1 /*- 2 * Implementation of Utility functions for all SCSI device types. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/types.h> 37 #include <sys/stdint.h> 38 39 #ifdef _KERNEL 40 #include "opt_scsi.h" 41 42 #include <sys/systm.h> 43 #include <sys/libkern.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 #include <sys/ctype.h> 50 #else 51 #include <errno.h> 52 #include <stdio.h> 53 #include <stdlib.h> 54 #include <string.h> 55 #include <ctype.h> 56 #endif 57 58 #include <cam/cam.h> 59 #include <cam/cam_ccb.h> 60 #include <cam/cam_queue.h> 61 #include <cam/cam_xpt.h> 62 #include <cam/scsi/scsi_all.h> 63 #include <sys/ata.h> 64 #include <sys/sbuf.h> 65 66 #ifdef _KERNEL 67 #include <cam/cam_periph.h> 68 #include <cam/cam_xpt_sim.h> 69 #include <cam/cam_xpt_periph.h> 70 #include <cam/cam_xpt_internal.h> 71 #else 72 #include <camlib.h> 73 #include <stddef.h> 74 75 #ifndef FALSE 76 #define FALSE 0 77 #endif /* FALSE */ 78 #ifndef TRUE 79 #define TRUE 1 80 #endif /* TRUE */ 81 #define ERESTART -1 /* restart syscall */ 82 #define EJUSTRETURN -2 /* don't modify regs, just return */ 83 #endif /* !_KERNEL */ 84 85 /* 86 * This is the default number of milliseconds we wait for devices to settle 87 * after a SCSI bus reset. 88 */ 89 #ifndef SCSI_DELAY 90 #define SCSI_DELAY 2000 91 #endif 92 /* 93 * All devices need _some_ sort of bus settle delay, so we'll set it to 94 * a minimum value of 100ms. Note that this is pertinent only for SPI- 95 * not transport like Fibre Channel or iSCSI where 'delay' is completely 96 * meaningless. 97 */ 98 #ifndef SCSI_MIN_DELAY 99 #define SCSI_MIN_DELAY 100 100 #endif 101 /* 102 * Make sure the user isn't using seconds instead of milliseconds. 103 */ 104 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0) 105 #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value" 106 #endif 107 108 int scsi_delay; 109 110 static int ascentrycomp(const void *key, const void *member); 111 static int senseentrycomp(const void *key, const void *member); 112 static void fetchtableentries(int sense_key, int asc, int ascq, 113 struct scsi_inquiry_data *, 114 const struct sense_key_table_entry **, 115 const struct asc_table_entry **); 116 117 #ifdef _KERNEL 118 static void init_scsi_delay(void); 119 static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS); 120 static int set_scsi_delay(int delay); 121 #endif 122 123 #if !defined(SCSI_NO_OP_STRINGS) 124 125 #define D (1 << T_DIRECT) 126 #define T (1 << T_SEQUENTIAL) 127 #define L (1 << T_PRINTER) 128 #define P (1 << T_PROCESSOR) 129 #define W (1 << T_WORM) 130 #define R (1 << T_CDROM) 131 #define O (1 << T_OPTICAL) 132 #define M (1 << T_CHANGER) 133 #define A (1 << T_STORARRAY) 134 #define E (1 << T_ENCLOSURE) 135 #define B (1 << T_RBC) 136 #define K (1 << T_OCRW) 137 #define V (1 << T_ADC) 138 #define F (1 << T_OSD) 139 #define S (1 << T_SCANNER) 140 #define C (1 << T_COMM) 141 142 #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C) 143 144 static struct op_table_entry plextor_cd_ops[] = { 145 { 0xD8, R, "CD-DA READ" } 146 }; 147 148 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = { 149 { 150 /* 151 * I believe that 0xD8 is the Plextor proprietary command 152 * to read CD-DA data. I'm not sure which Plextor CDROM 153 * models support the command, though. I know for sure 154 * that the 4X, 8X, and 12X models do, and presumably the 155 * 12-20X does. I don't know about any earlier models, 156 * though. If anyone has any more complete information, 157 * feel free to change this quirk entry. 158 */ 159 {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"}, 160 nitems(plextor_cd_ops), 161 plextor_cd_ops 162 } 163 }; 164 165 static struct op_table_entry scsi_op_codes[] = { 166 /* 167 * From: http://www.t10.org/lists/op-num.txt 168 * Modifications by Kenneth Merry (ken@FreeBSD.ORG) 169 * and Jung-uk Kim (jkim@FreeBSD.org) 170 * 171 * Note: order is important in this table, scsi_op_desc() currently 172 * depends on the opcodes in the table being in order to save 173 * search time. 174 * Note: scanner and comm. devices are carried over from the previous 175 * version because they were removed in the latest spec. 176 */ 177 /* File: OP-NUM.TXT 178 * 179 * SCSI Operation Codes 180 * Numeric Sorted Listing 181 * as of 5/26/15 182 * 183 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 184 * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) ----------------- 185 * . L - PRINTER DEVICE (SSC) M = Mandatory 186 * . P - PROCESSOR DEVICE (SPC) O = Optional 187 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec. 188 * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete 189 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 190 * . . .M - MEDIA CHANGER DEVICE (SMC-2) 191 * . . . A - STORAGE ARRAY DEVICE (SCC-2) 192 * . . . .E - ENCLOSURE SERVICES DEVICE (SES) 193 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 194 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 195 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 196 * . . . . .F - OBJECT-BASED STORAGE (OSD) 197 * OP DTLPWROMAEBKVF Description 198 * -- -------------- ---------------------------------------------- */ 199 /* 00 MMMMMMMMMMMMMM TEST UNIT READY */ 200 { 0x00, ALL, "TEST UNIT READY" }, 201 /* 01 M REWIND */ 202 { 0x01, T, "REWIND" }, 203 /* 01 Z V ZZZZ REZERO UNIT */ 204 { 0x01, D | W | R | O | M, "REZERO UNIT" }, 205 /* 02 VVVVVV V */ 206 /* 03 MMMMMMMMMMOMMM REQUEST SENSE */ 207 { 0x03, ALL, "REQUEST SENSE" }, 208 /* 04 M OO FORMAT UNIT */ 209 { 0x04, D | R | O, "FORMAT UNIT" }, 210 /* 04 O FORMAT MEDIUM */ 211 { 0x04, T, "FORMAT MEDIUM" }, 212 /* 04 O FORMAT */ 213 { 0x04, L, "FORMAT" }, 214 /* 05 VMVVVV V READ BLOCK LIMITS */ 215 { 0x05, T, "READ BLOCK LIMITS" }, 216 /* 06 VVVVVV V */ 217 /* 07 OVV O OV REASSIGN BLOCKS */ 218 { 0x07, D | W | O, "REASSIGN BLOCKS" }, 219 /* 07 O INITIALIZE ELEMENT STATUS */ 220 { 0x07, M, "INITIALIZE ELEMENT STATUS" }, 221 /* 08 MOV O OV READ(6) */ 222 { 0x08, D | T | W | O, "READ(6)" }, 223 /* 08 O RECEIVE */ 224 { 0x08, P, "RECEIVE" }, 225 /* 08 GET MESSAGE(6) */ 226 { 0x08, C, "GET MESSAGE(6)" }, 227 /* 09 VVVVVV V */ 228 /* 0A OO O OV WRITE(6) */ 229 { 0x0A, D | T | W | O, "WRITE(6)" }, 230 /* 0A M SEND(6) */ 231 { 0x0A, P, "SEND(6)" }, 232 /* 0A SEND MESSAGE(6) */ 233 { 0x0A, C, "SEND MESSAGE(6)" }, 234 /* 0A M PRINT */ 235 { 0x0A, L, "PRINT" }, 236 /* 0B Z ZOZV SEEK(6) */ 237 { 0x0B, D | W | R | O, "SEEK(6)" }, 238 /* 0B O SET CAPACITY */ 239 { 0x0B, T, "SET CAPACITY" }, 240 /* 0B O SLEW AND PRINT */ 241 { 0x0B, L, "SLEW AND PRINT" }, 242 /* 0C VVVVVV V */ 243 /* 0D VVVVVV V */ 244 /* 0E VVVVVV V */ 245 /* 0F VOVVVV V READ REVERSE(6) */ 246 { 0x0F, T, "READ REVERSE(6)" }, 247 /* 10 VM VVV WRITE FILEMARKS(6) */ 248 { 0x10, T, "WRITE FILEMARKS(6)" }, 249 /* 10 O SYNCHRONIZE BUFFER */ 250 { 0x10, L, "SYNCHRONIZE BUFFER" }, 251 /* 11 VMVVVV SPACE(6) */ 252 { 0x11, T, "SPACE(6)" }, 253 /* 12 MMMMMMMMMMMMMM INQUIRY */ 254 { 0x12, ALL, "INQUIRY" }, 255 /* 13 V VVVV */ 256 /* 13 O VERIFY(6) */ 257 { 0x13, T, "VERIFY(6)" }, 258 /* 14 VOOVVV RECOVER BUFFERED DATA */ 259 { 0x14, T | L, "RECOVER BUFFERED DATA" }, 260 /* 15 OMO O OOOO OO MODE SELECT(6) */ 261 { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" }, 262 /* 16 ZZMZO OOOZ O RESERVE(6) */ 263 { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" }, 264 /* 16 Z RESERVE ELEMENT(6) */ 265 { 0x16, M, "RESERVE ELEMENT(6)" }, 266 /* 17 ZZMZO OOOZ O RELEASE(6) */ 267 { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" }, 268 /* 17 Z RELEASE ELEMENT(6) */ 269 { 0x17, M, "RELEASE ELEMENT(6)" }, 270 /* 18 ZZZZOZO Z COPY */ 271 { 0x18, D | T | L | P | W | R | O | K | S, "COPY" }, 272 /* 19 VMVVVV ERASE(6) */ 273 { 0x19, T, "ERASE(6)" }, 274 /* 1A OMO O OOOO OO MODE SENSE(6) */ 275 { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" }, 276 /* 1B O OOO O MO O START STOP UNIT */ 277 { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" }, 278 /* 1B O M LOAD UNLOAD */ 279 { 0x1B, T | V, "LOAD UNLOAD" }, 280 /* 1B SCAN */ 281 { 0x1B, S, "SCAN" }, 282 /* 1B O STOP PRINT */ 283 { 0x1B, L, "STOP PRINT" }, 284 /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */ 285 { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" }, 286 /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */ 287 { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" }, 288 /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */ 289 { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" }, 290 /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */ 291 { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" }, 292 /* 1F */ 293 /* 20 V VVV V */ 294 /* 21 V VVV V */ 295 /* 22 V VVV V */ 296 /* 23 V V V V */ 297 /* 23 O READ FORMAT CAPACITIES */ 298 { 0x23, R, "READ FORMAT CAPACITIES" }, 299 /* 24 V VV SET WINDOW */ 300 { 0x24, S, "SET WINDOW" }, 301 /* 25 M M M M READ CAPACITY(10) */ 302 { 0x25, D | W | O | B, "READ CAPACITY(10)" }, 303 /* 25 O READ CAPACITY */ 304 { 0x25, R, "READ CAPACITY" }, 305 /* 25 M READ CARD CAPACITY */ 306 { 0x25, K, "READ CARD CAPACITY" }, 307 /* 25 GET WINDOW */ 308 { 0x25, S, "GET WINDOW" }, 309 /* 26 V VV */ 310 /* 27 V VV */ 311 /* 28 M MOM MM READ(10) */ 312 { 0x28, D | W | R | O | B | K | S, "READ(10)" }, 313 /* 28 GET MESSAGE(10) */ 314 { 0x28, C, "GET MESSAGE(10)" }, 315 /* 29 V VVO READ GENERATION */ 316 { 0x29, O, "READ GENERATION" }, 317 /* 2A O MOM MO WRITE(10) */ 318 { 0x2A, D | W | R | O | B | K, "WRITE(10)" }, 319 /* 2A SEND(10) */ 320 { 0x2A, S, "SEND(10)" }, 321 /* 2A SEND MESSAGE(10) */ 322 { 0x2A, C, "SEND MESSAGE(10)" }, 323 /* 2B Z OOO O SEEK(10) */ 324 { 0x2B, D | W | R | O | K, "SEEK(10)" }, 325 /* 2B O LOCATE(10) */ 326 { 0x2B, T, "LOCATE(10)" }, 327 /* 2B O POSITION TO ELEMENT */ 328 { 0x2B, M, "POSITION TO ELEMENT" }, 329 /* 2C V OO ERASE(10) */ 330 { 0x2C, R | O, "ERASE(10)" }, 331 /* 2D O READ UPDATED BLOCK */ 332 { 0x2D, O, "READ UPDATED BLOCK" }, 333 /* 2D V */ 334 /* 2E O OOO MO WRITE AND VERIFY(10) */ 335 { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" }, 336 /* 2F O OOO VERIFY(10) */ 337 { 0x2F, D | W | R | O, "VERIFY(10)" }, 338 /* 30 Z ZZZ SEARCH DATA HIGH(10) */ 339 { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" }, 340 /* 31 Z ZZZ SEARCH DATA EQUAL(10) */ 341 { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" }, 342 /* 31 OBJECT POSITION */ 343 { 0x31, S, "OBJECT POSITION" }, 344 /* 32 Z ZZZ SEARCH DATA LOW(10) */ 345 { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" }, 346 /* 33 Z OZO SET LIMITS(10) */ 347 { 0x33, D | W | R | O, "SET LIMITS(10)" }, 348 /* 34 O O O O PRE-FETCH(10) */ 349 { 0x34, D | W | O | K, "PRE-FETCH(10)" }, 350 /* 34 M READ POSITION */ 351 { 0x34, T, "READ POSITION" }, 352 /* 34 GET DATA BUFFER STATUS */ 353 { 0x34, S, "GET DATA BUFFER STATUS" }, 354 /* 35 O OOO MO SYNCHRONIZE CACHE(10) */ 355 { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" }, 356 /* 36 Z O O O LOCK UNLOCK CACHE(10) */ 357 { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" }, 358 /* 37 O O READ DEFECT DATA(10) */ 359 { 0x37, D | O, "READ DEFECT DATA(10)" }, 360 /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */ 361 { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" }, 362 /* 38 O O O MEDIUM SCAN */ 363 { 0x38, W | O | K, "MEDIUM SCAN" }, 364 /* 39 ZZZZOZO Z COMPARE */ 365 { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" }, 366 /* 3A ZZZZOZO Z COPY AND VERIFY */ 367 { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" }, 368 /* 3B OOOOOOOOOOMOOO WRITE BUFFER */ 369 { 0x3B, ALL, "WRITE BUFFER" }, 370 /* 3C OOOOOOOOOO OOO READ BUFFER */ 371 { 0x3C, ALL & ~(B), "READ BUFFER" }, 372 /* 3D O UPDATE BLOCK */ 373 { 0x3D, O, "UPDATE BLOCK" }, 374 /* 3E O O O READ LONG(10) */ 375 { 0x3E, D | W | O, "READ LONG(10)" }, 376 /* 3F O O O WRITE LONG(10) */ 377 { 0x3F, D | W | O, "WRITE LONG(10)" }, 378 /* 40 ZZZZOZOZ CHANGE DEFINITION */ 379 { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" }, 380 /* 41 O WRITE SAME(10) */ 381 { 0x41, D, "WRITE SAME(10)" }, 382 /* 42 O UNMAP */ 383 { 0x42, D, "UNMAP" }, 384 /* 42 O READ SUB-CHANNEL */ 385 { 0x42, R, "READ SUB-CHANNEL" }, 386 /* 43 O READ TOC/PMA/ATIP */ 387 { 0x43, R, "READ TOC/PMA/ATIP" }, 388 /* 44 M M REPORT DENSITY SUPPORT */ 389 { 0x44, T | V, "REPORT DENSITY SUPPORT" }, 390 /* 44 READ HEADER */ 391 /* 45 O PLAY AUDIO(10) */ 392 { 0x45, R, "PLAY AUDIO(10)" }, 393 /* 46 M GET CONFIGURATION */ 394 { 0x46, R, "GET CONFIGURATION" }, 395 /* 47 O PLAY AUDIO MSF */ 396 { 0x47, R, "PLAY AUDIO MSF" }, 397 /* 48 O SANITIZE */ 398 { 0x48, D, "SANITIZE" }, 399 /* 49 */ 400 /* 4A M GET EVENT STATUS NOTIFICATION */ 401 { 0x4A, R, "GET EVENT STATUS NOTIFICATION" }, 402 /* 4B O PAUSE/RESUME */ 403 { 0x4B, R, "PAUSE/RESUME" }, 404 /* 4C OOOOO OOOO OOO LOG SELECT */ 405 { 0x4C, ALL & ~(R | B), "LOG SELECT" }, 406 /* 4D OOOOO OOOO OMO LOG SENSE */ 407 { 0x4D, ALL & ~(R | B), "LOG SENSE" }, 408 /* 4E O STOP PLAY/SCAN */ 409 { 0x4E, R, "STOP PLAY/SCAN" }, 410 /* 4F */ 411 /* 50 O XDWRITE(10) */ 412 { 0x50, D, "XDWRITE(10)" }, 413 /* 51 O XPWRITE(10) */ 414 { 0x51, D, "XPWRITE(10)" }, 415 /* 51 O READ DISC INFORMATION */ 416 { 0x51, R, "READ DISC INFORMATION" }, 417 /* 52 O XDREAD(10) */ 418 { 0x52, D, "XDREAD(10)" }, 419 /* 52 O READ TRACK INFORMATION */ 420 { 0x52, R, "READ TRACK INFORMATION" }, 421 /* 53 O XDWRITEREAD(10) */ 422 { 0x53, D, "XDWRITEREAD(10)" }, 423 /* 53 O RESERVE TRACK */ 424 { 0x53, R, "RESERVE TRACK" }, 425 /* 54 O SEND OPC INFORMATION */ 426 { 0x54, R, "SEND OPC INFORMATION" }, 427 /* 55 OOO OMOOOOMOMO MODE SELECT(10) */ 428 { 0x55, ALL & ~(P), "MODE SELECT(10)" }, 429 /* 56 ZZMZO OOOZ RESERVE(10) */ 430 { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" }, 431 /* 56 Z RESERVE ELEMENT(10) */ 432 { 0x56, M, "RESERVE ELEMENT(10)" }, 433 /* 57 ZZMZO OOOZ RELEASE(10) */ 434 { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" }, 435 /* 57 Z RELEASE ELEMENT(10) */ 436 { 0x57, M, "RELEASE ELEMENT(10)" }, 437 /* 58 O REPAIR TRACK */ 438 { 0x58, R, "REPAIR TRACK" }, 439 /* 59 */ 440 /* 5A OOO OMOOOOMOMO MODE SENSE(10) */ 441 { 0x5A, ALL & ~(P), "MODE SENSE(10)" }, 442 /* 5B O CLOSE TRACK/SESSION */ 443 { 0x5B, R, "CLOSE TRACK/SESSION" }, 444 /* 5C O READ BUFFER CAPACITY */ 445 { 0x5C, R, "READ BUFFER CAPACITY" }, 446 /* 5D O SEND CUE SHEET */ 447 { 0x5D, R, "SEND CUE SHEET" }, 448 /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */ 449 { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" }, 450 /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */ 451 { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" }, 452 /* 7E OO O OOOO O extended CDB */ 453 { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" }, 454 /* 7F O M variable length CDB (more than 16 bytes) */ 455 { 0x7F, D | F, "variable length CDB (more than 16 bytes)" }, 456 /* 80 Z XDWRITE EXTENDED(16) */ 457 { 0x80, D, "XDWRITE EXTENDED(16)" }, 458 /* 80 M WRITE FILEMARKS(16) */ 459 { 0x80, T, "WRITE FILEMARKS(16)" }, 460 /* 81 Z REBUILD(16) */ 461 { 0x81, D, "REBUILD(16)" }, 462 /* 81 O READ REVERSE(16) */ 463 { 0x81, T, "READ REVERSE(16)" }, 464 /* 82 Z REGENERATE(16) */ 465 { 0x82, D, "REGENERATE(16)" }, 466 /* 82 O ALLOW OVERWRITE */ 467 { 0x82, T, "ALLOW OVERWRITE" }, 468 /* 83 OOOOO O OO EXTENDED COPY */ 469 { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" }, 470 /* 84 OOOOO O OO RECEIVE COPY RESULTS */ 471 { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" }, 472 /* 85 O O O ATA COMMAND PASS THROUGH(16) */ 473 { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" }, 474 /* 86 OO OO OOOOOOO ACCESS CONTROL IN */ 475 { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" }, 476 /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */ 477 { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" }, 478 /* 88 MM O O O READ(16) */ 479 { 0x88, D | T | W | O | B, "READ(16)" }, 480 /* 89 O COMPARE AND WRITE*/ 481 { 0x89, D, "COMPARE AND WRITE" }, 482 /* 8A OM O O O WRITE(16) */ 483 { 0x8A, D | T | W | O | B, "WRITE(16)" }, 484 /* 8B O ORWRITE */ 485 { 0x8B, D, "ORWRITE" }, 486 /* 8C OO O OO O M READ ATTRIBUTE */ 487 { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" }, 488 /* 8D OO O OO O O WRITE ATTRIBUTE */ 489 { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" }, 490 /* 8E O O O O WRITE AND VERIFY(16) */ 491 { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" }, 492 /* 8F OO O O O VERIFY(16) */ 493 { 0x8F, D | T | W | O | B, "VERIFY(16)" }, 494 /* 90 O O O O PRE-FETCH(16) */ 495 { 0x90, D | W | O | B, "PRE-FETCH(16)" }, 496 /* 91 O O O O SYNCHRONIZE CACHE(16) */ 497 { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" }, 498 /* 91 O SPACE(16) */ 499 { 0x91, T, "SPACE(16)" }, 500 /* 92 Z O O LOCK UNLOCK CACHE(16) */ 501 { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" }, 502 /* 92 O LOCATE(16) */ 503 { 0x92, T, "LOCATE(16)" }, 504 /* 93 O WRITE SAME(16) */ 505 { 0x93, D, "WRITE SAME(16)" }, 506 /* 93 M ERASE(16) */ 507 { 0x93, T, "ERASE(16)" }, 508 /* 94 O ZBC OUT */ 509 { 0x94, ALL, "ZBC OUT" }, 510 /* 95 O ZBC IN */ 511 { 0x95, ALL, "ZBC IN" }, 512 /* 96 */ 513 /* 97 */ 514 /* 98 */ 515 /* 99 */ 516 /* 9A O WRITE STREAM(16) */ 517 { 0x9A, D, "WRITE STREAM(16)" }, 518 /* 9B OOOOOOOOOO OOO READ BUFFER(16) */ 519 { 0x9B, ALL & ~(B) , "READ BUFFER(16)" }, 520 /* 9C O WRITE ATOMIC(16) */ 521 { 0x9C, D, "WRITE ATOMIC(16)" }, 522 /* 9D SERVICE ACTION BIDIRECTIONAL */ 523 { 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" }, 524 /* XXX KDM ALL for this? op-num.txt defines it for none.. */ 525 /* 9E SERVICE ACTION IN(16) */ 526 { 0x9E, ALL, "SERVICE ACTION IN(16)" }, 527 /* 9F M SERVICE ACTION OUT(16) */ 528 { 0x9F, ALL, "SERVICE ACTION OUT(16)" }, 529 /* A0 MMOOO OMMM OMO REPORT LUNS */ 530 { 0xA0, ALL & ~(R | B), "REPORT LUNS" }, 531 /* A1 O BLANK */ 532 { 0xA1, R, "BLANK" }, 533 /* A1 O O ATA COMMAND PASS THROUGH(12) */ 534 { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" }, 535 /* A2 OO O O SECURITY PROTOCOL IN */ 536 { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" }, 537 /* A3 OOO O OOMOOOM MAINTENANCE (IN) */ 538 { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" }, 539 /* A3 O SEND KEY */ 540 { 0xA3, R, "SEND KEY" }, 541 /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */ 542 { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" }, 543 /* A4 O REPORT KEY */ 544 { 0xA4, R, "REPORT KEY" }, 545 /* A5 O O OM MOVE MEDIUM */ 546 { 0xA5, T | W | O | M, "MOVE MEDIUM" }, 547 /* A5 O PLAY AUDIO(12) */ 548 { 0xA5, R, "PLAY AUDIO(12)" }, 549 /* A6 O EXCHANGE MEDIUM */ 550 { 0xA6, M, "EXCHANGE MEDIUM" }, 551 /* A6 O LOAD/UNLOAD C/DVD */ 552 { 0xA6, R, "LOAD/UNLOAD C/DVD" }, 553 /* A7 ZZ O O MOVE MEDIUM ATTACHED */ 554 { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" }, 555 /* A7 O SET READ AHEAD */ 556 { 0xA7, R, "SET READ AHEAD" }, 557 /* A8 O OOO READ(12) */ 558 { 0xA8, D | W | R | O, "READ(12)" }, 559 /* A8 GET MESSAGE(12) */ 560 { 0xA8, C, "GET MESSAGE(12)" }, 561 /* A9 O SERVICE ACTION OUT(12) */ 562 { 0xA9, V, "SERVICE ACTION OUT(12)" }, 563 /* AA O OOO WRITE(12) */ 564 { 0xAA, D | W | R | O, "WRITE(12)" }, 565 /* AA SEND MESSAGE(12) */ 566 { 0xAA, C, "SEND MESSAGE(12)" }, 567 /* AB O O SERVICE ACTION IN(12) */ 568 { 0xAB, R | V, "SERVICE ACTION IN(12)" }, 569 /* AC O ERASE(12) */ 570 { 0xAC, O, "ERASE(12)" }, 571 /* AC O GET PERFORMANCE */ 572 { 0xAC, R, "GET PERFORMANCE" }, 573 /* AD O READ DVD STRUCTURE */ 574 { 0xAD, R, "READ DVD STRUCTURE" }, 575 /* AE O O O WRITE AND VERIFY(12) */ 576 { 0xAE, D | W | O, "WRITE AND VERIFY(12)" }, 577 /* AF O OZO VERIFY(12) */ 578 { 0xAF, D | W | R | O, "VERIFY(12)" }, 579 /* B0 ZZZ SEARCH DATA HIGH(12) */ 580 { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" }, 581 /* B1 ZZZ SEARCH DATA EQUAL(12) */ 582 { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" }, 583 /* B2 ZZZ SEARCH DATA LOW(12) */ 584 { 0xB2, W | R | O, "SEARCH DATA LOW(12)" }, 585 /* B3 Z OZO SET LIMITS(12) */ 586 { 0xB3, D | W | R | O, "SET LIMITS(12)" }, 587 /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */ 588 { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" }, 589 /* B5 OO O O SECURITY PROTOCOL OUT */ 590 { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" }, 591 /* B5 O REQUEST VOLUME ELEMENT ADDRESS */ 592 { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" }, 593 /* B6 O SEND VOLUME TAG */ 594 { 0xB6, M, "SEND VOLUME TAG" }, 595 /* B6 O SET STREAMING */ 596 { 0xB6, R, "SET STREAMING" }, 597 /* B7 O O READ DEFECT DATA(12) */ 598 { 0xB7, D | O, "READ DEFECT DATA(12)" }, 599 /* B8 O OZOM READ ELEMENT STATUS */ 600 { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" }, 601 /* B9 O READ CD MSF */ 602 { 0xB9, R, "READ CD MSF" }, 603 /* BA O O OOMO REDUNDANCY GROUP (IN) */ 604 { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" }, 605 /* BA O SCAN */ 606 { 0xBA, R, "SCAN" }, 607 /* BB O O OOOO REDUNDANCY GROUP (OUT) */ 608 { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" }, 609 /* BB O SET CD SPEED */ 610 { 0xBB, R, "SET CD SPEED" }, 611 /* BC O O OOMO SPARE (IN) */ 612 { 0xBC, D | W | O | M | A | E, "SPARE (IN)" }, 613 /* BD O O OOOO SPARE (OUT) */ 614 { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" }, 615 /* BD O MECHANISM STATUS */ 616 { 0xBD, R, "MECHANISM STATUS" }, 617 /* BE O O OOMO VOLUME SET (IN) */ 618 { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" }, 619 /* BE O READ CD */ 620 { 0xBE, R, "READ CD" }, 621 /* BF O O OOOO VOLUME SET (OUT) */ 622 { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" }, 623 /* BF O SEND DVD STRUCTURE */ 624 { 0xBF, R, "SEND DVD STRUCTURE" } 625 }; 626 627 const char * 628 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 629 { 630 caddr_t match; 631 int i, j; 632 u_int32_t opmask; 633 u_int16_t pd_type; 634 int num_ops[2]; 635 struct op_table_entry *table[2]; 636 int num_tables; 637 638 /* 639 * If we've got inquiry data, use it to determine what type of 640 * device we're dealing with here. Otherwise, assume direct 641 * access. 642 */ 643 if (inq_data == NULL) { 644 pd_type = T_DIRECT; 645 match = NULL; 646 } else { 647 pd_type = SID_TYPE(inq_data); 648 649 match = cam_quirkmatch((caddr_t)inq_data, 650 (caddr_t)scsi_op_quirk_table, 651 nitems(scsi_op_quirk_table), 652 sizeof(*scsi_op_quirk_table), 653 scsi_inquiry_match); 654 } 655 656 if (match != NULL) { 657 table[0] = ((struct scsi_op_quirk_entry *)match)->op_table; 658 num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops; 659 table[1] = scsi_op_codes; 660 num_ops[1] = nitems(scsi_op_codes); 661 num_tables = 2; 662 } else { 663 /* 664 * If this is true, we have a vendor specific opcode that 665 * wasn't covered in the quirk table. 666 */ 667 if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80))) 668 return("Vendor Specific Command"); 669 670 table[0] = scsi_op_codes; 671 num_ops[0] = nitems(scsi_op_codes); 672 num_tables = 1; 673 } 674 675 /* RBC is 'Simplified' Direct Access Device */ 676 if (pd_type == T_RBC) 677 pd_type = T_DIRECT; 678 679 /* 680 * Host managed drives are direct access for the most part. 681 */ 682 if (pd_type == T_ZBC_HM) 683 pd_type = T_DIRECT; 684 685 /* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */ 686 if (pd_type == T_NODEVICE) 687 pd_type = T_DIRECT; 688 689 opmask = 1 << pd_type; 690 691 for (j = 0; j < num_tables; j++) { 692 for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){ 693 if ((table[j][i].opcode == opcode) 694 && ((table[j][i].opmask & opmask) != 0)) 695 return(table[j][i].desc); 696 } 697 } 698 699 /* 700 * If we can't find a match for the command in the table, we just 701 * assume it's a vendor specifc command. 702 */ 703 return("Vendor Specific Command"); 704 705 } 706 707 #else /* SCSI_NO_OP_STRINGS */ 708 709 const char * 710 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 711 { 712 return(""); 713 } 714 715 #endif 716 717 #if !defined(SCSI_NO_SENSE_STRINGS) 718 #define SST(asc, ascq, action, desc) \ 719 asc, ascq, action, desc 720 #else 721 const char empty_string[] = ""; 722 723 #define SST(asc, ascq, action, desc) \ 724 asc, ascq, action, empty_string 725 #endif 726 727 const struct sense_key_table_entry sense_key_table[] = 728 { 729 { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" }, 730 { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" }, 731 { SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" }, 732 { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" }, 733 { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" }, 734 { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" }, 735 { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" }, 736 { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" }, 737 { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" }, 738 { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" }, 739 { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" }, 740 { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" }, 741 { SSD_KEY_EQUAL, SS_NOP, "EQUAL" }, 742 { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" }, 743 { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" }, 744 { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" } 745 }; 746 747 static struct asc_table_entry quantum_fireball_entries[] = { 748 { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 749 "Logical unit not ready, initializing cmd. required") } 750 }; 751 752 static struct asc_table_entry sony_mo_entries[] = { 753 { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 754 "Logical unit not ready, cause not reportable") } 755 }; 756 757 static struct asc_table_entry hgst_entries[] = { 758 { SST(0x04, 0xF0, SS_RDEF, 759 "Vendor Unique - Logical Unit Not Ready") }, 760 { SST(0x0A, 0x01, SS_RDEF, 761 "Unrecovered Super Certification Log Write Error") }, 762 { SST(0x0A, 0x02, SS_RDEF, 763 "Unrecovered Super Certification Log Read Error") }, 764 { SST(0x15, 0x03, SS_RDEF, 765 "Unrecovered Sector Error") }, 766 { SST(0x3E, 0x04, SS_RDEF, 767 "Unrecovered Self-Test Hard-Cache Test Fail") }, 768 { SST(0x3E, 0x05, SS_RDEF, 769 "Unrecovered Self-Test OTF-Cache Fail") }, 770 { SST(0x40, 0x00, SS_RDEF, 771 "Unrecovered SAT No Buffer Overflow Error") }, 772 { SST(0x40, 0x01, SS_RDEF, 773 "Unrecovered SAT Buffer Overflow Error") }, 774 { SST(0x40, 0x02, SS_RDEF, 775 "Unrecovered SAT No Buffer Overflow With ECS Fault") }, 776 { SST(0x40, 0x03, SS_RDEF, 777 "Unrecovered SAT Buffer Overflow With ECS Fault") }, 778 { SST(0x40, 0x81, SS_RDEF, 779 "DRAM Failure") }, 780 { SST(0x44, 0x0B, SS_RDEF, 781 "Vendor Unique - Internal Target Failure") }, 782 { SST(0x44, 0xF2, SS_RDEF, 783 "Vendor Unique - Internal Target Failure") }, 784 { SST(0x44, 0xF6, SS_RDEF, 785 "Vendor Unique - Internal Target Failure") }, 786 { SST(0x44, 0xF9, SS_RDEF, 787 "Vendor Unique - Internal Target Failure") }, 788 { SST(0x44, 0xFA, SS_RDEF, 789 "Vendor Unique - Internal Target Failure") }, 790 { SST(0x5D, 0x22, SS_RDEF, 791 "Extreme Over-Temperature Warning") }, 792 { SST(0x5D, 0x50, SS_RDEF, 793 "Load/Unload cycle Count Warning") }, 794 { SST(0x81, 0x00, SS_RDEF, 795 "Vendor Unique - Internal Logic Error") }, 796 { SST(0x85, 0x00, SS_RDEF, 797 "Vendor Unique - Internal Key Seed Error") }, 798 }; 799 800 static struct asc_table_entry seagate_entries[] = { 801 { SST(0x04, 0xF0, SS_RDEF, 802 "Logical Unit Not Ready, super certify in Progress") }, 803 { SST(0x08, 0x86, SS_RDEF, 804 "Write Fault Data Corruption") }, 805 { SST(0x09, 0x0D, SS_RDEF, 806 "Tracking Failure") }, 807 { SST(0x09, 0x0E, SS_RDEF, 808 "ETF Failure") }, 809 { SST(0x0B, 0x5D, SS_RDEF, 810 "Pre-SMART Warning") }, 811 { SST(0x0B, 0x85, SS_RDEF, 812 "5V Voltage Warning") }, 813 { SST(0x0B, 0x8C, SS_RDEF, 814 "12V Voltage Warning") }, 815 { SST(0x0C, 0xFF, SS_RDEF, 816 "Write Error - Too many error recovery revs") }, 817 { SST(0x11, 0xFF, SS_RDEF, 818 "Unrecovered Read Error - Too many error recovery revs") }, 819 { SST(0x19, 0x0E, SS_RDEF, 820 "Fewer than 1/2 defect list copies") }, 821 { SST(0x20, 0xF3, SS_RDEF, 822 "Illegal CDB linked to skip mask cmd") }, 823 { SST(0x24, 0xF0, SS_RDEF, 824 "Illegal byte in CDB, LBA not matching") }, 825 { SST(0x24, 0xF1, SS_RDEF, 826 "Illegal byte in CDB, LEN not matching") }, 827 { SST(0x24, 0xF2, SS_RDEF, 828 "Mask not matching transfer length") }, 829 { SST(0x24, 0xF3, SS_RDEF, 830 "Drive formatted without plist") }, 831 { SST(0x26, 0x95, SS_RDEF, 832 "Invalid Field Parameter - CAP File") }, 833 { SST(0x26, 0x96, SS_RDEF, 834 "Invalid Field Parameter - RAP File") }, 835 { SST(0x26, 0x97, SS_RDEF, 836 "Invalid Field Parameter - TMS Firmware Tag") }, 837 { SST(0x26, 0x98, SS_RDEF, 838 "Invalid Field Parameter - Check Sum") }, 839 { SST(0x26, 0x99, SS_RDEF, 840 "Invalid Field Parameter - Firmware Tag") }, 841 { SST(0x29, 0x08, SS_RDEF, 842 "Write Log Dump data") }, 843 { SST(0x29, 0x09, SS_RDEF, 844 "Write Log Dump data") }, 845 { SST(0x29, 0x0A, SS_RDEF, 846 "Reserved disk space") }, 847 { SST(0x29, 0x0B, SS_RDEF, 848 "SDBP") }, 849 { SST(0x29, 0x0C, SS_RDEF, 850 "SDBP") }, 851 { SST(0x31, 0x91, SS_RDEF, 852 "Format Corrupted World Wide Name (WWN) is Invalid") }, 853 { SST(0x32, 0x03, SS_RDEF, 854 "Defect List - Length exceeds Command Allocated Length") }, 855 { SST(0x33, 0x00, SS_RDEF, 856 "Flash not ready for access") }, 857 { SST(0x3F, 0x70, SS_RDEF, 858 "Invalid RAP block") }, 859 { SST(0x3F, 0x71, SS_RDEF, 860 "RAP/ETF mismatch") }, 861 { SST(0x3F, 0x90, SS_RDEF, 862 "Invalid CAP block") }, 863 { SST(0x3F, 0x91, SS_RDEF, 864 "World Wide Name (WWN) Mismatch") }, 865 { SST(0x40, 0x01, SS_RDEF, 866 "DRAM Parity Error") }, 867 { SST(0x40, 0x02, SS_RDEF, 868 "DRAM Parity Error") }, 869 { SST(0x42, 0x0A, SS_RDEF, 870 "Loopback Test") }, 871 { SST(0x42, 0x0B, SS_RDEF, 872 "Loopback Test") }, 873 { SST(0x44, 0xF2, SS_RDEF, 874 "Compare error during data integrity check") }, 875 { SST(0x44, 0xF6, SS_RDEF, 876 "Unrecoverable error during data integrity check") }, 877 { SST(0x47, 0x80, SS_RDEF, 878 "Fibre Channel Sequence Error") }, 879 { SST(0x4E, 0x01, SS_RDEF, 880 "Information Unit Too Short") }, 881 { SST(0x80, 0x00, SS_RDEF, 882 "General Firmware Error / Command Timeout") }, 883 { SST(0x80, 0x01, SS_RDEF, 884 "Command Timeout") }, 885 { SST(0x80, 0x02, SS_RDEF, 886 "Command Timeout") }, 887 { SST(0x80, 0x80, SS_RDEF, 888 "FC FIFO Error During Read Transfer") }, 889 { SST(0x80, 0x81, SS_RDEF, 890 "FC FIFO Error During Write Transfer") }, 891 { SST(0x80, 0x82, SS_RDEF, 892 "DISC FIFO Error During Read Transfer") }, 893 { SST(0x80, 0x83, SS_RDEF, 894 "DISC FIFO Error During Write Transfer") }, 895 { SST(0x80, 0x84, SS_RDEF, 896 "LBA Seeded LRC Error on Read") }, 897 { SST(0x80, 0x85, SS_RDEF, 898 "LBA Seeded LRC Error on Write") }, 899 { SST(0x80, 0x86, SS_RDEF, 900 "IOEDC Error on Read") }, 901 { SST(0x80, 0x87, SS_RDEF, 902 "IOEDC Error on Write") }, 903 { SST(0x80, 0x88, SS_RDEF, 904 "Host Parity Check Failed") }, 905 { SST(0x80, 0x89, SS_RDEF, 906 "IOEDC error on read detected by formatter") }, 907 { SST(0x80, 0x8A, SS_RDEF, 908 "Host Parity Errors / Host FIFO Initialization Failed") }, 909 { SST(0x80, 0x8B, SS_RDEF, 910 "Host Parity Errors") }, 911 { SST(0x80, 0x8C, SS_RDEF, 912 "Host Parity Errors") }, 913 { SST(0x80, 0x8D, SS_RDEF, 914 "Host Parity Errors") }, 915 { SST(0x81, 0x00, SS_RDEF, 916 "LA Check Failed") }, 917 { SST(0x82, 0x00, SS_RDEF, 918 "Internal client detected insufficient buffer") }, 919 { SST(0x84, 0x00, SS_RDEF, 920 "Scheduled Diagnostic And Repair") }, 921 }; 922 923 static struct scsi_sense_quirk_entry sense_quirk_table[] = { 924 { 925 /* 926 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b 927 * when they really should return 0x04 0x02. 