / 10) : print_number); 7325 #endif /* _KERNEL */ 7326 } else if (flags & SCSI_ATTR_FLAG_HEX) { 7327 sbuf_printf(sb, "0x%jx", (uintmax_t)print_number); 7328 } else 7329 sbuf_printf(sb, "%ju", (uintmax_t)print_number); 7330 7331 bailout: 7332 return (retval); 7333 } 7334 7335 int 7336 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7337 uint32_t valid_len, uint32_t flags, 7338 uint32_t output_flags, char *error_str, 7339 int error_str_len) 7340 { 7341 size_t avail_len; 7342 uint32_t field_size, print_size; 7343 int retval = 0; 7344 7345 avail_len = valid_len - sizeof(*hdr); 7346 field_size = scsi_2btoul(hdr->length); 7347 print_size = MIN(avail_len, field_size); 7348 7349 if (print_size > 0) { 7350 cam_strvis_flags strvis_flags; 7351 7352 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7353 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7354 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7355 break; 7356 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7357 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7358 break; 7359 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7360 default: 7361 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7362 break; 7363 } 7364 cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags); 7365 } else if (avail_len < field_size) { 7366 /* 7367 * We only report an error if the user didn't allocate 7368 * enough space to hold the full value of this field. If 7369 * the field length is 0, that is allowed by the spec. 7370 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER 7371 * "This attribute indicates the current volume identifier 7372 * (see SMC-3) of the medium. If the device server supports 7373 * this attribute but does not have access to the volume 7374 * identifier, the device server shall report this attribute 7375 * with an attribute length value of zero." 7376 */ 7377 if (error_str != NULL) { 7378 snprintf(error_str, error_str_len, "Available " 7379 "length of attribute ID 0x%.4x %zu < field " 7380 "length %u", scsi_2btoul(hdr->id), avail_len, 7381 field_size); 7382 } 7383 retval = 1; 7384 } 7385 7386 return (retval); 7387 } 7388 7389 int 7390 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7391 uint32_t valid_len, uint32_t flags, 7392 uint32_t output_flags, char *error_str, 7393 int error_str_len) 7394 { 7395 size_t avail_len; 7396 uint32_t field_size, print_size; 7397 int retval = 0; 7398 int esc_text = 1; 7399 7400 avail_len = valid_len - sizeof(*hdr); 7401 field_size = scsi_2btoul(hdr->length); 7402 print_size = MIN(avail_len, field_size); 7403 7404 if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) == 7405 SCSI_ATTR_OUTPUT_TEXT_RAW) 7406 esc_text = 0; 7407 7408 if (print_size > 0) { 7409 uint32_t i; 7410 7411 for (i = 0; i < print_size; i++) { 7412 if (hdr->attribute[i] == '\0') 7413 continue; 7414 else if (((unsigned char)hdr->attribute[i] < 0x80) 7415 || (esc_text == 0)) 7416 sbuf_putc(sb, hdr->attribute[i]); 7417 else 7418 sbuf_printf(sb, "%%%02x", 7419 (unsigned char)hdr->attribute[i]); 7420 } 7421 } else if (avail_len < field_size) { 7422 /* 7423 * We only report an error if the user didn't allocate 7424 * enough space to hold the full value of this field. 7425 */ 7426 if (error_str != NULL) { 7427 snprintf(error_str, error_str_len, "Available " 7428 "length of attribute ID 0x%.4x %zu < field " 7429 "length %u", scsi_2btoul(hdr->id), avail_len, 7430 field_size); 7431 } 7432 retval = 1; 7433 } 7434 7435 return (retval); 7436 } 7437 7438 struct scsi_attrib_table_entry * 7439 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table, 7440 size_t num_table_entries, uint32_t id) 7441 { 7442 uint32_t i; 7443 7444 for (i = 0; i < num_table_entries; i++) { 7445 if (table[i].id == id) 7446 return (&table[i]); 7447 } 7448 7449 return (NULL); 7450 } 7451 7452 struct scsi_attrib_table_entry * 7453 scsi_get_attrib_entry(uint32_t id) 7454 { 7455 return (scsi_find_attrib_entry(scsi_mam_attr_table, 7456 nitems(scsi_mam_attr_table), id)); 7457 } 7458 7459 int 7460 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len, 7461 struct scsi_mam_attribute_header *hdr, uint32_t output_flags, 7462 char *error_str, size_t error_str_len) 7463 { 7464 int retval; 7465 7466 switch (hdr->byte2 & SMA_FORMAT_MASK) { 7467 case SMA_FORMAT_ASCII: 7468 retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len, 7469 SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len); 7470 break; 7471 case SMA_FORMAT_BINARY: 7472 if (scsi_2btoul(hdr->length) <= 8) 7473 retval = scsi_attrib_int_sbuf(sb, hdr, valid_len, 7474 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7475 error_str_len); 7476 else 7477 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7478 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7479 error_str_len); 7480 break; 7481 case SMA_FORMAT_TEXT: 7482 retval = scsi_attrib_text_sbuf(sb, hdr, valid_len, 7483 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7484 error_str_len); 7485 break; 7486 default: 7487 if (error_str != NULL) { 7488 snprintf(error_str, error_str_len, "Unknown attribute " 7489 "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK); 7490 } 7491 retval = 1; 7492 goto bailout; 7493 break; /*NOTREACHED*/ 7494 } 7495 7496 sbuf_trim(sb); 7497 7498 bailout: 7499 7500 return (retval); 7501 } 7502 7503 void 7504 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags, 7505 struct scsi_mam_attribute_header *hdr, 7506 uint32_t valid_len, const char *desc) 7507 { 7508 int need_space = 0; 7509 uint32_t len; 7510 uint32_t id; 7511 7512 /* 7513 * We can't do anything if we don't have enough valid data for the 7514 * header. 7515 */ 7516 if (valid_len < sizeof(*hdr)) 7517 return; 7518 7519 id = scsi_2btoul(hdr->id); 7520 /* 7521 * Note that we print out the value of the attribute listed in the 7522 * header, regardless of whether we actually got that many bytes 7523 * back from the device through the controller. A truncated result 7524 * could be the result of a failure to ask for enough data; the 7525 * header indicates how many bytes are allocated for this attribute 7526 * in the MAM. 7527 */ 7528 len = scsi_2btoul(hdr->length); 7529 7530 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) == 7531 SCSI_ATTR_OUTPUT_FIELD_NONE) 7532 return; 7533 7534 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC) 7535 && (desc != NULL)) { 7536 sbuf_cat(sb, desc); 7537 need_space = 1; 7538 } 7539 7540 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) { 7541 sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id); 7542 need_space = 0; 7543 } 7544 7545 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) { 7546 sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len); 7547 need_space = 0; 7548 } 7549 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) { 7550 sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "", 7551 (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW"); 7552 } 7553 sbuf_cat(sb, ": "); 7554 } 7555 7556 int 7557 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7558 uint32_t valid_len, struct scsi_attrib_table_entry *user_table, 7559 size_t num_user_entries, int prefer_user_table, 7560 uint32_t output_flags, char *error_str, int error_str_len) 7561 { 7562 int retval; 7563 struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL; 7564 struct scsi_attrib_table_entry *entry = NULL; 7565 size_t table1_size = 0, table2_size = 0; 7566 uint32_t id; 7567 7568 retval = 0; 7569 7570 if (valid_len < sizeof(*hdr)) { 7571 retval = 1; 7572 goto bailout; 7573 } 7574 7575 id = scsi_2btoul(hdr->id); 7576 7577 if (user_table != NULL) { 7578 if (prefer_user_table != 0) { 7579 table1 = user_table; 7580 table1_size = num_user_entries; 7581 table2 = scsi_mam_attr_table; 7582 table2_size = nitems(scsi_mam_attr_table); 7583 } else { 7584 table1 = scsi_mam_attr_table; 7585 table1_size = nitems(scsi_mam_attr_table); 7586 table2 = user_table; 