1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include "opt_printf.h" 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/bio.h> 37 #include <sys/bus.h> 38 #include <sys/systm.h> 39 #include <sys/types.h> 40 #include <sys/malloc.h> 41 #include <sys/kernel.h> 42 #include <sys/time.h> 43 #include <sys/conf.h> 44 #include <sys/fcntl.h> 45 #include <sys/interrupt.h> 46 #include <sys/proc.h> 47 #include <sys/sbuf.h> 48 #include <sys/smp.h> 49 #include <sys/taskqueue.h> 50 51 #include <sys/lock.h> 52 #include <sys/mutex.h> 53 #include <sys/sysctl.h> 54 #include <sys/kthread.h> 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_periph.h> 59 #include <cam/cam_queue.h> 60 #include <cam/cam_sim.h> 61 #include <cam/cam_xpt.h> 62 #include <cam/cam_xpt_sim.h> 63 #include <cam/cam_xpt_periph.h> 64 #include <cam/cam_xpt_internal.h> 65 #include <cam/cam_debug.h> 66 #include <cam/cam_compat.h> 67 68 #include <cam/scsi/scsi_all.h> 69 #include <cam/scsi/scsi_message.h> 70 #include <cam/scsi/scsi_pass.h> 71 72 #include <machine/md_var.h> /* geometry translation */ 73 #include <machine/stdarg.h> /* for xpt_print below */ 74 75 #include "opt_cam.h" 76 77 /* Wild guess based on not wanting to grow the stack too much */ 78 #define XPT_PRINT_MAXLEN 512 79 #ifdef PRINTF_BUFR_SIZE 80 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE 81 #else 82 #define XPT_PRINT_LEN 128 83 #endif 84 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large"); 85 86 /* 87 * This is the maximum number of high powered commands (e.g. start unit) 88 * that can be outstanding at a particular time. 89 */ 90 #ifndef CAM_MAX_HIGHPOWER 91 #define CAM_MAX_HIGHPOWER 4 92 #endif 93 94 /* Datastructures internal to the xpt layer */ 95 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 96 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 97 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 98 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 99 100 /* Object for defering XPT actions to a taskqueue */ 101 struct xpt_task { 102 struct task task; 103 void *data1; 104 uintptr_t data2; 105 }; 106 107 struct xpt_softc { 108 uint32_t xpt_generation; 109 110 /* number of high powered commands that can go through right now */ 111 struct mtx xpt_highpower_lock; 112 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 113 int num_highpower; 114 115 /* queue for handling async rescan requests. */ 116 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 117 int buses_to_config; 118 int buses_config_done; 119 int announce_nosbuf; 120 121 /* 122 * Registered buses 123 * 124 * N.B., "busses" is an archaic spelling of "buses". In new code 125 * "buses" is preferred. 126 */ 127 TAILQ_HEAD(,cam_eb) xpt_busses; 128 u_int bus_generation; 129 130 struct intr_config_hook *xpt_config_hook; 131 132 int boot_delay; 133 struct callout boot_callout; 134 135 struct mtx xpt_topo_lock; 136 struct mtx xpt_lock; 137 struct taskqueue *xpt_taskq; 138 }; 139 140 typedef enum { 141 DM_RET_COPY = 0x01, 142 DM_RET_FLAG_MASK = 0x0f, 143 DM_RET_NONE = 0x00, 144 DM_RET_STOP = 0x10, 145 DM_RET_DESCEND = 0x20, 146 DM_RET_ERROR = 0x30, 147 DM_RET_ACTION_MASK = 0xf0 148 } dev_match_ret; 149 150 typedef enum { 151 XPT_DEPTH_BUS, 152 XPT_DEPTH_TARGET, 153 XPT_DEPTH_DEVICE, 154 XPT_DEPTH_PERIPH 155 } xpt_traverse_depth; 156 157 struct xpt_traverse_config { 158 xpt_traverse_depth depth; 159 void *tr_func; 160 void *tr_arg; 161 }; 162 163 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 164 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 165 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 166 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 167 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 168 169 /* Transport layer configuration information */ 170 static struct xpt_softc xsoftc; 171 172 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 173 174 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 175 &xsoftc.boot_delay, 0, "Bus registration wait time"); 176 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 177 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 178 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN, 179 &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements"); 180 181 struct cam_doneq { 182 struct mtx_padalign cam_doneq_mtx; 183 STAILQ_HEAD(, ccb_hdr) cam_doneq; 184 int cam_doneq_sleep; 185 }; 186 187 static struct cam_doneq cam_doneqs[MAXCPU]; 188 static int cam_num_doneqs; 189 static struct proc *cam_proc; 190 191 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 192 &cam_num_doneqs, 0, "Number of completion queues/threads"); 193 194 struct cam_periph *xpt_periph; 195 196 static periph_init_t xpt_periph_init; 197 198 static struct periph_driver xpt_driver = 199 { 200 xpt_periph_init, "xpt", 201 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 202 CAM_PERIPH_DRV_EARLY 203 }; 204 205 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 206 207 static d_open_t xptopen; 208 static d_close_t xptclose; 209 static d_ioctl_t xptioctl; 210 static d_ioctl_t xptdoioctl; 211 212 static struct cdevsw xpt_cdevsw = { 213 .d_version = D_VERSION, 214 .d_flags = 0, 215 .d_open = xptopen, 216 .d_close = xptclose, 217 .d_ioctl = xptioctl, 218 .d_name = "xpt", 219 }; 220 221 /* Storage for debugging datastructures */ 222 struct cam_path *cam_dpath; 223 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 224 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 225 &cam_dflags, 0, "Enabled debug flags"); 226 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 227 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 228 &cam_debug_delay, 0, "Delay in us after each debug message"); 229 230 /* Our boot-time initialization hook */ 231 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 232 233 static moduledata_t cam_moduledata = { 234 "cam", 235 cam_module_event_handler, 236 NULL 237 }; 238 239 static int xpt_init(void *); 240 241 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 242 MODULE_VERSION(cam, 1); 243 244 245 static void xpt_async_bcast(struct async_list *async_head, 246 u_int32_t async_code, 247 struct cam_path *path, 248 void *async_arg); 249 static path_id_t xptnextfreepathid(void); 250 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 251 static union ccb *xpt_get_ccb(struct cam_periph *periph); 252 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 253 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 254 static void xpt_run_allocq_task(void *context, int pending); 255 static void xpt_run_devq(struct cam_devq *devq); 256 static timeout_t xpt_release_devq_timeout; 257 static void xpt_release_simq_timeout(void *arg) __unused; 258 static void xpt_acquire_bus(struct cam_eb *bus); 259 static void xpt_release_bus(struct cam_eb *bus); 260 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 261 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 262 int run_queue); 263 static struct cam_et* 264 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 265 static void xpt_acquire_target(struct cam_et *target); 266 static void xpt_release_target(struct cam_et *target); 267 static struct cam_eb* 268 xpt_find_bus(path_id_t path_id); 269 static struct cam_et* 270 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 271 static struct cam_ed* 272 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 273 static void xpt_config(void *arg); 274 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 275 u_int32_t new_priority); 276 static xpt_devicefunc_t xptpassannouncefunc; 277 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 278 static void xptpoll(struct cam_sim *sim); 279 static void camisr_runqueue(void); 280 static void xpt_done_process(struct ccb_hdr *ccb_h); 281 static void xpt_done_td(void *); 282 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 283 u_int num_patterns, struct cam_eb *bus); 284 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 285 u_int num_patterns, 286 struct cam_ed *device); 287 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 288 u_int num_patterns, 289 struct cam_periph *periph); 290 static xpt_busfunc_t xptedtbusfunc; 291 static xpt_targetfunc_t xptedttargetfunc; 292 static xpt_devicefunc_t xptedtdevicefunc; 293 static xpt_periphfunc_t xptedtperiphfunc; 294 static xpt_pdrvfunc_t xptplistpdrvfunc; 295 static xpt_periphfunc_t xptplistperiphfunc; 296 static int xptedtmatch(struct ccb_dev_match *cdm); 297 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 298 static int xptbustraverse(struct cam_eb *start_bus, 299 xpt_busfunc_t *tr_func, void *arg); 300 static int xpttargettraverse(struct cam_eb *bus, 301 struct cam_et *start_target, 302 xpt_targetfunc_t *tr_func, void *arg); 303 static int xptdevicetraverse(struct cam_et *target, 304 struct cam_ed *start_device, 305 xpt_devicefunc_t *tr_func, void *arg); 306 static int xptperiphtraverse(struct cam_ed *device, 307 struct cam_periph *start_periph, 308 xpt_periphfunc_t *tr_func, void *arg); 309 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 310 xpt_pdrvfunc_t *tr_func, void *arg); 311 static int xptpdperiphtraverse(struct periph_driver **pdrv, 312 struct cam_periph *start_periph, 313 xpt_periphfunc_t *tr_func, 314 void *arg); 315 static xpt_busfunc_t xptdefbusfunc; 316 static xpt_targetfunc_t xptdeftargetfunc; 317 static xpt_devicefunc_t xptdefdevicefunc; 318 static xpt_periphfunc_t xptdefperiphfunc; 319 static void xpt_finishconfig_task(void *context, int pending); 320 static void xpt_dev_async_default(u_int32_t async_code, 321 struct cam_eb *bus, 322 struct cam_et *target, 323 struct cam_ed *device, 324 void *async_arg); 325 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 326 struct cam_et *target, 327 lun_id_t lun_id); 328 static xpt_devicefunc_t xptsetasyncfunc; 329 static xpt_busfunc_t xptsetasyncbusfunc; 330 static cam_status xptregister(struct cam_periph *periph, 331 void *arg); 332 static const char * xpt_action_name(uint32_t action); 333 static __inline int device_is_queued(struct cam_ed *device); 334 335 static __inline int 336 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 337 { 338 int retval; 339 340 mtx_assert(&devq->send_mtx, MA_OWNED); 341 if ((dev->ccbq.queue.entries > 0) && 342 (dev->ccbq.dev_openings > 0) && 343 (dev->ccbq.queue.qfrozen_cnt == 0)) { 344 /* 345 * The priority of a device waiting for controller 346 * resources is that of the highest priority CCB 347 * enqueued. 348 */ 349 retval = 350 xpt_schedule_dev(&devq->send_queue, 351 &dev->devq_entry, 352 CAMQ_GET_PRIO(&dev->ccbq.queue)); 353 } else { 354 retval = 0; 355 } 356 return (retval); 357 } 358 359 static __inline int 360 device_is_queued(struct cam_ed *device) 361 { 362 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 363 } 364 365 static void 366 xpt_periph_init() 367 { 368 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 369 } 370 371 static int 372 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 373 { 374 375 /* 376 * Only allow read-write access. 377 */ 378 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 379 return(EPERM); 380 381 /* 382 * We don't allow nonblocking access. 383 */ 384 if ((flags & O_NONBLOCK) != 0) { 385 printf("%s: can't do nonblocking access\n", devtoname(dev)); 386 return(ENODEV); 387 } 388 389 return(0); 390 } 391 392 static int 393 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 394 { 395 396 return(0); 397 } 398 399 /* 400 * Don't automatically grab the xpt softc lock here even though this is going 401 * through the xpt device. The xpt device is really just a back door for 402 * accessing other devices and SIMs, so the right thing to do is to grab 403 * the appropriate SIM lock once the bus/SIM is located. 404 */ 405 static int 406 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 407 { 408 int error; 409 410 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 411 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 412 } 413 return (error); 414 } 415 416 static int 417 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 418 { 419 int error; 420 421 error = 0; 422 423 switch(cmd) { 424 /* 425 * For the transport layer CAMIOCOMMAND ioctl, we really only want 426 * to accept CCB types that don't quite make sense to send through a 427 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 428 * in the CAM spec. 429 */ 430 case CAMIOCOMMAND: { 431 union ccb *ccb; 432 union ccb *inccb; 433 struct cam_eb *bus; 434 435 inccb = (union ccb *)addr; 436 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 437 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 438 inccb->csio.bio = NULL; 439 #endif 440 441 if (inccb->ccb_h.flags & CAM_UNLOCKED) 442 return (EINVAL); 443 444 bus = xpt_find_bus(inccb->ccb_h.path_id); 445 if (bus == NULL) 446 return (EINVAL); 447 448 switch (inccb->ccb_h.func_code) { 449 case XPT_SCAN_BUS: 450 case XPT_RESET_BUS: 451 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 452 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 453 xpt_release_bus(bus); 454 return (EINVAL); 455 } 456 break; 457 case XPT_SCAN_TGT: 458 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 459 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 460 xpt_release_bus(bus); 461 return (EINVAL); 462 } 463 break; 464 default: 465 break; 466 } 467 468 switch(inccb->ccb_h.func_code) { 469 case XPT_SCAN_BUS: 470 case XPT_RESET_BUS: 471 case XPT_PATH_INQ: 472 case XPT_ENG_INQ: 473 case XPT_SCAN_LUN: 474 case XPT_SCAN_TGT: 475 476 ccb = xpt_alloc_ccb(); 477 478 /* 479 * Create a path using the bus, target, and lun the 480 * user passed in. 481 */ 482 if (xpt_create_path(&ccb->ccb_h.path, NULL, 483 inccb->ccb_h.path_id, 484 inccb->ccb_h.target_id, 485 inccb->ccb_h.target_lun) != 486 CAM_REQ_CMP){ 487 error = EINVAL; 488 xpt_free_ccb(ccb); 489 break; 490 } 491 /* Ensure all of our fields are correct */ 492 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 493 inccb->ccb_h.pinfo.priority); 494 xpt_merge_ccb(ccb, inccb); 495 xpt_path_lock(ccb->ccb_h.path); 496 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 497 xpt_path_unlock(ccb->ccb_h.path); 498 bcopy(ccb, inccb, sizeof(union ccb)); 499 xpt_free_path(ccb->ccb_h.path); 500 xpt_free_ccb(ccb); 501 break; 502 503 case XPT_DEBUG: { 504 union ccb ccb; 505 506 /* 507 * This is an immediate CCB, so it's okay to 508 * allocate it on the stack. 509 */ 510 511 /* 512 * Create a path using the bus, target, and lun the 513 * user passed in. 514 */ 515 if (xpt_create_path(&ccb.ccb_h.path, NULL, 516 inccb->ccb_h.path_id, 517 inccb->ccb_h.target_id, 518 inccb->ccb_h.target_lun) != 519 CAM_REQ_CMP){ 520 error = EINVAL; 521 break; 522 } 523 /* Ensure all of our fields are correct */ 524 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 525 inccb->ccb_h.pinfo.priority); 526 xpt_merge_ccb(&ccb, inccb); 527 xpt_action(&ccb); 528 bcopy(&ccb, inccb, sizeof(union ccb)); 529 xpt_free_path(ccb.ccb_h.path); 530 break; 531 532 } 533 case XPT_DEV_MATCH: { 534 struct cam_periph_map_info mapinfo; 535 struct cam_path *old_path; 536 537 /* 538 * We can't deal with physical addresses for this 539 * type of transaction. 540 */ 541 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 542 CAM_DATA_VADDR) { 543 error = EINVAL; 544 break; 545 } 546 547 /* 548 * Save this in case the caller had it set to 549 * something in particular. 550 */ 551 old_path = inccb->ccb_h.path; 552 553 /* 554 * We really don't need a path for the matching 555 * code. The path is needed because of the 556 * debugging statements in xpt_action(). They 557 * assume that the CCB has a valid path. 558 */ 559 inccb->ccb_h.path = xpt_periph->path; 560 561 bzero(&mapinfo, sizeof(mapinfo)); 562 563 /* 564 * Map the pattern and match buffers into kernel 565 * virtual address space. 566 */ 567 error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); 568 569 if (error) { 570 inccb->ccb_h.path = old_path; 571 break; 572 } 573 574 /* 575 * This is an immediate CCB, we can send it on directly. 576 */ 577 xpt_action(inccb); 578 579 /* 580 * Map the buffers back into user space. 581 */ 582 cam_periph_unmapmem(inccb, &mapinfo); 583 584 inccb->ccb_h.path = old_path; 585 586 error = 0; 587 break; 588 } 589 default: 590 error = ENOTSUP; 591 break; 592 } 593 xpt_release_bus(bus); 594 break; 595 } 596 /* 597 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 598 * with the periphal driver name and unit name filled in. The other 599 * fields don't really matter as input. The passthrough driver name 600 * ("pass"), and unit number are passed back in the ccb. The current 601 * device generation number, and the index into the device peripheral 602 * driver list, and the status are also passed back. Note that 603 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 604 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 605 * (or rather should be) impossible for the device peripheral driver 606 * list to change since we look at the whole thing in one pass, and 607 * we do it with lock protection. 