xref: /freebsd/sys/cam/cam_xpt.c (revision b0d29bc47dba79f6f38e67eabadfb4b32ffd9390)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5  *
6  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification, immediately at the beginning of the file.
16  * 2. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_printf.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/bio.h>
39 #include <sys/bus.h>
40 #include <sys/systm.h>
41 #include <sys/types.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/time.h>
45 #include <sys/conf.h>
46 #include <sys/fcntl.h>
47 #include <sys/proc.h>
48 #include <sys/sbuf.h>
49 #include <sys/smp.h>
50 #include <sys/taskqueue.h>
51 
52 #include <sys/lock.h>
53 #include <sys/mutex.h>
54 #include <sys/sysctl.h>
55 #include <sys/kthread.h>
56 
57 #include <cam/cam.h>
58 #include <cam/cam_ccb.h>
59 #include <cam/cam_iosched.h>
60 #include <cam/cam_periph.h>
61 #include <cam/cam_queue.h>
62 #include <cam/cam_sim.h>
63 #include <cam/cam_xpt.h>
64 #include <cam/cam_xpt_sim.h>
65 #include <cam/cam_xpt_periph.h>
66 #include <cam/cam_xpt_internal.h>
67 #include <cam/cam_debug.h>
68 #include <cam/cam_compat.h>
69 
70 #include <cam/scsi/scsi_all.h>
71 #include <cam/scsi/scsi_message.h>
72 #include <cam/scsi/scsi_pass.h>
73 
74 #include <machine/md_var.h>	/* geometry translation */
75 #include <machine/stdarg.h>	/* for xpt_print below */
76 
77 #include "opt_cam.h"
78 
79 /* Wild guess based on not wanting to grow the stack too much */
80 #define XPT_PRINT_MAXLEN	512
81 #ifdef PRINTF_BUFR_SIZE
82 #define XPT_PRINT_LEN	PRINTF_BUFR_SIZE
83 #else
84 #define XPT_PRINT_LEN	128
85 #endif
86 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
87 
88 /*
89  * This is the maximum number of high powered commands (e.g. start unit)
90  * that can be outstanding at a particular time.
91  */
92 #ifndef CAM_MAX_HIGHPOWER
93 #define CAM_MAX_HIGHPOWER  4
94 #endif
95 
96 /* Datastructures internal to the xpt layer */
97 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
98 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
99 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
100 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
101 
102 struct xpt_softc {
103 	uint32_t		xpt_generation;
104 
105 	/* number of high powered commands that can go through right now */
106 	struct mtx		xpt_highpower_lock;
107 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
108 	int			num_highpower;
109 
110 	/* queue for handling async rescan requests. */
111 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
112 	int buses_to_config;
113 	int buses_config_done;
114 	int announce_nosbuf;
115 
116 	/*
117 	 * Registered buses
118 	 *
119 	 * N.B., "busses" is an archaic spelling of "buses".  In new code
120 	 * "buses" is preferred.
121 	 */
122 	TAILQ_HEAD(,cam_eb)	xpt_busses;
123 	u_int			bus_generation;
124 
125 	int			boot_delay;
126 	struct callout 		boot_callout;
127 	struct task		boot_task;
128 	struct root_hold_token	xpt_rootmount;
129 
130 	struct mtx		xpt_topo_lock;
131 	struct taskqueue	*xpt_taskq;
132 };
133 
134 typedef enum {
135 	DM_RET_COPY		= 0x01,
136 	DM_RET_FLAG_MASK	= 0x0f,
137 	DM_RET_NONE		= 0x00,
138 	DM_RET_STOP		= 0x10,
139 	DM_RET_DESCEND		= 0x20,
140 	DM_RET_ERROR		= 0x30,
141 	DM_RET_ACTION_MASK	= 0xf0
142 } dev_match_ret;
143 
144 typedef enum {
145 	XPT_DEPTH_BUS,
146 	XPT_DEPTH_TARGET,
147 	XPT_DEPTH_DEVICE,
148 	XPT_DEPTH_PERIPH
149 } xpt_traverse_depth;
150 
151 struct xpt_traverse_config {
152 	xpt_traverse_depth	depth;
153 	void			*tr_func;
154 	void			*tr_arg;
155 };
156 
157 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
158 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
159 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
160 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
161 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
162 
163 /* Transport layer configuration information */
164 static struct xpt_softc xsoftc;
165 
166 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
167 
168 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
169            &xsoftc.boot_delay, 0, "Bus registration wait time");
170 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
171 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
172 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN,
173 	    &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements");
174 
175 struct cam_doneq {
176 	struct mtx_padalign	cam_doneq_mtx;
177 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
178 	int			cam_doneq_sleep;
179 };
180 
181 static struct cam_doneq cam_doneqs[MAXCPU];
182 static int cam_num_doneqs;
183 static struct proc *cam_proc;
184 
185 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
186            &cam_num_doneqs, 0, "Number of completion queues/threads");
187 
188 struct cam_periph *xpt_periph;
189 
190 static periph_init_t xpt_periph_init;
191 
192 static struct periph_driver xpt_driver =
193 {
194 	xpt_periph_init, "xpt",
195 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
196 	CAM_PERIPH_DRV_EARLY
197 };
198 
199 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
200 
201 static d_open_t xptopen;
202 static d_close_t xptclose;
203 static d_ioctl_t xptioctl;
204 static d_ioctl_t xptdoioctl;
205 
206 static struct cdevsw xpt_cdevsw = {
207 	.d_version =	D_VERSION,
208 	.d_flags =	0,
209 	.d_open =	xptopen,
210 	.d_close =	xptclose,
211 	.d_ioctl =	xptioctl,
212 	.d_name =	"xpt",
213 };
214 
215 /* Storage for debugging datastructures */
216 struct cam_path *cam_dpath;
217 u_int32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS;
218 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
219 	&cam_dflags, 0, "Enabled debug flags");
220 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
221 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
222 	&cam_debug_delay, 0, "Delay in us after each debug message");
223 
224 /* Our boot-time initialization hook */
225 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
226 
227 static moduledata_t cam_moduledata = {
228 	"cam",
229 	cam_module_event_handler,
230 	NULL
231 };
232 
233 static int	xpt_init(void *);
234 
235 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
236 MODULE_VERSION(cam, 1);
237 
238 
239 static void		xpt_async_bcast(struct async_list *async_head,
240 					u_int32_t async_code,
241 					struct cam_path *path,
242 					void *async_arg);
243 static path_id_t xptnextfreepathid(void);
244 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
245 static union ccb *xpt_get_ccb(struct cam_periph *periph);
246 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
247 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
248 static void	 xpt_run_allocq_task(void *context, int pending);
249 static void	 xpt_run_devq(struct cam_devq *devq);
250 static callout_func_t xpt_release_devq_timeout;
251 static void	 xpt_acquire_bus(struct cam_eb *bus);
252 static void	 xpt_release_bus(struct cam_eb *bus);
253 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
254 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
255 		    int run_queue);
256 static struct cam_et*
257 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
258 static void	 xpt_acquire_target(struct cam_et *target);
259 static void	 xpt_release_target(struct cam_et *target);
260 static struct cam_eb*
261 		 xpt_find_bus(path_id_t path_id);
262 static struct cam_et*
263 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
264 static struct cam_ed*
265 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
266 static void	 xpt_config(void *arg);
267 static void	 xpt_hold_boot_locked(void);
268 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
269 				 u_int32_t new_priority);
270 static xpt_devicefunc_t xptpassannouncefunc;
271 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
272 static void	 xptpoll(struct cam_sim *sim);
273 static void	 camisr_runqueue(void);
274 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
275 static void	 xpt_done_td(void *);
276 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
277 				    u_int num_patterns, struct cam_eb *bus);
278 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
279 				       u_int num_patterns,
280 				       struct cam_ed *device);
281 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
282 				       u_int num_patterns,
283 				       struct cam_periph *periph);
284 static xpt_busfunc_t	xptedtbusfunc;
285 static xpt_targetfunc_t	xptedttargetfunc;
286 static xpt_devicefunc_t	xptedtdevicefunc;
287 static xpt_periphfunc_t	xptedtperiphfunc;
288 static xpt_pdrvfunc_t	xptplistpdrvfunc;
289 static xpt_periphfunc_t	xptplistperiphfunc;
290 static int		xptedtmatch(struct ccb_dev_match *cdm);
291 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
292 static int		xptbustraverse(struct cam_eb *start_bus,
293 				       xpt_busfunc_t *tr_func, void *arg);
294 static int		xpttargettraverse(struct cam_eb *bus,
295 					  struct cam_et *start_target,
296 					  xpt_targetfunc_t *tr_func, void *arg);
297 static int		xptdevicetraverse(struct cam_et *target,
298 					  struct cam_ed *start_device,
299 					  xpt_devicefunc_t *tr_func, void *arg);
300 static int		xptperiphtraverse(struct cam_ed *device,
301 					  struct cam_periph *start_periph,
302 					  xpt_periphfunc_t *tr_func, void *arg);
303 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
304 					xpt_pdrvfunc_t *tr_func, void *arg);
305 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
306 					    struct cam_periph *start_periph,
307 					    xpt_periphfunc_t *tr_func,
308 					    void *arg);
309 static xpt_busfunc_t	xptdefbusfunc;
310 static xpt_targetfunc_t	xptdeftargetfunc;
311 static xpt_devicefunc_t	xptdefdevicefunc;
312 static xpt_periphfunc_t	xptdefperiphfunc;
313 static void		xpt_finishconfig_task(void *context, int pending);
314 static void		xpt_dev_async_default(u_int32_t async_code,
315 					      struct cam_eb *bus,
316 					      struct cam_et *target,
317 					      struct cam_ed *device,
318 					      void *async_arg);
319 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
320 						 struct cam_et *target,
321 						 lun_id_t lun_id);
322 static xpt_devicefunc_t	xptsetasyncfunc;
323 static xpt_busfunc_t	xptsetasyncbusfunc;
324 static cam_status	xptregister(struct cam_periph *periph,
325 				    void *arg);
326 
327 static __inline int
328 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
329 {
330 	int	retval;
331 
332 	mtx_assert(&devq->send_mtx, MA_OWNED);
333 	if ((dev->ccbq.queue.entries > 0) &&
334 	    (dev->ccbq.dev_openings > 0) &&
335 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
336 		/*
337 		 * The priority of a device waiting for controller
338 		 * resources is that of the highest priority CCB
339 		 * enqueued.
340 		 */
341 		retval =
342 		    xpt_schedule_dev(&devq->send_queue,
343 				     &dev->devq_entry,
344 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
345 	} else {
346 		retval = 0;
347 	}
348 	return (retval);
349 }
350 
351 static __inline int
352 device_is_queued(struct cam_ed *device)
353 {
354 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
355 }
356 
357 static void
358 xpt_periph_init()
359 {
360 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
361 }
362 
363 static int
364 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
365 {
366 
367 	/*
368 	 * Only allow read-write access.
369 	 */
370 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
371 		return(EPERM);
372 
373 	/*
374 	 * We don't allow nonblocking access.
375 	 */
376 	if ((flags & O_NONBLOCK) != 0) {
377 		printf("%s: can't do nonblocking access\n", devtoname(dev));
378 		return(ENODEV);
379 	}
380 
381 	return(0);
382 }
383 
384 static int
385 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
386 {
387 
388 	return(0);
389 }
390 
391 /*
392  * Don't automatically grab the xpt softc lock here even though this is going
393  * through the xpt device.  The xpt device is really just a back door for
394  * accessing other devices and SIMs, so the right thing to do is to grab
395  * the appropriate SIM lock once the bus/SIM is located.
396  */
397 static int
398 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
399 {
400 	int error;
401 
402 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
403 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
404 	}
405 	return (error);
406 }
407 
408 static int
409 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
410 {
411 	int error;
412 
413 	error = 0;
414 
415 	switch(cmd) {
416 	/*
417 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
418 	 * to accept CCB types that don't quite make sense to send through a
419 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
420 	 * in the CAM spec.
421 	 */
422 	case CAMIOCOMMAND: {
423 		union ccb *ccb;
424 		union ccb *inccb;
425 		struct cam_eb *bus;
426 
427 		inccb = (union ccb *)addr;
428 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
429 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
430 			inccb->csio.bio = NULL;
431 #endif
432 
433 		if (inccb->ccb_h.flags & CAM_UNLOCKED)
434 			return (EINVAL);
435 
436 		bus = xpt_find_bus(inccb->ccb_h.path_id);
437 		if (bus == NULL)
438 			return (EINVAL);
439 
440 		switch (inccb->ccb_h.func_code) {
441 		case XPT_SCAN_BUS:
442 		case XPT_RESET_BUS:
443 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
444 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
445 				xpt_release_bus(bus);
446 				return (EINVAL);
447 			}
448 			break;
449 		case XPT_SCAN_TGT:
450 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
451 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
452 				xpt_release_bus(bus);
453 				return (EINVAL);
454 			}
455 			break;
456 		default:
457 			break;
458 		}
459 
460 		switch(inccb->ccb_h.func_code) {
461 		case XPT_SCAN_BUS:
462 		case XPT_RESET_BUS:
463 		case XPT_PATH_INQ:
464 		case XPT_ENG_INQ:
465 		case XPT_SCAN_LUN:
466 		case XPT_SCAN_TGT:
467 
468 			ccb = xpt_alloc_ccb();
469 
470 			/*
471 			 * Create a path using the bus, target, and lun the
472 			 * user passed in.
473 			 */
474 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
475 					    inccb->ccb_h.path_id,
476 					    inccb->ccb_h.target_id,
477 					    inccb->ccb_h.target_lun) !=
478 					    CAM_REQ_CMP){
479 				error = EINVAL;
480 				xpt_free_ccb(ccb);
481 				break;
482 			}
483 			/* Ensure all of our fields are correct */
484 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
485 				      inccb->ccb_h.pinfo.priority);
486 			xpt_merge_ccb(ccb, inccb);
487 			xpt_path_lock(ccb->ccb_h.path);
488 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
489 			xpt_path_unlock(ccb->ccb_h.path);
490 			bcopy(ccb, inccb, sizeof(union ccb));
491 			xpt_free_path(ccb->ccb_h.path);
492 			xpt_free_ccb(ccb);
493 			break;
494 
495 		case XPT_DEBUG: {
496 			union ccb ccb;
497 
498 			/*
499 			 * This is an immediate CCB, so it's okay to
500 			 * allocate it on the stack.
501 			 */
502 
503 			/*
504 			 * Create a path using the bus, target, and lun the
505 			 * user passed in.
506 			 */
507 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
508 					    inccb->ccb_h.path_id,
509 					    inccb->ccb_h.target_id,
510 					    inccb->ccb_h.target_lun) !=
511 					    CAM_REQ_CMP){
512 				error = EINVAL;
513 				break;
514 			}
515 			/* Ensure all of our fields are correct */
516 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
517 				      inccb->ccb_h.pinfo.priority);
518 			xpt_merge_ccb(&ccb, inccb);
519 			xpt_action(&ccb);
520 			bcopy(&ccb, inccb, sizeof(union ccb));
521 			xpt_free_path(ccb.ccb_h.path);
522 			break;
523 
524 		}
525 		case XPT_DEV_MATCH: {
526 			struct cam_periph_map_info mapinfo;
527 			struct cam_path *old_path;
528 
529 			/*
530 			 * We can't deal with physical addresses for this
531 			 * type of transaction.
532 			 */
533 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
534 			    CAM_DATA_VADDR) {
535 				error = EINVAL;
536 				break;
537 			}
538 
539 			/*
540 			 * Save this in case the caller had it set to
541 			 * something in particular.
542 			 */
543 			old_path = inccb->ccb_h.path;
544 
545 			/*
546 			 * We really don't need a path for the matching
547 			 * code.  The path is needed because of the
548 			 * debugging statements in xpt_action().  They
549 			 * assume that the CCB has a valid path.
550 			 */
551 			inccb->ccb_h.path = xpt_periph->path;
552 
553 			bzero(&mapinfo, sizeof(mapinfo));
554 
555 			/*
556 			 * Map the pattern and match buffers into kernel
557 			 * virtual address space.
558 			 */
559 			error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
560 
561 			if (error) {
562 				inccb->ccb_h.path = old_path;
563 				break;
564 			}
565 
566 			/*
567 			 * This is an immediate CCB, we can send it on directly.
568 			 */
569 			xpt_action(inccb);
570 
571 			/*
572 			 * Map the buffers back into user space.
573 			 */
574 			cam_periph_unmapmem(inccb, &mapinfo);
575 
576 			inccb->ccb_h.path = old_path;
577 
578 			error = 0;
579 			break;
580 		}
581 		default:
582 			error = ENOTSUP;
583 			break;
584 		}
585 		xpt_release_bus(bus);
586 		break;
587 	}
588 	/*
589 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
590 	 * with the periphal driver name and unit name filled in.  The other
591 	 * fields don't really matter as input.  The passthrough driver name
592 	 * ("pass"), and unit number are passed back in the ccb.  The current
593 	 * device generation number, and the index into the device peripheral
594 	 * driver list, and the status are also passed back.  Note that
595 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
596 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
597 	 * (or rather should be) impossible for the device peripheral driver
598 	 * list to change since we look at the whole thing in one pass, and
599 	 * we do it with lock protection.
600 	 *
601 	 */
602 	case CAMGETPASSTHRU: {
603 		union ccb *ccb;
604 		struct cam_periph *periph;
605 		struct periph_driver **p_drv;
606 		char   *name;
607 		u_int unit;
608 		int base_periph_found;
609 
610 		ccb = (union ccb *)addr;
611 		unit = ccb->cgdl.unit_number;
612 		name = ccb->cgdl.periph_name;
613 		base_periph_found = 0;
614 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
615 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
616 			ccb->csio.bio = NULL;
617 #endif
618 
619 		/*
620 		 * Sanity check -- make sure we don't get a null peripheral
621 		 * driver name.
622 		 */
623 		if (*ccb->cgdl.periph_name == '\0') {
624 			error = EINVAL;
625 			break;
626 		}
627 
628 		/* Keep the list from changing while we traverse it */
629 		xpt_lock_buses();
630 
631 		/* first find our driver in the list of drivers */
632 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
633 			if (strcmp((*p_drv)->driver_name, name) == 0)
634 				break;
635 
636 		if (*p_drv == NULL) {
637 			xpt_unlock_buses();
638 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
639 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
640 			*ccb->cgdl.periph_name = '\0';
641 			ccb->cgdl.unit_number = 0;
642 			error = ENOENT;
643 			break;
644 		}
645 
646 		/*
647 		 * Run through every peripheral instance of this driver
648 		 * and check to see whether it matches the unit passed
649 		 * in by the user.  If it does, get out of the loops and
650 		 * find the passthrough driver associated with that
651 		 * peripheral driver.
652 		 */
653 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
654 		     periph = TAILQ_NEXT(periph, unit_links)) {
655 
656 			if (periph->unit_number == unit)
657 				break;
658 		}
659 		/*
660 		 * If we found the peripheral driver that the user passed
661 		 * in, go through all of the peripheral drivers for that
662 		 * particular device and look for a passthrough driver.
663 		 */
664 		if (periph != NULL) {
665 			struct cam_ed *device;
666 			int i;
667 
668 			base_periph_found = 1;
669 			device = periph->path->device;
670 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
671 			     periph != NULL;
672 			     periph = SLIST_NEXT(periph, periph_links), i++) {
673 				/*
674 				 * Check to see whether we have a
675 				 * passthrough device or not.
676 				 */
677 				if (strcmp(periph->periph_name, "pass") == 0) {
678 					/*
679 					 * Fill in the getdevlist fields.
680 					 */
681 					strlcpy(ccb->cgdl.periph_name,
682 					       periph->periph_name,
683 					       sizeof(ccb->cgdl.periph_name));
684 					ccb->cgdl.unit_number =
685 						periph->unit_number;
686 					if (SLIST_NEXT(periph, periph_links))
687 						ccb->cgdl.status =
688 							CAM_GDEVLIST_MORE_DEVS;
689 					else
690 						ccb->cgdl.status =
691 						       CAM_GDEVLIST_LAST_DEVICE;
692 					ccb->cgdl.generation =
693 						device->generation;
694 					ccb->cgdl.index = i;
695 					/*
696 					 * Fill in some CCB header fields
697 					 * that the user may want.
698 					 */
699 					ccb->ccb_h.path_id =
700 						periph->path->bus->path_id;
701 					ccb->ccb_h.target_id =
702 						periph->path->target->target_id;
703 					ccb->ccb_h.target_lun =
704 						periph->path->device->lun_id;
705 					ccb->ccb_h.status = CAM_REQ_CMP;
706 					break;
707 				}
708 			}
709 		}
710 
711 		/*
712 		 * If the periph is null here, one of two things has
713 		 * happened.  The first possibility is that we couldn't
714 		 * find the unit number of the particular peripheral driver
715 		 * that the user is asking about.  e.g. the user asks for
716 		 * the passthrough driver for "da11".  We find the list of
717 		 * "da" peripherals all right, but there is no unit 11.
718 		 * The other possibility is that we went through the list
719 		 * of peripheral drivers attached to the device structure,
720 		 * but didn't find one with the name "pass".  Either way,
721 		 * we return ENOENT, since we couldn't find something.