7587 table2_size = num_user_entries; 7588 } 7589 } else { 7590 table1 = scsi_mam_attr_table; 7591 table1_size = nitems(scsi_mam_attr_table); 7592 } 7593 7594 entry = scsi_find_attrib_entry(table1, table1_size, id); 7595 if (entry != NULL) { 7596 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, 7597 entry->desc); 7598 if (entry->to_str == NULL) 7599 goto print_default; 7600 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7601 output_flags, error_str, error_str_len); 7602 goto bailout; 7603 } 7604 if (table2 != NULL) { 7605 entry = scsi_find_attrib_entry(table2, table2_size, id); 7606 if (entry != NULL) { 7607 if (entry->to_str == NULL) 7608 goto print_default; 7609 7610 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, 7611 valid_len, entry->desc); 7612 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7613 output_flags, error_str, 7614 error_str_len); 7615 goto bailout; 7616 } 7617 } 7618 7619 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL); 7620 7621 print_default: 7622 retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags, 7623 error_str, error_str_len); 7624 bailout: 7625 if (retval == 0) { 7626 if ((entry != NULL) 7627 && (entry->suffix != NULL)) 7628 sbuf_printf(sb, " %s", entry->suffix); 7629 7630 sbuf_trim(sb); 7631 sbuf_putc(sb, '\n'); 7632 } 7633 7634 return (retval); 7635 } 7636 7637 void 7638 scsi_test_unit_ready(struct ccb_scsiio *csio, uint32_t retries, 7639 void (*cbfcnp)(struct cam_periph *, union ccb *), 7640 uint8_t tag_action, uint8_t sense_len, uint32_t timeout) 7641 { 7642 struct scsi_test_unit_ready *scsi_cmd; 7643 7644 cam_fill_csio(csio, 7645 retries, 7646 cbfcnp, 7647 CAM_DIR_NONE, 7648 tag_action, 7649 /*data_ptr*/NULL, 7650 /*dxfer_len*/0, 7651 sense_len, 7652 sizeof(*scsi_cmd), 7653 timeout); 7654 7655 scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes; 7656 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7657 scsi_cmd->opcode = TEST_UNIT_READY; 7658 } 7659 7660 void 7661 scsi_request_sense(struct ccb_scsiio *csio, uint32_t retries, 7662 void (*cbfcnp)(struct cam_periph *, union ccb *), 7663 void *data_ptr, uint8_t dxfer_len, uint8_t tag_action, 7664 uint8_t sense_len, uint32_t timeout) 7665 { 7666 struct scsi_request_sense *scsi_cmd; 7667 7668 cam_fill_csio(csio, 7669 retries, 7670 cbfcnp, 7671 CAM_DIR_IN, 7672 tag_action, 7673 data_ptr, 7674 dxfer_len, 7675 sense_len, 7676 sizeof(*scsi_cmd), 7677 timeout); 7678 7679 scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes; 7680 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7681 scsi_cmd->opcode = REQUEST_SENSE; 7682 scsi_cmd->length = dxfer_len; 7683 } 7684 7685 void 7686 scsi_inquiry(struct ccb_scsiio *csio, uint32_t retries, 7687 void (*cbfcnp)(struct cam_periph *, union ccb *), 7688 uint8_t tag_action, uint8_t *inq_buf, uint32_t inq_len, 7689 int evpd, uint8_t page_code, uint8_t sense_len, 7690 uint32_t timeout) 7691 { 7692 struct scsi_inquiry *scsi_cmd; 7693 7694 cam_fill_csio(csio, 7695 retries, 7696 cbfcnp, 7697 /*flags*/CAM_DIR_IN, 7698 tag_action, 7699 /*data_ptr*/inq_buf, 7700 /*dxfer_len*/inq_len, 7701 sense_len, 7702 sizeof(*scsi_cmd), 7703 timeout); 7704 7705 scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes; 7706 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7707 scsi_cmd->opcode = INQUIRY; 7708 if (evpd) { 7709 scsi_cmd->byte2 |= SI_EVPD; 7710 scsi_cmd->page_code = page_code; 7711 } 7712 scsi_ulto2b(inq_len, scsi_cmd->length); 7713 } 7714 7715 void 7716 scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries, 7717 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7718 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7719 uint8_t sense_len, uint32_t timeout) 7720 { 7721 7722 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7723 pc, page, 0, param_buf, param_len, 0, sense_len, timeout); 7724 } 7725 7726 void 7727 scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries, 7728 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7729 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7730 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout) 7731 { 7732 7733 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7734 pc, page, 0, param_buf, param_len, minimum_cmd_size, 7735 sense_len, timeout); 7736 } 7737 7738 void 7739 scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries, 7740 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7741 int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf, 7742 uint32_t param_len, int minimum_cmd_size, uint8_t sense_len, 7743 uint32_t timeout) 7744 { 7745 uint8_t cdb_len; 7746 7747 /* 7748 * Use the smallest possible command to perform the operation. 7749 */ 7750 if ((param_len < 256) 7751 && (minimum_cmd_size < 10)) { 7752 /* 7753 * We can fit in a 6 byte cdb. 7754 */ 7755 struct scsi_mode_sense_6 *scsi_cmd; 7756 7757 scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes; 7758 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7759 scsi_cmd->opcode = MODE_SENSE_6; 7760 if (dbd != 0) 7761 scsi_cmd->byte2 |= SMS_DBD; 7762 scsi_cmd->page = pc | page; 7763 scsi_cmd->subpage = subpage; 7764 scsi_cmd->length = param_len; 7765 cdb_len = sizeof(*scsi_cmd); 7766 } else { 7767 /* 7768 * Need a 10 byte cdb. 7769 */ 7770 struct scsi_mode_sense_10 *scsi_cmd; 7771 7772 scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes; 7773 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7774 scsi_cmd->opcode = MODE_SENSE_10; 7775 if (dbd != 0) 7776 scsi_cmd->byte2 |= SMS_DBD; 7777 scsi_cmd->page = pc | page; 7778 scsi_cmd->subpage = subpage; 7779 scsi_ulto2b(param_len, scsi_cmd->length); 7780 cdb_len = sizeof(*scsi_cmd); 7781 } 7782 cam_fill_csio(csio, 7783 retries, 7784 cbfcnp, 7785 CAM_DIR_IN, 7786 tag_action, 7787 param_buf, 7788 param_len, 7789 sense_len, 7790 cdb_len, 7791 timeout); 7792 } 7793 7794 void 7795 scsi_mode_select(struct ccb_scsiio *csio, uint32_t retries, 7796 void (*cbfcnp)(struct cam_periph *, union ccb *), 7797 uint8_t tag_action, int scsi_page_fmt, int save_pages, 7798 uint8_t *param_buf, uint32_t param_len, uint8_t sense_len, 7799 uint32_t timeout) 7800 { 7801 scsi_mode_select_len(csio, retries, cbfcnp, tag_action, 7802 scsi_page_fmt, save_pages, param_buf, 7803 param_len, 0, sense_len, timeout); 7804 } 7805 7806 void 7807 scsi_mode_select_len(struct ccb_scsiio *csio, uint32_t retries, 7808 void (*cbfcnp)(struct cam_periph *, union ccb *), 7809 uint8_t tag_action, int scsi_page_fmt, int save_pages, 7810 uint8_t *param_buf, uint32_t param_len, 7811 int minimum_cmd_size, uint8_t sense_len, 7812 uint32_t timeout) 7813 { 7814 uint8_t cdb_len; 7815 7816 /* 7817 * Use the smallest possible command to perform the operation. 7818 */ 7819 if ((param_len < 256) 7820 && (minimum_cmd_size < 10)) { 7821 /* 7822 * We can fit in a 6 byte cdb. 7823 */ 7824 struct scsi_mode_select_6 *scsi_cmd; 7825 7826 scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes; 7827 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7828 scsi_cmd->opcode = MODE_SELECT_6; 7829 if (scsi_page_fmt != 0) 7830 scsi_cmd->byte2 |= SMS_PF; 7831 if (save_pages != 0) 7832 scsi_cmd->byte2 |= SMS_SP; 7833 scsi_cmd->length = param_len; 7834 cdb_len = sizeof(*scsi_cmd); 7835 } else { 7836 /* 7837 * Need a 10 byte cdb. 7838 */ 7839 struct scsi_mode_select_10 *scsi_cmd; 7840 7841 scsi_cmd = 7842 (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes; 7843 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7844 scsi_cmd->opcode = MODE_SELECT_10; 7845 if (scsi_page_fmt != 0) 7846 scsi_cmd->byte2 |= SMS_PF; 7847 if (save_pages != 0) 7848 scsi_cmd->byte2 |= SMS_SP; 7849 scsi_ulto2b(param_len, scsi_cmd->length); 7850 cdb_len = sizeof(*scsi_cmd); 7851 } 7852 cam_fill_csio(csio, 7853 retries, 7854 cbfcnp, 7855 CAM_DIR_OUT, 7856 tag_action, 7857 param_buf, 7858 param_len, 7859 sense_len, 7860 cdb_len, 7861 timeout); 7862 } 7863 7864 void 7865 scsi_log_sense(struct