608 * 609 */ 610 case CAMGETPASSTHRU: { 611 union ccb *ccb; 612 struct cam_periph *periph; 613 struct periph_driver **p_drv; 614 char *name; 615 u_int unit; 616 int base_periph_found; 617 618 ccb = (union ccb *)addr; 619 unit = ccb->cgdl.unit_number; 620 name = ccb->cgdl.periph_name; 621 base_periph_found = 0; 622 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 623 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 624 ccb->csio.bio = NULL; 625 #endif 626 627 /* 628 * Sanity check -- make sure we don't get a null peripheral 629 * driver name. 630 */ 631 if (*ccb->cgdl.periph_name == '\0') { 632 error = EINVAL; 633 break; 634 } 635 636 /* Keep the list from changing while we traverse it */ 637 xpt_lock_buses(); 638 639 /* first find our driver in the list of drivers */ 640 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 641 if (strcmp((*p_drv)->driver_name, name) == 0) 642 break; 643 644 if (*p_drv == NULL) { 645 xpt_unlock_buses(); 646 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 647 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 648 *ccb->cgdl.periph_name = '\0'; 649 ccb->cgdl.unit_number = 0; 650 error = ENOENT; 651 break; 652 } 653 654 /* 655 * Run through every peripheral instance of this driver 656 * and check to see whether it matches the unit passed 657 * in by the user. If it does, get out of the loops and 658 * find the passthrough driver associated with that 659 * peripheral driver. 660 */ 661 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 662 periph = TAILQ_NEXT(periph, unit_links)) { 663 664 if (periph->unit_number == unit) 665 break; 666 } 667 /* 668 * If we found the peripheral driver that the user passed 669 * in, go through all of the peripheral drivers for that 670 * particular device and look for a passthrough driver. 671 */ 672 if (periph != NULL) { 673 struct cam_ed *device; 674 int i; 675 676 base_periph_found = 1; 677 device = periph->path->device; 678 for (i = 0, periph = SLIST_FIRST(&device->periphs); 679 periph != NULL; 680 periph = SLIST_NEXT(periph, periph_links), i++) { 681 /* 682 * Check to see whether we have a 683 * passthrough device or not. 684 */ 685 if (strcmp(periph->periph_name, "pass") == 0) { 686 /* 687 * Fill in the getdevlist fields. 688 */ 689 strcpy(ccb->cgdl.periph_name, 690 periph->periph_name); 691 ccb->cgdl.unit_number = 692 periph->unit_number; 693 if (SLIST_NEXT(periph, periph_links)) 694 ccb->cgdl.status = 695 CAM_GDEVLIST_MORE_DEVS; 696 else 697 ccb->cgdl.status = 698 CAM_GDEVLIST_LAST_DEVICE; 699 ccb->cgdl.generation = 700 device->generation; 701 ccb->cgdl.index = i; 702 /* 703 * Fill in some CCB header fields 704 * that the user may want. 705 */ 706 ccb->ccb_h.path_id = 707 periph->path->bus->path_id; 708 ccb->ccb_h.target_id = 709 periph->path->target->target_id; 710 ccb->ccb_h.target_lun = 711 periph->path->device->lun_id; 712 ccb->ccb_h.status = CAM_REQ_CMP; 713 break; 714 } 715 } 716 } 717 718 /* 719 * If the periph is null here, one of two things has 720 * happened. The first possibility is that we couldn't 721 * find the unit number of the particular peripheral driver 722 * that the user is asking about. e.g. the user asks for 723 * the passthrough driver for "da11". We find the list of 724 * "da" peripherals all right, but there is no unit 11. 725 * The other possibility is that we went through the list 726 * of peripheral drivers attached to the device structure, 727 * but didn't find one with the name "pass". Either way, 728 * we return ENOENT, since we couldn't find something. 729 */ 730 if (periph == NULL) { 731 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 732 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 733 *ccb->cgdl.periph_name = '\0'; 734 ccb->cgdl.unit_number = 0; 735 error = ENOENT; 736 /* 737 * It is unfortunate that this is even necessary, 738 * but there are many, many clueless users out there. 739 * If this is true, the user is looking for the 740 * passthrough driver, but doesn't have one in his 741 * kernel. 742 */ 743 if (base_periph_found == 1) { 744 printf("xptioctl: pass driver is not in the " 745 "kernel\n"); 746 printf("xptioctl: put \"device pass\" in " 747 "your kernel config file\n"); 748 } 749 } 750 xpt_unlock_buses(); 751 break; 752 } 753 default: 754 error = ENOTTY; 755 break; 756 } 757 758 return(error); 759 } 760 761 static int 762 cam_module_event_handler(module_t mod, int what, void *arg) 763 { 764 int error; 765 766 switch (what) { 767 case MOD_LOAD: 768 if ((error = xpt_init(NULL)) != 0) 769 return (error); 770 break; 771 case MOD_UNLOAD: 772 return EBUSY; 773 default: 774 return EOPNOTSUPP; 775 } 776 777 return 0; 778 } 779 780 static struct xpt_proto * 781 xpt_proto_find(cam_proto proto) 782 { 783 struct xpt_proto **pp; 784 785 SET_FOREACH(pp, cam_xpt_proto_set) { 786 if ((*pp)->proto == proto) 787 return *pp; 788 } 789 790 return NULL; 791 } 792 793 static void 794 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 795 { 796 797 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 798 xpt_free_path(done_ccb->ccb_h.path); 799 xpt_free_ccb(done_ccb); 800 } else { 801 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 802 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 803 } 804 xpt_release_boot(); 805 } 806 807 /* thread to handle bus rescans */ 808 static void 809 xpt_scanner_thread(void *dummy) 810 { 811 union ccb *ccb; 812 struct cam_path path; 813 814 xpt_lock_buses(); 815 for (;;) { 816 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 817 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 818 "-", 0); 819 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 820 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 821 xpt_unlock_buses(); 822 823 /* 824 * Since lock can be dropped inside and path freed 825 * by completion callback even before return here, 826 * take our own path copy for reference. 827 */ 828 xpt_copy_path(&path, ccb->ccb_h.path); 829 xpt_path_lock(&path); 830 xpt_action(ccb); 831 xpt_path_unlock(&path); 832 xpt_release_path(&path); 833 834 xpt_lock_buses(); 835 } 836 } 837 } 838 839 void 840 xpt_rescan(union ccb *ccb) 841 { 842 struct ccb_hdr *hdr; 843 844 /* Prepare request */ 845 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 846 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 847 ccb->ccb_h.func_code = XPT_SCAN_BUS; 848 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 849 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 850 ccb->ccb_h.func_code = XPT_SCAN_TGT; 851 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 852 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 853 ccb->ccb_h.func_code = XPT_SCAN_LUN; 854 else { 855 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 856 xpt_free_path(ccb->ccb_h.path); 857 xpt_free_ccb(ccb); 858 return; 859 } 860 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 861 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, 862 xpt_action_name(ccb->ccb_h.func_code))); 863 864 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 865 ccb->ccb_h.cbfcnp = xpt_rescan_done; 866 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 867 /* Don't make duplicate entries for the same paths. */ 868 xpt_lock_buses(); 869 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 870 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 871 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 872 wakeup(&xsoftc.ccb_scanq); 873 xpt_unlock_buses(); 874 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 875 xpt_free_path(ccb->ccb_h.path); 876 xpt_free_ccb(ccb); 877 return; 878 } 879 } 880 } 881 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 882 xsoftc.buses_to_config++; 883 wakeup(&xsoftc.ccb_scanq); 884 xpt_unlock_buses(); 885 } 886 887 /* Functions accessed by the peripheral drivers */ 888 static int 889 xpt_init(void *dummy) 890 { 891 struct cam_sim *xpt_sim; 892 struct cam_path *path; 893 struct cam_devq *devq; 894 cam_status status; 895 int error, i; 896 897 TAILQ_INIT(&xsoftc.xpt_busses); 898 TAILQ_INIT(&xsoftc.ccb_scanq); 899 STAILQ_INIT(&xsoftc.highpowerq); 900 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 901 902 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 903 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 904 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 905 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 906 907 #ifdef CAM_BOOT_DELAY 908 /* 909 * Override this value at compile time to assist our users 910 * who don't use loader to boot a kernel. 911 */ 912 xsoftc.boot_delay = CAM_BOOT_DELAY; 913 #endif 914 /* 915 * The xpt layer is, itself, the equivalent of a SIM. 916 * Allow 16 ccbs in the ccb pool for it. This should 917 * give decent parallelism when we probe buses and 918 * perform other XPT functions. 919 */ 920 devq = cam_simq_alloc(16); 921 xpt_sim = cam_sim_alloc(xptaction, 922 xptpoll, 923 "xpt", 924 /*softc*/NULL, 925 /*unit*/0, 926 /*mtx*/&xsoftc.xpt_lock, 927 /*max_dev_transactions*/0, 928 /*max_tagged_dev_transactions*/0, 929 devq); 930 if (xpt_sim == NULL) 931 return (ENOMEM); 932 933 mtx_lock(&xsoftc.xpt_lock); 934 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 935 mtx_unlock(&xsoftc.xpt_lock); 936 printf("xpt_init: xpt_bus_register failed with status %#x," 937 " failing attach\n", status); 938 return (EINVAL); 939 } 940 mtx_unlock(&xsoftc.xpt_lock); 941 942 /* 943 * Looking at the XPT from the SIM layer, the XPT is 944 * the equivalent of a peripheral driver. Allocate 945 * a peripheral driver entry for us. 946 */ 947 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 948 CAM_TARGET_WILDCARD, 949 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 950 printf("xpt_init: xpt_create_path failed with status %#x," 951 " failing attach\n", status); 952 return (EINVAL); 953 } 954 xpt_path_lock(path); 955 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 956 path, NULL, 0, xpt_sim); 957 xpt_path_unlock(path); 958 xpt_free_path(path); 959 960 if (cam_num_doneqs < 1) 961 cam_num_doneqs = 1 + mp_ncpus / 6; 962 else if (cam_num_doneqs > MAXCPU) 963 cam_num_doneqs = MAXCPU; 964 for (i = 0; i < cam_num_doneqs; i++) { 965 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 966 MTX_DEF); 967 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 968 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 969 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 970 if (error != 0) { 971 cam_num_doneqs = i; 972 break; 973 } 974 } 975 if (cam_num_doneqs < 1) { 976 printf("xpt_init: Cannot init completion queues " 977 "- failing attach\n"); 978 return (ENOMEM); 979 } 980 /* 981 * Register a callback for when interrupts are enabled. 982 */ 983 xsoftc.xpt_config_hook = 984 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 985 M_CAMXPT, M_NOWAIT | M_ZERO); 986 if (xsoftc.xpt_config_hook == NULL) { 987 printf("xpt_init: Cannot malloc config hook " 988 "- failing attach\n"); 989 return (ENOMEM); 990 } 991 xsoftc.xpt_config_hook->ich_func = xpt_config; 992 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 993 free (xsoftc.xpt_config_hook, M_CAMXPT); 994 printf("xpt_init: config_intrhook_establish failed " 995 "- failing attach\n"); 996 } 997 998 return (0); 999 } 1000 1001 static cam_status 1002 xptregister(struct cam_periph *periph, void *arg) 1003 { 1004 struct cam_sim *xpt_sim; 1005 1006 if (periph == NULL) { 1007 printf("xptregister: periph was NULL!!\n"); 1008 return(CAM_REQ_CMP_ERR); 1009 } 1010 1011 xpt_sim = (struct cam_sim *)arg; 1012 xpt_sim->softc = periph; 1013 xpt_periph = periph; 1014 periph->softc = NULL; 1015 1016 return(CAM_REQ_CMP); 1017 } 1018 1019 int32_t 1020 xpt_add_periph(struct cam_periph *periph) 1021 { 1022 struct cam_ed *device; 1023 int32_t status; 1024 1025 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 1026 device = periph->path->device; 1027 status = CAM_REQ_CMP; 1028 if (device != NULL) { 1029 mtx_lock(&device->target->bus->eb_mtx); 1030 device->generation++; 1031 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 1032 mtx_unlock(&device->target->bus->eb_mtx); 1033 atomic_add_32(&xsoftc.xpt_generation, 1); 1034 } 1035 1036 return (status); 1037 } 1038 1039 void 1040 xpt_remove_periph(struct cam_periph *periph) 1041 { 1042 struct cam_ed *device; 1043 1044 device = periph->path->device; 1045 if (device != NULL) { 1046 mtx_lock(&device->target->bus->eb_mtx); 1047 device->generation++; 1048 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1049 mtx_unlock(&device->target->bus->eb_mtx); 1050 atomic_add_32(&xsoftc.xpt_generation, 1); 1051 } 1052 } 1053 1054 1055 void 1056 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1057 { 1058 struct cam_path *path = periph->path; 1059 struct xpt_proto *proto; 1060 1061 cam_periph_assert(periph, MA_OWNED); 1062 periph->flags |= CAM_PERIPH_ANNOUNCED; 1063 1064 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1065 periph->periph_name, periph->unit_number, 1066 path->bus->sim->sim_name, 1067 path->bus->sim->unit_number, 1068 path->bus->sim->bus_id, 1069 path->bus->path_id, 1070 path->target->target_id, 1071 (uintmax_t)path->device->lun_id); 1072 printf("%s%d: ", periph->periph_name, periph->unit_number); 1073 proto = xpt_proto_find(path->device->protocol); 1074 if (proto) 1075 proto->ops->announce(path->device); 1076 else 1077 printf("%s%d: Unknown protocol device %d\n", 1078 periph->periph_name, periph->unit_number, 1079 path->device->protocol); 1080 if (path->device->serial_num_len > 0) { 1081 /* Don't wrap the screen - print only the first 60 chars */ 1082 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1083 periph->unit_number, path->device->serial_num); 1084 } 1085 /* Announce transport details. */ 1086 path->bus->xport->ops->announce(periph); 1087 /* Announce command queueing. */ 1088 if (path->device->inq_flags & SID_CmdQue 1089 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1090 printf("%s%d: Command Queueing enabled\n", 1091 periph->periph_name, periph->unit_number); 1092 } 1093 /* Announce caller's details if they've passed in. */ 1094 if (announce_string != NULL) 1095 printf("%s%d: %s\n", periph->periph_name, 1096 periph->unit_number, announce_string); 1097 } 1098 1099 void 1100 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb, 1101 char *announce_string) 1102 { 1103 struct cam_path *path = periph->path; 1104 struct xpt_proto *proto; 1105 1106 cam_periph_assert(periph, MA_OWNED); 1107 periph->flags |= CAM_PERIPH_ANNOUNCED; 1108 1109 /* Fall back to the non-sbuf method if necessary */ 1110 if (xsoftc.announce_nosbuf != 0) { 1111 xpt_announce_periph(periph, announce_string); 1112 return; 1113 } 1114 proto = xpt_proto_find(path->device->protocol); 1115 if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) || 1116 (path->bus->xport->ops->announce_sbuf == NULL)) { 1117 xpt_announce_periph(periph, announce_string); 1118 return; 1119 } 1120 1121 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1122 periph->periph_name, periph->unit_number, 1123 path->bus->sim->sim_name, 1124 path->bus->sim->unit_number, 1125 path->bus->sim->bus_id, 1126 path->bus->path_id, 1127 path->target->target_id, 1128 (uintmax_t)path->device->lun_id); 1129 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1130 1131 if (proto) 1132 proto->ops->announce_sbuf(path->device, sb); 1133 else 1134 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1135 periph->periph_name, periph->unit_number, 1136 path->device->protocol); 1137 if (path->device->serial_num_len > 0) { 1138 /* Don't wrap the screen - print only the first 60 chars */ 1139 sbuf_printf(sb, "%s%d: Serial Number %.60s\n", 1140 periph->periph_name, periph->unit_number, 1141 path->device->serial_num); 1142 } 1143 /* Announce transport details. */ 1144 path->bus->xport->ops->announce_sbuf(periph, sb); 1145 /* Announce command queueing. */ 1146 if (path->device->inq_flags & SID_CmdQue 1147 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1148 sbuf_printf(sb, "%s%d: Command Queueing enabled\n", 1149 periph->periph_name, periph->unit_number); 1150 } 1151 /* Announce caller's details if they've passed in. */ 1152 if (announce_string != NULL) 1153 sbuf_printf(sb, "%s%d: %s\n", periph->periph_name, 1154 periph->unit_number, announce_string); 1155 } 1156 1157 void 1158 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1159 { 1160 if (quirks != 0) { 1161 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1162 periph->unit_number, quirks, bit_string); 1163 } 1164 } 1165 1166 void 1167 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb, 1168 int quirks, char *bit_string) 1169 { 1170 if (xsoftc.announce_nosbuf != 0) { 1171 xpt_announce_quirks(periph, quirks, bit_string); 1172 return; 1173 } 1174 1175 if (quirks != 0) { 1176 sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name, 1177 periph->unit_number, quirks, bit_string); 1178 } 1179 } 1180 1181 void 1182 xpt_denounce_periph(struct cam_periph *periph) 1183 { 1184 struct cam_path *path = periph->path; 1185 struct xpt_proto *proto; 1186 1187 cam_periph_assert(periph, MA_OWNED); 1188 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1189 periph->periph_name, periph->unit_number, 1190 path->bus->sim->sim_name, 1191 path->bus->sim->unit_number, 1192 path->bus->sim->bus_id, 1193 path->bus->path_id, 1194 path->target->target_id, 1195 (uintmax_t)path->device->lun_id); 1196 printf("%s%d: ", periph->periph_name, periph->unit_number); 1197 proto = xpt_proto_find(path->device->protocol); 1198 if (proto) 1199 