722 		 */
723 		if (periph == NULL) {
724 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
725 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
726 			*ccb->cgdl.periph_name = '\0';
727 			ccb->cgdl.unit_number = 0;
728 			error = ENOENT;
729 			/*
730 			 * It is unfortunate that this is even necessary,
731 			 * but there are many, many clueless users out there.
732 			 * If this is true, the user is looking for the
733 			 * passthrough driver, but doesn't have one in his
734 			 * kernel.
735 			 */
736 			if (base_periph_found == 1) {
737 				printf("xptioctl: pass driver is not in the "
738 				       "kernel\n");
739 				printf("xptioctl: put \"device pass\" in "
740 				       "your kernel config file\n");
741 			}
742 		}
743 		xpt_unlock_buses();
744 		break;
745 		}
746 	default:
747 		error = ENOTTY;
748 		break;
749 	}
750 
751 	return(error);
752 }
753 
754 static int
755 cam_module_event_handler(module_t mod, int what, void *arg)
756 {
757 	int error;
758 
759 	switch (what) {
760 	case MOD_LOAD:
761 		if ((error = xpt_init(NULL)) != 0)
762 			return (error);
763 		break;
764 	case MOD_UNLOAD:
765 		return EBUSY;
766 	default:
767 		return EOPNOTSUPP;
768 	}
769 
770 	return 0;
771 }
772 
773 static struct xpt_proto *
774 xpt_proto_find(cam_proto proto)
775 {
776 	struct xpt_proto **pp;
777 
778 	SET_FOREACH(pp, cam_xpt_proto_set) {
779 		if ((*pp)->proto == proto)
780 			return *pp;
781 	}
782 
783 	return NULL;
784 }
785 
786 static void
787 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
788 {
789 
790 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
791 		xpt_free_path(done_ccb->ccb_h.path);
792 		xpt_free_ccb(done_ccb);
793 	} else {
794 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
795 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
796 	}
797 	xpt_release_boot();
798 }
799 
800 /* thread to handle bus rescans */
801 static void
802 xpt_scanner_thread(void *dummy)
803 {
804 	union ccb	*ccb;
805 	struct mtx	*mtx;
806 	struct cam_ed	*device;
807 
808 	xpt_lock_buses();
809 	for (;;) {
810 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
811 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
812 			       "-", 0);
813 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
814 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
815 			xpt_unlock_buses();
816 
817 			/*
818 			 * We need to lock the device's mutex which we use as
819 			 * the path mutex. We can't do it directly because the
820 			 * cam_path in the ccb may wind up going away because
821 			 * the path lock may be dropped and the path retired in
822 			 * the completion callback. We do this directly to keep
823 			 * the reference counts in cam_path sane. We also have
824 			 * to copy the device pointer because ccb_h.path may
825 			 * be freed in the callback.
826 			 */
827 			mtx = xpt_path_mtx(ccb->ccb_h.path);
828 			device = ccb->ccb_h.path->device;
829 			xpt_acquire_device(device);
830 			mtx_lock(mtx);
831 			xpt_action(ccb);
832 			mtx_unlock(mtx);
833 			xpt_release_device(device);
834 
835 			xpt_lock_buses();
836 		}
837 	}
838 }
839 
840 void
841 xpt_rescan(union ccb *ccb)
842 {
843 	struct ccb_hdr *hdr;
844 
845 	/* Prepare request */
846 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
847 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
848 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
849 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
850 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
851 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
852 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
853 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
854 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
855 	else {
856 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
857 		xpt_free_path(ccb->ccb_h.path);
858 		xpt_free_ccb(ccb);
859 		return;
860 	}
861 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
862 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
863  		xpt_action_name(ccb->ccb_h.func_code)));
864 
865 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
866 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
867 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
868 	/* Don't make duplicate entries for the same paths. */
869 	xpt_lock_buses();
870 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
871 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
872 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
873 				wakeup(&xsoftc.ccb_scanq);
874 				xpt_unlock_buses();
875 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
876 				xpt_free_path(ccb->ccb_h.path);
877 				xpt_free_ccb(ccb);
878 				return;
879 			}
880 		}
881 	}
882 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
883 	xpt_hold_boot_locked();
884 	wakeup(&xsoftc.ccb_scanq);
885 	xpt_unlock_buses();
886 }
887 
888 /* Functions accessed by the peripheral drivers */
889 static int
890 xpt_init(void *dummy)
891 {
892 	struct cam_sim *xpt_sim;
893 	struct cam_path *path;
894 	struct cam_devq *devq;
895 	cam_status status;
896 	int error, i;
897 
898 	TAILQ_INIT(&xsoftc.xpt_busses);
899 	TAILQ_INIT(&xsoftc.ccb_scanq);
900 	STAILQ_INIT(&xsoftc.highpowerq);
901 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
902 
903 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
904 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
905 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
906 
907 #ifdef CAM_BOOT_DELAY
908 	/*
909 	 * Override this value at compile time to assist our users
910 	 * who don't use loader to boot a kernel.
911 	 */
912 	xsoftc.boot_delay = CAM_BOOT_DELAY;
913 #endif
914 
915 	/*
916 	 * The xpt layer is, itself, the equivalent of a SIM.
917 	 * Allow 16 ccbs in the ccb pool for it.  This should
918 	 * give decent parallelism when we probe buses and
919 	 * perform other XPT functions.
920 	 */
921 	devq = cam_simq_alloc(16);
922 	xpt_sim = cam_sim_alloc(xptaction,
923 				xptpoll,
924 				"xpt",
925 				/*softc*/NULL,
926 				/*unit*/0,
927 				/*mtx*/NULL,
928 				/*max_dev_transactions*/0,
929 				/*max_tagged_dev_transactions*/0,
930 				devq);
931 	if (xpt_sim == NULL)
932 		return (ENOMEM);
933 
934 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
935 		printf("xpt_init: xpt_bus_register failed with status %#x,"
936 		       " failing attach\n", status);
937 		return (EINVAL);
938 	}
939 
940 	/*
941 	 * Looking at the XPT from the SIM layer, the XPT is
942 	 * the equivalent of a peripheral driver.  Allocate
943 	 * a peripheral driver entry for us.
944 	 */
945 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
946 				      CAM_TARGET_WILDCARD,
947 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
948 		printf("xpt_init: xpt_create_path failed with status %#x,"
949 		       " failing attach\n", status);
950 		return (EINVAL);
951 	}
952 	xpt_path_lock(path);
953 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
954 			 path, NULL, 0, xpt_sim);
955 	xpt_path_unlock(path);
956 	xpt_free_path(path);
957 
958 	if (cam_num_doneqs < 1)
959 		cam_num_doneqs = 1 + mp_ncpus / 6;
960 	else if (cam_num_doneqs > MAXCPU)
961 		cam_num_doneqs = MAXCPU;
962 	for (i = 0; i < cam_num_doneqs; i++) {
963 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
964 		    MTX_DEF);
965 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
966 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
967 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
968 		if (error != 0) {
969 			cam_num_doneqs = i;
970 			break;
971 		}
972 	}
973 	if (cam_num_doneqs < 1) {
974 		printf("xpt_init: Cannot init completion queues "
975 		       "- failing attach\n");
976 		return (ENOMEM);
977 	}
978 
979 	/*
980 	 * Register a callback for when interrupts are enabled.
981 	 */
982 	config_intrhook_oneshot(xpt_config, NULL);
983 
984 	return (0);
985 }
986 
987 static cam_status
988 xptregister(struct cam_periph *periph, void *arg)
989 {
990 	struct cam_sim *xpt_sim;
991 
992 	if (periph == NULL) {
993 		printf("xptregister: periph was NULL!!\n");
994 		return(CAM_REQ_CMP_ERR);
995 	}
996 
997 	xpt_sim = (struct cam_sim *)arg;
998 	xpt_sim->softc = periph;
999 	xpt_periph = periph;
1000 	periph->softc = NULL;
1001 
1002 	return(CAM_REQ_CMP);
1003 }
1004 
1005 int32_t
1006 xpt_add_periph(struct cam_periph *periph)
1007 {
1008 	struct cam_ed *device;
1009 	int32_t	 status;
1010 
1011 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1012 	device = periph->path->device;
1013 	status = CAM_REQ_CMP;
1014 	if (device != NULL) {
1015 		mtx_lock(&device->target->bus->eb_mtx);
1016 		device->generation++;
1017 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1018 		mtx_unlock(&device->target->bus->eb_mtx);
1019 		atomic_add_32(&xsoftc.xpt_generation, 1);
1020 	}
1021 
1022 	return (status);
1023 }
1024 
1025 void
1026 xpt_remove_periph(struct cam_periph *periph)
1027 {
1028 	struct cam_ed *device;
1029 
1030 	device = periph->path->device;
1031 	if (device != NULL) {
1032 		mtx_lock(&device->target->bus->eb_mtx);
1033 		device->generation++;
1034 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1035 		mtx_unlock(&device->target->bus->eb_mtx);
1036 		atomic_add_32(&xsoftc.xpt_generation, 1);
1037 	}
1038 }
1039 
1040 
1041 void
1042 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1043 {
1044 	struct	cam_path *path = periph->path;
1045 	struct  xpt_proto *proto;
1046 
1047 	cam_periph_assert(periph, MA_OWNED);
1048 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1049 
1050 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1051 	       periph->periph_name, periph->unit_number,
1052 	       path->bus->sim->sim_name,
1053 	       path->bus->sim->unit_number,
1054 	       path->bus->sim->bus_id,
1055 	       path->bus->path_id,
1056 	       path->target->target_id,
1057 	       (uintmax_t)path->device->lun_id);
1058 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1059 	proto = xpt_proto_find(path->device->protocol);
1060 	if (proto)
1061 		proto->ops->announce(path->device);
1062 	else
1063 		printf("%s%d: Unknown protocol device %d\n",
1064 		    periph->periph_name, periph->unit_number,
1065 		    path->device->protocol);
1066 	if (path->device->serial_num_len > 0) {
1067 		/* Don't wrap the screen  - print only the first 60 chars */
1068 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1069 		       periph->unit_number, path->device->serial_num);
1070 	}
1071 	/* Announce transport details. */
1072 	path->bus->xport->ops->announce(periph);
1073 	/* Announce command queueing. */
1074 	if (path->device->inq_flags & SID_CmdQue
1075 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1076 		printf("%s%d: Command Queueing enabled\n",
1077 		       periph->periph_name, periph->unit_number);
1078 	}
1079 	/* Announce caller's details if they've passed in. */
1080 	if (announce_string != NULL)
1081 		printf("%s%d: %s\n", periph->periph_name,
1082 		       periph->unit_number, announce_string);
1083 }
1084 
1085 void
1086 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1087     char *announce_string)
1088 {
1089 	struct	cam_path *path = periph->path;
1090 	struct  xpt_proto *proto;
1091 
1092 	cam_periph_assert(periph, MA_OWNED);
1093 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1094 
1095 	/* Fall back to the non-sbuf method if necessary */
1096 	if (xsoftc.announce_nosbuf != 0) {
1097 		xpt_announce_periph(periph, announce_string);
1098 		return;
1099 	}
1100 	proto = xpt_proto_find(path->device->protocol);
1101 	if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) ||
1102 	    (path->bus->xport->ops->announce_sbuf == NULL)) {
1103 		xpt_announce_periph(periph, announce_string);
1104 		return;
1105 	}
1106 
1107 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1108 	    periph->periph_name, periph->unit_number,
1109 	    path->bus->sim->sim_name,
1110 	    path->bus->sim->unit_number,
1111 	    path->bus->sim->bus_id,
1112 	    path->bus->path_id,
1113 	    path->target->target_id,
1114 	    (uintmax_t)path->device->lun_id);
1115 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1116 
1117 	if (proto)
1118 		proto->ops->announce_sbuf(path->device, sb);
1119 	else
1120 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1121 		    periph->periph_name, periph->unit_number,
1122 		    path->device->protocol);
1123 	if (path->device->serial_num_len > 0) {
1124 		/* Don't wrap the screen  - print only the first 60 chars */
1125 		sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1126 		    periph->periph_name, periph->unit_number,
1127 		    path->device->serial_num);
1128 	}
1129 	/* Announce transport details. */
1130 	path->bus->xport->ops->announce_sbuf(periph, sb);
1131 	/* Announce command queueing. */
1132 	if (path->device->inq_flags & SID_CmdQue
1133 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1134 		sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1135 		    periph->periph_name, periph->unit_number);
1136 	}
1137 	/* Announce caller's details if they've passed in. */
1138 	if (announce_string != NULL)
1139 		sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1140 		    periph->unit_number, announce_string);
1141 }
1142 
1143 void
1144 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1145 {
1146 	if (quirks != 0) {
1147 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1148 		    periph->unit_number, quirks, bit_string);
1149 	}
1150 }
1151 
1152 void
1153 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1154 			 int quirks, char *bit_string)
1155 {
1156 	if (xsoftc.announce_nosbuf != 0) {
1157 		xpt_announce_quirks(periph, quirks, bit_string);
1158 		return;
1159 	}
1160 
1161 	if (quirks != 0) {
1162 		sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1163 		    periph->unit_number, quirks, bit_string);
1164 	}
1165 }
1166 
1167 void
1168 xpt_denounce_periph(struct cam_periph *periph)
1169 {
1170 	struct	cam_path *path = periph->path;
1171 	struct  xpt_proto *proto;
1172 
1173 	cam_periph_assert(periph, MA_OWNED);
1174 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1175 	       periph->periph_name, periph->unit_number,
1176 	       path->bus->sim->sim_name,
1177 	       path->bus->sim->unit_number,
1178 	       path->bus->sim->bus_id,
1179 	       path->bus->path_id,
1180 	       path->target->target_id,
1181 	       (uintmax_t)path->device->lun_id);
1182 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1183 	proto = xpt_proto_find(path->device->protocol);
1184 	if (proto)
1185 		proto->ops->denounce(path->device);
1186 	else
1187 		printf("%s%d: Unknown protocol device %d\n",
1188 		    periph->periph_name, periph->unit_number,
1189 		    path->device->protocol);
1190 	if (path->device->serial_num_len > 0)
1191 		printf(" s/n %.60s", path->device->serial_num);
1192 	printf(" detached\n");
1193 }
1194 
1195 void
1196 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1197 {
1198 	struct cam_path *path = periph->path;
1199 	struct xpt_proto *proto;
1200 
1201 	cam_periph_assert(periph, MA_OWNED);
1202 
1203 	/* Fall back to the non-sbuf method if necessary */
1204 	if (xsoftc.announce_nosbuf != 0) {
1205 		xpt_denounce_periph(periph);
1206 		return;
1207 	}
1208 	proto = xpt_proto_find(path->device->protocol);
1209 	if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) {
1210 		xpt_denounce_periph(periph);
1211 		return;
1212 	}
1213 
1214 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1215 	    periph->periph_name, periph->unit_number,
1216 	    path->bus->sim->sim_name,
1217 	    path->bus->sim->unit_number,
1218 	    path->bus->sim->bus_id,
1219 	    path->bus->path_id,
1220 	    path->target->target_id,
1221 	    (uintmax_t)path->device->lun_id);
1222 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1223 
1224 	if (proto)
1225 		proto->ops->denounce_sbuf(path->device, sb);
1226 	else
1227 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1228 		    periph->periph_name, periph->unit_number,
1229 		    path->device->protocol);
1230 	if (path->device->serial_num_len > 0)
1231 		sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1232 	sbuf_printf(sb, " detached\n");
1233 }
1234 
1235 int
1236 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1237 {
1238 	int ret = -1, l, o;
1239 	struct ccb_dev_advinfo cdai;
1240 	struct scsi_vpd_device_id *did;
1241 	struct scsi_vpd_id_descriptor *idd;
1242 
1243 	xpt_path_assert(path, MA_OWNED);
1244 
1245 	memset(&cdai, 0, sizeof(cdai));
1246 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1247 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1248 	cdai.flags = CDAI_FLAG_NONE;
1249 	cdai.bufsiz = len;
1250 	cdai.buf = buf;
1251 
1252 	if (!strcmp(attr, "GEOM::ident"))
1253 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1254 	else if (!strcmp(attr, "GEOM::physpath"))
1255 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1256 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1257 		 strcmp(attr, "GEOM::lunname") == 0) {
1258 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1259 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1260 		cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT);
1261 		if (cdai.buf == NULL) {
1262 			ret = ENOMEM;
1263 			goto out;
1264 		}
1265 	} else
1266 		goto out;
1267 
1268 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1269 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1270 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1271 	if (cdai.provsiz == 0)
1272 		goto out;
1273 	switch(cdai.buftype) {
1274 	case CDAI_TYPE_SCSI_DEVID:
1275 		did = (struct scsi_vpd_device_id *)cdai.buf;
1276 		if (strcmp(attr, "GEOM::lunid") == 0) {
1277 			idd = scsi_get_devid(did, cdai.provsiz,
1278 			    scsi_devid_is_lun_naa);
1279 			if (idd == NULL)
1280 				idd = scsi_get_devid(did, cdai.provsiz,
1281 				    scsi_devid_is_lun_eui64);
1282 			if (idd == NULL)
1283 				idd = scsi_get_devid(did, cdai.provsiz,
1284 				    scsi_devid_is_lun_uuid);
1285 			if (idd == NULL)
1286 				idd = scsi_get_devid(did, cdai.provsiz,
1287 				    scsi_devid_is_lun_md5);
1288 		} else
1289 			idd = NULL;
1290 
1291 		if (idd == NULL)
1292 			idd = scsi_get_devid(did, cdai.provsiz,
1293 			    scsi_devid_is_lun_t10);
1294 		if (idd == NULL)
1295 			idd = scsi_get_devid(did, cdai.provsiz,
1296 			    scsi_devid_is_lun_name);
1297 		if (idd == NULL)
1298 			break;
1299 
1300 		ret = 0;
1301 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1302 		    SVPD_ID_CODESET_ASCII) {
1303 			if (idd->length < len) {
1304 				for (l = 0; l < idd->length; l++)
1305 					buf[l] = idd->identifier[l] ?
1306 					    idd->identifier[l] : ' ';
1307 				buf[l] = 0;
1308 			} else
1309 				ret = EFAULT;
1310 			break;
1311 		}
1312 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1313 		    SVPD_ID_CODESET_UTF8) {
1314 			l = strnlen(idd->identifier, idd->length);
1315 			if (l < len) {
1316 				bcopy(idd->identifier, buf, l);
1317 				buf[l] = 0;
1318 			} else
1319 				ret = EFAULT;
1320 			break;
1321 		}
1322 		if ((idd->id_type & SVPD_ID_TYPE_MASK) ==
1323 		    SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) {
1324 			if ((idd->length - 2) * 2 + 4 >= len) {
1325 				ret = EFAULT;
1326 				break;
1327 			}
1328 			for (l = 2, o = 0; l < idd->length; l++) {
1329 				if (l == 6 || l == 8 || l == 10 || l == 12)
1330 				    o += sprintf(buf + o, "-");
1331 				o += sprintf(buf + o, "%02x",
1332 				    idd->identifier[l]);
1333 			}
1334 			break;
1335 		}
1336 		if (idd->length * 2 < len) {
1337 			for (l = 0; l < idd->length; l++)
1338 				sprintf(buf + l * 2, "%02x",
1339 				    idd->identifier[l]);
1340 		} else
1341 				ret = EFAULT;
1342 		break;
1343 	default:
1344 		if (cdai.provsiz < len) {
1345 			cdai.buf[cdai.provsiz] = 0;
1346 			ret = 0;
1347 		} else
1348 			ret = EFAULT;
1349 		break;
1350 	}
1351 
1352 out:
1353 	if ((char *)cdai.buf != buf)
1354 		free(cdai.buf, M_CAMXPT);
1355 	return ret;
1356 }
1357 
1358 static dev_match_ret
1359 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1360 	    struct cam_eb *bus)
1361 {
1362 	dev_match_ret retval;
1363 	u_int i;
1364 
1365 	retval = DM_RET_NONE;
1366 
1367 	/*
1368 	 * If we aren't given something to match against, that's an error.
1369 	 */
1370 	if (bus == NULL)
1371 		return(DM_RET_ERROR);
1372 
1373 	/*
1374 	 * If there are no match entries, then this bus matches no
1375 	 * matter what.
1376 	 */
1377 	if ((patterns == NULL) || (num_patterns == 0))
1378 		return(DM_RET_DESCEND | DM_RET_COPY);
1379 
1380 	for (i = 0; i < num_patterns; i++) {
1381 		struct bus_match_pattern *cur_pattern;
1382 
1383 		/*
1384 		 * If the pattern in question isn't for a bus node, we
1385 		 * aren't interested.  However, we do indicate to the
1386 		 * calling routine that we should continue descending the
1387 		 * tree, since the user wants to match against lower-level
1388 		 * EDT elements.
1389 		 */
1390 		if (patterns[i].type != DEV_MATCH_BUS) {
1391 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1392 				retval |= DM_RET_DESCEND;
1393 			continue;
1394 		}
1395 
1396 		cur_pattern = &patterns[i].pattern.bus_pattern;
1397 
1398 		/*
1399 		 * If they want to match any bus node, we give them any
1400 		 * device node.