ccb_scsiio *csio, uint32_t retries, 7866 void (*cbfcnp)(struct cam_periph *, union ccb *), 7867 uint8_t tag_action, uint8_t page_code, uint8_t page, 7868 int save_pages, int ppc, uint32_t paramptr, 7869 uint8_t *param_buf, uint32_t param_len, uint8_t sense_len, 7870 uint32_t timeout) 7871 { 7872 struct scsi_log_sense *scsi_cmd; 7873 uint8_t cdb_len; 7874 7875 scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes; 7876 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7877 scsi_cmd->opcode = LOG_SENSE; 7878 scsi_cmd->page = page_code | page; 7879 if (save_pages != 0) 7880 scsi_cmd->byte2 |= SLS_SP; 7881 if (ppc != 0) 7882 scsi_cmd->byte2 |= SLS_PPC; 7883 scsi_ulto2b(paramptr, scsi_cmd->paramptr); 7884 scsi_ulto2b(param_len, scsi_cmd->length); 7885 cdb_len = sizeof(*scsi_cmd); 7886 7887 cam_fill_csio(csio, 7888 retries, 7889 cbfcnp, 7890 /*flags*/CAM_DIR_IN, 7891 tag_action, 7892 /*data_ptr*/param_buf, 7893 /*dxfer_len*/param_len, 7894 sense_len, 7895 cdb_len, 7896 timeout); 7897 } 7898 7899 void 7900 scsi_log_select(struct ccb_scsiio *csio, uint32_t retries, 7901 void (*cbfcnp)(struct cam_periph *, union ccb *), 7902 uint8_t tag_action, uint8_t page_code, int save_pages, 7903 int pc_reset, uint8_t *param_buf, uint32_t param_len, 7904 uint8_t sense_len, uint32_t timeout) 7905 { 7906 struct scsi_log_select *scsi_cmd; 7907 uint8_t cdb_len; 7908 7909 scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes; 7910 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7911 scsi_cmd->opcode = LOG_SELECT; 7912 scsi_cmd->page = page_code & SLS_PAGE_CODE; 7913 if (save_pages != 0) 7914 scsi_cmd->byte2 |= SLS_SP; 7915 if (pc_reset != 0) 7916 scsi_cmd->byte2 |= SLS_PCR; 7917 scsi_ulto2b(param_len, scsi_cmd->length); 7918 cdb_len = sizeof(*scsi_cmd); 7919 7920 cam_fill_csio(csio, 7921 retries, 7922 cbfcnp, 7923 /*flags*/CAM_DIR_OUT, 7924 tag_action, 7925 /*data_ptr*/param_buf, 7926 /*dxfer_len*/param_len, 7927 sense_len, 7928 cdb_len, 7929 timeout); 7930 } 7931 7932 /* 7933 * Prevent or allow the user to remove the media 7934 */ 7935 void 7936 scsi_prevent(struct ccb_scsiio *csio, uint32_t retries, 7937 void (*cbfcnp)(struct cam_periph *, union ccb *), 7938 uint8_t tag_action, uint8_t action, 7939 uint8_t sense_len, uint32_t timeout) 7940 { 7941 struct scsi_prevent *scsi_cmd; 7942 7943 cam_fill_csio(csio, 7944 retries, 7945 cbfcnp, 7946 /*flags*/CAM_DIR_NONE, 7947 tag_action, 7948 /*data_ptr*/NULL, 7949 /*dxfer_len*/0, 7950 sense_len, 7951 sizeof(*scsi_cmd), 7952 timeout); 7953 7954 scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes; 7955 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7956 scsi_cmd->opcode = PREVENT_ALLOW; 7957 scsi_cmd->how = action; 7958 } 7959 7960 /* XXX allow specification of address and PMI bit and LBA */ 7961 void 7962 scsi_read_capacity(struct ccb_scsiio *csio, uint32_t retries, 7963 void (*cbfcnp)(struct cam_periph *, union ccb *), 7964 uint8_t tag_action, 7965 struct scsi_read_capacity_data *rcap_buf, 7966 uint8_t sense_len, uint32_t timeout) 7967 { 7968 struct scsi_read_capacity *scsi_cmd; 7969 7970 cam_fill_csio(csio, 7971 retries, 7972 cbfcnp, 7973 /*flags*/CAM_DIR_IN, 7974 tag_action, 7975 /*data_ptr*/(uint8_t *)rcap_buf, 7976 /*dxfer_len*/sizeof(*rcap_buf), 7977 sense_len, 7978 sizeof(*scsi_cmd), 7979 timeout); 7980 7981 scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes; 7982 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7983 scsi_cmd->opcode = READ_CAPACITY; 7984 } 7985 7986 void 7987 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries, 7988 void (*cbfcnp)(struct cam_periph *, union ccb *), 7989 uint8_t tag_action, uint64_t lba, int reladr, int pmi, 7990 uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len, 7991 uint32_t timeout) 7992 { 7993 struct scsi_read_capacity_16 *scsi_cmd; 7994 7995 cam_fill_csio(csio, 7996 retries, 7997 cbfcnp, 7998 /*flags*/CAM_DIR_IN, 7999 tag_action, 8000 /*data_ptr*/(uint8_t *)rcap_buf, 8001 /*dxfer_len*/rcap_buf_len, 8002 sense_len, 8003 sizeof(*scsi_cmd), 8004 timeout); 8005 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes; 8006 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8007 scsi_cmd->opcode = SERVICE_ACTION_IN; 8008 scsi_cmd->service_action = SRC16_SERVICE_ACTION; 8009 scsi_u64to8b(lba, scsi_cmd->addr); 8010 scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len); 8011 if (pmi) 8012 reladr |= SRC16_PMI; 8013 if (reladr) 8014 reladr |= SRC16_RELADR; 8015 } 8016 8017 void 8018 scsi_report_luns(struct ccb_scsiio *csio, uint32_t retries, 8019 void (*cbfcnp)(struct cam_periph *, union ccb *), 8020 uint8_t tag_action, uint8_t select_report, 8021 struct scsi_report_luns_data *rpl_buf, uint32_t alloc_len, 8022 uint8_t sense_len, uint32_t timeout) 8023 { 8024 struct scsi_report_luns *scsi_cmd; 8025 8026 cam_fill_csio(csio, 8027 retries, 8028 cbfcnp, 8029 /*flags*/CAM_DIR_IN, 8030 tag_action, 8031 /*data_ptr*/(uint8_t *)rpl_buf, 8032 /*dxfer_len*/alloc_len, 8033 sense_len, 8034 sizeof(*scsi_cmd), 8035 timeout); 8036 scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes; 8037 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8038 scsi_cmd->opcode = REPORT_LUNS; 8039 scsi_cmd->select_report = select_report; 8040 scsi_ulto4b(alloc_len, scsi_cmd->length); 8041 } 8042 8043 void 8044 scsi_report_target_group(struct ccb_scsiio *csio, uint32_t retries, 8045 void (*cbfcnp)(struct cam_periph *, union ccb *), 8046 uint8_t tag_action, uint8_t pdf, 8047 void *buf, uint32_t alloc_len, 8048 uint8_t sense_len, uint32_t timeout) 8049 { 8050 struct scsi_target_group *scsi_cmd; 8051 8052 cam_fill_csio(csio, 8053 retries, 8054 cbfcnp, 8055 /*flags*/CAM_DIR_IN, 8056 tag_action, 8057 /*data_ptr*/(uint8_t *)buf, 8058 /*dxfer_len*/alloc_len, 8059 sense_len, 8060 sizeof(*scsi_cmd), 8061 timeout); 8062 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 8063 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8064 scsi_cmd->opcode = MAINTENANCE_IN; 8065 scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf; 8066 scsi_ulto4b(alloc_len, scsi_cmd->length); 8067 } 8068 8069 void 8070 scsi_report_timestamp(struct ccb_scsiio *csio, uint32_t retries, 8071 void (*cbfcnp)(struct cam_periph *, union ccb *), 8072 uint8_t tag_action, uint8_t pdf, 8073 void *buf, uint32_t alloc_len, 8074 uint8_t sense_len, uint32_t timeout) 8075 { 8076 struct scsi_timestamp *scsi_cmd; 8077 8078 cam_fill_csio(csio, 8079 retries, 8080 cbfcnp, 8081 /*flags*/CAM_DIR_IN, 8082 tag_action, 8083 /*data_ptr*/(uint8_t *)buf, 8084 /*dxfer_len*/alloc_len, 8085 sense_len, 8086 sizeof(*scsi_cmd), 8087 timeout); 8088 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 8089 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8090 scsi_cmd->opcode = MAINTENANCE_IN; 8091 scsi_cmd->service_action = REPORT_TIMESTAMP | pdf; 8092 scsi_ulto4b(alloc_len, scsi_cmd->length); 8093 } 8094 8095 void 8096 scsi_set_target_group(struct ccb_scsiio *csio, uint32_t retries, 8097 void (*cbfcnp)(struct cam_periph *, union ccb *), 8098 uint8_t tag_action, void *buf, uint32_t alloc_len, 8099 uint8_t sense_len, uint32_t timeout) 8100 { 8101 struct scsi_target_group *scsi_cmd; 8102 8103 cam_fill_csio(csio, 8104 retries, 8105 cbfcnp, 8106 /*flags*/CAM_DIR_OUT, 8107 tag_action, 8108 /*data_ptr*/(uint8_t *)buf, 8109 /*dxfer_len*/alloc_len, 8110 sense_len, 8111 sizeof(*scsi_cmd), 8112 timeout); 8113 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 8114 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8115 scsi_cmd->opcode = MAINTENANCE_OUT; 8116 scsi_cmd->service_action = SET_TARGET_PORT_GROUPS; 8117 scsi_ulto4b(alloc_len, scsi_cmd->length); 8118 } 8119 8120 void 8121 scsi_create_timestamp(uint8_t *timestamp_6b_buf, 8122 uint64_t timestamp) 8123 { 8124 uint8_t buf[8]; 8125 scsi_u64to8b(timestamp, buf); 8126 /* 8127 * Using memcopy starting at buf[2] because the set timestamp parameters 8128 * only has six bytes for the timestamp to fit into, and we don't have a 8129 * scsi_u64to6b function. 