928 */ 929 {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"}, 930 /*num_sense_keys*/0, 931 nitems(quantum_fireball_entries), 932 /*sense key entries*/NULL, 933 quantum_fireball_entries 934 }, 935 { 936 /* 937 * This Sony MO drive likes to return 0x04, 0x00 when it 938 * isn't spun up. 939 */ 940 {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"}, 941 /*num_sense_keys*/0, 942 nitems(sony_mo_entries), 943 /*sense key entries*/NULL, 944 sony_mo_entries 945 }, 946 { 947 /* 948 * HGST vendor-specific error codes 949 */ 950 {T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"}, 951 /*num_sense_keys*/0, 952 nitems(hgst_entries), 953 /*sense key entries*/NULL, 954 hgst_entries 955 }, 956 { 957 /* 958 * SEAGATE vendor-specific error codes 959 */ 960 {T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"}, 961 /*num_sense_keys*/0, 962 nitems(seagate_entries), 963 /*sense key entries*/NULL, 964 seagate_entries 965 } 966 }; 967 968 const u_int sense_quirk_table_size = nitems(sense_quirk_table); 969 970 static struct asc_table_entry asc_table[] = { 971 /* 972 * From: http://www.t10.org/lists/asc-num.txt 973 * Modifications by Jung-uk Kim (jkim@FreeBSD.org) 974 */ 975 /* 976 * File: ASC-NUM.TXT 977 * 978 * SCSI ASC/ASCQ Assignments 979 * Numeric Sorted Listing 980 * as of 8/12/15 981 * 982 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 983 * .T - SEQUENTIAL ACCESS DEVICE (SSC) ------------------- 984 * . L - PRINTER DEVICE (SSC) blank = reserved 985 * . P - PROCESSOR DEVICE (SPC) not blank = allowed 986 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) 987 * . . R - CD DEVICE (MMC) 988 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 989 * . . .M - MEDIA CHANGER DEVICE (SMC) 990 * . . . A - STORAGE ARRAY DEVICE (SCC) 991 * . . . E - ENCLOSURE SERVICES DEVICE (SES) 992 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 993 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 994 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 995 * . . . . .F - OBJECT-BASED STORAGE (OSD) 996 * DTLPWROMAEBKVF 997 * ASC ASCQ Action 998 * Description 999 */ 1000 /* DTLPWROMAEBKVF */ 1001 { SST(0x00, 0x00, SS_NOP, 1002 "No additional sense information") }, 1003 /* T */ 1004 { SST(0x00, 0x01, SS_RDEF, 1005 "Filemark detected") }, 1006 /* T */ 1007 { SST(0x00, 0x02, SS_RDEF, 1008 "End-of-partition/medium detected") }, 1009 /* T */ 1010 { SST(0x00, 0x03, SS_RDEF, 1011 "Setmark detected") }, 1012 /* T */ 1013 { SST(0x00, 0x04, SS_RDEF, 1014 "Beginning-of-partition/medium detected") }, 1015 /* TL */ 1016 { SST(0x00, 0x05, SS_RDEF, 1017 "End-of-data detected") }, 1018 /* DTLPWROMAEBKVF */ 1019 { SST(0x00, 0x06, SS_RDEF, 1020 "I/O process terminated") }, 1021 /* T */ 1022 { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */ 1023 "Programmable early warning detected") }, 1024 /* R */ 1025 { SST(0x00, 0x11, SS_FATAL | EBUSY, 1026 "Audio play operation in progress") }, 1027 /* R */ 1028 { SST(0x00, 0x12, SS_NOP, 1029 "Audio play operation paused") }, 1030 /* R */ 1031 { SST(0x00, 0x13, SS_NOP, 1032 "Audio play operation successfully completed") }, 1033 /* R */ 1034 { SST(0x00, 0x14, SS_RDEF, 1035 "Audio play operation stopped due to error") }, 1036 /* R */ 1037 { SST(0x00, 0x15, SS_NOP, 1038 "No current audio status to return") }, 1039 /* DTLPWROMAEBKVF */ 1040 { SST(0x00, 0x16, SS_FATAL | EBUSY, 1041 "Operation in progress") }, 1042 /* DTL WROMAEBKVF */ 1043 { SST(0x00, 0x17, SS_RDEF, 1044 "Cleaning requested") }, 1045 /* T */ 1046 { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */ 1047 "Erase operation in progress") }, 1048 /* T */ 1049 { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */ 1050 "Locate operation in progress") }, 1051 /* T */ 1052 { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */ 1053 "Rewind operation in progress") }, 1054 /* T */ 1055 { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */ 1056 "Set capacity operation in progress") }, 1057 /* T */ 1058 { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */ 1059 "Verify operation in progress") }, 1060 /* DT B */ 1061 { SST(0x00, 0x1D, SS_NOP, 1062 "ATA pass through information available") }, 1063 /* DT R MAEBKV */ 1064 { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */ 1065 "Conflicting SA creation request") }, 1066 /* DT B */ 1067 { SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */ 1068 "Logical unit transitioning to another power condition") }, 1069 /* DT P B */ 1070 { SST(0x00, 0x20, SS_NOP, 1071 "Extended copy information available") }, 1072 /* D */ 1073 { SST(0x00, 0x21, SS_RDEF, /* XXX TBD */ 1074 "Atomic command aborted due to ACA") }, 1075 /* D W O BK */ 1076 { SST(0x01, 0x00, SS_RDEF, 1077 "No index/sector signal") }, 1078 /* D WRO BK */ 1079 { SST(0x02, 0x00, SS_RDEF, 1080 "No seek complete") }, 1081 /* DTL W O BK */ 1082 { SST(0x03, 0x00, SS_RDEF, 1083 "Peripheral device write fault") }, 1084 /* T */ 1085 { SST(0x03, 0x01, SS_RDEF, 1086 "No write current") }, 1087 /* T */ 1088 { SST(0x03, 0x02, SS_RDEF, 1089 "Excessive write errors") }, 1090 /* DTLPWROMAEBKVF */ 1091 { SST(0x04, 0x00, SS_RDEF, 1092 "Logical unit not ready, cause not reportable") }, 1093 /* DTLPWROMAEBKVF */ 1094 { SST(0x04, 0x01, SS_WAIT | EBUSY, 1095 "Logical unit is in process of becoming ready") }, 1096 /* DTLPWROMAEBKVF */ 1097 { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1098 "Logical unit not ready, initializing command required") }, 1099 /* DTLPWROMAEBKVF */ 1100 { SST(0x04, 0x03, SS_FATAL | ENXIO, 1101 "Logical unit not ready, manual intervention required") }, 1102 /* DTL RO B */ 1103 { SST(0x04, 0x04, SS_FATAL | EBUSY, 1104 "Logical unit not ready, format in progress") }, 1105 /* DT W O A BK F */ 1106 { SST(0x04, 0x05, SS_FATAL | EBUSY, 1107 "Logical unit not ready, rebuild in progress") }, 1108 /* DT W O A BK */ 1109 { SST(0x04, 0x06, SS_FATAL | EBUSY, 1110 "Logical unit not ready, recalculation in progress") }, 1111 /* DTLPWROMAEBKVF */ 1112 { SST(0x04, 0x07, SS_FATAL | EBUSY, 1113 "Logical unit not ready, operation in progress") }, 1114 /* R */ 1115 { SST(0x04, 0x08, SS_FATAL | EBUSY, 1116 "Logical unit not ready, long write in progress") }, 1117 /* DTLPWROMAEBKVF */ 1118 { SST(0x04, 0x09, SS_FATAL | EBUSY, 1119 "Logical unit not ready, self-test in progress") }, 1120 /* DTLPWROMAEBKVF */ 1121 { SST(0x04, 0x0A, SS_WAIT | ENXIO, 1122 "Logical unit not accessible, asymmetric access state transition")}, 1123 /* DTLPWROMAEBKVF */ 1124 { SST(0x04, 0x0B, SS_FATAL | ENXIO, 1125 "Logical unit not accessible, target port in standby state") }, 1126 /* DTLPWROMAEBKVF */ 1127 { SST(0x04, 0x0C, SS_FATAL | ENXIO, 1128 "Logical unit not accessible, target port in unavailable state") }, 1129 /* F */ 1130 { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */ 1131 "Logical unit not ready, structure check required") }, 1132 /* DTL WR MAEBKVF */ 1133 { SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */ 1134 "Logical unit not ready, security session in progress") }, 1135 /* DT WROM B */ 1136 { SST(0x04, 0x10, SS_FATAL | ENODEV, 1137 "Logical unit not ready, auxiliary memory not accessible") }, 1138 /* DT WRO AEB VF */ 1139 { SST(0x04, 0x11, SS_WAIT | ENXIO, 1140 "Logical unit not ready, notify (enable spinup) required") }, 1141 /* M V */ 1142 { SST(0x04, 0x12, SS_FATAL | ENXIO, 1143 "Logical unit not ready, offline") }, 1144 /* DT R MAEBKV */ 1145 { SST(0x04, 0x13, SS_WAIT | EBUSY, 1146 "Logical unit not ready, SA creation in progress") }, 1147 /* D B */ 1148 { SST(0x04, 0x14, SS_WAIT | ENOSPC, 1149 "Logical unit not ready, space allocation in progress") }, 1150 /* M */ 1151 { SST(0x04, 0x15, SS_FATAL | ENXIO, 1152 "Logical unit not ready, robotics disabled") }, 1153 /* M */ 1154 { SST(0x04, 0x16, SS_FATAL | ENXIO, 1155 "Logical unit not ready, configuration required") }, 1156 /* M */ 1157 { SST(0x04, 0x17, SS_FATAL | ENXIO, 1158 "Logical unit not ready, calibration required") }, 1159 /* M */ 1160 { SST(0x04, 0x18, SS_FATAL | ENXIO, 1161 "Logical unit not ready, a door is open") }, 1162 /* M */ 1163 { SST(0x04, 0x19, SS_FATAL | ENODEV, 1164 "Logical unit not ready, operating in sequential mode") }, 1165 /* DT B */ 1166 { SST(0x04, 0x1A, SS_WAIT | EBUSY, 1167 "Logical unit not ready, START/STOP UNIT command in progress") }, 1168 /* D B */ 1169 { SST(0x04, 0x1B, SS_WAIT | EBUSY, 1170 "Logical unit not ready, sanitize in progress") }, 1171 /* DT MAEB */ 1172 { SST(0x04, 0x1C, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1173 "Logical unit not ready, additional power use not yet granted") }, 1174 /* D */ 1175 { SST(0x04, 0x1D, SS_WAIT | EBUSY, 1176 "Logical unit not ready, configuration in progress") }, 1177 /* D */ 1178 { SST(0x04, 0x1E, SS_FATAL | ENXIO, 1179 "Logical unit not ready, microcode activation required") }, 1180 /* DTLPWROMAEBKVF */ 1181 { SST(0x04, 0x1F, SS_FATAL | ENXIO, 1182 "Logical unit not ready, microcode download required") }, 1183 /* DTLPWROMAEBKVF */ 1184 { SST(0x04, 0x20, SS_FATAL | ENXIO, 1185 "Logical unit not ready, logical unit reset required") }, 1186 /* DTLPWROMAEBKVF */ 1187 { SST(0x04, 0x21, SS_FATAL | ENXIO, 1188 "Logical unit not ready, hard reset required") }, 1189 /* DTLPWROMAEBKVF */ 1190 { SST(0x04, 0x22, SS_FATAL | ENXIO, 1191 "Logical unit not ready, power cycle required") }, 1192 /* D */ 1193 { SST(0x04, 0x23, SS_FATAL | ENXIO, 1194 "Logical unit not ready, affiliation required") }, 1195 /* D */ 1196 { SST(0x04, 0x24, SS_FATAL | EBUSY, 1197 "Depopulation in progress") }, 1198 /* D */ 1199 { SST(0x04, 0x25, SS_FATAL | EBUSY, 1200 "Depopulation restoration in progress") }, 1201 /* DTL WROMAEBKVF */ 1202 { SST(0x05, 0x00, SS_RDEF, 1203 "Logical unit does not respond to selection") }, 1204 /* D WROM BK */ 1205 { SST(0x06, 0x00, SS_RDEF, 1206 "No reference position found") }, 1207 /* DTL WROM BK */ 1208 { SST(0x07, 0x00, SS_RDEF, 1209 "Multiple peripheral devices selected") }, 1210 /* DTL WROMAEBKVF */ 1211 { SST(0x08, 0x00, SS_RDEF, 1212 "Logical unit communication failure") }, 1213 /* DTL WROMAEBKVF */ 1214 { SST(0x08, 0x01, SS_RDEF, 1215 "Logical unit communication time-out") }, 1216 /* DTL WROMAEBKVF */ 1217 { SST(0x08, 0x02, SS_RDEF, 1218 "Logical unit communication parity error") }, 1219 /* DT ROM BK */ 1220 { SST(0x08, 0x03, SS_RDEF, 1221 "Logical unit communication CRC error (Ultra-DMA/32)") }, 1222 /* DTLPWRO K */ 1223 { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */ 1224 "Unreachable copy target") }, 1225 /* DT WRO B */ 1226 { SST(0x09, 0x00, SS_RDEF, 1227 "Track following error") }, 1228 /* WRO K */ 1229 { SST(0x09, 0x01, SS_RDEF, 1230 "Tracking servo failure") }, 1231 /* WRO K */ 1232 { SST(0x09, 0x02, SS_RDEF, 1233 "Focus servo failure") }, 1234 /* WRO */ 1235 { SST(0x09, 0x03, SS_RDEF, 1236 "Spindle servo failure") }, 1237 /* DT WRO B */ 1238 { SST(0x09, 0x04, SS_RDEF, 1239 "Head select fault") }, 1240 /* DT RO B */ 1241 { SST(0x09, 0x05, SS_RDEF, 1242 "Vibration induced tracking error") }, 1243 /* DTLPWROMAEBKVF */ 1244 { SST(0x0A, 0x00, SS_FATAL | ENOSPC, 1245 "Error log overflow") }, 1246 /* DTLPWROMAEBKVF */ 1247 { SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1248 "Warning") }, 1249 /* DTLPWROMAEBKVF */ 1250 { SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1251 "Warning - specified temperature exceeded") }, 1252 /* DTLPWROMAEBKVF */ 1253 { SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1254 "Warning - enclosure degraded") }, 1255 /* DTLPWROMAEBKVF */ 1256 { SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1257 "Warning - background self-test failed") }, 1258 /* DTLPWRO AEBKVF */ 1259 { SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1260 "Warning - background pre-scan detected medium error") }, 1261 /* DTLPWRO AEBKVF */ 1262 { SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1263 "Warning - background medium scan detected medium error") }, 1264 /* DTLPWROMAEBKVF */ 1265 { SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1266 "Warning - non-volatile cache now volatile") }, 1267 /* DTLPWROMAEBKVF */ 1268 { SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1269 "Warning - degraded power to non-volatile cache") }, 1270 /* DTLPWROMAEBKVF */ 1271 { SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1272 "Warning - power loss expected") }, 1273 /* D */ 1274 { SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1275 "Warning - device statistics notification available") }, 1276 /* DTLPWROMAEBKVF */ 1277 { SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE, 1278 "Warning - High critical temperature limit exceeded") }, 1279 /* DTLPWROMAEBKVF */ 1280 { SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE, 1281 "Warning - Low critical temperature limit exceeded") }, 1282 /* DTLPWROMAEBKVF */ 1283 { SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE, 1284 "Warning - High operating temperature limit exceeded") }, 1285 /* DTLPWROMAEBKVF */ 1286 { SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE, 1287 "Warning - Low operating temperature limit exceeded") }, 1288 /* DTLPWROMAEBKVF */ 1289 { SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE, 1290 "Warning - High citical humidity limit exceeded") }, 1291 /* DTLPWROMAEBKVF */ 1292 { SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE, 1293 "Warning - Low citical humidity limit exceeded") }, 1294 /* DTLPWROMAEBKVF */ 1295 { SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE, 1296 "Warning - High operating humidity limit exceeded") }, 1297 /* DTLPWROMAEBKVF */ 1298 { SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE, 1299 "Warning - Low operating humidity limit exceeded") }, 1300 /* T R */ 1301 { SST(0x0C, 0x00, SS_RDEF, 1302 "Write error") }, 1303 /* K */ 1304 { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1305 "Write error - recovered with auto reallocation") }, 1306 /* D W O BK */ 1307 { SST(0x0C, 0x02, SS_RDEF, 1308 "Write error - auto reallocation failed") }, 1309 /* D W O BK */ 1310 { SST(0x0C, 0x03, SS_RDEF, 1311 "Write error - recommend reassignment") }, 1312 /* DT W O B */ 1313 { SST(0x0C, 0x04, SS_RDEF, 1314 "Compression check miscompare error") }, 1315 /* DT W O B */ 1316 { SST(0x0C, 0x05, SS_RDEF, 1317 "Data expansion occurred during compression") }, 1318 /* DT W O B */ 1319 { SST(0x0C, 0x06, SS_RDEF, 1320 "Block not compressible") }, 1321 /* R */ 1322 { SST(0x0C, 0x07, SS_RDEF, 1323 "Write error - recovery needed") }, 1324 /* R */ 1325 { SST(0x0C, 0x08, SS_RDEF, 1326 "Write error - recovery failed") }, 1327 /* R */ 1328 { SST(0x0C, 0x09, SS_RDEF, 1329 "Write error - loss of streaming") }, 1330 /* R */ 1331 { SST(0x0C, 0x0A, SS_RDEF, 1332 "Write error - padding blocks added") }, 1333 /* DT WROM B */ 1334 { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */ 1335 "Auxiliary memory write error") }, 1336 /* DTLPWRO AEBKVF */ 1337 { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */ 1338 "Write error - unexpected unsolicited data") }, 1339 /* DTLPWRO AEBKVF */ 1340 { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */ 1341 "Write error - not enough unsolicited data") }, 1342 /* DT W O BK */ 1343 { SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */ 1344 "Multiple write errors") }, 1345 /* R */ 1346 { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */ 1347 "Defects in error window") }, 1348 /* D */ 1349 { SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */ 1350 "Incomplete multiple atomic write operations") }, 1351 /* D */ 1352 { SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */ 1353 "Write error - recovery scan needed") }, 1354 /* D */ 1355 { SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */ 1356 "Write error - insufficient zone resources") }, 1357 /* DTLPWRO A K */ 1358 { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */ 1359 "Error detected by third party temporary initiator") }, 1360 /* DTLPWRO A K */ 1361 { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */ 1362 "Third party device failure") }, 1363 /* DTLPWRO A K */ 1364 { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */ 1365 "Copy target device not reachable") }, 1366 /* DTLPWRO A K */ 1367 { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */ 1368 "Incorrect copy target device type") }, 1369 /* DTLPWRO A K */ 1370 { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */ 1371 "Copy target device data underrun") }, 1372 /* DTLPWRO A K */ 1373 { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */ 1374 "Copy target device data overrun") }, 1375 /* DT PWROMAEBK F */ 1376 { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */ 1377 "Invalid information unit") }, 1378 /* DT PWROMAEBK F */ 1379 { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */ 1380 "Information unit too short") }, 1381 /* DT PWROMAEBK F */ 1382 { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */ 1383 "Information unit too long") }, 1384 /* DT P R MAEBK F */ 1385 { SST(0x0E, 0x03, SS_FATAL | EINVAL, 1386 "Invalid field in command information unit") }, 1387 /* D W O BK */ 1388 { SST(0x10, 0x00, SS_RDEF, 1389 "ID CRC or ECC error") }, 1390 /* DT W O */ 1391 { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */ 1392 "Logical block guard check failed") }, 1393 /* DT W O */ 1394 { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */ 1395 "Logical block application tag check failed") }, 1396 /* DT W O */ 1397 { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */ 1398 "Logical block reference tag check failed") }, 1399 /* T */ 1400 { SST(0x10, 0x04, SS_RDEF, /* XXX TBD */ 1401 "Logical block protection error on recovered buffer data") }, 1402 /* T */ 1403 { SST(0x10, 0x05, SS_RDEF, /* XXX TBD */ 1404 "Logical block protection method error") }, 1405 /* DT WRO BK */ 1406 { SST(0x11, 0x00, SS_FATAL|EIO, 1407 "Unrecovered read error") }, 1408 /* DT WRO BK */ 1409 { SST(0x11, 0x01, SS_FATAL|EIO, 1410 "Read retries exhausted") }, 1411 /* DT WRO BK */ 1412 { SST(0x11, 0x02, SS_FATAL|EIO, 1413 "Error too long to correct") }, 1414 /* DT W O BK */ 1415 { SST(0x11, 0x03, SS_FATAL|EIO, 1416 "Multiple read errors") }, 1417 /* D W O BK */ 1418 { SST(0x11, 0x04, SS_FATAL|EIO, 1419 "Unrecovered read error - auto reallocate failed") }, 1420 /* WRO B */ 1421 { SST(0x11, 0x05, SS_FATAL|EIO, 1422 "L-EC uncorrectable error") }, 1423 /* WRO B */ 1424 { SST(0x11, 0x06, SS_FATAL|EIO, 1425 "CIRC unrecovered error") }, 1426 /* W O B */ 1427 { SST(0x11, 0x07, SS_RDEF, 1428 "Data re-synchronization error") }, 1429 /* T */ 1430 { SST(0x11, 0x08, SS_RDEF, 1431 "Incomplete block read") }, 1432 /* T */ 1433 { SST(0x11, 0x09, SS_RDEF, 1434 "No gap found") }, 1435 /* DT O BK */ 1436 { SST(0x11, 0x0A, SS_RDEF, 1437 "Miscorrected error") }, 1438 /* D W O BK */ 1439 { SST(0x11, 0x0B, SS_FATAL|EIO, 1440 "Unrecovered read error - recommend reassignment") }, 1441 /* D W O BK */ 1442 { SST(0x11, 0x0C, SS_FATAL|EIO, 1443 "Unrecovered read error - recommend rewrite the data") }, 1444 /* DT WRO B */ 1445 { SST(0x11, 0x0D, SS_RDEF, 1446 "De-compression CRC error") }, 1447 /* DT WRO B */ 1448 { SST(0x11, 0x0E, SS_RDEF, 1449 "Cannot decompress using declared algorithm") }, 1450 /* R */ 1451 { SST(0x11, 0x0F, SS_RDEF, 1452 "Error reading UPC/EAN number") }, 1453 /* R */ 1454 { SST(0x11, 0x10, SS_RDEF, 1455 "Error reading ISRC number") }, 1456 /* R */ 1457 { SST(0x11, 0x11, SS_RDEF, 1458 "Read error - loss of streaming") }, 1459 /* DT WROM B */ 1460 { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */ 1461 "Auxiliary memory read error") }, 1462 /* DTLPWRO AEBKVF */ 1463 { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */ 1464 "Read error - failed retransmission request") }, 1465 /* D */ 1466 { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */ 1467 "Read error - LBA marked bad by application client") }, 1468 /* D */ 1469 { SST(0x11, 0x15, SS_FATAL | EIO, 1470 "Write after sanitize required") }, 1471 /* D W O BK */ 1472 { SST(0x12, 0x00, SS_RDEF, 1473 "Address mark not found for ID field") }, 1474 /* D W O BK */ 1475 { SST(0x13, 0x00, SS_RDEF, 1476 "Address mark not found for data field") }, 1477 /* DTL WRO BK */ 1478 { SST(0x14, 0x00, SS_RDEF, 1479 "Recorded entity not found") }, 1480 /* DT WRO BK */ 1481 { SST(0x14, 0x01, SS_RDEF, 1482 "Record not found") }, 1483 /* T */ 1484 { SST(0x14, 0x02, SS_RDEF, 1485 "Filemark or setmark not found") }, 1486 /* T */ 1487 { SST(0x14, 0x03, SS_RDEF, 1488 "End-of-data not found") }, 1489 /* T */ 1490 { SST(0x14, 0x04, SS_RDEF, 1491 "Block sequence error") }, 1492 /* DT W O BK */ 1493 { SST(0x14, 0x05, SS_RDEF, 1494 "Record not found - recommend reassignment") }, 1495 /* DT W O BK */ 1496 { SST(0x14, 0x06, SS_RDEF, 1497 "Record not found - data auto-reallocated") }, 1498 /* T */ 1499 { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */ 1500 "Locate operation failure") }, 1501 /* DTL WROM BK */ 1502 { SST(0x15, 0x00, SS_RDEF, 1503 "Random positioning error") }, 1504 /* DTL WROM BK */ 1505 { SST(0x15, 0x01, SS_RDEF, 1506 "Mechanical positioning error") }, 1507 /* DT WRO BK */ 1508 { SST(0x15, 0x02, SS_RDEF, 1509 "Positioning error detected by read of medium") }, 1510 /* D W O BK */ 1511 { SST(0x16, 0x00, SS_RDEF, 1512 "Data synchronization mark error") }, 1513 /* D W O BK */ 1514 { SST(0x16, 0x01, SS_RDEF, 1515 "Data sync error - data rewritten") }, 1516 /* D W O BK */ 1517 { SST(0x16, 0x02, SS_RDEF, 1518 "Data sync error - recommend rewrite") }, 1519 /* D W O BK */ 1520 { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1521 "Data sync error - data auto-reallocated") }, 1522 /* D W O BK */ 1523 { SST(0x16, 0x04, SS_RDEF, 1524 "Data sync error - recommend reassignment") }, 1525 /* DT WRO BK */ 1526 { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1527 "Recovered data with no error correction applied") }, 1528 /* DT WRO BK */ 1529 { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1530 "Recovered data with retries") }, 1531 /* DT WRO BK */ 1532 { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1533 "Recovered data with positive head offset") }, 1534 /* DT WRO BK */ 1535 { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1536 "Recovered data with negative head offset") }, 1537 /* WRO B */ 1538 { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1539 "Recovered data with retries and/or CIRC applied") }, 1540 /* D WRO BK */ 1541 { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1542 "Recovered data using previous sector ID") }, 1543 /* D W O BK */ 1544 { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1545 "Recovered data without ECC - data auto-reallocated") }, 1546 /* D WRO BK */ 1547 { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1548 "Recovered data without ECC - recommend reassignment") }, 1549 /* D WRO BK */ 1550 { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1551 "Recovered data without ECC - recommend rewrite") }, 1552 /* D WRO BK */ 1553 { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1554 "Recovered data without ECC - data rewritten") }, 1555 /* DT WRO BK */ 1556 { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1557 "Recovered data with error correction applied") }, 1558 /* D WRO BK */ 1559 { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1560 "Recovered data with error corr. & retries applied") }, 1561 /* D WRO BK */ 1562 { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1563 "Recovered data - data auto-reallocated") }, 1564 /* R */ 1565 { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1566 "Recovered data with CIRC") }, 1567 /* R */ 1568 { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1569 "Recovered data with L-EC") }, 1570 /* D WRO BK */ 1571 { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1572 "Recovered data - recommend reassignment") }, 1573 /* D WRO BK */ 1574 { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1575 "Recovered data - recommend rewrite") }, 1576 /* D W O BK */ 1577 { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1578 "Recovered data with ECC - data rewritten") }, 1579 /* R */ 1580 { SST(0x18, 0x08, SS_RDEF, /* XXX TBD */ 1581 "Recovered data with linking") }, 1582 /* D O K */ 1583 { SST(0x19, 0x00, SS_RDEF, 1584 "Defect list error") }, 1585 /* D O K */ 1586 { SST(0x19, 0x01, SS_RDEF, 1587 "Defect list not available") }, 1588 /* D O K */ 1589 { SST(0x19, 0x02, SS_RDEF, 1590 "Defect list error in primary list") }, 1591 /* D O K */ 1592 { SST(0x19, 0x03, SS_RDEF, 1593 "Defect list error in grown list") }, 1594 /* DTLPWROMAEBKVF */ 1595 { SST(0x1A, 0x00, SS_RDEF, 1596 "Parameter list length error") }, 1597 /* DTLPWROMAEBKVF */ 1598 { SST(0x1B, 0x00, SS_RDEF, 1599 "Synchronous data transfer error") }, 1600 /* D O BK */ 1601 { SST(0x1C, 0x00, SS_RDEF, 1602 "Defect list not found") }, 1603 /* D O BK */ 1604 { SST(0x1C, 0x01, SS_RDEF, 1605 "Primary defect list not found") }, 1606 /* D O BK */ 1607 { SST(0x1C, 0x02, SS_RDEF, 1608 "Grown defect list not found") }, 1609 /* DT WRO BK */ 1610 { SST(0x1D, 0x00, SS_FATAL, 1611 "Miscompare during verify operation") }, 1612 /* D B */ 1613 { SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */ 1614 "Miscomparable verify of unmapped LBA") }, 1615 /* D W O BK */ 1616 { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1617 "Recovered ID with ECC correction") }, 1618 /* D O K */ 1619 { SST(0x1F, 0x00, SS_RDEF, 1620 "Partial defect list transfer") }, 1621 /* DTLPWROMAEBKVF */ 1622 { SST(0x20, 0x00, SS_FATAL | EINVAL, 1623 "Invalid command operation code") }, 1624 /* DT PWROMAEBK */ 1625 { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */ 1626 "Access denied - initiator pending-enrolled") }, 1627 /* DT PWROMAEBK */ 1628 { SST(0x20, 0x02, SS_FATAL | EPERM, 1629 "Access denied - no access rights") }, 1630 /* DT PWROMAEBK */ 1631 { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */ 1632 "Access denied - invalid mgmt ID key") }, 1633 /* T */ 1634 { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */ 1635 "Illegal command while in write capable state") }, 1636 /* T */ 1637 { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */ 1638 "Obsolete") }, 1639 /* T */ 1640 { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */ 1641 "Illegal command while in explicit address mode") }, 1642 /* T */ 1643 { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */ 1644 "Illegal command while in implicit address mode") }, 1645 /* DT PWROMAEBK */ 1646 { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */ 1647 "Access denied - enrollment conflict") }, 1648 /* DT PWROMAEBK */ 1649 { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */ 1650 "Access denied - invalid LU identifier") }, 1651 /* DT PWROMAEBK */ 1652 { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */ 1653 "Access denied - invalid proxy token") }, 1654 /* DT PWROMAEBK */ 1655 { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */ 1656 "Access denied - ACL LUN conflict") }, 1657 /* T */ 1658 { SST(0x20, 0x0C, SS_FATAL | EINVAL, 1659 "Illegal command when not in append-only mode") }, 1660 /* DT WRO BK */ 1661 { SST(0x21, 0x00, SS_FATAL | EINVAL, 1662 "Logical block address out of range") }, 1663 /* DT WROM BK */ 1664 { SST(0x21, 0x01, SS_FATAL | EINVAL, 1665 "Invalid element address") }, 1666 /* R */ 1667 { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */ 1668 "Invalid address for write") }, 1669 /* R */ 1670 { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */ 1671 "Invalid write crossing layer jump") }, 1672 /* D */ 1673 { SST(0x21, 0x04, SS_RDEF, /* XXX TBD */ 1674 "Unaligned write command") }, 1675 /* D */ 1676 { SST(0x21, 0x05, SS_RDEF, /* XXX TBD */ 1677 "Write boundary violation") }, 1678 /* D */ 1679 { SST(0x21, 0x06, SS_RDEF, /* XXX TBD */ 1680 "Attempt to read invalid data") }, 1681 /* D */ 1682 { SST(0x21, 0x07, SS_RDEF, /* XXX TBD */ 1683 "Read boundary violation") }, 1684 /* D */ 1685 { SST(0x22, 0x00, SS_FATAL | EINVAL, 1686 "Illegal function (use 20 00, 24 00, or 26 00)") }, 1687 /* DT P B */ 1688 { SST(0x23, 0x00, SS_FATAL | EINVAL, 1689 "Invalid token operation, cause not reportable") }, 1690 /* DT P B */ 1691 { SST(0x23, 0x01, SS_FATAL | EINVAL, 1692 "Invalid token operation, unsupported token type") }, 1693 /* DT P B */ 1694 { SST(0x23, 0x02, SS_FATAL | EINVAL, 1695 "Invalid token operation, remote token usage not supported") }, 1696 /* DT P B */ 1697 { SST(0x23, 0x03, SS_FATAL | EINVAL, 1698 "Invalid token operation, remote ROD token creation not supported") }, 1699 /* DT P B */ 1700 { SST(0x23, 0x04, SS_FATAL | EINVAL, 1701 "Invalid token operation, token unknown") }, 1702 /* DT P B */ 1703 { SST(0x23, 0x05, SS_FATAL | EINVAL, 1704 "Invalid token operation, token corrupt") }, 1705 /* DT P B */ 1706 { SST(0x23, 0x06, SS_FATAL | EINVAL, 1707 "Invalid token operation, token revoked") }, 1708 /* DT P B */ 1709 { SST(0x23, 0x07, SS_FATAL | EINVAL, 1710 "Invalid token operation, token expired") }, 1711 /* DT P B */ 1712 { SST(0x23, 0x08, SS_FATAL | EINVAL, 1713 "Invalid token operation, token cancelled") }, 1714 /* DT P B */ 1715 { SST(0x23, 0x09, SS_FATAL | EINVAL, 1716 "Invalid token operation, token deleted") }, 1717 /* DT P B */ 1718 { SST(0x23, 0x0A, SS_FATAL | EINVAL, 1719 "Invalid token operation, invalid token length") }, 1720 /* DTLPWROMAEBKVF */ 1721 { SST(0x24, 0x00, SS_FATAL | EINVAL, 1722 "Invalid field in CDB") }, 1723 /* DTLPWRO AEBKVF */ 1724 { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */ 1725 "CDB decryption error") }, 1726 /* T */ 1727 { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */ 1728 "Obsolete") }, 1729 /* T */ 1730 { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */ 1731 "Obsolete") }, 1732 /* F */ 1733 { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */ 1734 "Security audit value frozen") }, 1735 /* F */ 1736 { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */ 1737 "Security working key frozen") }, 1738 /* F */ 1739 { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */ 1740 "NONCE not unique") }, 1741 /* F */ 1742 { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */ 1743 "NONCE timestamp out of range") }, 1744 /* DT R MAEBKV */ 1745 { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */ 1746 "Invalid XCDB") }, 1747 /* DTLPWROMAEBKVF */ 1748 { SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST, 1749 "Logical unit not supported") }, 1750 /* DTLPWROMAEBKVF */ 1751 { SST(0x26, 0x00, SS_FATAL | EINVAL, 1752 "Invalid field in parameter list") }, 1753 /* DTLPWROMAEBKVF */ 1754 { SST(0x26, 0x01, SS_FATAL | EINVAL, 1755 "Parameter not supported") }, 1756 /* DTLPWROMAEBKVF */ 1757 { SST(0x26, 0x02, SS_FATAL | EINVAL, 1758 "Parameter value invalid") }, 1759 /* DTLPWROMAE K */ 1760 { SST(0x26, 0x03, SS_FATAL | EINVAL, 1761 "Threshold parameters not supported") }, 1762 /* DTLPWROMAEBKVF */ 1763 { SST(0x26, 0x04, SS_FATAL | EINVAL, 1764 "Invalid release of persistent reservation") }, 1765 /* DTLPWRO A BK */ 1766 { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */ 1767 "Data decryption error") }, 1768 /* DTLPWRO K */ 1769 { SST(0x26, 0x06, SS_FATAL | EINVAL, 1770 "Too many target descriptors") }, 1771 /* DTLPWRO K */ 1772 { SST(0x26, 0x07, SS_FATAL | EINVAL, 1773 "Unsupported target descriptor type code") }, 1774 /* DTLPWRO K */ 1775 { SST(0x26, 0x08, SS_FATAL | EINVAL, 1776 "Too many segment descriptors") }, 1777 /* DTLPWRO K */ 1778 { SST(0x26, 0x09, SS_FATAL | EINVAL, 1779 "Unsupported segment descriptor type code") }, 1780 /* DTLPWRO K */ 1781 { SST(0x26, 0x0A, SS_FATAL | EINVAL, 1782 "Unexpected inexact segment") }, 1783 /* DTLPWRO K */ 1784 { SST(0x26, 0x0B, SS_FATAL | EINVAL, 1785 "Inline data length exceeded") }, 1786 /* DTLPWRO K */ 1787 { SST(0x26, 0x0C, SS_FATAL | EINVAL, 1788 "Invalid operation for copy source or destination") }, 1789 /* DTLPWRO K */ 1790 { SST(0x26, 0x0D, SS_FATAL | EINVAL, 1791 "Copy segment granularity violation") }, 1792 /* DT PWROMAEBK */ 1793 { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */ 1794 "Invalid parameter while port is enabled") }, 1795 /* F */ 1796 { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */ 1797 "Invalid data-out buffer integrity check value") }, 1798 /* T */ 1799 { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */ 1800 "Data decryption key fail limit reached") }, 1801 /* T */ 1802 { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */ 1803 "Incomplete key-associated data set") }, 1804 /* T */ 1805 { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */ 1806 "Vendor specific key reference not found") }, 1807 /* D */ 1808 { SST(0x26, 0x13, SS_RDEF, /* XXX TBD */ 1809 "Application tag mode page is invalid") }, 1810 /* DT WRO BK */ 1811 { SST(0x27, 0x00, SS_FATAL | EACCES, 1812 "Write protected") }, 1813 /* DT WRO BK */ 1814 { SST(0x27, 0x01, SS_FATAL | EACCES, 1815 "Hardware write protected") }, 1816 /* DT WRO BK */ 1817 { SST(0x27, 0x02, SS_FATAL | EACCES, 1818 "Logical unit software write protected") }, 1819 /* T R */ 1820 { SST(0x27, 0x03, SS_FATAL | EACCES, 1821 "Associated write protect") }, 1822 /* T R */ 1823 { SST(0x27, 0x04, SS_FATAL | EACCES, 1824 "Persistent write protect") }, 1825 /* T R */ 1826 { SST(0x27, 0x05, SS_FATAL | EACCES, 1827 "Permanent write protect") }, 1828 /* R F */ 1829 { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */ 1830 "Conditional write protect") }, 1831 /* D B */ 1832 { SST(0x27, 0x07, SS_FATAL | ENOSPC, 1833 "Space allocation failed write protect") }, 1834 /* D */ 1835 { SST(0x27, 0x08, SS_FATAL | EACCES, 1836 "Zone is read only") }, 1837 /* DTLPWROMAEBKVF */ 1838 { SST(0x28, 0x00, SS_FATAL | ENXIO, 1839 "Not ready to ready change, medium may have changed") }, 1840 /* DT WROM B */ 1841 { SST(0x28, 0x01, SS_FATAL | ENXIO, 1842 "Import or export element accessed") }, 1843 /* R */ 1844 { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */ 1845 "Format-layer may have changed") }, 1846 /* M */ 1847 { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */ 1848 "Import/export element accessed, medium changed") }, 1849 /* 1850 * XXX JGibbs - All of these should use the same errno, but I don't 1851 * think ENXIO is the correct choice. Should we borrow from 1852 * the networking errnos? ECONNRESET anyone? 1853 */ 1854 /* DTLPWROMAEBKVF */ 1855 { SST(0x29, 0x00, SS_FATAL | ENXIO, 1856 "Power on, reset, or bus device reset occurred") }, 1857 /* DTLPWROMAEBKVF */ 1858 { SST(0x29, 0x01, SS_RDEF, 1859 "Power on occurred") }, 1860 /* DTLPWROMAEBKVF */ 1861 { SST(0x29, 0x02, SS_RDEF, 1862 "SCSI bus reset occurred") }, 1863 /* DTLPWROMAEBKVF */ 1864 { SST(0x29, 0x03, SS_RDEF, 1865 "Bus device reset function occurred") }, 1866 /* DTLPWROMAEBKVF */ 1867 { SST(0x29, 0x04, SS_RDEF, 1868 "Device internal reset") }, 1869 /* DTLPWROMAEBKVF */ 1870 { SST(0x29, 0x05, SS_RDEF, 1871 "Transceiver mode changed to single-ended") }, 1872 /* DTLPWROMAEBKVF */ 1873 { SST(0x29, 0x06, SS_RDEF, 1874 "Transceiver mode changed to LVD") }, 1875 /* DTLPWROMAEBKVF */ 1876 { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */ 1877 "I_T nexus loss occurred") }, 1878 /* DTL WROMAEBKVF */ 1879 { SST(0x2A, 0x00, SS_RDEF, 1880 "Parameters changed") }, 1881 /* DTL WROMAEBKVF */ 1882 { SST(0x2A, 0x01, SS_RDEF, 1883 "Mode parameters changed") }, 1884 /* DTL WROMAE K */ 1885 { SST(0x2A, 0x02, SS_RDEF, 1886 "Log parameters changed") }, 1887 /* DTLPWROMAE K */ 1888 { SST(0x2A, 0x03, SS_RDEF, 1889 "Reservations preempted") }, 1890 /* DTLPWROMAE */ 1891 { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */ 1892 "Reservations released") }, 1893 /* DTLPWROMAE */ 1894 { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */ 1895 "Registrations preempted") }, 1896 /* DTLPWROMAEBKVF */ 1897 { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */ 1898 "Asymmetric access state changed") }, 1899 /* DTLPWROMAEBKVF */ 1900 { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */ 1901 "Implicit asymmetric access state transition failed") }, 1902 /* DT WROMAEBKVF */ 1903 { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */ 1904 "Priority changed") }, 1905 /* D */ 1906 { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */ 1907 "Capacity data has changed") }, 1908 /* DT */ 1909 { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */ 1910 "Error history I_T nexus cleared") }, 1911 /* DT */ 1912 { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */ 1913 "Error history snapshot released") }, 1914 /* F */ 1915 { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */ 1916 "Error recovery attributes have changed") }, 1917 /* T */ 1918 { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */ 1919 "Data encryption capabilities changed") }, 1920 /* DT M E V */ 1921 { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */ 1922 "Timestamp changed") }, 1923 /* T */ 1924 { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */ 1925 "Data encryption parameters changed by another I_T nexus") }, 1926 /* T */ 1927 { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */ 1928 "Data encryption parameters changed by vendor specific event") }, 1929 /* T */ 1930 { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */ 1931 "Data encryption key instance counter has changed") }, 1932 /* DT R MAEBKV */ 1933 { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */ 1934 "SA creation capabilities data has changed") }, 1935 /* T M V */ 1936 { SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */ 1937 "Medium removal prevention preempted") }, 1938 /* DTLPWRO K */ 1939 { SST(0x2B, 0x00, SS_RDEF, 1940 "Copy cannot execute since host cannot disconnect") }, 1941 /* DTLPWROMAEBKVF */ 1942 { SST(0x2C, 0x00, SS_RDEF, 1943 "Command sequence error") }, 1944 /* */ 1945 { SST(0x2C, 0x01, SS_RDEF, 1946 "Too many windows specified") }, 1947 /* */ 1948 { SST(0x2C, 0x02, SS_RDEF, 1949 "Invalid combination of windows specified") }, 1950 /* R */ 1951 { SST(0x2C, 0x03, SS_RDEF, 1952 "Current program area is not empty") }, 1953 /* R */ 1954 { SST(0x2C, 0x04, SS_RDEF, 1955 "Current program area is empty") }, 1956 /* B */ 1957 { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */ 1958 "Illegal power condition request") }, 1959 /* R */ 1960 { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */ 1961 "Persistent prevent conflict") }, 1962 /* DTLPWROMAEBKVF */ 1963 { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */ 1964 "Previous busy status") }, 1965 /* DTLPWROMAEBKVF */ 1966 { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */ 1967 "Previous task set full status") }, 1968 /* DTLPWROM EBKVF */ 1969 { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */ 1970 "Previous reservation conflict status") }, 1971 /* F */ 1972 { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */ 1973 "Partition or collection contains user objects") }, 1974 /* T */ 1975 { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */ 1976 "Not reserved") }, 1977 /* D */ 1978 { SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */ 1979 "ORWRITE generation does not match") }, 1980 /* D */ 1981 { SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */ 1982 "Reset write pointer not allowed") }, 1983 /* D */ 1984 { SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */ 1985 "Zone is offline") }, 1986 /* D */ 1987 { SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */ 1988 "Stream not open") }, 1989 /* D */ 1990 { SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */ 1991 "Unwritten data in zone") }, 1992 /* T */ 1993 { SST(0x2D, 0x00, SS_RDEF, 1994 "Overwrite error on update in place") }, 1995 /* R */ 1996 { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */ 1997 "Insufficient time for operation") }, 1998 /* D */ 1999 { SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */ 2000 "Command timeout before processing") }, 2001 /* D */ 2002 { SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */ 2003 "Command timeout during processing") }, 2004 /* D */ 2005 { SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */ 2006 "Command timeout during processing due to error recovery") }, 2007 /* DTLPWROMAEBKVF */ 2008 { SST(0x2F, 0x00, SS_RDEF, 2009 "Commands cleared by another initiator") }, 2010 /* D */ 2011 { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */ 2012 "Commands cleared by power loss notification") }, 2013 /* DTLPWROMAEBKVF */ 2014 { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */ 2015 "Commands cleared by device server") }, 2016 /* DTLPWROMAEBKVF */ 2017 { SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */ 2018 "Some commands cleared by queuing layer event") }, 2019 /* DT WROM BK */ 2020 { SST(0x30, 0x00, SS_RDEF, 2021 "Incompatible medium installed") }, 2022 /* DT WRO BK */ 2023 { SST(0x30, 0x01, SS_RDEF, 2024 "Cannot read medium - unknown format") }, 2025 /* DT WRO BK */ 2026 { SST(0x30, 0x02, SS_RDEF, 2027 "Cannot read medium - incompatible format") }, 2028 /* DT R K */ 2029 { SST(0x30, 0x03, SS_RDEF, 2030 "Cleaning cartridge installed") }, 2031 /* DT WRO BK */ 2032 { SST(0x30, 0x04, SS_RDEF, 2033 "Cannot write medium - unknown format") }, 2034 /* DT WRO BK */ 2035 { SST(0x30, 0x05, SS_RDEF, 2036 "Cannot write medium - incompatible format") }, 2037 /* DT WRO B */ 2038 { SST(0x30, 0x06, SS_RDEF, 2039 "Cannot format medium - incompatible medium") }, 2040 /* DTL WROMAEBKVF */ 2041 { SST(0x30, 0x07, SS_RDEF, 2042 "Cleaning failure") }, 2043 /* R */ 2044 { SST(0x30, 0x08, SS_RDEF, 2045 "Cannot write - application code mismatch") }, 2046 /* R */ 2047 { SST(0x30, 0x09, SS_RDEF, 2048 "Current session not fixated for append") }, 2049 /* DT WRO AEBK */ 2050 { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */ 2051 "Cleaning request rejected") }, 2052 /* T */ 2053 { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */ 2054 "WORM medium - overwrite attempted") }, 2055 /* T */ 2056 { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */ 2057 "WORM medium - integrity check") }, 2058 /* R */ 2059 { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */ 2060 "Medium not formatted") }, 2061 /* M */ 2062 { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */ 2063 "Incompatible volume type") }, 2064 /* M */ 2065 { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */ 2066 "Incompatible volume qualifier") }, 2067 /* M */ 2068 { SST(0x30, 0x13, SS_RDEF, /* XXX TBD */ 2069 "Cleaning volume expired") }, 2070 /* DT WRO BK */ 2071 { SST(0x31, 0x00, SS_FATAL | ENXIO, 2072 "Medium format corrupted") }, 2073 /* D L RO B */ 