1401 		 */
1402 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1403 			/* set the copy flag */
1404 			retval |= DM_RET_COPY;
1405 
1406 			/*
1407 			 * If we've already decided on an action, go ahead
1408 			 * and return.
1409 			 */
1410 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1411 				return(retval);
1412 		}
1413 
1414 		/*
1415 		 * Not sure why someone would do this...
1416 		 */
1417 		if (cur_pattern->flags == BUS_MATCH_NONE)
1418 			continue;
1419 
1420 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1421 		 && (cur_pattern->path_id != bus->path_id))
1422 			continue;
1423 
1424 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1425 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1426 			continue;
1427 
1428 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1429 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1430 			continue;
1431 
1432 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1433 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1434 			     DEV_IDLEN) != 0))
1435 			continue;
1436 
1437 		/*
1438 		 * If we get to this point, the user definitely wants
1439 		 * information on this bus.  So tell the caller to copy the
1440 		 * data out.
1441 		 */
1442 		retval |= DM_RET_COPY;
1443 
1444 		/*
1445 		 * If the return action has been set to descend, then we
1446 		 * know that we've already seen a non-bus matching
1447 		 * expression, therefore we need to further descend the tree.
1448 		 * This won't change by continuing around the loop, so we
1449 		 * go ahead and return.  If we haven't seen a non-bus
1450 		 * matching expression, we keep going around the loop until
1451 		 * we exhaust the matching expressions.  We'll set the stop
1452 		 * flag once we fall out of the loop.
1453 		 */
1454 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1455 			return(retval);
1456 	}
1457 
1458 	/*
1459 	 * If the return action hasn't been set to descend yet, that means
1460 	 * we haven't seen anything other than bus matching patterns.  So
1461 	 * tell the caller to stop descending the tree -- the user doesn't
1462 	 * want to match against lower level tree elements.
1463 	 */
1464 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1465 		retval |= DM_RET_STOP;
1466 
1467 	return(retval);
1468 }
1469 
1470 static dev_match_ret
1471 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1472 	       struct cam_ed *device)
1473 {
1474 	dev_match_ret retval;
1475 	u_int i;
1476 
1477 	retval = DM_RET_NONE;
1478 
1479 	/*
1480 	 * If we aren't given something to match against, that's an error.
1481 	 */
1482 	if (device == NULL)
1483 		return(DM_RET_ERROR);
1484 
1485 	/*
1486 	 * If there are no match entries, then this device matches no
1487 	 * matter what.
1488 	 */
1489 	if ((patterns == NULL) || (num_patterns == 0))
1490 		return(DM_RET_DESCEND | DM_RET_COPY);
1491 
1492 	for (i = 0; i < num_patterns; i++) {
1493 		struct device_match_pattern *cur_pattern;
1494 		struct scsi_vpd_device_id *device_id_page;
1495 
1496 		/*
1497 		 * If the pattern in question isn't for a device node, we
1498 		 * aren't interested.
1499 		 */
1500 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1501 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1502 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1503 				retval |= DM_RET_DESCEND;
1504 			continue;
1505 		}
1506 
1507 		cur_pattern = &patterns[i].pattern.device_pattern;
1508 
1509 		/* Error out if mutually exclusive options are specified. */
1510 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1511 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1512 			return(DM_RET_ERROR);
1513 
1514 		/*
1515 		 * If they want to match any device node, we give them any
1516 		 * device node.
1517 		 */
1518 		if (cur_pattern->flags == DEV_MATCH_ANY)
1519 			goto copy_dev_node;
1520 
1521 		/*
1522 		 * Not sure why someone would do this...
1523 		 */
1524 		if (cur_pattern->flags == DEV_MATCH_NONE)
1525 			continue;
1526 
1527 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1528 		 && (cur_pattern->path_id != device->target->bus->path_id))
1529 			continue;
1530 
1531 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1532 		 && (cur_pattern->target_id != device->target->target_id))
1533 			continue;
1534 
1535 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1536 		 && (cur_pattern->target_lun != device->lun_id))
1537 			continue;
1538 
1539 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1540 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1541 				    (caddr_t)&cur_pattern->data.inq_pat,
1542 				    1, sizeof(cur_pattern->data.inq_pat),
1543 				    scsi_static_inquiry_match) == NULL))
1544 			continue;
1545 
1546 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1547 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1548 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1549 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1550 				      device->device_id_len
1551 				    - SVPD_DEVICE_ID_HDR_LEN,
1552 				      cur_pattern->data.devid_pat.id,
1553 				      cur_pattern->data.devid_pat.id_len) != 0))
1554 			continue;
1555 
1556 copy_dev_node:
1557 		/*
1558 		 * If we get to this point, the user definitely wants
1559 		 * information on this device.  So tell the caller to copy
1560 		 * the data out.
1561 		 */
1562 		retval |= DM_RET_COPY;
1563 
1564 		/*
1565 		 * If the return action has been set to descend, then we
1566 		 * know that we've already seen a peripheral matching
1567 		 * expression, therefore we need to further descend the tree.
1568 		 * This won't change by continuing around the loop, so we
1569 		 * go ahead and return.  If we haven't seen a peripheral
1570 		 * matching expression, we keep going around the loop until
1571 		 * we exhaust the matching expressions.  We'll set the stop
1572 		 * flag once we fall out of the loop.
1573 		 */
1574 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1575 			return(retval);
1576 	}
1577 
1578 	/*
1579 	 * If the return action hasn't been set to descend yet, that means
1580 	 * we haven't seen any peripheral matching patterns.  So tell the
1581 	 * caller to stop descending the tree -- the user doesn't want to
1582 	 * match against lower level tree elements.
1583 	 */
1584 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1585 		retval |= DM_RET_STOP;
1586 
1587 	return(retval);
1588 }
1589 
1590 /*
1591  * Match a single peripheral against any number of match patterns.
1592  */
1593 static dev_match_ret
1594 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1595 	       struct cam_periph *periph)
1596 {
1597 	dev_match_ret retval;
1598 	u_int i;
1599 
1600 	/*
1601 	 * If we aren't given something to match against, that's an error.
1602 	 */
1603 	if (periph == NULL)
1604 		return(DM_RET_ERROR);
1605 
1606 	/*
1607 	 * If there are no match entries, then this peripheral matches no
1608 	 * matter what.
1609 	 */
1610 	if ((patterns == NULL) || (num_patterns == 0))
1611 		return(DM_RET_STOP | DM_RET_COPY);
1612 
1613 	/*
1614 	 * There aren't any nodes below a peripheral node, so there's no
1615 	 * reason to descend the tree any further.
1616 	 */
1617 	retval = DM_RET_STOP;
1618 
1619 	for (i = 0; i < num_patterns; i++) {
1620 		struct periph_match_pattern *cur_pattern;
1621 
1622 		/*
1623 		 * If the pattern in question isn't for a peripheral, we
1624 		 * aren't interested.
1625 		 */
1626 		if (patterns[i].type != DEV_MATCH_PERIPH)
1627 			continue;
1628 
1629 		cur_pattern = &patterns[i].pattern.periph_pattern;
1630 
1631 		/*
1632 		 * If they want to match on anything, then we will do so.
1633 		 */
1634 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1635 			/* set the copy flag */
1636 			retval |= DM_RET_COPY;
1637 
1638 			/*
1639 			 * We've already set the return action to stop,
1640 			 * since there are no nodes below peripherals in
1641 			 * the tree.
1642 			 */
1643 			return(retval);
1644 		}
1645 
1646 		/*
1647 		 * Not sure why someone would do this...
1648 		 */
1649 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1650 			continue;
1651 
1652 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1653 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1654 			continue;
1655 
1656 		/*
1657 		 * For the target and lun id's, we have to make sure the
1658 		 * target and lun pointers aren't NULL.  The xpt peripheral
1659 		 * has a wildcard target and device.
1660 		 */
1661 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1662 		 && ((periph->path->target == NULL)
1663 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1664 			continue;
1665 
1666 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1667 		 && ((periph->path->device == NULL)
1668 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1669 			continue;
1670 
1671 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1672 		 && (cur_pattern->unit_number != periph->unit_number))
1673 			continue;
1674 
1675 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1676 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1677 			     DEV_IDLEN) != 0))
1678 			continue;
1679 
1680 		/*
1681 		 * If we get to this point, the user definitely wants
1682 		 * information on this peripheral.  So tell the caller to
1683 		 * copy the data out.
1684 		 */
1685 		retval |= DM_RET_COPY;
1686 
1687 		/*
1688 		 * The return action has already been set to stop, since
1689 		 * peripherals don't have any nodes below them in the EDT.
1690 		 */
1691 		return(retval);
1692 	}
1693 
1694 	/*
1695 	 * If we get to this point, the peripheral that was passed in
1696 	 * doesn't match any of the patterns.
1697 	 */
1698 	return(retval);
1699 }
1700 
1701 static int
1702 xptedtbusfunc(struct cam_eb *bus, void *arg)
1703 {
1704 	struct ccb_dev_match *cdm;
1705 	struct cam_et *target;
1706 	dev_match_ret retval;
1707 
1708 	cdm = (struct ccb_dev_match *)arg;
1709 
1710 	/*
1711 	 * If our position is for something deeper in the tree, that means
1712 	 * that we've already seen this node.  So, we keep going down.
1713 	 */
1714 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1715 	 && (cdm->pos.cookie.bus == bus)
1716 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1717 	 && (cdm->pos.cookie.target != NULL))
1718 		retval = DM_RET_DESCEND;
1719 	else
1720 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1721 
1722 	/*
1723 	 * If we got an error, bail out of the search.
1724 	 */
1725 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1726 		cdm->status = CAM_DEV_MATCH_ERROR;
1727 		return(0);
1728 	}
1729 
1730 	/*
1731 	 * If the copy flag is set, copy this bus out.
1732 	 */
1733 	if (retval & DM_RET_COPY) {
1734 		int spaceleft, j;
1735 
1736 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1737 			sizeof(struct dev_match_result));
1738 
1739 		/*
1740 		 * If we don't have enough space to put in another
1741 		 * match result, save our position and tell the
1742 		 * user there are more devices to check.
1743 		 */
1744 		if (spaceleft < sizeof(struct dev_match_result)) {
1745 			bzero(&cdm->pos, sizeof(cdm->pos));
1746 			cdm->pos.position_type =
1747 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1748 
1749 			cdm->pos.cookie.bus = bus;
1750 			cdm->pos.generations[CAM_BUS_GENERATION]=
1751 				xsoftc.bus_generation;
1752 			cdm->status = CAM_DEV_MATCH_MORE;
1753 			return(0);
1754 		}
1755 		j = cdm->num_matches;
1756 		cdm->num_matches++;
1757 		cdm->matches[j].type = DEV_MATCH_BUS;
1758 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1759 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1760 		cdm->matches[j].result.bus_result.unit_number =
1761 			bus->sim->unit_number;
1762 		strlcpy(cdm->matches[j].result.bus_result.dev_name,
1763 			bus->sim->sim_name,
1764 			sizeof(cdm->matches[j].result.bus_result.dev_name));
1765 	}
1766 
1767 	/*
1768 	 * If the user is only interested in buses, there's no
1769 	 * reason to descend to the next level in the tree.
1770 	 */
1771 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1772 		return(1);
1773 
1774 	/*
1775 	 * If there is a target generation recorded, check it to
1776 	 * make sure the target list hasn't changed.
1777 	 */
1778 	mtx_lock(&bus->eb_mtx);
1779 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1780 	 && (cdm->pos.cookie.bus == bus)
1781 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1782 	 && (cdm->pos.cookie.target != NULL)) {
1783 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1784 		    bus->generation)) {
1785 			mtx_unlock(&bus->eb_mtx);
1786 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1787 			return (0);
1788 		}
1789 		target = (struct cam_et *)cdm->pos.cookie.target;
1790 		target->refcount++;
1791 	} else
1792 		target = NULL;
1793 	mtx_unlock(&bus->eb_mtx);
1794 
1795 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1796 }
1797 
1798 static int
1799 xptedttargetfunc(struct cam_et *target, void *arg)
1800 {
1801 	struct ccb_dev_match *cdm;
1802 	struct cam_eb *bus;
1803 	struct cam_ed *device;
1804 
1805 	cdm = (struct ccb_dev_match *)arg;
1806 	bus = target->bus;
1807 
1808 	/*
1809 	 * If there is a device list generation recorded, check it to
1810 	 * make sure the device list hasn't changed.
1811 	 */
1812 	mtx_lock(&bus->eb_mtx);
1813 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1814 	 && (cdm->pos.cookie.bus == bus)
1815 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1816 	 && (cdm->pos.cookie.target == target)
1817 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1818 	 && (cdm->pos.cookie.device != NULL)) {
1819 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1820 		    target->generation) {
1821 			mtx_unlock(&bus->eb_mtx);
1822 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1823 			return(0);
1824 		}
1825 		device = (struct cam_ed *)cdm->pos.cookie.device;
1826 		device->refcount++;
1827 	} else
1828 		device = NULL;
1829 	mtx_unlock(&bus->eb_mtx);
1830 
1831 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1832 }
1833 
1834 static int
1835 xptedtdevicefunc(struct cam_ed *device, void *arg)
1836 {
1837 	struct cam_eb *bus;
1838 	struct cam_periph *periph;
1839 	struct ccb_dev_match *cdm;
1840 	dev_match_ret retval;
1841 
1842 	cdm = (struct ccb_dev_match *)arg;
1843 	bus = device->target->bus;
1844 
1845 	/*
1846 	 * If our position is for something deeper in the tree, that means
1847 	 * that we've already seen this node.  So, we keep going down.
1848 	 */
1849 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1850 	 && (cdm->pos.cookie.device == device)
1851 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1852 	 && (cdm->pos.cookie.periph != NULL))
1853 		retval = DM_RET_DESCEND;
1854 	else
1855 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1856 					device);
1857 
1858 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1859 		cdm->status = CAM_DEV_MATCH_ERROR;
1860 		return(0);
1861 	}
1862 
1863 	/*
1864 	 * If the copy flag is set, copy this device out.
1865 	 */
1866 	if (retval & DM_RET_COPY) {
1867 		int spaceleft, j;
1868 
1869 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1870 			sizeof(struct dev_match_result));
1871 
1872 		/*
1873 		 * If we don't have enough space to put in another
1874 		 * match result, save our position and tell the
1875 		 * user there are more devices to check.
1876 		 */
1877 		if (spaceleft < sizeof(struct dev_match_result)) {
1878 			bzero(&cdm->pos, sizeof(cdm->pos));
1879 			cdm->pos.position_type =
1880 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1881 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1882 
1883 			cdm->pos.cookie.bus = device->target->bus;
1884 			cdm->pos.generations[CAM_BUS_GENERATION]=
1885 				xsoftc.bus_generation;
1886 			cdm->pos.cookie.target = device->target;
1887 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1888 				device->target->bus->generation;
1889 			cdm->pos.cookie.device = device;
1890 			cdm->pos.generations[CAM_DEV_GENERATION] =
1891 				device->target->generation;
1892 			cdm->status = CAM_DEV_MATCH_MORE;
1893 			return(0);
1894 		}
1895 		j = cdm->num_matches;
1896 		cdm->num_matches++;
1897 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1898 		cdm->matches[j].result.device_result.path_id =
1899 			device->target->bus->path_id;
1900 		cdm->matches[j].result.device_result.target_id =
1901 			device->target->target_id;
1902 		cdm->matches[j].result.device_result.target_lun =
1903 			device->lun_id;
1904 		cdm->matches[j].result.device_result.protocol =
1905 			device->protocol;
1906 		bcopy(&device->inq_data,
1907 		      &cdm->matches[j].result.device_result.inq_data,
1908 		      sizeof(struct scsi_inquiry_data));
1909 		bcopy(&device->ident_data,
1910 		      &cdm->matches[j].result.device_result.ident_data,
1911 		      sizeof(struct ata_params));
1912 
1913 		/* Let the user know whether this device is unconfigured */
1914 		if (device->flags & CAM_DEV_UNCONFIGURED)
1915 			cdm->matches[j].result.device_result.flags =
1916 				DEV_RESULT_UNCONFIGURED;
1917 		else
1918 			cdm->matches[j].result.device_result.flags =
1919 				DEV_RESULT_NOFLAG;
1920 	}
1921 
1922 	/*
1923 	 * If the user isn't interested in peripherals, don't descend
1924 	 * the tree any further.
1925 	 */
1926 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1927 		return(1);
1928 
1929 	/*
1930 	 * If there is a peripheral list generation recorded, make sure
1931 	 * it hasn't changed.
1932 	 */
1933 	xpt_lock_buses();
1934 	mtx_lock(&bus->eb_mtx);
1935 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1936 	 && (cdm->pos.cookie.bus == bus)
1937 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1938 	 && (cdm->pos.cookie.target == device->target)
1939 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1940 	 && (cdm->pos.cookie.device == device)
1941 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1942 	 && (cdm->pos.cookie.periph != NULL)) {
1943 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1944 		    device->generation) {
1945 			mtx_unlock(&bus->eb_mtx);
1946 			xpt_unlock_buses();
1947 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1948 			return(0);
1949 		}
1950 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1951 		periph->refcount++;
1952 	} else
1953 		periph = NULL;
1954 	mtx_unlock(&bus->eb_mtx);
1955 	xpt_unlock_buses();
1956 
1957 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1958 }
1959 
1960 static int
1961 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1962 {
1963 	struct ccb_dev_match *cdm;
1964 	dev_match_ret retval;
1965 
1966 	cdm = (struct ccb_dev_match *)arg;
1967 
1968 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1969 
1970 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1971 		cdm->status = CAM_DEV_MATCH_ERROR;
1972 		return(0);
1973 	}
1974 
1975 	/*
1976 	 * If the copy flag is set, copy this peripheral out.
1977 	 */
1978 	if (retval & DM_RET_COPY) {
1979 		int spaceleft, j;
1980 		size_t l;
1981 
1982 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1983 			sizeof(struct dev_match_result));
1984 
1985 		/*
1986 		 * If we don't have enough space to put in another
1987 		 * match result, save our position and tell the
1988 		 * user there are more devices to check.
1989 		 */
1990 		if (spaceleft < sizeof(struct dev_match_result)) {
1991 			bzero(&cdm->pos, sizeof(cdm->pos));
1992 			cdm->pos.position_type =
1993 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1994 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1995 				CAM_DEV_POS_PERIPH;
1996 
1997 			cdm->pos.cookie.bus = periph->path->bus;
1998 			cdm->pos.generations[CAM_BUS_GENERATION]=
1999 				xsoftc.bus_generation;
2000 			cdm->pos.cookie.target = periph->path->target;
2001 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2002 				periph->path->bus->generation;
2003 			cdm->pos.cookie.device = periph->path->device;
2004 			cdm->pos.generations[CAM_DEV_GENERATION] =
2005 				periph->path->target->generation;
2006 			cdm->pos.cookie.periph = periph;
2007 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2008 				periph->path->device->generation;
2009 			cdm->status = CAM_DEV_MATCH_MORE;
2010 			return(0);
2011 		}
2012 
2013 		j = cdm->num_matches;
2014 		cdm->num_matches++;
2015 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2016 		cdm->matches[j].result.periph_result.path_id =
2017 			periph->path->bus->path_id;
2018 		cdm->matches[j].result.periph_result.target_id =
2019 			periph->path->target->target_id;
2020 		cdm->matches[j].result.periph_result.target_lun =
2021 			periph->path->device->lun_id;
2022 		cdm->matches[j].result.periph_result.unit_number =
2023 			periph->unit_number;
2024 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2025 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2026 			periph->periph_name, l);
2027 	}
2028 
2029 	return(1);
2030 }
2031 
2032 static int
2033 xptedtmatch(struct ccb_dev_match *cdm)
2034 {
2035 	struct cam_eb *bus;
2036 	int ret;
2037 
2038 	cdm->num_matches = 0;
2039 
2040 	/*
2041 	 * Check the bus list generation.  If it has changed, the user
2042 	 * needs to reset everything and start over.
2043 	 */
2044 	xpt_lock_buses();
2045 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2046 	 && (cdm->pos.cookie.bus != NULL)) {
2047 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
2048 		    xsoftc.bus_generation) {
2049 			xpt_unlock_buses();
2050 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2051 			return(0);
2052 		}
2053 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
2054 		bus->refcount++;
2055 	} else
2056 		bus = NULL;
2057 	xpt_unlock_buses();
2058 
2059 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
2060 
2061 	/*
2062 	 * If we get back 0, that means that we had to stop before fully
2063 	 * traversing the EDT.  It also means that one of the subroutines
2064 	 * has set the status field to the proper value.  If we get back 1,
2065 	 * we've fully traversed the EDT and copied out any matching entries.