8130 */ 8131 memcpy(timestamp_6b_buf, &buf[2], 6); 8132 } 8133 8134 void 8135 scsi_set_timestamp(struct ccb_scsiio *csio, uint32_t retries, 8136 void (*cbfcnp)(struct cam_periph *, union ccb *), 8137 uint8_t tag_action, void *buf, uint32_t alloc_len, 8138 uint8_t sense_len, uint32_t timeout) 8139 { 8140 struct scsi_timestamp *scsi_cmd; 8141 8142 cam_fill_csio(csio, 8143 retries, 8144 cbfcnp, 8145 /*flags*/CAM_DIR_OUT, 8146 tag_action, 8147 /*data_ptr*/(uint8_t *) buf, 8148 /*dxfer_len*/alloc_len, 8149 sense_len, 8150 sizeof(*scsi_cmd), 8151 timeout); 8152 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 8153 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8154 scsi_cmd->opcode = MAINTENANCE_OUT; 8155 scsi_cmd->service_action = SET_TIMESTAMP; 8156 scsi_ulto4b(alloc_len, scsi_cmd->length); 8157 } 8158 8159 /* 8160 * Syncronize the media to the contents of the cache for 8161 * the given lba/count pair. Specifying 0/0 means sync 8162 * the whole cache. 8163 */ 8164 void 8165 scsi_synchronize_cache(struct ccb_scsiio *csio, uint32_t retries, 8166 void (*cbfcnp)(struct cam_periph *, union ccb *), 8167 uint8_t tag_action, uint32_t begin_lba, 8168 uint16_t lb_count, uint8_t sense_len, 8169 uint32_t timeout) 8170 { 8171 struct scsi_sync_cache *scsi_cmd; 8172 8173 cam_fill_csio(csio, 8174 retries, 8175 cbfcnp, 8176 /*flags*/CAM_DIR_NONE, 8177 tag_action, 8178 /*data_ptr*/NULL, 8179 /*dxfer_len*/0, 8180 sense_len, 8181 sizeof(*scsi_cmd), 8182 timeout); 8183 8184 scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes; 8185 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8186 scsi_cmd->opcode = SYNCHRONIZE_CACHE; 8187 scsi_ulto4b(begin_lba, scsi_cmd->begin_lba); 8188 scsi_ulto2b(lb_count, scsi_cmd->lb_count); 8189 } 8190 8191 void 8192 scsi_read_write(struct ccb_scsiio *csio, uint32_t retries, 8193 void (*cbfcnp)(struct cam_periph *, union ccb *), 8194 uint8_t tag_action, int readop, uint8_t byte2, 8195 int minimum_cmd_size, uint64_t lba, uint32_t block_count, 8196 uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len, 8197 uint32_t timeout) 8198 { 8199 int read; 8200 uint8_t cdb_len; 8201 8202 read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ; 8203 8204 /* 8205 * Use the smallest possible command to perform the operation 8206 * as some legacy hardware does not support the 10 byte commands. 8207 * If any of the bits in byte2 is set, we have to go with a larger 8208 * command. 8209 */ 8210 if ((minimum_cmd_size < 10) 8211 && ((lba & 0x1fffff) == lba) 8212 && ((block_count & 0xff) == block_count) 8213 && (byte2 == 0)) { 8214 /* 8215 * We can fit in a 6 byte cdb. 8216 */ 8217 struct scsi_rw_6 *scsi_cmd; 8218 8219 scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes; 8220 scsi_cmd->opcode = read ? READ_6 : WRITE_6; 8221 scsi_ulto3b(lba, scsi_cmd->addr); 8222 scsi_cmd->length = block_count & 0xff; 8223 scsi_cmd->control = 0; 8224 cdb_len = sizeof(*scsi_cmd); 8225 8226 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8227 ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0], 8228 scsi_cmd->addr[1], scsi_cmd->addr[2], 8229 scsi_cmd->length, dxfer_len)); 8230 } else if ((minimum_cmd_size < 12) 8231 && ((block_count & 0xffff) == block_count) 8232 && ((lba & 0xffffffff) == lba)) { 8233 /* 8234 * Need a 10 byte cdb. 8235 */ 8236 struct scsi_rw_10 *scsi_cmd; 8237 8238 scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes; 8239 scsi_cmd->opcode = read ? READ_10 : WRITE_10; 8240 scsi_cmd->byte2 = byte2; 8241 scsi_ulto4b(lba, scsi_cmd->addr); 8242 scsi_cmd->reserved = 0; 8243 scsi_ulto2b(block_count, scsi_cmd->length); 8244 scsi_cmd->control = 0; 8245 cdb_len = sizeof(*scsi_cmd); 8246 8247 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8248 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8249 scsi_cmd->addr[1], scsi_cmd->addr[2], 8250 scsi_cmd->addr[3], scsi_cmd->length[0], 8251 scsi_cmd->length[1], dxfer_len)); 8252 } else if ((minimum_cmd_size < 16) 8253 && ((block_count & 0xffffffff) == block_count) 8254 && ((lba & 0xffffffff) == lba)) { 8255 /* 8256 * The block count is too big for a 10 byte CDB, use a 12 8257 * byte CDB. 8258 */ 8259 struct scsi_rw_12 *scsi_cmd; 8260 8261 scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes; 8262 scsi_cmd->opcode = read ? READ_12 : WRITE_12; 8263 scsi_cmd->byte2 = byte2; 8264 scsi_ulto4b(lba, scsi_cmd->addr); 8265 scsi_cmd->reserved = 0; 8266 scsi_ulto4b(block_count, scsi_cmd->length); 8267 scsi_cmd->control = 0; 8268 cdb_len = sizeof(*scsi_cmd); 8269 8270 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8271 ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0], 8272 scsi_cmd->addr[1], scsi_cmd->addr[2], 8273 scsi_cmd->addr[3], scsi_cmd->length[0], 8274 scsi_cmd->length[1], scsi_cmd->length[2], 8275 scsi_cmd->length[3], dxfer_len)); 8276 } else { 8277 /* 8278 * 16 byte CDB. We'll only get here if the LBA is larger 8279 * than 2^32, or if the user asks for a 16 byte command. 8280 */ 8281 struct scsi_rw_16 *scsi_cmd; 8282 8283 scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes; 8284 scsi_cmd->opcode = read ? READ_16 : WRITE_16; 8285 scsi_cmd->byte2 = byte2; 8286 scsi_u64to8b(lba, scsi_cmd->addr); 8287 scsi_cmd->reserved = 0; 8288 scsi_ulto4b(block_count, scsi_cmd->length); 8289 scsi_cmd->control = 0; 8290 cdb_len = sizeof(*scsi_cmd); 8291 } 8292 cam_fill_csio(csio, 8293 retries, 8294 cbfcnp, 8295 (read ? CAM_DIR_IN : CAM_DIR_OUT) | 8296 ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0), 8297 tag_action, 8298 data_ptr, 8299 dxfer_len, 8300 sense_len, 8301 cdb_len, 8302 timeout); 8303 } 8304 8305 void 8306 scsi_write_same(struct ccb_scsiio *csio, uint32_t retries, 8307 void (*cbfcnp)(struct cam_periph *, union ccb *), 8308 uint8_t tag_action, uint8_t byte2, 8309 int minimum_cmd_size, uint64_t lba, uint32_t block_count, 8310 uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len, 8311 uint32_t timeout) 8312 { 8313 uint8_t cdb_len; 8314 if ((minimum_cmd_size < 16) && 8315 ((block_count & 0xffff) == block_count) && 8316 ((lba & 0xffffffff) == lba)) { 8317 /* 8318 * Need a 10 byte cdb. 8319 */ 8320 struct scsi_write_same_10 *scsi_cmd; 8321 8322 scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes; 8323 scsi_cmd->opcode = WRITE_SAME_10; 8324 scsi_cmd->byte2 = byte2; 8325 scsi_ulto4b(lba, scsi_cmd->addr); 8326 scsi_cmd->group = 0; 8327 scsi_ulto2b(block_count, scsi_cmd->length); 8328 scsi_cmd->control = 0; 8329 cdb_len = sizeof(*scsi_cmd); 8330 8331 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8332 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8333 scsi_cmd->addr[1], scsi_cmd->addr[2], 8334 scsi_cmd->addr[3], scsi_cmd->length[0], 8335 scsi_cmd->length[1], dxfer_len)); 8336 } else { 8337 /* 8338 * 16 byte CDB. We'll only get here if the LBA is larger 8339 * than 2^32, or if the user asks for a 16 byte command. 