2074 { SST(0x31, 0x01, SS_RDEF, 2075 "Format command failed") }, 2076 /* R */ 2077 { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */ 2078 "Zoned formatting failed due to spare linking") }, 2079 /* D B */ 2080 { SST(0x31, 0x03, SS_FATAL | EIO, 2081 "SANITIZE command failed") }, 2082 /* D */ 2083 { SST(0x31, 0x04, SS_FATAL | EIO, 2084 "Depopulation failed") }, 2085 /* D */ 2086 { SST(0x31, 0x05, SS_FATAL | EIO, 2087 "Depopulation restoration failed") }, 2088 /* D W O BK */ 2089 { SST(0x32, 0x00, SS_RDEF, 2090 "No defect spare location available") }, 2091 /* D W O BK */ 2092 { SST(0x32, 0x01, SS_RDEF, 2093 "Defect list update failure") }, 2094 /* T */ 2095 { SST(0x33, 0x00, SS_RDEF, 2096 "Tape length error") }, 2097 /* DTLPWROMAEBKVF */ 2098 { SST(0x34, 0x00, SS_RDEF, 2099 "Enclosure failure") }, 2100 /* DTLPWROMAEBKVF */ 2101 { SST(0x35, 0x00, SS_RDEF, 2102 "Enclosure services failure") }, 2103 /* DTLPWROMAEBKVF */ 2104 { SST(0x35, 0x01, SS_RDEF, 2105 "Unsupported enclosure function") }, 2106 /* DTLPWROMAEBKVF */ 2107 { SST(0x35, 0x02, SS_RDEF, 2108 "Enclosure services unavailable") }, 2109 /* DTLPWROMAEBKVF */ 2110 { SST(0x35, 0x03, SS_RDEF, 2111 "Enclosure services transfer failure") }, 2112 /* DTLPWROMAEBKVF */ 2113 { SST(0x35, 0x04, SS_RDEF, 2114 "Enclosure services transfer refused") }, 2115 /* DTL WROMAEBKVF */ 2116 { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */ 2117 "Enclosure services checksum error") }, 2118 /* L */ 2119 { SST(0x36, 0x00, SS_RDEF, 2120 "Ribbon, ink, or toner failure") }, 2121 /* DTL WROMAEBKVF */ 2122 { SST(0x37, 0x00, SS_RDEF, 2123 "Rounded parameter") }, 2124 /* B */ 2125 { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */ 2126 "Event status notification") }, 2127 /* B */ 2128 { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */ 2129 "ESN - power management class event") }, 2130 /* B */ 2131 { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */ 2132 "ESN - media class event") }, 2133 /* B */ 2134 { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */ 2135 "ESN - device busy class event") }, 2136 /* D */ 2137 { SST(0x38, 0x07, SS_RDEF, /* XXX TBD */ 2138 "Thin provisioning soft threshold reached") }, 2139 /* DTL WROMAE K */ 2140 { SST(0x39, 0x00, SS_RDEF, 2141 "Saving parameters not supported") }, 2142 /* DTL WROM BK */ 2143 { SST(0x3A, 0x00, SS_FATAL | ENXIO, 2144 "Medium not present") }, 2145 /* DT WROM BK */ 2146 { SST(0x3A, 0x01, SS_FATAL | ENXIO, 2147 "Medium not present - tray closed") }, 2148 /* DT WROM BK */ 2149 { SST(0x3A, 0x02, SS_FATAL | ENXIO, 2150 "Medium not present - tray open") }, 2151 /* DT WROM B */ 2152 { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */ 2153 "Medium not present - loadable") }, 2154 /* DT WRO B */ 2155 { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */ 2156 "Medium not present - medium auxiliary memory accessible") }, 2157 /* TL */ 2158 { SST(0x3B, 0x00, SS_RDEF, 2159 "Sequential positioning error") }, 2160 /* T */ 2161 { SST(0x3B, 0x01, SS_RDEF, 2162 "Tape position error at beginning-of-medium") }, 2163 /* T */ 2164 { SST(0x3B, 0x02, SS_RDEF, 2165 "Tape position error at end-of-medium") }, 2166 /* L */ 2167 { SST(0x3B, 0x03, SS_RDEF, 2168 "Tape or electronic vertical forms unit not ready") }, 2169 /* L */ 2170 { SST(0x3B, 0x04, SS_RDEF, 2171 "Slew failure") }, 2172 /* L */ 2173 { SST(0x3B, 0x05, SS_RDEF, 2174 "Paper jam") }, 2175 /* L */ 2176 { SST(0x3B, 0x06, SS_RDEF, 2177 "Failed to sense top-of-form") }, 2178 /* L */ 2179 { SST(0x3B, 0x07, SS_RDEF, 2180 "Failed to sense bottom-of-form") }, 2181 /* T */ 2182 { SST(0x3B, 0x08, SS_RDEF, 2183 "Reposition error") }, 2184 /* */ 2185 { SST(0x3B, 0x09, SS_RDEF, 2186 "Read past end of medium") }, 2187 /* */ 2188 { SST(0x3B, 0x0A, SS_RDEF, 2189 "Read past beginning of medium") }, 2190 /* */ 2191 { SST(0x3B, 0x0B, SS_RDEF, 2192 "Position past end of medium") }, 2193 /* T */ 2194 { SST(0x3B, 0x0C, SS_RDEF, 2195 "Position past beginning of medium") }, 2196 /* DT WROM BK */ 2197 { SST(0x3B, 0x0D, SS_FATAL | ENOSPC, 2198 "Medium destination element full") }, 2199 /* DT WROM BK */ 2200 { SST(0x3B, 0x0E, SS_RDEF, 2201 "Medium source element empty") }, 2202 /* R */ 2203 { SST(0x3B, 0x0F, SS_RDEF, 2204 "End of medium reached") }, 2205 /* DT WROM BK */ 2206 { SST(0x3B, 0x11, SS_RDEF, 2207 "Medium magazine not accessible") }, 2208 /* DT WROM BK */ 2209 { SST(0x3B, 0x12, SS_RDEF, 2210 "Medium magazine removed") }, 2211 /* DT WROM BK */ 2212 { SST(0x3B, 0x13, SS_RDEF, 2213 "Medium magazine inserted") }, 2214 /* DT WROM BK */ 2215 { SST(0x3B, 0x14, SS_RDEF, 2216 "Medium magazine locked") }, 2217 /* DT WROM BK */ 2218 { SST(0x3B, 0x15, SS_RDEF, 2219 "Medium magazine unlocked") }, 2220 /* R */ 2221 { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */ 2222 "Mechanical positioning or changer error") }, 2223 /* F */ 2224 { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */ 2225 "Read past end of user object") }, 2226 /* M */ 2227 { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */ 2228 "Element disabled") }, 2229 /* M */ 2230 { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */ 2231 "Element enabled") }, 2232 /* M */ 2233 { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */ 2234 "Data transfer device removed") }, 2235 /* M */ 2236 { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */ 2237 "Data transfer device inserted") }, 2238 /* T */ 2239 { SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */ 2240 "Too many logical objects on partition to support operation") }, 2241 /* DTLPWROMAE K */ 2242 { SST(0x3D, 0x00, SS_RDEF, 2243 "Invalid bits in IDENTIFY message") }, 2244 /* DTLPWROMAEBKVF */ 2245 { SST(0x3E, 0x00, SS_RDEF, 2246 "Logical unit has not self-configured yet") }, 2247 /* DTLPWROMAEBKVF */ 2248 { SST(0x3E, 0x01, SS_RDEF, 2249 "Logical unit failure") }, 2250 /* DTLPWROMAEBKVF */ 2251 { SST(0x3E, 0x02, SS_RDEF, 2252 "Timeout on logical unit") }, 2253 /* DTLPWROMAEBKVF */ 2254 { SST(0x3E, 0x03, SS_RDEF, /* XXX TBD */ 2255 "Logical unit failed self-test") }, 2256 /* DTLPWROMAEBKVF */ 2257 { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */ 2258 "Logical unit unable to update self-test log") }, 2259 /* DTLPWROMAEBKVF */ 2260 { SST(0x3F, 0x00, SS_RDEF, 2261 "Target operating conditions have changed") }, 2262 /* DTLPWROMAEBKVF */ 2263 { SST(0x3F, 0x01, SS_RDEF, 2264 "Microcode has been changed") }, 2265 /* DTLPWROM BK */ 2266 { SST(0x3F, 0x02, SS_RDEF, 2267 "Changed operating definition") }, 2268 /* DTLPWROMAEBKVF */ 2269 { SST(0x3F, 0x03, SS_RDEF, 2270 "INQUIRY data has changed") }, 2271 /* DT WROMAEBK */ 2272 { SST(0x3F, 0x04, SS_RDEF, 2273 "Component device attached") }, 2274 /* DT WROMAEBK */ 2275 { SST(0x3F, 0x05, SS_RDEF, 2276 "Device identifier changed") }, 2277 /* DT WROMAEB */ 2278 { SST(0x3F, 0x06, SS_RDEF, 2279 "Redundancy group created or modified") }, 2280 /* DT WROMAEB */ 2281 { SST(0x3F, 0x07, SS_RDEF, 2282 "Redundancy group deleted") }, 2283 /* DT WROMAEB */ 2284 { SST(0x3F, 0x08, SS_RDEF, 2285 "Spare created or modified") }, 2286 /* DT WROMAEB */ 2287 { SST(0x3F, 0x09, SS_RDEF, 2288 "Spare deleted") }, 2289 /* DT WROMAEBK */ 2290 { SST(0x3F, 0x0A, SS_RDEF, 2291 "Volume set created or modified") }, 2292 /* DT WROMAEBK */ 2293 { SST(0x3F, 0x0B, SS_RDEF, 2294 "Volume set deleted") }, 2295 /* DT WROMAEBK */ 2296 { SST(0x3F, 0x0C, SS_RDEF, 2297 "Volume set deassigned") }, 2298 /* DT WROMAEBK */ 2299 { SST(0x3F, 0x0D, SS_RDEF, 2300 "Volume set reassigned") }, 2301 /* DTLPWROMAE */ 2302 { SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN , 2303 "Reported LUNs data has changed") }, 2304 /* DTLPWROMAEBKVF */ 2305 { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */ 2306 "Echo buffer overwritten") }, 2307 /* DT WROM B */ 2308 { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */ 2309 "Medium loadable") }, 2310 /* DT WROM B */ 2311 { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */ 2312 "Medium auxiliary memory accessible") }, 2313 /* DTLPWR MAEBK F */ 2314 { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */ 2315 "iSCSI IP address added") }, 2316 /* DTLPWR MAEBK F */ 2317 { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */ 2318 "iSCSI IP address removed") }, 2319 /* DTLPWR MAEBK F */ 2320 { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */ 2321 "iSCSI IP address changed") }, 2322 /* DTLPWR MAEBK */ 2323 { SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */ 2324 "Inspect referrals sense descriptors") }, 2325 /* DTLPWROMAEBKVF */ 2326 { SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */ 2327 "Microcode has been changed without reset") }, 2328 /* D */ 2329 { SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */ 2330 "Zone transition to full") }, 2331 /* D */ 2332 { SST(0x40, 0x00, SS_RDEF, 2333 "RAM failure") }, /* deprecated - use 40 NN instead */ 2334 /* DTLPWROMAEBKVF */ 2335 { SST(0x40, 0x80, SS_RDEF, 2336 "Diagnostic failure: ASCQ = Component ID") }, 2337 /* DTLPWROMAEBKVF */ 2338 { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE, 2339 NULL) }, /* Range 0x80->0xFF */ 2340 /* D */ 2341 { SST(0x41, 0x00, SS_RDEF, 2342 "Data path failure") }, /* deprecated - use 40 NN instead */ 2343 /* D */ 2344 { SST(0x42, 0x00, SS_RDEF, 2345 "Power-on or self-test failure") }, 2346 /* deprecated - use 40 NN instead */ 2347 /* DTLPWROMAEBKVF */ 2348 { SST(0x43, 0x00, SS_RDEF, 2349 "Message error") }, 2350 /* DTLPWROMAEBKVF */ 2351 { SST(0x44, 0x00, SS_FATAL | EIO, 2352 "Internal target failure") }, 2353 /* DT P MAEBKVF */ 2354 { SST(0x44, 0x01, SS_RDEF, /* XXX TBD */ 2355 "Persistent reservation information lost") }, 2356 /* DT B */ 2357 { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */ 2358 "ATA device failed set features") }, 2359 /* DTLPWROMAEBKVF */ 2360 { SST(0x45, 0x00, SS_RDEF, 2361 "Select or reselect failure") }, 2362 /* DTLPWROM BK */ 2363 { SST(0x46, 0x00, SS_RDEF, 2364 "Unsuccessful soft reset") }, 2365 /* DTLPWROMAEBKVF */ 2366 { SST(0x47, 0x00, SS_RDEF, 2367 "SCSI parity error") }, 2368 /* DTLPWROMAEBKVF */ 2369 { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */ 2370 "Data phase CRC error detected") }, 2371 /* DTLPWROMAEBKVF */ 2372 { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */ 2373 "SCSI parity error detected during ST data phase") }, 2374 /* DTLPWROMAEBKVF */ 2375 { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */ 2376 "Information unit iuCRC error detected") }, 2377 /* DTLPWROMAEBKVF */ 2378 { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */ 2379 "Asynchronous information protection error detected") }, 2380 /* DTLPWROMAEBKVF */ 2381 { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */ 2382 "Protocol service CRC error") }, 2383 /* DT MAEBKVF */ 2384 { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */ 2385 "PHY test function in progress") }, 2386 /* DT PWROMAEBK */ 2387 { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */ 2388 "Some commands cleared by iSCSI protocol event") }, 2389 /* DTLPWROMAEBKVF */ 2390 { SST(0x48, 0x00, SS_RDEF, 2391 "Initiator detected error message received") }, 2392 /* DTLPWROMAEBKVF */ 2393 { SST(0x49, 0x00, SS_RDEF, 2394 "Invalid message error") }, 2395 /* DTLPWROMAEBKVF */ 2396 { SST(0x4A, 0x00, SS_RDEF, 2397 "Command phase error") }, 2398 /* DTLPWROMAEBKVF */ 2399 { SST(0x4B, 0x00, SS_RDEF, 2400 "Data phase error") }, 2401 /* DT PWROMAEBK */ 2402 { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */ 2403 "Invalid target port transfer tag received") }, 2404 /* DT PWROMAEBK */ 2405 { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */ 2406 "Too much write data") }, 2407 /* DT PWROMAEBK */ 2408 { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */ 2409 "ACK/NAK timeout") }, 2410 /* DT PWROMAEBK */ 2411 { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */ 2412 "NAK received") }, 2413 /* DT PWROMAEBK */ 2414 { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */ 2415 "Data offset error") }, 2416 /* DT PWROMAEBK */ 2417 { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */ 2418 "Initiator response timeout") }, 2419 /* DT PWROMAEBK F */ 2420 { SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */ 2421 "Connection lost") }, 2422 /* DT PWROMAEBK F */ 2423 { SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */ 2424 "Data-in buffer overflow - data buffer size") }, 2425 /* DT PWROMAEBK F */ 2426 { SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */ 2427 "Data-in buffer overflow - data buffer descriptor area") }, 2428 /* DT PWROMAEBK F */ 2429 { SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */ 2430 "Data-in buffer error") }, 2431 /* DT PWROMAEBK F */ 2432 { SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */ 2433 "Data-out buffer overflow - data buffer size") }, 2434 /* DT PWROMAEBK F */ 2435 { SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */ 2436 "Data-out buffer overflow - data buffer descriptor area") }, 2437 /* DT PWROMAEBK F */ 2438 { SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */ 2439 "Data-out buffer error") }, 2440 /* DT PWROMAEBK F */ 2441 { SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */ 2442 "PCIe fabric error") }, 2443 /* DT PWROMAEBK F */ 2444 { SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */ 2445 "PCIe completion timeout") }, 2446 /* DT PWROMAEBK F */ 2447 { SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */ 2448 "PCIe completer abort") }, 2449 /* DT PWROMAEBK F */ 2450 { SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */ 2451 "PCIe poisoned TLP received") }, 2452 /* DT PWROMAEBK F */ 2453 { SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */ 2454 "PCIe ECRC check failed") }, 2455 /* DT PWROMAEBK F */ 2456 { SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */ 2457 "PCIe unsupported request") }, 2458 /* DT PWROMAEBK F */ 2459 { SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */ 2460 "PCIe ACS violation") }, 2461 /* DT PWROMAEBK F */ 2462 { SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */ 2463 "PCIe TLP prefix blocket") }, 2464 /* DTLPWROMAEBKVF */ 2465 { SST(0x4C, 0x00, SS_RDEF, 2466 "Logical unit failed self-configuration") }, 2467 /* DTLPWROMAEBKVF */ 2468 { SST(0x4D, 0x00, SS_RDEF, 2469 "Tagged overlapped commands: ASCQ = Queue tag ID") }, 2470 /* DTLPWROMAEBKVF */ 2471 { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE, 2472 NULL) }, /* Range 0x00->0xFF */ 2473 /* DTLPWROMAEBKVF */ 2474 { SST(0x4E, 0x00, SS_RDEF, 2475 "Overlapped commands attempted") }, 2476 /* T */ 2477 { SST(0x50, 0x00, SS_RDEF, 2478 "Write append error") }, 2479 /* T */ 2480 { SST(0x50, 0x01, SS_RDEF, 2481 "Write append position error") }, 2482 /* T */ 2483 { SST(0x50, 0x02, SS_RDEF, 2484 "Position error related to timing") }, 2485 /* T RO */ 2486 { SST(0x51, 0x00, SS_RDEF, 2487 "Erase failure") }, 2488 /* R */ 2489 { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */ 2490 "Erase failure - incomplete erase operation detected") }, 2491 /* T */ 2492 { SST(0x52, 0x00, SS_RDEF, 2493 "Cartridge fault") }, 2494 /* DTL WROM BK */ 2495 { SST(0x53, 0x00, SS_RDEF, 2496 "Media load or eject failed") }, 2497 /* T */ 2498 { SST(0x53, 0x01, SS_RDEF, 2499 "Unload tape failure") }, 2500 /* DT WROM BK */ 2501 { SST(0x53, 0x02, SS_RDEF, 2502 "Medium removal prevented") }, 2503 /* M */ 2504 { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */ 2505 "Medium removal prevented by data transfer element") }, 2506 /* T */ 2507 { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */ 2508 "Medium thread or unthread failure") }, 2509 /* M */ 2510 { SST(0x53, 0x05, SS_RDEF, /* XXX TBD */ 2511 "Volume identifier invalid") }, 2512 /* T */ 2513 { SST(0x53, 0x06, SS_RDEF, /* XXX TBD */ 2514 "Volume identifier missing") }, 2515 /* M */ 2516 { SST(0x53, 0x07, SS_RDEF, /* XXX TBD */ 2517 "Duplicate volume identifier") }, 2518 /* M */ 2519 { SST(0x53, 0x08, SS_RDEF, /* XXX TBD */ 2520 "Element status unknown") }, 2521 /* M */ 2522 { SST(0x53, 0x09, SS_RDEF, /* XXX TBD */ 2523 "Data transfer device error - load failed") }, 2524 /* M */ 2525 { SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */ 2526 "Data transfer device error - unload failed") }, 2527 /* M */ 2528 { SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */ 2529 "Data transfer device error - unload missing") }, 2530 /* M */ 2531 { SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */ 2532 "Data transfer device error - eject failed") }, 2533 /* M */ 2534 { SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */ 2535 "Data transfer device error - library communication failed") }, 2536 /* P */ 2537 { SST(0x54, 0x00, SS_RDEF, 2538 "SCSI to host system interface failure") }, 2539 /* P */ 2540 { SST(0x55, 0x00, SS_RDEF, 2541 "System resource failure") }, 2542 /* D O BK */ 2543 { SST(0x55, 0x01, SS_FATAL | ENOSPC, 2544 "System buffer full") }, 2545 /* DTLPWROMAE K */ 2546 { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */ 2547 "Insufficient reservation resources") }, 2548 /* DTLPWROMAE K */ 2549 { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */ 2550 "Insufficient resources") }, 2551 /* DTLPWROMAE K */ 2552 { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */ 2553 "Insufficient registration resources") }, 2554 /* DT PWROMAEBK */ 2555 { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */ 2556 "Insufficient access control resources") }, 2557 /* DT WROM B */ 2558 { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */ 2559 "Auxiliary memory out of space") }, 2560 /* F */ 2561 { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */ 2562 "Quota error") }, 2563 /* T */ 2564 { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */ 2565 "Maximum number of supplemental decryption keys exceeded") }, 2566 /* M */ 2567 { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */ 2568 "Medium auxiliary memory not accessible") }, 2569 /* M */ 2570 { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */ 2571 "Data currently unavailable") }, 2572 /* DTLPWROMAEBKVF */ 2573 { SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */ 2574 "Insufficient power for operation") }, 2575 /* DT P B */ 2576 { SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */ 2577 "Insufficient resources to create ROD") }, 2578 /* DT P B */ 2579 { SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */ 2580 "Insufficient resources to create ROD token") }, 2581 /* D */ 2582 { SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */ 2583 "Insufficient zone resources") }, 2584 /* D */ 2585 { SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */ 2586 "Insufficient zone resources to complete write") }, 2587 /* D */ 2588 { SST(0x55, 0x10, SS_RDEF, /* XXX TBD */ 2589 "Maximum number of streams open") }, 2590 /* R */ 2591 { SST(0x57, 0x00, SS_RDEF, 2592 "Unable to recover table-of-contents") }, 2593 /* O */ 2594 { SST(0x58, 0x00, SS_RDEF, 2595 "Generation does not exist") }, 2596 /* O */ 2597 { SST(0x59, 0x00, SS_RDEF, 2598 "Updated block read") }, 2599 /* DTLPWRO BK */ 2600 { SST(0x5A, 0x00, SS_RDEF, 2601 "Operator request or state change input") }, 2602 /* DT WROM BK */ 2603 { SST(0x5A, 0x01, SS_RDEF, 2604 "Operator medium removal request") }, 2605 /* DT WRO A BK */ 2606 { SST(0x5A, 0x02, SS_RDEF, 2607 "Operator selected write protect") }, 2608 /* DT WRO A BK */ 2609 { SST(0x5A, 0x03, SS_RDEF, 2610 "Operator selected write permit") }, 2611 /* DTLPWROM K */ 2612 { SST(0x5B, 0x00, SS_RDEF, 2613 "Log exception") }, 2614 /* DTLPWROM K */ 2615 { SST(0x5B, 0x01, SS_RDEF, 2616 "Threshold condition met") }, 2617 /* DTLPWROM K */ 2618 { SST(0x5B, 0x02, SS_RDEF, 2619 "Log counter at maximum") }, 2620 /* DTLPWROM K */ 2621 { SST(0x5B, 0x03, SS_RDEF, 2622 "Log list codes exhausted") }, 2623 /* D O */ 2624 { SST(0x5C, 0x00, SS_RDEF, 2625 "RPL status change") }, 2626 /* D O */ 2627 { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2628 "Spindles synchronized") }, 2629 /* D O */ 2630 { SST(0x5C, 0x02, SS_RDEF, 2631 "Spindles not synchronized") }, 2632 /* DTLPWROMAEBKVF */ 2633 { SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE, 2634 "Failure prediction threshold exceeded") }, 2635 /* R B */ 2636 { SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2637 "Media failure prediction threshold exceeded") }, 2638 /* R */ 2639 { SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE, 2640 "Logical unit failure prediction threshold exceeded") }, 2641 /* R */ 2642 { SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE, 2643 "Spare area exhaustion prediction threshold exceeded") }, 2644 /* D B */ 2645 { SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE, 2646 "Hardware impending failure general hard drive failure") }, 2647 /* D B */ 2648 { SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE, 2649 "Hardware impending failure drive error rate too high") }, 2650 /* D B */ 2651 { SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE, 2652 "Hardware impending failure data error rate too high") }, 2653 /* D B */ 2654 { SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE, 2655 "Hardware impending failure seek error rate too high") }, 2656 /* D B */ 2657 { SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE, 2658 "Hardware impending failure too many block reassigns") }, 2659 /* D B */ 2660 { SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE, 2661 "Hardware impending failure access times too high") }, 2662 /* D B */ 2663 { SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE, 2664 "Hardware impending failure start unit times too high") }, 2665 /* D B */ 2666 { SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE, 2667 "Hardware impending failure channel parametrics") }, 2668 /* D B */ 2669 { SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE, 2670 "Hardware impending failure controller detected") }, 2671 /* D B */ 2672 { SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE, 2673 "Hardware impending failure throughput performance") }, 2674 /* D B */ 2675 { SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE, 2676 "Hardware impending failure seek time performance") }, 2677 /* D B */ 2678 { SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE, 2679 "Hardware impending failure spin-up retry count") }, 2680 /* D B */ 2681 { SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE, 2682 "Hardware impending failure drive calibration retry count") }, 2683 /* D B */ 2684 { SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE, 2685 "Hardware impending failure power loss protection circuit") }, 2686 /* D B */ 2687 { SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE, 2688 "Controller impending failure general hard drive failure") }, 2689 /* D B */ 2690 { SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE, 2691 "Controller impending failure drive error rate too high") }, 2692 /* D B */ 2693 { SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE, 2694 "Controller impending failure data error rate too high") }, 2695 /* D B */ 2696 { SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE, 2697 "Controller impending failure seek error rate too high") }, 2698 /* D B */ 2699 { SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE, 2700 "Controller impending failure too many block reassigns") }, 2701 /* D B */ 2702 { SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE, 2703 "Controller impending failure access times too high") }, 2704 /* D B */ 2705 { SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE, 2706 "Controller impending failure start unit times too high") }, 2707 /* D B */ 2708 { SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE, 2709 "Controller impending failure channel parametrics") }, 2710 /* D B */ 2711 { SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE, 2712 "Controller impending failure controller detected") }, 2713 /* D B */ 2714 { SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE, 2715 "Controller impending failure throughput performance") }, 2716 /* D B */ 2717 { SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE, 2718 "Controller impending failure seek time performance") }, 2719 /* D B */ 2720 { SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE, 2721 "Controller impending failure spin-up retry count") }, 2722 /* D B */ 2723 { SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE, 2724 "Controller impending failure drive calibration retry count") }, 2725 /* D B */ 2726 { SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE, 2727 "Data channel impending failure general hard drive failure") }, 2728 /* D B */ 2729 { SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE, 2730 "Data channel impending failure drive error rate too high") }, 2731 /* D B */ 2732 { SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE, 2733 "Data channel impending failure data error rate too high") }, 2734 /* D B */ 2735 { SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE, 2736 "Data channel impending failure seek error rate too high") }, 2737 /* D B */ 2738 { SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE, 2739 "Data channel impending failure too many block reassigns") }, 2740 /* D B */ 2741 { SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE, 2742 "Data channel impending failure access times too high") }, 2743 /* D B */ 2744 { SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE, 2745 "Data channel impending failure start unit times too high") }, 2746 /* D B */ 2747 { SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE, 2748 "Data channel impending failure channel parametrics") }, 2749 /* D B */ 2750 { SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE, 2751 "Data channel impending failure controller detected") }, 2752 /* D B */ 2753 { SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE, 2754 "Data channel impending failure throughput performance") }, 2755 /* D B */ 2756 { SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE, 2757 "Data channel impending failure seek time performance") }, 2758 /* D B */ 2759 { SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE, 2760 "Data channel impending failure spin-up retry count") }, 2761 /* D B */ 2762 { SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE, 2763 "Data channel impending failure drive calibration retry count") }, 2764 /* D B */ 2765 { SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE, 2766 "Servo impending failure general hard drive failure") }, 2767 /* D B */ 2768 { SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE, 2769 "Servo impending failure drive error rate too high") }, 2770 /* D B */ 2771 { SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE, 2772 "Servo impending failure data error rate too high") }, 2773 /* D B */ 2774 { SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE, 2775 "Servo impending failure seek error rate too high") }, 2776 /* D B */ 2777 { SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE, 2778 "Servo impending failure too many block reassigns") }, 2779 /* D B */ 2780 { SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE, 2781 "Servo impending failure access times too high") }, 2782 /* D B */ 2783 { SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE, 2784 "Servo impending failure start unit times too high") }, 2785 /* D B */ 2786 { SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE, 2787 "Servo impending failure channel parametrics") }, 2788 /* D B */ 2789 { SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE, 2790 "Servo impending failure controller detected") }, 2791 /* D B */ 2792 { SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE, 2793 "Servo impending failure throughput performance") }, 2794 /* D B */ 2795 { SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE, 2796 "Servo impending failure seek time performance") }, 2797 /* D B */ 2798 { SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE, 2799 "Servo impending failure spin-up retry count") }, 2800 /* D B */ 2801 { SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE, 2802 "Servo impending failure drive calibration retry count") }, 2803 /* D B */ 2804 { SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE, 2805 "Spindle impending failure general hard drive failure") }, 2806 /* D B */ 2807 { SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE, 2808 "Spindle impending failure drive error rate too high") }, 2809 /* D B */ 2810 { SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE, 2811 "Spindle impending failure data error rate too high") }, 2812 /* D B */ 2813 { SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE, 2814 "Spindle impending failure seek error rate too high") }, 2815 /* D B */ 2816 { SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE, 2817 "Spindle impending failure too many block reassigns") }, 2818 /* D B */ 2819 { SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE, 2820 "Spindle impending failure access times too high") }, 2821 /* D B */ 2822 { SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE, 2823 "Spindle impending failure start unit times too high") }, 2824 /* D B */ 2825 { SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE, 2826 "Spindle impending failure channel parametrics") }, 2827 /* D B */ 2828 { SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE, 2829 "Spindle impending failure controller detected") }, 2830 /* D B */ 2831 { SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE, 2832 "Spindle impending failure throughput performance") }, 2833 /* D B */ 2834 { SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE, 2835 "Spindle impending failure seek time performance") }, 2836 /* D B */ 2837 { SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE, 2838 "Spindle impending failure spin-up retry count") }, 2839 /* D B */ 2840 { SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE, 2841 "Spindle impending failure drive calibration retry count") }, 2842 /* D B */ 2843 { SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE, 2844 "Firmware impending failure general hard drive failure") }, 2845 /* D B */ 2846 { SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE, 2847 "Firmware impending failure drive error rate too high") }, 2848 /* D B */ 2849 { SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE, 2850 "Firmware impending failure data error rate too high") }, 2851 /* D B */ 2852 { SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE, 2853 "Firmware impending failure seek error rate too high") }, 2854 /* D B */ 2855 { SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE, 2856 "Firmware impending failure too many block reassigns") }, 2857 /* D B */ 2858 { SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE, 2859 "Firmware impending failure access times too high") }, 2860 /* D B */ 2861 { SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE, 2862 "Firmware impending failure start unit times too high") }, 2863 /* D B */ 2864 { SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE, 2865 "Firmware impending failure channel parametrics") }, 2866 /* D B */ 2867 { SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE, 2868 "Firmware impending failure controller detected") }, 2869 /* D B */ 2870 { SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE, 2871 "Firmware impending failure throughput performance") }, 2872 /* D B */ 2873 { SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE, 2874 "Firmware impending failure seek time performance") }, 2875 /* D B */ 2876 { SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE, 2877 "Firmware impending failure spin-up retry count") }, 2878 /* D B */ 2879 { SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE, 2880 "Firmware impending failure drive calibration retry count") }, 2881 /* D B */ 2882 { SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE, 2883 "Media impending failure endurance limit met") }, 2884 /* DTLPWROMAEBKVF */ 2885 { SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE, 2886 "Failure prediction threshold exceeded (false)") }, 2887 /* DTLPWRO A K */ 2888 { SST(0x5E, 0x00, SS_RDEF, 2889 "Low power condition on") }, 2890 /* DTLPWRO A K */ 2891 { SST(0x5E, 0x01, SS_RDEF, 2892 "Idle condition activated by timer") }, 2893 /* DTLPWRO A K */ 2894 { SST(0x5E, 0x02, SS_RDEF, 2895 "Standby condition activated by timer") }, 2896 /* DTLPWRO A K */ 2897 { SST(0x5E, 0x03, SS_RDEF, 2898 "Idle condition activated by command") }, 2899 /* DTLPWRO A K */ 2900 { SST(0x5E, 0x04, SS_RDEF, 2901 "Standby condition activated by command") }, 2902 /* DTLPWRO A K */ 2903 { SST(0x5E, 0x05, SS_RDEF, 2904 "Idle-B condition activated by timer") }, 2905 /* DTLPWRO A K */ 2906 { SST(0x5E, 0x06, SS_RDEF, 2907 "Idle-B condition activated by command") }, 2908 /* DTLPWRO A K */ 2909 { SST(0x5E, 0x07, SS_RDEF, 2910 "Idle-C condition activated by timer") }, 2911 /* DTLPWRO A K */ 2912 { SST(0x5E, 0x08, SS_RDEF, 2913 "Idle-C condition activated by command") }, 2914 /* DTLPWRO A K */ 2915 { SST(0x5E, 0x09, SS_RDEF, 2916 "Standby-Y condition activated by timer") }, 2917 /* DTLPWRO A K */ 2918 { SST(0x5E, 0x0A, SS_RDEF, 2919 "Standby-Y condition activated by command") }, 2920 /* B */ 2921 { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */ 2922 "Power state change to active") }, 2923 /* B */ 2924 { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */ 2925 "Power state change to idle") }, 2926 /* B */ 2927 { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */ 2928 "Power state change to standby") }, 2929 /* B */ 2930 { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */ 2931 "Power state change to sleep") }, 2932 /* BK */ 2933 { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */ 2934 "Power state change to device control") }, 2935 /* */ 2936 { SST(0x60, 0x00, SS_RDEF, 2937 "Lamp failure") }, 2938 /* */ 2939 { SST(0x61, 0x00, SS_RDEF, 2940 "Video acquisition error") }, 2941 /* */ 2942 { SST(0x61, 0x01, SS_RDEF, 2943 "Unable to acquire video") }, 2944 /* */ 2945 { SST(0x61, 0x02, SS_RDEF, 2946 "Out of focus") }, 2947 /* */ 2948 { SST(0x62, 0x00, SS_RDEF, 2949 "Scan head positioning error") }, 2950 /* R */ 2951 { SST(0x63, 0x00, SS_RDEF, 2952 "End of user area encountered on this track") }, 2953 /* R */ 2954 { SST(0x63, 0x01, SS_FATAL | ENOSPC, 2955 "Packet does not fit in available space") }, 2956 /* R */ 2957 { SST(0x64, 0x00, SS_FATAL | ENXIO, 2958 "Illegal mode for this track") }, 2959 /* R */ 2960 { SST(0x64, 0x01, SS_RDEF, 2961 "Invalid packet size") }, 2962 /* DTLPWROMAEBKVF */ 2963 { SST(0x65, 0x00, SS_RDEF, 2964 "Voltage fault") }, 2965 /* */ 2966 { SST(0x66, 0x00, SS_RDEF, 2967 "Automatic document feeder cover up") }, 2968 /* */ 2969 { SST(0x66, 0x01, SS_RDEF, 2970 "Automatic document feeder lift up") }, 2971 /* */ 2972 { SST(0x66, 0x02, SS_RDEF, 2973 "Document jam in automatic document feeder") }, 2974 /* */ 2975 { SST(0x66, 0x03, SS_RDEF, 2976 "Document miss feed automatic in document feeder") }, 2977 /* A */ 2978 { SST(0x67, 0x00, SS_RDEF, 2979 "Configuration failure") }, 2980 /* A */ 2981 { SST(0x67, 0x01, SS_RDEF, 2982 "Configuration of incapable logical units failed") }, 2983 /* A */ 2984 { SST(0x67, 0x02, SS_RDEF, 2985 "Add logical unit failed") }, 2986 /* A */ 2987 { SST(0x67, 0x03, SS_RDEF, 2988 "Modification of logical unit failed") }, 2989 /* A */ 2990 { SST(0x67, 0x04, SS_RDEF, 2991 "Exchange of logical unit failed") }, 2992 /* A */ 2993 { SST(0x67, 0x05, SS_RDEF, 2994 "Remove of logical unit failed") }, 2995 /* A */ 2996 { SST(0x67, 0x06, SS_RDEF, 2997 "Attachment of logical unit failed") }, 2998 /* A */ 2999 { SST(0x67, 0x07, SS_RDEF, 3000 "Creation of logical unit failed") }, 3001 /* A */ 3002 { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */ 3003 "Assign failure occurred") }, 3004 /* A */ 3005 { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */ 3006 "Multiply assigned logical unit") }, 3007 /* DTLPWROMAEBKVF */ 3008 { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */ 3009 "Set target port groups command failed") }, 3010 /* DT B */ 3011 { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */ 3012 "ATA device feature not enabled") }, 3013 /* A */ 3014 { SST(0x68, 0x00, SS_RDEF, 3015 "Logical unit not configured") }, 3016 /* D */ 3017 { SST(0x68, 0x01, SS_RDEF, 3018 "Subsidiary logical unit not configured") }, 3019 /* A */ 3020 { SST(0x69, 0x00, SS_RDEF, 3021 "Data loss on logical unit") }, 3022 /* A */ 3023 { SST(0x69, 0x01, SS_RDEF, 3024 "Multiple logical unit failures") }, 3025 /* A */ 3026 { SST(0x69, 0x02, SS_RDEF, 3027 "Parity/data mismatch") }, 3028 /* A */ 3029 { SST(0x6A, 0x00, SS_RDEF, 3030 "Informational, refer to log") }, 3031 /* A */ 3032 { SST(0x6B, 0x00, SS_RDEF, 3033 "State change has occurred") }, 3034 /* A */ 3035 { SST(0x6B, 0x01, SS_RDEF, 3036 "Redundancy level got better") }, 3037 /* A */ 3038 { SST(0x6B, 0x02, SS_RDEF, 3039 "Redundancy level got worse") }, 3040 /* A */ 3041 { SST(0x6C, 0x00, SS_RDEF, 3042 "Rebuild failure occurred") }, 3043 /* A */ 3044 { SST(0x6D, 0x00, SS_RDEF, 3045 "Recalculate failure occurred") }, 3046 /* A */ 3047 { SST(0x6E, 0x00, SS_RDEF, 3048 "Command to logical unit failed") }, 3049 /* R */ 3050 { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */ 3051 "Copy protection key exchange failure - authentication failure") }, 3052 /* R */ 3053 { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */ 3054 "Copy protection key exchange failure - key not present") }, 3055 /* R */ 3056 { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */ 3057 "Copy protection key exchange failure - key not established") }, 3058 /* R */ 3059 { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */ 3060 "Read of scrambled sector without authentication") }, 3061 /* R */ 3062 { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */ 3063 "Media region code is mismatched to logical unit region") }, 3064 /* R */ 3065 { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */ 3066 "Drive region must be permanent/region reset count error") }, 3067 /* R */ 3068 { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */ 3069 "Insufficient block count for binding NONCE recording") }, 3070 /* R */ 3071 { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */ 3072 "Conflict in binding NONCE recording") }, 3073 /* T */ 3074 { SST(0x70, 0x00, SS_RDEF, 3075 "Decompression exception short: ASCQ = Algorithm ID") }, 3076 /* T */ 3077 { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE, 3078 NULL) }, /* Range 0x00 -> 0xFF */ 3079 /* T */ 3080 { SST(0x71, 0x00, SS_RDEF, 3081 "Decompression exception long: ASCQ = Algorithm ID") }, 3082 /* T */ 3083 { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE, 3084 NULL) }, /* Range 0x00 -> 0xFF */ 3085 /* R */ 3086 { SST(0x72, 0x00, SS_RDEF, 3087 "Session fixation error") }, 3088 /* R */ 3089 { SST(0x72, 0x01, SS_RDEF, 3090 "Session fixation error writing lead-in") }, 3091 /* R */ 3092 { SST(0x72, 0x02, SS_RDEF, 3093 "Session fixation error writing lead-out") }, 3094 /* R */ 3095 { SST(0x72, 0x03, SS_RDEF, 3096 "Session fixation error - incomplete track in session") }, 3097 /* R */ 3098 { SST(0x72, 0x04, SS_RDEF, 3099 "Empty or partially written reserved track") }, 3100 /* R */ 3101 { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */ 3102 "No more track reservations allowed") }, 3103 /* R */ 3104 { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */ 3105 "RMZ extension is not allowed") }, 3106 /* R */ 3107 { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */ 3108 "No more test zone extensions are allowed") }, 3109 /* R */ 3110 { SST(0x73, 0x00, SS_RDEF, 3111 "CD control error") }, 3112 /* R */ 3113 { SST(0x73, 0x01, SS_RDEF, 3114 "Power calibration area almost full") }, 3115 /* R */ 3116 { SST(0x73, 0x02, SS_FATAL | ENOSPC, 3117 "Power calibration area is full") }, 3118 /* R */ 3119 { SST(0x73, 0x03, SS_RDEF, 3120 "Power calibration area error") }, 3121 /* R */ 3122 { SST(0x73, 0x04, SS_RDEF, 3123 "Program memory area update failure") }, 3124 /* R */ 3125 { SST(0x73, 0x05, SS_RDEF, 3126 "Program memory area is full") }, 3127 /* R */ 3128 { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */ 3129 "RMA/PMA is almost full") }, 3130 /* R */ 3131 { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */ 3132 "Current power calibration area almost full") }, 3133 /* R */ 3134 { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */ 3135 "Current power calibration area is full") }, 3136 /* R */ 3137 { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */ 3138 "RDZ is full") }, 3139 /* T */ 3140 { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */ 3141 "Security error") }, 3142 /* T */ 3143 { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */ 3144 "Unable to decrypt data") }, 3145 /* T */ 3146 { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */ 3147 "Unencrypted data encountered while decrypting") }, 3148 /* T */ 3149 { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */ 3150 "Incorrect data encryption key") }, 3151 /* T */ 3152 { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */ 3153 "Cryptographic integrity validation failed") }, 3154 /* T */ 3155 { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */ 3156 "Error decrypting data") }, 3157 /* T */ 3158 { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */ 3159 "Unknown signature verification key") }, 3160 /* T */ 3161 { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */ 3162 "Encryption parameters not useable") }, 3163 /* DT R M E VF */ 3164 { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */ 3165 "Digital signature validation failure") }, 3166 /* T */ 3167 { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */ 3168 "Encryption mode mismatch on read") }, 3169 /* T */ 3170 { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */ 3171 "Encrypted block not raw read enabled") }, 3172 /* T */ 3173 { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */ 3174 "Incorrect encryption parameters") }, 3175 /* DT R MAEBKV */ 3176 { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */ 3177 "Unable to decrypt parameter list") }, 3178 /* T */ 3179 { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */ 3180 "Encryption algorithm disabled") }, 3181 /* DT R MAEBKV */ 3182 { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */ 3183 "SA creation parameter value invalid") }, 3184 /* DT R MAEBKV */ 3185 { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */ 3186 "SA creation parameter value rejected") }, 3187 /* DT R MAEBKV */ 3188 { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */ 3189 "Invalid SA usage") }, 3190 /* T */ 3191 { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */ 3192 "Data encryption configuration prevented") }, 3193 /* DT R MAEBKV */ 3194 { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */ 3195 "SA creation parameter not supported") }, 3196 /* DT R MAEBKV */ 3197 { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */ 3198 "Authentication failed") }, 3199 /* V */ 3200 { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */ 3201 "External data encryption key manager access error") }, 3202 /* V */ 3203 { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */ 3204 "External data encryption key manager error") }, 3205 /* V */ 3206 { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */ 3207 "External data encryption key not found") }, 3208 /* V */ 3209 { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */ 3210 "External data encryption request not authorized") }, 3211 /* T */ 3212 { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */ 3213 "External data encryption control timeout") }, 3214 /* T */ 3215 { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */ 3216 "External data encryption control error") }, 3217 /* DT R M E V */ 3218 { SST(0x74, 0x71, SS_FATAL | EACCES, 3219 "Logical unit access not authorized") }, 3220 /* D */ 3221 { SST(0x74, 0x79, SS_FATAL | EACCES, 3222 "Security conflict in translated device") } 3223 }; 3224 3225 const u_int asc_table_size = nitems(asc_table); 3226 3227 struct asc_key 3228 { 3229 int asc; 3230 int ascq; 3231 }; 3232 3233 static int 3234 ascentrycomp(const void *key, const void *member) 3235 { 3236 int asc; 3237 int ascq; 3238 const struct asc_table_entry *table_entry; 3239 3240 asc = ((const struct asc_key *)key)->asc; 3241 ascq = ((const struct asc_key *)key)->ascq; 3242 table_entry = (const struct asc_table_entry *)member; 3243 3244 if (asc >= table_entry->asc) { 3245 if (asc > table_entry->asc) 3246 return (1); 3247 3248 if (ascq <= table_entry->ascq) { 3249 /* Check for ranges */ 3250 if (ascq == table_entry->ascq 3251 || ((table_entry->action & SSQ_RANGE) != 0 3252 && ascq >= (table_entry - 1)->ascq)) 3253 return (0); 3254 return (-1); 3255 } 3256 return (1); 3257 } 3258 return (-1); 3259 } 3260 3261 static int 3262 senseentrycomp(const void *key, const void *member) 3263 { 3264 int sense_key; 3265 const struct sense_key_table_entry *table_entry; 3266 3267 sense_key = *((const int *)key); 3268 table_entry = (const struct sense_key_table_entry *)member; 3269 3270 if (sense_key >= table_entry->sense_key) { 3271 if (sense_key == table_entry->sense_key) 3272 return (0); 3273 return (1); 3274 } 3275 return (-1); 3276 } 3277 3278 static void 3279 fetchtableentries(int sense_key, int asc, int ascq, 3280 struct scsi_inquiry_data *inq_data, 3281 const struct sense_key_table_entry **sense_entry, 3282 const struct asc_table_entry **asc_entry) 3283 { 3284 caddr_t match; 3285 const struct asc_table_entry *asc_tables[2]; 3286 const struct sense_key_table_entry *sense_tables[2]; 3287 struct asc_key asc_ascq; 3288 size_t asc_tables_size[2]; 3289 size_t sense_tables_size[2]; 3290 int num_asc_tables; 3291 int num_sense_tables; 3292 int i; 3293 3294 /* Default to failure */ 3295 *sense_entry = NULL; 3296 *asc_entry = NULL; 3297 match = NULL; 3298 if (inq_data != NULL) 3299 match = cam_quirkmatch((caddr_t)inq_data, 3300 (caddr_t)sense_quirk_table, 3301 sense_quirk_table_size, 3302 sizeof(*sense_quirk_table), 3303 scsi_inquiry_match); 3304 3305 if (match != NULL) { 3306 struct scsi_sense_quirk_entry *quirk; 3307 3308 quirk = (struct scsi_sense_quirk_entry *)match; 3309 asc_tables[0] = quirk->asc_info; 3310 asc_tables_size[0] = quirk->num_ascs; 3311 asc_tables[1] = asc_table; 3312 asc_tables_size[1] = asc_table_size; 3313 num_asc_tables = 2; 3314 sense_tables[0] = quirk->sense_key_info; 3315 sense_tables_size[0] = quirk->num_sense_keys; 3316 sense_tables[1] = sense_key_table; 3317 sense_tables_size[1] = nitems(sense_key_table); 3318 num_sense_tables = 2; 3319 } else { 3320 asc_tables[0] = asc_table; 3321 asc_tables_size[0] = asc_table_size; 3322 num_asc_tables = 1; 3323 sense_tables[0] = sense_key_table; 3324 sense_tables_size[0] = nitems(sense_key_table); 3325 num_sense_tables = 1; 3326 } 3327 3328 asc_ascq.asc = asc; 3329 asc_ascq.ascq = ascq; 3330 for (i = 0; i < num_asc_tables; i++) { 3331 void *found_entry; 3332 3333 found_entry = bsearch(&asc_ascq, asc_tables[i], 3334 asc_tables_size[i], 3335 sizeof(**asc_tables), 3336 ascentrycomp); 3337 3338 if (found_entry) { 3339 *asc_entry = (struct asc_table_entry *)found_entry; 3340 break; 3341 } 3342 } 3343 3344 for (i = 0; i < num_sense_tables; i++) { 3345 void *found_entry; 3346 3347 found_entry = bsearch(&sense_key, sense_tables[i], 3348 sense_tables_size[i], 3349 sizeof(**sense_tables), 3350 senseentrycomp); 3351 3352 if (found_entry) { 3353 *sense_entry = 3354 (struct sense_key_table_entry *)found_entry; 3355 break; 3356 } 3357 } 3358 } 3359 3360 void 3361 scsi_sense_desc(int sense_key, int asc, int ascq, 3362 struct scsi_inquiry_data *inq_data, 3363 const char **sense_key_desc, const char **asc_desc) 3364 { 3365 const struct asc_table_entry *asc_entry; 3366 const struct sense_key_table_entry *sense_entry; 3367 3368 fetchtableentries(sense_key, asc, ascq, 3369 inq_data, 3370 &sense_entry, 3371 &asc_entry); 3372 3373 if (sense_entry != NULL) 3374 *sense_key_desc = sense_entry->desc; 3375 else 3376 *sense_key_desc = "Invalid Sense Key"; 3377 3378 if (asc_entry != NULL) 3379 *asc_desc = asc_entry->desc; 3380 else if (asc >= 0x80 && asc <= 0xff) 3381 *asc_desc = "Vendor Specific ASC"; 3382 else if (ascq >= 0x80 && ascq <= 0xff) 3383 *asc_desc = "Vendor Specific ASCQ"; 3384 else 3385 *asc_desc = "Reserved ASC/ASCQ pair"; 3386 } 3387 3388 /* 3389 * Given sense and device type information, return the appropriate action. 3390 * If we do not understand the specific error as identified by the ASC/ASCQ 3391 * pair, fall back on the more generic actions derived from the sense key. 3392 */ 3393 scsi_sense_action 3394 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data, 3395 u_int32_t sense_flags) 3396 { 3397 const struct asc_table_entry *asc_entry; 3398 const struct sense_key_table_entry *sense_entry; 3399 int error_code, sense_key, asc, ascq; 3400 scsi_sense_action action; 3401 3402 if (!scsi_extract_sense_ccb((union ccb *)csio, 3403 &error_code, &sense_key, &asc, &ascq)) { 3404 action = SS_RDEF; 3405 } else if ((error_code == SSD_DEFERRED_ERROR) 3406 || (error_code == SSD_DESC_DEFERRED_ERROR)) { 3407 /* 3408 * XXX dufault@FreeBSD.org 3409 * This error doesn't relate to the command associated 3410 * with this request sense. A deferred error is an error 3411 * for a command that has already returned GOOD status 3412 * (see SCSI2 8.2.14.2). 3413 * 3414 * By my reading of that section, it looks like the current 3415 * command has been cancelled, we should now clean things up 3416 * (hopefully recovering any lost data) and then retry the 3417 * current command. There are two easy choices, both wrong: 3418 * 3419 * 1. Drop through (like we had been doing), thus treating 3420 * this as if the error were for the current command and 3421 * return and stop the current command. 3422 * 3423 * 2. Issue a retry (like I made it do) thus hopefully 3424 * recovering the current transfer, and ignoring the 3425 * fact that we've dropped a command. 3426 * 3427 * These should probably be handled in a device specific 3428 * sense handler or punted back up to a user mode daemon 3429 */ 3430 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3431 } else { 3432 fetchtableentries(sense_key, asc, ascq, 3433 inq_data, 3434 &sense_entry, 3435 &asc_entry); 3436 3437 /* 3438 * Override the 'No additional Sense' entry (0,0) 3439 * with the error action of the sense key. 3440 */ 3441 if (asc_entry != NULL 3442 && (asc != 0 || ascq != 0)) 3443 action = asc_entry->action; 3444 else if (sense_entry != NULL) 3445 action = sense_entry->action; 3446 else 3447 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3448 3449 if (sense_key == SSD_KEY_RECOVERED_ERROR) { 3450 /* 3451 * The action succeeded but the device wants 3452 * the user to know that some recovery action 3453 * was required. 3454 */ 3455 action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK); 3456 action |= SS_NOP|SSQ_PRINT_SENSE; 3457 } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) { 3458 if ((sense_flags & SF_QUIET_IR) != 0) 3459 action &= ~SSQ_PRINT_SENSE; 3460 } else if (sense_key == SSD_KEY_UNIT_ATTENTION) { 3461 if ((sense_flags & SF_RETRY_UA) != 0 3462 && (action & SS_MASK) == SS_FAIL) { 3463 action &= ~(SS_MASK|SSQ_MASK); 3464 action |= SS_RETRY|SSQ_DECREMENT_COUNT| 3465 SSQ_PRINT_SENSE; 3466 } 3467 action |= SSQ_UA; 3468 } 3469 } 3470 if ((action & SS_MASK) >= SS_START && 3471 (sense_flags & SF_NO_RECOVERY)) { 3472 action &= ~SS_MASK; 3473 action |= SS_FAIL; 3474 } else if ((action & SS_MASK) == SS_RETRY && 3475 (sense_flags & SF_NO_RETRY)) { 3476 action &= ~SS_MASK; 3477 action |= SS_FAIL; 3478 } 3479 if ((sense_flags & SF_PRINT_ALWAYS) != 0) 3480 action |= SSQ_PRINT_SENSE; 3481 else if ((sense_flags & SF_NO_PRINT) != 0) 3482 action &= ~SSQ_PRINT_SENSE; 3483 3484 return (action); 3485 } 3486 3487 char * 3488 scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len) 3489 { 3490 struct sbuf sb; 3491 int error; 3492 3493 if (len == 0) 3494 return (""); 3495 3496 sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN); 3497 3498 scsi_cdb_sbuf(cdb_ptr, &sb); 3499 3500 /* ENOMEM just means that the fixed buffer is full, OK to ignore */ 3501 error = sbuf_finish(&sb); 3502 if (error != 0 && 3503 #ifdef _KERNEL 3504 error != ENOMEM) 3505 #else 3506 errno != ENOMEM) 3507 #endif 3508 return (""); 3509 3510 return(sbuf_data(&sb)); 3511 } 3512 3513 void 3514 scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb) 3515 { 3516 u_int8_t cdb_len; 3517 int i; 3518 3519 if (cdb_ptr == NULL) 3520 return; 3521 3522 /* 3523 * This is taken from the SCSI-3 draft spec. 3524 * (T10/1157D revision 0.3) 3525 * The top 3 bits of an opcode are the group code. The next 5 bits 3526 * are the command code. 3527 * Group 0: six byte commands 3528 * Group 1: ten byte commands 3529 * Group 2: ten byte commands 3530 * Group 3: reserved 3531 * Group 4: sixteen byte commands 3532 * Group 5: twelve byte commands 3533 * Group 6: vendor specific 3534 * Group 7: vendor specific 3535 */ 3536 switch((*cdb_ptr >> 5) & 0x7) { 3537 case 0: 3538 cdb_len = 6; 3539 break; 3540 case 1: 3541 case 2: 3542 cdb_len = 10; 3543 break; 3544 case 3: 3545 case 6: 3546 case 7: 3547 /* in this case, just print out the opcode */ 3548 cdb_len = 1; 3549 break; 3550 case 4: 3551 cdb_len = 16; 3552 break; 3553 case 5: 3554 cdb_len = 12; 3555 break; 3556 } 3557 3558 for (i = 0; i < cdb_len; i++) 3559 sbuf_printf(sb, "%02hhx ", cdb_ptr[i]); 3560 3561 return; 3562 } 3563 3564 const char * 3565 scsi_status_string(struct ccb_scsiio *csio) 3566 { 3567 switch(csio->scsi_status) { 3568 case SCSI_STATUS_OK: 3569 return("OK"); 3570 case SCSI_STATUS_CHECK_COND: 3571 return("Check Condition"); 3572 case SCSI_STATUS_BUSY: 3573 return("Busy"); 3574 case SCSI_STATUS_INTERMED: 3575 return("Intermediate"); 3576 case SCSI_STATUS_INTERMED_COND_MET: 3577 return("Intermediate-Condition Met"); 3578 case SCSI_STATUS_RESERV_CONFLICT: 3579 return("Reservation Conflict"); 3580 case SCSI_STATUS_CMD_TERMINATED: 3581 return("Command Terminated"); 3582 case SCSI_STATUS_QUEUE_FULL: 3583 return("Queue Full"); 3584 case SCSI_STATUS_ACA_ACTIVE: 3585 return("ACA Active"); 3586 case SCSI_STATUS_TASK_ABORTED: 3587 return("Task Aborted"); 3588 default: { 3589 static char unkstr[64]; 3590 snprintf(unkstr, sizeof(unkstr), "Unknown %#x", 3591 csio->scsi_status); 3592 return(unkstr); 3593 } 3594 } 3595 } 3596 3597 /* 3598 * scsi_command_string() returns 0 for success and -1 for failure. 3599 */ 3600 #ifdef _KERNEL 3601 int 3602 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb) 3603 #else /* !_KERNEL */ 3604 int 3605 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio, 3606 struct sbuf *sb) 3607 #endif /* _KERNEL/!_KERNEL */ 3608 { 3609 struct scsi_inquiry_data *inq_data; 3610 #ifdef _KERNEL 3611 struct ccb_getdev *cgd; 3612 #endif /* _KERNEL */ 3613 3614 #ifdef _KERNEL 3615 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 3616 return(-1); 3617 /* 3618 * Get the device information. 3619 */ 3620 xpt_setup_ccb(&cgd->ccb_h, 3621 csio->ccb_h.path, 3622 CAM_PRIORITY_NORMAL); 3623 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 3624 xpt_action((union ccb *)cgd); 3625 3626 /* 3627 * If the device is unconfigured, just pretend that it is a hard 3628 * drive. scsi_op_desc() needs this. 3629 */ 3630 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 3631 cgd->inq_data.device = T_DIRECT; 3632 3633 inq_data = &cgd->inq_data; 3634 3635 #else /* !_KERNEL */ 3636 3637 inq_data = &device->inq_data; 3638 3639 #endif /* _KERNEL/!_KERNEL */ 3640 3641 sbuf_printf(sb, "%s. CDB: ", 3642 scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data)); 3643 scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb); 3644 3645 #ifdef _KERNEL 3646 xpt_free_ccb((union ccb *)cgd); 3647 #endif 3648 3649 return(0); 3650 } 3651 3652 /* 3653 * Iterate over sense descriptors. Each descriptor is passed into iter_func(). 3654 * If iter_func() returns 0, list traversal continues. If iter_func() 3655 * returns non-zero, list traversal is stopped. 3656 */ 3657 void 3658 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len, 3659 int (*iter_func)(struct scsi_sense_data_desc *sense, 3660 u_int, struct scsi_sense_desc_header *, 3661 void *), void *arg) 3662 { 3663 int cur_pos; 3664 int desc_len; 3665 3666 /* 3667 * First make sure the extra length field is present. 3668 */ 3669 if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0) 3670 return; 3671 3672 /* 3673 * The length of data actually returned may be different than the 3674 * extra_len recorded in the structure. 3675 */ 3676 desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc); 3677 3678 /* 3679 * Limit this further by the extra length reported, and the maximum 3680 * allowed extra length. 3681 */ 3682 desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX)); 3683 3684 /* 3685 * Subtract the size of the header from the descriptor length. 3686 * This is to ensure that we have at least the header left, so we 3687 * don't have to check that inside the loop. This can wind up 3688 * being a negative value. 3689 */ 3690 desc_len -= sizeof(struct scsi_sense_desc_header); 3691 3692 for (cur_pos = 0; cur_pos < desc_len;) { 3693 struct scsi_sense_desc_header *header; 3694 3695 header = (struct scsi_sense_desc_header *) 3696 &sense->sense_desc[cur_pos]; 3697 3698 /* 3699 * Check to make sure we have the entire descriptor. We 3700 * don't call iter_func() unless we do. 3701 * 3702 * Note that although cur_pos is at the beginning of the 3703 * descriptor, desc_len already has the header length 3704 * subtracted. So the comparison of the length in the 3705 * header (which does not include the header itself) to 3706 * desc_len - cur_pos is correct. 3707 */ 3708 if (header->length > (desc_len - cur_pos)) 3709 break; 3710 3711 if (iter_func(sense, sense_len, header, arg) != 0) 3712 break; 3713 3714 cur_pos += sizeof(*header) + header->length; 3715 } 3716 } 3717 3718 struct scsi_find_desc_info { 3719 uint8_t desc_type; 3720 struct scsi_sense_desc_header *header; 3721 }; 3722 3723 static int 3724 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 3725 struct scsi_sense_desc_header *header, void *arg) 3726 { 3727 struct scsi_find_desc_info *desc_info; 3728 3729 desc_info = (struct scsi_find_desc_info *)arg; 3730 3731 if (header->desc_type == desc_info->desc_type) { 3732 desc_info->header = header; 3733 3734 /* We found the descriptor, tell the iterator to stop. */ 3735 return (1); 3736 } else 3737 return (0); 3738 } 3739 3740 /* 3741 * Given a descriptor type, return a pointer to it if it is in the sense 3742 * data and not truncated. Avoiding truncating sense data will simplify 3743 * things significantly for the caller. 3744 */ 3745 uint8_t * 3746 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len, 3747 uint8_t desc_type) 3748 { 3749 struct scsi_find_desc_info desc_info; 3750 3751 desc_info.desc_type = desc_type; 3752 desc_info.header = NULL; 3753 3754 scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info); 3755 3756 return ((uint8_t *)desc_info.header); 3757 } 3758 3759 /* 3760 * Fill in SCSI descriptor sense data with the specified parameters. 3761 */ 3762 static void 3763 scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data, 3764 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3765 int sense_key, int asc, int ascq, va_list ap) 3766 { 3767 struct scsi_sense_data_desc *sense; 3768 scsi_sense_elem_type elem_type; 3769 int space, len; 3770 uint8_t *desc, *data; 3771 3772 memset(sense_data, 0, sizeof(*sense_data)); 3773 sense = (struct scsi_sense_data_desc *)sense_data; 3774 if (current_error != 0) 3775 sense->error_code = SSD_DESC_CURRENT_ERROR; 3776 else 3777 sense->error_code = SSD_DESC_DEFERRED_ERROR; 3778 sense->sense_key = sense_key; 3779 sense->add_sense_code = asc; 3780 sense->add_sense_code_qual = ascq; 3781 sense->flags = 0; 3782 3783 desc = &sense->sense_desc[0]; 3784 space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc); 3785 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 3786 SSD_ELEM_NONE) { 3787 if (elem_type >= SSD_ELEM_MAX) { 3788 printf("%s: invalid sense type %d\n", __func__, 3789 elem_type); 3790 break; 3791 } 3792 len = va_arg(ap, int); 3793 data = va_arg(ap, uint8_t *); 3794 3795 switch (elem_type) { 3796 case SSD_ELEM_SKIP: 3797 break; 3798 case SSD_ELEM_DESC: 3799 if (space < len) { 3800 sense->flags |= SSDD_SDAT_OVFL; 3801 break; 3802 } 3803 bcopy(data, desc, len); 3804 desc += len; 3805 space -= len; 3806 break; 3807 case SSD_ELEM_SKS: { 3808 struct scsi_sense_sks *sks = (void *)desc; 3809 3810 if (len > sizeof(sks->sense_key_spec)) 3811 break; 3812 if (space < sizeof(*sks)) { 3813 sense->flags |= SSDD_SDAT_OVFL; 3814 break; 3815 } 3816 sks->desc_type = SSD_DESC_SKS; 3817 sks->length = sizeof(*sks) - 3818 (offsetof(struct scsi_sense_sks, length) + 1); 3819 bcopy(data, &sks->sense_key_spec, len); 3820 desc += sizeof(*sks); 3821 space -= sizeof(*sks); 3822 break; 3823 } 3824 case SSD_ELEM_COMMAND: { 3825 struct scsi_sense_command *cmd = (void *)desc; 3826 3827 if (len > sizeof(cmd->command_info)) 3828 break; 3829 if (space < sizeof(*cmd)) { 3830 sense->flags |= SSDD_SDAT_OVFL; 3831 break; 3832 } 3833 cmd->desc_type = SSD_DESC_COMMAND; 3834 cmd->length = sizeof(*cmd) - 3835 (offsetof(struct scsi_sense_command, length) + 1); 3836 bcopy(data, &cmd->command_info[ 3837 sizeof(cmd->command_info) - len], len); 3838 desc += sizeof(*cmd); 3839 space -= sizeof(*cmd); 3840 break; 3841 } 3842 case SSD_ELEM_INFO: { 3843 struct scsi_sense_info *info = (void *)desc; 3844 3845 if (len > sizeof(info->info)) 3846 break; 3847 if (space < sizeof(*info)) { 3848 sense->flags |= SSDD_SDAT_OVFL; 3849 break; 3850 } 3851 info->desc_type = SSD_DESC_INFO; 3852 info->length = sizeof(*info) - 3853 (offsetof(struct scsi_sense_info, length) + 1); 3854 info->byte2 = SSD_INFO_VALID; 3855 bcopy(data, &info->info[sizeof(info->info) - len], len); 3856 desc += sizeof(*info); 3857 space -= sizeof(*info); 3858 break; 3859 } 3860 case SSD_ELEM_FRU: { 3861 struct scsi_sense_fru *fru = (void *)desc; 3862 3863 if (len > sizeof(fru->fru)) 3864 break; 3865 if (space < sizeof(*fru)) { 3866 sense->flags |= SSDD_SDAT_OVFL; 3867 break; 3868 } 3869 fru->desc_type = SSD_DESC_FRU; 3870 fru->length = sizeof(*fru) - 3871 (offsetof(struct scsi_sense_fru, length) + 1); 3872 fru->fru = *data; 3873 desc += sizeof(*fru); 3874 space -= sizeof(*fru); 3875 break; 3876 } 3877 case SSD_ELEM_STREAM: { 3878 struct scsi_sense_stream *stream = (void *)desc; 3879 3880 if (len > sizeof(stream->byte3)) 3881 break; 3882 if (space < sizeof(*stream)) { 3883 sense->flags |= SSDD_SDAT_OVFL; 3884 break; 3885 } 3886 stream->desc_type = SSD_DESC_STREAM; 3887 stream->length = sizeof(*stream) - 3888 (offsetof(struct scsi_sense_stream, length) + 1); 3889 stream->byte3 = *data; 3890 desc += sizeof(*stream); 3891 space -= sizeof(*stream); 3892 break; 3893 } 3894 default: 3895 /* 3896 * We shouldn't get here, but if we do, do nothing. 3897 * We've already consumed the arguments above. 3898 */ 3899 break; 3900 } 3901 } 3902 sense->extra_len = desc - &sense->sense_desc[0]; 3903 *sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 + 3904 sense->extra_len; 3905 } 3906 3907 /* 3908 * Fill in SCSI fixed sense data with the specified parameters. 3909 */ 3910 static void 3911 scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data, 3912 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3913 int sense_key, int asc, int ascq, va_list ap) 3914 { 3915 struct scsi_sense_data_fixed *sense; 3916 scsi_sense_elem_type elem_type; 3917 uint8_t *data; 3918 int len; 3919 3920 memset(sense_data, 0, sizeof(*sense_data)); 3921 sense = (struct scsi_sense_data_fixed *)sense_data; 3922 if (current_error != 0) 3923 sense->error_code = SSD_CURRENT_ERROR; 3924 else 3925 sense->error_code = SSD_DEFERRED_ERROR; 3926 sense->flags = sense_key & SSD_KEY; 3927 sense->extra_len = 0; 3928 if (*sense_len >= 13) { 3929 sense->add_sense_code = asc; 3930 sense->extra_len = MAX(sense->extra_len, 5); 3931 } else 3932 sense->flags |= SSD_SDAT_OVFL; 3933 if (*sense_len >= 14) { 3934 sense->add_sense_code_qual = ascq; 3935 sense->extra_len = MAX(sense->extra_len, 6); 3936 } else 3937 sense->flags |= SSD_SDAT_OVFL; 3938 3939 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 3940 SSD_ELEM_NONE) { 3941 if (elem_type >= SSD_ELEM_MAX) { 3942 printf("%s: invalid sense type %d\n", __func__, 3943 elem_type); 3944 break; 3945 } 3946 len = va_arg(ap, int); 3947 data = va_arg(ap, uint8_t *); 3948 3949 switch (elem_type) { 3950 case SSD_ELEM_SKIP: 3951 break; 3952 case SSD_ELEM_SKS: 3953 if (len > sizeof(sense->sense_key_spec)) 3954 break; 3955 if (*sense_len < 18) { 3956 sense->flags |= SSD_SDAT_OVFL; 3957 break; 3958 } 3959 bcopy(data, &sense->sense_key_spec[0], len); 3960 sense->extra_len = MAX(sense->extra_len, 10); 3961 break; 3962 case SSD_ELEM_COMMAND: 3963 if (*sense_len < 12) { 3964 sense->flags |= SSD_SDAT_OVFL; 3965 break; 3966 } 3967 if (len > sizeof(sense->cmd_spec_info)) { 3968 data += len - sizeof(sense->cmd_spec_info); 3969 len = sizeof(sense->cmd_spec_info); 3970 } 3971 bcopy(data, &sense->cmd_spec_info[ 3972 sizeof(sense->cmd_spec_info) - len], len); 3973 sense->extra_len = MAX(sense->extra_len, 4); 3974 break; 3975 case SSD_ELEM_INFO: 3976 /* Set VALID bit only if no overflow. */ 3977 sense->error_code |= SSD_ERRCODE_VALID; 3978 while (len > sizeof(sense->info)) { 3979 if (data[0] != 0) 3980 sense->error_code &= ~SSD_ERRCODE_VALID; 3981 data ++; 3982 len --; 3983 } 3984 bcopy(data, &sense->info[sizeof(sense->info) - len], len); 3985 break; 3986 case SSD_ELEM_FRU: 3987 if (*sense_len < 15) { 3988 sense->flags |= SSD_SDAT_OVFL; 3989 break; 3990 } 3991 sense->fru = *data; 3992 sense->extra_len = MAX(sense->extra_len, 7); 3993 break; 3994 case SSD_ELEM_STREAM: 3995 sense->flags |= *data & 3996 (SSD_ILI | SSD_EOM | SSD_FILEMARK); 3997 break; 3998 default: 3999 4000 /* 4001 * We can't handle that in fixed format. Skip it. 4002 */ 4003 break; 4004 } 4005 } 4006 *sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 + 4007 sense->extra_len; 4008 } 4009 4010 /* 4011 * Fill in SCSI sense data with the specified parameters. This routine can 4012 * fill in either fixed or descriptor type sense data. 4013 */ 4014 void 4015 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len, 4016 scsi_sense_data_type sense_format, int current_error, 4017 int sense_key, int asc, int ascq, va_list ap) 4018 { 4019 4020 if (*sense_len > SSD_FULL_SIZE) 4021 *sense_len = SSD_FULL_SIZE; 4022 if (sense_format == SSD_TYPE_DESC) 4023 scsi_set_sense_data_desc_va(sense_data, sense_len, 4024 sense_format, current_error, sense_key, asc, ascq, ap); 4025 else 4026 scsi_set_sense_data_fixed_va(sense_data, sense_len, 4027 sense_format, current_error, sense_key, asc, ascq, ap); 4028 } 4029 4030 void 4031 scsi_set_sense_data(struct scsi_sense_data *sense_data, 4032 scsi_sense_data_type sense_format, int current_error, 4033 int sense_key, int asc, int ascq, ...) 4034 { 4035 va_list ap; 4036 u_int sense_len = SSD_FULL_SIZE; 4037 4038 va_start(ap, ascq); 4039 scsi_set_sense_data_va(sense_data, &sense_len, sense_format, 4040 current_error, sense_key, asc, ascq, ap); 4041 va_end(ap); 4042 } 4043 4044 void 4045 scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len, 4046 scsi_sense_data_type sense_format, int current_error, 4047 int sense_key, int asc, int ascq, ...) 4048 { 4049 va_list ap; 4050 4051 va_start(ap, ascq); 4052 scsi_set_sense_data_va(sense_data, sense_len, sense_format, 4053 current_error, sense_key, asc, ascq, ap); 4054 va_end(ap); 4055 } 4056 4057 /* 4058 * Get sense information for three similar sense data types. 4059 */ 4060 int 4061 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len, 4062 uint8_t info_type, uint64_t *info, int64_t *signed_info) 4063 { 4064 scsi_sense_data_type sense_type; 4065 4066 if (sense_len == 0) 4067 goto bailout; 4068 4069 sense_type = scsi_sense_type(sense_data); 4070 4071 switch (sense_type) { 4072 case SSD_TYPE_DESC: { 4073 struct scsi_sense_data_desc *sense; 4074 uint8_t *desc; 4075 4076 sense = (struct scsi_sense_data_desc *)sense_data; 4077 4078 desc = scsi_find_desc(sense, sense_len, info_type); 4079 if (desc == NULL) 4080 goto bailout; 4081 4082 switch (info_type) { 4083 case SSD_DESC_INFO: { 4084 struct scsi_sense_info *info_desc; 4085 4086 info_desc = (struct scsi_sense_info *)desc; 4087 4088 if ((info_desc->byte2 & SSD_INFO_VALID) == 0) 4089 goto bailout; 4090 4091 *info = scsi_8btou64(info_desc->info); 4092 if (signed_info != NULL) 4093 *signed_info = *info; 4094 break; 4095 } 4096 case SSD_DESC_COMMAND: { 4097 struct scsi_sense_command *cmd_desc; 4098 4099 cmd_desc = (struct scsi_sense_command *)desc; 4100 4101 *info = scsi_8btou64(cmd_desc->command_info); 4102 if (signed_info != NULL) 4103 *signed_info = *info; 4104 break; 4105 } 4106 case SSD_DESC_FRU: { 4107 struct scsi_sense_fru *fru_desc; 4108 4109 fru_desc = (struct scsi_sense_fru *)desc; 4110 4111 if (fru_desc->fru == 0) 4112 goto bailout; 4113 4114 *info = fru_desc->fru; 4115 if (signed_info != NULL) 4116 *signed_info = (int8_t)fru_desc->fru; 4117 break; 4118 } 4119 default: 4120 goto bailout; 4121 break; 4122 } 4123 break; 4124 } 4125 case SSD_TYPE_FIXED: { 4126 struct scsi_sense_data_fixed *sense; 4127 4128 sense = (struct scsi_sense_data_fixed *)sense_data; 4129 4130 switch (info_type) { 4131 case SSD_DESC_INFO: { 4132 uint32_t info_val; 4133 4134 if ((sense->error_code & SSD_ERRCODE_VALID) == 0) 4135 goto bailout; 4136 4137 if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0) 4138 goto bailout; 4139 4140 info_val = scsi_4btoul(sense->info); 4141 4142 *info = info_val; 4143 if (signed_info != NULL) 4144 *signed_info = (int32_t)info_val; 4145 break; 4146 } 4147 case SSD_DESC_COMMAND: { 4148 uint32_t cmd_val; 4149 4150 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, 4151 cmd_spec_info) == 0) 4152 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0)) 4153 goto bailout; 4154 4155 cmd_val = scsi_4btoul(sense->cmd_spec_info); 4156 if (cmd_val == 0) 4157 goto bailout; 4158 4159 *info = cmd_val; 4160 if (signed_info != NULL) 4161 *signed_info = (int32_t)cmd_val; 4162 break; 4163 } 4164 case SSD_DESC_FRU: 4165 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0) 4166 || (SSD_FIXED_IS_FILLED(sense, fru) == 0)) 4167 goto bailout; 4168 4169 if (sense->fru == 0) 4170 goto bailout; 4171 4172 *info = sense->fru; 4173 if (signed_info != NULL) 4174 *signed_info = (int8_t)sense->fru; 4175 break; 4176 default: 4177 goto bailout; 4178 break; 4179 } 4180 break; 4181 } 4182 default: 4183 goto bailout; 4184 break; 4185 } 4186 4187 return (0); 4188 bailout: 4189 return (1); 4190 } 4191 4192 int 4193 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks) 4194 { 4195 scsi_sense_data_type sense_type; 4196 4197 if (sense_len == 0) 4198 goto bailout; 4199 4200 sense_type = scsi_sense_type(sense_data); 4201 4202 switch (sense_type) { 4203 case SSD_TYPE_DESC: { 4204 struct scsi_sense_data_desc *sense; 4205 struct scsi_sense_sks *desc; 4206 4207 sense = (struct scsi_sense_data_desc *)sense_data; 4208 4209 desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len, 4210 SSD_DESC_SKS); 4211 if (desc == NULL) 4212 goto bailout; 4213 4214 if ((desc->sense_key_spec[0] & SSD_SKS_VALID) == 0) 4215 goto bailout; 4216 4217 bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec)); 4218 break; 4219 } 4220 case SSD_TYPE_FIXED: { 4221 struct scsi_sense_data_fixed *sense; 4222 4223 sense = (struct scsi_sense_data_fixed *)sense_data; 4224 4225 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0) 4226 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0)) 4227 goto bailout; 4228 4229 if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0) 4230 goto bailout; 4231 4232 bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec)); 4233 break; 4234 } 4235 default: 4236 goto bailout; 4237 break; 4238 } 4239 return (0); 4240 bailout: 4241 return (1); 4242 } 4243 4244 /* 4245 * Provide a common interface for fixed and descriptor sense to detect 4246 * whether we have block-specific sense information. It is clear by the 4247 * presence of the block descriptor in descriptor mode, but we have to 4248 * infer from the inquiry data and ILI bit in fixed mode. 4249 */ 4250 int 4251 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len, 4252 struct scsi_inquiry_data *inq_data, uint8_t *block_bits) 4253 { 4254 scsi_sense_data_type sense_type; 4255 4256 if (inq_data != NULL) { 4257 switch (SID_TYPE(inq_data)) { 4258 case T_DIRECT: 4259 case T_RBC: 4260 case T_ZBC_HM: 4261 break; 4262 default: 4263 goto bailout; 4264 break; 4265 } 4266 } 4267 4268 sense_type = scsi_sense_type(sense_data); 4269 4270 switch (sense_type) { 4271 case SSD_TYPE_DESC: { 4272 struct scsi_sense_data_desc *sense; 4273 struct scsi_sense_block *block; 4274 4275 sense = (struct scsi_sense_data_desc *)sense_data; 4276 4277 block = (struct scsi_sense_block *)scsi_find_desc(sense, 4278 sense_len, SSD_DESC_BLOCK); 4279 if (block == NULL) 4280 goto bailout; 4281 4282 *block_bits = block->byte3; 4283 break; 4284 } 4285 case SSD_TYPE_FIXED: { 4286 struct scsi_sense_data_fixed *sense; 4287 4288 sense = (struct scsi_sense_data_fixed *)sense_data; 4289 4290 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4291 goto bailout; 4292 4293 *block_bits = sense->flags & SSD_ILI; 4294 break; 4295 } 4296 default: 4297 goto bailout; 4298 break; 4299 } 4300 return (0); 4301 bailout: 4302 return (1); 4303 } 4304 4305 int 4306 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len, 4307 struct scsi_inquiry_data *inq_data, uint8_t *stream_bits) 4308 { 4309 scsi_sense_data_type sense_type; 4310 4311 if (inq_data != NULL) { 4312 switch (SID_TYPE(inq_data)) { 4313 case T_SEQUENTIAL: 4314 break; 4315 default: 4316 goto bailout; 4317 break; 4318 } 4319 } 4320 4321 sense_type = scsi_sense_type(sense_data); 4322 4323 switch (sense_type) { 4324 case SSD_TYPE_DESC: { 4325 struct scsi_sense_data_desc *sense; 4326 struct scsi_sense_stream *stream; 4327 4328 sense = (struct scsi_sense_data_desc *)sense_data; 4329 4330 stream = (struct scsi_sense_stream *)scsi_find_desc(sense, 4331 sense_len, SSD_DESC_STREAM); 4332 if (stream == NULL) 4333 goto bailout; 4334 4335 *stream_bits = stream->byte3; 4336 break; 4337 } 4338 case SSD_TYPE_FIXED: { 4339 struct scsi_sense_data_fixed *sense; 4340 4341 sense = (struct scsi_sense_data_fixed *)sense_data; 4342 4343 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4344 goto bailout; 4345 4346 *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK); 4347 break; 4348 } 4349 default: 4350 goto bailout; 4351 break; 4352 } 4353 return (0); 4354 bailout: 4355 return (1); 4356 } 4357 4358 void 4359 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4360 struct scsi_inquiry_data *inq_data, uint64_t info) 4361 { 4362 sbuf_printf(sb, "Info: %#jx", info); 4363 } 4364 4365 void 4366 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4367 struct scsi_inquiry_data *inq_data, uint64_t csi) 4368 { 4369 sbuf_printf(sb, "Command Specific Info: %#jx", csi); 4370 } 4371 4372 void 4373 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress) 4374 { 4375 sbuf_printf(sb, "Progress: %d%% (%d/%d) complete", 4376 (progress * 100) / SSD_SKS_PROGRESS_DENOM, 4377 progress, SSD_SKS_PROGRESS_DENOM); 4378 } 4379 4380 /* 4381 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success. 