2066 	 */
2067 	if (ret == 1)
2068 		cdm->status = CAM_DEV_MATCH_LAST;
2069 
2070 	return(ret);
2071 }
2072 
2073 static int
2074 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2075 {
2076 	struct cam_periph *periph;
2077 	struct ccb_dev_match *cdm;
2078 
2079 	cdm = (struct ccb_dev_match *)arg;
2080 
2081 	xpt_lock_buses();
2082 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2083 	 && (cdm->pos.cookie.pdrv == pdrv)
2084 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2085 	 && (cdm->pos.cookie.periph != NULL)) {
2086 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2087 		    (*pdrv)->generation) {
2088 			xpt_unlock_buses();
2089 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2090 			return(0);
2091 		}
2092 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
2093 		periph->refcount++;
2094 	} else
2095 		periph = NULL;
2096 	xpt_unlock_buses();
2097 
2098 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
2099 }
2100 
2101 static int
2102 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2103 {
2104 	struct ccb_dev_match *cdm;
2105 	dev_match_ret retval;
2106 
2107 	cdm = (struct ccb_dev_match *)arg;
2108 
2109 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2110 
2111 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2112 		cdm->status = CAM_DEV_MATCH_ERROR;
2113 		return(0);
2114 	}
2115 
2116 	/*
2117 	 * If the copy flag is set, copy this peripheral out.
2118 	 */
2119 	if (retval & DM_RET_COPY) {
2120 		int spaceleft, j;
2121 		size_t l;
2122 
2123 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2124 			sizeof(struct dev_match_result));
2125 
2126 		/*
2127 		 * If we don't have enough space to put in another
2128 		 * match result, save our position and tell the
2129 		 * user there are more devices to check.
2130 		 */
2131 		if (spaceleft < sizeof(struct dev_match_result)) {
2132 			struct periph_driver **pdrv;
2133 
2134 			pdrv = NULL;
2135 			bzero(&cdm->pos, sizeof(cdm->pos));
2136 			cdm->pos.position_type =
2137 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2138 				CAM_DEV_POS_PERIPH;
2139 
2140 			/*
2141 			 * This may look a bit non-sensical, but it is
2142 			 * actually quite logical.  There are very few
2143 			 * peripheral drivers, and bloating every peripheral
2144 			 * structure with a pointer back to its parent
2145 			 * peripheral driver linker set entry would cost
2146 			 * more in the long run than doing this quick lookup.
2147 			 */
2148 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2149 				if (strcmp((*pdrv)->driver_name,
2150 				    periph->periph_name) == 0)
2151 					break;
2152 			}
2153 
2154 			if (*pdrv == NULL) {
2155 				cdm->status = CAM_DEV_MATCH_ERROR;
2156 				return(0);
2157 			}
2158 
2159 			cdm->pos.cookie.pdrv = pdrv;
2160 			/*
2161 			 * The periph generation slot does double duty, as
2162 			 * does the periph pointer slot.  They are used for
2163 			 * both edt and pdrv lookups and positioning.
2164 			 */
2165 			cdm->pos.cookie.periph = periph;
2166 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2167 				(*pdrv)->generation;
2168 			cdm->status = CAM_DEV_MATCH_MORE;
2169 			return(0);
2170 		}
2171 
2172 		j = cdm->num_matches;
2173 		cdm->num_matches++;
2174 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2175 		cdm->matches[j].result.periph_result.path_id =
2176 			periph->path->bus->path_id;
2177 
2178 		/*
2179 		 * The transport layer peripheral doesn't have a target or
2180 		 * lun.
2181 		 */
2182 		if (periph->path->target)
2183 			cdm->matches[j].result.periph_result.target_id =
2184 				periph->path->target->target_id;
2185 		else
2186 			cdm->matches[j].result.periph_result.target_id =
2187 				CAM_TARGET_WILDCARD;
2188 
2189 		if (periph->path->device)
2190 			cdm->matches[j].result.periph_result.target_lun =
2191 				periph->path->device->lun_id;
2192 		else
2193 			cdm->matches[j].result.periph_result.target_lun =
2194 				CAM_LUN_WILDCARD;
2195 
2196 		cdm->matches[j].result.periph_result.unit_number =
2197 			periph->unit_number;
2198 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2199 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2200 			periph->periph_name, l);
2201 	}
2202 
2203 	return(1);
2204 }
2205 
2206 static int
2207 xptperiphlistmatch(struct ccb_dev_match *cdm)
2208 {
2209 	int ret;
2210 
2211 	cdm->num_matches = 0;
2212 
2213 	/*
2214 	 * At this point in the edt traversal function, we check the bus
2215 	 * list generation to make sure that no buses have been added or
2216 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2217 	 * For the peripheral driver list traversal function, however, we
2218 	 * don't have to worry about new peripheral driver types coming or
2219 	 * going; they're in a linker set, and therefore can't change
2220 	 * without a recompile.
2221 	 */
2222 
2223 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2224 	 && (cdm->pos.cookie.pdrv != NULL))
2225 		ret = xptpdrvtraverse(
2226 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2227 				xptplistpdrvfunc, cdm);
2228 	else
2229 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2230 
2231 	/*
2232 	 * If we get back 0, that means that we had to stop before fully
2233 	 * traversing the peripheral driver tree.  It also means that one of
2234 	 * the subroutines has set the status field to the proper value.  If
2235 	 * we get back 1, we've fully traversed the EDT and copied out any
2236 	 * matching entries.
2237 	 */
2238 	if (ret == 1)
2239 		cdm->status = CAM_DEV_MATCH_LAST;
2240 
2241 	return(ret);
2242 }
2243 
2244 static int
2245 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2246 {
2247 	struct cam_eb *bus, *next_bus;
2248 	int retval;
2249 
2250 	retval = 1;
2251 	if (start_bus)
2252 		bus = start_bus;
2253 	else {
2254 		xpt_lock_buses();
2255 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2256 		if (bus == NULL) {
2257 			xpt_unlock_buses();
2258 			return (retval);
2259 		}
2260 		bus->refcount++;
2261 		xpt_unlock_buses();
2262 	}
2263 	for (; bus != NULL; bus = next_bus) {
2264 		retval = tr_func(bus, arg);
2265 		if (retval == 0) {
2266 			xpt_release_bus(bus);
2267 			break;
2268 		}
2269 		xpt_lock_buses();
2270 		next_bus = TAILQ_NEXT(bus, links);
2271 		if (next_bus)
2272 			next_bus->refcount++;
2273 		xpt_unlock_buses();
2274 		xpt_release_bus(bus);
2275 	}
2276 	return(retval);
2277 }
2278 
2279 static int
2280 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2281 		  xpt_targetfunc_t *tr_func, void *arg)
2282 {
2283 	struct cam_et *target, *next_target;
2284 	int retval;
2285 
2286 	retval = 1;
2287 	if (start_target)
2288 		target = start_target;
2289 	else {
2290 		mtx_lock(&bus->eb_mtx);
2291 		target = TAILQ_FIRST(&bus->et_entries);
2292 		if (target == NULL) {
2293 			mtx_unlock(&bus->eb_mtx);
2294 			return (retval);
2295 		}
2296 		target->refcount++;
2297 		mtx_unlock(&bus->eb_mtx);
2298 	}
2299 	for (; target != NULL; target = next_target) {
2300 		retval = tr_func(target, arg);
2301 		if (retval == 0) {
2302 			xpt_release_target(target);
2303 			break;
2304 		}
2305 		mtx_lock(&bus->eb_mtx);
2306 		next_target = TAILQ_NEXT(target, links);
2307 		if (next_target)
2308 			next_target->refcount++;
2309 		mtx_unlock(&bus->eb_mtx);
2310 		xpt_release_target(target);
2311 	}
2312 	return(retval);
2313 }
2314 
2315 static int
2316 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2317 		  xpt_devicefunc_t *tr_func, void *arg)
2318 {
2319 	struct cam_eb *bus;
2320 	struct cam_ed *device, *next_device;
2321 	int retval;
2322 
2323 	retval = 1;
2324 	bus = target->bus;
2325 	if (start_device)
2326 		device = start_device;
2327 	else {
2328 		mtx_lock(&bus->eb_mtx);
2329 		device = TAILQ_FIRST(&target->ed_entries);
2330 		if (device == NULL) {
2331 			mtx_unlock(&bus->eb_mtx);
2332 			return (retval);
2333 		}
2334 		device->refcount++;
2335 		mtx_unlock(&bus->eb_mtx);
2336 	}
2337 	for (; device != NULL; device = next_device) {
2338 		mtx_lock(&device->device_mtx);
2339 		retval = tr_func(device, arg);
2340 		mtx_unlock(&device->device_mtx);
2341 		if (retval == 0) {
2342 			xpt_release_device(device);
2343 			break;
2344 		}
2345 		mtx_lock(&bus->eb_mtx);
2346 		next_device = TAILQ_NEXT(device, links);
2347 		if (next_device)
2348 			next_device->refcount++;
2349 		mtx_unlock(&bus->eb_mtx);
2350 		xpt_release_device(device);
2351 	}
2352 	return(retval);
2353 }
2354 
2355 static int
2356 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2357 		  xpt_periphfunc_t *tr_func, void *arg)
2358 {
2359 	struct cam_eb *bus;
2360 	struct cam_periph *periph, *next_periph;
2361 	int retval;
2362 
2363 	retval = 1;
2364 
2365 	bus = device->target->bus;
2366 	if (start_periph)
2367 		periph = start_periph;
2368 	else {
2369 		xpt_lock_buses();
2370 		mtx_lock(&bus->eb_mtx);
2371 		periph = SLIST_FIRST(&device->periphs);
2372 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2373 			periph = SLIST_NEXT(periph, periph_links);
2374 		if (periph == NULL) {
2375 			mtx_unlock(&bus->eb_mtx);
2376 			xpt_unlock_buses();
2377 			return (retval);
2378 		}
2379 		periph->refcount++;
2380 		mtx_unlock(&bus->eb_mtx);
2381 		xpt_unlock_buses();
2382 	}
2383 	for (; periph != NULL; periph = next_periph) {
2384 		retval = tr_func(periph, arg);
2385 		if (retval == 0) {
2386 			cam_periph_release_locked(periph);
2387 			break;
2388 		}
2389 		xpt_lock_buses();
2390 		mtx_lock(&bus->eb_mtx);
2391 		next_periph = SLIST_NEXT(periph, periph_links);
2392 		while (next_periph != NULL &&
2393 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2394 			next_periph = SLIST_NEXT(next_periph, periph_links);
2395 		if (next_periph)
2396 			next_periph->refcount++;
2397 		mtx_unlock(&bus->eb_mtx);
2398 		xpt_unlock_buses();
2399 		cam_periph_release_locked(periph);
2400 	}
2401 	return(retval);
2402 }
2403 
2404 static int
2405 xptpdrvtraverse(struct periph_driver **start_pdrv,
2406 		xpt_pdrvfunc_t *tr_func, void *arg)
2407 {
2408 	struct periph_driver **pdrv;
2409 	int retval;
2410 
2411 	retval = 1;
2412 
2413 	/*
2414 	 * We don't traverse the peripheral driver list like we do the
2415 	 * other lists, because it is a linker set, and therefore cannot be
2416 	 * changed during runtime.  If the peripheral driver list is ever
2417 	 * re-done to be something other than a linker set (i.e. it can
2418 	 * change while the system is running), the list traversal should
2419 	 * be modified to work like the other traversal functions.
2420 	 */
2421 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2422 	     *pdrv != NULL; pdrv++) {
2423 		retval = tr_func(pdrv, arg);
2424 
2425 		if (retval == 0)
2426 			return(retval);
2427 	}
2428 
2429 	return(retval);
2430 }
2431 
2432 static int
2433 xptpdperiphtraverse(struct periph_driver **pdrv,
2434 		    struct cam_periph *start_periph,
2435 		    xpt_periphfunc_t *tr_func, void *arg)
2436 {
2437 	struct cam_periph *periph, *next_periph;
2438 	int retval;
2439 
2440 	retval = 1;
2441 
2442 	if (start_periph)
2443 		periph = start_periph;
2444 	else {
2445 		xpt_lock_buses();
2446 		periph = TAILQ_FIRST(&(*pdrv)->units);
2447 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2448 			periph = TAILQ_NEXT(periph, unit_links);
2449 		if (periph == NULL) {
2450 			xpt_unlock_buses();
2451 			return (retval);
2452 		}
2453 		periph->refcount++;
2454 		xpt_unlock_buses();
2455 	}
2456 	for (; periph != NULL; periph = next_periph) {
2457 		cam_periph_lock(periph);
2458 		retval = tr_func(periph, arg);
2459 		cam_periph_unlock(periph);
2460 		if (retval == 0) {
2461 			cam_periph_release(periph);
2462 			break;
2463 		}
2464 		xpt_lock_buses();
2465 		next_periph = TAILQ_NEXT(periph, unit_links);
2466 		while (next_periph != NULL &&
2467 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2468 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2469 		if (next_periph)
2470 			next_periph->refcount++;
2471 		xpt_unlock_buses();
2472 		cam_periph_release(periph);
2473 	}
2474 	return(retval);
2475 }
2476 
2477 static int
2478 xptdefbusfunc(struct cam_eb *bus, void *arg)
2479 {
2480 	struct xpt_traverse_config *tr_config;
2481 
2482 	tr_config = (struct xpt_traverse_config *)arg;
2483 
2484 	if (tr_config->depth == XPT_DEPTH_BUS) {
2485 		xpt_busfunc_t *tr_func;
2486 
2487 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2488 
2489 		return(tr_func(bus, tr_config->tr_arg));
2490 	} else
2491 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2492 }
2493 
2494 static int
2495 xptdeftargetfunc(struct cam_et *target, void *arg)
2496 {
2497 	struct xpt_traverse_config *tr_config;
2498 
2499 	tr_config = (struct xpt_traverse_config *)arg;
2500 
2501 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2502 		xpt_targetfunc_t *tr_func;
2503 
2504 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2505 
2506 		return(tr_func(target, tr_config->tr_arg));
2507 	} else
2508 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2509 }
2510 
2511 static int
2512 xptdefdevicefunc(struct cam_ed *device, void *arg)
2513 {
2514 	struct xpt_traverse_config *tr_config;
2515 
2516 	tr_config = (struct xpt_traverse_config *)arg;
2517 
2518 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2519 		xpt_devicefunc_t *tr_func;
2520 
2521 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2522 
2523 		return(tr_func(device, tr_config->tr_arg));
2524 	} else
2525 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2526 }
2527 
2528 static int
2529 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2530 {
2531 	struct xpt_traverse_config *tr_config;
2532 	xpt_periphfunc_t *tr_func;
2533 
2534 	tr_config = (struct xpt_traverse_config *)arg;
2535 
2536 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2537 
2538 	/*
2539 	 * Unlike the other default functions, we don't check for depth
2540 	 * here.  The peripheral driver level is the last level in the EDT,
2541 	 * so if we're here, we should execute the function in question.
2542 	 */
2543 	return(tr_func(periph, tr_config->tr_arg));
2544 }
2545 
2546 /*
2547  * Execute the given function for every bus in the EDT.
2548  */
2549 static int
2550 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2551 {
2552 	struct xpt_traverse_config tr_config;
2553 
2554 	tr_config.depth = XPT_DEPTH_BUS;
2555 	tr_config.tr_func = tr_func;
2556 	tr_config.tr_arg = arg;
2557 
2558 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2559 }
2560 
2561 /*
2562  * Execute the given function for every device in the EDT.
2563  */
2564 static int
2565 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2566 {
2567 	struct xpt_traverse_config tr_config;
2568 
2569 	tr_config.depth = XPT_DEPTH_DEVICE;
2570 	tr_config.tr_func = tr_func;
2571 	tr_config.tr_arg = arg;
2572 
2573 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2574 }
2575 
2576 static int
2577 xptsetasyncfunc(struct cam_ed *device, void *arg)
2578 {
2579 	struct cam_path path;
2580 	struct ccb_getdev cgd;
2581 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2582 
2583 	/*
2584 	 * Don't report unconfigured devices (Wildcard devs,
2585 	 * devices only for target mode, device instances
2586 	 * that have been invalidated but are waiting for
2587 	 * their last reference count to be released).
2588 	 */
2589 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2590 		return (1);
2591 
2592 	xpt_compile_path(&path,
2593 			 NULL,
2594 			 device->target->bus->path_id,
2595 			 device->target->target_id,
2596 			 device->lun_id);
2597 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2598 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2599 	xpt_action((union ccb *)&cgd);
2600 	csa->callback(csa->callback_arg,
2601 			    AC_FOUND_DEVICE,
2602 			    &path, &cgd);
2603 	xpt_release_path(&path);
2604 
2605 	return(1);
2606 }
2607 
2608 static int
2609 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2610 {
2611 	struct cam_path path;
2612 	struct ccb_pathinq cpi;
2613 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2614 
2615 	xpt_compile_path(&path, /*periph*/NULL,
2616 			 bus->path_id,
2617 			 CAM_TARGET_WILDCARD,
2618 			 CAM_LUN_WILDCARD);
2619 	xpt_path_lock(&path);
2620 	xpt_path_inq(&cpi, &path);
2621 	csa->callback(csa->callback_arg,
2622 			    AC_PATH_REGISTERED,
2623 			    &path, &cpi);
2624 	xpt_path_unlock(&path);
2625 	xpt_release_path(&path);
2626 
2627 	return(1);
2628 }
2629 
2630 void
2631 xpt_action(union ccb *start_ccb)
2632 {
2633 
2634 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2635 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2636 		xpt_action_name(start_ccb->ccb_h.func_code)));
2637 
2638 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2639 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2640 }
2641 
2642 void
2643 xpt_action_default(union ccb *start_ccb)
2644 {
2645 	struct cam_path *path;
2646 	struct cam_sim *sim;
2647 	struct mtx *mtx;
2648 
2649 	path = start_ccb->ccb_h.path;
2650 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2651 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2652 		xpt_action_name(start_ccb->ccb_h.func_code)));
2653 
2654 	switch (start_ccb->ccb_h.func_code) {
2655 	case XPT_SCSI_IO:
2656 	{
2657 		struct cam_ed *device;
2658 
2659 		/*
2660 		 * For the sake of compatibility with SCSI-1
2661 		 * devices that may not understand the identify
2662 		 * message, we include lun information in the
2663 		 * second byte of all commands.  SCSI-1 specifies
2664 		 * that luns are a 3 bit value and reserves only 3
2665 		 * bits for lun information in the CDB.  Later
2666 		 * revisions of the SCSI spec allow for more than 8
2667 		 * luns, but have deprecated lun information in the
2668 		 * CDB.  So, if the lun won't fit, we must omit.
2669 		 *
2670 		 * Also be aware that during initial probing for devices,
2671 		 * the inquiry information is unknown but initialized to 0.
2672 		 * This means that this code will be exercised while probing
2673 		 * devices with an ANSI revision greater than 2.
2674 		 */
2675 		device = path->device;
2676 		if (device->protocol_version <= SCSI_REV_2
2677 		 && start_ccb->ccb_h.target_lun < 8
2678 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2679 
2680 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2681 			    start_ccb->ccb_h.target_lun << 5;
2682 		}
2683 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2684 	}
2685 	/* FALLTHROUGH */
2686 	case XPT_TARGET_IO:
2687 	case XPT_CONT_TARGET_IO:
2688 		start_ccb->csio.sense_resid = 0;
2689 		start_ccb->csio.resid = 0;
2690 		/* FALLTHROUGH */
2691 	case XPT_ATA_IO:
2692 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2693 			start_ccb->ataio.resid = 0;
2694 		/* FALLTHROUGH */
2695 	case XPT_NVME_IO:
2696 	case XPT_NVME_ADMIN:
2697 	case XPT_MMC_IO:
2698 	case XPT_RESET_DEV:
2699 	case XPT_ENG_EXEC:
2700 	case XPT_SMP_IO:
2701 	{
2702 		struct cam_devq *devq;
2703 
2704 		devq = path->bus->sim->devq;
2705 		mtx_lock(&devq->send_mtx);
2706 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2707 		if (xpt_schedule_devq(devq, path->device) != 0)
2708 			xpt_run_devq(devq);
2709 		mtx_unlock(&devq->send_mtx);
2710 		break;
2711 	}
2712 	case XPT_CALC_GEOMETRY:
2713 		/* Filter out garbage */
2714 		if (start_ccb->ccg.block_size == 0
2715 		 || start_ccb->ccg.volume_size == 0) {
2716 			start_ccb->ccg.cylinders = 0;
2717 			start_ccb->ccg.heads = 0;
2718 			start_ccb->ccg.secs_per_track = 0;
2719 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2720 			break;
2721 		}
2722 		goto call_sim;
2723 	case XPT_ABORT:
2724 	{
2725 		union ccb* abort_ccb;
2726 
2727 		abort_ccb = start_ccb->cab.abort_ccb;
2728 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2729 			struct cam_ed *device;
2730 			struct cam_devq *devq;
2731 
2732 			device = abort_ccb->ccb_h.path->device;
2733 			devq = device->sim->devq;
2734 
2735 			mtx_lock(&devq->send_mtx);
2736 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2737 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2738 				abort_ccb->ccb_h.status =
2739 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2740 				xpt_freeze_devq_device(device, 1);
2741 				mtx_unlock(&devq->send_mtx);
2742 				xpt_done(abort_ccb);
2743 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2744 				break;
2745 			}
2746 			mtx_unlock(&devq->send_mtx);
2747 
2748 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2749 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2750 				/*
2751 				 * We've caught this ccb en route to
2752 				 * the SIM.  Flag it for abort and the
2753 				 * SIM will do so just before starting
2754 				 * real work on the CCB.