proto->ops->denounce(path->device); 1200 else 1201 printf("%s%d: Unknown protocol device %d\n", 1202 periph->periph_name, periph->unit_number, 1203 path->device->protocol); 1204 if (path->device->serial_num_len > 0) 1205 printf(" s/n %.60s", path->device->serial_num); 1206 printf(" detached\n"); 1207 } 1208 1209 void 1210 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb) 1211 { 1212 struct cam_path *path = periph->path; 1213 struct xpt_proto *proto; 1214 1215 cam_periph_assert(periph, MA_OWNED); 1216 1217 /* Fall back to the non-sbuf method if necessary */ 1218 if (xsoftc.announce_nosbuf != 0) { 1219 xpt_denounce_periph(periph); 1220 return; 1221 } 1222 proto = xpt_proto_find(path->device->protocol); 1223 if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) { 1224 xpt_denounce_periph(periph); 1225 return; 1226 } 1227 1228 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1229 periph->periph_name, periph->unit_number, 1230 path->bus->sim->sim_name, 1231 path->bus->sim->unit_number, 1232 path->bus->sim->bus_id, 1233 path->bus->path_id, 1234 path->target->target_id, 1235 (uintmax_t)path->device->lun_id); 1236 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1237 1238 if (proto) 1239 proto->ops->denounce_sbuf(path->device, sb); 1240 else 1241 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1242 periph->periph_name, periph->unit_number, 1243 path->device->protocol); 1244 if (path->device->serial_num_len > 0) 1245 sbuf_printf(sb, " s/n %.60s", path->device->serial_num); 1246 sbuf_printf(sb, " detached\n"); 1247 } 1248 1249 int 1250 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1251 { 1252 int ret = -1, l, o; 1253 struct ccb_dev_advinfo cdai; 1254 struct scsi_vpd_id_descriptor *idd; 1255 1256 xpt_path_assert(path, MA_OWNED); 1257 1258 memset(&cdai, 0, sizeof(cdai)); 1259 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1260 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1261 cdai.flags = CDAI_FLAG_NONE; 1262 cdai.bufsiz = len; 1263 1264 if (!strcmp(attr, "GEOM::ident")) 1265 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1266 else if (!strcmp(attr, "GEOM::physpath")) 1267 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1268 else if (strcmp(attr, "GEOM::lunid") == 0 || 1269 strcmp(attr, "GEOM::lunname") == 0) { 1270 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1271 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1272 } else 1273 goto out; 1274 1275 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1276 if (cdai.buf == NULL) { 1277 ret = ENOMEM; 1278 goto out; 1279 } 1280 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1281 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1282 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1283 if (cdai.provsiz == 0) 1284 goto out; 1285 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1286 if (strcmp(attr, "GEOM::lunid") == 0) { 1287 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1288 cdai.provsiz, scsi_devid_is_lun_naa); 1289 if (idd == NULL) 1290 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1291 cdai.provsiz, scsi_devid_is_lun_eui64); 1292 if (idd == NULL) 1293 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1294 cdai.provsiz, scsi_devid_is_lun_uuid); 1295 if (idd == NULL) 1296 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1297 cdai.provsiz, scsi_devid_is_lun_md5); 1298 } else 1299 idd = NULL; 1300 if (idd == NULL) 1301 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1302 cdai.provsiz, scsi_devid_is_lun_t10); 1303 if (idd == NULL) 1304 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1305 cdai.provsiz, scsi_devid_is_lun_name); 1306 if (idd == NULL) 1307 goto out; 1308 ret = 0; 1309 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { 1310 if (idd->length < len) { 1311 for (l = 0; l < idd->length; l++) 1312 buf[l] = idd->identifier[l] ? 1313 idd->identifier[l] : ' '; 1314 buf[l] = 0; 1315 } else 1316 ret = EFAULT; 1317 } else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1318 l = strnlen(idd->identifier, idd->length); 1319 if (l < len) { 1320 bcopy(idd->identifier, buf, l); 1321 buf[l] = 0; 1322 } else 1323 ret = EFAULT; 1324 } else if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID 1325 && idd->identifier[0] == 0x10) { 1326 if ((idd->length - 2) * 2 + 4 < len) { 1327 for (l = 2, o = 0; l < idd->length; l++) { 1328 if (l == 6 || l == 8 || l == 10 || l == 12) 1329 o += sprintf(buf + o, "-"); 1330 o += sprintf(buf + o, "%02x", 1331 idd->identifier[l]); 1332 } 1333 } else 1334 ret = EFAULT; 1335 } else { 1336 if (idd->length * 2 < len) { 1337 for (l = 0; l < idd->length; l++) 1338 sprintf(buf + l * 2, "%02x", 1339 idd->identifier[l]); 1340 } else 1341 ret = EFAULT; 1342 } 1343 } else { 1344 ret = 0; 1345 if (strlcpy(buf, cdai.buf, len) >= len) 1346 ret = EFAULT; 1347 } 1348 1349 out: 1350 if (cdai.buf != NULL) 1351 free(cdai.buf, M_CAMXPT); 1352 return ret; 1353 } 1354 1355 static dev_match_ret 1356 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1357 struct cam_eb *bus) 1358 { 1359 dev_match_ret retval; 1360 u_int i; 1361 1362 retval = DM_RET_NONE; 1363 1364 /* 1365 * If we aren't given something to match against, that's an error. 1366 */ 1367 if (bus == NULL) 1368 return(DM_RET_ERROR); 1369 1370 /* 1371 * If there are no match entries, then this bus matches no 1372 * matter what. 1373 */ 1374 if ((patterns == NULL) || (num_patterns == 0)) 1375 return(DM_RET_DESCEND | DM_RET_COPY); 1376 1377 for (i = 0; i < num_patterns; i++) { 1378 struct bus_match_pattern *cur_pattern; 1379 1380 /* 1381 * If the pattern in question isn't for a bus node, we 1382 * aren't interested. However, we do indicate to the 1383 * calling routine that we should continue descending the 1384 * tree, since the user wants to match against lower-level 1385 * EDT elements. 1386 */ 1387 if (patterns[i].type != DEV_MATCH_BUS) { 1388 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1389 retval |= DM_RET_DESCEND; 1390 continue; 1391 } 1392 1393 cur_pattern = &patterns[i].pattern.bus_pattern; 1394 1395 /* 1396 * If they want to match any bus node, we give them any 1397 * device node. 1398 */ 1399 if (cur_pattern->flags == BUS_MATCH_ANY) { 1400 /* set the copy flag */ 1401 retval |= DM_RET_COPY; 1402 1403 /* 1404 * If we've already decided on an action, go ahead 1405 * and return. 1406 */ 1407 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1408 return(retval); 1409 } 1410 1411 /* 1412 * Not sure why someone would do this... 1413 */ 1414 if (cur_pattern->flags == BUS_MATCH_NONE) 1415 continue; 1416 1417 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1418 && (cur_pattern->path_id != bus->path_id)) 1419 continue; 1420 1421 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1422 && (cur_pattern->bus_id != bus->sim->bus_id)) 1423 continue; 1424 1425 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1426 && (cur_pattern->unit_number != bus->sim->unit_number)) 1427 continue; 1428 1429 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1430 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1431 DEV_IDLEN) != 0)) 1432 continue; 1433 1434 /* 1435 * If we get to this point, the user definitely wants 1436 * information on this bus. So tell the caller to copy the 1437 * data out. 1438 */ 1439 retval |= DM_RET_COPY; 1440 1441 /* 1442 * If the return action has been set to descend, then we 1443 * know that we've already seen a non-bus matching 1444 * expression, therefore we need to further descend the tree. 1445 * This won't change by continuing around the loop, so we 1446 * go ahead and return. If we haven't seen a non-bus 1447 * matching expression, we keep going around the loop until 1448 * we exhaust the matching expressions. We'll set the stop 1449 * flag once we fall out of the loop. 1450 */ 1451 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1452 return(retval); 1453 } 1454 1455 /* 1456 * If the return action hasn't been set to descend yet, that means 1457 * we haven't seen anything other than bus matching patterns. So 1458 * tell the caller to stop descending the tree -- the user doesn't 1459 * want to match against lower level tree elements. 1460 */ 1461 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1462 retval |= DM_RET_STOP; 1463 1464 return(retval); 1465 } 1466 1467 static dev_match_ret 1468 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1469 struct cam_ed *device) 1470 { 1471 dev_match_ret retval; 1472 u_int i; 1473 1474 retval = DM_RET_NONE; 1475 1476 /* 1477 * If we aren't given something to match against, that's an error. 1478 */ 1479 if (device == NULL) 1480 return(DM_RET_ERROR); 1481 1482 /* 1483 * If there are no match entries, then this device matches no 1484 * matter what. 1485 */ 1486 if ((patterns == NULL) || (num_patterns == 0)) 1487 return(DM_RET_DESCEND | DM_RET_COPY); 1488 1489 for (i = 0; i < num_patterns; i++) { 1490 struct device_match_pattern *cur_pattern; 1491 struct scsi_vpd_device_id *device_id_page; 1492 1493 /* 1494 * If the pattern in question isn't for a device node, we 1495 * aren't interested. 1496 */ 1497 if (patterns[i].type != DEV_MATCH_DEVICE) { 1498 if ((patterns[i].type == DEV_MATCH_PERIPH) 1499 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1500 retval |= DM_RET_DESCEND; 1501 continue; 1502 } 1503 1504 cur_pattern = &patterns[i].pattern.device_pattern; 1505 1506 /* Error out if mutually exclusive options are specified. */ 1507 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1508 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1509 return(DM_RET_ERROR); 1510 1511 /* 1512 * If they want to match any device node, we give them any 1513 * device node. 1514 */ 1515 if (cur_pattern->flags == DEV_MATCH_ANY) 1516 goto copy_dev_node; 1517 1518 /* 1519 * Not sure why someone would do this... 1520 */ 1521 if (cur_pattern->flags == DEV_MATCH_NONE) 1522 continue; 1523 1524 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1525 && (cur_pattern->path_id != device->target->bus->path_id)) 1526 continue; 1527 1528 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1529 && (cur_pattern->target_id != device->target->target_id)) 1530 continue; 1531 1532 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1533 && (cur_pattern->target_lun != device->lun_id)) 1534 continue; 1535 1536 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1537 && (cam_quirkmatch((caddr_t)&device->inq_data, 1538 (caddr_t)&cur_pattern->data.inq_pat, 1539 1, sizeof(cur_pattern->data.inq_pat), 1540 scsi_static_inquiry_match) == NULL)) 1541 continue; 1542 1543 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1544 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1545 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1546 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1547 device->device_id_len 1548 - SVPD_DEVICE_ID_HDR_LEN, 1549 cur_pattern->data.devid_pat.id, 1550 cur_pattern->data.devid_pat.id_len) != 0)) 1551 continue; 1552 1553 copy_dev_node: 1554 /* 1555 * If we get to this point, the user definitely wants 1556 * information on this device. So tell the caller to copy 1557 * the data out. 1558 */ 1559 retval |= DM_RET_COPY; 1560 1561 /* 1562 * If the return action has been set to descend, then we 1563 * know that we've already seen a peripheral matching 1564 * expression, therefore we need to further descend the tree. 1565 * This won't change by continuing around the loop, so we 1566 * go ahead and return. If we haven't seen a peripheral 1567 * matching expression, we keep going around the loop until 1568 * we exhaust the matching expressions. We'll set the stop 1569 * flag once we fall out of the loop. 1570 */ 1571 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1572 return(retval); 1573 } 1574 1575 /* 1576 * If the return action hasn't been set to descend yet, that means 1577 * we haven't seen any peripheral matching patterns. So tell the 1578 * caller to stop descending the tree -- the user doesn't want to 1579 * match against lower level tree elements. 1580 */ 1581 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1582 retval |= DM_RET_STOP; 1583 1584 return(retval); 1585 } 1586 1587 /* 1588 * Match a single peripheral against any number of match patterns. 1589 */ 1590 static dev_match_ret 1591 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1592 struct cam_periph *periph) 1593 { 1594 dev_match_ret retval; 1595 u_int i; 1596 1597 /* 1598 * If we aren't given something to match against, that's an error. 1599 */ 1600 if (periph == NULL) 1601 return(DM_RET_ERROR); 1602 1603 /* 1604 * If there are no match entries, then this peripheral matches no 1605 * matter what. 1606 */ 1607 if ((patterns == NULL) || (num_patterns == 0)) 1608 return(DM_RET_STOP | DM_RET_COPY); 1609 1610 /* 1611 * There aren't any nodes below a peripheral node, so there's no 1612 * reason to descend the tree any further. 1613 */ 1614 retval = DM_RET_STOP; 1615 1616 for (i = 0; i < num_patterns; i++) { 1617 struct periph_match_pattern *cur_pattern; 1618 1619 /* 1620 * If the pattern in question isn't for a peripheral, we 1621 * aren't interested. 1622 */ 1623 if (patterns[i].type != DEV_MATCH_PERIPH) 1624 continue; 1625 1626 cur_pattern = &patterns[i].pattern.periph_pattern; 1627 1628 /* 1629 * If they want to match on anything, then we will do so. 1630 */ 1631 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1632 /* set the copy flag */ 1633 retval |= DM_RET_COPY; 1634 1635 /* 1636 * We've already set the return action to stop, 1637 * since there are no nodes below peripherals in 1638 * the tree. 1639 */ 1640 return(retval); 1641 } 1642 1643 /* 1644 * Not sure why someone would do this... 1645 */ 1646 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1647 continue; 1648 1649 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1650 && (cur_pattern->path_id != periph->path->bus->path_id)) 1651 continue; 1652 1653 /* 1654 * For the target and lun id's, we have to make sure the 1655 * target and lun pointers aren't NULL. The xpt peripheral 1656 * has a wildcard target and device. 1657 */ 1658 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1659 && ((periph->path->target == NULL) 1660 ||(cur_pattern->target_id != periph->path->target->target_id))) 1661 continue; 1662 1663 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1664 && ((periph->path->device == NULL) 1665 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1666 continue; 1667 1668 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1669 && (cur_pattern->unit_number != periph->unit_number)) 1670 continue; 1671 1672 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1673 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1674 DEV_IDLEN) != 0)) 1675 continue; 1676 1677 /* 1678 * If we get to this point, the user definitely wants 1679 * information on this peripheral. So tell the caller to 1680 * copy the data out. 1681 */ 1682 retval |= DM_RET_COPY; 1683 1684 /* 1685 * The return action has already been set to stop, since 1686 * peripherals don't have any nodes below them in the EDT. 1687 */ 1688 return(retval); 1689 } 1690 1691 /* 1692 * If we get to this point, the peripheral that was passed in 1693 * doesn't match any of the patterns. 1694 */ 1695 return(retval); 1696 } 1697 1698 static int 1699 xptedtbusfunc(struct cam_eb *bus, void *arg) 1700 { 1701 struct ccb_dev_match *cdm; 1702 struct cam_et *target; 1703 dev_match_ret retval; 1704 1705 cdm = (struct ccb_dev_match *)arg; 1706 1707 /* 1708 * If our position is for something deeper in the tree, that means 1709 * that we've already seen this node. So, we keep going down. 1710 */ 1711 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1712 && (cdm->pos.cookie.bus == bus) 1713 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1714 && (cdm->pos.cookie.target != NULL)) 1715 retval = DM_RET_DESCEND; 1716 else 1717 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1718 1719 /* 1720 * If we got an error, bail out of the search. 1721 */ 1722 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1723 cdm->status = CAM_DEV_MATCH_ERROR; 1724 return(0); 1725 } 1726 1727 /* 1728 * If the copy flag is set, copy this bus out. 1729 */ 1730 if (retval & DM_RET_COPY) { 1731 int spaceleft, j; 1732 1733 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1734 sizeof(struct dev_match_result)); 1735 1736 /* 1737 * If we don't have enough space to put in another 1738 * match result, save our position and tell the 1739 * user there are more devices to check. 1740 */ 1741 if (spaceleft < sizeof(struct dev_match_result)) { 1742 bzero(&cdm->pos, sizeof(cdm->pos)); 1743 cdm->pos.position_type = 1744 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1745 1746 cdm->pos.cookie.bus = bus; 1747 cdm->pos.generations[CAM_BUS_GENERATION]= 1748 xsoftc.bus_generation; 1749 cdm->status = CAM_DEV_MATCH_MORE; 1750 return(0); 1751 } 1752 j = cdm->num_matches; 1753 cdm->num_matches++; 1754 cdm->matches[j].type = DEV_MATCH_BUS; 1755 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1756 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1757 cdm->matches[j].result.bus_result.unit_number = 1758 bus->sim->unit_number; 1759 strncpy(cdm->matches[j].result.bus_result.dev_name, 1760 bus->sim->sim_name, DEV_IDLEN); 1761 } 1762 1763 /* 1764 * If the user is only interested in buses, there's no 1765 * reason to descend to the next level in the tree. 1766 */ 1767 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1768 return(1); 1769 1770 /* 1771 * If there is a target generation recorded, check it to 1772 * make sure the target list hasn't changed. 