4382 */ 4383 int 4384 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks) 4385 { 4386 4387 switch (sense_key) { 4388 case SSD_KEY_ILLEGAL_REQUEST: { 4389 struct scsi_sense_sks_field *field; 4390 int bad_command; 4391 char tmpstr[40]; 4392 4393 /*Field Pointer*/ 4394 field = (struct scsi_sense_sks_field *)sks; 4395 4396 if (field->byte0 & SSD_SKS_FIELD_CMD) 4397 bad_command = 1; 4398 else 4399 bad_command = 0; 4400 4401 tmpstr[0] = '\0'; 4402 4403 /* Bit pointer is valid */ 4404 if (field->byte0 & SSD_SKS_BPV) 4405 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4406 field->byte0 & SSD_SKS_BIT_VALUE); 4407 4408 sbuf_printf(sb, "%s byte %d %sis invalid", 4409 bad_command ? "Command" : "Data", 4410 scsi_2btoul(field->field), tmpstr); 4411 break; 4412 } 4413 case SSD_KEY_UNIT_ATTENTION: { 4414 struct scsi_sense_sks_overflow *overflow; 4415 4416 overflow = (struct scsi_sense_sks_overflow *)sks; 4417 4418 /*UA Condition Queue Overflow*/ 4419 sbuf_printf(sb, "Unit Attention Condition Queue %s", 4420 (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ? 4421 "Overflowed" : "Did Not Overflow??"); 4422 break; 4423 } 4424 case SSD_KEY_RECOVERED_ERROR: 4425 case SSD_KEY_HARDWARE_ERROR: 4426 case SSD_KEY_MEDIUM_ERROR: { 4427 struct scsi_sense_sks_retry *retry; 4428 4429 /*Actual Retry Count*/ 4430 retry = (struct scsi_sense_sks_retry *)sks; 4431 4432 sbuf_printf(sb, "Actual Retry Count: %d", 4433 scsi_2btoul(retry->actual_retry_count)); 4434 break; 4435 } 4436 case SSD_KEY_NO_SENSE: 4437 case SSD_KEY_NOT_READY: { 4438 struct scsi_sense_sks_progress *progress; 4439 int progress_val; 4440 4441 /*Progress Indication*/ 4442 progress = (struct scsi_sense_sks_progress *)sks; 4443 progress_val = scsi_2btoul(progress->progress); 4444 4445 scsi_progress_sbuf(sb, progress_val); 4446 break; 4447 } 4448 case SSD_KEY_COPY_ABORTED: { 4449 struct scsi_sense_sks_segment *segment; 4450 char tmpstr[40]; 4451 4452 /*Segment Pointer*/ 4453 segment = (struct scsi_sense_sks_segment *)sks; 4454 4455 tmpstr[0] = '\0'; 4456 4457 if (segment->byte0 & SSD_SKS_SEGMENT_BPV) 4458 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4459 segment->byte0 & SSD_SKS_SEGMENT_BITPTR); 4460 4461 sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 & 4462 SSD_SKS_SEGMENT_SD) ? "Segment" : "Data", 4463 scsi_2btoul(segment->field), tmpstr); 4464 break; 4465 } 4466 default: 4467 sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0], 4468 scsi_2btoul(&sks[1])); 4469 break; 4470 } 4471 4472 return (0); 4473 } 4474 4475 void 4476 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru) 4477 { 4478 sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru); 4479 } 4480 4481 void 4482 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits) 4483 { 4484 int need_comma; 4485 4486 need_comma = 0; 4487 /* 4488 * XXX KDM this needs more descriptive decoding. 4489 */ 4490 sbuf_printf(sb, "Stream Command Sense Data: "); 4491 if (stream_bits & SSD_DESC_STREAM_FM) { 4492 sbuf_printf(sb, "Filemark"); 4493 need_comma = 1; 4494 } 4495 4496 if (stream_bits & SSD_DESC_STREAM_EOM) { 4497 sbuf_printf(sb, "%sEOM", (need_comma) ? "," : ""); 4498 need_comma = 1; 4499 } 4500 4501 if (stream_bits & SSD_DESC_STREAM_ILI) 4502 sbuf_printf(sb, "%sILI", (need_comma) ? "," : ""); 4503 } 4504 4505 void 4506 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits) 4507 { 4508 4509 sbuf_printf(sb, "Block Command Sense Data: "); 4510 if (block_bits & SSD_DESC_BLOCK_ILI) 4511 sbuf_printf(sb, "ILI"); 4512 } 4513 4514 void 4515 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4516 u_int sense_len, uint8_t *cdb, int cdb_len, 4517 struct scsi_inquiry_data *inq_data, 4518 struct scsi_sense_desc_header *header) 4519 { 4520 struct scsi_sense_info *info; 4521 4522 info = (struct scsi_sense_info *)header; 4523 4524 if ((info->byte2 & SSD_INFO_VALID) == 0) 4525 return; 4526 4527 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info)); 4528 } 4529 4530 void 4531 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4532 u_int sense_len, uint8_t *cdb, int cdb_len, 4533 struct scsi_inquiry_data *inq_data, 4534 struct scsi_sense_desc_header *header) 4535 { 4536 struct scsi_sense_command *command; 4537 4538 command = (struct scsi_sense_command *)header; 4539 4540 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, 4541 scsi_8btou64(command->command_info)); 4542 } 4543 4544 void 4545 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4546 u_int sense_len, uint8_t *cdb, int cdb_len, 4547 struct scsi_inquiry_data *inq_data, 4548 struct scsi_sense_desc_header *header) 4549 { 4550 struct scsi_sense_sks *sks; 4551 int error_code, sense_key, asc, ascq; 4552 4553 sks = (struct scsi_sense_sks *)header; 4554 4555 if ((sks->sense_key_spec[0] & SSD_SKS_VALID) == 0) 4556 return; 4557 4558 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4559 &asc, &ascq, /*show_errors*/ 1); 4560 4561 scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec); 4562 } 4563 4564 void 4565 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4566 u_int sense_len, uint8_t *cdb, int cdb_len, 4567 struct scsi_inquiry_data *inq_data, 4568 struct scsi_sense_desc_header *header) 4569 { 4570 struct scsi_sense_fru *fru; 4571 4572 fru = (struct scsi_sense_fru *)header; 4573 4574 if (fru->fru == 0) 4575 return; 4576 4577 scsi_fru_sbuf(sb, (uint64_t)fru->fru); 4578 } 4579 4580 void 4581 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4582 u_int sense_len, uint8_t *cdb, int cdb_len, 4583 struct scsi_inquiry_data *inq_data, 4584 struct scsi_sense_desc_header *header) 4585 { 4586 struct scsi_sense_stream *stream; 4587 4588 stream = (struct scsi_sense_stream *)header; 4589 scsi_stream_sbuf(sb, stream->byte3); 4590 } 4591 4592 void 4593 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4594 u_int sense_len, uint8_t *cdb, int cdb_len, 4595 struct scsi_inquiry_data *inq_data, 4596 struct scsi_sense_desc_header *header) 4597 { 4598 struct scsi_sense_block *block; 4599 4600 block = (struct scsi_sense_block *)header; 4601 scsi_block_sbuf(sb, block->byte3); 4602 } 4603 4604 void 4605 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4606 u_int sense_len, uint8_t *cdb, int cdb_len, 4607 struct scsi_inquiry_data *inq_data, 4608 struct scsi_sense_desc_header *header) 4609 { 4610 struct scsi_sense_progress *progress; 4611 const char *sense_key_desc; 4612 const char *asc_desc; 4613 int progress_val; 4614 4615 progress = (struct scsi_sense_progress *)header; 4616 4617 /* 4618 * Get descriptions for the sense key, ASC, and ASCQ in the 4619 * progress descriptor. These could be different than the values 4620 * in the overall sense data. 4621 */ 4622 scsi_sense_desc(progress->sense_key, progress->add_sense_code, 4623 progress->add_sense_code_qual, inq_data, 4624 &sense_key_desc, &asc_desc); 4625 4626 progress_val = scsi_2btoul(progress->progress); 4627 4628 /* 4629 * The progress indicator is for the operation described by the 4630 * sense key, ASC, and ASCQ in the descriptor. 4631 */ 4632 sbuf_cat(sb, sense_key_desc); 4633 sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code, 4634 progress->add_sense_code_qual, asc_desc); 4635 scsi_progress_sbuf(sb, progress_val); 4636 } 4637 4638 void 4639 scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4640 u_int sense_len, uint8_t *cdb, int cdb_len, 4641 struct scsi_inquiry_data *inq_data, 4642 struct scsi_sense_desc_header *header) 4643 { 4644 struct scsi_sense_ata_ret_desc *res; 4645 4646 res = (struct scsi_sense_ata_ret_desc *)header; 4647 4648 sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ", 4649 res->status, 4650 (res->status & 0x80) ? "BSY " : "", 4651 (res->status & 0x40) ? "DRDY " : "", 4652 (res->status & 0x20) ? "DF " : "", 4653 (res->status & 0x10) ? "SERV " : "", 4654 (res->status & 0x08) ? "DRQ " : "", 4655 (res->status & 0x04) ? "CORR " : "", 4656 (res->status & 0x02) ? "IDX " : "", 4657 (res->status & 0x01) ? "ERR" : ""); 4658 if (res->status & 1) { 4659 sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ", 4660 res->error, 4661 (res->error & 0x80) ? "ICRC " : "", 4662 (res->error & 0x40) ? "UNC " : "", 4663 (res->error & 0x20) ? "MC " : "", 4664 (res->error & 0x10) ? "IDNF " : "", 4665 (res->error & 0x08) ? "MCR " : "", 4666 (res->error & 0x04) ? "ABRT " : "", 4667 (res->error & 0x02) ? "NM " : "", 4668 (res->error & 0x01) ? "ILI" : ""); 4669 } 4670 4671 if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) { 4672 sbuf_printf(sb, "count: %02x%02x, ", 4673 res->count_15_8, res->count_7_0); 4674 sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ", 4675 res->lba_47_40, res->lba_39_32, res->lba_31_24, 4676 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4677 } else { 4678 sbuf_printf(sb, "count: %02x, ", res->count_7_0); 4679 sbuf_printf(sb, "LBA: %02x%02x%02x, ", 4680 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4681 } 4682 sbuf_printf(sb, "device: %02x, ", res->device); 4683 } 4684 4685 void 4686 scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4687 u_int sense_len, uint8_t *cdb, int cdb_len, 4688 struct scsi_inquiry_data *inq_data, 4689 struct scsi_sense_desc_header *header) 4690 { 4691 struct scsi_sense_forwarded *forwarded; 4692 const char *sense_key_desc; 4693 const char *asc_desc; 4694 int error_code, sense_key, asc, ascq; 4695 4696 forwarded = (struct scsi_sense_forwarded *)header; 4697 scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data, 4698 forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1); 4699 scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc); 4700 4701 sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ", 4702 sense_key_desc, asc, ascq, asc_desc); 4703 } 4704 4705 /* 4706 * Generic sense descriptor printing routine. This is used when we have 4707 * not yet implemented a specific printing routine for this descriptor. 4708 */ 4709 void 4710 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4711 u_int sense_len, uint8_t *cdb, int cdb_len, 4712 struct scsi_inquiry_data *inq_data, 4713 struct scsi_sense_desc_header *header) 4714 { 4715 int i; 4716 uint8_t *buf_ptr; 4717 4718 sbuf_printf(sb, "Descriptor %#x:", header->desc_type); 4719 4720 buf_ptr = (uint8_t *)&header[1]; 4721 4722 for (i = 0; i < header->length; i++, buf_ptr++) 4723 sbuf_printf(sb, " %02x", *buf_ptr); 4724 } 4725 4726 /* 4727 * Keep this list in numeric order. This speeds the array traversal. 4728 */ 4729 struct scsi_sense_desc_printer { 4730 uint8_t desc_type; 4731 /* 4732 * The function arguments here are the superset of what is needed 4733 * to print out various different descriptors. Command and 4734 * information descriptors need inquiry data and command type. 4735 * Sense key specific descriptors need the sense key. 4736 * 4737 * The sense, cdb, and inquiry data arguments may be NULL, but the 4738 * information printed may not be fully decoded as a result. 4739 */ 4740 void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense, 4741 u_int sense_len, uint8_t *cdb, int cdb_len, 4742 struct scsi_inquiry_data *inq_data, 4743 struct scsi_sense_desc_header *header); 4744 } scsi_sense_printers[] = { 4745 {SSD_DESC_INFO, scsi_sense_info_sbuf}, 4746 {SSD_DESC_COMMAND, scsi_sense_command_sbuf}, 4747 {SSD_DESC_SKS, scsi_sense_sks_sbuf}, 4748 {SSD_DESC_FRU, scsi_sense_fru_sbuf}, 4749 {SSD_DESC_STREAM, scsi_sense_stream_sbuf}, 4750 {SSD_DESC_BLOCK, scsi_sense_block_sbuf}, 4751 {SSD_DESC_ATA, scsi_sense_ata_sbuf}, 4752 {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf}, 4753 {SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf} 4754 }; 4755 4756 void 4757 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4758 u_int sense_len, uint8_t *cdb, int cdb_len, 4759 struct scsi_inquiry_data *inq_data, 4760 struct scsi_sense_desc_header *header) 4761 { 4762 u_int i; 4763 4764 for (i = 0; i < nitems(scsi_sense_printers); i++) { 4765 struct scsi_sense_desc_printer *printer; 4766 4767 printer = &scsi_sense_printers[i]; 4768 4769 /* 4770 * The list is sorted, so quit if we've passed our 4771 * descriptor number. 4772 */ 4773 if (printer->desc_type > header->desc_type) 4774 break; 4775 4776 if (printer->desc_type != header->desc_type) 4777 continue; 4778 4779 printer->print_func(sb, sense, sense_len, cdb, cdb_len, 4780 inq_data, header); 4781 4782 return; 4783 } 4784 4785 /* 4786 * No specific printing routine, so use the generic routine. 4787 */ 4788 scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len, 4789 inq_data, header); 4790 } 4791 4792 scsi_sense_data_type 4793 scsi_sense_type(struct scsi_sense_data *sense_data) 4794 { 4795 switch (sense_data->error_code & SSD_ERRCODE) { 4796 case SSD_DESC_CURRENT_ERROR: 4797 case SSD_DESC_DEFERRED_ERROR: 4798 return (SSD_TYPE_DESC); 4799 break; 4800 case SSD_CURRENT_ERROR: 4801 case SSD_DEFERRED_ERROR: 4802 return (SSD_TYPE_FIXED); 4803 break; 4804 default: 4805 break; 4806 } 4807 4808 return (SSD_TYPE_NONE); 4809 } 4810 4811 struct scsi_print_sense_info { 4812 struct sbuf *sb; 4813 char *path_str; 4814 uint8_t *cdb; 4815 int cdb_len; 4816 struct scsi_inquiry_data *inq_data; 4817 }; 4818 4819 static int 4820 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 4821 struct scsi_sense_desc_header *header, void *arg) 4822 { 4823 struct scsi_print_sense_info *print_info; 4824 4825 print_info = (struct scsi_print_sense_info *)arg; 4826 4827 switch (header->desc_type) { 4828 case SSD_DESC_INFO: 4829 case SSD_DESC_FRU: 4830 case SSD_DESC_COMMAND: 4831 case SSD_DESC_SKS: 4832 case SSD_DESC_BLOCK: 4833 case SSD_DESC_STREAM: 4834 /* 4835 * We have already printed these descriptors, if they are 4836 * present. 4837 */ 4838 break; 4839 default: { 4840 sbuf_printf(print_info->sb, "%s", print_info->path_str); 4841 scsi_sense_desc_sbuf(print_info->sb, 4842 (struct scsi_sense_data *)sense, sense_len, 4843 print_info->cdb, print_info->cdb_len, 4844 print_info->inq_data, header); 4845 sbuf_printf(print_info->sb, "\n"); 4846 break; 4847 } 4848 } 4849 4850 /* 4851 * Tell the iterator that we want to see more descriptors if they 4852 * are present. 4853 */ 4854 return (0); 4855 } 4856 4857 void 4858 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len, 4859 struct sbuf *sb, char *path_str, 4860 struct scsi_inquiry_data *inq_data, uint8_t *cdb, 4861 int cdb_len) 4862 { 4863 int error_code, sense_key, asc, ascq; 4864 4865 sbuf_cat(sb, path_str); 4866 4867 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4868 &asc, &ascq, /*show_errors*/ 1); 4869 4870 sbuf_printf(sb, "SCSI sense: "); 4871 switch (error_code) { 4872 case SSD_DEFERRED_ERROR: 4873 case SSD_DESC_DEFERRED_ERROR: 4874 sbuf_printf(sb, "Deferred error: "); 4875 4876 /* FALLTHROUGH */ 4877 case SSD_CURRENT_ERROR: 4878 case SSD_DESC_CURRENT_ERROR: 4879 { 4880 struct scsi_sense_data_desc *desc_sense; 4881 struct scsi_print_sense_info print_info; 4882 const char *sense_key_desc; 4883 const char *asc_desc; 4884 uint8_t sks[3]; 4885 uint64_t val; 4886 uint8_t bits; 4887 4888 /* 4889 * Get descriptions for the sense key, ASC, and ASCQ. If 4890 * these aren't present in the sense data (i.e. the sense 4891 * data isn't long enough), the -1 values that 4892 * scsi_extract_sense_len() returns will yield default 4893 * or error descriptions. 4894 */ 4895 scsi_sense_desc(sense_key, asc, ascq, inq_data, 4896 &sense_key_desc, &asc_desc); 4897 4898 /* 4899 * We first print the sense key and ASC/ASCQ. 4900 */ 4901 sbuf_cat(sb, sense_key_desc); 4902 sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc); 4903 4904 /* 4905 * Print any block or stream device-specific information. 4906 */ 4907 if (scsi_get_block_info(sense, sense_len, inq_data, 4908 &bits) == 0 && bits != 0) { 4909 sbuf_cat(sb, path_str); 4910 scsi_block_sbuf(sb, bits); 4911 sbuf_printf(sb, "\n"); 4912 } else if (scsi_get_stream_info(sense, sense_len, inq_data, 4913 &bits) == 0 && bits != 0) { 4914 sbuf_cat(sb, path_str); 4915 scsi_stream_sbuf(sb, bits); 4916 sbuf_printf(sb, "\n"); 4917 } 4918 4919 /* 4920 * Print the info field. 4921 */ 4922 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, 4923 &val, NULL) == 0) { 4924 sbuf_cat(sb, path_str); 4925 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val); 4926 sbuf_printf(sb, "\n"); 4927 } 4928 4929 /* 4930 * Print the FRU. 4931 */ 4932 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU, 4933 &val, NULL) == 0) { 4934 sbuf_cat(sb, path_str); 4935 scsi_fru_sbuf(sb, val); 4936 sbuf_printf(sb, "\n"); 4937 } 4938 4939 /* 4940 * Print any command-specific information. 4941 */ 4942 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND, 4943 &val, NULL) == 0) { 4944 sbuf_cat(sb, path_str); 4945 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val); 4946 sbuf_printf(sb, "\n"); 4947 } 4948 4949 /* 4950 * Print out any sense-key-specific information. 4951 */ 4952 if (scsi_get_sks(sense, sense_len, sks) == 0) { 4953 sbuf_cat(sb, path_str); 4954 scsi_sks_sbuf(sb, sense_key, sks); 4955 sbuf_printf(sb, "\n"); 4956 } 4957 4958 /* 4959 * If this is fixed sense, we're done. If we have 4960 * descriptor sense, we might have more information 4961 * available. 4962 */ 4963 if (scsi_sense_type(sense) != SSD_TYPE_DESC) 4964 break; 4965 4966 desc_sense = (struct scsi_sense_data_desc *)sense; 4967 4968 print_info.sb = sb; 4969 print_info.path_str = path_str; 4970 print_info.cdb = cdb; 4971 print_info.cdb_len = cdb_len; 4972 print_info.inq_data = inq_data; 4973 4974 /* 4975 * Print any sense descriptors that we have not already printed. 4976 */ 4977 scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func, 4978 &print_info); 4979 break; 4980 } 4981 case -1: 4982 /* 4983 * scsi_extract_sense_len() sets values to -1 if the 4984 * show_errors flag is set and they aren't present in the 4985 * sense data. This means that sense_len is 0. 4986 */ 4987 sbuf_printf(sb, "No sense data present\n"); 4988 break; 4989 default: { 4990 sbuf_printf(sb, "Error code 0x%x", error_code); 4991 if (sense->error_code & SSD_ERRCODE_VALID) { 4992 struct scsi_sense_data_fixed *fixed_sense; 4993 4994 fixed_sense = (struct scsi_sense_data_fixed *)sense; 4995 4996 if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){ 4997 uint32_t info; 4998 4999 info = scsi_4btoul(fixed_sense->info); 5000 5001 sbuf_printf(sb, " at block no. %d (decimal)", 5002 info); 5003 } 5004 } 5005 sbuf_printf(sb, "\n"); 5006 break; 5007 } 5008 } 5009 } 5010 5011 /* 5012 * scsi_sense_sbuf() returns 0 for success and -1 for failure. 5013 */ 5014 #ifdef _KERNEL 5015 int 5016 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb, 5017 scsi_sense_string_flags flags) 5018 #else /* !_KERNEL */ 5019 int 5020 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio, 5021 struct sbuf *sb, scsi_sense_string_flags flags) 5022 #endif /* _KERNEL/!_KERNEL */ 5023 { 5024 struct scsi_sense_data *sense; 5025 struct scsi_inquiry_data *inq_data; 5026 #ifdef _KERNEL 5027 struct ccb_getdev *cgd; 5028 #endif /* _KERNEL */ 5029 char path_str[64]; 5030 5031 #ifndef _KERNEL 5032 if (device == NULL) 5033 return(-1); 5034 #endif /* !_KERNEL */ 5035 if ((csio == NULL) || (sb == NULL)) 5036 return(-1); 5037 5038 /* 5039 * If the CDB is a physical address, we can't deal with it.. 5040 */ 5041 if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0) 5042 flags &= ~SSS_FLAG_PRINT_COMMAND; 5043 5044 #ifdef _KERNEL 5045 xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str)); 5046 #else /* !_KERNEL */ 5047 cam_path_string(device, path_str, sizeof(path_str)); 5048 #endif /* _KERNEL/!_KERNEL */ 5049 5050 #ifdef _KERNEL 5051 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 5052 return(-1); 5053 /* 5054 * Get the device information. 5055 */ 5056 xpt_setup_ccb(&cgd->ccb_h, 5057 csio->ccb_h.path, 5058 CAM_PRIORITY_NORMAL); 5059 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 5060 xpt_action((union ccb *)cgd); 5061 5062 /* 5063 * If the device is unconfigured, just pretend that it is a hard 5064 * drive. scsi_op_desc() needs this. 5065 */ 5066 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 5067 cgd->inq_data.device = T_DIRECT; 5068 5069 inq_data = &cgd->inq_data; 5070 5071 #else /* !_KERNEL */ 5072 5073 inq_data = &device->inq_data; 5074 5075 #endif /* _KERNEL/!_KERNEL */ 5076 5077 sense = NULL; 5078 5079 if (flags & SSS_FLAG_PRINT_COMMAND) { 5080 sbuf_cat(sb, path_str); 5081 5082 #ifdef _KERNEL 5083 scsi_command_string(csio, sb); 5084 #else /* !_KERNEL */ 5085 scsi_command_string(device, csio, sb); 5086 #endif /* _KERNEL/!_KERNEL */ 5087 sbuf_printf(sb, "\n"); 5088 } 5089 5090 /* 5091 * If the sense data is a physical pointer, forget it. 5092 */ 5093 if (csio->ccb_h.flags & CAM_SENSE_PTR) { 5094 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5095 #ifdef _KERNEL 5096 xpt_free_ccb((union ccb*)cgd); 5097 #endif /* _KERNEL/!_KERNEL */ 5098 return(-1); 5099 } else { 5100 /* 5101 * bcopy the pointer to avoid unaligned access 5102 * errors on finicky architectures. We don't 5103 * ensure that the sense data is pointer aligned. 5104 */ 5105 bcopy((struct scsi_sense_data **)&csio->sense_data, 5106 &sense, sizeof(struct scsi_sense_data *)); 5107 } 5108 } else { 5109 /* 5110 * If the physical sense flag is set, but the sense pointer 5111 * is not also set, we assume that the user is an idiot and 5112 * return. (Well, okay, it could be that somehow, the 5113 * entire csio is physical, but we would have probably core 5114 * dumped on one of the bogus pointer deferences above 5115 * already.) 5116 */ 5117 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5118 #ifdef _KERNEL 5119 xpt_free_ccb((union ccb*)cgd); 5120 #endif /* _KERNEL/!_KERNEL */ 5121 return(-1); 5122 } else 5123 sense = &csio->sense_data; 5124 } 5125 5126 scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb, 5127 path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len); 5128 5129 #ifdef _KERNEL 5130 xpt_free_ccb((union ccb*)cgd); 5131 #endif /* _KERNEL/!_KERNEL */ 5132 return(0); 5133 } 5134 5135 #ifdef _KERNEL 5136 char * 5137 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len) 5138 #else /* !_KERNEL */ 5139 char * 5140 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio, 5141 char *str, int str_len) 5142 #endif /* _KERNEL/!_KERNEL */ 5143 { 5144 struct sbuf sb; 5145 5146 sbuf_new(&sb, str, str_len, 0); 5147 5148 #ifdef _KERNEL 5149 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5150 #else /* !_KERNEL */ 5151 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5152 #endif /* _KERNEL/!_KERNEL */ 5153 5154 sbuf_finish(&sb); 5155 5156 return(sbuf_data(&sb)); 5157 } 5158 5159 #ifdef _KERNEL 5160 void 5161 scsi_sense_print(struct ccb_scsiio *csio) 5162 { 5163 struct sbuf sb; 5164 char str[512]; 5165 5166 sbuf_new(&sb, str, sizeof(str), 0); 5167 5168 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5169 5170 sbuf_finish(&sb); 5171 5172 sbuf_putbuf(&sb); 5173 } 5174 5175 #else /* !_KERNEL */ 5176 void 5177 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio, 5178 FILE *ofile) 5179 { 5180 struct sbuf sb; 5181 char str[512]; 5182 5183 if ((device == NULL) || (csio == NULL) || (ofile == NULL)) 5184 return; 5185 5186 sbuf_new(&sb, str, sizeof(str), 0); 5187 5188 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5189 5190 sbuf_finish(&sb); 5191 5192 fprintf(ofile, "%s", sbuf_data(&sb)); 5193 } 5194 5195 #endif /* _KERNEL/!_KERNEL */ 5196 5197 /* 5198 * Extract basic sense information. This is backward-compatible with the 5199 * previous implementation. For new implementations, 5200 * scsi_extract_sense_len() is recommended. 5201 */ 5202 void 5203 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code, 5204 int *sense_key, int *asc, int *ascq) 5205 { 5206 scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code, 5207 sense_key, asc, ascq, /*show_errors*/ 0); 5208 } 5209 5210 /* 5211 * Extract basic sense information from SCSI I/O CCB structure. 5212 */ 5213 int 5214 scsi_extract_sense_ccb(union ccb *ccb, 5215 int *error_code, int *sense_key, int *asc, int *ascq) 5216 { 5217 struct scsi_sense_data *sense_data; 5218 5219 /* Make sure there are some sense data we can access. */ 5220 if (ccb->ccb_h.func_code != XPT_SCSI_IO || 5221 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR || 5222 (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) || 5223 (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 || 5224 (ccb->ccb_h.flags & CAM_SENSE_PHYS)) 5225 return (0); 5226 5227 if (ccb->ccb_h.flags & CAM_SENSE_PTR) 5228 bcopy((struct scsi_sense_data **)&ccb->csio.sense_data, 5229 &sense_data, sizeof(struct scsi_sense_data *)); 5230 else 5231 sense_data = &ccb->csio.sense_data; 5232 scsi_extract_sense_len(sense_data, 5233 ccb->csio.sense_len - ccb->csio.sense_resid, 5234 error_code, sense_key, asc, ascq, 1); 5235 if (*error_code == -1) 5236 return (0); 5237 return (1); 5238 } 5239 5240 /* 5241 * Extract basic sense information. If show_errors is set, sense values 5242 * will be set to -1 if they are not present. 5243 */ 5244 void 5245 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len, 5246 int *error_code, int *sense_key, int *asc, int *ascq, 5247 int show_errors) 5248 { 5249 /* 5250 * If we have no length, we have no sense. 5251 */ 5252 if (sense_len == 0) { 5253 if (show_errors == 0) { 5254 *error_code = 0; 5255 *sense_key = 0; 5256 *asc = 0; 5257 *ascq = 0; 5258 } else { 5259 *error_code = -1; 5260 *sense_key = -1; 5261 *asc = -1; 5262 *ascq = -1; 5263 } 5264 return; 5265 } 5266 5267 *error_code = sense_data->error_code & SSD_ERRCODE; 5268 5269 switch (*error_code) { 5270 case SSD_DESC_CURRENT_ERROR: 5271 case SSD_DESC_DEFERRED_ERROR: { 5272 struct scsi_sense_data_desc *sense; 5273 5274 sense = (struct scsi_sense_data_desc *)sense_data; 5275 5276 if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key)) 5277 *sense_key = sense->sense_key & SSD_KEY; 5278 else 5279 *sense_key = (show_errors) ? -1 : 0; 5280 5281 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code)) 5282 *asc = sense->add_sense_code; 5283 else 5284 *asc = (show_errors) ? -1 : 0; 5285 5286 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual)) 5287 *ascq = sense->add_sense_code_qual; 5288 else 5289 *ascq = (show_errors) ? -1 : 0; 5290 break; 5291 } 5292 case SSD_CURRENT_ERROR: 5293 case SSD_DEFERRED_ERROR: 5294 default: { 5295 struct scsi_sense_data_fixed *sense; 5296 5297 sense = (struct scsi_sense_data_fixed *)sense_data; 5298 5299 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags)) 5300 *sense_key = sense->flags & SSD_KEY; 5301 else 5302 *sense_key = (show_errors) ? -1 : 0; 5303 5304 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code)) 5305 && (SSD_FIXED_IS_FILLED(sense, add_sense_code))) 5306 *asc = sense->add_sense_code; 5307 else 5308 *asc = (show_errors) ? -1 : 0; 5309 5310 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual)) 5311 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual))) 5312 *ascq = sense->add_sense_code_qual; 5313 else 5314 *ascq = (show_errors) ? -1 : 0; 5315 break; 5316 } 5317 } 5318 } 5319 5320 int 5321 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len, 5322 int show_errors) 5323 { 5324 int error_code, sense_key, asc, ascq; 5325 5326 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5327 &sense_key, &asc, &ascq, show_errors); 5328 5329 return (sense_key); 5330 } 5331 5332 int 5333 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len, 5334 int show_errors) 5335 { 5336 int error_code, sense_key, asc, ascq; 5337 5338 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5339 &sense_key, &asc, &ascq, show_errors); 5340 5341 return (asc); 5342 } 5343 5344 int 5345 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len, 5346 int show_errors) 5347 { 5348 int error_code, sense_key, asc, ascq; 5349 5350 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5351 &sense_key, &asc, &ascq, show_errors); 5352 5353 return (ascq); 5354 } 5355 5356 /* 5357 * This function currently requires at least 36 bytes, or 5358 * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this 5359 * function needs more or less data in the future, another length should be 5360 * defined in scsi_all.h to indicate the minimum amount of data necessary 5361 * for this routine to function properly. 5362 */ 5363 void 5364 scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5365 { 5366 u_int8_t type; 5367 char *dtype, *qtype; 5368 5369 type = SID_TYPE(inq_data); 5370 5371 /* 5372 * Figure out basic device type and qualifier. 5373 */ 5374 if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) { 5375 qtype = " (vendor-unique qualifier)"; 5376 } else { 5377 switch (SID_QUAL(inq_data)) { 5378 case SID_QUAL_LU_CONNECTED: 5379 qtype = ""; 5380 break; 5381 5382 case SID_QUAL_LU_OFFLINE: 5383 qtype = " (offline)"; 5384 break; 5385 5386 case SID_QUAL_RSVD: 5387 qtype = " (reserved qualifier)"; 5388 break; 5389 default: 5390 case SID_QUAL_BAD_LU: 5391 qtype = " (LUN not supported)"; 5392 break; 5393 } 5394 } 5395 5396 switch (type) { 5397 case T_DIRECT: 5398 dtype = "Direct Access"; 5399 break; 5400 case T_SEQUENTIAL: 5401 dtype = "Sequential Access"; 5402 break; 5403 case T_PRINTER: 5404 dtype = "Printer"; 5405 break; 5406 case T_PROCESSOR: 5407 dtype = "Processor"; 5408 break; 5409 case T_WORM: 5410 dtype = "WORM"; 5411 break; 5412 case T_CDROM: 5413 dtype = "CD-ROM"; 5414 break; 5415 case T_SCANNER: 5416 dtype = "Scanner"; 5417 break; 5418 case T_OPTICAL: 5419 dtype = "Optical"; 5420 break; 5421 case T_CHANGER: 5422 dtype = "Changer"; 5423 break; 5424 case T_COMM: 5425 dtype = "Communication"; 5426 break; 5427 case T_STORARRAY: 5428 dtype = "Storage Array"; 5429 break; 5430 case T_ENCLOSURE: 5431 dtype = "Enclosure Services"; 5432 break; 5433 case T_RBC: 5434 dtype = "Simplified Direct Access"; 5435 break; 5436 case T_OCRW: 5437 dtype = "Optical Card Read/Write"; 5438 break; 5439 case T_OSD: 5440 dtype = "Object-Based Storage"; 5441 break; 5442 case T_ADC: 5443 dtype = "Automation/Drive Interface"; 5444 break; 5445 case T_ZBC_HM: 5446 dtype = "Host Managed Zoned Block"; 5447 break; 5448 case T_NODEVICE: 5449 dtype = "Uninstalled"; 5450 break; 5451 default: 5452 dtype = "unknown"; 5453 break; 5454 } 5455 5456 scsi_print_inquiry_short_sbuf(sb, inq_data); 5457 5458 sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype); 5459 5460 if (SID_ANSI_REV(inq_data) == SCSI_REV_0) 5461 sbuf_printf(sb, "SCSI "); 5462 else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) { 5463 sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data)); 5464 } else { 5465 sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2); 5466 } 5467 sbuf_printf(sb, "device%s\n", qtype); 5468 } 5469 5470 void 5471 scsi_print_inquiry(struct scsi_inquiry_data *inq_data) 5472 { 5473 struct sbuf sb; 5474 char buffer[120]; 5475 5476 sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN); 5477 scsi_print_inquiry_sbuf(&sb, inq_data); 5478 sbuf_finish(&sb); 5479 sbuf_putbuf(&sb); 5480 } 5481 5482 void 5483 scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5484 { 5485 5486 sbuf_printf(sb, "<"); 5487 cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0); 5488 sbuf_printf(sb, " "); 5489 cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0); 5490 sbuf_printf(sb, " "); 5491 cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0); 5492 sbuf_printf(sb, "> "); 5493 } 5494 5495 void 5496 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data) 5497 { 5498 struct sbuf sb; 5499 char buffer[84]; 5500 5501 sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN); 5502 scsi_print_inquiry_short_sbuf(&sb, inq_data); 5503 sbuf_finish(&sb); 5504 sbuf_putbuf(&sb); 5505 } 5506 5507 /* 5508 * Table of syncrates that don't follow the "divisible by 4" 5509 * rule. This table will be expanded in future SCSI specs. 5510 */ 5511 static struct { 5512 u_int period_factor; 5513 u_int period; /* in 100ths of ns */ 5514 } scsi_syncrates[] = { 5515 { 0x08, 625 }, /* FAST-160 */ 5516 { 0x09, 1250 }, /* FAST-80 */ 5517 { 0x0a, 2500 }, /* FAST-40 40MHz */ 5518 { 0x0b, 3030 }, /* FAST-40 33MHz */ 5519 { 0x0c, 5000 } /* FAST-20 */ 5520 }; 5521 5522 /* 5523 * Return the frequency in kHz corresponding to the given 5524 * sync period factor. 5525 */ 5526 u_int 5527 scsi_calc_syncsrate(u_int period_factor) 5528 { 5529 u_int i; 5530 u_int num_syncrates; 5531 5532 /* 5533 * It's a bug if period is zero, but if it is anyway, don't 5534 * die with a divide fault- instead return something which 5535 * 'approximates' async 5536 */ 5537 if (period_factor == 0) { 5538 return (3300); 5539 } 5540 5541 num_syncrates = nitems(scsi_syncrates); 5542 /* See if the period is in the "exception" table */ 5543 for (i = 0; i < num_syncrates; i++) { 5544 if (period_factor == scsi_syncrates[i].period_factor) { 5545 /* Period in kHz */ 5546 return (100000000 / scsi_syncrates[i].period); 5547 } 5548 } 5549 5550 /* 5551 * Wasn't in the table, so use the standard 5552 * 4 times conversion. 5553 */ 5554 return (10000000 / (period_factor * 4 * 10)); 5555 } 5556 5557 /* 5558 * Return the SCSI sync parameter that corresponds to 5559 * the passed in period in 10ths of ns. 5560 */ 5561 u_int 5562 scsi_calc_syncparam(u_int period) 5563 { 5564 u_int i; 5565 u_int num_syncrates; 5566 5567 if (period == 0) 5568 return (~0); /* Async */ 5569 5570 /* Adjust for exception table being in 100ths. */ 5571 period *= 10; 5572 num_syncrates = nitems(scsi_syncrates); 5573 /* See if the period is in the "exception" table */ 5574 for (i = 0; i < num_syncrates; i++) { 5575 if (period <= scsi_syncrates[i].period) { 5576 /* Period in 100ths of ns */ 5577 return (scsi_syncrates[i].period_factor); 5578 } 5579 } 5580 5581 /* 5582 * Wasn't in the table, so use the standard 5583 * 1/4 period in ns conversion. 