2755 				 */
2756 				abort_ccb->ccb_h.status =
2757 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2758 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2759 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2760 				break;
2761 			}
2762 		}
2763 		if (XPT_FC_IS_QUEUED(abort_ccb)
2764 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2765 			/*
2766 			 * It's already completed but waiting
2767 			 * for our SWI to get to it.
2768 			 */
2769 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2770 			break;
2771 		}
2772 		/*
2773 		 * If we weren't able to take care of the abort request
2774 		 * in the XPT, pass the request down to the SIM for processing.
2775 		 */
2776 	}
2777 	/* FALLTHROUGH */
2778 	case XPT_ACCEPT_TARGET_IO:
2779 	case XPT_EN_LUN:
2780 	case XPT_IMMED_NOTIFY:
2781 	case XPT_NOTIFY_ACK:
2782 	case XPT_RESET_BUS:
2783 	case XPT_IMMEDIATE_NOTIFY:
2784 	case XPT_NOTIFY_ACKNOWLEDGE:
2785 	case XPT_GET_SIM_KNOB_OLD:
2786 	case XPT_GET_SIM_KNOB:
2787 	case XPT_SET_SIM_KNOB:
2788 	case XPT_GET_TRAN_SETTINGS:
2789 	case XPT_SET_TRAN_SETTINGS:
2790 	case XPT_PATH_INQ:
2791 call_sim:
2792 		sim = path->bus->sim;
2793 		mtx = sim->mtx;
2794 		if (mtx && !mtx_owned(mtx))
2795 			mtx_lock(mtx);
2796 		else
2797 			mtx = NULL;
2798 
2799 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2800 		    ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2801 		(*(sim->sim_action))(sim, start_ccb);
2802 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2803 		    ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2804 		if (mtx)
2805 			mtx_unlock(mtx);
2806 		break;
2807 	case XPT_PATH_STATS:
2808 		start_ccb->cpis.last_reset = path->bus->last_reset;
2809 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2810 		break;
2811 	case XPT_GDEV_TYPE:
2812 	{
2813 		struct cam_ed *dev;
2814 
2815 		dev = path->device;
2816 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2817 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2818 		} else {
2819 			struct ccb_getdev *cgd;
2820 
2821 			cgd = &start_ccb->cgd;
2822 			cgd->protocol = dev->protocol;
2823 			cgd->inq_data = dev->inq_data;
2824 			cgd->ident_data = dev->ident_data;
2825 			cgd->inq_flags = dev->inq_flags;
2826 			cgd->ccb_h.status = CAM_REQ_CMP;
2827 			cgd->serial_num_len = dev->serial_num_len;
2828 			if ((dev->serial_num_len > 0)
2829 			 && (dev->serial_num != NULL))
2830 				bcopy(dev->serial_num, cgd->serial_num,
2831 				      dev->serial_num_len);
2832 		}
2833 		break;
2834 	}
2835 	case XPT_GDEV_STATS:
2836 	{
2837 		struct ccb_getdevstats *cgds = &start_ccb->cgds;
2838 		struct cam_ed *dev = path->device;
2839 		struct cam_eb *bus = path->bus;
2840 		struct cam_et *tar = path->target;
2841 		struct cam_devq *devq = bus->sim->devq;
2842 
2843 		mtx_lock(&devq->send_mtx);
2844 		cgds->dev_openings = dev->ccbq.dev_openings;
2845 		cgds->dev_active = dev->ccbq.dev_active;
2846 		cgds->allocated = dev->ccbq.allocated;
2847 		cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2848 		cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2849 		cgds->last_reset = tar->last_reset;
2850 		cgds->maxtags = dev->maxtags;
2851 		cgds->mintags = dev->mintags;
2852 		if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2853 			cgds->last_reset = bus->last_reset;
2854 		mtx_unlock(&devq->send_mtx);
2855 		cgds->ccb_h.status = CAM_REQ_CMP;
2856 		break;
2857 	}
2858 	case XPT_GDEVLIST:
2859 	{
2860 		struct cam_periph	*nperiph;
2861 		struct periph_list	*periph_head;
2862 		struct ccb_getdevlist	*cgdl;
2863 		u_int			i;
2864 		struct cam_ed		*device;
2865 		int			found;
2866 
2867 
2868 		found = 0;
2869 
2870 		/*
2871 		 * Don't want anyone mucking with our data.
2872 		 */
2873 		device = path->device;
2874 		periph_head = &device->periphs;
2875 		cgdl = &start_ccb->cgdl;
2876 
2877 		/*
2878 		 * Check and see if the list has changed since the user
2879 		 * last requested a list member.  If so, tell them that the
2880 		 * list has changed, and therefore they need to start over
2881 		 * from the beginning.
2882 		 */
2883 		if ((cgdl->index != 0) &&
2884 		    (cgdl->generation != device->generation)) {
2885 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2886 			break;
2887 		}
2888 
2889 		/*
2890 		 * Traverse the list of peripherals and attempt to find
2891 		 * the requested peripheral.
2892 		 */
2893 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2894 		     (nperiph != NULL) && (i <= cgdl->index);
2895 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2896 			if (i == cgdl->index) {
2897 				strlcpy(cgdl->periph_name,
2898 					nperiph->periph_name,
2899 					sizeof(cgdl->periph_name));
2900 				cgdl->unit_number = nperiph->unit_number;
2901 				found = 1;
2902 			}
2903 		}
2904 		if (found == 0) {
2905 			cgdl->status = CAM_GDEVLIST_ERROR;
2906 			break;
2907 		}
2908 
2909 		if (nperiph == NULL)
2910 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2911 		else
2912 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2913 
2914 		cgdl->index++;
2915 		cgdl->generation = device->generation;
2916 
2917 		cgdl->ccb_h.status = CAM_REQ_CMP;
2918 		break;
2919 	}
2920 	case XPT_DEV_MATCH:
2921 	{
2922 		dev_pos_type position_type;
2923 		struct ccb_dev_match *cdm;
2924 
2925 		cdm = &start_ccb->cdm;
2926 
2927 		/*
2928 		 * There are two ways of getting at information in the EDT.
2929 		 * The first way is via the primary EDT tree.  It starts
2930 		 * with a list of buses, then a list of targets on a bus,
2931 		 * then devices/luns on a target, and then peripherals on a
2932 		 * device/lun.  The "other" way is by the peripheral driver
2933 		 * lists.  The peripheral driver lists are organized by
2934 		 * peripheral driver.  (obviously)  So it makes sense to
2935 		 * use the peripheral driver list if the user is looking
2936 		 * for something like "da1", or all "da" devices.  If the
2937 		 * user is looking for something on a particular bus/target
2938 		 * or lun, it's generally better to go through the EDT tree.
2939 		 */
2940 
2941 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2942 			position_type = cdm->pos.position_type;
2943 		else {
2944 			u_int i;
2945 
2946 			position_type = CAM_DEV_POS_NONE;
2947 
2948 			for (i = 0; i < cdm->num_patterns; i++) {
2949 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2950 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2951 					position_type = CAM_DEV_POS_EDT;
2952 					break;
2953 				}
2954 			}
2955 
2956 			if (cdm->num_patterns == 0)
2957 				position_type = CAM_DEV_POS_EDT;
2958 			else if (position_type == CAM_DEV_POS_NONE)
2959 				position_type = CAM_DEV_POS_PDRV;
2960 		}
2961 
2962 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2963 		case CAM_DEV_POS_EDT:
2964 			xptedtmatch(cdm);
2965 			break;
2966 		case CAM_DEV_POS_PDRV:
2967 			xptperiphlistmatch(cdm);
2968 			break;
2969 		default:
2970 			cdm->status = CAM_DEV_MATCH_ERROR;
2971 			break;
2972 		}
2973 
2974 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2975 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2976 		else
2977 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2978 
2979 		break;
2980 	}
2981 	case XPT_SASYNC_CB:
2982 	{
2983 		struct ccb_setasync *csa;
2984 		struct async_node *cur_entry;
2985 		struct async_list *async_head;
2986 		u_int32_t added;
2987 
2988 		csa = &start_ccb->csa;
2989 		added = csa->event_enable;
2990 		async_head = &path->device->asyncs;
2991 
2992 		/*
2993 		 * If there is already an entry for us, simply
2994 		 * update it.
2995 		 */
2996 		cur_entry = SLIST_FIRST(async_head);
2997 		while (cur_entry != NULL) {
2998 			if ((cur_entry->callback_arg == csa->callback_arg)
2999 			 && (cur_entry->callback == csa->callback))
3000 				break;
3001 			cur_entry = SLIST_NEXT(cur_entry, links);
3002 		}
3003 
3004 		if (cur_entry != NULL) {
3005 		 	/*
3006 			 * If the request has no flags set,
3007 			 * remove the entry.
3008 			 */
3009 			added &= ~cur_entry->event_enable;
3010 			if (csa->event_enable == 0) {
3011 				SLIST_REMOVE(async_head, cur_entry,
3012 					     async_node, links);
3013 				xpt_release_device(path->device);
3014 				free(cur_entry, M_CAMXPT);
3015 			} else {
3016 				cur_entry->event_enable = csa->event_enable;
3017 			}
3018 			csa->event_enable = added;
3019 		} else {
3020 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
3021 					   M_NOWAIT);
3022 			if (cur_entry == NULL) {
3023 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3024 				break;
3025 			}
3026 			cur_entry->event_enable = csa->event_enable;
3027 			cur_entry->event_lock = (path->bus->sim->mtx &&
3028 			    mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
3029 			cur_entry->callback_arg = csa->callback_arg;
3030 			cur_entry->callback = csa->callback;
3031 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3032 			xpt_acquire_device(path->device);
3033 		}
3034 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3035 		break;
3036 	}
3037 	case XPT_REL_SIMQ:
3038 	{
3039 		struct ccb_relsim *crs;
3040 		struct cam_ed *dev;
3041 
3042 		crs = &start_ccb->crs;
3043 		dev = path->device;
3044 		if (dev == NULL) {
3045 
3046 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3047 			break;
3048 		}
3049 
3050 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3051 
3052 			/* Don't ever go below one opening */
3053 			if (crs->openings > 0) {
3054 				xpt_dev_ccbq_resize(path, crs->openings);
3055 				if (bootverbose) {
3056 					xpt_print(path,
3057 					    "number of openings is now %d\n",
3058 					    crs->openings);
3059 				}
3060 			}
3061 		}
3062 
3063 		mtx_lock(&dev->sim->devq->send_mtx);
3064 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3065 
3066 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3067 
3068 				/*
3069 				 * Just extend the old timeout and decrement
3070 				 * the freeze count so that a single timeout
3071 				 * is sufficient for releasing the queue.
3072 				 */
3073 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3074 				callout_stop(&dev->callout);
3075 			} else {
3076 
3077 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3078 			}
3079 
3080 			callout_reset_sbt(&dev->callout,
3081 			    SBT_1MS * crs->release_timeout, 0,
3082 			    xpt_release_devq_timeout, dev, 0);
3083 
3084 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3085 
3086 		}
3087 
3088 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3089 
3090 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3091 				/*
3092 				 * Decrement the freeze count so that a single
3093 				 * completion is still sufficient to unfreeze
3094 				 * the queue.
3095 				 */
3096 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3097 			} else {
3098 
3099 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3100 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3101 			}
3102 		}
3103 
3104 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3105 
3106 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3107 			 || (dev->ccbq.dev_active == 0)) {
3108 
3109 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3110 			} else {
3111 
3112 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3113 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3114 			}
3115 		}
3116 		mtx_unlock(&dev->sim->devq->send_mtx);
3117 
3118 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
3119 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
3120 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3121 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3122 		break;
3123 	}
3124 	case XPT_DEBUG: {
3125 		struct cam_path *oldpath;
3126 
3127 		/* Check that all request bits are supported. */
3128 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3129 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3130 			break;
3131 		}
3132 
3133 		cam_dflags = CAM_DEBUG_NONE;
3134 		if (cam_dpath != NULL) {
3135 			oldpath = cam_dpath;
3136 			cam_dpath = NULL;
3137 			xpt_free_path(oldpath);
3138 		}
3139 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3140 			if (xpt_create_path(&cam_dpath, NULL,
3141 					    start_ccb->ccb_h.path_id,
3142 					    start_ccb->ccb_h.target_id,
3143 					    start_ccb->ccb_h.target_lun) !=
3144 					    CAM_REQ_CMP) {
3145 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3146 			} else {
3147 				cam_dflags = start_ccb->cdbg.flags;
3148 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3149 				xpt_print(cam_dpath, "debugging flags now %x\n",
3150 				    cam_dflags);
3151 			}
3152 		} else
3153 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3154 		break;
3155 	}
3156 	case XPT_NOOP:
3157 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3158 			xpt_freeze_devq(path, 1);
3159 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3160 		break;
3161 	case XPT_REPROBE_LUN:
3162 		xpt_async(AC_INQ_CHANGED, path, NULL);
3163 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3164 		xpt_done(start_ccb);
3165 		break;
3166 	case XPT_ASYNC:
3167 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3168 		xpt_done(start_ccb);
3169 		break;
3170 	default:
3171 	case XPT_SDEV_TYPE:
3172 	case XPT_TERM_IO:
3173 	case XPT_ENG_INQ:
3174 		/* XXX Implement */
3175 		xpt_print(start_ccb->ccb_h.path,
3176 		    "%s: CCB type %#x %s not supported\n", __func__,
3177 		    start_ccb->ccb_h.func_code,
3178 		    xpt_action_name(start_ccb->ccb_h.func_code));
3179 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3180 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3181 			xpt_done(start_ccb);
3182 		}
3183 		break;
3184 	}
3185 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3186 	    ("xpt_action_default: func= %#x %s status %#x\n",
3187 		start_ccb->ccb_h.func_code,
3188  		xpt_action_name(start_ccb->ccb_h.func_code),
3189 		start_ccb->ccb_h.status));
3190 }
3191 
3192 /*
3193  * Call the sim poll routine to allow the sim to complete
3194  * any inflight requests, then call camisr_runqueue to
3195  * complete any CCB that the polling completed.
3196  */
3197 void
3198 xpt_sim_poll(struct cam_sim *sim)
3199 {
3200 	struct mtx *mtx;
3201 
3202 	mtx = sim->mtx;
3203 	if (mtx)
3204 		mtx_lock(mtx);
3205 	(*(sim->sim_poll))(sim);
3206 	if (mtx)
3207 		mtx_unlock(mtx);
3208 	camisr_runqueue();
3209 }
3210 
3211 uint32_t
3212 xpt_poll_setup(union ccb *start_ccb)
3213 {
3214 	u_int32_t timeout;
3215 	struct	  cam_sim *sim;
3216 	struct	  cam_devq *devq;
3217 	struct	  cam_ed *dev;
3218 
3219 	timeout = start_ccb->ccb_h.timeout * 10;
3220 	sim = start_ccb->ccb_h.path->bus->sim;
3221 	devq = sim->devq;
3222 	dev = start_ccb->ccb_h.path->device;
3223 
3224 	/*
3225 	 * Steal an opening so that no other queued requests
3226 	 * can get it before us while we simulate interrupts.
3227 	 */
3228 	mtx_lock(&devq->send_mtx);
3229 	dev->ccbq.dev_openings--;
3230 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3231 	    (--timeout > 0)) {
3232 		mtx_unlock(&devq->send_mtx);
3233 		DELAY(100);
3234 		xpt_sim_poll(sim);
3235 		mtx_lock(&devq->send_mtx);
3236 	}
3237 	dev->ccbq.dev_openings++;
3238 	mtx_unlock(&devq->send_mtx);
3239 
3240 	return (timeout);
3241 }
3242 
3243 void
3244 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3245 {
3246 
3247 	while (--timeout > 0) {
3248 		xpt_sim_poll(start_ccb->ccb_h.path->bus->sim);
3249 		if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3250 		    != CAM_REQ_INPROG)
3251 			break;
3252 		DELAY(100);
3253 	}
3254 
3255 	if (timeout == 0) {
3256 		/*
3257 		 * XXX Is it worth adding a sim_timeout entry
3258 		 * point so we can attempt recovery?  If
3259 		 * this is only used for dumps, I don't think
3260 		 * it is.
3261 		 */
3262 		start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3263 	}
3264 }
3265 
3266 void
3267 xpt_polled_action(union ccb *start_ccb)
3268 {
3269 	uint32_t	timeout;
3270 	struct cam_ed	*dev;
3271 
3272 	timeout = start_ccb->ccb_h.timeout * 10;
3273 	dev = start_ccb->ccb_h.path->device;
3274 
3275 	mtx_unlock(&dev->device_mtx);
3276 
3277 	timeout = xpt_poll_setup(start_ccb);
3278 	if (timeout > 0) {
3279 		xpt_action(start_ccb);
3280 		xpt_pollwait(start_ccb, timeout);
3281 	} else {
3282 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3283 	}
3284 
3285 	mtx_lock(&dev->device_mtx);
3286 }
3287 
3288 /*
3289  * Schedule a peripheral driver to receive a ccb when its
3290  * target device has space for more transactions.
3291  */
3292 void
3293 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3294 {
3295 
3296 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3297 	cam_periph_assert(periph, MA_OWNED);
3298 	if (new_priority < periph->scheduled_priority) {
3299 		periph->scheduled_priority = new_priority;
3300 		xpt_run_allocq(periph, 0);
3301 	}
3302 }
3303 
3304 
3305 /*
3306  * Schedule a device to run on a given queue.
3307  * If the device was inserted as a new entry on the queue,
3308  * return 1 meaning the device queue should be run. If we
3309  * were already queued, implying someone else has already
3310  * started the queue, return 0 so the caller doesn't attempt
3311  * to run the queue.
3312  */
3313 static int
3314 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3315 		 u_int32_t new_priority)
3316 {
3317 	int retval;
3318 	u_int32_t old_priority;
3319 
3320 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3321 
3322 
3323 	old_priority = pinfo->priority;
3324 
3325 	/*
3326 	 * Are we already queued?
3327 	 */
3328 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3329 		/* Simply reorder based on new priority */
3330 		if (new_priority < old_priority) {
3331 			camq_change_priority(queue, pinfo->index,
3332 					     new_priority);
3333 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3334 					("changed priority to %d\n",
3335 					 new_priority));
3336 			retval = 1;
3337 		} else
3338 			retval = 0;
3339 	} else {
3340 		/* New entry on the queue */
3341 		if (new_priority < old_priority)
3342 			pinfo->priority = new_priority;
3343 
3344 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3345 				("Inserting onto queue\n"));
3346 		pinfo->generation = ++queue->generation;
3347 		camq_insert(queue, pinfo);
3348 		retval = 1;
3349 	}
3350 	return (retval);
3351 }
3352 
3353 static void
3354 xpt_run_allocq_task(void *context, int pending)
3355 {
3356 	struct cam_periph *periph = context;
3357 
3358 	cam_periph_lock(periph);
3359 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3360 	xpt_run_allocq(periph, 1);
3361 	cam_periph_unlock(periph);
3362 	cam_periph_release(periph);
3363 }
3364 
3365 static void
3366 xpt_run_allocq(struct cam_periph *periph, int sleep)
3367 {
3368 	struct cam_ed	*device;
3369 	union ccb	*ccb;
3370 	uint32_t	 prio;
3371 
3372 	cam_periph_assert(periph, MA_OWNED);
3373 	if (periph->periph_allocating)
3374 		return;
3375 	cam_periph_doacquire(periph);
3376 	periph->periph_allocating = 1;
3377 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3378 	device = periph->path->device;
3379 	ccb = NULL;
3380 restart:
3381 	while ((prio = min(periph->scheduled_priority,
3382 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3383 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3384 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3385 
3386 		if (ccb == NULL &&
3387 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3388 			if (sleep) {
3389 				ccb = xpt_get_ccb(periph);
3390 				goto restart;
3391 			}
3392 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3393 				break;
3394 			cam_periph_doacquire(periph);
3395 			periph->flags |= CAM_PERIPH_RUN_TASK;
3396 			taskqueue_enqueue(xsoftc.xpt_taskq,
3397 			    &periph->periph_run_task);
3398 			break;
3399 		}
3400 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3401 		if (prio == periph->immediate_priority) {
3402 			periph->immediate_priority = CAM_PRIORITY_NONE;
3403 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3404 					("waking cam_periph_getccb()\n"));
3405 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3406 					  periph_links.sle);
3407 			wakeup(&periph->ccb_list);
3408 		} else {
3409 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3410 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3411 					("calling periph_start()\n"));
3412 			periph->periph_start(periph, ccb);
3413 		}
3414 		ccb = NULL;
3415 	}
3416 	if (ccb != NULL)
3417 		xpt_release_ccb(ccb);
3418 	periph->periph_allocating = 0;
3419 	cam_periph_release_locked(periph);
3420 }
3421 
3422 static void
3423 xpt_run_devq(struct cam_devq *devq)
3424 {
3425 	struct mtx *mtx;
3426 
3427 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3428 
3429 	devq->send_queue.qfrozen_cnt++;
3430 	while ((devq->send_queue.entries > 0)
3431 	    && (devq->send_openings > 0)
3432 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3433 		struct	cam_ed *device;
3434 		union ccb *work_ccb;
3435 		struct	cam_sim *sim;
3436 		struct xpt_proto *proto;
3437 
3438 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3439 							   CAMQ_HEAD);
3440 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3441 				("running device %p\n", device));
3442 
3443 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3444 		if (work_ccb == NULL) {
3445 			printf("device on run queue with no ccbs???\n");
3446 			continue;
3447 		}
3448 
3449 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3450 
3451 			mtx_lock(&xsoftc.xpt_highpower_lock);
3452 		 	if (xsoftc.num_highpower <= 0) {
3453 				/*
3454 				 * We got a high power command, but we
3455 				 * don't have any available slots.  Freeze
3456 				 * the device queue until we have a slot
3457 				 * available.