1773 */ 1774 mtx_lock(&bus->eb_mtx); 1775 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1776 && (cdm->pos.cookie.bus == bus) 1777 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1778 && (cdm->pos.cookie.target != NULL)) { 1779 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1780 bus->generation)) { 1781 mtx_unlock(&bus->eb_mtx); 1782 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1783 return (0); 1784 } 1785 target = (struct cam_et *)cdm->pos.cookie.target; 1786 target->refcount++; 1787 } else 1788 target = NULL; 1789 mtx_unlock(&bus->eb_mtx); 1790 1791 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1792 } 1793 1794 static int 1795 xptedttargetfunc(struct cam_et *target, void *arg) 1796 { 1797 struct ccb_dev_match *cdm; 1798 struct cam_eb *bus; 1799 struct cam_ed *device; 1800 1801 cdm = (struct ccb_dev_match *)arg; 1802 bus = target->bus; 1803 1804 /* 1805 * If there is a device list generation recorded, check it to 1806 * make sure the device list hasn't changed. 1807 */ 1808 mtx_lock(&bus->eb_mtx); 1809 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1810 && (cdm->pos.cookie.bus == bus) 1811 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1812 && (cdm->pos.cookie.target == target) 1813 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1814 && (cdm->pos.cookie.device != NULL)) { 1815 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1816 target->generation) { 1817 mtx_unlock(&bus->eb_mtx); 1818 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1819 return(0); 1820 } 1821 device = (struct cam_ed *)cdm->pos.cookie.device; 1822 device->refcount++; 1823 } else 1824 device = NULL; 1825 mtx_unlock(&bus->eb_mtx); 1826 1827 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1828 } 1829 1830 static int 1831 xptedtdevicefunc(struct cam_ed *device, void *arg) 1832 { 1833 struct cam_eb *bus; 1834 struct cam_periph *periph; 1835 struct ccb_dev_match *cdm; 1836 dev_match_ret retval; 1837 1838 cdm = (struct ccb_dev_match *)arg; 1839 bus = device->target->bus; 1840 1841 /* 1842 * If our position is for something deeper in the tree, that means 1843 * that we've already seen this node. So, we keep going down. 1844 */ 1845 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1846 && (cdm->pos.cookie.device == device) 1847 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1848 && (cdm->pos.cookie.periph != NULL)) 1849 retval = DM_RET_DESCEND; 1850 else 1851 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1852 device); 1853 1854 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1855 cdm->status = CAM_DEV_MATCH_ERROR; 1856 return(0); 1857 } 1858 1859 /* 1860 * If the copy flag is set, copy this device out. 1861 */ 1862 if (retval & DM_RET_COPY) { 1863 int spaceleft, j; 1864 1865 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1866 sizeof(struct dev_match_result)); 1867 1868 /* 1869 * If we don't have enough space to put in another 1870 * match result, save our position and tell the 1871 * user there are more devices to check. 1872 */ 1873 if (spaceleft < sizeof(struct dev_match_result)) { 1874 bzero(&cdm->pos, sizeof(cdm->pos)); 1875 cdm->pos.position_type = 1876 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1877 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1878 1879 cdm->pos.cookie.bus = device->target->bus; 1880 cdm->pos.generations[CAM_BUS_GENERATION]= 1881 xsoftc.bus_generation; 1882 cdm->pos.cookie.target = device->target; 1883 cdm->pos.generations[CAM_TARGET_GENERATION] = 1884 device->target->bus->generation; 1885 cdm->pos.cookie.device = device; 1886 cdm->pos.generations[CAM_DEV_GENERATION] = 1887 device->target->generation; 1888 cdm->status = CAM_DEV_MATCH_MORE; 1889 return(0); 1890 } 1891 j = cdm->num_matches; 1892 cdm->num_matches++; 1893 cdm->matches[j].type = DEV_MATCH_DEVICE; 1894 cdm->matches[j].result.device_result.path_id = 1895 device->target->bus->path_id; 1896 cdm->matches[j].result.device_result.target_id = 1897 device->target->target_id; 1898 cdm->matches[j].result.device_result.target_lun = 1899 device->lun_id; 1900 cdm->matches[j].result.device_result.protocol = 1901 device->protocol; 1902 bcopy(&device->inq_data, 1903 &cdm->matches[j].result.device_result.inq_data, 1904 sizeof(struct scsi_inquiry_data)); 1905 bcopy(&device->ident_data, 1906 &cdm->matches[j].result.device_result.ident_data, 1907 sizeof(struct ata_params)); 1908 1909 /* Let the user know whether this device is unconfigured */ 1910 if (device->flags & CAM_DEV_UNCONFIGURED) 1911 cdm->matches[j].result.device_result.flags = 1912 DEV_RESULT_UNCONFIGURED; 1913 else 1914 cdm->matches[j].result.device_result.flags = 1915 DEV_RESULT_NOFLAG; 1916 } 1917 1918 /* 1919 * If the user isn't interested in peripherals, don't descend 1920 * the tree any further. 1921 */ 1922 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1923 return(1); 1924 1925 /* 1926 * If there is a peripheral list generation recorded, make sure 1927 * it hasn't changed. 1928 */ 1929 xpt_lock_buses(); 1930 mtx_lock(&bus->eb_mtx); 1931 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1932 && (cdm->pos.cookie.bus == bus) 1933 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1934 && (cdm->pos.cookie.target == device->target) 1935 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1936 && (cdm->pos.cookie.device == device) 1937 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1938 && (cdm->pos.cookie.periph != NULL)) { 1939 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1940 device->generation) { 1941 mtx_unlock(&bus->eb_mtx); 1942 xpt_unlock_buses(); 1943 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1944 return(0); 1945 } 1946 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1947 periph->refcount++; 1948 } else 1949 periph = NULL; 1950 mtx_unlock(&bus->eb_mtx); 1951 xpt_unlock_buses(); 1952 1953 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1954 } 1955 1956 static int 1957 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1958 { 1959 struct ccb_dev_match *cdm; 1960 dev_match_ret retval; 1961 1962 cdm = (struct ccb_dev_match *)arg; 1963 1964 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1965 1966 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1967 cdm->status = CAM_DEV_MATCH_ERROR; 1968 return(0); 1969 } 1970 1971 /* 1972 * If the copy flag is set, copy this peripheral out. 1973 */ 1974 if (retval & DM_RET_COPY) { 1975 int spaceleft, j; 1976 1977 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1978 sizeof(struct dev_match_result)); 1979 1980 /* 1981 * If we don't have enough space to put in another 1982 * match result, save our position and tell the 1983 * user there are more devices to check. 1984 */ 1985 if (spaceleft < sizeof(struct dev_match_result)) { 1986 bzero(&cdm->pos, sizeof(cdm->pos)); 1987 cdm->pos.position_type = 1988 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1989 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1990 CAM_DEV_POS_PERIPH; 1991 1992 cdm->pos.cookie.bus = periph->path->bus; 1993 cdm->pos.generations[CAM_BUS_GENERATION]= 1994 xsoftc.bus_generation; 1995 cdm->pos.cookie.target = periph->path->target; 1996 cdm->pos.generations[CAM_TARGET_GENERATION] = 1997 periph->path->bus->generation; 1998 cdm->pos.cookie.device = periph->path->device; 1999 cdm->pos.generations[CAM_DEV_GENERATION] = 2000 periph->path->target->generation; 2001 cdm->pos.cookie.periph = periph; 2002 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2003 periph->path->device->generation; 2004 cdm->status = CAM_DEV_MATCH_MORE; 2005 return(0); 2006 } 2007 2008 j = cdm->num_matches; 2009 cdm->num_matches++; 2010 cdm->matches[j].type = DEV_MATCH_PERIPH; 2011 cdm->matches[j].result.periph_result.path_id = 2012 periph->path->bus->path_id; 2013 cdm->matches[j].result.periph_result.target_id = 2014 periph->path->target->target_id; 2015 cdm->matches[j].result.periph_result.target_lun = 2016 periph->path->device->lun_id; 2017 cdm->matches[j].result.periph_result.unit_number = 2018 periph->unit_number; 2019 strncpy(cdm->matches[j].result.periph_result.periph_name, 2020 periph->periph_name, DEV_IDLEN); 2021 } 2022 2023 return(1); 2024 } 2025 2026 static int 2027 xptedtmatch(struct ccb_dev_match *cdm) 2028 { 2029 struct cam_eb *bus; 2030 int ret; 2031 2032 cdm->num_matches = 0; 2033 2034 /* 2035 * Check the bus list generation. If it has changed, the user 2036 * needs to reset everything and start over. 2037 */ 2038 xpt_lock_buses(); 2039 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2040 && (cdm->pos.cookie.bus != NULL)) { 2041 if (cdm->pos.generations[CAM_BUS_GENERATION] != 2042 xsoftc.bus_generation) { 2043 xpt_unlock_buses(); 2044 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2045 return(0); 2046 } 2047 bus = (struct cam_eb *)cdm->pos.cookie.bus; 2048 bus->refcount++; 2049 } else 2050 bus = NULL; 2051 xpt_unlock_buses(); 2052 2053 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 2054 2055 /* 2056 * If we get back 0, that means that we had to stop before fully 2057 * traversing the EDT. It also means that one of the subroutines 2058 * has set the status field to the proper value. If we get back 1, 2059 * we've fully traversed the EDT and copied out any matching entries. 2060 */ 2061 if (ret == 1) 2062 cdm->status = CAM_DEV_MATCH_LAST; 2063 2064 return(ret); 2065 } 2066 2067 static int 2068 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2069 { 2070 struct cam_periph *periph; 2071 struct ccb_dev_match *cdm; 2072 2073 cdm = (struct ccb_dev_match *)arg; 2074 2075 xpt_lock_buses(); 2076 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2077 && (cdm->pos.cookie.pdrv == pdrv) 2078 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2079 && (cdm->pos.cookie.periph != NULL)) { 2080 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2081 (*pdrv)->generation) { 2082 xpt_unlock_buses(); 2083 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2084 return(0); 2085 } 2086 periph = (struct cam_periph *)cdm->pos.cookie.periph; 2087 periph->refcount++; 2088 } else 2089 periph = NULL; 2090 xpt_unlock_buses(); 2091 2092 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 2093 } 2094 2095 static int 2096 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2097 { 2098 struct ccb_dev_match *cdm; 2099 dev_match_ret retval; 2100 2101 cdm = (struct ccb_dev_match *)arg; 2102 2103 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2104 2105 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2106 cdm->status = CAM_DEV_MATCH_ERROR; 2107 return(0); 2108 } 2109 2110 /* 2111 * If the copy flag is set, copy this peripheral out. 2112 */ 2113 if (retval & DM_RET_COPY) { 2114 int spaceleft, j; 2115 2116 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2117 sizeof(struct dev_match_result)); 2118 2119 /* 2120 * If we don't have enough space to put in another 2121 * match result, save our position and tell the 2122 * user there are more devices to check. 2123 */ 2124 if (spaceleft < sizeof(struct dev_match_result)) { 2125 struct periph_driver **pdrv; 2126 2127 pdrv = NULL; 2128 bzero(&cdm->pos, sizeof(cdm->pos)); 2129 cdm->pos.position_type = 2130 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2131 CAM_DEV_POS_PERIPH; 2132 2133 /* 2134 * This may look a bit non-sensical, but it is 2135 * actually quite logical. There are very few 2136 * peripheral drivers, and bloating every peripheral 2137 * structure with a pointer back to its parent 2138 * peripheral driver linker set entry would cost 2139 * more in the long run than doing this quick lookup. 2140 */ 2141 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2142 if (strcmp((*pdrv)->driver_name, 2143 periph->periph_name) == 0) 2144 break; 2145 } 2146 2147 if (*pdrv == NULL) { 2148 cdm->status = CAM_DEV_MATCH_ERROR; 2149 return(0); 2150 } 2151 2152 cdm->pos.cookie.pdrv = pdrv; 2153 /* 2154 * The periph generation slot does double duty, as 2155 * does the periph pointer slot. They are used for 2156 * both edt and pdrv lookups and positioning. 2157 */ 2158 cdm->pos.cookie.periph = periph; 2159 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2160 (*pdrv)->generation; 2161 cdm->status = CAM_DEV_MATCH_MORE; 2162 return(0); 2163 } 2164 2165 j = cdm->num_matches; 2166 cdm->num_matches++; 2167 cdm->matches[j].type = DEV_MATCH_PERIPH; 2168 cdm->matches[j].result.periph_result.path_id = 2169 periph->path->bus->path_id; 2170 2171 /* 2172 * The transport layer peripheral doesn't have a target or 2173 * lun. 2174 */ 2175 if (periph->path->target) 2176 cdm->matches[j].result.periph_result.target_id = 2177 periph->path->target->target_id; 2178 else 2179 cdm->matches[j].result.periph_result.target_id = 2180 CAM_TARGET_WILDCARD; 2181 2182 if (periph->path->device) 2183 cdm->matches[j].result.periph_result.target_lun = 2184 periph->path->device->lun_id; 2185 else 2186 cdm->matches[j].result.periph_result.target_lun = 2187 CAM_LUN_WILDCARD; 2188 2189 cdm->matches[j].result.periph_result.unit_number = 2190 periph->unit_number; 2191 strncpy(cdm->matches[j].result.periph_result.periph_name, 2192 periph->periph_name, DEV_IDLEN); 2193 } 2194 2195 return(1); 2196 } 2197 2198 static int 2199 xptperiphlistmatch(struct ccb_dev_match *cdm) 2200 { 2201 int ret; 2202 2203 cdm->num_matches = 0; 2204 2205 /* 2206 * At this point in the edt traversal function, we check the bus 2207 * list generation to make sure that no buses have been added or 2208 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2209 * For the peripheral driver list traversal function, however, we 2210 * don't have to worry about new peripheral driver types coming or 2211 * going; they're in a linker set, and therefore can't change 2212 * without a recompile. 2213 */ 2214 2215 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2216 && (cdm->pos.cookie.pdrv != NULL)) 2217 ret = xptpdrvtraverse( 2218 (struct periph_driver **)cdm->pos.cookie.pdrv, 2219 xptplistpdrvfunc, cdm); 2220 else 2221 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2222 2223 /* 2224 * If we get back 0, that means that we had to stop before fully 2225 * traversing the peripheral driver tree. It also means that one of 2226 * the subroutines has set the status field to the proper value. If 2227 * we get back 1, we've fully traversed the EDT and copied out any 2228 * matching entries. 2229 */ 2230 if (ret == 1) 2231 cdm->status = CAM_DEV_MATCH_LAST; 2232 2233 return(ret); 2234 } 2235 2236 static int 2237 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2238 { 2239 struct cam_eb *bus, *next_bus; 2240 int retval; 2241 2242 retval = 1; 2243 if (start_bus) 2244 bus = start_bus; 2245 else { 2246 xpt_lock_buses(); 2247 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2248 if (bus == NULL) { 2249 xpt_unlock_buses(); 2250 return (retval); 2251 } 2252 bus->refcount++; 2253 xpt_unlock_buses(); 2254 } 2255 for (; bus != NULL; bus = next_bus) { 2256 retval = tr_func(bus, arg); 2257 if (retval == 0) { 2258 xpt_release_bus(bus); 2259 break; 2260 } 2261 xpt_lock_buses(); 2262 next_bus = TAILQ_NEXT(bus, links); 2263 if (next_bus) 2264 next_bus->refcount++; 2265 xpt_unlock_buses(); 2266 xpt_release_bus(bus); 2267 } 2268 return(retval); 2269 } 2270 2271 static int 2272 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2273 xpt_targetfunc_t *tr_func, void *arg) 2274 { 2275 struct cam_et *target, *next_target; 2276 int retval; 2277 2278 retval = 1; 2279 if (start_target) 2280 target = start_target; 2281 else { 2282 mtx_lock(&bus->eb_mtx); 2283 target = TAILQ_FIRST(&bus->et_entries); 2284 if (target == NULL) { 2285 mtx_unlock(&bus->eb_mtx); 2286 return (retval); 2287 } 2288 target->refcount++; 2289 mtx_unlock(&bus->eb_mtx); 2290 } 2291 for (; target != NULL; target = next_target) { 2292 retval = tr_func(target, arg); 2293 if (retval == 0) { 2294 xpt_release_target(target); 2295 break; 2296 } 2297 mtx_lock(&bus->eb_mtx); 2298 next_target = TAILQ_NEXT(target, links); 2299 if (next_target) 2300 next_target->refcount++; 2301 mtx_unlock(&bus->eb_mtx); 2302 xpt_release_target(target); 2303 } 2304 return(retval); 2305 } 2306 2307 static int 2308 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2309 xpt_devicefunc_t *tr_func, void *arg) 2310 { 2311 struct cam_eb *bus; 2312 struct cam_ed *device, *next_device; 2313 int retval; 2314 2315 retval = 1; 2316 bus = target->bus; 2317 if (start_device) 2318 device = start_device; 2319 else { 2320 mtx_lock(&bus->eb_mtx); 2321 device = TAILQ_FIRST(&target->ed_entries); 2322 if (device == NULL) { 2323 mtx_unlock(&bus->eb_mtx); 2324 return (retval); 2325 } 2326 device->refcount++; 2327 mtx_unlock(&bus->eb_mtx); 2328 } 2329 for (; device != NULL; device = next_device) { 2330 mtx_lock(&device->device_mtx); 2331 retval = tr_func(device, arg); 2332 mtx_unlock(&device->device_mtx); 2333 if (retval == 0) { 2334 xpt_release_device(device); 2335 break; 2336 } 2337 mtx_lock(&bus->eb_mtx); 2338 next_device = TAILQ_NEXT(device, links); 2339 if (next_device) 2340 next_device->refcount++; 2341 mtx_unlock(&bus->eb_mtx); 2342 xpt_release_device(device); 2343 } 2344 return(retval); 2345 } 2346 2347 static int 2348 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2349 xpt_periphfunc_t *tr_func, void *arg) 2350 { 2351 struct cam_eb *bus; 2352 struct cam_periph *periph, *next_periph; 2353 int retval; 2354 2355 retval = 1; 2356 2357 bus = device->target->bus; 2358 if (start_periph) 2359 periph = start_periph; 2360 else { 2361 xpt_lock_buses(); 2362 mtx_lock(&bus->eb_mtx); 2363 periph = SLIST_FIRST(&device->periphs); 2364 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2365 periph = SLIST_NEXT(periph, periph_links); 2366 if (periph == NULL) { 2367 mtx_unlock(&bus->eb_mtx); 2368 xpt_unlock_buses(); 2369 return (retval); 2370 } 2371 periph->refcount++; 2372 mtx_unlock(&bus->eb_mtx); 2373 xpt_unlock_buses(); 2374 } 2375 for (; periph != NULL; periph = next_periph) { 2376 retval = tr_func(periph, arg); 2377 if (retval == 0) { 2378 cam_periph_release_locked(periph); 2379 break; 2380 } 2381 xpt_lock_buses(); 2382 mtx_lock(&bus->eb_mtx); 2383 next_periph = SLIST_NEXT(periph, periph_links); 2384 while (next_periph != NULL && 2385 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2386 next_periph = SLIST_NEXT(next_periph, periph_links); 2387 if (next_periph) 2388 next_periph->refcount++; 2389 mtx_unlock(&bus->eb_mtx); 2390 xpt_unlock_buses(); 2391 cam_periph_release_locked(periph); 2392 } 2393 return(retval); 2394 } 2395 2396 static int 2397 xptpdrvtraverse(struct periph_driver **start_pdrv, 2398 xpt_pdrvfunc_t *tr_func, void *arg) 2399 { 2400 struct periph_driver **pdrv; 2401 int retval; 2402 2403 retval = 1; 2404 2405 /* 2406 * We don't traverse the peripheral driver list like we do the 2407 * other lists, because it is a linker set, and therefore cannot be 2408 * changed during runtime. If the peripheral driver list is ever 2409 * re-done to be something other than a linker set (i.e. it can 2410 * change while the system is running), the list traversal should 2411 * be modified to work like the other traversal functions. 