8340 */ 8341 struct scsi_write_same_16 *scsi_cmd; 8342 8343 scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes; 8344 scsi_cmd->opcode = WRITE_SAME_16; 8345 scsi_cmd->byte2 = byte2; 8346 scsi_u64to8b(lba, scsi_cmd->addr); 8347 scsi_ulto4b(block_count, scsi_cmd->length); 8348 scsi_cmd->group = 0; 8349 scsi_cmd->control = 0; 8350 cdb_len = sizeof(*scsi_cmd); 8351 8352 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8353 ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n", 8354 scsi_cmd->addr[0], scsi_cmd->addr[1], 8355 scsi_cmd->addr[2], scsi_cmd->addr[3], 8356 scsi_cmd->addr[4], scsi_cmd->addr[5], 8357 scsi_cmd->addr[6], scsi_cmd->addr[7], 8358 scsi_cmd->length[0], scsi_cmd->length[1], 8359 scsi_cmd->length[2], scsi_cmd->length[3], 8360 dxfer_len)); 8361 } 8362 cam_fill_csio(csio, 8363 retries, 8364 cbfcnp, 8365 /*flags*/CAM_DIR_OUT, 8366 tag_action, 8367 data_ptr, 8368 dxfer_len, 8369 sense_len, 8370 cdb_len, 8371 timeout); 8372 } 8373 8374 void 8375 scsi_ata_identify(struct ccb_scsiio *csio, uint32_t retries, 8376 void (*cbfcnp)(struct cam_periph *, union ccb *), 8377 uint8_t tag_action, uint8_t *data_ptr, 8378 uint16_t dxfer_len, uint8_t sense_len, 8379 uint32_t timeout) 8380 { 8381 scsi_ata_pass(csio, 8382 retries, 8383 cbfcnp, 8384 /*flags*/CAM_DIR_IN, 8385 tag_action, 8386 /*protocol*/AP_PROTO_PIO_IN, 8387 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8388 AP_FLAG_BYT_BLOK_BLOCKS | 8389 AP_FLAG_TLEN_SECT_CNT, 8390 /*features*/0, 8391 /*sector_count*/dxfer_len / 512, 8392 /*lba*/0, 8393 /*command*/ATA_ATA_IDENTIFY, 8394 /*device*/ 0, 8395 /*icc*/ 0, 8396 /*auxiliary*/ 0, 8397 /*control*/0, 8398 data_ptr, 8399 dxfer_len, 8400 /*cdb_storage*/ NULL, 8401 /*cdb_storage_len*/ 0, 8402 /*minimum_cmd_size*/ 0, 8403 sense_len, 8404 timeout); 8405 } 8406 8407 void 8408 scsi_ata_trim(struct ccb_scsiio *csio, uint32_t retries, 8409 void (*cbfcnp)(struct cam_periph *, union ccb *), 8410 uint8_t tag_action, uint16_t block_count, 8411 uint8_t *data_ptr, uint16_t dxfer_len, uint8_t sense_len, 8412 uint32_t timeout) 8413 { 8414 scsi_ata_pass_16(csio, 8415 retries, 8416 cbfcnp, 8417 /*flags*/CAM_DIR_OUT, 8418 tag_action, 8419 /*protocol*/AP_EXTEND|AP_PROTO_DMA, 8420 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS, 8421 /*features*/ATA_DSM_TRIM, 8422 /*sector_count*/block_count, 8423 /*lba*/0, 8424 /*command*/ATA_DATA_SET_MANAGEMENT, 8425 /*control*/0, 8426 data_ptr, 8427 dxfer_len, 8428 sense_len, 8429 timeout); 8430 } 8431 8432 int 8433 scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries, 8434 void (*cbfcnp)(struct cam_periph *, union ccb *), 8435 uint8_t tag_action, uint32_t log_address, 8436 uint32_t page_number, uint16_t block_count, 8437 uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len, 8438 uint8_t sense_len, uint32_t timeout) 8439 { 8440 uint8_t command, protocol_out; 8441 uint16_t count_out; 8442 uint64_t lba; 8443 int retval; 8444 8445 retval = 0; 8446 8447 switch (protocol) { 8448 case AP_PROTO_DMA: 8449 count_out = block_count; 8450 command = ATA_READ_LOG_DMA_EXT; 8451 protocol_out = AP_PROTO_DMA; 8452 break; 8453 case AP_PROTO_PIO_IN: 8454 default: 8455 count_out = block_count; 8456 command = ATA_READ_LOG_EXT; 8457 protocol_out = AP_PROTO_PIO_IN; 8458 break; 8459 } 8460 8461 lba = (((uint64_t)page_number & 0xff00) << 32) | 8462 ((page_number & 0x00ff) << 8) | 8463 (log_address & 0xff); 8464 8465 protocol_out |= AP_EXTEND; 8466 8467 retval = scsi_ata_pass(csio, 8468 retries, 8469 cbfcnp, 8470 /*flags*/CAM_DIR_IN, 8471 tag_action, 8472 /*protocol*/ protocol_out, 8473 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT | 8474 AP_FLAG_BYT_BLOK_BLOCKS | 8475 AP_FLAG_TDIR_FROM_DEV, 8476 /*feature*/ 0, 8477 /*sector_count*/ count_out, 8478 /*lba*/ lba, 8479 /*command*/ command, 8480 /*device*/ 0, 8481 /*icc*/ 0, 8482 /*auxiliary*/ 0, 8483 /*control*/0, 8484 data_ptr, 8485 dxfer_len, 8486 /*cdb_storage*/ NULL, 8487 /*cdb_storage_len*/ 0, 8488 /*minimum_cmd_size*/ 0, 8489 sense_len, 8490 timeout); 8491 8492 return (retval); 8493 } 8494 8495 int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries, 8496 void (*cbfcnp)(struct cam_periph *, union ccb *), 8497 uint8_t tag_action, uint8_t feature, 8498 uint64_t lba, uint32_t count, 8499 uint8_t sense_len, uint32_t timeout) 8500 { 8501 return (scsi_ata_pass(csio, 8502 retries, 8503 cbfcnp, 8504 /*flags*/CAM_DIR_NONE, 8505 tag_action, 8506 /*protocol*/AP_PROTO_PIO_IN, 8507 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8508 AP_FLAG_BYT_BLOK_BYTES | 8509 AP_FLAG_TLEN_SECT_CNT, 8510 /*features*/feature, 8511 /*sector_count*/count, 8512 /*lba*/lba, 8513 /*command*/ATA_SETFEATURES, 8514 /*device*/ 0, 8515 /*icc*/ 0, 8516 /*auxiliary*/0, 8517 /*control*/0, 8518 /*data_ptr*/NULL, 8519 /*dxfer_len*/0, 8520 /*cdb_storage*/NULL, 8521 /*cdb_storage_len*/0, 8522 /*minimum_cmd_size*/0, 8523 sense_len, 8524 timeout)); 8525 } 8526 8527 /* 8528 * Note! This is an unusual CDB building function because it can return 8529 * an error in the event that the command in question requires a variable 8530 * length CDB, but the caller has not given storage space for one or has not 8531 * given enough storage space. If there is enough space available in the 8532 * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage. 8533 */ 8534 int 8535 scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries, 8536 void (*cbfcnp)(struct cam_periph *, union ccb *), 8537 uint32_t flags, uint8_t tag_action, 8538 uint8_t protocol, uint8_t ata_flags, uint16_t features, 8539 uint16_t sector_count, uint64_t lba, uint8_t command, 8540 uint8_t device, uint8_t icc, uint32_t auxiliary, 8541 uint8_t control, uint8_t *data_ptr, uint32_t dxfer_len, 8542 uint8_t *cdb_storage, size_t cdb_storage_len, 8543 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout) 8544 { 8545 uint32_t cam_flags; 8546 uint8_t *cdb_ptr; 8547 int cmd_size; 8548 int retval; 8549 uint8_t cdb_len; 8550 8551 retval = 0; 8552 cam_flags = flags; 8553 8554 /* 8555 * Round the user's request to the nearest command size that is at 8556 * least as big as what he requested. 8557 */ 8558 if (minimum_cmd_size <= 12) 8559 cmd_size = 12; 8560 else if (minimum_cmd_size > 16) 8561 cmd_size = 32; 8562 else 8563 cmd_size = 16; 8564 8565 /* 8566 * If we have parameters that require a 48-bit ATA command, we have to 8567 * use the 16 byte ATA PASS-THROUGH command at least. 8568 */ 8569 if (((lba > ATA_MAX_28BIT_LBA) 8570 || (sector_count > 255) 8571 || (features > 255) 8572 || (protocol & AP_EXTEND)) 8573 && ((cmd_size < 16) 8574 || ((protocol & AP_EXTEND) == 0))) { 8575 if (cmd_size < 16) 8576 cmd_size = 16; 8577 protocol |= AP_EXTEND; 8578 } 8579 8580 /* 8581 * The icc and auxiliary ATA registers are only supported in the 8582 * 32-byte version of the ATA PASS-THROUGH command. 8583 */ 8584 if ((icc != 0) 8585 || (auxiliary != 0)) { 8586 cmd_size = 32; 8587 protocol |= AP_EXTEND; 8588 } 8589 8590 if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes)) 8591 && ((cdb_storage == NULL) 8592 || (cdb_storage_len < cmd_size))) { 8593 retval = 1; 8594 goto bailout; 8595 } 8596 8597 /* 8598 * At this point we know we have enough space to store the command 8599 * in one place or another. We prefer the built-in array, but used 8600 * the passed in storage if necessary. 8601 */ 8602 if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes)) 8603 cdb_ptr = csio->cdb_io.cdb_bytes; 8604 else { 8605 cdb_ptr = cdb_storage; 8606 cam_flags |= CAM_CDB_POINTER; 8607 } 8608 8609 if (cmd_size <= 12) { 8610 struct ata_pass_12 *cdb; 8611 8612 cdb = (struct ata_pass_12 *)cdb_ptr; 8613 cdb_len = sizeof(*cdb); 8614 bzero(cdb, cdb_len); 8615 8616 cdb->opcode = ATA_PASS_12; 8617 cdb->protocol = protocol; 8618 cdb->flags = ata_flags; 8619 cdb->features = features; 8620 cdb->sector_count = sector_count; 8621 cdb->lba_low = lba & 0xff; 8622 cdb->lba_mid = (lba >> 8) & 0xff; 8623 cdb->lba_high = (lba >> 16) & 0xff; 8624 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8625 cdb->command = command; 8626 cdb->control = control; 8627 } else if (cmd_size <= 16) { 8628 struct ata_pass_16 *cdb; 8629 8630 cdb = (struct ata_pass_16 *)cdb_ptr; 8631 cdb_len = sizeof(*cdb); 8632 bzero(cdb, cdb_len); 8633 8634 cdb->opcode = ATA_PASS_16; 8635 cdb->protocol = protocol; 8636 cdb->flags = ata_flags; 8637 cdb->features = features & 0xff; 8638 cdb->sector_count = sector_count & 0xff; 8639 cdb->lba_low = lba & 0xff; 8640 cdb->lba_mid = (lba >> 8) & 0xff; 8641 cdb->lba_high = (lba >> 16) & 0xff; 8642 /* 8643 * If AP_EXTEND is set, we're sending a 48-bit command. 8644 * Otherwise it's a 28-bit command. 