5584 */ 5585 return (period/400); 5586 } 5587 5588 int 5589 scsi_devid_is_naa_ieee_reg(uint8_t *bufp) 5590 { 5591 struct scsi_vpd_id_descriptor *descr; 5592 struct scsi_vpd_id_naa_basic *naa; 5593 int n; 5594 5595 descr = (struct scsi_vpd_id_descriptor *)bufp; 5596 naa = (struct scsi_vpd_id_naa_basic *)descr->identifier; 5597 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5598 return 0; 5599 if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg)) 5600 return 0; 5601 n = naa->naa >> SVPD_ID_NAA_NAA_SHIFT; 5602 if (n != SVPD_ID_NAA_LOCAL_REG && n != SVPD_ID_NAA_IEEE_REG) 5603 return 0; 5604 return 1; 5605 } 5606 5607 int 5608 scsi_devid_is_sas_target(uint8_t *bufp) 5609 { 5610 struct scsi_vpd_id_descriptor *descr; 5611 5612 descr = (struct scsi_vpd_id_descriptor *)bufp; 5613 if (!scsi_devid_is_naa_ieee_reg(bufp)) 5614 return 0; 5615 if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */ 5616 return 0; 5617 if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS) 5618 return 0; 5619 return 1; 5620 } 5621 5622 int 5623 scsi_devid_is_lun_eui64(uint8_t *bufp) 5624 { 5625 struct scsi_vpd_id_descriptor *descr; 5626 5627 descr = (struct scsi_vpd_id_descriptor *)bufp; 5628 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5629 return 0; 5630 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64) 5631 return 0; 5632 return 1; 5633 } 5634 5635 int 5636 scsi_devid_is_lun_naa(uint8_t *bufp) 5637 { 5638 struct scsi_vpd_id_descriptor *descr; 5639 5640 descr = (struct scsi_vpd_id_descriptor *)bufp; 5641 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5642 return 0; 5643 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5644 return 0; 5645 return 1; 5646 } 5647 5648 int 5649 scsi_devid_is_lun_t10(uint8_t *bufp) 5650 { 5651 struct scsi_vpd_id_descriptor *descr; 5652 5653 descr = (struct scsi_vpd_id_descriptor *)bufp; 5654 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5655 return 0; 5656 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10) 5657 return 0; 5658 return 1; 5659 } 5660 5661 int 5662 scsi_devid_is_lun_name(uint8_t *bufp) 5663 { 5664 struct scsi_vpd_id_descriptor *descr; 5665 5666 descr = (struct scsi_vpd_id_descriptor *)bufp; 5667 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5668 return 0; 5669 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME) 5670 return 0; 5671 return 1; 5672 } 5673 5674 int 5675 scsi_devid_is_lun_md5(uint8_t *bufp) 5676 { 5677 struct scsi_vpd_id_descriptor *descr; 5678 5679 descr = (struct scsi_vpd_id_descriptor *)bufp; 5680 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5681 return 0; 5682 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID) 5683 return 0; 5684 return 1; 5685 } 5686 5687 int 5688 scsi_devid_is_lun_uuid(uint8_t *bufp) 5689 { 5690 struct scsi_vpd_id_descriptor *descr; 5691 5692 descr = (struct scsi_vpd_id_descriptor *)bufp; 5693 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5694 return 0; 5695 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID) 5696 return 0; 5697 return 1; 5698 } 5699 5700 int 5701 scsi_devid_is_port_naa(uint8_t *bufp) 5702 { 5703 struct scsi_vpd_id_descriptor *descr; 5704 5705 descr = (struct scsi_vpd_id_descriptor *)bufp; 5706 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT) 5707 return 0; 5708 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5709 return 0; 5710 return 1; 5711 } 5712 5713 struct scsi_vpd_id_descriptor * 5714 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len, 5715 scsi_devid_checkfn_t ck_fn) 5716 { 5717 uint8_t *desc_buf_end; 5718 5719 desc_buf_end = (uint8_t *)desc + len; 5720 5721 for (; desc->identifier <= desc_buf_end && 5722 desc->identifier + desc->length <= desc_buf_end; 5723 desc = (struct scsi_vpd_id_descriptor *)(desc->identifier 5724 + desc->length)) { 5725 if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0) 5726 return (desc); 5727 } 5728 return (NULL); 5729 } 5730 5731 struct scsi_vpd_id_descriptor * 5732 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len, 5733 scsi_devid_checkfn_t ck_fn) 5734 { 5735 uint32_t len; 5736 5737 if (page_len < sizeof(*id)) 5738 return (NULL); 5739 len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id)); 5740 return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *) 5741 id->desc_list, len, ck_fn)); 5742 } 5743 5744 int 5745 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr, 5746 uint32_t valid_len) 5747 { 5748 switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) { 5749 case SCSI_PROTO_FC: { 5750 struct scsi_transportid_fcp *fcp; 5751 uint64_t n_port_name; 5752 5753 fcp = (struct scsi_transportid_fcp *)hdr; 5754 5755 n_port_name = scsi_8btou64(fcp->n_port_name); 5756 5757 sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name); 5758 break; 5759 } 5760 case SCSI_PROTO_SPI: { 5761 struct scsi_transportid_spi *spi; 5762 5763 spi = (struct scsi_transportid_spi *)hdr; 5764 5765 sbuf_printf(sb, "SPI address: %u,%u", 5766 scsi_2btoul(spi->scsi_addr), 5767 scsi_2btoul(spi->rel_trgt_port_id)); 5768 break; 5769 } 5770 case SCSI_PROTO_SSA: 5771 /* 5772 * XXX KDM there is no transport ID defined in SPC-4 for 5773 * SSA. 5774 */ 5775 break; 5776 case SCSI_PROTO_1394: { 5777 struct scsi_transportid_1394 *sbp; 5778 uint64_t eui64; 5779 5780 sbp = (struct scsi_transportid_1394 *)hdr; 5781 5782 eui64 = scsi_8btou64(sbp->eui64); 5783 sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64); 5784 break; 5785 } 5786 case SCSI_PROTO_RDMA: { 5787 struct scsi_transportid_rdma *rdma; 5788 unsigned int i; 5789 5790 rdma = (struct scsi_transportid_rdma *)hdr; 5791 5792 sbuf_printf(sb, "RDMA address: 0x"); 5793 for (i = 0; i < sizeof(rdma->initiator_port_id); i++) 5794 sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]); 5795 break; 5796 } 5797 case SCSI_PROTO_ISCSI: { 5798 uint32_t add_len, i; 5799 uint8_t *iscsi_name = NULL; 5800 int nul_found = 0; 5801 5802 sbuf_printf(sb, "iSCSI address: "); 5803 if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5804 SCSI_TRN_ISCSI_FORMAT_DEVICE) { 5805 struct scsi_transportid_iscsi_device *dev; 5806 5807 dev = (struct scsi_transportid_iscsi_device *)hdr; 5808 5809 /* 5810 * Verify how much additional data we really have. 5811 */ 5812 add_len = scsi_2btoul(dev->additional_length); 5813 add_len = MIN(add_len, valid_len - 5814 __offsetof(struct scsi_transportid_iscsi_device, 5815 iscsi_name)); 5816 iscsi_name = &dev->iscsi_name[0]; 5817 5818 } else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5819 SCSI_TRN_ISCSI_FORMAT_PORT) { 5820 struct scsi_transportid_iscsi_port *port; 5821 5822 port = (struct scsi_transportid_iscsi_port *)hdr; 5823 5824 add_len = scsi_2btoul(port->additional_length); 5825 add_len = MIN(add_len, valid_len - 5826 __offsetof(struct scsi_transportid_iscsi_port, 5827 iscsi_name)); 5828 iscsi_name = &port->iscsi_name[0]; 5829 } else { 5830 sbuf_printf(sb, "unknown format %x", 5831 (hdr->format_protocol & 5832 SCSI_TRN_FORMAT_MASK) >> 5833 SCSI_TRN_FORMAT_SHIFT); 5834 break; 5835 } 5836 if (add_len == 0) { 5837 sbuf_printf(sb, "not enough data"); 5838 break; 5839 } 5840 /* 5841 * This is supposed to be a NUL-terminated ASCII 5842 * string, but you never know. So we're going to 5843 * check. We need to do this because there is no 5844 * sbuf equivalent of strncat(). 5845 */ 5846 for (i = 0; i < add_len; i++) { 5847 if (iscsi_name[i] == '\0') { 5848 nul_found = 1; 5849 break; 5850 } 5851 } 5852 /* 5853 * If there is a NUL in the name, we can just use 5854 * sbuf_cat(). Otherwise we need to use sbuf_bcat(). 5855 */ 5856 if (nul_found != 0) 5857 sbuf_cat(sb, iscsi_name); 5858 else 5859 sbuf_bcat(sb, iscsi_name, add_len); 5860 break; 5861 } 5862 case SCSI_PROTO_SAS: { 5863 struct scsi_transportid_sas *sas; 5864 uint64_t sas_addr; 5865 5866 sas = (struct scsi_transportid_sas *)hdr; 5867 5868 sas_addr = scsi_8btou64(sas->sas_address); 5869 sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr); 5870 break; 5871 } 5872 case SCSI_PROTO_ADITP: 5873 case SCSI_PROTO_ATA: 5874 case SCSI_PROTO_UAS: 5875 /* 5876 * No Transport ID format for ADI, ATA or USB is defined in 5877 * SPC-4. 5878 */ 5879 sbuf_printf(sb, "No known Transport ID format for protocol " 5880 "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5881 break; 5882 case SCSI_PROTO_SOP: { 5883 struct scsi_transportid_sop *sop; 5884 struct scsi_sop_routing_id_norm *rid; 5885 5886 sop = (struct scsi_transportid_sop *)hdr; 5887 rid = (struct scsi_sop_routing_id_norm *)sop->routing_id; 5888 5889 /* 5890 * Note that there is no alternate format specified in SPC-4 5891 * for the PCIe routing ID, so we don't really have a way 5892 * to know whether the second byte of the routing ID is 5893 * a device and function or just a function. So we just 5894 * assume bus,device,function. 5895 */ 5896 sbuf_printf(sb, "SOP Routing ID: %u,%u,%u", 5897 rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT, 5898 rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX); 5899 break; 5900 } 5901 case SCSI_PROTO_NONE: 5902 default: 5903 sbuf_printf(sb, "Unknown protocol %#x", 5904 hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5905 break; 5906 } 5907 5908 return (0); 5909 } 5910 5911 struct scsi_nv scsi_proto_map[] = { 5912 { "fcp", SCSI_PROTO_FC }, 5913 { "spi", SCSI_PROTO_SPI }, 5914 { "ssa", SCSI_PROTO_SSA }, 5915 { "sbp", SCSI_PROTO_1394 }, 5916 { "1394", SCSI_PROTO_1394 }, 5917 { "srp", SCSI_PROTO_RDMA }, 5918 { "rdma", SCSI_PROTO_RDMA }, 5919 { "iscsi", SCSI_PROTO_ISCSI }, 5920 { "iqn", SCSI_PROTO_ISCSI }, 5921 { "sas", SCSI_PROTO_SAS }, 5922 { "aditp", SCSI_PROTO_ADITP }, 5923 { "ata", SCSI_PROTO_ATA }, 5924 { "uas", SCSI_PROTO_UAS }, 5925 { "usb", SCSI_PROTO_UAS }, 5926 { "sop", SCSI_PROTO_SOP } 5927 }; 5928 5929 const char * 5930 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value) 5931 { 5932 int i; 5933 5934 for (i = 0; i < num_table_entries; i++) { 5935 if (table[i].value == value) 5936 return (table[i].name); 5937 } 5938 5939 return (NULL); 5940 } 5941 5942 /* 5943 * Given a name/value table, find a value matching the given name. 5944 * Return values: 5945 * SCSI_NV_FOUND - match found 5946 * SCSI_NV_AMBIGUOUS - more than one match, none of them exact 5947 * SCSI_NV_NOT_FOUND - no match found 5948 */ 5949 scsi_nv_status 5950 scsi_get_nv(struct scsi_nv *table, int num_table_entries, 5951 char *name, int *table_entry, scsi_nv_flags flags) 5952 { 5953 int i, num_matches = 0; 5954 5955 for (i = 0; i < num_table_entries; i++) { 5956 size_t table_len, name_len; 5957 5958 table_len = strlen(table[i].name); 5959 name_len = strlen(name); 5960 5961 if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0) 5962 && (strncasecmp(table[i].name, name, name_len) == 0)) 5963 || (((flags & SCSI_NV_FLAG_IG_CASE) == 0) 5964 && (strncmp(table[i].name, name, name_len) == 0))) { 5965 *table_entry = i; 5966 5967 /* 5968 * Check for an exact match. If we have the same 5969 * number of characters in the table as the argument, 5970 * and we already know they're the same, we have 5971 * an exact match. 5972 */ 5973 if (table_len == name_len) 5974 return (SCSI_NV_FOUND); 5975 5976 /* 5977 * Otherwise, bump up the number of matches. We'll 5978 * see later how many we have. 5979 */ 5980 num_matches++; 5981 } 5982 } 5983 5984 if (num_matches > 1) 5985 return (SCSI_NV_AMBIGUOUS); 5986 else if (num_matches == 1) 5987 return (SCSI_NV_FOUND); 5988 else 5989 return (SCSI_NV_NOT_FOUND); 5990 } 5991 5992 /* 5993 * Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are 5994 * all 64-bit numbers, the code is similar. 5995 */ 5996 int 5997 scsi_parse_transportid_64bit(int proto_id, char *id_str, 5998 struct scsi_transportid_header **hdr, 5999 unsigned int *alloc_len, 6000 #ifdef _KERNEL 6001 struct malloc_type *type, int flags, 6002 #endif 6003 char *error_str, int error_str_len) 6004 { 6005 uint64_t value; 6006 char *endptr; 6007 int retval; 6008 size_t alloc_size; 6009 6010 retval = 0; 6011 6012 value = strtouq(id_str, &endptr, 0); 6013 if (*endptr != '\0') { 6014 if (error_str != NULL) { 6015 snprintf(error_str, error_str_len, "%s: error " 6016 "parsing ID %s, 64-bit number required", 6017 __func__, id_str); 6018 } 6019 retval = 1; 6020 goto bailout; 6021 } 6022 6023 switch (proto_id) { 6024 case SCSI_PROTO_FC: 6025 alloc_size = sizeof(struct scsi_transportid_fcp); 6026 break; 6027 case SCSI_PROTO_1394: 6028 alloc_size = sizeof(struct scsi_transportid_1394); 6029 break; 6030 case SCSI_PROTO_SAS: 6031 alloc_size = sizeof(struct scsi_transportid_sas); 6032 break; 6033 default: 6034 if (error_str != NULL) { 6035 snprintf(error_str, error_str_len, "%s: unsupported " 6036 "protocol %d", __func__, proto_id); 6037 } 6038 retval = 1; 6039 goto bailout; 6040 break; /* NOTREACHED */ 6041 } 6042 #ifdef _KERNEL 6043 *hdr = malloc(alloc_size, type, flags); 6044 #else /* _KERNEL */ 6045 *hdr = malloc(alloc_size); 6046 #endif /*_KERNEL */ 6047 if (*hdr == NULL) { 6048 if (error_str != NULL) { 6049 snprintf(error_str, error_str_len, "%s: unable to " 6050 "allocate %zu bytes", __func__, alloc_size); 6051 } 6052 retval = 1; 6053 goto bailout; 6054 } 6055 6056 *alloc_len = alloc_size; 6057 6058 bzero(*hdr, alloc_size); 6059 6060 switch (proto_id) { 6061 case SCSI_PROTO_FC: { 6062 struct scsi_transportid_fcp *fcp; 6063 6064 fcp = (struct scsi_transportid_fcp *)(*hdr); 6065 fcp->format_protocol = SCSI_PROTO_FC | 6066 SCSI_TRN_FCP_FORMAT_DEFAULT; 6067 scsi_u64to8b(value, fcp->n_port_name); 6068 break; 6069 } 6070 case SCSI_PROTO_1394: { 6071 struct scsi_transportid_1394 *sbp; 6072 6073 sbp = (struct scsi_transportid_1394 *)(*hdr); 6074 sbp->format_protocol = SCSI_PROTO_1394 | 6075 SCSI_TRN_1394_FORMAT_DEFAULT; 6076 scsi_u64to8b(value, sbp->eui64); 6077 break; 6078 } 6079 case SCSI_PROTO_SAS: { 6080 struct scsi_transportid_sas *sas; 6081 6082 sas = (struct scsi_transportid_sas *)(*hdr); 6083 sas->format_protocol = SCSI_PROTO_SAS | 6084 SCSI_TRN_SAS_FORMAT_DEFAULT; 6085 scsi_u64to8b(value, sas->sas_address); 6086 break; 6087 } 6088 default: 6089 break; 6090 } 6091 bailout: 6092 return (retval); 6093 } 6094 6095 /* 6096 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port 6097 */ 6098 int 6099 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr, 6100 unsigned int *alloc_len, 6101 #ifdef _KERNEL 6102 struct malloc_type *type, int flags, 6103 #endif 6104 char *error_str, int error_str_len) 6105 { 6106 unsigned long scsi_addr, target_port; 6107 struct scsi_transportid_spi *spi; 6108 char *tmpstr, *endptr; 6109 int retval; 6110 6111 retval = 0; 6112 6113 tmpstr = strsep(&id_str, ","); 6114 if (tmpstr == NULL) { 6115 if (error_str != NULL) { 6116 snprintf(error_str, error_str_len, 6117 "%s: no ID found", __func__); 6118 } 6119 retval = 1; 6120 goto bailout; 6121 } 6122 scsi_addr = strtoul(tmpstr, &endptr, 0); 6123 if (*endptr != '\0') { 6124 if (error_str != NULL) { 6125 snprintf(error_str, error_str_len, "%s: error " 6126 "parsing SCSI ID %s, number required", 6127 __func__, tmpstr); 6128 } 6129 retval = 1; 6130 goto bailout; 6131 } 6132 6133 if (id_str == NULL) { 6134 if (error_str != NULL) { 6135 snprintf(error_str, error_str_len, "%s: no relative " 6136 "target port found", __func__); 6137 } 6138 retval = 1; 6139 goto bailout; 6140 } 6141 6142 target_port = strtoul(id_str, &endptr, 0); 6143 if (*endptr != '\0') { 6144 if (error_str != NULL) { 6145 snprintf(error_str, error_str_len, "%s: error " 6146 "parsing relative target port %s, number " 6147 "required", __func__, id_str); 6148 } 6149 retval = 1; 6150 goto bailout; 6151 } 6152 #ifdef _KERNEL 6153 spi = malloc(sizeof(*spi), type, flags); 6154 #else 6155 spi = malloc(sizeof(*spi)); 6156 #endif 6157 if (spi == NULL) { 6158 if (error_str != NULL) { 6159 snprintf(error_str, error_str_len, "%s: unable to " 6160 "allocate %zu bytes", __func__, 6161 sizeof(*spi)); 6162 } 6163 retval = 1; 6164 goto bailout; 6165 } 6166 *alloc_len = sizeof(*spi); 6167 bzero(spi, sizeof(*spi)); 6168 6169 spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT; 6170 scsi_ulto2b(scsi_addr, spi->scsi_addr); 6171 scsi_ulto2b(target_port, spi->rel_trgt_port_id); 6172 6173 *hdr = (struct scsi_transportid_header *)spi; 6174 bailout: 6175 return (retval); 6176 } 6177 6178 /* 6179 * Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits, 6180 * optionally prefixed by "0x" or "0X". 6181 */ 6182 int 6183 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr, 6184 unsigned int *alloc_len, 6185 #ifdef _KERNEL 6186 struct malloc_type *type, int flags, 6187 #endif 6188 char *error_str, int error_str_len) 6189 { 6190 struct scsi_transportid_rdma *rdma; 6191 int retval; 6192 size_t id_len, rdma_id_size; 6193 uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN]; 6194 char *tmpstr; 6195 unsigned int i, j; 6196 6197 retval = 0; 6198 id_len = strlen(id_str); 6199 rdma_id_size = SCSI_TRN_RDMA_PORT_LEN; 6200 6201 /* 6202 * Check the size. It needs to be either 32 or 34 characters long. 6203 */ 6204 if ((id_len != (rdma_id_size * 2)) 6205 && (id_len != ((rdma_id_size * 2) + 2))) { 6206 if (error_str != NULL) { 6207 snprintf(error_str, error_str_len, "%s: RDMA ID " 6208 "must be 32 hex digits (0x prefix " 6209 "optional), only %zu seen", __func__, id_len); 6210 } 6211 retval = 1; 6212 goto bailout; 6213 } 6214 6215 tmpstr = id_str; 6216 /* 6217 * If the user gave us 34 characters, the string needs to start 6218 * with '0x'. 6219 */ 6220 if (id_len == ((rdma_id_size * 2) + 2)) { 6221 if ((tmpstr[0] == '0') 6222 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) { 6223 tmpstr += 2; 6224 } else { 6225 if (error_str != NULL) { 6226 snprintf(error_str, error_str_len, "%s: RDMA " 6227 "ID prefix, if used, must be \"0x\", " 6228 "got %s", __func__, tmpstr); 6229 } 6230 retval = 1; 6231 goto bailout; 6232 } 6233 } 6234 bzero(rdma_id, sizeof(rdma_id)); 6235 6236 /* 6237 * Convert ASCII hex into binary bytes. There is no standard 6238 * 128-bit integer type, and so no strtou128t() routine to convert 6239 * from hex into a large integer. In the end, we're not going to 6240 * an integer, but rather to a byte array, so that and the fact 6241 * that we require the user to give us 32 hex digits simplifies the 6242 * logic. 6243 */ 6244 for (i = 0; i < (rdma_id_size * 2); i++) { 6245 int cur_shift; 6246 unsigned char c; 6247 6248 /* Increment the byte array one for every 2 hex digits */ 6249 j = i >> 1; 6250 6251 /* 6252 * The first digit in every pair is the most significant 6253 * 4 bits. The second is the least significant 4 bits. 6254 */ 6255 if ((i % 2) == 0) 6256 cur_shift = 4; 6257 else 6258 cur_shift = 0; 6259 6260 c = tmpstr[i]; 6261 /* Convert the ASCII hex character into a number */ 6262 if (isdigit(c)) 6263 c -= '0'; 6264 else if (isalpha(c)) 6265 c -= isupper(c) ? 'A' - 10 : 'a' - 10; 6266 else { 6267 if (error_str != NULL) { 6268 snprintf(error_str, error_str_len, "%s: " 6269 "RDMA ID must be hex digits, got " 6270 "invalid character %c", __func__, 6271 tmpstr[i]); 6272 } 6273 retval = 1; 6274 goto bailout; 6275 } 6276 /* 6277 * The converted number can't be less than 0; the type is 6278 * unsigned, and the subtraction logic will not give us 6279 * a negative number. So we only need to make sure that 6280 * the value is not greater than 0xf. (i.e. make sure the 6281 * user didn't give us a value like "0x12jklmno"). 6282 */ 6283 if (c > 0xf) { 6284 if (error_str != NULL) { 6285 snprintf(error_str, error_str_len, "%s: " 6286 "RDMA ID must be hex digits, got " 6287 "invalid character %c", __func__, 6288 tmpstr[i]); 6289 } 6290 retval = 1; 6291 goto bailout; 6292 } 6293 6294 rdma_id[j] |= c << cur_shift; 6295 } 6296 6297 #ifdef _KERNEL 6298 rdma = malloc(sizeof(*rdma), type, flags); 6299 #else 6300 rdma = malloc(sizeof(*rdma)); 6301 #endif 6302 if (rdma == NULL) { 6303 if (error_str != NULL) { 6304 snprintf(error_str, error_str_len, "%s: unable to " 6305 "allocate %zu bytes", __func__, 6306 sizeof(*rdma)); 6307 } 6308 retval = 1; 6309 goto bailout; 6310 } 6311 *alloc_len = sizeof(*rdma); 6312 bzero(rdma, *alloc_len); 6313 6314 rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT; 6315 bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN); 6316 6317 *hdr = (struct scsi_transportid_header *)rdma; 6318 6319 bailout: 6320 return (retval); 6321 } 6322 6323 /* 6324 * Parse an iSCSI name. The format is either just the name: 6325 * 6326 * iqn.2012-06.com.example:target0 6327 * or the name, separator and initiator session ID: 6328 * 6329 * iqn.2012-06.com.example:target0,i,0x123 6330 * 6331 * The separator format is exact. 6332 */ 6333 int 6334 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr, 6335 unsigned int *alloc_len, 6336 #ifdef _KERNEL 6337 struct malloc_type *type, int flags, 6338 #endif 6339 char *error_str, int error_str_len) 6340 { 6341 size_t id_len, sep_len, id_size, name_len; 6342 int retval; 6343 unsigned int i, sep_pos, sep_found; 6344 const char *sep_template = ",i,0x"; 6345 const char *iqn_prefix = "iqn."; 6346 struct scsi_transportid_iscsi_device *iscsi; 6347 6348 retval = 0; 6349 sep_found = 0; 6350 6351 id_len = strlen(id_str); 6352 sep_len = strlen(sep_template); 6353 6354 /* 6355 * The separator is defined as exactly ',i,0x'. Any other commas, 6356 * or any other form, is an error. So look for a comma, and once 6357 * we find that, the next few characters must match the separator 6358 * exactly. Once we get through the separator, there should be at 6359 * least one character. 6360 */ 6361 for (i = 0, sep_pos = 0; i < id_len; i++) { 6362 if (sep_pos == 0) { 6363 if (id_str[i] == sep_template[sep_pos]) 6364 sep_pos++; 6365 6366 continue; 6367 } 6368 if (sep_pos < sep_len) { 6369 if (id_str[i] == sep_template[sep_pos]) { 6370 sep_pos++; 6371 continue; 6372 } 6373 if (error_str != NULL) { 6374 snprintf(error_str, error_str_len, "%s: " 6375 "invalid separator in iSCSI name " 6376 "\"%s\"", 6377 __func__, id_str); 6378 } 6379 retval = 1; 6380 goto bailout; 6381 } else { 6382 sep_found = 1; 6383 break; 6384 } 6385 } 6386 6387 /* 6388 * Check to see whether we have a separator but no digits after it. 6389 */ 6390 if ((sep_pos != 0) 6391 && (sep_found == 0)) { 6392 if (error_str != NULL) { 6393 snprintf(error_str, error_str_len, "%s: no digits " 6394 "found after separator in iSCSI name \"%s\"", 6395 __func__, id_str); 6396 } 6397 retval = 1; 6398 goto bailout; 6399 } 6400 6401 /* 6402 * The incoming ID string has the "iqn." prefix stripped off. We 6403 * need enough space for the base structure (the structures are the 6404 * same for the two iSCSI forms), the prefix, the ID string and a 6405 * terminating NUL. 6406 */ 6407 id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1; 6408 6409 #ifdef _KERNEL 6410 iscsi = malloc(id_size, type, flags); 6411 #else 6412 iscsi = malloc(id_size); 6413 #endif 6414 if (iscsi == NULL) { 6415 if (error_str != NULL) { 6416 snprintf(error_str, error_str_len, "%s: unable to " 6417 "allocate %zu bytes", __func__, id_size); 6418 } 6419 retval = 1; 6420 goto bailout; 6421 } 6422 *alloc_len = id_size; 6423 bzero(iscsi, id_size); 6424 6425 iscsi->format_protocol = SCSI_PROTO_ISCSI; 6426 if (sep_found == 0) 6427 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE; 6428 else 6429 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT; 6430 name_len = id_size - sizeof(*iscsi); 6431 scsi_ulto2b(name_len, iscsi->additional_length); 6432 snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str); 6433 6434 *hdr = (struct scsi_transportid_header *)iscsi; 6435 6436 bailout: 6437 return (retval); 6438 } 6439 6440 /* 6441 * Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be 6442 * of the form 'bus,device,function' or 'bus,function'. 6443 */ 6444 int 6445 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr, 6446 unsigned int *alloc_len, 6447 #ifdef _KERNEL 6448 struct malloc_type *type, int flags, 6449 #endif 6450 char *error_str, int error_str_len) 6451 { 6452 struct scsi_transportid_sop *sop; 6453 unsigned long bus, device, function; 6454 char *tmpstr, *endptr; 6455 int retval, device_spec; 6456 6457 retval = 0; 6458 device_spec = 0; 6459 device = 0; 6460 6461 tmpstr = strsep(&id_str, ","); 6462 if ((tmpstr == NULL) 6463 || (*tmpstr == '\0')) { 6464 if (error_str != NULL) { 6465 snprintf(error_str, error_str_len, "%s: no ID found", 6466 __func__); 6467 } 6468 retval = 1; 6469 goto bailout; 6470 } 6471 bus = strtoul(tmpstr, &endptr, 0); 6472 if (*endptr != '\0') { 6473 if (error_str != NULL) { 6474 snprintf(error_str, error_str_len, "%s: error " 6475 "parsing PCIe bus %s, number required", 6476 __func__, tmpstr); 6477 } 6478 retval = 1; 6479 goto bailout; 6480 } 6481 if ((id_str == NULL) 6482 || (*id_str == '\0')) { 6483 if (error_str != NULL) { 6484 snprintf(error_str, error_str_len, "%s: no PCIe " 6485 "device or function found", __func__); 6486 } 6487 retval = 1; 6488 goto bailout; 6489 } 6490 tmpstr = strsep(&id_str, ","); 6491 function = strtoul(tmpstr, &endptr, 0); 6492 if (*endptr != '\0') { 6493 if (error_str != NULL) { 6494 snprintf(error_str, error_str_len, "%s: error " 6495 "parsing PCIe device/function %s, number " 6496 "required", __func__, tmpstr); 6497 } 6498 retval = 1; 6499 goto bailout; 6500 } 6501 /* 6502 * Check to see whether the user specified a third value. If so, 6503 * the second is the device. 6504 */ 6505 if (id_str != NULL) { 6506 if (*id_str == '\0') { 6507 if (error_str != NULL) { 6508 snprintf(error_str, error_str_len, "%s: " 6509 "no PCIe function found", __func__); 6510 } 6511 retval = 1; 6512 goto bailout; 6513 } 6514 device = function; 6515 device_spec = 1; 6516 function = strtoul(id_str, &endptr, 0); 6517 if (*endptr != '\0') { 6518 if (error_str != NULL) { 6519 snprintf(error_str, error_str_len, "%s: " 6520 "error parsing PCIe function %s, " 6521 "number required", __func__, id_str); 6522 } 6523 retval = 1; 6524 goto bailout; 6525 } 6526 } 6527 if (bus > SCSI_TRN_SOP_BUS_MAX) { 6528 if (error_str != NULL) { 6529 snprintf(error_str, error_str_len, "%s: bus value " 6530 "%lu greater than maximum %u", __func__, 6531 bus, SCSI_TRN_SOP_BUS_MAX); 6532 } 6533 retval = 1; 6534 goto bailout; 6535 } 6536 6537 if ((device_spec != 0) 6538 && (device > SCSI_TRN_SOP_DEV_MASK)) { 6539 if (error_str != NULL) { 6540 snprintf(error_str, error_str_len, "%s: device value " 6541 "%lu greater than maximum %u", __func__, 6542 device, SCSI_TRN_SOP_DEV_MAX); 6543 } 6544 retval = 1; 6545 goto bailout; 6546 } 6547 6548 if (((device_spec != 0) 6549 && (function > SCSI_TRN_SOP_FUNC_NORM_MAX)) 6550 || ((device_spec == 0) 6551 && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) { 6552 if (error_str != NULL) { 6553 snprintf(error_str, error_str_len, "%s: function value " 6554 "%lu greater than maximum %u", __func__, 6555 function, (device_spec == 0) ? 6556 SCSI_TRN_SOP_FUNC_ALT_MAX : 6557 SCSI_TRN_SOP_FUNC_NORM_MAX); 6558 } 6559 retval = 1; 6560 goto bailout; 6561 } 6562 6563 #ifdef _KERNEL 6564 sop = malloc(sizeof(*sop), type, flags); 6565 #else 6566 sop = malloc(sizeof(*sop)); 6567 #endif 6568 if (sop == NULL) { 6569 if (error_str != NULL) { 6570 snprintf(error_str, error_str_len, "%s: unable to " 6571 "allocate %zu bytes", __func__, sizeof(*sop)); 6572 } 6573 retval = 1; 6574 goto bailout; 6575 } 6576 *alloc_len = sizeof(*sop); 6577 bzero(sop, sizeof(*sop)); 6578 sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT; 6579 if (device_spec != 0) { 6580 struct scsi_sop_routing_id_norm rid; 6581 6582 rid.bus = bus; 6583 rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function; 6584 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6585 sizeof(sop->routing_id))); 6586 } else { 6587 struct scsi_sop_routing_id_alt rid; 6588 6589 rid.bus = bus; 6590 rid.function = function; 6591 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6592 sizeof(sop->routing_id))); 6593 } 6594 6595 *hdr = (struct scsi_transportid_header *)sop; 6596 bailout: 6597 return (retval); 6598 } 6599 6600 /* 6601 * transportid_str: NUL-terminated string with format: protcol,id 6602 * The ID is protocol specific. 6603 * hdr: Storage will be allocated for the transport ID. 6604 * alloc_len: The amount of memory allocated is returned here. 6605 * type: Malloc bucket (kernel only). 6606 * flags: Malloc flags (kernel only). 6607 * error_str: If non-NULL, it will contain error information (without 6608 * a terminating newline) if an error is returned. 6609 * error_str_len: Allocated length of the error string. 6610 * 6611 * Returns 0 for success, non-zero for failure. 6612 */ 6613 int 6614 scsi_parse_transportid(char *transportid_str, 6615 struct scsi_transportid_header **hdr, 6616 unsigned int *alloc_len, 6617 #ifdef _KERNEL 6618 struct malloc_type *type, int flags, 6619 #endif 6620 char *error_str, int error_str_len) 6621 { 6622 char *tmpstr; 6623 scsi_nv_status status; 6624 u_int num_proto_entries; 6625 int retval, table_entry; 6626 6627 retval = 0; 6628 table_entry = 0; 6629 6630 /* 6631 * We do allow a period as well as a comma to separate the protocol 6632 * from the ID string. This is to accommodate iSCSI names, which 6633 * start with "iqn.". 6634 */ 6635 tmpstr = strsep(&transportid_str, ",."); 6636 if (tmpstr == NULL) { 6637 if (error_str != NULL) { 6638 snprintf(error_str, error_str_len, 6639 "%s: transportid_str is NULL", __func__); 6640 } 6641 retval = 1; 6642 goto bailout; 6643 } 6644 6645 num_proto_entries = nitems(scsi_proto_map); 6646 status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr, 6647 &table_entry, SCSI_NV_FLAG_IG_CASE); 6648 if (status != SCSI_NV_FOUND) { 6649 if (error_str != NULL) { 6650 snprintf(error_str, error_str_len, "%s: %s protocol " 6651 "name %s", __func__, 6652 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" : 6653 "invalid", tmpstr); 6654 } 6655 retval = 1; 6656 goto bailout; 6657 } 6658 switch (scsi_proto_map[table_entry].value) { 6659 case SCSI_PROTO_FC: 6660 case SCSI_PROTO_1394: 6661 case SCSI_PROTO_SAS: 6662 retval = scsi_parse_transportid_64bit( 6663 scsi_proto_map[table_entry].value, transportid_str, hdr, 6664 alloc_len, 6665 #ifdef _KERNEL 6666 type, flags, 6667 #endif 6668 error_str, error_str_len); 6669 break; 6670 case SCSI_PROTO_SPI: 6671 retval = scsi_parse_transportid_spi(transportid_str, hdr, 6672 alloc_len, 6673 #ifdef _KERNEL 6674 type, flags, 6675 #endif 6676 error_str, error_str_len); 6677 break; 6678 case SCSI_PROTO_RDMA: 6679 retval = scsi_parse_transportid_rdma(transportid_str, hdr, 6680 alloc_len, 6681 #ifdef _KERNEL 6682 type, flags, 6683 #endif 6684 error_str, error_str_len); 6685 break; 6686 case SCSI_PROTO_ISCSI: 6687 retval = scsi_parse_transportid_iscsi(transportid_str, hdr, 6688 alloc_len, 6689 #ifdef _KERNEL 6690 type, flags, 6691 #endif 6692 error_str, error_str_len); 6693 break; 6694 case SCSI_PROTO_SOP: 6695 retval = scsi_parse_transportid_sop(transportid_str, hdr, 6696 alloc_len, 6697 #ifdef _KERNEL 6698 type, flags, 6699 #endif 6700 error_str, error_str_len); 6701 break; 6702 case SCSI_PROTO_SSA: 6703 case SCSI_PROTO_ADITP: 6704 case SCSI_PROTO_ATA: 6705 case SCSI_PROTO_UAS: 6706 case SCSI_PROTO_NONE: 6707 default: 6708 /* 6709 * There is no format defined for a Transport ID for these 6710 * protocols. So even if the user gives us something, we 6711 * have no way to turn it into a standard SCSI Transport ID. 6712 */ 6713 retval = 1; 6714 if (error_str != NULL) { 6715 snprintf(error_str, error_str_len, "%s: no Transport " 6716 "ID format exists for protocol %s", 6717 __func__, tmpstr); 6718 } 6719 goto bailout; 6720 break; /* NOTREACHED */ 6721 } 6722 bailout: 6723 return (retval); 6724 } 6725 6726 struct scsi_attrib_table_entry scsi_mam_attr_table[] = { 6727 { SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6728 "Remaining Capacity in Partition", 6729 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL }, 6730 { SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6731 "Maximum Capacity in Partition", 6732 /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6733 { SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX, 6734 "TapeAlert Flags", 6735 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6736 { SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE, 6737 "Load Count", 6738 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6739 { SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE, 6740 "MAM Space Remaining", 6741 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6742 /*parse_str*/ NULL }, 6743 { SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6744 "Assigning Organization", 6745 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6746 /*parse_str*/ NULL }, 6747 { SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6748 "Format Density Code", 6749 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6750 { SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE, 6751 "Initialization Count", 6752 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6753 { SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE, 6754 "Volume Identifier", 6755 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6756 /*parse_str*/ NULL }, 6757 { SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX, 6758 "Volume Change Reference", 6759 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6760 /*parse_str*/ NULL }, 6761 { SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE, 6762 "Device Vendor/Serial at Last Load", 6763 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6764 /*parse_str*/ NULL }, 6765 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE, 6766 "Device Vendor/Serial at Last Load - 1", 6767 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6768 /*parse_str*/ NULL }, 6769 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE, 6770 "Device Vendor/Serial at Last Load - 2", 6771 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6772 /*parse_str*/ NULL }, 6773 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE, 6774 "Device Vendor/Serial at Last Load - 3", 6775 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6776 /*parse_str*/ NULL }, 6777 { SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE, 6778 "Total MB Written in Medium Life", 6779 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6780 /*parse_str*/ NULL }, 6781 { SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE, 6782 "Total MB Read in Medium Life", 6783 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6784 /*parse_str*/ NULL }, 6785 { SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE, 6786 "Total MB Written in Current/Last Load", 6787 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6788 /*parse_str*/ NULL }, 6789 { SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE, 6790 "Total MB Read in Current/Last Load", 6791 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6792 /*parse_str*/ NULL }, 6793 { SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6794 "Logical Position of First Encrypted Block", 6795 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6796 /*parse_str*/ NULL }, 6797 { SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6798 "Logical Position of First Unencrypted Block after First " 6799 "Encrypted Block", 6800 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6801 /*parse_str*/ NULL }, 6802 { SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6803 "Medium Usage History", 6804 /*suffix*/ NULL, /*to_str*/ NULL, 6805 /*parse_str*/ NULL }, 6806 { SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6807 "Partition Usage History", 6808 /*suffix*/ NULL, /*to_str*/ NULL, 6809 /*parse_str*/ NULL }, 6810 { SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE, 6811 "Medium Manufacturer", 6812 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6813 /*parse_str*/ NULL }, 6814 { SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE, 6815 "Medium Serial Number", 6816 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6817 /*parse_str*/ NULL }, 6818 { SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE, 6819 "Medium Length", 6820 /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf, 6821 /*parse_str*/ NULL }, 6822 { SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 | 6823 SCSI_ATTR_FLAG_FP_1DIGIT, 6824 "Medium Width", 6825 /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf, 6826 /*parse_str*/ NULL }, 6827 { SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6828 "Assigning Organization", 6829 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6830 /*parse_str*/ NULL }, 6831 { SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6832 "Medium Density Code", 6833 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6834 /*parse_str*/ NULL }, 6835 { SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE, 6836 "Medium Manufacture Date", 6837 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6838 /*parse_str*/ NULL }, 6839 { SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE, 6840 "MAM Capacity", 6841 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6842 /*parse_str*/ NULL }, 6843 { SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX, 6844 "Medium Type", 6845 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6846 /*parse_str*/ NULL }, 6847 { SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX, 6848 "Medium Type Information", 6849 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6850 /*parse_str*/ NULL }, 6851 { SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE, 6852 "Medium Serial Number", 6853 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6854 /*parse_str*/ NULL }, 6855 { SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE, 6856 "Application Vendor", 6857 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6858 /*parse_str*/ NULL }, 6859 { SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE, 6860 "Application Name", 6861 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6862 /*parse_str*/ NULL }, 6863 { SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE, 6864 "Application Version", 6865 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6866 /*parse_str*/ NULL }, 6867 { SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE, 6868 "User Medium Text Label", 6869 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6870 /*parse_str*/ NULL }, 6871 { SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE, 6872 "Date and Time Last Written", 6873 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6874 /*parse_str*/ NULL }, 6875 { SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX, 6876 "Text Localization Identifier", 6877 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6878 /*parse_str*/ NULL }, 6879 { SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE, 6880 "Barcode", 6881 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6882 /*parse_str*/ NULL }, 6883 { SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE, 6884 "Owning Host Textual Name", 6885 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6886 /*parse_str*/ NULL }, 6887 { SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE, 6888 "Media Pool", 6889 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6890 /*parse_str*/ NULL }, 6891 { SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE, 6892 "Partition User Text Label", 6893 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6894 /*parse_str*/ NULL }, 6895 { SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE, 6896 "Load/Unload at Partition", 6897 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6898 /*parse_str*/ NULL }, 6899 { SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE, 6900 "Application Format Version", 6901 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6902 /*parse_str*/ NULL }, 6903 { SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE, 6904 "Volume Coherency Information", 6905 /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf, 6906 /*parse_str*/ NULL }, 6907 { 0x0ff1, SCSI_ATTR_FLAG_NONE, 6908 "Spectra MLM Creation", 6909 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6910 /*parse_str*/ NULL }, 6911 { 0x0ff2, SCSI_ATTR_FLAG_NONE, 6912 "Spectra MLM C3", 6913 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6914 /*parse_str*/ NULL }, 6915 { 0x0ff3, SCSI_ATTR_FLAG_NONE, 6916 "Spectra MLM RW", 6917 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6918 /*parse_str*/ NULL }, 6919 { 0x0ff4, SCSI_ATTR_FLAG_NONE, 6920 "Spectra MLM SDC List", 6921 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6922 /*parse_str*/ NULL }, 6923 { 0x0ff7, SCSI_ATTR_FLAG_NONE, 6924 "Spectra MLM Post Scan", 6925 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6926 /*parse_str*/ NULL }, 6927 { 0x0ffe, SCSI_ATTR_FLAG_NONE, 6928 "Spectra MLM Checksum", 6929 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6930 /*parse_str*/ NULL }, 6931 { 0x17f1, SCSI_ATTR_FLAG_NONE, 6932 "Spectra MLM Creation", 6933 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6934 /*parse_str*/ NULL }, 6935 { 0x17f2, SCSI_ATTR_FLAG_NONE, 6936 "Spectra MLM C3", 6937 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6938 /*parse_str*/ NULL }, 6939 { 0x17f3, SCSI_ATTR_FLAG_NONE, 6940 "Spectra MLM RW", 6941 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6942 /*parse_str*/ NULL }, 6943 { 0x17f4, SCSI_ATTR_FLAG_NONE, 6944 "Spectra MLM SDC List", 6945 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6946 /*parse_str*/ NULL }, 6947 { 0x17f7, SCSI_ATTR_FLAG_NONE, 6948 "Spectra MLM Post Scan", 6949 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6950 /*parse_str*/ NULL }, 6951 { 0x17ff, SCSI_ATTR_FLAG_NONE, 6952 "Spectra MLM Checksum", 6953 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6954 /*parse_str*/ NULL }, 6955 }; 6956 6957 /* 6958 * Print out Volume Coherency Information (Attribute 0x080c). 