2412 */ 2413 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2414 *pdrv != NULL; pdrv++) { 2415 retval = tr_func(pdrv, arg); 2416 2417 if (retval == 0) 2418 return(retval); 2419 } 2420 2421 return(retval); 2422 } 2423 2424 static int 2425 xptpdperiphtraverse(struct periph_driver **pdrv, 2426 struct cam_periph *start_periph, 2427 xpt_periphfunc_t *tr_func, void *arg) 2428 { 2429 struct cam_periph *periph, *next_periph; 2430 int retval; 2431 2432 retval = 1; 2433 2434 if (start_periph) 2435 periph = start_periph; 2436 else { 2437 xpt_lock_buses(); 2438 periph = TAILQ_FIRST(&(*pdrv)->units); 2439 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2440 periph = TAILQ_NEXT(periph, unit_links); 2441 if (periph == NULL) { 2442 xpt_unlock_buses(); 2443 return (retval); 2444 } 2445 periph->refcount++; 2446 xpt_unlock_buses(); 2447 } 2448 for (; periph != NULL; periph = next_periph) { 2449 cam_periph_lock(periph); 2450 retval = tr_func(periph, arg); 2451 cam_periph_unlock(periph); 2452 if (retval == 0) { 2453 cam_periph_release(periph); 2454 break; 2455 } 2456 xpt_lock_buses(); 2457 next_periph = TAILQ_NEXT(periph, unit_links); 2458 while (next_periph != NULL && 2459 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2460 next_periph = TAILQ_NEXT(next_periph, unit_links); 2461 if (next_periph) 2462 next_periph->refcount++; 2463 xpt_unlock_buses(); 2464 cam_periph_release(periph); 2465 } 2466 return(retval); 2467 } 2468 2469 static int 2470 xptdefbusfunc(struct cam_eb *bus, void *arg) 2471 { 2472 struct xpt_traverse_config *tr_config; 2473 2474 tr_config = (struct xpt_traverse_config *)arg; 2475 2476 if (tr_config->depth == XPT_DEPTH_BUS) { 2477 xpt_busfunc_t *tr_func; 2478 2479 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2480 2481 return(tr_func(bus, tr_config->tr_arg)); 2482 } else 2483 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2484 } 2485 2486 static int 2487 xptdeftargetfunc(struct cam_et *target, void *arg) 2488 { 2489 struct xpt_traverse_config *tr_config; 2490 2491 tr_config = (struct xpt_traverse_config *)arg; 2492 2493 if (tr_config->depth == XPT_DEPTH_TARGET) { 2494 xpt_targetfunc_t *tr_func; 2495 2496 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2497 2498 return(tr_func(target, tr_config->tr_arg)); 2499 } else 2500 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2501 } 2502 2503 static int 2504 xptdefdevicefunc(struct cam_ed *device, void *arg) 2505 { 2506 struct xpt_traverse_config *tr_config; 2507 2508 tr_config = (struct xpt_traverse_config *)arg; 2509 2510 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2511 xpt_devicefunc_t *tr_func; 2512 2513 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2514 2515 return(tr_func(device, tr_config->tr_arg)); 2516 } else 2517 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2518 } 2519 2520 static int 2521 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2522 { 2523 struct xpt_traverse_config *tr_config; 2524 xpt_periphfunc_t *tr_func; 2525 2526 tr_config = (struct xpt_traverse_config *)arg; 2527 2528 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2529 2530 /* 2531 * Unlike the other default functions, we don't check for depth 2532 * here. The peripheral driver level is the last level in the EDT, 2533 * so if we're here, we should execute the function in question. 2534 */ 2535 return(tr_func(periph, tr_config->tr_arg)); 2536 } 2537 2538 /* 2539 * Execute the given function for every bus in the EDT. 2540 */ 2541 static int 2542 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2543 { 2544 struct xpt_traverse_config tr_config; 2545 2546 tr_config.depth = XPT_DEPTH_BUS; 2547 tr_config.tr_func = tr_func; 2548 tr_config.tr_arg = arg; 2549 2550 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2551 } 2552 2553 /* 2554 * Execute the given function for every device in the EDT. 2555 */ 2556 static int 2557 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2558 { 2559 struct xpt_traverse_config tr_config; 2560 2561 tr_config.depth = XPT_DEPTH_DEVICE; 2562 tr_config.tr_func = tr_func; 2563 tr_config.tr_arg = arg; 2564 2565 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2566 } 2567 2568 static int 2569 xptsetasyncfunc(struct cam_ed *device, void *arg) 2570 { 2571 struct cam_path path; 2572 struct ccb_getdev cgd; 2573 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2574 2575 /* 2576 * Don't report unconfigured devices (Wildcard devs, 2577 * devices only for target mode, device instances 2578 * that have been invalidated but are waiting for 2579 * their last reference count to be released). 2580 */ 2581 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2582 return (1); 2583 2584 xpt_compile_path(&path, 2585 NULL, 2586 device->target->bus->path_id, 2587 device->target->target_id, 2588 device->lun_id); 2589 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2590 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2591 xpt_action((union ccb *)&cgd); 2592 csa->callback(csa->callback_arg, 2593 AC_FOUND_DEVICE, 2594 &path, &cgd); 2595 xpt_release_path(&path); 2596 2597 return(1); 2598 } 2599 2600 static int 2601 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2602 { 2603 struct cam_path path; 2604 struct ccb_pathinq cpi; 2605 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2606 2607 xpt_compile_path(&path, /*periph*/NULL, 2608 bus->path_id, 2609 CAM_TARGET_WILDCARD, 2610 CAM_LUN_WILDCARD); 2611 xpt_path_lock(&path); 2612 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2613 cpi.ccb_h.func_code = XPT_PATH_INQ; 2614 xpt_action((union ccb *)&cpi); 2615 csa->callback(csa->callback_arg, 2616 AC_PATH_REGISTERED, 2617 &path, &cpi); 2618 xpt_path_unlock(&path); 2619 xpt_release_path(&path); 2620 2621 return(1); 2622 } 2623 2624 void 2625 xpt_action(union ccb *start_ccb) 2626 { 2627 2628 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, 2629 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, 2630 xpt_action_name(start_ccb->ccb_h.func_code))); 2631 2632 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2633 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb); 2634 } 2635 2636 void 2637 xpt_action_default(union ccb *start_ccb) 2638 { 2639 struct cam_path *path; 2640 struct cam_sim *sim; 2641 struct mtx *mtx; 2642 2643 path = start_ccb->ccb_h.path; 2644 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2645 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, 2646 xpt_action_name(start_ccb->ccb_h.func_code))); 2647 2648 switch (start_ccb->ccb_h.func_code) { 2649 case XPT_SCSI_IO: 2650 { 2651 struct cam_ed *device; 2652 2653 /* 2654 * For the sake of compatibility with SCSI-1 2655 * devices that may not understand the identify 2656 * message, we include lun information in the 2657 * second byte of all commands. SCSI-1 specifies 2658 * that luns are a 3 bit value and reserves only 3 2659 * bits for lun information in the CDB. Later 2660 * revisions of the SCSI spec allow for more than 8 2661 * luns, but have deprecated lun information in the 2662 * CDB. So, if the lun won't fit, we must omit. 2663 * 2664 * Also be aware that during initial probing for devices, 2665 * the inquiry information is unknown but initialized to 0. 2666 * This means that this code will be exercised while probing 2667 * devices with an ANSI revision greater than 2. 2668 */ 2669 device = path->device; 2670 if (device->protocol_version <= SCSI_REV_2 2671 && start_ccb->ccb_h.target_lun < 8 2672 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2673 2674 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2675 start_ccb->ccb_h.target_lun << 5; 2676 } 2677 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2678 } 2679 /* FALLTHROUGH */ 2680 case XPT_TARGET_IO: 2681 case XPT_CONT_TARGET_IO: 2682 start_ccb->csio.sense_resid = 0; 2683 start_ccb->csio.resid = 0; 2684 /* FALLTHROUGH */ 2685 case XPT_ATA_IO: 2686 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2687 start_ccb->ataio.resid = 0; 2688 /* FALLTHROUGH */ 2689 case XPT_NVME_IO: 2690 if (start_ccb->ccb_h.func_code == XPT_NVME_IO) 2691 start_ccb->nvmeio.resid = 0; 2692 /* FALLTHROUGH */ 2693 case XPT_RESET_DEV: 2694 case XPT_ENG_EXEC: 2695 case XPT_SMP_IO: 2696 { 2697 struct cam_devq *devq; 2698 2699 devq = path->bus->sim->devq; 2700 mtx_lock(&devq->send_mtx); 2701 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2702 if (xpt_schedule_devq(devq, path->device) != 0) 2703 xpt_run_devq(devq); 2704 mtx_unlock(&devq->send_mtx); 2705 break; 2706 } 2707 case XPT_CALC_GEOMETRY: 2708 /* Filter out garbage */ 2709 if (start_ccb->ccg.block_size == 0 2710 || start_ccb->ccg.volume_size == 0) { 2711 start_ccb->ccg.cylinders = 0; 2712 start_ccb->ccg.heads = 0; 2713 start_ccb->ccg.secs_per_track = 0; 2714 start_ccb->ccb_h.status = CAM_REQ_CMP; 2715 break; 2716 } 2717 #if defined(__sparc64__) 2718 /* 2719 * For sparc64, we may need adjust the geometry of large 2720 * disks in order to fit the limitations of the 16-bit 2721 * fields of the VTOC8 disk label. 2722 */ 2723 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2724 start_ccb->ccb_h.status = CAM_REQ_CMP; 2725 break; 2726 } 2727 #endif 2728 goto call_sim; 2729 case XPT_ABORT: 2730 { 2731 union ccb* abort_ccb; 2732 2733 abort_ccb = start_ccb->cab.abort_ccb; 2734 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2735 struct cam_ed *device; 2736 struct cam_devq *devq; 2737 2738 device = abort_ccb->ccb_h.path->device; 2739 devq = device->sim->devq; 2740 2741 mtx_lock(&devq->send_mtx); 2742 if (abort_ccb->ccb_h.pinfo.index > 0) { 2743 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb); 2744 abort_ccb->ccb_h.status = 2745 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2746 xpt_freeze_devq_device(device, 1); 2747 mtx_unlock(&devq->send_mtx); 2748 xpt_done(abort_ccb); 2749 start_ccb->ccb_h.status = CAM_REQ_CMP; 2750 break; 2751 } 2752 mtx_unlock(&devq->send_mtx); 2753 2754 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2755 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2756 /* 2757 * We've caught this ccb en route to 2758 * the SIM. Flag it for abort and the 2759 * SIM will do so just before starting 2760 * real work on the CCB. 2761 */ 2762 abort_ccb->ccb_h.status = 2763 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2764 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2765 start_ccb->ccb_h.status = CAM_REQ_CMP; 2766 break; 2767 } 2768 } 2769 if (XPT_FC_IS_QUEUED(abort_ccb) 2770 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2771 /* 2772 * It's already completed but waiting 2773 * for our SWI to get to it. 2774 */ 2775 start_ccb->ccb_h.status = CAM_UA_ABORT; 2776 break; 2777 } 2778 /* 2779 * If we weren't able to take care of the abort request 2780 * in the XPT, pass the request down to the SIM for processing. 2781 */ 2782 } 2783 /* FALLTHROUGH */ 2784 case XPT_ACCEPT_TARGET_IO: 2785 case XPT_EN_LUN: 2786 case XPT_IMMED_NOTIFY: 2787 case XPT_NOTIFY_ACK: 2788 case XPT_RESET_BUS: 2789 case XPT_IMMEDIATE_NOTIFY: 2790 case XPT_NOTIFY_ACKNOWLEDGE: 2791 case XPT_GET_SIM_KNOB_OLD: 2792 case XPT_GET_SIM_KNOB: 2793 case XPT_SET_SIM_KNOB: 2794 case XPT_GET_TRAN_SETTINGS: 2795 case XPT_SET_TRAN_SETTINGS: 2796 case XPT_PATH_INQ: 2797 call_sim: 2798 sim = path->bus->sim; 2799 mtx = sim->mtx; 2800 if (mtx && !mtx_owned(mtx)) 2801 mtx_lock(mtx); 2802 else 2803 mtx = NULL; 2804 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2805 ("sim->sim_action: func=%#x\n", start_ccb->ccb_h.func_code)); 2806 (*(sim->sim_action))(sim, start_ccb); 2807 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2808 ("sim->sim_action: status=%#x\n", start_ccb->ccb_h.status)); 2809 if (mtx) 2810 mtx_unlock(mtx); 2811 break; 2812 case XPT_PATH_STATS: 2813 start_ccb->cpis.last_reset = path->bus->last_reset; 2814 start_ccb->ccb_h.status = CAM_REQ_CMP; 2815 break; 2816 case XPT_GDEV_TYPE: 2817 { 2818 struct cam_ed *dev; 2819 2820 dev = path->device; 2821 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2822 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2823 } else { 2824 struct ccb_getdev *cgd; 2825 2826 cgd = &start_ccb->cgd; 2827 cgd->protocol = dev->protocol; 2828 cgd->inq_data = dev->inq_data; 2829 cgd->ident_data = dev->ident_data; 2830 cgd->inq_flags = dev->inq_flags; 2831 cgd->nvme_data = dev->nvme_data; 2832 cgd->nvme_cdata = dev->nvme_cdata; 2833 cgd->ccb_h.status = CAM_REQ_CMP; 2834 cgd->serial_num_len = dev->serial_num_len; 2835 if ((dev->serial_num_len > 0) 2836 && (dev->serial_num != NULL)) 2837 bcopy(dev->serial_num, cgd->serial_num, 2838 dev->serial_num_len); 2839 } 2840 break; 2841 } 2842 case XPT_GDEV_STATS: 2843 { 2844 struct ccb_getdevstats *cgds = &start_ccb->cgds; 2845 struct cam_ed *dev = path->device; 2846 struct cam_eb *bus = path->bus; 2847 struct cam_et *tar = path->target; 2848 struct cam_devq *devq = bus->sim->devq; 2849 2850 mtx_lock(&devq->send_mtx); 2851 cgds->dev_openings = dev->ccbq.dev_openings; 2852 cgds->dev_active = dev->ccbq.dev_active; 2853 cgds->allocated = dev->ccbq.allocated; 2854 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2855 cgds->held = cgds->allocated - cgds->dev_active - cgds->queued; 2856 cgds->last_reset = tar->last_reset; 2857 cgds->maxtags = dev->maxtags; 2858 cgds->mintags = dev->mintags; 2859 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2860 cgds->last_reset = bus->last_reset; 2861 mtx_unlock(&devq->send_mtx); 2862 cgds->ccb_h.status = CAM_REQ_CMP; 2863 break; 2864 } 2865 case XPT_GDEVLIST: 2866 { 2867 struct cam_periph *nperiph; 2868 struct periph_list *periph_head; 2869 struct ccb_getdevlist *cgdl; 2870 u_int i; 2871 struct cam_ed *device; 2872 int found; 2873 2874 2875 found = 0; 2876 2877 /* 2878 * Don't want anyone mucking with our data. 2879 */ 2880 device = path->device; 2881 periph_head = &device->periphs; 2882 cgdl = &start_ccb->cgdl; 2883 2884 /* 2885 * Check and see if the list has changed since the user 2886 * last requested a list member. If so, tell them that the 2887 * list has changed, and therefore they need to start over 2888 * from the beginning. 2889 */ 2890 if ((cgdl->index != 0) && 2891 (cgdl->generation != device->generation)) { 2892 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2893 break; 2894 } 2895 2896 /* 2897 * Traverse the list of peripherals and attempt to find 2898 * the requested peripheral. 