8645 */ 8646 if (protocol & AP_EXTEND) { 8647 cdb->lba_low_ext = (lba >> 24) & 0xff; 8648 cdb->lba_mid_ext = (lba >> 32) & 0xff; 8649 cdb->lba_high_ext = (lba >> 40) & 0xff; 8650 cdb->features_ext = (features >> 8) & 0xff; 8651 cdb->sector_count_ext = (sector_count >> 8) & 0xff; 8652 cdb->device = device | ATA_DEV_LBA; 8653 } else { 8654 cdb->lba_low_ext = (lba >> 24) & 0xf; 8655 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8656 } 8657 cdb->command = command; 8658 cdb->control = control; 8659 } else { 8660 struct ata_pass_32 *cdb; 8661 uint8_t tmp_lba[8]; 8662 8663 cdb = (struct ata_pass_32 *)cdb_ptr; 8664 cdb_len = sizeof(*cdb); 8665 bzero(cdb, cdb_len); 8666 cdb->opcode = VARIABLE_LEN_CDB; 8667 cdb->control = control; 8668 cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32, 8669 service_action); 8670 scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action); 8671 cdb->protocol = protocol; 8672 cdb->flags = ata_flags; 8673 8674 if ((protocol & AP_EXTEND) == 0) { 8675 lba &= 0x0fffffff; 8676 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8677 features &= 0xff; 8678 sector_count &= 0xff; 8679 } else { 8680 cdb->device = device | ATA_DEV_LBA; 8681 } 8682 scsi_u64to8b(lba, tmp_lba); 8683 bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba)); 8684 scsi_ulto2b(features, cdb->features); 8685 scsi_ulto2b(sector_count, cdb->count); 8686 cdb->command = command; 8687 cdb->icc = icc; 8688 scsi_ulto4b(auxiliary, cdb->auxiliary); 8689 } 8690 8691 cam_fill_csio(csio, 8692 retries, 8693 cbfcnp, 8694 cam_flags, 8695 tag_action, 8696 data_ptr, 8697 dxfer_len, 8698 sense_len, 8699 cmd_size, 8700 timeout); 8701 bailout: 8702 return (retval); 8703 } 8704 8705 void 8706 scsi_ata_pass_16(struct ccb_scsiio *csio, uint32_t retries, 8707 void (*cbfcnp)(struct cam_periph *, union ccb *), 8708 uint32_t flags, uint8_t tag_action, 8709 uint8_t protocol, uint8_t ata_flags, uint16_t features, 8710 uint16_t sector_count, uint64_t lba, uint8_t command, 8711 uint8_t control, uint8_t *data_ptr, uint16_t dxfer_len, 8712 uint8_t sense_len, uint32_t timeout) 8713 { 8714 struct ata_pass_16 *ata_cmd; 8715 8716 ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes; 8717 ata_cmd->opcode = ATA_PASS_16; 8718 ata_cmd->protocol = protocol; 8719 ata_cmd->flags = ata_flags; 8720 ata_cmd->features_ext = features >> 8; 8721 ata_cmd->features = features; 8722 ata_cmd->sector_count_ext = sector_count >> 8; 8723 ata_cmd->sector_count = sector_count; 8724 ata_cmd->lba_low = lba; 8725 ata_cmd->lba_mid = lba >> 8; 8726 ata_cmd->lba_high = lba >> 16; 8727 ata_cmd->device = ATA_DEV_LBA; 8728 if (protocol & AP_EXTEND) { 8729 ata_cmd->lba_low_ext = lba >> 24; 8730 ata_cmd->lba_mid_ext = lba >> 32; 8731 ata_cmd->lba_high_ext = lba >> 40; 8732 } else 8733 ata_cmd->device |= (lba >> 24) & 0x0f; 8734 ata_cmd->command = command; 8735 ata_cmd->control = control; 8736 8737 cam_fill_csio(csio, 8738 retries, 8739 cbfcnp, 8740 flags, 8741 tag_action, 8742 data_ptr, 8743 dxfer_len, 8744 sense_len, 8745 sizeof(*ata_cmd), 8746 timeout); 8747 } 8748 8749 void 8750 scsi_unmap(struct ccb_scsiio *csio, uint32_t retries, 8751 void (*cbfcnp)(struct cam_periph *, union ccb *), 8752 uint8_t tag_action, uint8_t byte2, 8753 uint8_t *data_ptr, uint16_t dxfer_len, uint8_t sense_len, 8754 uint32_t timeout) 8755 { 8756 struct scsi_unmap *scsi_cmd; 8757 8758 scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes; 8759 scsi_cmd->opcode = UNMAP; 8760 scsi_cmd->byte2 = byte2; 8761 scsi_ulto4b(0, scsi_cmd->reserved); 8762 scsi_cmd->group = 0; 8763 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8764 scsi_cmd->control = 0; 8765 8766 cam_fill_csio(csio, 8767 retries, 8768 cbfcnp, 8769 /*flags*/CAM_DIR_OUT, 8770 tag_action, 8771 data_ptr, 8772 dxfer_len, 8773 sense_len, 8774 sizeof(*scsi_cmd), 8775 timeout); 8776 } 8777 8778 void 8779 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, uint32_t retries, 8780 void (*cbfcnp)(struct cam_periph *, union ccb*), 8781 uint8_t tag_action, int pcv, uint8_t page_code, 8782 uint8_t *data_ptr, uint16_t allocation_length, 8783 uint8_t sense_len, uint32_t timeout) 8784 { 8785 struct scsi_receive_diag *scsi_cmd; 8786 8787 scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes; 8788 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8789 scsi_cmd->opcode = RECEIVE_DIAGNOSTIC; 8790 if (pcv) { 8791 scsi_cmd->byte2 |= SRD_PCV; 8792 scsi_cmd->page_code = page_code; 8793 } 8794 scsi_ulto2b(allocation_length, scsi_cmd->length); 8795 8796 cam_fill_csio(csio, 8797 retries, 8798 cbfcnp, 8799 /*flags*/CAM_DIR_IN, 8800 tag_action, 8801 data_ptr, 8802 allocation_length, 8803 sense_len, 8804 sizeof(*scsi_cmd), 8805 timeout); 8806 } 8807 8808 void 8809 scsi_send_diagnostic(struct ccb_scsiio *csio, uint32_t retries, 8810 void (*cbfcnp)(struct cam_periph *, union ccb *), 8811 uint8_t tag_action, int unit_offline, int device_offline, 8812 int self_test, int page_format, int self_test_code, 8813 uint8_t *data_ptr, uint16_t param_list_length, 8814 uint8_t sense_len, uint32_t timeout) 8815 { 8816 struct scsi_send_diag *scsi_cmd; 8817 8818 scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes; 8819 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8820 scsi_cmd->opcode = SEND_DIAGNOSTIC; 8821 8822 /* 8823 * The default self-test mode control and specific test 8824 * control are mutually exclusive. 8825 */ 8826 if (self_test) 8827 self_test_code = SSD_SELF_TEST_CODE_NONE; 8828 8829 scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT) 8830 & SSD_SELF_TEST_CODE_MASK) 8831 | (unit_offline ? SSD_UNITOFFL : 0) 8832 | (device_offline ? SSD_DEVOFFL : 0) 8833 | (self_test ? SSD_SELFTEST : 0) 8834 | (page_format ? SSD_PF : 0); 8835 scsi_ulto2b(param_list_length, scsi_cmd->length); 8836 8837 cam_fill_csio(csio, 8838 retries, 8839 cbfcnp, 8840 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8841 tag_action, 8842 data_ptr, 8843 param_list_length, 8844 sense_len, 8845 sizeof(*scsi_cmd), 8846 timeout); 8847 } 8848 8849 void 8850 scsi_get_physical_element_status(struct ccb_scsiio *csio, uint32_t retries, 8851 void (*cbfcnp)(struct cam_periph *, union ccb *), 8852 uint8_t tag_action, uint8_t *data_ptr, 8853 uint16_t allocation_length, uint8_t report_type, 8854 uint32_t starting_element, 8855 uint8_t sense_len, uint32_t timeout) 8856 { 8857 struct scsi_get_physical_element_status *scsi_cmd; 8858 8859 scsi_cmd = (struct scsi_get_physical_element_status *)&csio->cdb_io.cdb_bytes; 8860 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8861 scsi_cmd->opcode = SERVICE_ACTION_IN; 8862 scsi_cmd->service_action = GET_PHYSICAL_ELEMENT_STATUS; 8863 scsi_ulto4b(starting_element, scsi_cmd->starting_element); 8864 scsi_ulto4b(allocation_length, scsi_cmd->allocation_length); 8865 8866 cam_fill_csio(csio, 8867 retries, 8868 cbfcnp, 8869 /*flags*/ CAM_DIR_IN, 8870 tag_action, 8871 data_ptr, 8872 allocation_length, 8873 sense_len, 8874 sizeof(*scsi_cmd), 8875 timeout); 8876 } 8877 8878 void 8879 scsi_remove_element_and_truncate(struct ccb_scsiio *csio, uint32_t retries, 8880 void (*cbfcnp)(struct cam_periph *, union ccb *), 8881 uint8_t tag_action, 8882 uint64_t requested_capacity, uint32_t element_id, 8883 uint8_t sense_len, uint32_t timeout) 8884 { 8885 struct scsi_remove_element_and_truncate *scsi_cmd; 8886 8887 scsi_cmd = (struct scsi_remove_element_and_truncate *)&csio->cdb_io.cdb_bytes; 8888 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8889 scsi_cmd->opcode = SERVICE_ACTION_IN; 8890 scsi_cmd->service_action = REMOVE_ELEMENT_AND_TRUNCATE; 8891 scsi_u64to8b(requested_capacity, scsi_cmd->requested_capacity); 8892 scsi_ulto4b(element_id, scsi_cmd->element_identifier); 8893 8894 cam_fill_csio(csio, 8895 retries, 8896 cbfcnp, 8897 /*flags*/ CAM_DIR_OUT, 8898 tag_action, 8899 NULL, 8900 0, 8901 sense_len, 8902 sizeof(*scsi_cmd), 8903 timeout); 8904 } 8905 8906 void 8907 scsi_restore_elements_and_rebuild(struct ccb_scsiio *csio, uint32_t retries, 8908 void (*cbfcnp)(struct cam_periph *, union ccb *), 8909 uint8_t tag_action, 8910 uint8_t sense_len, uint32_t timeout) 8911 { 8912 struct scsi_service_action_in *scsi_cmd; 8913 8914 scsi_cmd = (struct scsi_service_action_in *)&csio->cdb_io.cdb_bytes; 8915 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8916 scsi_cmd->opcode = SERVICE_ACTION_IN; 8917 scsi_cmd->service_action = RESTORE_ELEMENTS_AND_REBUILD; 8918 8919 cam_fill_csio(csio, 8920 retries, 8921 cbfcnp, 8922 /*flags*/ CAM_DIR_OUT, 8923 tag_action, 8924 NULL, 8925 0, 8926 sense_len, 8927 sizeof(*scsi_cmd), 8928 timeout); 8929 } 8930 8931 void 8932 scsi_read_buffer(struct ccb_scsiio *csio, uint32_t retries, 8933 void (*cbfcnp)(struct cam_periph *, union ccb*), 8934 uint8_t tag_action, int mode, 8935 uint8_t buffer_id, uint32_t offset, 8936 uint8_t *data_ptr, uint32_t allocation_length, 8937 uint8_t sense_len, uint32_t timeout) 8938 { 8939 struct scsi_read_buffer *scsi_cmd; 8940 8941 scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes; 8942 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8943 scsi_cmd->opcode = READ_BUFFER; 8944 scsi_cmd->byte2 = mode; 8945 scsi_cmd->buffer_id = buffer_id; 8946 scsi_ulto3b(offset, scsi_cmd->offset); 8947 scsi_ulto3b(allocation_length, scsi_cmd->length); 8948 8949 cam_fill_csio(csio, 8950 retries, 8951 cbfcnp, 8952 /*flags*/CAM_DIR_IN, 8953 tag_action, 8954 data_ptr, 8955 allocation_length, 8956 sense_len, 8957 sizeof(*scsi_cmd), 8958 timeout); 8959 } 8960 8961 void 8962 scsi_write_buffer(struct ccb_scsiio *csio, uint32_t retries, 8963 void (*cbfcnp)(struct cam_periph *, union ccb *), 8964 uint8_t tag_action, int mode, 8965 uint8_t buffer_id, uint32_t offset, 8966 uint8_t *data_ptr, uint32_t param_list_length, 8967 uint8_t sense_len, uint32_t timeout) 8968 { 8969 struct scsi_write_buffer *scsi_cmd; 8970 8971 scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes; 8972 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8973 scsi_cmd->opcode = WRITE_BUFFER; 8974 scsi_cmd->byte2 = mode; 8975 scsi_cmd->buffer_id = buffer_id; 8976 scsi_ulto3b(offset, scsi_cmd->offset); 8977 scsi_ulto3b(param_list_length, scsi_cmd->length); 8978 8979 cam_fill_csio(csio, 8980 retries, 8981 cbfcnp, 8982 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8983 tag_action, 8984 data_ptr, 8985 param_list_length, 8986 sense_len, 8987 sizeof(*scsi_cmd), 8988 timeout); 8989 } 8990 8991 void 8992 scsi_start_stop(struct ccb_scsiio *csio, uint32_t retries, 8993 void (*cbfcnp)(struct cam_periph *, union ccb *), 8994 uint8_t tag_action, int start, int load_eject, 8995 int immediate, uint8_t sense_len, uint32_t timeout) 8996 { 8997 struct scsi_start_stop_unit *scsi_cmd; 8998 int extra_flags = 0; 8999 9000 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes; 9001 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9002 scsi_cmd->opcode = START_STOP_UNIT; 9003 if (start != 0) { 9004 scsi_cmd->how |= SSS_START; 9005 /* it takes a lot of power to start a drive */ 9006 extra_flags |= CAM_HIGH_POWER; 9007 } 9008 if (load_eject != 0) 9009 scsi_cmd->how |= SSS_LOEJ; 9010 if (immediate != 0) 9011 scsi_cmd->byte2 |= SSS_IMMED; 9012 9013 cam_fill_csio(csio, 9014 retries, 9015 cbfcnp, 9016 /*flags*/CAM_DIR_NONE | extra_flags, 9017 tag_action, 9018 /*data_ptr*/NULL, 9019 /*dxfer_len*/0, 9020 sense_len, 9021 sizeof(*scsi_cmd), 9022 timeout); 9023 } 9024 9025 void 9026 scsi_read_attribute(struct ccb_scsiio *csio, uint32_t retries, 9027 void (*cbfcnp)(struct cam_periph *, union ccb *), 9028 uint8_t tag_action, uint8_t service_action, 9029 uint32_t element, uint8_t elem_type, int logical_volume, 9030 int partition, uint32_t first_attribute, int cache, 9031 uint8_t *data_ptr, uint32_t length, int sense_len, 9032 uint32_t timeout) 9033 { 9034 struct scsi_read_attribute *scsi_cmd; 9035 9036 scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes; 9037 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9038 9039 scsi_cmd->opcode = READ_ATTRIBUTE; 9040 scsi_cmd->service_action = service_action; 9041 scsi_ulto2b(element, scsi_cmd->element); 9042 scsi_cmd->elem_type = elem_type; 9043 scsi_cmd->logical_volume = logical_volume; 9044 scsi_cmd->partition = partition; 9045 scsi_ulto2b(first_attribute, scsi_cmd->first_attribute); 9046 scsi_ulto4b(length, scsi_cmd->length); 9047 if (cache != 0) 9048 scsi_cmd->cache |= SRA_CACHE; 9049 9050 cam_fill_csio(csio, 9051 retries, 9052 cbfcnp, 9053 /*flags*/CAM_DIR_IN, 9054 tag_action, 9055 /*data_ptr*/data_ptr, 9056 /*dxfer_len*/length, 9057 sense_len, 9058 sizeof(*scsi_cmd), 9059 timeout); 9060 } 9061 9062 void 9063 scsi_write_attribute(struct ccb_scsiio *csio, uint32_t retries, 9064 void (*cbfcnp)(struct cam_periph *, union ccb *), 9065 uint8_t tag_action, uint32_t element, int logical_volume, 9066 int partition, int wtc, uint8_t *data_ptr, 9067 uint32_t length, int sense_len, uint32_t timeout) 9068 { 9069 struct scsi_write_attribute *scsi_cmd; 9070 9071 scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes; 9072 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9073 9074 scsi_cmd->opcode = WRITE_ATTRIBUTE; 9075 if (wtc != 0) 9076 scsi_cmd->byte2 = SWA_WTC; 9077 scsi_ulto3b(element, scsi_cmd->element); 9078 scsi_cmd->logical_volume = logical_volume; 9079 scsi_cmd->partition = partition; 9080 scsi_ulto4b(length, scsi_cmd->length); 9081 9082 cam_fill_csio(csio, 9083 retries, 9084 cbfcnp, 9085 /*flags*/CAM_DIR_OUT, 9086 tag_action, 9087 /*data_ptr*/data_ptr, 9088 /*dxfer_len*/length, 9089 sense_len, 9090 sizeof(*scsi_cmd), 9091 timeout); 9092 } 9093 9094 void 9095 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries, 9096 void (*cbfcnp)(struct cam_periph *, union ccb *), 9097 uint8_t tag_action, int service_action, 9098 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 9099 int timeout) 9100 { 9101 struct scsi_per_res_in *scsi_cmd; 9102 9103 scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes; 9104 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9105 9106 scsi_cmd->opcode = PERSISTENT_RES_IN; 9107 scsi_cmd->action = service_action; 9108 scsi_ulto2b(dxfer_len, scsi_cmd->length); 9109 9110 cam_fill_csio(csio, 9111 retries, 9112 cbfcnp, 9113 /*flags*/CAM_DIR_IN, 9114 tag_action, 9115 data_ptr, 9116 dxfer_len, 9117 sense_len, 9118 sizeof(*scsi_cmd), 9119 timeout); 9120 } 9121 9122 void 9123 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries, 9124 void (*cbfcnp)(struct cam_periph *, union ccb *), 9125 uint8_t tag_action, int service_action, 9126 int scope, int res_type, uint8_t *data_ptr, 9127 uint32_t dxfer_len, int sense_len, int timeout) 9128 { 9129 struct scsi_per_res_out *scsi_cmd; 9130 9131 scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes; 9132 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9133 9134 scsi_cmd->opcode = PERSISTENT_RES_OUT; 9135 scsi_cmd->action = service_action; 9136 scsi_cmd->scope_type = scope | res_type; 9137 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9138 9139 cam_fill_csio(csio, 9140 retries, 9141 cbfcnp, 9142 /*flags*/CAM_DIR_OUT, 9143 tag_action, 9144 /*data_ptr*/data_ptr, 9145 /*dxfer_len*/dxfer_len, 9146 sense_len, 9147 sizeof(*scsi_cmd), 9148 timeout); 9149 } 9150 9151 void 9152 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries, 9153 void (*cbfcnp)(struct cam_periph *, union ccb *), 9154 uint8_t tag_action, uint32_t security_protocol, 9155 uint32_t security_protocol_specific, int byte4, 9156 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 9157 int timeout) 9158 { 9159 struct scsi_security_protocol_in *scsi_cmd; 9160 9161 scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes; 9162 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9163 9164 scsi_cmd->opcode = SECURITY_PROTOCOL_IN; 9165 9166 scsi_cmd->security_protocol = security_protocol; 9167 scsi_ulto2b(security_protocol_specific, 9168 scsi_cmd->security_protocol_specific); 9169 scsi_cmd->byte4 = byte4; 9170 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9171 9172 cam_fill_csio(csio, 9173 retries, 9174 cbfcnp, 9175 /*flags*/CAM_DIR_IN, 9176 tag_action, 9177 data_ptr, 9178 dxfer_len, 