3458 				 */
3459 				xpt_freeze_devq_device(device, 1);
3460 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3461 						   highpowerq_entry);
3462 
3463 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3464 				continue;
3465 			} else {
3466 				/*
3467 				 * Consume a high power slot while
3468 				 * this ccb runs.
3469 				 */
3470 				xsoftc.num_highpower--;
3471 			}
3472 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3473 		}
3474 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3475 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3476 		devq->send_openings--;
3477 		devq->send_active++;
3478 		xpt_schedule_devq(devq, device);
3479 		mtx_unlock(&devq->send_mtx);
3480 
3481 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3482 			/*
3483 			 * The client wants to freeze the queue
3484 			 * after this CCB is sent.
3485 			 */
3486 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3487 		}
3488 
3489 		/* In Target mode, the peripheral driver knows best... */
3490 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3491 			if ((device->inq_flags & SID_CmdQue) != 0
3492 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3493 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3494 			else
3495 				/*
3496 				 * Clear this in case of a retried CCB that
3497 				 * failed due to a rejected tag.
3498 				 */
3499 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3500 		}
3501 
3502 		KASSERT(device == work_ccb->ccb_h.path->device,
3503 		    ("device (%p) / path->device (%p) mismatch",
3504 			device, work_ccb->ccb_h.path->device));
3505 		proto = xpt_proto_find(device->protocol);
3506 		if (proto && proto->ops->debug_out)
3507 			proto->ops->debug_out(work_ccb);
3508 
3509 		/*
3510 		 * Device queues can be shared among multiple SIM instances
3511 		 * that reside on different buses.  Use the SIM from the
3512 		 * queued device, rather than the one from the calling bus.
3513 		 */
3514 		sim = device->sim;
3515 		mtx = sim->mtx;
3516 		if (mtx && !mtx_owned(mtx))
3517 			mtx_lock(mtx);
3518 		else
3519 			mtx = NULL;
3520 		work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3521 		(*(sim->sim_action))(sim, work_ccb);
3522 		if (mtx)
3523 			mtx_unlock(mtx);
3524 		mtx_lock(&devq->send_mtx);
3525 	}
3526 	devq->send_queue.qfrozen_cnt--;
3527 }
3528 
3529 /*
3530  * This function merges stuff from the slave ccb into the master ccb, while
3531  * keeping important fields in the master ccb constant.
3532  */
3533 void
3534 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3535 {
3536 
3537 	/*
3538 	 * Pull fields that are valid for peripheral drivers to set
3539 	 * into the master CCB along with the CCB "payload".
3540 	 */
3541 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3542 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3543 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3544 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3545 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3546 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3547 }
3548 
3549 void
3550 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3551 		    u_int32_t priority, u_int32_t flags)
3552 {
3553 
3554 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3555 	ccb_h->pinfo.priority = priority;
3556 	ccb_h->path = path;
3557 	ccb_h->path_id = path->bus->path_id;
3558 	if (path->target)
3559 		ccb_h->target_id = path->target->target_id;
3560 	else
3561 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3562 	if (path->device) {
3563 		ccb_h->target_lun = path->device->lun_id;
3564 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3565 	} else {
3566 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3567 	}
3568 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3569 	ccb_h->flags = flags;
3570 	ccb_h->xflags = 0;
3571 }
3572 
3573 void
3574 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3575 {
3576 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3577 }
3578 
3579 /* Path manipulation functions */
3580 cam_status
3581 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3582 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3583 {
3584 	struct	   cam_path *path;
3585 	cam_status status;
3586 
3587 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3588 
3589 	if (path == NULL) {
3590 		status = CAM_RESRC_UNAVAIL;
3591 		return(status);
3592 	}
3593 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3594 	if (status != CAM_REQ_CMP) {
3595 		free(path, M_CAMPATH);
3596 		path = NULL;
3597 	}
3598 	*new_path_ptr = path;
3599 	return (status);
3600 }
3601 
3602 cam_status
3603 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3604 			 struct cam_periph *periph, path_id_t path_id,
3605 			 target_id_t target_id, lun_id_t lun_id)
3606 {
3607 
3608 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3609 	    lun_id));
3610 }
3611 
3612 cam_status
3613 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3614 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3615 {
3616 	struct	     cam_eb *bus;
3617 	struct	     cam_et *target;
3618 	struct	     cam_ed *device;
3619 	cam_status   status;
3620 
3621 	status = CAM_REQ_CMP;	/* Completed without error */
3622 	target = NULL;		/* Wildcarded */
3623 	device = NULL;		/* Wildcarded */
3624 
3625 	/*
3626 	 * We will potentially modify the EDT, so block interrupts
3627 	 * that may attempt to create cam paths.
3628 	 */
3629 	bus = xpt_find_bus(path_id);
3630 	if (bus == NULL) {
3631 		status = CAM_PATH_INVALID;
3632 	} else {
3633 		xpt_lock_buses();
3634 		mtx_lock(&bus->eb_mtx);
3635 		target = xpt_find_target(bus, target_id);
3636 		if (target == NULL) {
3637 			/* Create one */
3638 			struct cam_et *new_target;
3639 
3640 			new_target = xpt_alloc_target(bus, target_id);
3641 			if (new_target == NULL) {
3642 				status = CAM_RESRC_UNAVAIL;
3643 			} else {
3644 				target = new_target;
3645 			}
3646 		}
3647 		xpt_unlock_buses();
3648 		if (target != NULL) {
3649 			device = xpt_find_device(target, lun_id);
3650 			if (device == NULL) {
3651 				/* Create one */
3652 				struct cam_ed *new_device;
3653 
3654 				new_device =
3655 				    (*(bus->xport->ops->alloc_device))(bus,
3656 								       target,
3657 								       lun_id);
3658 				if (new_device == NULL) {
3659 					status = CAM_RESRC_UNAVAIL;
3660 				} else {
3661 					device = new_device;
3662 				}
3663 			}
3664 		}
3665 		mtx_unlock(&bus->eb_mtx);
3666 	}
3667 
3668 	/*
3669 	 * Only touch the user's data if we are successful.
3670 	 */
3671 	if (status == CAM_REQ_CMP) {
3672 		new_path->periph = perph;
3673 		new_path->bus = bus;
3674 		new_path->target = target;
3675 		new_path->device = device;
3676 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3677 	} else {
3678 		if (device != NULL)
3679 			xpt_release_device(device);
3680 		if (target != NULL)
3681 			xpt_release_target(target);
3682 		if (bus != NULL)
3683 			xpt_release_bus(bus);
3684 	}
3685 	return (status);
3686 }
3687 
3688 cam_status
3689 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3690 {
3691 	struct	   cam_path *new_path;
3692 
3693 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3694 	if (new_path == NULL)
3695 		return(CAM_RESRC_UNAVAIL);
3696 	*new_path = *path;
3697 	if (path->bus != NULL)
3698 		xpt_acquire_bus(path->bus);
3699 	if (path->target != NULL)
3700 		xpt_acquire_target(path->target);
3701 	if (path->device != NULL)
3702 		xpt_acquire_device(path->device);
3703 	*new_path_ptr = new_path;
3704 	return (CAM_REQ_CMP);
3705 }
3706 
3707 void
3708 xpt_release_path(struct cam_path *path)
3709 {
3710 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3711 	if (path->device != NULL) {
3712 		xpt_release_device(path->device);
3713 		path->device = NULL;
3714 	}
3715 	if (path->target != NULL) {
3716 		xpt_release_target(path->target);
3717 		path->target = NULL;
3718 	}
3719 	if (path->bus != NULL) {
3720 		xpt_release_bus(path->bus);
3721 		path->bus = NULL;
3722 	}
3723 }
3724 
3725 void
3726 xpt_free_path(struct cam_path *path)
3727 {
3728 
3729 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3730 	xpt_release_path(path);
3731 	free(path, M_CAMPATH);
3732 }
3733 
3734 void
3735 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3736     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3737 {
3738 
3739 	xpt_lock_buses();
3740 	if (bus_ref) {
3741 		if (path->bus)
3742 			*bus_ref = path->bus->refcount;
3743 		else
3744 			*bus_ref = 0;
3745 	}
3746 	if (periph_ref) {
3747 		if (path->periph)
3748 			*periph_ref = path->periph->refcount;
3749 		else
3750 			*periph_ref = 0;
3751 	}
3752 	xpt_unlock_buses();
3753 	if (target_ref) {
3754 		if (path->target)
3755 			*target_ref = path->target->refcount;
3756 		else
3757 			*target_ref = 0;
3758 	}
3759 	if (device_ref) {
3760 		if (path->device)
3761 			*device_ref = path->device->refcount;
3762 		else
3763 			*device_ref = 0;
3764 	}
3765 }
3766 
3767 /*
3768  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3769  * in path1, 2 for match with wildcards in path2.
3770  */
3771 int
3772 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3773 {
3774 	int retval = 0;
3775 
3776 	if (path1->bus != path2->bus) {
3777 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3778 			retval = 1;
3779 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3780 			retval = 2;
3781 		else
3782 			return (-1);
3783 	}
3784 	if (path1->target != path2->target) {
3785 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3786 			if (retval == 0)
3787 				retval = 1;
3788 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3789 			retval = 2;
3790 		else
3791 			return (-1);
3792 	}
3793 	if (path1->device != path2->device) {
3794 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3795 			if (retval == 0)
3796 				retval = 1;
3797 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3798 			retval = 2;
3799 		else
3800 			return (-1);
3801 	}
3802 	return (retval);
3803 }
3804 
3805 int
3806 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3807 {
3808 	int retval = 0;
3809 
3810 	if (path->bus != dev->target->bus) {
3811 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3812 			retval = 1;
3813 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3814 			retval = 2;
3815 		else
3816 			return (-1);
3817 	}
3818 	if (path->target != dev->target) {
3819 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3820 			if (retval == 0)
3821 				retval = 1;
3822 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3823 			retval = 2;
3824 		else
3825 			return (-1);
3826 	}
3827 	if (path->device != dev) {
3828 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3829 			if (retval == 0)
3830 				retval = 1;
3831 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3832 			retval = 2;
3833 		else
3834 			return (-1);
3835 	}
3836 	return (retval);
3837 }
3838 
3839 void
3840 xpt_print_path(struct cam_path *path)
3841 {
3842 	struct sbuf sb;
3843 	char buffer[XPT_PRINT_LEN];
3844 
3845 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3846 	xpt_path_sbuf(path, &sb);
3847 	sbuf_finish(&sb);
3848 	printf("%s", sbuf_data(&sb));
3849 	sbuf_delete(&sb);
3850 }
3851 
3852 void
3853 xpt_print_device(struct cam_ed *device)
3854 {
3855 
3856 	if (device == NULL)
3857 		printf("(nopath): ");
3858 	else {
3859 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3860 		       device->sim->unit_number,
3861 		       device->sim->bus_id,
3862 		       device->target->target_id,
3863 		       (uintmax_t)device->lun_id);
3864 	}
3865 }
3866 
3867 void
3868 xpt_print(struct cam_path *path, const char *fmt, ...)
3869 {
3870 	va_list ap;
3871 	struct sbuf sb;
3872 	char buffer[XPT_PRINT_LEN];
3873 
3874 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3875 
3876 	xpt_path_sbuf(path, &sb);
3877 	va_start(ap, fmt);
3878 	sbuf_vprintf(&sb, fmt, ap);
3879 	va_end(ap);
3880 
3881 	sbuf_finish(&sb);
3882 	printf("%s", sbuf_data(&sb));
3883 	sbuf_delete(&sb);
3884 }
3885 
3886 int
3887 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3888 {
3889 	struct sbuf sb;
3890 	int len;
3891 
3892 	sbuf_new(&sb, str, str_len, 0);
3893 	len = xpt_path_sbuf(path, &sb);
3894 	sbuf_finish(&sb);
3895 	return (len);
3896 }
3897 
3898 int
3899 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3900 {
3901 
3902 	if (path == NULL)
3903 		sbuf_printf(sb, "(nopath): ");
3904 	else {
3905 		if (path->periph != NULL)
3906 			sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3907 				    path->periph->unit_number);
3908 		else
3909 			sbuf_printf(sb, "(noperiph:");
3910 
3911 		if (path->bus != NULL)
3912 			sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3913 				    path->bus->sim->unit_number,
3914 				    path->bus->sim->bus_id);
3915 		else
3916 			sbuf_printf(sb, "nobus:");
3917 
3918 		if (path->target != NULL)
3919 			sbuf_printf(sb, "%d:", path->target->target_id);
3920 		else
3921 			sbuf_printf(sb, "X:");
3922 
3923 		if (path->device != NULL)
3924 			sbuf_printf(sb, "%jx): ",
3925 			    (uintmax_t)path->device->lun_id);
3926 		else
3927 			sbuf_printf(sb, "X): ");
3928 	}
3929 
3930 	return(sbuf_len(sb));
3931 }
3932 
3933 path_id_t
3934 xpt_path_path_id(struct cam_path *path)
3935 {
3936 	return(path->bus->path_id);
3937 }
3938 
3939 target_id_t
3940 xpt_path_target_id(struct cam_path *path)
3941 {
3942 	if (path->target != NULL)
3943 		return (path->target->target_id);
3944 	else
3945 		return (CAM_TARGET_WILDCARD);
3946 }
3947 
3948 lun_id_t
3949 xpt_path_lun_id(struct cam_path *path)
3950 {
3951 	if (path->device != NULL)
3952 		return (path->device->lun_id);
3953 	else
3954 		return (CAM_LUN_WILDCARD);
3955 }
3956 
3957 struct cam_sim *
3958 xpt_path_sim(struct cam_path *path)
3959 {
3960 
3961 	return (path->bus->sim);
3962 }
3963 
3964 struct cam_periph*
3965 xpt_path_periph(struct cam_path *path)
3966 {
3967 
3968 	return (path->periph);
3969 }
3970 
3971 /*
3972  * Release a CAM control block for the caller.  Remit the cost of the structure
3973  * to the device referenced by the path.  If the this device had no 'credits'
3974  * and peripheral drivers have registered async callbacks for this notification
3975  * call them now.
3976  */
3977 void
3978 xpt_release_ccb(union ccb *free_ccb)
3979 {
3980 	struct	 cam_ed *device;
3981 	struct	 cam_periph *periph;
3982 
3983 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3984 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3985 	device = free_ccb->ccb_h.path->device;
3986 	periph = free_ccb->ccb_h.path->periph;
3987 
3988 	xpt_free_ccb(free_ccb);
3989 	periph->periph_allocated--;
3990 	cam_ccbq_release_opening(&device->ccbq);
3991 	xpt_run_allocq(periph, 0);
3992 }
3993 
3994 /* Functions accessed by SIM drivers */
3995 
3996 static struct xpt_xport_ops xport_default_ops = {
3997 	.alloc_device = xpt_alloc_device_default,
3998 	.action = xpt_action_default,
3999 	.async = xpt_dev_async_default,
4000 };
4001 static struct xpt_xport xport_default = {
4002 	.xport = XPORT_UNKNOWN,
4003 	.name = "unknown",
4004 	.ops = &xport_default_ops,
4005 };
4006 
4007 CAM_XPT_XPORT(xport_default);
4008 
4009 /*
4010  * A sim structure, listing the SIM entry points and instance
4011  * identification info is passed to xpt_bus_register to hook the SIM
4012  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4013  * for this new bus and places it in the array of buses and assigns
4014  * it a path_id.  The path_id may be influenced by "hard wiring"
4015  * information specified by the user.  Once interrupt services are
4016  * available, the bus will be probed.
4017  */
4018 int32_t
4019 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
4020 {
4021 	struct cam_eb *new_bus;
4022 	struct cam_eb *old_bus;
4023 	struct ccb_pathinq cpi;
4024 	struct cam_path *path;
4025 	cam_status status;
4026 
4027 	sim->bus_id = bus;
4028 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4029 					  M_CAMXPT, M_NOWAIT|M_ZERO);
4030 	if (new_bus == NULL) {
4031 		/* Couldn't satisfy request */
4032 		return (CAM_RESRC_UNAVAIL);
4033 	}
4034 
4035 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
4036 	TAILQ_INIT(&new_bus->et_entries);
4037 	cam_sim_hold(sim);
4038 	new_bus->sim = sim;
4039 	timevalclear(&new_bus->last_reset);
4040 	new_bus->flags = 0;
4041 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4042 	new_bus->generation = 0;
4043 
4044 	xpt_lock_buses();
4045 	sim->path_id = new_bus->path_id =
4046 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4047 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4048 	while (old_bus != NULL
4049 	    && old_bus->path_id < new_bus->path_id)
4050 		old_bus = TAILQ_NEXT(old_bus, links);
4051 	if (old_bus != NULL)
4052 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4053 	else
4054 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4055 	xsoftc.bus_generation++;
4056 	xpt_unlock_buses();
4057 
4058 	/*
4059 	 * Set a default transport so that a PATH_INQ can be issued to
4060 	 * the SIM.  This will then allow for probing and attaching of
4061 	 * a more appropriate transport.
4062 	 */
4063 	new_bus->xport = &xport_default;
4064 
4065 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
4066 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4067 	if (status != CAM_REQ_CMP) {
4068 		xpt_release_bus(new_bus);
4069 		return (CAM_RESRC_UNAVAIL);
4070 	}
4071 
4072 	xpt_path_inq(&cpi, path);
4073 
4074 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
4075 		struct xpt_xport **xpt;
4076 
4077 		SET_FOREACH(xpt, cam_xpt_xport_set) {
4078 			if ((*xpt)->xport == cpi.transport) {
4079 				new_bus->xport = *xpt;
4080 				break;
4081 			}
4082 		}
4083 		if (new_bus->xport == NULL) {
4084 			xpt_print(path,
4085 			    "No transport found for %d\n", cpi.transport);
4086 			xpt_release_bus(new_bus);
4087 			free(path, M_CAMXPT);
4088 			return (CAM_RESRC_UNAVAIL);
4089 		}
4090 	}
4091 
4092 	/* Notify interested parties */
4093 	if (sim->path_id != CAM_XPT_PATH_ID) {
4094 
4095 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
4096 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
4097 			union	ccb *scan_ccb;
4098 
4099 			/* Initiate bus rescan. */
4100 			scan_ccb = xpt_alloc_ccb_nowait();
4101 			if (scan_ccb != NULL) {
4102 				scan_ccb->ccb_h.path = path;
4103 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
4104 				scan_ccb->crcn.flags = 0;
4105 				xpt_rescan(scan_ccb);
4106 			} else {
4107 				xpt_print(path,
4108 					  "Can't allocate CCB to scan bus\n");
4109 				xpt_free_path(path);
4110 			}
4111 		} else
4112 			xpt_free_path(path);
4113 	} else
4114 		xpt_free_path(path);
4115 	return (CAM_SUCCESS);
4116 }
4117 
4118 int32_t
4119 xpt_bus_deregister(path_id_t pathid)
4120 {
4121 	struct cam_path bus_path;
4122 	cam_status status;
4123 
4124 	status = xpt_compile_path(&bus_path, NULL, pathid,
4125 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4126 	if (status != CAM_REQ_CMP)
4127 		return (status);
4128 
4129 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4130 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4131 
4132 	/* Release the reference count held while registered. */
4133 	xpt_release_bus(bus_path.bus);
4134 	xpt_release_path(&bus_path);
4135 
4136 	return (CAM_REQ_CMP);
4137 }
4138 
4139 static path_id_t
4140 xptnextfreepathid(void)
4141 {
4142 	struct cam_eb *bus;
4143 	path_id_t pathid;
4144 	const char *strval;
4145 
4146 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4147 	pathid = 0;
4148 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4149 retry:
4150 	/* Find an unoccupied pathid */
4151 	while (bus != NULL && bus->path_id <= pathid) {
4152 		if (bus->path_id == pathid)
4153 			pathid++;
4154 		bus = TAILQ_NEXT(bus, links);
4155 	}
4156 
4157 	/*
4158 	 * Ensure that this pathid is not reserved for
4159 	 * a bus that may be registered in the future.