2899 */ 2900 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2901 (nperiph != NULL) && (i <= cgdl->index); 2902 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2903 if (i == cgdl->index) { 2904 strncpy(cgdl->periph_name, 2905 nperiph->periph_name, 2906 DEV_IDLEN); 2907 cgdl->unit_number = nperiph->unit_number; 2908 found = 1; 2909 } 2910 } 2911 if (found == 0) { 2912 cgdl->status = CAM_GDEVLIST_ERROR; 2913 break; 2914 } 2915 2916 if (nperiph == NULL) 2917 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2918 else 2919 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2920 2921 cgdl->index++; 2922 cgdl->generation = device->generation; 2923 2924 cgdl->ccb_h.status = CAM_REQ_CMP; 2925 break; 2926 } 2927 case XPT_DEV_MATCH: 2928 { 2929 dev_pos_type position_type; 2930 struct ccb_dev_match *cdm; 2931 2932 cdm = &start_ccb->cdm; 2933 2934 /* 2935 * There are two ways of getting at information in the EDT. 2936 * The first way is via the primary EDT tree. It starts 2937 * with a list of buses, then a list of targets on a bus, 2938 * then devices/luns on a target, and then peripherals on a 2939 * device/lun. The "other" way is by the peripheral driver 2940 * lists. The peripheral driver lists are organized by 2941 * peripheral driver. (obviously) So it makes sense to 2942 * use the peripheral driver list if the user is looking 2943 * for something like "da1", or all "da" devices. If the 2944 * user is looking for something on a particular bus/target 2945 * or lun, it's generally better to go through the EDT tree. 2946 */ 2947 2948 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2949 position_type = cdm->pos.position_type; 2950 else { 2951 u_int i; 2952 2953 position_type = CAM_DEV_POS_NONE; 2954 2955 for (i = 0; i < cdm->num_patterns; i++) { 2956 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2957 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2958 position_type = CAM_DEV_POS_EDT; 2959 break; 2960 } 2961 } 2962 2963 if (cdm->num_patterns == 0) 2964 position_type = CAM_DEV_POS_EDT; 2965 else if (position_type == CAM_DEV_POS_NONE) 2966 position_type = CAM_DEV_POS_PDRV; 2967 } 2968 2969 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2970 case CAM_DEV_POS_EDT: 2971 xptedtmatch(cdm); 2972 break; 2973 case CAM_DEV_POS_PDRV: 2974 xptperiphlistmatch(cdm); 2975 break; 2976 default: 2977 cdm->status = CAM_DEV_MATCH_ERROR; 2978 break; 2979 } 2980 2981 if (cdm->status == CAM_DEV_MATCH_ERROR) 2982 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2983 else 2984 start_ccb->ccb_h.status = CAM_REQ_CMP; 2985 2986 break; 2987 } 2988 case XPT_SASYNC_CB: 2989 { 2990 struct ccb_setasync *csa; 2991 struct async_node *cur_entry; 2992 struct async_list *async_head; 2993 u_int32_t added; 2994 2995 csa = &start_ccb->csa; 2996 added = csa->event_enable; 2997 async_head = &path->device->asyncs; 2998 2999 /* 3000 * If there is already an entry for us, simply 3001 * update it. 3002 */ 3003 cur_entry = SLIST_FIRST(async_head); 3004 while (cur_entry != NULL) { 3005 if ((cur_entry->callback_arg == csa->callback_arg) 3006 && (cur_entry->callback == csa->callback)) 3007 break; 3008 cur_entry = SLIST_NEXT(cur_entry, links); 3009 } 3010 3011 if (cur_entry != NULL) { 3012 /* 3013 * If the request has no flags set, 3014 * remove the entry. 3015 */ 3016 added &= ~cur_entry->event_enable; 3017 if (csa->event_enable == 0) { 3018 SLIST_REMOVE(async_head, cur_entry, 3019 async_node, links); 3020 xpt_release_device(path->device); 3021 free(cur_entry, M_CAMXPT); 3022 } else { 3023 cur_entry->event_enable = csa->event_enable; 3024 } 3025 csa->event_enable = added; 3026 } else { 3027 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 3028 M_NOWAIT); 3029 if (cur_entry == NULL) { 3030 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3031 break; 3032 } 3033 cur_entry->event_enable = csa->event_enable; 3034 cur_entry->event_lock = (path->bus->sim->mtx && 3035 mtx_owned(path->bus->sim->mtx)) ? 1 : 0; 3036 cur_entry->callback_arg = csa->callback_arg; 3037 cur_entry->callback = csa->callback; 3038 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3039 xpt_acquire_device(path->device); 3040 } 3041 start_ccb->ccb_h.status = CAM_REQ_CMP; 3042 break; 3043 } 3044 case XPT_REL_SIMQ: 3045 { 3046 struct ccb_relsim *crs; 3047 struct cam_ed *dev; 3048 3049 crs = &start_ccb->crs; 3050 dev = path->device; 3051 if (dev == NULL) { 3052 3053 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3054 break; 3055 } 3056 3057 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3058 3059 /* Don't ever go below one opening */ 3060 if (crs->openings > 0) { 3061 xpt_dev_ccbq_resize(path, crs->openings); 3062 if (bootverbose) { 3063 xpt_print(path, 3064 "number of openings is now %d\n", 3065 crs->openings); 3066 } 3067 } 3068 } 3069 3070 mtx_lock(&dev->sim->devq->send_mtx); 3071 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3072 3073 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3074 3075 /* 3076 * Just extend the old timeout and decrement 3077 * the freeze count so that a single timeout 3078 * is sufficient for releasing the queue. 3079 */ 3080 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3081 callout_stop(&dev->callout); 3082 } else { 3083 3084 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3085 } 3086 3087 callout_reset_sbt(&dev->callout, 3088 SBT_1MS * crs->release_timeout, 0, 3089 xpt_release_devq_timeout, dev, 0); 3090 3091 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3092 3093 } 3094 3095 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3096 3097 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3098 /* 3099 * Decrement the freeze count so that a single 3100 * completion is still sufficient to unfreeze 3101 * the queue. 3102 */ 3103 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3104 } else { 3105 3106 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3107 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3108 } 3109 } 3110 3111 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3112 3113 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3114 || (dev->ccbq.dev_active == 0)) { 3115 3116 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3117 } else { 3118 3119 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3120 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3121 } 3122 } 3123 mtx_unlock(&dev->sim->devq->send_mtx); 3124 3125 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 3126 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 3127 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 3128 start_ccb->ccb_h.status = CAM_REQ_CMP; 3129 break; 3130 } 3131 case XPT_DEBUG: { 3132 struct cam_path *oldpath; 3133 3134 /* Check that all request bits are supported. */ 3135 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 3136 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3137 break; 3138 } 3139 3140 cam_dflags = CAM_DEBUG_NONE; 3141 if (cam_dpath != NULL) { 3142 oldpath = cam_dpath; 3143 cam_dpath = NULL; 3144 xpt_free_path(oldpath); 3145 } 3146 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 3147 if (xpt_create_path(&cam_dpath, NULL, 3148 start_ccb->ccb_h.path_id, 3149 start_ccb->ccb_h.target_id, 3150 start_ccb->ccb_h.target_lun) != 3151 CAM_REQ_CMP) { 3152 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3153 } else { 3154 cam_dflags = start_ccb->cdbg.flags; 3155 start_ccb->ccb_h.status = CAM_REQ_CMP; 3156 xpt_print(cam_dpath, "debugging flags now %x\n", 3157 cam_dflags); 3158 } 3159 } else 3160 start_ccb->ccb_h.status = CAM_REQ_CMP; 3161 break; 3162 } 3163 case XPT_NOOP: 3164 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3165 xpt_freeze_devq(path, 1); 3166 start_ccb->ccb_h.status = CAM_REQ_CMP; 3167 break; 3168 case XPT_REPROBE_LUN: 3169 xpt_async(AC_INQ_CHANGED, path, NULL); 3170 start_ccb->ccb_h.status = CAM_REQ_CMP; 3171 xpt_done(start_ccb); 3172 break; 3173 default: 3174 case XPT_SDEV_TYPE: 3175 case XPT_TERM_IO: 3176 case XPT_ENG_INQ: 3177 /* XXX Implement */ 3178 xpt_print(start_ccb->ccb_h.path, 3179 "%s: CCB type %#x %s not supported\n", __func__, 3180 start_ccb->ccb_h.func_code, 3181 xpt_action_name(start_ccb->ccb_h.func_code)); 3182 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3183 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3184 xpt_done(start_ccb); 3185 } 3186 break; 3187 } 3188 CAM_DEBUG(path, CAM_DEBUG_TRACE, 3189 ("xpt_action_default: func= %#x %s status %#x\n", 3190 start_ccb->ccb_h.func_code, 3191 xpt_action_name(start_ccb->ccb_h.func_code), 3192 start_ccb->ccb_h.status)); 3193 } 3194 3195 void 3196 xpt_polled_action(union ccb *start_ccb) 3197 { 3198 u_int32_t timeout; 3199 struct cam_sim *sim; 3200 struct cam_devq *devq; 3201 struct cam_ed *dev; 3202 struct mtx *mtx; 3203 3204 timeout = start_ccb->ccb_h.timeout * 10; 3205 sim = start_ccb->ccb_h.path->bus->sim; 3206 devq = sim->devq; 3207 mtx = sim->mtx; 3208 dev = start_ccb->ccb_h.path->device; 3209 3210 mtx_unlock(&dev->device_mtx); 3211 3212 /* 3213 * Steal an opening so that no other queued requests 3214 * can get it before us while we simulate interrupts. 3215 */ 3216 mtx_lock(&devq->send_mtx); 3217 dev->ccbq.dev_openings--; 3218 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3219 (--timeout > 0)) { 3220 mtx_unlock(&devq->send_mtx); 3221 DELAY(100); 3222 if (mtx) 3223 mtx_lock(mtx); 3224 (*(sim->sim_poll))(sim); 3225 if (mtx) 3226 mtx_unlock(mtx); 3227 camisr_runqueue(); 3228 mtx_lock(&devq->send_mtx); 3229 } 3230 dev->ccbq.dev_openings++; 3231 mtx_unlock(&devq->send_mtx); 3232 3233 if (timeout != 0) { 3234 xpt_action(start_ccb); 3235 while(--timeout > 0) { 3236 if (mtx) 3237 mtx_lock(mtx); 3238 (*(sim->sim_poll))(sim); 3239 if (mtx) 3240 mtx_unlock(mtx); 3241 camisr_runqueue(); 3242 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3243 != CAM_REQ_INPROG) 3244 break; 3245 DELAY(100); 3246 } 3247 if (timeout == 0) { 3248 /* 3249 * XXX Is it worth adding a sim_timeout entry 3250 * point so we can attempt recovery? If 3251 * this is only used for dumps, I don't think 3252 * it is. 3253 */ 3254 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3255 } 3256 } else { 3257 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3258 } 3259 3260 mtx_lock(&dev->device_mtx); 3261 } 3262 3263 /* 3264 * Schedule a peripheral driver to receive a ccb when its 3265 * target device has space for more transactions. 3266 */ 3267 void 3268 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3269 { 3270 3271 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3272 cam_periph_assert(periph, MA_OWNED); 3273 if (new_priority < periph->scheduled_priority) { 3274 periph->scheduled_priority = new_priority; 3275 xpt_run_allocq(periph, 0); 3276 } 3277 } 3278 3279 3280 /* 3281 * Schedule a device to run on a given queue. 3282 * If the device was inserted as a new entry on the queue, 3283 * return 1 meaning the device queue should be run. If we 3284 * were already queued, implying someone else has already 3285 * started the queue, return 0 so the caller doesn't attempt 3286 * to run the queue. 3287 */ 3288 static int 3289 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3290 u_int32_t new_priority) 3291 { 3292 int retval; 3293 u_int32_t old_priority; 3294 3295 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3296 3297 old_priority = pinfo->priority; 3298 3299 /* 3300 * Are we already queued? 3301 */ 3302 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3303 /* Simply reorder based on new priority */ 3304 if (new_priority < old_priority) { 3305 camq_change_priority(queue, pinfo->index, 3306 new_priority); 3307 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3308 ("changed priority to %d\n", 3309 new_priority)); 3310 retval = 1; 3311 } else 3312 retval = 0; 3313 } else { 3314 /* New entry on the queue */ 3315 if (new_priority < old_priority) 3316 pinfo->priority = new_priority; 3317 3318 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3319 ("Inserting onto queue\n")); 3320 pinfo->generation = ++queue->generation; 3321 camq_insert(queue, pinfo); 3322 retval = 1; 3323 } 3324 return (retval); 3325 } 3326 3327 static void 3328 xpt_run_allocq_task(void *context, int pending) 3329 { 3330 struct cam_periph *periph = context; 3331 3332 cam_periph_lock(periph); 3333 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3334 xpt_run_allocq(periph, 1); 3335 cam_periph_unlock(periph); 3336 cam_periph_release(periph); 3337 } 3338 3339 static void 3340 xpt_run_allocq(struct cam_periph *periph, int sleep) 3341 { 3342 struct cam_ed *device; 3343 union ccb *ccb; 3344 uint32_t prio; 3345 3346 cam_periph_assert(periph, MA_OWNED); 3347 if (periph->periph_allocating) 3348 return; 3349 periph->periph_allocating = 1; 3350 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3351 device = periph->path->device; 3352 ccb = NULL; 3353 restart: 3354 while ((prio = min(periph->scheduled_priority, 3355 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3356 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3357 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3358 3359 if (ccb == NULL && 3360 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3361 if (sleep) { 3362 ccb = xpt_get_ccb(periph); 3363 goto restart; 3364 } 3365 if (periph->flags & CAM_PERIPH_RUN_TASK) 3366 break; 3367 cam_periph_doacquire(periph); 3368 periph->flags |= CAM_PERIPH_RUN_TASK; 3369 taskqueue_enqueue(xsoftc.xpt_taskq, 3370 &periph->periph_run_task); 3371 break; 3372 } 3373 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3374 if (prio == periph->immediate_priority) { 3375 periph->immediate_priority = CAM_PRIORITY_NONE; 3376 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3377 ("waking cam_periph_getccb()\n")); 3378 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3379 periph_links.sle); 3380 wakeup(&periph->ccb_list); 3381 } else { 3382 periph->scheduled_priority = CAM_PRIORITY_NONE; 3383 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3384 ("calling periph_start()\n")); 3385 periph->periph_start(periph, ccb); 3386 } 3387 ccb = NULL; 3388 } 3389 if (ccb != NULL) 3390 xpt_release_ccb(ccb); 3391 periph->periph_allocating = 0; 3392 } 3393 3394 static void 3395 xpt_run_devq(struct cam_devq *devq) 3396 { 3397 struct mtx *mtx; 3398 3399 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3400 3401 devq->send_queue.qfrozen_cnt++; 3402 while ((devq->send_queue.entries > 0) 3403 && (devq->send_openings > 0) 3404 && (devq->send_queue.qfrozen_cnt <= 1)) { 3405 struct cam_ed *device; 3406 union ccb *work_ccb; 3407 struct cam_sim *sim; 3408 struct xpt_proto *proto; 3409 3410 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3411 CAMQ_HEAD); 3412 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3413 ("running device %p\n", device)); 3414 3415 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3416 if (work_ccb == NULL) { 3417 printf("device on run queue with no ccbs???\n"); 3418 continue; 3419 } 3420 3421 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3422 3423 mtx_lock(&xsoftc.xpt_highpower_lock); 3424 if (xsoftc.num_highpower <= 0) { 3425 /* 3426 * We got a high power command, but we 3427 * don't have any available slots. Freeze 3428 * the device queue until we have a slot 3429 * available. 3430 */ 3431 xpt_freeze_devq_device(device, 1); 3432 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3433 highpowerq_entry); 3434 3435 mtx_unlock(&xsoftc.xpt_highpower_lock); 3436 continue; 3437 } else { 3438 /* 3439 * Consume a high power slot while 3440 * this ccb runs. 3441 */ 3442 xsoftc.num_highpower--; 3443 } 3444 mtx_unlock(&xsoftc.xpt_highpower_lock); 3445 } 3446 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3447 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3448 devq->send_openings--; 3449 devq->send_active++; 3450 xpt_schedule_devq(devq, device); 3451 mtx_unlock(&devq->send_mtx); 3452 3453 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3454 /* 3455 * The client wants to freeze the queue 3456 * after this CCB is sent. 3457 */ 3458 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3459 } 3460 3461 /* In Target mode, the peripheral driver knows best... */ 3462 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3463 if ((device->inq_flags & SID_CmdQue) != 0 3464 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3465 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3466 else 3467 /* 3468 * Clear this in case of a retried CCB that 3469 * failed due to a rejected tag. 3470 */ 3471 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3472 } 3473 3474 KASSERT(device == work_ccb->ccb_h.path->device, 3475 ("device (%p) / path->device (%p) mismatch", 3476 device, work_ccb->ccb_h.path->device)); 3477 proto = xpt_proto_find(device->protocol); 3478 if (proto && proto->ops->debug_out) 3479 proto->ops->debug_out(work_ccb); 3480 3481 /* 3482 * Device queues can be shared among multiple SIM instances 3483 * that reside on different buses. Use the SIM from the 3484 * queued device, rather than the one from the calling bus. 3485 */ 3486 sim = device->sim; 3487 mtx = sim->mtx; 3488 if (mtx && !mtx_owned(mtx)) 3489 mtx_lock(mtx); 3490 else 3491 mtx = NULL; 3492 work_ccb->ccb_h.qos.sim_data = sbinuptime(); // xxx uintprt_t too small 32bit platforms 3493 (*(sim->sim_action))(sim, work_ccb); 3494 if (mtx) 3495 mtx_unlock(mtx); 3496 mtx_lock(&devq->send_mtx); 3497 } 3498 devq->send_queue.qfrozen_cnt--; 3499 } 3500 3501 /* 3502 * This function merges stuff from the slave ccb into the master ccb, while 3503 * keeping important fields in the master ccb constant. 3504 */ 3505 void 3506 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3507 { 3508 3509 /* 3510 * Pull fields that are valid for peripheral drivers to set 3511 * into the master CCB along with the CCB "payload". 