6959 * This field has two variable length members, including one at the 6960 * beginning, so it isn't practical to have a fixed structure definition. 6961 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25, 6962 * 2013. 6963 */ 6964 int 6965 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 6966 uint32_t valid_len, uint32_t flags, 6967 uint32_t output_flags, char *error_str, 6968 int error_str_len) 6969 { 6970 size_t avail_len; 6971 uint32_t field_size; 6972 uint64_t tmp_val; 6973 uint8_t *cur_ptr; 6974 int retval; 6975 int vcr_len, as_len; 6976 6977 retval = 0; 6978 tmp_val = 0; 6979 6980 field_size = scsi_2btoul(hdr->length); 6981 avail_len = valid_len - sizeof(*hdr); 6982 if (field_size > avail_len) { 6983 if (error_str != NULL) { 6984 snprintf(error_str, error_str_len, "Available " 6985 "length of attribute ID 0x%.4x %zu < field " 6986 "length %u", scsi_2btoul(hdr->id), avail_len, 6987 field_size); 6988 } 6989 retval = 1; 6990 goto bailout; 6991 } else if (field_size == 0) { 6992 /* 6993 * It isn't clear from the spec whether a field length of 6994 * 0 is invalid here. It probably is, but be lenient here 6995 * to avoid inconveniencing the user. 6996 */ 6997 goto bailout; 6998 } 6999 cur_ptr = hdr->attribute; 7000 vcr_len = *cur_ptr; 7001 cur_ptr++; 7002 7003 sbuf_printf(sb, "\n\tVolume Change Reference Value:"); 7004 7005 switch (vcr_len) { 7006 case 0: 7007 if (error_str != NULL) { 7008 snprintf(error_str, error_str_len, "Volume Change " 7009 "Reference value has length of 0"); 7010 } 7011 retval = 1; 7012 goto bailout; 7013 break; /*NOTREACHED*/ 7014 case 1: 7015 tmp_val = *cur_ptr; 7016 break; 7017 case 2: 7018 tmp_val = scsi_2btoul(cur_ptr); 7019 break; 7020 case 3: 7021 tmp_val = scsi_3btoul(cur_ptr); 7022 break; 7023 case 4: 7024 tmp_val = scsi_4btoul(cur_ptr); 7025 break; 7026 case 8: 7027 tmp_val = scsi_8btou64(cur_ptr); 7028 break; 7029 default: 7030 sbuf_printf(sb, "\n"); 7031 sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0); 7032 break; 7033 } 7034 if (vcr_len <= 8) 7035 sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val); 7036 7037 cur_ptr += vcr_len; 7038 tmp_val = scsi_8btou64(cur_ptr); 7039 sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val); 7040 7041 cur_ptr += sizeof(tmp_val); 7042 tmp_val = scsi_8btou64(cur_ptr); 7043 sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n", 7044 (uintmax_t)tmp_val); 7045 7046 /* 7047 * Figure out how long the Application Client Specific Information 7048 * is and produce a hexdump. 7049 */ 7050 cur_ptr += sizeof(tmp_val); 7051 as_len = scsi_2btoul(cur_ptr); 7052 cur_ptr += sizeof(uint16_t); 7053 sbuf_printf(sb, "\tApplication Client Specific Information: "); 7054 if (((as_len == SCSI_LTFS_VER0_LEN) 7055 || (as_len == SCSI_LTFS_VER1_LEN)) 7056 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) { 7057 sbuf_printf(sb, "LTFS\n"); 7058 cur_ptr += SCSI_LTFS_STR_LEN + 1; 7059 if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0') 7060 cur_ptr[SCSI_LTFS_UUID_LEN] = '\0'; 7061 sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr); 7062 cur_ptr += SCSI_LTFS_UUID_LEN + 1; 7063 /* XXX KDM check the length */ 7064 sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr); 7065 } else { 7066 sbuf_printf(sb, "Unknown\n"); 7067 sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0); 7068 } 7069 7070 bailout: 7071 return (retval); 7072 } 7073 7074 int 7075 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7076 uint32_t valid_len, uint32_t flags, 7077 uint32_t output_flags, char *error_str, 7078 int error_str_len) 7079 { 7080 size_t avail_len; 7081 uint32_t field_size; 7082 struct scsi_attrib_vendser *vendser; 7083 cam_strvis_flags strvis_flags; 7084 int retval = 0; 7085 7086 field_size = scsi_2btoul(hdr->length); 7087 avail_len = valid_len - sizeof(*hdr); 7088 if (field_size > avail_len) { 7089 if (error_str != NULL) { 7090 snprintf(error_str, error_str_len, "Available " 7091 "length of attribute ID 0x%.4x %zu < field " 7092 "length %u", scsi_2btoul(hdr->id), avail_len, 7093 field_size); 7094 } 7095 retval = 1; 7096 goto bailout; 7097 } else if (field_size == 0) { 7098 /* 7099 * A field size of 0 doesn't make sense here. The device 7100 * can at least give you the vendor ID, even if it can't 7101 * give you the serial number. 7102 */ 7103 if (error_str != NULL) { 7104 snprintf(error_str, error_str_len, "The length of " 7105 "attribute ID 0x%.4x is 0", 7106 scsi_2btoul(hdr->id)); 7107 } 7108 retval = 1; 7109 goto bailout; 7110 } 7111 vendser = (struct scsi_attrib_vendser *)hdr->attribute; 7112 7113 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7114 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7115 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7116 break; 7117 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7118 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7119 break; 7120 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7121 default: 7122 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7123 break; 7124 } 7125 cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor), 7126 strvis_flags); 7127 sbuf_putc(sb, ' '); 7128 cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num), 7129 strvis_flags); 7130 bailout: 7131 return (retval); 7132 } 7133 7134 int 7135 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7136 uint32_t valid_len, uint32_t flags, 7137 uint32_t output_flags, char *error_str, 7138 int error_str_len) 7139 { 7140 uint32_t field_size; 7141 ssize_t avail_len; 7142 uint32_t print_len; 7143 uint8_t *num_ptr; 7144 int retval = 0; 7145 7146 field_size = scsi_2btoul(hdr->length); 7147 avail_len = valid_len - sizeof(*hdr); 7148 print_len = MIN(avail_len, field_size); 7149 num_ptr = hdr->attribute; 7150 7151 if (print_len > 0) { 7152 sbuf_printf(sb, "\n"); 7153 sbuf_hexdump(sb, num_ptr, print_len, NULL, 0); 7154 } 7155 7156 return (retval); 7157 } 7158 7159 int 7160 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7161 uint32_t valid_len, uint32_t flags, 7162 uint32_t output_flags, char *error_str, 7163 int error_str_len) 7164 { 7165 uint64_t print_number; 7166 size_t avail_len; 7167 uint32_t number_size; 7168 int retval = 0; 7169 7170 number_size = scsi_2btoul(hdr->length); 7171 7172 avail_len = valid_len - sizeof(*hdr); 7173 if (avail_len < number_size) { 7174 if (error_str != NULL) { 7175 snprintf(error_str, error_str_len, "Available " 7176 "length of attribute ID 0x%.4x %zu < field " 7177 "length %u", scsi_2btoul(hdr->id), avail_len, 7178 number_size); 7179 } 7180 retval = 1; 7181 goto bailout; 7182 } 7183 7184 switch (number_size) { 7185 case 0: 7186 /* 7187 * We don't treat this as an error, since there may be 7188 * scenarios where a device reports a field but then gives 7189 * a length of 0. See the note in scsi_attrib_ascii_sbuf(). 7190 */ 7191 goto bailout; 7192 break; /*NOTREACHED*/ 7193 case 1: 7194 print_number = hdr->attribute[0]; 7195 break; 7196 case 2: 7197 print_number = scsi_2btoul(hdr->attribute); 7198 break; 7199 case 3: 7200 print_number = scsi_3btoul(hdr->attribute); 7201 break; 7202 case 4: 7203 print_number = scsi_4btoul(hdr->attribute); 7204 break; 7205 case 8: 7206 print_number = scsi_8btou64(hdr->attribute); 7207 break; 7208 default: 7209 /* 7210 * If we wind up here, the number is too big to print 7211 * normally, so just do a hexdump. 7212 */ 7213 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7214 flags, output_flags, 7215 error_str, error_str_len); 7216 goto bailout; 7217 break; 7218 } 7219 7220 if (flags & SCSI_ATTR_FLAG_FP) { 7221 #ifndef _KERNEL 7222 long double num_float; 7223 7224 num_float = (long double)print_number; 7225 7226 if (flags & SCSI_ATTR_FLAG_DIV_10) 7227 num_float /= 10; 7228 7229 sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ? 7230 1 : 0, num_float); 7231 #else /* _KERNEL */ 7232 sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ? 7233 (print_number / 10) : print_number); 7234 #endif /* _KERNEL */ 7235 } else if (flags & SCSI_ATTR_FLAG_HEX) { 7236 sbuf_printf(sb, "0x%jx", (uintmax_t)print_number); 7237 } else 7238 sbuf_printf(sb, "%ju", (uintmax_t)print_number); 7239 7240 bailout: 7241 return (retval); 7242 } 7243 7244 int 7245 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7246 uint32_t valid_len, uint32_t flags, 7247 uint32_t output_flags, char *error_str, 7248 int error_str_len) 7249 { 7250 size_t avail_len; 7251 uint32_t field_size, print_size; 7252 int retval = 0; 7253 7254 avail_len = valid_len - sizeof(*hdr); 7255 field_size = scsi_2btoul(hdr->length); 7256 print_size = MIN(avail_len, field_size); 7257 7258 if (print_size > 0) { 7259 cam_strvis_flags strvis_flags; 7260 7261 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7262 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7263 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7264 break; 7265 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7266 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7267 break; 7268 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7269 default: 7270 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7271 break; 7272 } 7273 cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags); 7274 } else if (avail_len < field_size) { 7275 /* 7276 * We only report an error if the user didn't allocate 7277 * enough space to hold the full value of this field. If 7278 * the field length is 0, that is allowed by the spec. 7279 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER 7280 * "This attribute indicates the current volume identifier 7281 * (see SMC-3) of the medium. If the device server supports 7282 * this attribute but does not have access to the volume 7283 * identifier, the device server shall report this attribute 7284 * with an attribute length value of zero." 7285 */ 7286 if (error_str != NULL) { 7287 snprintf(error_str, error_str_len, "Available " 7288 "length of attribute ID 0x%.4x %zu < field " 7289 "length %u", scsi_2btoul(hdr->id), avail_len, 7290 field_size); 7291 } 7292 retval = 1; 7293 } 7294 7295 return (retval); 7296 } 7297 7298 int 7299 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7300 uint32_t valid_len, uint32_t flags, 7301 uint32_t output_flags, char *error_str, 7302 int error_str_len) 7303 { 7304 size_t avail_len; 7305 uint32_t field_size, print_size; 7306 int retval = 0; 7307 int esc_text = 1; 7308 7309 avail_len = valid_len - sizeof(*hdr); 7310 field_size = scsi_2btoul(hdr->length); 7311 print_size = MIN(avail_len, field_size); 7312 7313 if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) == 7314 SCSI_ATTR_OUTPUT_TEXT_RAW) 7315 esc_text = 0; 7316 7317 if (print_size > 0) { 7318 uint32_t i; 7319 7320 for (i = 0; i < print_size; i++) { 7321 if (hdr->attribute[i] == '\0') 7322 continue; 7323 else if (((unsigned char)hdr->attribute[i] < 0x80) 7324 || (esc_text == 0)) 7325 sbuf_putc(sb, hdr->attribute[i]); 7326 else 7327 sbuf_printf(sb, "%%%02x", 7328 (unsigned char)hdr->attribute[i]); 7329 } 7330 } else if (avail_len < field_size) { 7331 /* 7332 * We only report an error if the user didn't allocate 7333 * enough space to hold the full value of this field. 7334 */ 7335 if (error_str != NULL) { 7336 snprintf(error_str, error_str_len, "Available " 7337 "length of attribute ID 0x%.4x %zu < field " 7338 "length %u", scsi_2btoul(hdr->id), avail_len, 7339 field_size); 7340 } 7341 retval = 1; 7342 } 7343 7344 return (retval); 7345 } 7346 7347 struct scsi_attrib_table_entry * 7348 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table, 7349 size_t num_table_entries, uint32_t id) 7350 { 7351 uint32_t i; 7352 7353 for (i = 0; i < num_table_entries; i++) { 7354 if (table[i].id == id) 7355 return (&table[i]); 7356 } 7357 7358 return (NULL); 7359 } 7360 7361 struct scsi_attrib_table_entry * 7362 scsi_get_attrib_entry(uint32_t id) 7363 { 7364 return (scsi_find_attrib_entry(scsi_mam_attr_table, 7365 nitems(scsi_mam_attr_table), id)); 7366 } 7367 7368 int 7369 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len, 7370 struct scsi_mam_attribute_header *hdr, uint32_t output_flags, 7371 char *error_str, size_t error_str_len) 7372 { 7373 int retval; 7374 7375 switch (hdr->byte2 & SMA_FORMAT_MASK) { 7376 case SMA_FORMAT_ASCII: 7377 retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len, 7378 SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len); 7379 break; 7380 case SMA_FORMAT_BINARY: 7381 if (scsi_2btoul(hdr->length) <= 8) 7382 retval = scsi_attrib_int_sbuf(sb, hdr, valid_len, 7383 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7384 error_str_len); 7385 else 7386 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7387 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7388 error_str_len); 7389 break; 7390 case SMA_FORMAT_TEXT: 7391 retval = scsi_attrib_text_sbuf(sb, hdr, valid_len, 7392 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7393 error_str_len); 7394 break; 7395 default: 7396 if (error_str != NULL) { 7397 snprintf(error_str, error_str_len, "Unknown attribute " 7398 "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK); 7399 } 7400 retval = 1; 7401 goto bailout; 7402 break; /*NOTREACHED*/ 7403 } 7404 7405 sbuf_trim(sb); 7406 7407 bailout: 7408 7409 return (retval); 7410 } 7411 7412 void 7413 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags, 7414 struct scsi_mam_attribute_header *hdr, 7415 uint32_t valid_len, const char *desc) 7416 { 7417 int need_space = 0; 7418 uint32_t len; 7419 uint32_t id; 7420 7421 /* 7422 * We can't do anything if we don't have enough valid data for the 7423 * header. 7424 */ 7425 if (valid_len < sizeof(*hdr)) 7426 return; 7427 7428 id = scsi_2btoul(hdr->id); 7429 /* 7430 * Note that we print out the value of the attribute listed in the 7431 * header, regardless of whether we actually got that many bytes 7432 * back from the device through the controller. A truncated result 7433 * could be the result of a failure to ask for enough data; the 7434 * header indicates how many bytes are allocated for this attribute 7435 * in the MAM. 7436 */ 7437 len = scsi_2btoul(hdr->length); 7438 7439 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) == 7440 SCSI_ATTR_OUTPUT_FIELD_NONE) 7441 return; 7442 7443 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC) 7444 && (desc != NULL)) { 7445 sbuf_printf(sb, "%s", desc); 7446 need_space = 1; 7447 } 7448 7449 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) { 7450 sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id); 7451 need_space = 0; 7452 } 7453 7454 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) { 7455 sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len); 7456 need_space = 0; 7457 } 7458 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) { 7459 sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "", 7460 (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW"); 7461 } 7462 sbuf_printf(sb, ": "); 7463 } 7464 7465 int 7466 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7467 uint32_t valid_len, struct scsi_attrib_table_entry *user_table, 7468 size_t num_user_entries, int prefer_user_table, 7469 uint32_t output_flags, char *error_str, int error_str_len) 7470 { 7471 int retval; 7472 struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL; 7473 struct scsi_attrib_table_entry *entry = NULL; 7474 size_t table1_size = 0, table2_size = 0; 7475 uint32_t id; 7476 7477 retval = 0; 7478 7479 if (valid_len < sizeof(*hdr)) { 7480 retval = 1; 7481 goto bailout; 7482 } 7483 7484 id = scsi_2btoul(hdr->id); 7485 7486 if (user_table != NULL) { 7487 if (prefer_user_table != 0) { 7488 table1 = user_table; 7489 table1_size = num_user_entries; 7490 table2 = scsi_mam_attr_table; 7491 table2_size = nitems(scsi_mam_attr_table); 7492 } else { 7493 table1 = scsi_mam_attr_table; 7494 table1_size = nitems(scsi_mam_attr_table); 7495 table2 = user_table; 7496 table2_size = num_user_entries; 7497 } 7498 } else { 7499 table1 = scsi_mam_attr_table; 7500 table1_size = nitems(scsi_mam_attr_table); 7501 } 7502 7503 entry = scsi_find_attrib_entry(table1, table1_size, id); 7504 if (entry != NULL) { 7505 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, 7506 entry->desc); 7507 if (entry->to_str == NULL) 7508 goto print_default; 7509 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7510 output_flags, error_str, error_str_len); 7511 goto bailout; 7512 } 7513 if (table2 != NULL) { 7514 entry = scsi_find_attrib_entry(table2, table2_size, id); 7515 if (entry != NULL) { 7516 if (entry->to_str == NULL) 7517 goto print_default; 7518 7519 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, 7520 valid_len, entry->desc); 7521 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7522 output_flags, error_str, 7523 error_str_len); 7524 goto bailout; 7525 } 7526 } 7527 7528 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL); 7529 7530 print_default: 7531 retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags, 7532 error_str, error_str_len); 7533 bailout: 7534 if (retval == 0) { 7535 if ((entry != NULL) 7536 && (entry->suffix != NULL)) 7537 sbuf_printf(sb, " %s", entry->suffix); 7538 7539 sbuf_trim(sb); 7540 sbuf_printf(sb, "\n"); 7541 } 7542 7543 return (retval); 7544 } 7545 7546 void 7547 scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries, 7548 void (*cbfcnp)(struct cam_periph *, union ccb *), 7549 u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout) 7550 { 7551 struct scsi_test_unit_ready *scsi_cmd; 7552 7553 cam_fill_csio(csio, 7554 retries, 7555 cbfcnp, 7556 CAM_DIR_NONE, 7557 tag_action, 7558 /*data_ptr*/NULL, 7559 /*dxfer_len*/0, 7560 sense_len, 7561 sizeof(*scsi_cmd), 7562 timeout); 7563 7564 scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes; 7565 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7566 scsi_cmd->opcode = TEST_UNIT_READY; 7567 } 7568 7569 void 7570 scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries, 7571 void (*cbfcnp)(struct cam_periph *, union ccb *), 7572 void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action, 7573 u_int8_t sense_len, u_int32_t timeout) 7574 { 7575 struct scsi_request_sense *scsi_cmd; 7576 7577 cam_fill_csio(csio, 7578 retries, 7579 cbfcnp, 7580 CAM_DIR_IN, 7581 tag_action, 7582 data_ptr, 7583 dxfer_len, 7584 sense_len, 7585 sizeof(*scsi_cmd), 7586 timeout); 7587 7588 scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes; 7589 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7590 scsi_cmd->opcode = REQUEST_SENSE; 7591 scsi_cmd->length = dxfer_len; 7592 } 7593 7594 void 7595 scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries, 7596 void (*cbfcnp)(struct cam_periph *, union ccb *), 7597 u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len, 7598 int evpd, u_int8_t page_code, u_int8_t sense_len, 7599 u_int32_t timeout) 7600 { 7601 struct scsi_inquiry *scsi_cmd; 7602 7603 cam_fill_csio(csio, 7604 retries, 7605 cbfcnp, 7606 /*flags*/CAM_DIR_IN, 7607 tag_action, 7608 /*data_ptr*/inq_buf, 7609 /*dxfer_len*/inq_len, 7610 sense_len, 7611 sizeof(*scsi_cmd), 7612 timeout); 7613 7614 scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes; 7615 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7616 scsi_cmd->opcode = INQUIRY; 7617 if (evpd) { 7618 scsi_cmd->byte2 |= SI_EVPD; 7619 scsi_cmd->page_code = page_code; 7620 } 7621 scsi_ulto2b(inq_len, scsi_cmd->length); 7622 } 7623 7624 void 7625 scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries, 7626 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7627 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7628 uint8_t sense_len, uint32_t timeout) 7629 { 7630 7631 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7632 pc, page, 0, param_buf, param_len, 0, sense_len, timeout); 7633 } 7634 7635 void 7636 scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries, 7637 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7638 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7639 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout) 7640 { 7641 7642 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7643 pc, page, 0, param_buf, param_len, minimum_cmd_size, 7644 sense_len, timeout); 7645 } 7646 7647 void 7648 scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries, 7649 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7650 int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf, 7651 uint32_t param_len, int minimum_cmd_size, uint8_t sense_len, 7652 uint32_t timeout) 7653 { 7654 u_int8_t cdb_len; 7655 7656 /* 7657 * Use the smallest possible command to perform the operation. 7658 */ 7659 if ((param_len < 256) 7660 && (minimum_cmd_size < 10)) { 7661 /* 7662 * We can fit in a 6 byte cdb. 7663 */ 7664 struct scsi_mode_sense_6 *scsi_cmd; 7665 7666 scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes; 7667 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7668 scsi_cmd->opcode = MODE_SENSE_6; 7669 if (dbd != 0) 7670 scsi_cmd->byte2 |= SMS_DBD; 7671 scsi_cmd->page = pc | page; 7672 scsi_cmd->subpage = subpage; 7673 scsi_cmd->length = param_len; 7674 cdb_len = sizeof(*scsi_cmd); 7675 } else { 7676 /* 7677 * Need a 10 byte cdb. 7678 */ 7679 struct scsi_mode_sense_10 *scsi_cmd; 7680 7681 scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes; 7682 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7683 scsi_cmd->opcode = MODE_SENSE_10; 7684 if (dbd != 0) 7685 scsi_cmd->byte2 |= SMS_DBD; 7686 scsi_cmd->page = pc | page; 7687 scsi_cmd->subpage = subpage; 7688 scsi_ulto2b(param_len, scsi_cmd->length); 7689 cdb_len = sizeof(*scsi_cmd); 7690 } 7691 cam_fill_csio(csio, 7692 retries, 7693 cbfcnp, 7694 CAM_DIR_IN, 7695 tag_action, 7696 param_buf, 7697 param_len, 7698 sense_len, 7699 cdb_len, 7700 timeout); 7701 } 7702 7703 void 7704 scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries, 7705 void (*cbfcnp)(struct cam_periph *, union ccb *), 7706 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7707 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7708 u_int32_t timeout) 7709 { 7710 scsi_mode_select_len(csio, retries, cbfcnp, tag_action, 7711 scsi_page_fmt, save_pages, param_buf, 7712 param_len, 0, sense_len, timeout); 7713 } 7714 7715 void 7716 scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries, 7717 void (*cbfcnp)(struct cam_periph *, union ccb *), 7718 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7719 u_int8_t *param_buf, u_int32_t param_len, 7720 int minimum_cmd_size, u_int8_t sense_len, 7721 u_int32_t timeout) 7722 { 7723 u_int8_t cdb_len; 7724 7725 /* 7726 * Use the smallest possible command to perform the operation. 7727 */ 7728 if ((param_len < 256) 7729 && (minimum_cmd_size < 10)) { 7730 /* 7731 * We can fit in a 6 byte cdb. 7732 */ 7733 struct scsi_mode_select_6 *scsi_cmd; 7734 7735 scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes; 7736 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7737 scsi_cmd->opcode = MODE_SELECT_6; 7738 if (scsi_page_fmt != 0) 7739 scsi_cmd->byte2 |= SMS_PF; 7740 if (save_pages != 0) 7741 scsi_cmd->byte2 |= SMS_SP; 7742 scsi_cmd->length = param_len; 7743 cdb_len = sizeof(*scsi_cmd); 7744 } else { 7745 /* 7746 * Need a 10 byte cdb. 7747 */ 7748 struct scsi_mode_select_10 *scsi_cmd; 7749 7750 scsi_cmd = 7751 (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes; 7752 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7753 scsi_cmd->opcode = MODE_SELECT_10; 7754 if (scsi_page_fmt != 0) 7755 scsi_cmd->byte2 |= SMS_PF; 7756 if (save_pages != 0) 7757 scsi_cmd->byte2 |= SMS_SP; 7758 scsi_ulto2b(param_len, scsi_cmd->length); 7759 cdb_len = sizeof(*scsi_cmd); 7760 } 7761 cam_fill_csio(csio, 7762 retries, 7763 cbfcnp, 7764 CAM_DIR_OUT, 7765 tag_action, 7766 param_buf, 7767 param_len, 7768 sense_len, 7769 cdb_len, 7770 timeout); 7771 } 7772 7773 void 7774 scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries, 7775 void (*cbfcnp)(struct cam_periph *, union ccb *), 7776 u_int8_t tag_action, u_int8_t page_code, u_int8_t page, 7777 int save_pages, int ppc, u_int32_t paramptr, 7778 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7779 u_int32_t timeout) 7780 { 7781 struct scsi_log_sense *scsi_cmd; 7782 u_int8_t cdb_len; 7783 7784 scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes; 7785 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7786 scsi_cmd->opcode = LOG_SENSE; 7787 scsi_cmd->page = page_code | page; 7788 if (save_pages != 0) 7789 scsi_cmd->byte2 |= SLS_SP; 7790 if (ppc != 0) 7791 scsi_cmd->byte2 |= SLS_PPC; 7792 scsi_ulto2b(paramptr, scsi_cmd->paramptr); 7793 scsi_ulto2b(param_len, scsi_cmd->length); 7794 cdb_len = sizeof(*scsi_cmd); 7795 7796 cam_fill_csio(csio, 7797 retries, 7798 cbfcnp, 7799 /*flags*/CAM_DIR_IN, 7800 tag_action, 7801 /*data_ptr*/param_buf, 7802 /*dxfer_len*/param_len, 7803 sense_len, 7804 cdb_len, 7805 timeout); 7806 } 7807 7808 void 7809 scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries, 7810 void (*cbfcnp)(struct cam_periph *, union ccb *), 7811 u_int8_t tag_action, u_int8_t page_code, int save_pages, 7812 int pc_reset, u_int8_t *param_buf, u_int32_t param_len, 7813 u_int8_t sense_len, u_int32_t timeout) 7814 { 7815 struct scsi_log_select *scsi_cmd; 7816 u_int8_t cdb_len; 7817 7818 scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes; 7819 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7820 scsi_cmd->opcode = LOG_SELECT; 7821 scsi_cmd->page = page_code & SLS_PAGE_CODE; 7822 if (save_pages != 0) 7823 scsi_cmd->byte2 |= SLS_SP; 7824 if (pc_reset != 0) 7825 scsi_cmd->byte2 |= SLS_PCR; 7826 scsi_ulto2b(param_len, scsi_cmd->length); 7827 cdb_len = sizeof(*scsi_cmd); 7828 7829 cam_fill_csio(csio, 7830 retries, 7831 cbfcnp, 7832 /*flags*/CAM_DIR_OUT, 7833 tag_action, 7834 /*data_ptr*/param_buf, 7835 /*dxfer_len*/param_len, 7836 sense_len, 7837 cdb_len, 7838 timeout); 7839 } 7840 7841 /* 7842 * Prevent or allow the user to remove the media 7843 */ 7844 void 7845 scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries, 7846 void (*cbfcnp)(struct cam_periph *, union ccb *), 7847 u_int8_t tag_action, u_int8_t action, 7848 u_int8_t sense_len, u_int32_t timeout) 7849 { 7850 struct scsi_prevent *scsi_cmd; 7851 7852 cam_fill_csio(csio, 7853 retries, 7854 cbfcnp, 7855 /*flags*/CAM_DIR_NONE, 7856 tag_action, 7857 /*data_ptr*/NULL, 7858 /*dxfer_len*/0, 7859 sense_len, 7860 sizeof(*scsi_cmd), 7861 timeout); 7862 7863 scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes; 7864 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7865 scsi_cmd->opcode = PREVENT_ALLOW; 7866 scsi_cmd->how = action; 7867 } 7868 7869 /* XXX allow specification of address and PMI bit and LBA */ 7870 void 7871 scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries, 7872 void (*cbfcnp)(struct cam_periph *, union ccb *), 7873 u_int8_t tag_action, 7874 struct scsi_read_capacity_data *rcap_buf, 7875 u_int8_t sense_len, u_int32_t timeout) 7876 { 7877 struct scsi_read_capacity *scsi_cmd; 7878 7879 cam_fill_csio(csio, 7880 retries, 7881 cbfcnp, 7882 /*flags*/CAM_DIR_IN, 7883 tag_action, 7884 /*data_ptr*/(u_int8_t *)rcap_buf, 7885 /*dxfer_len*/sizeof(*rcap_buf), 7886 sense_len, 7887 sizeof(*scsi_cmd), 7888 timeout); 7889 7890 scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes; 7891 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7892 scsi_cmd->opcode = READ_CAPACITY; 7893 } 7894 7895 void 7896 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries, 7897 void (*cbfcnp)(struct cam_periph *, union ccb *), 7898 uint8_t tag_action, uint64_t lba, int reladr, int pmi, 7899 uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len, 7900 uint32_t timeout) 7901 { 7902 struct scsi_read_capacity_16 *scsi_cmd; 7903 7904 cam_fill_csio(csio, 7905 retries, 7906 cbfcnp, 7907 /*flags*/CAM_DIR_IN, 7908 tag_action, 7909 /*data_ptr*/(u_int8_t *)rcap_buf, 7910 /*dxfer_len*/rcap_buf_len, 7911 sense_len, 7912 sizeof(*scsi_cmd), 7913 timeout); 7914 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes; 7915 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7916 scsi_cmd->opcode = SERVICE_ACTION_IN; 7917 scsi_cmd->service_action = SRC16_SERVICE_ACTION; 7918 scsi_u64to8b(lba, scsi_cmd->addr); 7919 scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len); 7920 if (pmi) 7921 reladr |= SRC16_PMI; 7922 if (reladr) 7923 reladr |= SRC16_RELADR; 7924 } 7925 7926 void 7927 scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries, 7928 void (*cbfcnp)(struct cam_periph *, union ccb *), 7929 u_int8_t tag_action, u_int8_t select_report, 7930 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len, 7931 u_int8_t sense_len, u_int32_t timeout) 7932 { 7933 struct scsi_report_luns *scsi_cmd; 7934 7935 cam_fill_csio(csio, 7936 retries, 7937 cbfcnp, 7938 /*flags*/CAM_DIR_IN, 7939 tag_action, 7940 /*data_ptr*/(u_int8_t *)rpl_buf, 7941 /*dxfer_len*/alloc_len, 7942 sense_len, 7943 sizeof(*scsi_cmd), 7944 timeout); 7945 scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes; 7946 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7947 scsi_cmd->opcode = REPORT_LUNS; 7948 scsi_cmd->select_report = select_report; 7949 scsi_ulto4b(alloc_len, scsi_cmd->length); 7950 } 7951 7952 void 7953 scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7954 void (*cbfcnp)(struct cam_periph *, union ccb *), 7955 u_int8_t tag_action, u_int8_t pdf, 7956 void *buf, u_int32_t alloc_len, 7957 u_int8_t sense_len, u_int32_t timeout) 7958 { 7959 struct scsi_target_group *scsi_cmd; 7960 7961 cam_fill_csio(csio, 7962 retries, 7963 cbfcnp, 7964 /*flags*/CAM_DIR_IN, 7965 tag_action, 7966 /*data_ptr*/(u_int8_t *)buf, 7967 /*dxfer_len*/alloc_len, 7968 sense_len, 7969 sizeof(*scsi_cmd), 7970 timeout); 7971 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 7972 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7973 scsi_cmd->opcode = MAINTENANCE_IN; 7974 scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf; 7975 scsi_ulto4b(alloc_len, scsi_cmd->length); 7976 } 7977 7978 void 7979 scsi_report_timestamp(struct ccb_scsiio *csio, u_int32_t retries, 7980 void (*cbfcnp)(struct cam_periph *, union ccb *), 7981 u_int8_t tag_action, u_int8_t pdf, 7982 void *buf, u_int32_t alloc_len, 7983 u_int8_t sense_len, u_int32_t timeout) 7984 { 7985 struct scsi_timestamp *scsi_cmd; 7986 7987 cam_fill_csio(csio, 7988 retries, 7989 cbfcnp, 7990 /*flags*/CAM_DIR_IN, 7991 tag_action, 7992 /*data_ptr*/(u_int8_t *)buf, 7993 /*dxfer_len*/alloc_len, 7994 sense_len, 7995 sizeof(*scsi_cmd), 7996 timeout); 7997 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 7998 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7999 scsi_cmd->opcode = MAINTENANCE_IN; 8000 scsi_cmd->service_action = REPORT_TIMESTAMP | pdf; 8001 scsi_ulto4b(alloc_len, scsi_cmd->length); 8002 } 8003 8004 void 8005 scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries, 8006 void (*cbfcnp)(struct cam_periph *, union ccb *), 8007 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 8008 u_int8_t sense_len, u_int32_t timeout) 8009 { 8010 struct scsi_target_group *scsi_cmd; 8011 8012 cam_fill_csio(csio, 8013 retries, 8014 cbfcnp, 8015 /*flags*/CAM_DIR_OUT, 8016 tag_action, 8017 /*data_ptr*/(u_int8_t *)buf, 8018 /*dxfer_len*/alloc_len, 8019 sense_len, 8020 sizeof(*scsi_cmd), 8021 timeout); 8022 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 8023 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8024 scsi_cmd->opcode = MAINTENANCE_OUT; 8025 scsi_cmd->service_action = SET_TARGET_PORT_GROUPS; 8026 scsi_ulto4b(alloc_len, scsi_cmd->length); 8027 } 8028 8029 void 8030 scsi_create_timestamp(uint8_t *timestamp_6b_buf, 8031 uint64_t timestamp) 8032 { 8033 uint8_t buf[8]; 8034 scsi_u64to8b(timestamp, buf); 8035 /* 8036 * Using memcopy starting at buf[2] because the set timestamp parameters 8037 * only has six bytes for the timestamp to fit into, and we don't have a 8038 * scsi_u64to6b function. 8039 */ 8040 memcpy(timestamp_6b_buf, &buf[2], 6); 8041 } 8042 8043 void 8044 scsi_set_timestamp(struct ccb_scsiio *csio, u_int32_t retries, 8045 void (*cbfcnp)(struct cam_periph *, union ccb *), 8046 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 8047 u_int8_t sense_len, u_int32_t timeout) 8048 { 8049 struct scsi_timestamp *scsi_cmd; 8050 8051 cam_fill_csio(csio, 8052 retries, 8053 cbfcnp, 8054 /*flags*/CAM_DIR_OUT, 8055 tag_action, 8056 /*data_ptr*/(u_int8_t *) buf, 8057 /*dxfer_len*/alloc_len, 8058 sense_len, 8059 sizeof(*scsi_cmd), 8060 timeout); 8061 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 8062 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8063 scsi_cmd->opcode = MAINTENANCE_OUT; 8064 scsi_cmd->service_action = SET_TIMESTAMP; 8065 scsi_ulto4b(alloc_len, scsi_cmd->length); 8066 } 8067 8068 /* 8069 * Syncronize the media to the contents of the cache for 8070 * the given lba/count pair. Specifying 0/0 means sync 8071 * the whole cache. 8072 */ 8073 void 8074 scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries, 8075 void (*cbfcnp)(struct cam_periph *, union ccb *), 8076 u_int8_t tag_action, u_int32_t begin_lba, 8077 u_int16_t lb_count, u_int8_t sense_len, 8078 u_int32_t timeout) 8079 { 8080 struct scsi_sync_cache *scsi_cmd; 8081 8082 cam_fill_csio(csio, 8083 retries, 8084 cbfcnp, 8085 /*flags*/CAM_DIR_NONE, 8086 tag_action, 8087 /*data_ptr*/NULL, 8088 /*dxfer_len*/0, 8089 sense_len, 8090 sizeof(*scsi_cmd), 8091 timeout); 8092 8093 scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes; 8094 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8095 scsi_cmd->opcode = SYNCHRONIZE_CACHE; 8096 scsi_ulto4b(begin_lba, scsi_cmd->begin_lba); 8097 scsi_ulto2b(lb_count, scsi_cmd->lb_count); 8098 } 8099 8100 void 8101 scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries, 8102 void (*cbfcnp)(struct cam_periph *, union ccb *), 8103 u_int8_t tag_action, int readop, u_int8_t byte2, 8104 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8105 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8106 u_int32_t timeout) 8107 { 8108 int read; 8109 u_int8_t cdb_len; 8110 8111 read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ; 8112 8113 /* 8114 * Use the smallest possible command to perform the operation 8115 * as some legacy hardware does not support the 10 byte commands. 8116 * If any of the bits in byte2 is set, we have to go with a larger 8117 * command. 