4160 	 */
4161 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4162 		++pathid;
4163 		/* Start the search over */
4164 		goto retry;
4165 	}
4166 	return (pathid);
4167 }
4168 
4169 static path_id_t
4170 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4171 {
4172 	path_id_t pathid;
4173 	int i, dunit, val;
4174 	char buf[32];
4175 	const char *dname;
4176 
4177 	pathid = CAM_XPT_PATH_ID;
4178 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4179 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4180 		return (pathid);
4181 	i = 0;
4182 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4183 		if (strcmp(dname, "scbus")) {
4184 			/* Avoid a bit of foot shooting. */
4185 			continue;
4186 		}
4187 		if (dunit < 0)		/* unwired?! */
4188 			continue;
4189 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4190 			if (sim_bus == val) {
4191 				pathid = dunit;
4192 				break;
4193 			}
4194 		} else if (sim_bus == 0) {
4195 			/* Unspecified matches bus 0 */
4196 			pathid = dunit;
4197 			break;
4198 		} else {
4199 			printf("Ambiguous scbus configuration for %s%d "
4200 			       "bus %d, cannot wire down.  The kernel "
4201 			       "config entry for scbus%d should "
4202 			       "specify a controller bus.\n"
4203 			       "Scbus will be assigned dynamically.\n",
4204 			       sim_name, sim_unit, sim_bus, dunit);
4205 			break;
4206 		}
4207 	}
4208 
4209 	if (pathid == CAM_XPT_PATH_ID)
4210 		pathid = xptnextfreepathid();
4211 	return (pathid);
4212 }
4213 
4214 static const char *
4215 xpt_async_string(u_int32_t async_code)
4216 {
4217 
4218 	switch (async_code) {
4219 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4220 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4221 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4222 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4223 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4224 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4225 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4226 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4227 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4228 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4229 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4230 	case AC_CONTRACT: return ("AC_CONTRACT");
4231 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4232 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4233 	}
4234 	return ("AC_UNKNOWN");
4235 }
4236 
4237 static int
4238 xpt_async_size(u_int32_t async_code)
4239 {
4240 
4241 	switch (async_code) {
4242 	case AC_BUS_RESET: return (0);
4243 	case AC_UNSOL_RESEL: return (0);
4244 	case AC_SCSI_AEN: return (0);
4245 	case AC_SENT_BDR: return (0);
4246 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4247 	case AC_PATH_DEREGISTERED: return (0);
4248 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4249 	case AC_LOST_DEVICE: return (0);
4250 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4251 	case AC_INQ_CHANGED: return (0);
4252 	case AC_GETDEV_CHANGED: return (0);
4253 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4254 	case AC_ADVINFO_CHANGED: return (-1);
4255 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4256 	}
4257 	return (0);
4258 }
4259 
4260 static int
4261 xpt_async_process_dev(struct cam_ed *device, void *arg)
4262 {
4263 	union ccb *ccb = arg;
4264 	struct cam_path *path = ccb->ccb_h.path;
4265 	void *async_arg = ccb->casync.async_arg_ptr;
4266 	u_int32_t async_code = ccb->casync.async_code;
4267 	int relock;
4268 
4269 	if (path->device != device
4270 	 && path->device->lun_id != CAM_LUN_WILDCARD
4271 	 && device->lun_id != CAM_LUN_WILDCARD)
4272 		return (1);
4273 
4274 	/*
4275 	 * The async callback could free the device.
4276 	 * If it is a broadcast async, it doesn't hold
4277 	 * device reference, so take our own reference.
4278 	 */
4279 	xpt_acquire_device(device);
4280 
4281 	/*
4282 	 * If async for specific device is to be delivered to
4283 	 * the wildcard client, take the specific device lock.
4284 	 * XXX: We may need a way for client to specify it.
4285 	 */
4286 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4287 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4288 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4289 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4290 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4291 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4292 		mtx_unlock(&device->device_mtx);
4293 		xpt_path_lock(path);
4294 		relock = 1;
4295 	} else
4296 		relock = 0;
4297 
4298 	(*(device->target->bus->xport->ops->async))(async_code,
4299 	    device->target->bus, device->target, device, async_arg);
4300 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4301 
4302 	if (relock) {
4303 		xpt_path_unlock(path);
4304 		mtx_lock(&device->device_mtx);
4305 	}
4306 	xpt_release_device(device);
4307 	return (1);
4308 }
4309 
4310 static int
4311 xpt_async_process_tgt(struct cam_et *target, void *arg)
4312 {
4313 	union ccb *ccb = arg;
4314 	struct cam_path *path = ccb->ccb_h.path;
4315 
4316 	if (path->target != target
4317 	 && path->target->target_id != CAM_TARGET_WILDCARD
4318 	 && target->target_id != CAM_TARGET_WILDCARD)
4319 		return (1);
4320 
4321 	if (ccb->casync.async_code == AC_SENT_BDR) {
4322 		/* Update our notion of when the last reset occurred */
4323 		microtime(&target->last_reset);
4324 	}
4325 
4326 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4327 }
4328 
4329 static void
4330 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4331 {
4332 	struct cam_eb *bus;
4333 	struct cam_path *path;
4334 	void *async_arg;
4335 	u_int32_t async_code;
4336 
4337 	path = ccb->ccb_h.path;
4338 	async_code = ccb->casync.async_code;
4339 	async_arg = ccb->casync.async_arg_ptr;
4340 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4341 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4342 	bus = path->bus;
4343 
4344 	if (async_code == AC_BUS_RESET) {
4345 		/* Update our notion of when the last reset occurred */
4346 		microtime(&bus->last_reset);
4347 	}
4348 
4349 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4350 
4351 	/*
4352 	 * If this wasn't a fully wildcarded async, tell all
4353 	 * clients that want all async events.
4354 	 */
4355 	if (bus != xpt_periph->path->bus) {
4356 		xpt_path_lock(xpt_periph->path);
4357 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4358 		xpt_path_unlock(xpt_periph->path);
4359 	}
4360 
4361 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4362 		xpt_release_devq(path, 1, TRUE);
4363 	else
4364 		xpt_release_simq(path->bus->sim, TRUE);
4365 	if (ccb->casync.async_arg_size > 0)
4366 		free(async_arg, M_CAMXPT);
4367 	xpt_free_path(path);
4368 	xpt_free_ccb(ccb);
4369 }
4370 
4371 static void
4372 xpt_async_bcast(struct async_list *async_head,
4373 		u_int32_t async_code,
4374 		struct cam_path *path, void *async_arg)
4375 {
4376 	struct async_node *cur_entry;
4377 	struct mtx *mtx;
4378 
4379 	cur_entry = SLIST_FIRST(async_head);
4380 	while (cur_entry != NULL) {
4381 		struct async_node *next_entry;
4382 		/*
4383 		 * Grab the next list entry before we call the current
4384 		 * entry's callback.  This is because the callback function
4385 		 * can delete its async callback entry.
4386 		 */
4387 		next_entry = SLIST_NEXT(cur_entry, links);
4388 		if ((cur_entry->event_enable & async_code) != 0) {
4389 			mtx = cur_entry->event_lock ?
4390 			    path->device->sim->mtx : NULL;
4391 			if (mtx)
4392 				mtx_lock(mtx);
4393 			cur_entry->callback(cur_entry->callback_arg,
4394 					    async_code, path,
4395 					    async_arg);
4396 			if (mtx)
4397 				mtx_unlock(mtx);
4398 		}
4399 		cur_entry = next_entry;
4400 	}
4401 }
4402 
4403 void
4404 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4405 {
4406 	union ccb *ccb;
4407 	int size;
4408 
4409 	ccb = xpt_alloc_ccb_nowait();
4410 	if (ccb == NULL) {
4411 		xpt_print(path, "Can't allocate CCB to send %s\n",
4412 		    xpt_async_string(async_code));
4413 		return;
4414 	}
4415 
4416 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4417 		xpt_print(path, "Can't allocate path to send %s\n",
4418 		    xpt_async_string(async_code));
4419 		xpt_free_ccb(ccb);
4420 		return;
4421 	}
4422 	ccb->ccb_h.path->periph = NULL;
4423 	ccb->ccb_h.func_code = XPT_ASYNC;
4424 	ccb->ccb_h.cbfcnp = xpt_async_process;
4425 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4426 	ccb->casync.async_code = async_code;
4427 	ccb->casync.async_arg_size = 0;
4428 	size = xpt_async_size(async_code);
4429 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4430 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4431 		ccb->ccb_h.func_code,
4432 		xpt_action_name(ccb->ccb_h.func_code),
4433 		async_code,
4434 		xpt_async_string(async_code)));
4435 	if (size > 0 && async_arg != NULL) {
4436 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4437 		if (ccb->casync.async_arg_ptr == NULL) {
4438 			xpt_print(path, "Can't allocate argument to send %s\n",
4439 			    xpt_async_string(async_code));
4440 			xpt_free_path(ccb->ccb_h.path);
4441 			xpt_free_ccb(ccb);
4442 			return;
4443 		}
4444 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4445 		ccb->casync.async_arg_size = size;
4446 	} else if (size < 0) {
4447 		ccb->casync.async_arg_ptr = async_arg;
4448 		ccb->casync.async_arg_size = size;
4449 	}
4450 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4451 		xpt_freeze_devq(path, 1);
4452 	else
4453 		xpt_freeze_simq(path->bus->sim, 1);
4454 	xpt_action(ccb);
4455 }
4456 
4457 static void
4458 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4459 		      struct cam_et *target, struct cam_ed *device,
4460 		      void *async_arg)
4461 {
4462 
4463 	/*
4464 	 * We only need to handle events for real devices.
4465 	 */
4466 	if (target->target_id == CAM_TARGET_WILDCARD
4467 	 || device->lun_id == CAM_LUN_WILDCARD)
4468 		return;
4469 
4470 	printf("%s called\n", __func__);
4471 }
4472 
4473 static uint32_t
4474 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4475 {
4476 	struct cam_devq	*devq;
4477 	uint32_t freeze;
4478 
4479 	devq = dev->sim->devq;
4480 	mtx_assert(&devq->send_mtx, MA_OWNED);
4481 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4482 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4483 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4484 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4485 	/* Remove frozen device from sendq. */
4486 	if (device_is_queued(dev))
4487 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4488 	return (freeze);
4489 }
4490 
4491 u_int32_t
4492 xpt_freeze_devq(struct cam_path *path, u_int count)
4493 {
4494 	struct cam_ed	*dev = path->device;
4495 	struct cam_devq	*devq;
4496 	uint32_t	 freeze;
4497 
4498 	devq = dev->sim->devq;
4499 	mtx_lock(&devq->send_mtx);
4500 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4501 	freeze = xpt_freeze_devq_device(dev, count);
4502 	mtx_unlock(&devq->send_mtx);
4503 	return (freeze);
4504 }
4505 
4506 u_int32_t
4507 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4508 {
4509 	struct cam_devq	*devq;
4510 	uint32_t	 freeze;
4511 
4512 	devq = sim->devq;
4513 	mtx_lock(&devq->send_mtx);
4514 	freeze = (devq->send_queue.qfrozen_cnt += count);
4515 	mtx_unlock(&devq->send_mtx);
4516 	return (freeze);
4517 }
4518 
4519 static void
4520 xpt_release_devq_timeout(void *arg)
4521 {
4522 	struct cam_ed *dev;
4523 	struct cam_devq *devq;
4524 
4525 	dev = (struct cam_ed *)arg;
4526 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4527 	devq = dev->sim->devq;
4528 	mtx_assert(&devq->send_mtx, MA_OWNED);
4529 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4530 		xpt_run_devq(devq);
4531 }
4532 
4533 void
4534 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4535 {
4536 	struct cam_ed *dev;
4537 	struct cam_devq *devq;
4538 
4539 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4540 	    count, run_queue));
4541 	dev = path->device;
4542 	devq = dev->sim->devq;
4543 	mtx_lock(&devq->send_mtx);
4544 	if (xpt_release_devq_device(dev, count, run_queue))
4545 		xpt_run_devq(dev->sim->devq);
4546 	mtx_unlock(&devq->send_mtx);
4547 }
4548 
4549 static int
4550 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4551 {
4552 
4553 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4554 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4555 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4556 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4557 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4558 #ifdef INVARIANTS
4559 		printf("xpt_release_devq(): requested %u > present %u\n",
4560 		    count, dev->ccbq.queue.qfrozen_cnt);
4561 #endif
4562 		count = dev->ccbq.queue.qfrozen_cnt;
4563 	}
4564 	dev->ccbq.queue.qfrozen_cnt -= count;
4565 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4566 		/*
4567 		 * No longer need to wait for a successful
4568 		 * command completion.
4569 		 */
4570 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4571 		/*
4572 		 * Remove any timeouts that might be scheduled
4573 		 * to release this queue.
4574 		 */
4575 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4576 			callout_stop(&dev->callout);
4577 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4578 		}
4579 		/*
4580 		 * Now that we are unfrozen schedule the
4581 		 * device so any pending transactions are
4582 		 * run.
4583 		 */
4584 		xpt_schedule_devq(dev->sim->devq, dev);
4585 	} else
4586 		run_queue = 0;
4587 	return (run_queue);
4588 }
4589 
4590 void
4591 xpt_release_simq(struct cam_sim *sim, int run_queue)
4592 {
4593 	struct cam_devq	*devq;
4594 
4595 	devq = sim->devq;
4596 	mtx_lock(&devq->send_mtx);
4597 	if (devq->send_queue.qfrozen_cnt <= 0) {
4598 #ifdef INVARIANTS
4599 		printf("xpt_release_simq: requested 1 > present %u\n",
4600 		    devq->send_queue.qfrozen_cnt);
4601 #endif
4602 	} else
4603 		devq->send_queue.qfrozen_cnt--;
4604 	if (devq->send_queue.qfrozen_cnt == 0) {
4605 		/*
4606 		 * If there is a timeout scheduled to release this
4607 		 * sim queue, remove it.  The queue frozen count is
4608 		 * already at 0.
4609 		 */
4610 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4611 			callout_stop(&sim->callout);
4612 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4613 		}
4614 		if (run_queue) {
4615 			/*
4616 			 * Now that we are unfrozen run the send queue.
4617 			 */
4618 			xpt_run_devq(sim->devq);
4619 		}
4620 	}
4621 	mtx_unlock(&devq->send_mtx);
4622 }
4623 
4624 void
4625 xpt_done(union ccb *done_ccb)
4626 {
4627 	struct cam_doneq *queue;
4628 	int	run, hash;
4629 
4630 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4631 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4632 	    done_ccb->csio.bio != NULL)
4633 		biotrack(done_ccb->csio.bio, __func__);
4634 #endif
4635 
4636 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4637 	    ("xpt_done: func= %#x %s status %#x\n",
4638 		done_ccb->ccb_h.func_code,
4639 		xpt_action_name(done_ccb->ccb_h.func_code),
4640 		done_ccb->ccb_h.status));
4641 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4642 		return;
4643 
4644 	/* Store the time the ccb was in the sim */
4645 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4646 	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4647 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4648 	queue = &cam_doneqs[hash];
4649 	mtx_lock(&queue->cam_doneq_mtx);
4650 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4651 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4652 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4653 	mtx_unlock(&queue->cam_doneq_mtx);
4654 	if (run)
4655 		wakeup(&queue->cam_doneq);
4656 }
4657 
4658 void
4659 xpt_done_direct(union ccb *done_ccb)
4660 {
4661 
4662 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4663 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4664 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4665 		return;
4666 
4667 	/* Store the time the ccb was in the sim */
4668 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4669 	xpt_done_process(&done_ccb->ccb_h);
4670 }
4671 
4672 union ccb *
4673 xpt_alloc_ccb()
4674 {
4675 	union ccb *new_ccb;
4676 
4677 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4678 	return (new_ccb);
4679 }
4680 
4681 union ccb *
4682 xpt_alloc_ccb_nowait()
4683 {
4684 	union ccb *new_ccb;
4685 
4686 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4687 	return (new_ccb);
4688 }
4689 
4690 void
4691 xpt_free_ccb(union ccb *free_ccb)
4692 {
4693 	free(free_ccb, M_CAMCCB);
4694 }
4695 
4696 
4697 
4698 /* Private XPT functions */
4699 
4700 /*
4701  * Get a CAM control block for the caller. Charge the structure to the device
4702  * referenced by the path.  If we don't have sufficient resources to allocate
4703  * more ccbs, we return NULL.
4704  */
4705 static union ccb *
4706 xpt_get_ccb_nowait(struct cam_periph *periph)
4707 {
4708 	union ccb *new_ccb;
4709 
4710 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4711 	if (new_ccb == NULL)
4712 		return (NULL);
4713 	periph->periph_allocated++;
4714 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4715 	return (new_ccb);
4716 }
4717 
4718 static union ccb *
4719 xpt_get_ccb(struct cam_periph *periph)
4720 {
4721 	union ccb *new_ccb;
4722 
4723 	cam_periph_unlock(periph);
4724 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4725 	cam_periph_lock(periph);
4726 	periph->periph_allocated++;
4727 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4728 	return (new_ccb);
4729 }
4730 
4731 union ccb *
4732 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4733 {
4734 	struct ccb_hdr *ccb_h;
4735 
4736 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4737 	cam_periph_assert(periph, MA_OWNED);
4738 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4739 	    ccb_h->pinfo.priority != priority) {
4740 		if (priority < periph->immediate_priority) {
4741 			periph->immediate_priority = priority;
4742 			xpt_run_allocq(periph, 0);
4743 		} else
4744 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4745 			    "cgticb", 0);
4746 	}
4747 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4748 	return ((union ccb *)ccb_h);
4749 }
4750 
4751 static void
4752 xpt_acquire_bus(struct cam_eb *bus)
4753 {
4754 
4755 	xpt_lock_buses();
4756 	bus->refcount++;
4757 	xpt_unlock_buses();
4758 }
4759 
4760 static void
4761 xpt_release_bus(struct cam_eb *bus)
4762 {
4763 
4764 	xpt_lock_buses();
4765 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4766 	if (--bus->refcount > 0) {
4767 		xpt_unlock_buses();
4768 		return;
4769 	}
4770 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4771 	xsoftc.bus_generation++;
4772 	xpt_unlock_buses();
4773 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4774 	    ("destroying bus, but target list is not empty"));
4775 	cam_sim_release(bus->sim);
4776 	mtx_destroy(&bus->eb_mtx);
4777 	free(bus, M_CAMXPT);
4778 }
4779 
4780 static struct cam_et *
4781 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4782 {
4783 	struct cam_et *cur_target, *target;
4784 
4785 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4786 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4787 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4788 					 M_NOWAIT|M_ZERO);
4789 	if (target == NULL)
4790 		return (NULL);
4791 
4792 	TAILQ_INIT(&target->ed_entries);
4793 	target->bus = bus;
4794 	target->target_id = target_id;
4795 	target->refcount = 1;
4796 	target->generation = 0;
4797 	target->luns = NULL;
4798 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4799 	timevalclear(&target->last_reset);
4800 	/*
4801 	 * Hold a reference to our parent bus so it
4802 	 * will not go away before we do.
4803 	 */
4804 	bus->refcount++;
4805 
4806 	/* Insertion sort into our bus's target list */
4807 	cur_target = TAILQ_FIRST(&bus->et_entries);
4808 	while (cur_target != NULL && cur_target->target_id < target_id)
4809 		cur_target = TAILQ_NEXT(cur_target, links);
4810 	if (cur_target != NULL) {
4811 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4812 	} else {
4813 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4814 	}
4815 	bus->generation++;
4816 	return (target);
4817 }
4818 
4819 static void
4820 xpt_acquire_target(struct cam_et *target)
4821 {
4822 	struct cam_eb *bus = target->bus;
4823 
4824 	mtx_lock(&bus->eb_mtx);
4825 	target->refcount++;
4826 	mtx_unlock(&bus->eb_mtx);
4827 }
4828 
4829 static void
4830 xpt_release_target(struct cam_et *target)
4831 {
4832 	struct cam_eb *bus = target->bus;
4833 
4834 	mtx_lock(&bus->eb_mtx);
4835 	if (--target->refcount > 0) {
4836 		mtx_unlock(&bus->eb_mtx);
4837 		return;
4838 	}
4839 	TAILQ_REMOVE(&bus->et_entries, target, links);
4840 	bus->generation++;
4841 	mtx_unlock(&bus->eb_mtx);
4842 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4843 	    ("destroying target, but device list is not empty"));
4844 	xpt_release_bus(bus);
4845 	mtx_destroy(&target->luns_mtx);
4846 	if (target->luns)
4847 		free(target->luns, M_CAMXPT);
4848 	free(target, M_CAMXPT);
4849 }
4850 
4851 static struct cam_ed *
4852 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4853 			 lun_id_t lun_id)
4854 {
4855 	struct cam_ed *device;
4856 
4857 	device = xpt_alloc_device(bus, target, lun_id);
4858 	if (device == NULL)
4859 		return (NULL);
4860 
4861 	device->mintags = 1;
4862 	device->maxtags = 1;
4863 	return (device);
4864 }
4865 
4866 static void
4867 xpt_destroy_device(void *context, int pending)
4868 {
4869 	struct cam_ed	*device = context;
4870 
4871 	mtx_lock(&device->device_mtx);
4872 	mtx_destroy(&device->device_mtx);
4873 	free(device, M_CAMDEV);
4874 }
4875 
4876 struct cam_ed *
4877 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4878 {
4879 	struct cam_ed	*cur_device, *device;
4880 	struct cam_devq	*devq;
4881 	cam_status status;
4882 
4883 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4884 	/* Make space for us in the device queue on our bus */
4885 	devq = bus->sim->devq;
4886 	mtx_lock(&devq->send_mtx);
4887 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4888 	mtx_unlock(&devq->send_mtx);
4889 	if (status != CAM_REQ_CMP)
4890 		return (NULL);
4891 
4892 	device = (struct cam_ed *)malloc(sizeof(*device),
4893 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4894 	if (device == NULL)
4895 		return (NULL);
4896 
4897 	cam_init_pinfo(&device->devq_entry);
4898 	device->target = target;
4899 	device->lun_id = lun_id;
4900 	device->sim = bus->sim;
4901 	if (cam_ccbq_init(&device->ccbq,
4902 			  bus->sim->max_dev_openings) != 0) {
4903 		free(device, M_CAMDEV);
4904 		return (NULL);
4905 	}
4906 	SLIST_INIT(&device->asyncs);
4907 	SLIST_INIT(&device->periphs);
4908 	device->generation = 0;
4909 	device->flags = CAM_DEV_UNCONFIGURED;
4910 	device->tag_delay_count = 0;
4911 	device->tag_saved_openings = 0;
4912 	device->refcount = 1;
4913 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4914 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4915 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4916 	/*
4917 	 * Hold a reference to our parent bus so it
4918 	 * will not go away before we do.