3512 */ 3513 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3514 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3515 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3516 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3517 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3518 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3519 } 3520 3521 void 3522 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, 3523 u_int32_t priority, u_int32_t flags) 3524 { 3525 3526 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3527 ccb_h->pinfo.priority = priority; 3528 ccb_h->path = path; 3529 ccb_h->path_id = path->bus->path_id; 3530 if (path->target) 3531 ccb_h->target_id = path->target->target_id; 3532 else 3533 ccb_h->target_id = CAM_TARGET_WILDCARD; 3534 if (path->device) { 3535 ccb_h->target_lun = path->device->lun_id; 3536 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3537 } else { 3538 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3539 } 3540 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3541 ccb_h->flags = flags; 3542 ccb_h->xflags = 0; 3543 } 3544 3545 void 3546 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3547 { 3548 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); 3549 } 3550 3551 /* Path manipulation functions */ 3552 cam_status 3553 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3554 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3555 { 3556 struct cam_path *path; 3557 cam_status status; 3558 3559 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3560 3561 if (path == NULL) { 3562 status = CAM_RESRC_UNAVAIL; 3563 return(status); 3564 } 3565 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3566 if (status != CAM_REQ_CMP) { 3567 free(path, M_CAMPATH); 3568 path = NULL; 3569 } 3570 *new_path_ptr = path; 3571 return (status); 3572 } 3573 3574 cam_status 3575 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3576 struct cam_periph *periph, path_id_t path_id, 3577 target_id_t target_id, lun_id_t lun_id) 3578 { 3579 3580 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3581 lun_id)); 3582 } 3583 3584 cam_status 3585 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3586 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3587 { 3588 struct cam_eb *bus; 3589 struct cam_et *target; 3590 struct cam_ed *device; 3591 cam_status status; 3592 3593 status = CAM_REQ_CMP; /* Completed without error */ 3594 target = NULL; /* Wildcarded */ 3595 device = NULL; /* Wildcarded */ 3596 3597 /* 3598 * We will potentially modify the EDT, so block interrupts 3599 * that may attempt to create cam paths. 3600 */ 3601 bus = xpt_find_bus(path_id); 3602 if (bus == NULL) { 3603 status = CAM_PATH_INVALID; 3604 } else { 3605 xpt_lock_buses(); 3606 mtx_lock(&bus->eb_mtx); 3607 target = xpt_find_target(bus, target_id); 3608 if (target == NULL) { 3609 /* Create one */ 3610 struct cam_et *new_target; 3611 3612 new_target = xpt_alloc_target(bus, target_id); 3613 if (new_target == NULL) { 3614 status = CAM_RESRC_UNAVAIL; 3615 } else { 3616 target = new_target; 3617 } 3618 } 3619 xpt_unlock_buses(); 3620 if (target != NULL) { 3621 device = xpt_find_device(target, lun_id); 3622 if (device == NULL) { 3623 /* Create one */ 3624 struct cam_ed *new_device; 3625 3626 new_device = 3627 (*(bus->xport->ops->alloc_device))(bus, 3628 target, 3629 lun_id); 3630 if (new_device == NULL) { 3631 status = CAM_RESRC_UNAVAIL; 3632 } else { 3633 device = new_device; 3634 } 3635 } 3636 } 3637 mtx_unlock(&bus->eb_mtx); 3638 } 3639 3640 /* 3641 * Only touch the user's data if we are successful. 3642 */ 3643 if (status == CAM_REQ_CMP) { 3644 new_path->periph = perph; 3645 new_path->bus = bus; 3646 new_path->target = target; 3647 new_path->device = device; 3648 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3649 } else { 3650 if (device != NULL) 3651 xpt_release_device(device); 3652 if (target != NULL) 3653 xpt_release_target(target); 3654 if (bus != NULL) 3655 xpt_release_bus(bus); 3656 } 3657 return (status); 3658 } 3659 3660 cam_status 3661 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3662 { 3663 struct cam_path *new_path; 3664 3665 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3666 if (new_path == NULL) 3667 return(CAM_RESRC_UNAVAIL); 3668 xpt_copy_path(new_path, path); 3669 *new_path_ptr = new_path; 3670 return (CAM_REQ_CMP); 3671 } 3672 3673 void 3674 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3675 { 3676 3677 *new_path = *path; 3678 if (path->bus != NULL) 3679 xpt_acquire_bus(path->bus); 3680 if (path->target != NULL) 3681 xpt_acquire_target(path->target); 3682 if (path->device != NULL) 3683 xpt_acquire_device(path->device); 3684 } 3685 3686 void 3687 xpt_release_path(struct cam_path *path) 3688 { 3689 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3690 if (path->device != NULL) { 3691 xpt_release_device(path->device); 3692 path->device = NULL; 3693 } 3694 if (path->target != NULL) { 3695 xpt_release_target(path->target); 3696 path->target = NULL; 3697 } 3698 if (path->bus != NULL) { 3699 xpt_release_bus(path->bus); 3700 path->bus = NULL; 3701 } 3702 } 3703 3704 void 3705 xpt_free_path(struct cam_path *path) 3706 { 3707 3708 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3709 xpt_release_path(path); 3710 free(path, M_CAMPATH); 3711 } 3712 3713 void 3714 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3715 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3716 { 3717 3718 xpt_lock_buses(); 3719 if (bus_ref) { 3720 if (path->bus) 3721 *bus_ref = path->bus->refcount; 3722 else 3723 *bus_ref = 0; 3724 } 3725 if (periph_ref) { 3726 if (path->periph) 3727 *periph_ref = path->periph->refcount; 3728 else 3729 *periph_ref = 0; 3730 } 3731 xpt_unlock_buses(); 3732 if (target_ref) { 3733 if (path->target) 3734 *target_ref = path->target->refcount; 3735 else 3736 *target_ref = 0; 3737 } 3738 if (device_ref) { 3739 if (path->device) 3740 *device_ref = path->device->refcount; 3741 else 3742 *device_ref = 0; 3743 } 3744 } 3745 3746 /* 3747 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3748 * in path1, 2 for match with wildcards in path2. 3749 */ 3750 int 3751 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3752 { 3753 int retval = 0; 3754 3755 if (path1->bus != path2->bus) { 3756 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3757 retval = 1; 3758 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3759 retval = 2; 3760 else 3761 return (-1); 3762 } 3763 if (path1->target != path2->target) { 3764 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3765 if (retval == 0) 3766 retval = 1; 3767 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3768 retval = 2; 3769 else 3770 return (-1); 3771 } 3772 if (path1->device != path2->device) { 3773 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3774 if (retval == 0) 3775 retval = 1; 3776 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3777 retval = 2; 3778 else 3779 return (-1); 3780 } 3781 return (retval); 3782 } 3783 3784 int 3785 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3786 { 3787 int retval = 0; 3788 3789 if (path->bus != dev->target->bus) { 3790 if (path->bus->path_id == CAM_BUS_WILDCARD) 3791 retval = 1; 3792 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3793 retval = 2; 3794 else 3795 return (-1); 3796 } 3797 if (path->target != dev->target) { 3798 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3799 if (retval == 0) 3800 retval = 1; 3801 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3802 retval = 2; 3803 else 3804 return (-1); 3805 } 3806 if (path->device != dev) { 3807 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3808 if (retval == 0) 3809 retval = 1; 3810 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3811 retval = 2; 3812 else 3813 return (-1); 3814 } 3815 return (retval); 3816 } 3817 3818 void 3819 xpt_print_path(struct cam_path *path) 3820 { 3821 struct sbuf sb; 3822 char buffer[XPT_PRINT_LEN]; 3823 3824 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3825 xpt_path_sbuf(path, &sb); 3826 sbuf_finish(&sb); 3827 printf("%s", sbuf_data(&sb)); 3828 sbuf_delete(&sb); 3829 } 3830 3831 void 3832 xpt_print_device(struct cam_ed *device) 3833 { 3834 3835 if (device == NULL) 3836 printf("(nopath): "); 3837 else { 3838 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3839 device->sim->unit_number, 3840 device->sim->bus_id, 3841 device->target->target_id, 3842 (uintmax_t)device->lun_id); 3843 } 3844 } 3845 3846 void 3847 xpt_print(struct cam_path *path, const char *fmt, ...) 3848 { 3849 va_list ap; 3850 struct sbuf sb; 3851 char buffer[XPT_PRINT_LEN]; 3852 3853 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3854 3855 xpt_path_sbuf(path, &sb); 3856 va_start(ap, fmt); 3857 sbuf_vprintf(&sb, fmt, ap); 3858 va_end(ap); 3859 3860 sbuf_finish(&sb); 3861 printf("%s", sbuf_data(&sb)); 3862 sbuf_delete(&sb); 3863 } 3864 3865 int 3866 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3867 { 3868 struct sbuf sb; 3869 int len; 3870 3871 sbuf_new(&sb, str, str_len, 0); 3872 len = xpt_path_sbuf(path, &sb); 3873 sbuf_finish(&sb); 3874 return (len); 3875 } 3876 3877 int 3878 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb) 3879 { 3880 3881 if (path == NULL) 3882 sbuf_printf(sb, "(nopath): "); 3883 else { 3884 if (path->periph != NULL) 3885 sbuf_printf(sb, "(%s%d:", path->periph->periph_name, 3886 path->periph->unit_number); 3887 else 3888 sbuf_printf(sb, "(noperiph:"); 3889 3890 if (path->bus != NULL) 3891 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name, 3892 path->bus->sim->unit_number, 3893 path->bus->sim->bus_id); 3894 else 3895 sbuf_printf(sb, "nobus:"); 3896 3897 if (path->target != NULL) 3898 sbuf_printf(sb, "%d:", path->target->target_id); 3899 else 3900 sbuf_printf(sb, "X:"); 3901 3902 if (path->device != NULL) 3903 sbuf_printf(sb, "%jx): ", 3904 (uintmax_t)path->device->lun_id); 3905 else 3906 sbuf_printf(sb, "X): "); 3907 } 3908 3909 return(sbuf_len(sb)); 3910 } 3911 3912 path_id_t 3913 xpt_path_path_id(struct cam_path *path) 3914 { 3915 return(path->bus->path_id); 3916 } 3917 3918 target_id_t 3919 xpt_path_target_id(struct cam_path *path) 3920 { 3921 if (path->target != NULL) 3922 return (path->target->target_id); 3923 else 3924 return (CAM_TARGET_WILDCARD); 3925 } 3926 3927 lun_id_t 3928 xpt_path_lun_id(struct cam_path *path) 3929 { 3930 if (path->device != NULL) 3931 return (path->device->lun_id); 3932 else 3933 return (CAM_LUN_WILDCARD); 3934 } 3935 3936 struct cam_sim * 3937 xpt_path_sim(struct cam_path *path) 3938 { 3939 3940 return (path->bus->sim); 3941 } 3942 3943 struct cam_periph* 3944 xpt_path_periph(struct cam_path *path) 3945 { 3946 3947 return (path->periph); 3948 } 3949 3950 /* 3951 * Release a CAM control block for the caller. Remit the cost of the structure 3952 * to the device referenced by the path. If the this device had no 'credits' 3953 * and peripheral drivers have registered async callbacks for this notification 3954 * call them now. 3955 */ 3956 void 3957 xpt_release_ccb(union ccb *free_ccb) 3958 { 3959 struct cam_ed *device; 3960 struct cam_periph *periph; 3961 3962 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3963 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3964 device = free_ccb->ccb_h.path->device; 3965 periph = free_ccb->ccb_h.path->periph; 3966 3967 xpt_free_ccb(free_ccb); 3968 periph->periph_allocated--; 3969 cam_ccbq_release_opening(&device->ccbq); 3970 xpt_run_allocq(periph, 0); 3971 } 3972 3973 /* Functions accessed by SIM drivers */ 3974 3975 static struct xpt_xport_ops xport_default_ops = { 3976 .alloc_device = xpt_alloc_device_default, 3977 .action = xpt_action_default, 3978 .async = xpt_dev_async_default, 3979 }; 3980 static struct xpt_xport xport_default = { 3981 .xport = XPORT_UNKNOWN, 3982 .name = "unknown", 3983 .ops = &xport_default_ops, 3984 }; 3985 3986 CAM_XPT_XPORT(xport_default); 3987 3988 /* 3989 * A sim structure, listing the SIM entry points and instance 3990 * identification info is passed to xpt_bus_register to hook the SIM 3991 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3992 * for this new bus and places it in the array of buses and assigns 3993 * it a path_id. The path_id may be influenced by "hard wiring" 3994 * information specified by the user. Once interrupt services are 3995 * available, the bus will be probed. 3996 */ 3997 int32_t 3998 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3999 { 4000 struct cam_eb *new_bus; 4001 struct cam_eb *old_bus; 4002 struct ccb_pathinq cpi; 4003 struct cam_path *path; 4004 cam_status status; 4005 4006 sim->bus_id = bus; 4007 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4008 M_CAMXPT, M_NOWAIT|M_ZERO); 4009 if (new_bus == NULL) { 4010 /* Couldn't satisfy request */ 4011 return (CAM_RESRC_UNAVAIL); 4012 } 4013 4014 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 4015 TAILQ_INIT(&new_bus->et_entries); 4016 cam_sim_hold(sim); 4017 new_bus->sim = sim; 4018 timevalclear(&new_bus->last_reset); 4019 new_bus->flags = 0; 4020 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4021 new_bus->generation = 0; 4022 4023 xpt_lock_buses(); 4024 sim->path_id = new_bus->path_id = 4025 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4026 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4027 while (old_bus != NULL 4028 && old_bus->path_id < new_bus->path_id) 4029 old_bus = TAILQ_NEXT(old_bus, links); 4030 if (old_bus != NULL) 4031 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4032 else 4033 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 4034 xsoftc.bus_generation++; 4035 xpt_unlock_buses(); 4036 4037 /* 4038 * Set a default transport so that a PATH_INQ can be issued to 4039 * the SIM. This will then allow for probing and attaching of 4040 * a more appropriate transport. 4041 */ 4042 new_bus->xport = &xport_default; 4043 4044 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 4045 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4046 if (status != CAM_REQ_CMP) { 4047 xpt_release_bus(new_bus); 4048 free(path, M_CAMXPT); 4049 return (CAM_RESRC_UNAVAIL); 4050 } 4051 4052 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 4053 cpi.ccb_h.func_code = XPT_PATH_INQ; 4054 xpt_action((union ccb *)&cpi); 4055 4056 if (cpi.ccb_h.status == CAM_REQ_CMP) { 4057 struct xpt_xport **xpt; 4058 4059 SET_FOREACH(xpt, cam_xpt_xport_set) { 4060 if ((*xpt)->xport == cpi.transport) { 4061 new_bus->xport = *xpt; 4062 break; 4063 } 4064 } 4065 if (new_bus->xport == NULL) { 4066 xpt_print(path, 4067 "No transport found for %d\n", cpi.transport); 4068 xpt_release_bus(new_bus); 4069 free(path, M_CAMXPT); 4070 return (CAM_RESRC_UNAVAIL); 4071 } 4072 } 4073 4074 /* Notify interested parties */ 4075 if (sim->path_id != CAM_XPT_PATH_ID) { 4076 4077 xpt_async(AC_PATH_REGISTERED, path, &cpi); 4078 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 4079 union ccb *scan_ccb; 4080 4081 /* Initiate bus rescan. */ 4082 scan_ccb = xpt_alloc_ccb_nowait(); 4083 if (scan_ccb != NULL) { 4084 scan_ccb->ccb_h.path = path; 4085 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 4086 scan_ccb->crcn.flags = 0; 4087 xpt_rescan(scan_ccb); 4088 } else { 4089 xpt_print(path, 4090 "Can't allocate CCB to scan bus\n"); 4091 xpt_free_path(path); 4092 } 4093 } else 4094 xpt_free_path(path); 4095 } else 4096 xpt_free_path(path); 4097 return (CAM_SUCCESS); 4098 } 4099 4100 int32_t 4101 xpt_bus_deregister(path_id_t pathid) 4102 { 4103 struct cam_path bus_path; 4104 cam_status status; 4105 4106 status = xpt_compile_path(&bus_path, NULL, pathid, 4107 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4108 if (status != CAM_REQ_CMP) 4109 return (status); 4110 4111 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4112 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4113 4114 /* Release the reference count held while registered. */ 4115 xpt_release_bus(bus_path.bus); 4116 xpt_release_path(&bus_path); 4117 4118 return (CAM_REQ_CMP); 4119 } 4120 4121 static path_id_t 4122 xptnextfreepathid(void) 4123 { 4124 struct cam_eb *bus; 4125 path_id_t pathid; 4126 const char *strval; 4127 4128 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4129 pathid = 0; 4130 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4131 retry: 4132 /* Find an unoccupied pathid */ 4133 while (bus != NULL && bus->path_id <= pathid) { 4134 if (bus->path_id == pathid) 4135 pathid++; 4136 bus = TAILQ_NEXT(bus, links); 4137 } 4138 4139 /* 4140 * Ensure that this pathid is not reserved for 4141 * a bus that may be registered in the future. 4142 */ 4143 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4144 ++pathid; 4145 /* Start the search over */ 4146 goto retry; 4147 } 4148 return (pathid); 4149 } 4150 4151 static path_id_t 4152 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4153 { 4154 path_id_t pathid; 4155 int i, dunit, val; 4156 char buf[32]; 4157 const char *dname; 4158 4159 pathid = CAM_XPT_PATH_ID; 4160 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4161 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 4162 return (pathid); 4163 i = 0; 4164 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4165 if (strcmp(dname, "scbus")) { 4166 /* Avoid a bit of foot shooting. */ 4167 continue; 4168 } 4169 if (dunit < 0) /* unwired?! */ 4170 continue; 4171 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4172 if (sim_bus == val) { 4173 pathid = dunit; 4174 break; 4175 } 4176 } else if (sim_bus == 0) { 4177 /* Unspecified matches bus 0 */ 4178 pathid = dunit; 4179 break; 4180 } else { 4181 printf("Ambiguous scbus configuration for %s%d " 4182 "bus %d, cannot wire down. The kernel " 4183 "config entry for scbus%d should " 4184 "specify a controller bus.