8118 */ 8119 if ((minimum_cmd_size < 10) 8120 && ((lba & 0x1fffff) == lba) 8121 && ((block_count & 0xff) == block_count) 8122 && (byte2 == 0)) { 8123 /* 8124 * We can fit in a 6 byte cdb. 8125 */ 8126 struct scsi_rw_6 *scsi_cmd; 8127 8128 scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes; 8129 scsi_cmd->opcode = read ? READ_6 : WRITE_6; 8130 scsi_ulto3b(lba, scsi_cmd->addr); 8131 scsi_cmd->length = block_count & 0xff; 8132 scsi_cmd->control = 0; 8133 cdb_len = sizeof(*scsi_cmd); 8134 8135 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8136 ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0], 8137 scsi_cmd->addr[1], scsi_cmd->addr[2], 8138 scsi_cmd->length, dxfer_len)); 8139 } else if ((minimum_cmd_size < 12) 8140 && ((block_count & 0xffff) == block_count) 8141 && ((lba & 0xffffffff) == lba)) { 8142 /* 8143 * Need a 10 byte cdb. 8144 */ 8145 struct scsi_rw_10 *scsi_cmd; 8146 8147 scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes; 8148 scsi_cmd->opcode = read ? READ_10 : WRITE_10; 8149 scsi_cmd->byte2 = byte2; 8150 scsi_ulto4b(lba, scsi_cmd->addr); 8151 scsi_cmd->reserved = 0; 8152 scsi_ulto2b(block_count, scsi_cmd->length); 8153 scsi_cmd->control = 0; 8154 cdb_len = sizeof(*scsi_cmd); 8155 8156 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8157 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8158 scsi_cmd->addr[1], scsi_cmd->addr[2], 8159 scsi_cmd->addr[3], scsi_cmd->length[0], 8160 scsi_cmd->length[1], dxfer_len)); 8161 } else if ((minimum_cmd_size < 16) 8162 && ((block_count & 0xffffffff) == block_count) 8163 && ((lba & 0xffffffff) == lba)) { 8164 /* 8165 * The block count is too big for a 10 byte CDB, use a 12 8166 * byte CDB. 8167 */ 8168 struct scsi_rw_12 *scsi_cmd; 8169 8170 scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes; 8171 scsi_cmd->opcode = read ? READ_12 : WRITE_12; 8172 scsi_cmd->byte2 = byte2; 8173 scsi_ulto4b(lba, scsi_cmd->addr); 8174 scsi_cmd->reserved = 0; 8175 scsi_ulto4b(block_count, scsi_cmd->length); 8176 scsi_cmd->control = 0; 8177 cdb_len = sizeof(*scsi_cmd); 8178 8179 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8180 ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0], 8181 scsi_cmd->addr[1], scsi_cmd->addr[2], 8182 scsi_cmd->addr[3], scsi_cmd->length[0], 8183 scsi_cmd->length[1], scsi_cmd->length[2], 8184 scsi_cmd->length[3], dxfer_len)); 8185 } else { 8186 /* 8187 * 16 byte CDB. We'll only get here if the LBA is larger 8188 * than 2^32, or if the user asks for a 16 byte command. 8189 */ 8190 struct scsi_rw_16 *scsi_cmd; 8191 8192 scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes; 8193 scsi_cmd->opcode = read ? READ_16 : WRITE_16; 8194 scsi_cmd->byte2 = byte2; 8195 scsi_u64to8b(lba, scsi_cmd->addr); 8196 scsi_cmd->reserved = 0; 8197 scsi_ulto4b(block_count, scsi_cmd->length); 8198 scsi_cmd->control = 0; 8199 cdb_len = sizeof(*scsi_cmd); 8200 } 8201 cam_fill_csio(csio, 8202 retries, 8203 cbfcnp, 8204 (read ? CAM_DIR_IN : CAM_DIR_OUT) | 8205 ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0), 8206 tag_action, 8207 data_ptr, 8208 dxfer_len, 8209 sense_len, 8210 cdb_len, 8211 timeout); 8212 } 8213 8214 void 8215 scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries, 8216 void (*cbfcnp)(struct cam_periph *, union ccb *), 8217 u_int8_t tag_action, u_int8_t byte2, 8218 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8219 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8220 u_int32_t timeout) 8221 { 8222 u_int8_t cdb_len; 8223 if ((minimum_cmd_size < 16) && 8224 ((block_count & 0xffff) == block_count) && 8225 ((lba & 0xffffffff) == lba)) { 8226 /* 8227 * Need a 10 byte cdb. 8228 */ 8229 struct scsi_write_same_10 *scsi_cmd; 8230 8231 scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes; 8232 scsi_cmd->opcode = WRITE_SAME_10; 8233 scsi_cmd->byte2 = byte2; 8234 scsi_ulto4b(lba, scsi_cmd->addr); 8235 scsi_cmd->group = 0; 8236 scsi_ulto2b(block_count, scsi_cmd->length); 8237 scsi_cmd->control = 0; 8238 cdb_len = sizeof(*scsi_cmd); 8239 8240 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8241 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8242 scsi_cmd->addr[1], scsi_cmd->addr[2], 8243 scsi_cmd->addr[3], scsi_cmd->length[0], 8244 scsi_cmd->length[1], dxfer_len)); 8245 } else { 8246 /* 8247 * 16 byte CDB. We'll only get here if the LBA is larger 8248 * than 2^32, or if the user asks for a 16 byte command. 8249 */ 8250 struct scsi_write_same_16 *scsi_cmd; 8251 8252 scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes; 8253 scsi_cmd->opcode = WRITE_SAME_16; 8254 scsi_cmd->byte2 = byte2; 8255 scsi_u64to8b(lba, scsi_cmd->addr); 8256 scsi_ulto4b(block_count, scsi_cmd->length); 8257 scsi_cmd->group = 0; 8258 scsi_cmd->control = 0; 8259 cdb_len = sizeof(*scsi_cmd); 8260 8261 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8262 ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n", 8263 scsi_cmd->addr[0], scsi_cmd->addr[1], 8264 scsi_cmd->addr[2], scsi_cmd->addr[3], 8265 scsi_cmd->addr[4], scsi_cmd->addr[5], 8266 scsi_cmd->addr[6], scsi_cmd->addr[7], 8267 scsi_cmd->length[0], scsi_cmd->length[1], 8268 scsi_cmd->length[2], scsi_cmd->length[3], 8269 dxfer_len)); 8270 } 8271 cam_fill_csio(csio, 8272 retries, 8273 cbfcnp, 8274 /*flags*/CAM_DIR_OUT, 8275 tag_action, 8276 data_ptr, 8277 dxfer_len, 8278 sense_len, 8279 cdb_len, 8280 timeout); 8281 } 8282 8283 void 8284 scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries, 8285 void (*cbfcnp)(struct cam_periph *, union ccb *), 8286 u_int8_t tag_action, u_int8_t *data_ptr, 8287 u_int16_t dxfer_len, u_int8_t sense_len, 8288 u_int32_t timeout) 8289 { 8290 scsi_ata_pass(csio, 8291 retries, 8292 cbfcnp, 8293 /*flags*/CAM_DIR_IN, 8294 tag_action, 8295 /*protocol*/AP_PROTO_PIO_IN, 8296 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8297 AP_FLAG_BYT_BLOK_BLOCKS | 8298 AP_FLAG_TLEN_SECT_CNT, 8299 /*features*/0, 8300 /*sector_count*/dxfer_len / 512, 8301 /*lba*/0, 8302 /*command*/ATA_ATA_IDENTIFY, 8303 /*device*/ 0, 8304 /*icc*/ 0, 8305 /*auxiliary*/ 0, 8306 /*control*/0, 8307 data_ptr, 8308 dxfer_len, 8309 /*cdb_storage*/ NULL, 8310 /*cdb_storage_len*/ 0, 8311 /*minimum_cmd_size*/ 0, 8312 sense_len, 8313 timeout); 8314 } 8315 8316 void 8317 scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries, 8318 void (*cbfcnp)(struct cam_periph *, union ccb *), 8319 u_int8_t tag_action, u_int16_t block_count, 8320 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8321 u_int32_t timeout) 8322 { 8323 scsi_ata_pass_16(csio, 8324 retries, 8325 cbfcnp, 8326 /*flags*/CAM_DIR_OUT, 8327 tag_action, 8328 /*protocol*/AP_EXTEND|AP_PROTO_DMA, 8329 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS, 8330 /*features*/ATA_DSM_TRIM, 8331 /*sector_count*/block_count, 8332 /*lba*/0, 8333 /*command*/ATA_DATA_SET_MANAGEMENT, 8334 /*control*/0, 8335 data_ptr, 8336 dxfer_len, 8337 sense_len, 8338 timeout); 8339 } 8340 8341 int 8342 scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries, 8343 void (*cbfcnp)(struct cam_periph *, union ccb *), 8344 uint8_t tag_action, uint32_t log_address, 8345 uint32_t page_number, uint16_t block_count, 8346 uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len, 8347 uint8_t sense_len, uint32_t timeout) 8348 { 8349 uint8_t command, protocol_out; 8350 uint16_t count_out; 8351 uint64_t lba; 8352 int retval; 8353 8354 retval = 0; 8355 8356 switch (protocol) { 8357 case AP_PROTO_DMA: 8358 count_out = block_count; 8359 command = ATA_READ_LOG_DMA_EXT; 8360 protocol_out = AP_PROTO_DMA; 8361 break; 8362 case AP_PROTO_PIO_IN: 8363 default: 8364 count_out = block_count; 8365 command = ATA_READ_LOG_EXT; 8366 protocol_out = AP_PROTO_PIO_IN; 8367 break; 8368 } 8369 8370 lba = (((uint64_t)page_number & 0xff00) << 32) | 8371 ((page_number & 0x00ff) << 8) | 8372 (log_address & 0xff); 8373 8374 protocol_out |= AP_EXTEND; 8375 8376 retval = scsi_ata_pass(csio, 8377 retries, 8378 cbfcnp, 8379 /*flags*/CAM_DIR_IN, 8380 tag_action, 8381 /*protocol*/ protocol_out, 8382 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT | 8383 AP_FLAG_BYT_BLOK_BLOCKS | 8384 AP_FLAG_TDIR_FROM_DEV, 8385 /*feature*/ 0, 8386 /*sector_count*/ count_out, 8387 /*lba*/ lba, 8388 /*command*/ command, 8389 /*device*/ 0, 8390 /*icc*/ 0, 8391 /*auxiliary*/ 0, 8392 /*control*/0, 8393 data_ptr, 8394 dxfer_len, 8395 /*cdb_storage*/ NULL, 8396 /*cdb_storage_len*/ 0, 8397 /*minimum_cmd_size*/ 0, 8398 sense_len, 8399 timeout); 8400 8401 return (retval); 8402 } 8403 8404 int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries, 8405 void (*cbfcnp)(struct cam_periph *, union ccb *), 8406 uint8_t tag_action, uint8_t feature, 8407 uint64_t lba, uint32_t count, 8408 uint8_t sense_len, uint32_t timeout) 8409 { 8410 return (scsi_ata_pass(csio, 8411 retries, 8412 cbfcnp, 8413 /*flags*/CAM_DIR_NONE, 8414 tag_action, 8415 /*protocol*/AP_PROTO_PIO_IN, 8416 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8417 AP_FLAG_BYT_BLOK_BYTES | 8418 AP_FLAG_TLEN_SECT_CNT, 8419 /*features*/feature, 8420 /*sector_count*/count, 8421 /*lba*/lba, 8422 /*command*/ATA_SETFEATURES, 8423 /*device*/ 0, 8424 /*icc*/ 0, 8425 /*auxiliary*/0, 8426 /*control*/0, 8427 /*data_ptr*/NULL, 8428 /*dxfer_len*/0, 8429 /*cdb_storage*/NULL, 8430 /*cdb_storage_len*/0, 8431 /*minimum_cmd_size*/0, 8432 sense_len, 8433 timeout)); 8434 } 8435 8436 /* 8437 * Note! This is an unusual CDB building function because it can return 8438 * an error in the event that the command in question requires a variable 8439 * length CDB, but the caller has not given storage space for one or has not 8440 * given enough storage space. If there is enough space available in the 8441 * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage. 8442 */ 8443 int 8444 scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries, 8445 void (*cbfcnp)(struct cam_periph *, union ccb *), 8446 uint32_t flags, uint8_t tag_action, 8447 uint8_t protocol, uint8_t ata_flags, uint16_t features, 8448 uint16_t sector_count, uint64_t lba, uint8_t command, 8449 uint8_t device, uint8_t icc, uint32_t auxiliary, 8450 uint8_t control, u_int8_t *data_ptr, uint32_t dxfer_len, 8451 uint8_t *cdb_storage, size_t cdb_storage_len, 8452 int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout) 8453 { 8454 uint32_t cam_flags; 8455 uint8_t *cdb_ptr; 8456 int cmd_size; 8457 int retval; 8458 uint8_t cdb_len; 8459 8460 retval = 0; 8461 cam_flags = flags; 8462 8463 /* 8464 * Round the user's request to the nearest command size that is at 8465 * least as big as what he requested. 8466 */ 8467 if (minimum_cmd_size <= 12) 8468 cmd_size = 12; 8469 else if (minimum_cmd_size > 16) 8470 cmd_size = 32; 8471 else 8472 cmd_size = 16; 8473 8474 /* 8475 * If we have parameters that require a 48-bit ATA command, we have to 8476 * use the 16 byte ATA PASS-THROUGH command at least. 8477 */ 8478 if (((lba > ATA_MAX_28BIT_LBA) 8479 || (sector_count > 255) 8480 || (features > 255) 8481 || (protocol & AP_EXTEND)) 8482 && ((cmd_size < 16) 8483 || ((protocol & AP_EXTEND) == 0))) { 8484 if (cmd_size < 16) 8485 cmd_size = 16; 8486 protocol |= AP_EXTEND; 8487 } 8488 8489 /* 8490 * The icc and auxiliary ATA registers are only supported in the 8491 * 32-byte version of the ATA PASS-THROUGH command. 8492 */ 8493 if ((icc != 0) 8494 || (auxiliary != 0)) { 8495 cmd_size = 32; 8496 protocol |= AP_EXTEND; 8497 } 8498 8499 if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes)) 8500 && ((cdb_storage == NULL) 8501 || (cdb_storage_len < cmd_size))) { 8502 retval = 1; 8503 goto bailout; 8504 } 8505 8506 /* 8507 * At this point we know we have enough space to store the command 8508 * in one place or another. We prefer the built-in array, but used 8509 * the passed in storage if necessary. 8510 */ 8511 if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes)) 8512 cdb_ptr = csio->cdb_io.cdb_bytes; 8513 else { 8514 cdb_ptr = cdb_storage; 8515 cam_flags |= CAM_CDB_POINTER; 8516 } 8517 8518 if (cmd_size <= 12) { 8519 struct ata_pass_12 *cdb; 8520 8521 cdb = (struct ata_pass_12 *)cdb_ptr; 8522 cdb_len = sizeof(*cdb); 8523 bzero(cdb, cdb_len); 8524 8525 cdb->opcode = ATA_PASS_12; 8526 cdb->protocol = protocol; 8527 cdb->flags = ata_flags; 8528 cdb->features = features; 8529 cdb->sector_count = sector_count; 8530 cdb->lba_low = lba & 0xff; 8531 cdb->lba_mid = (lba >> 8) & 0xff; 8532 cdb->lba_high = (lba >> 16) & 0xff; 8533 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8534 cdb->command = command; 8535 cdb->control = control; 8536 } else if (cmd_size <= 16) { 8537 struct ata_pass_16 *cdb; 8538 8539 cdb = (struct ata_pass_16 *)cdb_ptr; 8540 cdb_len = sizeof(*cdb); 8541 bzero(cdb, cdb_len); 8542 8543 cdb->opcode = ATA_PASS_16; 8544 cdb->protocol = protocol; 8545 cdb->flags = ata_flags; 8546 cdb->features = features & 0xff; 8547 cdb->sector_count = sector_count & 0xff; 8548 cdb->lba_low = lba & 0xff; 8549 cdb->lba_mid = (lba >> 8) & 0xff; 8550 cdb->lba_high = (lba >> 16) & 0xff; 8551 /* 8552 * If AP_EXTEND is set, we're sending a 48-bit command. 8553 * Otherwise it's a 28-bit command. 8554 */ 8555 if (protocol & AP_EXTEND) { 8556 cdb->lba_low_ext = (lba >> 24) & 0xff; 8557 cdb->lba_mid_ext = (lba >> 32) & 0xff; 8558 cdb->lba_high_ext = (lba >> 40) & 0xff; 8559 cdb->features_ext = (features >> 8) & 0xff; 8560 cdb->sector_count_ext = (sector_count >> 8) & 0xff; 8561 cdb->device = device | ATA_DEV_LBA; 8562 } else { 8563 cdb->lba_low_ext = (lba >> 24) & 0xf; 8564 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8565 } 8566 cdb->command = command; 8567 cdb->control = control; 8568 } else { 8569 struct ata_pass_32 *cdb; 8570 uint8_t tmp_lba[8]; 8571 8572 cdb = (struct ata_pass_32 *)cdb_ptr; 8573 cdb_len = sizeof(*cdb); 8574 bzero(cdb, cdb_len); 8575 cdb->opcode = VARIABLE_LEN_CDB; 8576 cdb->control = control; 8577 cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32, 8578 service_action); 8579 scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action); 8580 cdb->protocol = protocol; 8581 cdb->flags = ata_flags; 8582 8583 if ((protocol & AP_EXTEND) == 0) { 8584 lba &= 0x0fffffff; 8585 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8586 features &= 0xff; 8587 sector_count &= 0xff; 8588 } else { 8589 cdb->device = device | ATA_DEV_LBA; 8590 } 8591 scsi_u64to8b(lba, tmp_lba); 8592 bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba)); 8593 scsi_ulto2b(features, cdb->features); 8594 scsi_ulto2b(sector_count, cdb->count); 8595 cdb->command = command; 8596 cdb->icc = icc; 8597 scsi_ulto4b(auxiliary, cdb->auxiliary); 8598 } 8599 8600 cam_fill_csio(csio, 8601 retries, 8602 cbfcnp, 8603 cam_flags, 8604 tag_action, 8605 data_ptr, 8606 dxfer_len, 8607 sense_len, 8608 cmd_size, 8609 timeout); 8610 bailout: 8611 return (retval); 8612 } 8613 8614 void 8615 scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries, 8616 void (*cbfcnp)(struct cam_periph *, union ccb *), 8617 u_int32_t flags, u_int8_t tag_action, 8618 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features, 8619 u_int16_t sector_count, uint64_t lba, u_int8_t command, 8620 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len, 8621 u_int8_t sense_len, u_int32_t timeout) 8622 { 8623 struct ata_pass_16 *ata_cmd; 8624 8625 ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes; 8626 ata_cmd->opcode = ATA_PASS_16; 8627 ata_cmd->protocol = protocol; 8628 ata_cmd->flags = ata_flags; 8629 ata_cmd->features_ext = features >> 8; 8630 ata_cmd->features = features; 8631 ata_cmd->sector_count_ext = sector_count >> 8; 8632 ata_cmd->sector_count = sector_count; 8633 ata_cmd->lba_low = lba; 8634 ata_cmd->lba_mid = lba >> 8; 8635 ata_cmd->lba_high = lba >> 16; 8636 ata_cmd->device = ATA_DEV_LBA; 8637 if (protocol & AP_EXTEND) { 8638 ata_cmd->lba_low_ext = lba >> 24; 8639 ata_cmd->lba_mid_ext = lba >> 32; 8640 ata_cmd->lba_high_ext = lba >> 40; 8641 } else 8642 ata_cmd->device |= (lba >> 24) & 0x0f; 8643 ata_cmd->command = command; 8644 ata_cmd->control = control; 8645 8646 cam_fill_csio(csio, 8647 retries, 8648 cbfcnp, 8649 flags, 8650 tag_action, 8651 data_ptr, 8652 dxfer_len, 8653 sense_len, 8654 sizeof(*ata_cmd), 8655 timeout); 8656 } 8657 8658 void 8659 scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries, 8660 void (*cbfcnp)(struct cam_periph *, union ccb *), 8661 u_int8_t tag_action, u_int8_t byte2, 8662 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8663 u_int32_t timeout) 8664 { 8665 struct scsi_unmap *scsi_cmd; 8666 8667 scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes; 8668 scsi_cmd->opcode = UNMAP; 8669 scsi_cmd->byte2 = byte2; 8670 scsi_ulto4b(0, scsi_cmd->reserved); 8671 scsi_cmd->group = 0; 8672 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8673 scsi_cmd->control = 0; 8674 8675 cam_fill_csio(csio, 8676 retries, 8677 cbfcnp, 8678 /*flags*/CAM_DIR_OUT, 8679 tag_action, 8680 data_ptr, 8681 dxfer_len, 8682 sense_len, 8683 sizeof(*scsi_cmd), 8684 timeout); 8685 } 8686 8687 void 8688 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries, 8689 void (*cbfcnp)(struct cam_periph *, union ccb*), 8690 uint8_t tag_action, int pcv, uint8_t page_code, 8691 uint8_t *data_ptr, uint16_t allocation_length, 8692 uint8_t sense_len, uint32_t timeout) 8693 { 8694 struct scsi_receive_diag *scsi_cmd; 8695 8696 scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes; 8697 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8698 scsi_cmd->opcode = RECEIVE_DIAGNOSTIC; 8699 if (pcv) { 8700 scsi_cmd->byte2 |= SRD_PCV; 8701 scsi_cmd->page_code = page_code; 8702 } 8703 scsi_ulto2b(allocation_length, scsi_cmd->length); 8704 8705 cam_fill_csio(csio, 8706 retries, 8707 cbfcnp, 8708 /*flags*/CAM_DIR_IN, 8709 tag_action, 8710 data_ptr, 8711 allocation_length, 8712 sense_len, 8713 sizeof(*scsi_cmd), 8714 timeout); 8715 } 8716 8717 void 8718 scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries, 8719 void (*cbfcnp)(struct cam_periph *, union ccb *), 8720 uint8_t tag_action, int unit_offline, int device_offline, 8721 int self_test, int page_format, int self_test_code, 8722 uint8_t *data_ptr, uint16_t param_list_length, 8723 uint8_t sense_len, uint32_t timeout) 8724 { 8725 struct scsi_send_diag *scsi_cmd; 8726 8727 scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes; 8728 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8729 scsi_cmd->opcode = SEND_DIAGNOSTIC; 8730 8731 /* 8732 * The default self-test mode control and specific test 8733 * control are mutually exclusive. 8734 */ 8735 if (self_test) 8736 self_test_code = SSD_SELF_TEST_CODE_NONE; 8737 8738 scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT) 8739 & SSD_SELF_TEST_CODE_MASK) 8740 | (unit_offline ? SSD_UNITOFFL : 0) 8741 | (device_offline ? SSD_DEVOFFL : 0) 8742 | (self_test ? SSD_SELFTEST : 0) 8743 | (page_format ? SSD_PF : 0); 8744 scsi_ulto2b(param_list_length, scsi_cmd->length); 8745 8746 cam_fill_csio(csio, 8747 retries, 8748 cbfcnp, 8749 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8750 tag_action, 8751 data_ptr, 8752 param_list_length, 8753 sense_len, 8754 sizeof(*scsi_cmd), 8755 timeout); 8756 } 8757 8758 void 8759 scsi_get_physical_element_status(struct ccb_scsiio *csio, u_int32_t retries, 8760 void (*cbfcnp)(struct cam_periph *, union ccb *), 8761 uint8_t tag_action, uint8_t *data_ptr, 8762 uint16_t allocation_length, uint8_t report_type, 8763 uint32_t starting_element, 8764 uint8_t sense_len, uint32_t timeout) 8765 { 8766 struct scsi_get_physical_element_status *scsi_cmd; 8767 8768 scsi_cmd = (struct scsi_get_physical_element_status *)&csio->cdb_io.cdb_bytes; 8769 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8770 scsi_cmd->opcode = SERVICE_ACTION_IN; 8771 scsi_cmd->service_action = GET_PHYSICAL_ELEMENT_STATUS; 8772 scsi_ulto4b(starting_element, scsi_cmd->starting_element); 8773 scsi_ulto4b(allocation_length, scsi_cmd->allocation_length); 8774 8775 cam_fill_csio(csio, 8776 retries, 8777 cbfcnp, 8778 /*flags*/ CAM_DIR_IN, 8779 tag_action, 8780 data_ptr, 8781 allocation_length, 8782 sense_len, 8783 sizeof(*scsi_cmd), 8784 timeout); 8785 } 8786 8787 void 8788 scsi_remove_element_and_truncate(struct ccb_scsiio *csio, u_int32_t retries, 8789 void (*cbfcnp)(struct cam_periph *, union ccb *), 8790 uint8_t tag_action, 8791 uint64_t requested_capacity, uint32_t element_id, 8792 uint8_t sense_len, uint32_t timeout) 8793 { 8794 struct scsi_remove_element_and_truncate *scsi_cmd; 8795 8796 scsi_cmd = (struct scsi_remove_element_and_truncate *)&csio->cdb_io.cdb_bytes; 8797 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8798 scsi_cmd->opcode = SERVICE_ACTION_IN; 8799 scsi_cmd->service_action = REMOVE_ELEMENT_AND_TRUNCATE; 8800 scsi_u64to8b(requested_capacity, scsi_cmd->requested_capacity); 8801 scsi_ulto4b(element_id, scsi_cmd->element_identifier); 8802 8803 cam_fill_csio(csio, 8804 retries, 8805 cbfcnp, 8806 /*flags*/ CAM_DIR_OUT, 8807 tag_action, 8808 NULL, 8809 0, 8810 sense_len, 8811 sizeof(*scsi_cmd), 8812 timeout); 8813 } 8814 8815 void 8816 scsi_restore_elements_and_rebuild(struct ccb_scsiio *csio, u_int32_t retries, 8817 void (*cbfcnp)(struct cam_periph *, union ccb *), 8818 uint8_t tag_action, 8819 uint8_t sense_len, uint32_t timeout) 8820 { 8821 struct scsi_service_action_in *scsi_cmd; 8822 8823 scsi_cmd = (struct scsi_service_action_in *)&csio->cdb_io.cdb_bytes; 8824 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8825 scsi_cmd->opcode = SERVICE_ACTION_IN; 8826 scsi_cmd->service_action = RESTORE_ELEMENTS_AND_REBUILD; 8827 8828 cam_fill_csio(csio, 8829 retries, 8830 cbfcnp, 8831 /*flags*/ CAM_DIR_OUT, 8832 tag_action, 8833 NULL, 8834 0, 8835 sense_len, 8836 sizeof(*scsi_cmd), 8837 timeout); 8838 } 8839 8840 void 8841 scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8842 void (*cbfcnp)(struct cam_periph *, union ccb*), 8843 uint8_t tag_action, int mode, 8844 uint8_t buffer_id, u_int32_t offset, 8845 uint8_t *data_ptr, uint32_t allocation_length, 8846 uint8_t sense_len, uint32_t timeout) 8847 { 8848 struct scsi_read_buffer *scsi_cmd; 8849 8850 scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes; 8851 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8852 scsi_cmd->opcode = READ_BUFFER; 8853 scsi_cmd->byte2 = mode; 8854 scsi_cmd->buffer_id = buffer_id; 8855 scsi_ulto3b(offset, scsi_cmd->offset); 8856 scsi_ulto3b(allocation_length, scsi_cmd->length); 8857 8858 cam_fill_csio(csio, 8859 retries, 8860 cbfcnp, 8861 /*flags*/CAM_DIR_IN, 8862 tag_action, 8863 data_ptr, 8864 allocation_length, 8865 sense_len, 8866 sizeof(*scsi_cmd), 8867 timeout); 8868 } 8869 8870 void 8871 scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8872 void (*cbfcnp)(struct cam_periph *, union ccb *), 8873 uint8_t tag_action, int mode, 8874 uint8_t buffer_id, u_int32_t offset, 8875 uint8_t *data_ptr, uint32_t param_list_length, 8876 uint8_t sense_len, uint32_t timeout) 8877 { 8878 struct scsi_write_buffer *scsi_cmd; 8879 8880 scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes; 8881 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8882 scsi_cmd->opcode = WRITE_BUFFER; 8883 scsi_cmd->byte2 = mode; 8884 scsi_cmd->buffer_id = buffer_id; 8885 scsi_ulto3b(offset, scsi_cmd->offset); 8886 scsi_ulto3b(param_list_length, scsi_cmd->length); 8887 8888 cam_fill_csio(csio, 8889 retries, 8890 cbfcnp, 8891 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8892 tag_action, 8893 data_ptr, 8894 param_list_length, 8895 sense_len, 8896 sizeof(*scsi_cmd), 8897 timeout); 8898 } 8899 8900 void 8901 scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries, 8902 void (*cbfcnp)(struct cam_periph *, union ccb *), 8903 u_int8_t tag_action, int start, int load_eject, 8904 int immediate, u_int8_t sense_len, u_int32_t timeout) 8905 { 8906 struct scsi_start_stop_unit *scsi_cmd; 8907 int extra_flags = 0; 8908 8909 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes; 8910 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8911 scsi_cmd->opcode = START_STOP_UNIT; 8912 if (start != 0) { 8913 scsi_cmd->how |= SSS_START; 8914 /* it takes a lot of power to start a drive */ 8915 extra_flags |= CAM_HIGH_POWER; 8916 } 8917 if (load_eject != 0) 8918 scsi_cmd->how |= SSS_LOEJ; 8919 if (immediate != 0) 8920 scsi_cmd->byte2 |= SSS_IMMED; 8921 8922 cam_fill_csio(csio, 8923 retries, 8924 cbfcnp, 8925 /*flags*/CAM_DIR_NONE | extra_flags, 8926 tag_action, 8927 /*data_ptr*/NULL, 8928 /*dxfer_len*/0, 8929 sense_len, 8930 sizeof(*scsi_cmd), 8931 timeout); 8932 } 8933 8934 void 8935 scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8936 void (*cbfcnp)(struct cam_periph *, union ccb *), 8937 u_int8_t tag_action, u_int8_t service_action, 8938 uint32_t element, u_int8_t elem_type, int logical_volume, 8939 int partition, u_int32_t first_attribute, int cache, 8940 u_int8_t *data_ptr, u_int32_t length, int sense_len, 8941 u_int32_t timeout) 8942 { 8943 struct scsi_read_attribute *scsi_cmd; 8944 8945 scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes; 8946 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8947 8948 scsi_cmd->opcode = READ_ATTRIBUTE; 8949 scsi_cmd->service_action = service_action; 8950 scsi_ulto2b(element, scsi_cmd->element); 8951 scsi_cmd->elem_type = elem_type; 8952 scsi_cmd->logical_volume = logical_volume; 8953 scsi_cmd->partition = partition; 8954 scsi_ulto2b(first_attribute, scsi_cmd->first_attribute); 8955 scsi_ulto4b(length, scsi_cmd->length); 8956 if (cache != 0) 8957 scsi_cmd->cache |= SRA_CACHE; 8958 8959 cam_fill_csio(csio, 8960 retries, 8961 cbfcnp, 8962 /*flags*/CAM_DIR_IN, 8963 tag_action, 8964 /*data_ptr*/data_ptr, 8965 /*dxfer_len*/length, 8966 sense_len, 8967 sizeof(*scsi_cmd), 8968 timeout); 8969 } 8970 8971 void 8972 scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8973 void (*cbfcnp)(struct cam_periph *, union ccb *), 8974 u_int8_t tag_action, uint32_t element, int logical_volume, 8975 int partition, int wtc, u_int8_t *data_ptr, 8976 u_int32_t length, int sense_len, u_int32_t timeout) 8977 { 8978 struct scsi_write_attribute *scsi_cmd; 8979 8980 scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes; 8981 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8982 8983 scsi_cmd->opcode = WRITE_ATTRIBUTE; 8984 if (wtc != 0) 8985 scsi_cmd->byte2 = SWA_WTC; 8986 scsi_ulto3b(element, scsi_cmd->element); 8987 scsi_cmd->logical_volume = logical_volume; 8988 scsi_cmd->partition = partition; 8989 scsi_ulto4b(length, scsi_cmd->length); 8990 8991 cam_fill_csio(csio, 8992 retries, 8993 cbfcnp, 8994 /*flags*/CAM_DIR_OUT, 8995 tag_action, 8996 /*data_ptr*/data_ptr, 8997 /*dxfer_len*/length, 8998 sense_len, 8999 sizeof(*scsi_cmd), 9000 timeout); 9001 } 9002 9003 void 9004 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries, 9005 void (*cbfcnp)(struct cam_periph *, union ccb *), 9006 uint8_t tag_action, int service_action, 9007 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 9008 int timeout) 9009 { 9010 struct scsi_per_res_in *scsi_cmd; 9011 9012 scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes; 9013 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9014 9015 scsi_cmd->opcode = PERSISTENT_RES_IN; 9016 scsi_cmd->action = service_action; 9017 scsi_ulto2b(dxfer_len, scsi_cmd->length); 9018 9019 cam_fill_csio(csio, 9020 retries, 9021 cbfcnp, 9022 /*flags*/CAM_DIR_IN, 9023 tag_action, 9024 data_ptr, 9025 dxfer_len, 9026 sense_len, 9027 sizeof(*scsi_cmd), 9028 timeout); 9029 } 9030 9031 void 9032 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries, 9033 void (*cbfcnp)(struct cam_periph *, union ccb *), 9034 uint8_t tag_action, int service_action, 9035 int scope, int res_type, uint8_t *data_ptr, 9036 uint32_t dxfer_len, int sense_len, int timeout) 9037 { 9038 struct scsi_per_res_out *scsi_cmd; 9039 9040 scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes; 9041 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9042 9043 scsi_cmd->opcode = PERSISTENT_RES_OUT; 9044 scsi_cmd->action = service_action; 9045 scsi_cmd->scope_type = scope | res_type; 9046 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9047 9048 cam_fill_csio(csio, 9049 retries, 9050 cbfcnp, 9051 /*flags*/CAM_DIR_OUT, 9052 tag_action, 9053 /*data_ptr*/data_ptr, 9054 /*dxfer_len*/dxfer_len, 9055 sense_len, 9056 sizeof(*scsi_cmd), 9057 timeout); 9058 } 9059 9060 void 9061 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries, 9062 void (*cbfcnp)(struct cam_periph *, union ccb *), 9063 uint8_t tag_action, uint32_t security_protocol, 9064 uint32_t security_protocol_specific, int byte4, 9065 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 9066 int timeout) 9067 { 9068 struct scsi_security_protocol_in *scsi_cmd; 9069 9070 scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes; 9071 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9072 9073 scsi_cmd->opcode = SECURITY_PROTOCOL_IN; 9074 9075 scsi_cmd->security_protocol = security_protocol; 9076 scsi_ulto2b(security_protocol_specific, 9077 scsi_cmd->security_protocol_specific); 9078 scsi_cmd->byte4 = byte4; 9079 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9080 9081 cam_fill_csio(csio, 9082 retries, 9083 cbfcnp, 9084 /*flags*/CAM_DIR_IN, 9085 tag_action, 9086 data_ptr, 9087 dxfer_len, 9088 sense_len, 9089 sizeof(*scsi_cmd), 9090 timeout); 9091 } 9092 9093 void 9094 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries, 9095 void (*cbfcnp)(struct cam_periph *, union ccb *), 9096 uint8_t tag_action, uint32_t security_protocol, 9097 uint32_t security_protocol_specific, int byte4, 9098 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 9099 int timeout) 9100 { 9101 struct scsi_security_protocol_out *scsi_cmd; 9102 9103 scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes; 9104 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9105 9106 scsi_cmd->opcode = SECURITY_PROTOCOL_OUT; 9107 9108 scsi_cmd->security_protocol = security_protocol; 9109 scsi_ulto2b(security_protocol_specific, 9110 scsi_cmd->security_protocol_specific); 9111 scsi_cmd->byte4 = byte4; 9112 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9113 9114 cam_fill_csio(csio, 9115 retries, 9116 cbfcnp, 9117 /*flags*/CAM_DIR_OUT, 9118 tag_action, 9119 data_ptr, 9120 dxfer_len, 9121 sense_len, 9122 sizeof(*scsi_cmd), 9123 timeout); 9124 } 9125 9126 void 9127 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries, 9128 void (*cbfcnp)(struct cam_periph *, union ccb *), 9129 uint8_t tag_action, int options, int req_opcode, 9130 int req_service_action, uint8_t *data_ptr, 9131 uint32_t dxfer_len, int sense_len, int timeout) 9132 { 9133 struct scsi_report_supported_opcodes *scsi_cmd; 9134 9135 scsi_cmd = (struct scsi_report_supported_opcodes *) 9136 &csio->cdb_io.cdb_bytes; 9137 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9138 9139 scsi_cmd->opcode = MAINTENANCE_IN; 9140 scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES; 9141 scsi_cmd->options = options; 9142 scsi_cmd->requested_opcode = req_opcode; 9143 scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action); 9144 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9145 9146 cam_fill_csio(csio, 9147 retries, 9148 cbfcnp, 9149 /*flags*/CAM_DIR_IN, 9150 tag_action, 9151 data_ptr, 9152 dxfer_len, 9153 sense_len, 9154 sizeof(*scsi_cmd), 9155 timeout); 9156 } 9157 9158 /* 9159 * Try make as good a match as possible with 9160 * available sub drivers 9161 */ 9162 int 9163 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9164 { 9165 struct scsi_inquiry_pattern *entry; 9166 struct scsi_inquiry_data *inq; 9167 9168 entry = (struct scsi_inquiry_pattern *)table_entry; 9169 inq = (struct scsi_inquiry_data *)inqbuffer; 9170 9171 if (((SID_TYPE(inq) == entry->type) 9172 || (entry->type == T_ANY)) 9173 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9174 : entry->media_type & SIP_MEDIA_FIXED) 9175 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9176 && (cam_strmatch(inq->product, entry->product, 9177 sizeof(inq->product)) == 0) 9178 && (cam_strmatch(inq->revision, entry->revision, 9179 sizeof(inq->revision)) == 0)) { 9180 return (0); 9181 } 9182 return (-1); 9183 } 9184 9185 /* 9186 * Try make as good a match as possible with 9187 * available sub drivers 9188 */ 9189 int 9190 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9191 { 9192 struct scsi_static_inquiry_pattern *entry; 9193 struct scsi_inquiry_data *inq; 9194 9195 entry = (struct scsi_static_inquiry_pattern *)table_entry; 9196 inq = (struct scsi_inquiry_data *)inqbuffer; 9197 9198 if (((SID_TYPE(inq) == entry->type) 9199 || (entry->type == T_ANY)) 9200 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9201 : entry->media_type & SIP_MEDIA_FIXED) 9202 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9203 && (cam_strmatch(inq->product, entry->product, 9204 sizeof(inq->product)) == 0) 9205 && (cam_strmatch(inq->revision, entry->revision, 9206 sizeof(inq->revision)) == 0)) { 9207 return (0); 9208 } 9209 return (-1); 9210 } 9211 9212 /** 9213 * Compare two buffers of vpd device descriptors for a match. 9214 * 9215 * \param lhs Pointer to first buffer of descriptors to compare. 9216 * \param lhs_len The length of the first buffer. 9217 * \param rhs Pointer to second buffer of descriptors to compare. 9218 * \param rhs_len The length of the second buffer. 9219 * 9220 * \return 0 on a match, -1 otherwise. 9221 * 9222 * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching 9223 * against each element in rhs until all data are exhausted or we have found 9224 * a match. 9225 */ 9226 int 9227 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len) 9228 { 9229 struct scsi_vpd_id_descriptor *lhs_id; 9230 struct scsi_vpd_id_descriptor *lhs_last; 9231 struct scsi_vpd_id_descriptor *rhs_last; 9232 uint8_t *lhs_end; 9233 uint8_t *rhs_end; 9234 9235 lhs_end = lhs + lhs_len; 9236 rhs_end = rhs + rhs_len; 9237 9238 /* 9239 * rhs_last and lhs_last are the last possible position of a valid 9240 * descriptor assuming it had a zero length identifier. We use 9241 * these variables to insure we can safely dereference the length 9242 * field in our loop termination tests. 9243 */ 9244 lhs_last = (struct scsi_vpd_id_descriptor *) 9245 (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9246 rhs_last = (struct scsi_vpd_id_descriptor *) 9247 (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9248 9249 lhs_id = (struct scsi_vpd_id_descriptor *)lhs; 9250 while (lhs_id <= lhs_last 9251 && (lhs_id->identifier + lhs_id->length) <= lhs_end) { 9252 struct scsi_vpd_id_descriptor *rhs_id; 9253 9254 rhs_id = (struct scsi_vpd_id_descriptor *)rhs; 9255 while (rhs_id <= rhs_last 9256 && (rhs_id->identifier + rhs_id->length) <= rhs_end) { 9257 if ((rhs_id->id_type & 9258 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) == 9259 (lhs_id->id_type & 9260 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) 9261 && rhs_id->length == lhs_id->length 9262 && memcmp(rhs_id->identifier, lhs_id->identifier, 9263 rhs_id->length) == 0) 9264 return (0); 9265 9266 rhs_id = (struct scsi_vpd_id_descriptor *) 9267 (rhs_id->identifier + rhs_id->length); 9268 } 9269 lhs_id = (struct scsi_vpd_id_descriptor *) 9270 (lhs_id->identifier + lhs_id->length); 9271 } 9272 return (-1); 9273 } 9274 9275 #ifdef _KERNEL 9276 int 9277 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id) 9278 { 9279 struct cam_ed *device; 9280 struct scsi_vpd_supported_pages *vpds; 9281 int i, num_pages; 9282 9283 device = periph->path->device; 9284 vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds; 9285 9286 if (vpds != NULL) { 9287 num_pages = device->supported_vpds_len - 9288 SVPD_SUPPORTED_PAGES_HDR_LEN; 9289 for (i = 0; i < num_pages; i++) { 9290 if (vpds->page_list[i] == page_id) 9291 return (1); 9292 } 9293 } 9294 9295 return (0); 9296 } 9297 9298 static void 9299 init_scsi_delay(void) 9300 { 9301 int delay; 9302 9303 delay = SCSI_DELAY; 9304 TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay); 9305 9306 if (set_scsi_delay(delay) != 0) { 9307 printf("cam: invalid value for tunable kern.cam.scsi_delay\n"); 9308 set_scsi_delay(SCSI_DELAY); 9309 } 9310 } 9311 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL); 9312 9313 static int 9314 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS) 9315 { 9316 int error, delay; 9317 9318 delay = scsi_delay; 9319 error = sysctl_handle_int(oidp, &delay, 0, req); 9320 if (error != 0 || req->newptr == NULL) 9321 return (error); 9322 return (set_scsi_delay(delay)); 9323 } 9324 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, 9325 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, sysctl_scsi_delay, "I", 9326 "Delay to allow devices to settle after a SCSI bus reset (ms)"); 9327 9328 static int 9329 set_scsi_delay(int delay) 9330 { 9331 /* 9332 * If someone sets this to 0, we assume that they want the 9333 * minimum allowable bus settle delay. 9334 */ 9335 if (delay == 0) { 9336 printf("cam: using minimum scsi_delay (%dms)\n", 9337 SCSI_MIN_DELAY); 9338 delay = SCSI_MIN_DELAY; 9339 } 9340 if (delay < SCSI_MIN_DELAY) 9341 return (EINVAL); 9342 scsi_delay = delay; 9343 return (0); 9344 } 9345 #endif /* _KERNEL */ 9346