4919 	 */
4920 	target->refcount++;
4921 
4922 	cur_device = TAILQ_FIRST(&target->ed_entries);
4923 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4924 		cur_device = TAILQ_NEXT(cur_device, links);
4925 	if (cur_device != NULL)
4926 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4927 	else
4928 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4929 	target->generation++;
4930 	return (device);
4931 }
4932 
4933 void
4934 xpt_acquire_device(struct cam_ed *device)
4935 {
4936 	struct cam_eb *bus = device->target->bus;
4937 
4938 	mtx_lock(&bus->eb_mtx);
4939 	device->refcount++;
4940 	mtx_unlock(&bus->eb_mtx);
4941 }
4942 
4943 void
4944 xpt_release_device(struct cam_ed *device)
4945 {
4946 	struct cam_eb *bus = device->target->bus;
4947 	struct cam_devq *devq;
4948 
4949 	mtx_lock(&bus->eb_mtx);
4950 	if (--device->refcount > 0) {
4951 		mtx_unlock(&bus->eb_mtx);
4952 		return;
4953 	}
4954 
4955 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4956 	device->target->generation++;
4957 	mtx_unlock(&bus->eb_mtx);
4958 
4959 	/* Release our slot in the devq */
4960 	devq = bus->sim->devq;
4961 	mtx_lock(&devq->send_mtx);
4962 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4963 	mtx_unlock(&devq->send_mtx);
4964 
4965 	KASSERT(SLIST_EMPTY(&device->periphs),
4966 	    ("destroying device, but periphs list is not empty"));
4967 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4968 	    ("destroying device while still queued for ccbs"));
4969 
4970 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4971 		callout_stop(&device->callout);
4972 
4973 	xpt_release_target(device->target);
4974 
4975 	cam_ccbq_fini(&device->ccbq);
4976 	/*
4977 	 * Free allocated memory.  free(9) does nothing if the
4978 	 * supplied pointer is NULL, so it is safe to call without
4979 	 * checking.
4980 	 */
4981 	free(device->supported_vpds, M_CAMXPT);
4982 	free(device->device_id, M_CAMXPT);
4983 	free(device->ext_inq, M_CAMXPT);
4984 	free(device->physpath, M_CAMXPT);
4985 	free(device->rcap_buf, M_CAMXPT);
4986 	free(device->serial_num, M_CAMXPT);
4987 	free(device->nvme_data, M_CAMXPT);
4988 	free(device->nvme_cdata, M_CAMXPT);
4989 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4990 }
4991 
4992 u_int32_t
4993 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4994 {
4995 	int	result;
4996 	struct	cam_ed *dev;
4997 
4998 	dev = path->device;
4999 	mtx_lock(&dev->sim->devq->send_mtx);
5000 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5001 	mtx_unlock(&dev->sim->devq->send_mtx);
5002 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5003 	 || (dev->inq_flags & SID_CmdQue) != 0)
5004 		dev->tag_saved_openings = newopenings;
5005 	return (result);
5006 }
5007 
5008 static struct cam_eb *
5009 xpt_find_bus(path_id_t path_id)
5010 {
5011 	struct cam_eb *bus;
5012 
5013 	xpt_lock_buses();
5014 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
5015 	     bus != NULL;
5016 	     bus = TAILQ_NEXT(bus, links)) {
5017 		if (bus->path_id == path_id) {
5018 			bus->refcount++;
5019 			break;
5020 		}
5021 	}
5022 	xpt_unlock_buses();
5023 	return (bus);
5024 }
5025 
5026 static struct cam_et *
5027 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5028 {
5029 	struct cam_et *target;
5030 
5031 	mtx_assert(&bus->eb_mtx, MA_OWNED);
5032 	for (target = TAILQ_FIRST(&bus->et_entries);
5033 	     target != NULL;
5034 	     target = TAILQ_NEXT(target, links)) {
5035 		if (target->target_id == target_id) {
5036 			target->refcount++;
5037 			break;
5038 		}
5039 	}
5040 	return (target);
5041 }
5042 
5043 static struct cam_ed *
5044 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5045 {
5046 	struct cam_ed *device;
5047 
5048 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
5049 	for (device = TAILQ_FIRST(&target->ed_entries);
5050 	     device != NULL;
5051 	     device = TAILQ_NEXT(device, links)) {
5052 		if (device->lun_id == lun_id) {
5053 			device->refcount++;
5054 			break;
5055 		}
5056 	}
5057 	return (device);
5058 }
5059 
5060 void
5061 xpt_start_tags(struct cam_path *path)
5062 {
5063 	struct ccb_relsim crs;
5064 	struct cam_ed *device;
5065 	struct cam_sim *sim;
5066 	int    newopenings;
5067 
5068 	device = path->device;
5069 	sim = path->bus->sim;
5070 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5071 	xpt_freeze_devq(path, /*count*/1);
5072 	device->inq_flags |= SID_CmdQue;
5073 	if (device->tag_saved_openings != 0)
5074 		newopenings = device->tag_saved_openings;
5075 	else
5076 		newopenings = min(device->maxtags,
5077 				  sim->max_tagged_dev_openings);
5078 	xpt_dev_ccbq_resize(path, newopenings);
5079 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5080 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5081 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5082 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5083 	crs.openings
5084 	    = crs.release_timeout
5085 	    = crs.qfrozen_cnt
5086 	    = 0;
5087 	xpt_action((union ccb *)&crs);
5088 }
5089 
5090 void
5091 xpt_stop_tags(struct cam_path *path)
5092 {
5093 	struct ccb_relsim crs;
5094 	struct cam_ed *device;
5095 	struct cam_sim *sim;
5096 
5097 	device = path->device;
5098 	sim = path->bus->sim;
5099 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5100 	device->tag_delay_count = 0;
5101 	xpt_freeze_devq(path, /*count*/1);
5102 	device->inq_flags &= ~SID_CmdQue;
5103 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
5104 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5105 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5106 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5107 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5108 	crs.openings
5109 	    = crs.release_timeout
5110 	    = crs.qfrozen_cnt
5111 	    = 0;
5112 	xpt_action((union ccb *)&crs);
5113 }
5114 
5115 /*
5116  * Assume all possible buses are detected by this time, so allow boot
5117  * as soon as they all are scanned.
5118  */
5119 static void
5120 xpt_boot_delay(void *arg)
5121 {
5122 
5123 	xpt_release_boot();
5124 }
5125 
5126 /*
5127  * Now that all config hooks have completed, start boot_delay timer,
5128  * waiting for possibly still undetected buses (USB) to appear.
5129  */
5130 static void
5131 xpt_ch_done(void *arg)
5132 {
5133 
5134 	callout_init(&xsoftc.boot_callout, 1);
5135 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
5136 	    xpt_boot_delay, NULL, 0);
5137 }
5138 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL);
5139 
5140 /*
5141  * Now that interrupts are enabled, go find our devices
5142  */
5143 static void
5144 xpt_config(void *arg)
5145 {
5146 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5147 		printf("xpt_config: failed to create taskqueue thread.\n");
5148 
5149 	/* Setup debugging path */
5150 	if (cam_dflags != CAM_DEBUG_NONE) {
5151 		if (xpt_create_path(&cam_dpath, NULL,
5152 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5153 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5154 			printf("xpt_config: xpt_create_path() failed for debug"
5155 			       " target %d:%d:%d, debugging disabled\n",
5156 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5157 			cam_dflags = CAM_DEBUG_NONE;
5158 		}
5159 	} else
5160 		cam_dpath = NULL;
5161 
5162 	periphdriver_init(1);
5163 	xpt_hold_boot();
5164 
5165 	/* Fire up rescan thread. */
5166 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5167 	    "cam", "scanner")) {
5168 		printf("xpt_config: failed to create rescan thread.\n");
5169 	}
5170 }
5171 
5172 void
5173 xpt_hold_boot_locked(void)
5174 {
5175 
5176 	if (xsoftc.buses_to_config++ == 0)
5177 		root_mount_hold_token("CAM", &xsoftc.xpt_rootmount);
5178 }
5179 
5180 void
5181 xpt_hold_boot(void)
5182 {
5183 
5184 	xpt_lock_buses();
5185 	xpt_hold_boot_locked();
5186 	xpt_unlock_buses();
5187 }
5188 
5189 void
5190 xpt_release_boot(void)
5191 {
5192 
5193 	xpt_lock_buses();
5194 	if (--xsoftc.buses_to_config == 0) {
5195 		if (xsoftc.buses_config_done == 0) {
5196 			xsoftc.buses_config_done = 1;
5197 			xsoftc.buses_to_config++;
5198 			TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task,
5199 			    NULL);
5200 			taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task);
5201 		} else
5202 			root_mount_rel(&xsoftc.xpt_rootmount);
5203 	}
5204 	xpt_unlock_buses();
5205 }
5206 
5207 /*
5208  * If the given device only has one peripheral attached to it, and if that
5209  * peripheral is the passthrough driver, announce it.  This insures that the
5210  * user sees some sort of announcement for every peripheral in their system.
5211  */
5212 static int
5213 xptpassannouncefunc(struct cam_ed *device, void *arg)
5214 {
5215 	struct cam_periph *periph;
5216 	int i;
5217 
5218 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5219 	     periph = SLIST_NEXT(periph, periph_links), i++);
5220 
5221 	periph = SLIST_FIRST(&device->periphs);
5222 	if ((i == 1)
5223 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5224 		xpt_announce_periph(periph, NULL);
5225 
5226 	return(1);
5227 }
5228 
5229 static void
5230 xpt_finishconfig_task(void *context, int pending)
5231 {
5232 
5233 	periphdriver_init(2);
5234 	/*
5235 	 * Check for devices with no "standard" peripheral driver
5236 	 * attached.  For any devices like that, announce the
5237 	 * passthrough driver so the user will see something.
5238 	 */
5239 	if (!bootverbose)
5240 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5241 
5242 	xpt_release_boot();
5243 }
5244 
5245 cam_status
5246 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5247 		   struct cam_path *path)
5248 {
5249 	struct ccb_setasync csa;
5250 	cam_status status;
5251 	int xptpath = 0;
5252 
5253 	if (path == NULL) {
5254 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5255 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5256 		if (status != CAM_REQ_CMP)
5257 			return (status);
5258 		xpt_path_lock(path);
5259 		xptpath = 1;
5260 	}
5261 
5262 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5263 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5264 	csa.event_enable = event;
5265 	csa.callback = cbfunc;
5266 	csa.callback_arg = cbarg;
5267 	xpt_action((union ccb *)&csa);
5268 	status = csa.ccb_h.status;
5269 
5270 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5271 	    ("xpt_register_async: func %p\n", cbfunc));
5272 
5273 	if (xptpath) {
5274 		xpt_path_unlock(path);
5275 		xpt_free_path(path);
5276 	}
5277 
5278 	if ((status == CAM_REQ_CMP) &&
5279 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5280 		/*
5281 		 * Get this peripheral up to date with all
5282 		 * the currently existing devices.
5283 		 */
5284 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5285 	}
5286 	if ((status == CAM_REQ_CMP) &&
5287 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5288 		/*
5289 		 * Get this peripheral up to date with all
5290 		 * the currently existing buses.
5291 		 */
5292 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5293 	}
5294 
5295 	return (status);
5296 }
5297 
5298 static void
5299 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5300 {
5301 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5302 
5303 	switch (work_ccb->ccb_h.func_code) {
5304 	/* Common cases first */
5305 	case XPT_PATH_INQ:		/* Path routing inquiry */
5306 	{
5307 		struct ccb_pathinq *cpi;
5308 
5309 		cpi = &work_ccb->cpi;
5310 		cpi->version_num = 1; /* XXX??? */
5311 		cpi->hba_inquiry = 0;
5312 		cpi->target_sprt = 0;
5313 		cpi->hba_misc = 0;
5314 		cpi->hba_eng_cnt = 0;
5315 		cpi->max_target = 0;
5316 		cpi->max_lun = 0;
5317 		cpi->initiator_id = 0;
5318 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5319 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5320 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5321 		cpi->unit_number = sim->unit_number;
5322 		cpi->bus_id = sim->bus_id;
5323 		cpi->base_transfer_speed = 0;
5324 		cpi->protocol = PROTO_UNSPECIFIED;
5325 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5326 		cpi->transport = XPORT_UNSPECIFIED;
5327 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5328 		cpi->ccb_h.status = CAM_REQ_CMP;
5329 		break;
5330 	}
5331 	default:
5332 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5333 		break;
5334 	}
5335 	xpt_done(work_ccb);
5336 }
5337 
5338 /*
5339  * The xpt as a "controller" has no interrupt sources, so polling
5340  * is a no-op.
5341  */
5342 static void
5343 xptpoll(struct cam_sim *sim)
5344 {
5345 }
5346 
5347 void
5348 xpt_lock_buses(void)
5349 {
5350 	mtx_lock(&xsoftc.xpt_topo_lock);
5351 }
5352 
5353 void
5354 xpt_unlock_buses(void)
5355 {
5356 	mtx_unlock(&xsoftc.xpt_topo_lock);
5357 }
5358 
5359 struct mtx *
5360 xpt_path_mtx(struct cam_path *path)
5361 {
5362 
5363 	return (&path->device->device_mtx);
5364 }
5365 
5366 static void
5367 xpt_done_process(struct ccb_hdr *ccb_h)
5368 {
5369 	struct cam_sim *sim = NULL;
5370 	struct cam_devq *devq = NULL;
5371 	struct mtx *mtx = NULL;
5372 
5373 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5374 	struct ccb_scsiio *csio;
5375 
5376 	if (ccb_h->func_code == XPT_SCSI_IO) {
5377 		csio = &((union ccb *)ccb_h)->csio;
5378 		if (csio->bio != NULL)
5379 			biotrack(csio->bio, __func__);
5380 	}
5381 #endif
5382 
5383 	if (ccb_h->flags & CAM_HIGH_POWER) {
5384 		struct highpowerlist	*hphead;
5385 		struct cam_ed		*device;
5386 
5387 		mtx_lock(&xsoftc.xpt_highpower_lock);
5388 		hphead = &xsoftc.highpowerq;
5389 
5390 		device = STAILQ_FIRST(hphead);
5391 
5392 		/*
5393 		 * Increment the count since this command is done.
5394 		 */
5395 		xsoftc.num_highpower++;
5396 
5397 		/*
5398 		 * Any high powered commands queued up?
5399 		 */
5400 		if (device != NULL) {
5401 
5402 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5403 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5404 
5405 			mtx_lock(&device->sim->devq->send_mtx);
5406 			xpt_release_devq_device(device,
5407 					 /*count*/1, /*runqueue*/TRUE);
5408 			mtx_unlock(&device->sim->devq->send_mtx);
5409 		} else
5410 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5411 	}
5412 
5413 	/*
5414 	 * Insulate against a race where the periph is destroyed but CCBs are
5415 	 * still not all processed. This shouldn't happen, but allows us better
5416 	 * bug diagnostic when it does.
5417 	 */
5418 	if (ccb_h->path->bus)
5419 		sim = ccb_h->path->bus->sim;
5420 
5421 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5422 		KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5423 		xpt_release_simq(sim, /*run_queue*/FALSE);
5424 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5425 	}
5426 
5427 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5428 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5429 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5430 		ccb_h->status &= ~CAM_DEV_QFRZN;
5431 	}
5432 
5433 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5434 		struct cam_ed *dev = ccb_h->path->device;
5435 
5436 		if (sim)
5437 			devq = sim->devq;
5438 		KASSERT(devq, ("Periph disappeared with CCB %p %s request pending.",
5439 			ccb_h, xpt_action_name(ccb_h->func_code)));
5440 
5441 		mtx_lock(&devq->send_mtx);
5442 		devq->send_active--;
5443 		devq->send_openings++;
5444 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5445 
5446 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5447 		  && (dev->ccbq.dev_active == 0))) {
5448 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5449 			xpt_release_devq_device(dev, /*count*/1,
5450 					 /*run_queue*/FALSE);
5451 		}
5452 
5453 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5454 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5455 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5456 			xpt_release_devq_device(dev, /*count*/1,
5457 					 /*run_queue*/FALSE);
5458 		}
5459 
5460 		if (!device_is_queued(dev))
5461 			(void)xpt_schedule_devq(devq, dev);
5462 		xpt_run_devq(devq);
5463 		mtx_unlock(&devq->send_mtx);
5464 
5465 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5466 			mtx = xpt_path_mtx(ccb_h->path);
5467 			mtx_lock(mtx);
5468 
5469 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5470 			 && (--dev->tag_delay_count == 0))
5471 				xpt_start_tags(ccb_h->path);
5472 		}
5473 	}
5474 
5475 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5476 		if (mtx == NULL) {
5477 			mtx = xpt_path_mtx(ccb_h->path);
5478 			mtx_lock(mtx);
5479 		}
5480 	} else {
5481 		if (mtx != NULL) {
5482 			mtx_unlock(mtx);
5483 			mtx = NULL;
5484 		}
5485 	}
5486 
5487 	/* Call the peripheral driver's callback */
5488 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5489 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5490 	if (mtx != NULL)
5491 		mtx_unlock(mtx);
5492 }
5493 
5494 void
5495 xpt_done_td(void *arg)
5496 {
5497 	struct cam_doneq *queue = arg;
5498 	struct ccb_hdr *ccb_h;
5499 	STAILQ_HEAD(, ccb_hdr)	doneq;
5500 
5501 	STAILQ_INIT(&doneq);
5502 	mtx_lock(&queue->cam_doneq_mtx);
5503 	while (1) {
5504 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5505 			queue->cam_doneq_sleep = 1;
5506 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5507 			    PRIBIO, "-", 0);
5508 			queue->cam_doneq_sleep = 0;
5509 		}
5510 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5511 		mtx_unlock(&queue->cam_doneq_mtx);
5512 
5513 		THREAD_NO_SLEEPING();
5514 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5515 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5516 			xpt_done_process(ccb_h);
5517 		}
5518 		THREAD_SLEEPING_OK();
5519 
5520 		mtx_lock(&queue->cam_doneq_mtx);
5521 	}
5522 }
5523 
5524 static void
5525 camisr_runqueue(void)
5526 {
5527 	struct	ccb_hdr *ccb_h;
5528 	struct cam_doneq *queue;
5529 	int i;
5530 
5531 	/* Process global queues. */
5532 	for (i = 0; i < cam_num_doneqs; i++) {
5533 		queue = &cam_doneqs[i];
5534 		mtx_lock(&queue->cam_doneq_mtx);
5535 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5536 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5537 			mtx_unlock(&queue->cam_doneq_mtx);
5538 			xpt_done_process(ccb_h);
5539 			mtx_lock(&queue->cam_doneq_mtx);
5540 		}
5541 		mtx_unlock(&queue->cam_doneq_mtx);
5542 	}
5543 }
5544 
5545 struct kv
5546 {
5547 	uint32_t v;
5548 	const char *name;
5549 };
5550 
5551 static struct kv map[] = {
5552 	{ XPT_NOOP, "XPT_NOOP" },
5553 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5554 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5555 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5556 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5557 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5558 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5559 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5560 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5561 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5562 	{ XPT_DEBUG, "XPT_DEBUG" },
5563 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5564 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5565 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5566 	{ XPT_ASYNC, "XPT_ASYNC" },
5567 	{ XPT_ABORT, "XPT_ABORT" },
5568 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5569 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5570 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5571 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5572 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5573 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5574 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5575 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5576 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5577 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5578 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5579 	{ XPT_MMC_IO, "XPT_MMC_IO" },
5580 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5581 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5582 	{ XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5583 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5584 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5585 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5586 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5587 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5588 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5589 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5590 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5591 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5592 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5593 	{ 0, 0 }
5594 };
5595 
5596 const char *
5597 xpt_action_name(uint32_t action)
5598 {
5599 	static char buffer[32];	/* Only for unknown messages -- racy */
5600 	struct kv *walker = map;
5601 
5602 	while (walker->name != NULL) {
5603 		if (walker->v == action)
5604 			return (walker->name);
5605 		walker++;
5606 	}
5607 
5608 	snprintf(buffer, sizeof(buffer), "%#x", action);
5609 	return (buffer);
5610 }
5611