9179 sense_len, 9180 sizeof(*scsi_cmd), 9181 timeout); 9182 } 9183 9184 void 9185 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries, 9186 void (*cbfcnp)(struct cam_periph *, union ccb *), 9187 uint8_t tag_action, uint32_t security_protocol, 9188 uint32_t security_protocol_specific, int byte4, 9189 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 9190 int timeout) 9191 { 9192 struct scsi_security_protocol_out *scsi_cmd; 9193 9194 scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes; 9195 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9196 9197 scsi_cmd->opcode = SECURITY_PROTOCOL_OUT; 9198 9199 scsi_cmd->security_protocol = security_protocol; 9200 scsi_ulto2b(security_protocol_specific, 9201 scsi_cmd->security_protocol_specific); 9202 scsi_cmd->byte4 = byte4; 9203 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9204 9205 cam_fill_csio(csio, 9206 retries, 9207 cbfcnp, 9208 /*flags*/CAM_DIR_OUT, 9209 tag_action, 9210 data_ptr, 9211 dxfer_len, 9212 sense_len, 9213 sizeof(*scsi_cmd), 9214 timeout); 9215 } 9216 9217 void 9218 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries, 9219 void (*cbfcnp)(struct cam_periph *, union ccb *), 9220 uint8_t tag_action, int options, int req_opcode, 9221 int req_service_action, uint8_t *data_ptr, 9222 uint32_t dxfer_len, int sense_len, int timeout) 9223 { 9224 struct scsi_report_supported_opcodes *scsi_cmd; 9225 9226 scsi_cmd = (struct scsi_report_supported_opcodes *) 9227 &csio->cdb_io.cdb_bytes; 9228 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9229 9230 scsi_cmd->opcode = MAINTENANCE_IN; 9231 scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES; 9232 scsi_cmd->options = options; 9233 scsi_cmd->requested_opcode = req_opcode; 9234 scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action); 9235 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9236 9237 cam_fill_csio(csio, 9238 retries, 9239 cbfcnp, 9240 /*flags*/CAM_DIR_IN, 9241 tag_action, 9242 data_ptr, 9243 dxfer_len, 9244 sense_len, 9245 sizeof(*scsi_cmd), 9246 timeout); 9247 } 9248 9249 /* 9250 * Try make as good a match as possible with 9251 * available sub drivers 9252 */ 9253 int 9254 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9255 { 9256 struct scsi_inquiry_pattern *entry; 9257 struct scsi_inquiry_data *inq; 9258 9259 entry = (struct scsi_inquiry_pattern *)table_entry; 9260 inq = (struct scsi_inquiry_data *)inqbuffer; 9261 9262 if (((SID_TYPE(inq) == entry->type) 9263 || (entry->type == T_ANY)) 9264 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9265 : entry->media_type & SIP_MEDIA_FIXED) 9266 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9267 && (cam_strmatch(inq->product, entry->product, 9268 sizeof(inq->product)) == 0) 9269 && (cam_strmatch(inq->revision, entry->revision, 9270 sizeof(inq->revision)) == 0)) { 9271 return (0); 9272 } 9273 return (-1); 9274 } 9275 9276 /* 9277 * Try make as good a match as possible with 9278 * available sub drivers 9279 */ 9280 int 9281 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9282 { 9283 struct scsi_static_inquiry_pattern *entry; 9284 struct scsi_inquiry_data *inq; 9285 9286 entry = (struct scsi_static_inquiry_pattern *)table_entry; 9287 inq = (struct scsi_inquiry_data *)inqbuffer; 9288 9289 if (((SID_TYPE(inq) == entry->type) 9290 || (entry->type == T_ANY)) 9291 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9292 : entry->media_type & SIP_MEDIA_FIXED) 9293 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9294 && (cam_strmatch(inq->product, entry->product, 9295 sizeof(inq->product)) == 0) 9296 && (cam_strmatch(inq->revision, entry->revision, 9297 sizeof(inq->revision)) == 0)) { 9298 return (0); 9299 } 9300 return (-1); 9301 } 9302 9303 /** 9304 * Compare two buffers of vpd device descriptors for a match. 9305 * 9306 * \param lhs Pointer to first buffer of descriptors to compare. 9307 * \param lhs_len The length of the first buffer. 9308 * \param rhs Pointer to second buffer of descriptors to compare. 9309 * \param rhs_len The length of the second buffer. 9310 * 9311 * \return 0 on a match, -1 otherwise. 9312 * 9313 * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching 9314 * against each element in rhs until all data are exhausted or we have found 9315 * a match. 9316 */ 9317 int 9318 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len) 9319 { 9320 struct scsi_vpd_id_descriptor *lhs_id; 9321 struct scsi_vpd_id_descriptor *lhs_last; 9322 struct scsi_vpd_id_descriptor *rhs_last; 9323 uint8_t *lhs_end; 9324 uint8_t *rhs_end; 9325 9326 lhs_end = lhs + lhs_len; 9327 rhs_end = rhs + rhs_len; 9328 9329 /* 9330 * rhs_last and lhs_last are the last possible position of a valid 9331 * descriptor assuming it had a zero length identifier. We use 9332 * these variables to insure we can safely dereference the length 9333 * field in our loop termination tests. 9334 */ 9335 lhs_last = (struct scsi_vpd_id_descriptor *) 9336 (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9337 rhs_last = (struct scsi_vpd_id_descriptor *) 9338 (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9339 9340 lhs_id = (struct scsi_vpd_id_descriptor *)lhs; 9341 while (lhs_id <= lhs_last 9342 && (lhs_id->identifier + lhs_id->length) <= lhs_end) { 9343 struct scsi_vpd_id_descriptor *rhs_id; 9344 9345 rhs_id = (struct scsi_vpd_id_descriptor *)rhs; 9346 while (rhs_id <= rhs_last 9347 && (rhs_id->identifier + rhs_id->length) <= rhs_end) { 9348 if ((rhs_id->id_type & 9349 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) == 9350 (lhs_id->id_type & 9351 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) 9352 && rhs_id->length == lhs_id->length 9353 && memcmp(rhs_id->identifier, lhs_id->identifier, 9354 rhs_id->length) == 0) 9355 return (0); 9356 9357 rhs_id = (struct scsi_vpd_id_descriptor *) 9358 (rhs_id->identifier + rhs_id->length); 9359 } 9360 lhs_id = (struct scsi_vpd_id_descriptor *) 9361 (lhs_id->identifier + lhs_id->length); 9362 } 9363 return (-1); 9364 } 9365 9366 #ifdef _KERNEL 9367 int 9368 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id) 9369 { 9370 struct cam_ed *device; 9371 struct scsi_vpd_supported_pages *vpds; 9372 int i, num_pages; 9373 9374 device = periph->path->device; 9375 vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds; 9376 9377 if (vpds != NULL) { 9378 num_pages = device->supported_vpds_len - 9379 SVPD_SUPPORTED_PAGES_HDR_LEN; 9380 for (i = 0; i < num_pages; i++) { 9381 if (vpds->page_list[i] == page_id) 9382 return (1); 9383 } 9384 } 9385 9386 return (0); 9387 } 9388 9389 static void 9390 init_scsi_delay(void) 9391 { 9392 int delay; 9393 9394 delay = SCSI_DELAY; 9395 TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay); 9396 9397 if (set_scsi_delay(delay) != 0) { 9398 printf("cam: invalid value for tunable kern.cam.scsi_delay\n"); 9399 set_scsi_delay(SCSI_DELAY); 9400 } 9401 } 9402 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL); 9403 9404 static int 9405 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS) 9406 { 9407 int error, delay; 9408 9409 delay = scsi_delay; 9410 error = sysctl_handle_int(oidp, &delay, 0, req); 9411 if (error != 0 || req->newptr == NULL) 9412 return (error); 9413 return (set_scsi_delay(delay)); 9414 } 9415 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, 9416 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 9417 0, 0, sysctl_scsi_delay, "I", 9418 "Delay to allow devices to settle after a SCSI bus reset (ms)"); 9419 9420 static int 9421 set_scsi_delay(int delay) 9422 { 9423 /* 9424 * If someone sets this to 0, we assume that they want the 9425 * minimum allowable bus settle delay. 9426 */ 9427 if (delay == 0) { 9428 printf("cam: using minimum scsi_delay (%dms)\n", 9429 SCSI_MIN_DELAY); 9430 delay = SCSI_MIN_DELAY; 9431 } 9432 if (delay < SCSI_MIN_DELAY) 9433 return (EINVAL); 9434 scsi_delay = delay; 9435 return (0); 9436 } 9437 #endif /* _KERNEL */ 9438