\n" 4185 "Scbus will be assigned dynamically.\n", 4186 sim_name, sim_unit, sim_bus, dunit); 4187 break; 4188 } 4189 } 4190 4191 if (pathid == CAM_XPT_PATH_ID) 4192 pathid = xptnextfreepathid(); 4193 return (pathid); 4194 } 4195 4196 static const char * 4197 xpt_async_string(u_int32_t async_code) 4198 { 4199 4200 switch (async_code) { 4201 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4202 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4203 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4204 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4205 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4206 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4207 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4208 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4209 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4210 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4211 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4212 case AC_CONTRACT: return ("AC_CONTRACT"); 4213 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4214 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4215 } 4216 return ("AC_UNKNOWN"); 4217 } 4218 4219 static int 4220 xpt_async_size(u_int32_t async_code) 4221 { 4222 4223 switch (async_code) { 4224 case AC_BUS_RESET: return (0); 4225 case AC_UNSOL_RESEL: return (0); 4226 case AC_SCSI_AEN: return (0); 4227 case AC_SENT_BDR: return (0); 4228 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4229 case AC_PATH_DEREGISTERED: return (0); 4230 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4231 case AC_LOST_DEVICE: return (0); 4232 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4233 case AC_INQ_CHANGED: return (0); 4234 case AC_GETDEV_CHANGED: return (0); 4235 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4236 case AC_ADVINFO_CHANGED: return (-1); 4237 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4238 } 4239 return (0); 4240 } 4241 4242 static int 4243 xpt_async_process_dev(struct cam_ed *device, void *arg) 4244 { 4245 union ccb *ccb = arg; 4246 struct cam_path *path = ccb->ccb_h.path; 4247 void *async_arg = ccb->casync.async_arg_ptr; 4248 u_int32_t async_code = ccb->casync.async_code; 4249 int relock; 4250 4251 if (path->device != device 4252 && path->device->lun_id != CAM_LUN_WILDCARD 4253 && device->lun_id != CAM_LUN_WILDCARD) 4254 return (1); 4255 4256 /* 4257 * The async callback could free the device. 4258 * If it is a broadcast async, it doesn't hold 4259 * device reference, so take our own reference. 4260 */ 4261 xpt_acquire_device(device); 4262 4263 /* 4264 * If async for specific device is to be delivered to 4265 * the wildcard client, take the specific device lock. 4266 * XXX: We may need a way for client to specify it. 4267 */ 4268 if ((device->lun_id == CAM_LUN_WILDCARD && 4269 path->device->lun_id != CAM_LUN_WILDCARD) || 4270 (device->target->target_id == CAM_TARGET_WILDCARD && 4271 path->target->target_id != CAM_TARGET_WILDCARD) || 4272 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4273 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4274 mtx_unlock(&device->device_mtx); 4275 xpt_path_lock(path); 4276 relock = 1; 4277 } else 4278 relock = 0; 4279 4280 (*(device->target->bus->xport->ops->async))(async_code, 4281 device->target->bus, device->target, device, async_arg); 4282 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4283 4284 if (relock) { 4285 xpt_path_unlock(path); 4286 mtx_lock(&device->device_mtx); 4287 } 4288 xpt_release_device(device); 4289 return (1); 4290 } 4291 4292 static int 4293 xpt_async_process_tgt(struct cam_et *target, void *arg) 4294 { 4295 union ccb *ccb = arg; 4296 struct cam_path *path = ccb->ccb_h.path; 4297 4298 if (path->target != target 4299 && path->target->target_id != CAM_TARGET_WILDCARD 4300 && target->target_id != CAM_TARGET_WILDCARD) 4301 return (1); 4302 4303 if (ccb->casync.async_code == AC_SENT_BDR) { 4304 /* Update our notion of when the last reset occurred */ 4305 microtime(&target->last_reset); 4306 } 4307 4308 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4309 } 4310 4311 static void 4312 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4313 { 4314 struct cam_eb *bus; 4315 struct cam_path *path; 4316 void *async_arg; 4317 u_int32_t async_code; 4318 4319 path = ccb->ccb_h.path; 4320 async_code = ccb->casync.async_code; 4321 async_arg = ccb->casync.async_arg_ptr; 4322 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4323 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4324 bus = path->bus; 4325 4326 if (async_code == AC_BUS_RESET) { 4327 /* Update our notion of when the last reset occurred */ 4328 microtime(&bus->last_reset); 4329 } 4330 4331 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4332 4333 /* 4334 * If this wasn't a fully wildcarded async, tell all 4335 * clients that want all async events. 4336 */ 4337 if (bus != xpt_periph->path->bus) { 4338 xpt_path_lock(xpt_periph->path); 4339 xpt_async_process_dev(xpt_periph->path->device, ccb); 4340 xpt_path_unlock(xpt_periph->path); 4341 } 4342 4343 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4344 xpt_release_devq(path, 1, TRUE); 4345 else 4346 xpt_release_simq(path->bus->sim, TRUE); 4347 if (ccb->casync.async_arg_size > 0) 4348 free(async_arg, M_CAMXPT); 4349 xpt_free_path(path); 4350 xpt_free_ccb(ccb); 4351 } 4352 4353 static void 4354 xpt_async_bcast(struct async_list *async_head, 4355 u_int32_t async_code, 4356 struct cam_path *path, void *async_arg) 4357 { 4358 struct async_node *cur_entry; 4359 struct mtx *mtx; 4360 4361 cur_entry = SLIST_FIRST(async_head); 4362 while (cur_entry != NULL) { 4363 struct async_node *next_entry; 4364 /* 4365 * Grab the next list entry before we call the current 4366 * entry's callback. This is because the callback function 4367 * can delete its async callback entry. 4368 */ 4369 next_entry = SLIST_NEXT(cur_entry, links); 4370 if ((cur_entry->event_enable & async_code) != 0) { 4371 mtx = cur_entry->event_lock ? 4372 path->device->sim->mtx : NULL; 4373 if (mtx) 4374 mtx_lock(mtx); 4375 cur_entry->callback(cur_entry->callback_arg, 4376 async_code, path, 4377 async_arg); 4378 if (mtx) 4379 mtx_unlock(mtx); 4380 } 4381 cur_entry = next_entry; 4382 } 4383 } 4384 4385 void 4386 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4387 { 4388 union ccb *ccb; 4389 int size; 4390 4391 ccb = xpt_alloc_ccb_nowait(); 4392 if (ccb == NULL) { 4393 xpt_print(path, "Can't allocate CCB to send %s\n", 4394 xpt_async_string(async_code)); 4395 return; 4396 } 4397 4398 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4399 xpt_print(path, "Can't allocate path to send %s\n", 4400 xpt_async_string(async_code)); 4401 xpt_free_ccb(ccb); 4402 return; 4403 } 4404 ccb->ccb_h.path->periph = NULL; 4405 ccb->ccb_h.func_code = XPT_ASYNC; 4406 ccb->ccb_h.cbfcnp = xpt_async_process; 4407 ccb->ccb_h.flags |= CAM_UNLOCKED; 4408 ccb->casync.async_code = async_code; 4409 ccb->casync.async_arg_size = 0; 4410 size = xpt_async_size(async_code); 4411 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 4412 ("xpt_async: func %#x %s aync_code %d %s\n", 4413 ccb->ccb_h.func_code, 4414 xpt_action_name(ccb->ccb_h.func_code), 4415 async_code, 4416 xpt_async_string(async_code))); 4417 if (size > 0 && async_arg != NULL) { 4418 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4419 if (ccb->casync.async_arg_ptr == NULL) { 4420 xpt_print(path, "Can't allocate argument to send %s\n", 4421 xpt_async_string(async_code)); 4422 xpt_free_path(ccb->ccb_h.path); 4423 xpt_free_ccb(ccb); 4424 return; 4425 } 4426 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4427 ccb->casync.async_arg_size = size; 4428 } else if (size < 0) { 4429 ccb->casync.async_arg_ptr = async_arg; 4430 ccb->casync.async_arg_size = size; 4431 } 4432 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4433 xpt_freeze_devq(path, 1); 4434 else 4435 xpt_freeze_simq(path->bus->sim, 1); 4436 xpt_done(ccb); 4437 } 4438 4439 static void 4440 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4441 struct cam_et *target, struct cam_ed *device, 4442 void *async_arg) 4443 { 4444 4445 /* 4446 * We only need to handle events for real devices. 4447 */ 4448 if (target->target_id == CAM_TARGET_WILDCARD 4449 || device->lun_id == CAM_LUN_WILDCARD) 4450 return; 4451 4452 printf("%s called\n", __func__); 4453 } 4454 4455 static uint32_t 4456 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4457 { 4458 struct cam_devq *devq; 4459 uint32_t freeze; 4460 4461 devq = dev->sim->devq; 4462 mtx_assert(&devq->send_mtx, MA_OWNED); 4463 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4464 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4465 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4466 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4467 /* Remove frozen device from sendq. */ 4468 if (device_is_queued(dev)) 4469 camq_remove(&devq->send_queue, dev->devq_entry.index); 4470 return (freeze); 4471 } 4472 4473 u_int32_t 4474 xpt_freeze_devq(struct cam_path *path, u_int count) 4475 { 4476 struct cam_ed *dev = path->device; 4477 struct cam_devq *devq; 4478 uint32_t freeze; 4479 4480 devq = dev->sim->devq; 4481 mtx_lock(&devq->send_mtx); 4482 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4483 freeze = xpt_freeze_devq_device(dev, count); 4484 mtx_unlock(&devq->send_mtx); 4485 return (freeze); 4486 } 4487 4488 u_int32_t 4489 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4490 { 4491 struct cam_devq *devq; 4492 uint32_t freeze; 4493 4494 devq = sim->devq; 4495 mtx_lock(&devq->send_mtx); 4496 freeze = (devq->send_queue.qfrozen_cnt += count); 4497 mtx_unlock(&devq->send_mtx); 4498 return (freeze); 4499 } 4500 4501 static void 4502 xpt_release_devq_timeout(void *arg) 4503 { 4504 struct cam_ed *dev; 4505 struct cam_devq *devq; 4506 4507 dev = (struct cam_ed *)arg; 4508 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4509 devq = dev->sim->devq; 4510 mtx_assert(&devq->send_mtx, MA_OWNED); 4511 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4512 xpt_run_devq(devq); 4513 } 4514 4515 void 4516 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4517 { 4518 struct cam_ed *dev; 4519 struct cam_devq *devq; 4520 4521 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4522 count, run_queue)); 4523 dev = path->device; 4524 devq = dev->sim->devq; 4525 mtx_lock(&devq->send_mtx); 4526 if (xpt_release_devq_device(dev, count, run_queue)) 4527 xpt_run_devq(dev->sim->devq); 4528 mtx_unlock(&devq->send_mtx); 4529 } 4530 4531 static int 4532 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4533 { 4534 4535 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4536 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4537 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4538 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4539 if (count > dev->ccbq.queue.qfrozen_cnt) { 4540 #ifdef INVARIANTS 4541 printf("xpt_release_devq(): requested %u > present %u\n", 4542 count, dev->ccbq.queue.qfrozen_cnt); 4543 #endif 4544 count = dev->ccbq.queue.qfrozen_cnt; 4545 } 4546 dev->ccbq.queue.qfrozen_cnt -= count; 4547 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4548 /* 4549 * No longer need to wait for a successful 4550 * command completion. 4551 */ 4552 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4553 /* 4554 * Remove any timeouts that might be scheduled 4555 * to release this queue. 4556 */ 4557 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4558 callout_stop(&dev->callout); 4559 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4560 } 4561 /* 4562 * Now that we are unfrozen schedule the 4563 * device so any pending transactions are 4564 * run. 4565 */ 4566 xpt_schedule_devq(dev->sim->devq, dev); 4567 } else 4568 run_queue = 0; 4569 return (run_queue); 4570 } 4571 4572 void 4573 xpt_release_simq(struct cam_sim *sim, int run_queue) 4574 { 4575 struct cam_devq *devq; 4576 4577 devq = sim->devq; 4578 mtx_lock(&devq->send_mtx); 4579 if (devq->send_queue.qfrozen_cnt <= 0) { 4580 #ifdef INVARIANTS 4581 printf("xpt_release_simq: requested 1 > present %u\n", 4582 devq->send_queue.qfrozen_cnt); 4583 #endif 4584 } else 4585 devq->send_queue.qfrozen_cnt--; 4586 if (devq->send_queue.qfrozen_cnt == 0) { 4587 /* 4588 * If there is a timeout scheduled to release this 4589 * sim queue, remove it. The queue frozen count is 4590 * already at 0. 4591 */ 4592 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4593 callout_stop(&sim->callout); 4594 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4595 } 4596 if (run_queue) { 4597 /* 4598 * Now that we are unfrozen run the send queue. 4599 */ 4600 xpt_run_devq(sim->devq); 4601 } 4602 } 4603 mtx_unlock(&devq->send_mtx); 4604 } 4605 4606 /* 4607 * XXX Appears to be unused. 4608 */ 4609 static void 4610 xpt_release_simq_timeout(void *arg) 4611 { 4612 struct cam_sim *sim; 4613 4614 sim = (struct cam_sim *)arg; 4615 xpt_release_simq(sim, /* run_queue */ TRUE); 4616 } 4617 4618 void 4619 xpt_done(union ccb *done_ccb) 4620 { 4621 struct cam_doneq *queue; 4622 int run, hash; 4623 4624 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 4625 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO && 4626 done_ccb->csio.bio != NULL) 4627 biotrack(done_ccb->csio.bio, __func__); 4628 #endif 4629 4630 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4631 ("xpt_done: func= %#x %s status %#x\n", 4632 done_ccb->ccb_h.func_code, 4633 xpt_action_name(done_ccb->ccb_h.func_code), 4634 done_ccb->ccb_h.status)); 4635 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4636 return; 4637 4638 /* Store the time the ccb was in the sim */ 4639 done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data; 4640 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4641 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4642 queue = &cam_doneqs[hash]; 4643 mtx_lock(&queue->cam_doneq_mtx); 4644 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4645 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4646 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4647 mtx_unlock(&queue->cam_doneq_mtx); 4648 if (run) 4649 wakeup(&queue->cam_doneq); 4650 } 4651 4652 void 4653 xpt_done_direct(union ccb *done_ccb) 4654 { 4655 4656 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4657 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); 4658 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4659 return; 4660 4661 /* Store the time the ccb was in the sim */ 4662 done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data; 4663 xpt_done_process(&done_ccb->ccb_h); 4664 } 4665 4666 union ccb * 4667 xpt_alloc_ccb() 4668 { 4669 union ccb *new_ccb; 4670 4671 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4672 return (new_ccb); 4673 } 4674 4675 union ccb * 4676 xpt_alloc_ccb_nowait() 4677 { 4678 union ccb *new_ccb; 4679 4680 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4681 return (new_ccb); 4682 } 4683 4684 void 4685 xpt_free_ccb(union ccb *free_ccb) 4686 { 4687 free(free_ccb, M_CAMCCB); 4688 } 4689 4690 4691 4692 /* Private XPT functions */ 4693 4694 /* 4695 * Get a CAM control block for the caller. Charge the structure to the device 4696 * referenced by the path. If we don't have sufficient resources to allocate 4697 * more ccbs, we return NULL. 4698 */ 4699 static union ccb * 4700 xpt_get_ccb_nowait(struct cam_periph *periph) 4701 { 4702 union ccb *new_ccb; 4703 4704 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4705 if (new_ccb == NULL) 4706 return (NULL); 4707 periph->periph_allocated++; 4708 cam_ccbq_take_opening(&periph->path->device->ccbq); 4709 return (new_ccb); 4710 } 4711 4712 static union ccb * 4713 xpt_get_ccb(struct cam_periph *periph) 4714 { 4715 union ccb *new_ccb; 4716 4717 cam_periph_unlock(periph); 4718 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4719 cam_periph_lock(periph); 4720 periph->periph_allocated++; 4721 cam_ccbq_take_opening(&periph->path->device->ccbq); 4722 return (new_ccb); 4723 } 4724 4725 union ccb * 4726 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4727 { 4728 struct ccb_hdr *ccb_h; 4729 4730 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4731 cam_periph_assert(periph, MA_OWNED); 4732 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4733 ccb_h->pinfo.priority != priority) { 4734 if (priority < periph->immediate_priority) { 4735 periph->immediate_priority = priority; 4736 xpt_run_allocq(periph, 0); 4737 } else 4738 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4739 "cgticb", 0); 4740 } 4741 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4742 return ((union ccb *)ccb_h); 4743 } 4744 4745 static void 4746 xpt_acquire_bus(struct cam_eb *bus) 4747 { 4748 4749 xpt_lock_buses(); 4750 bus->refcount++; 4751 xpt_unlock_buses(); 4752 } 4753 4754 static void 4755 xpt_release_bus(struct cam_eb *bus) 4756 { 4757 4758 xpt_lock_buses(); 4759 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4760 if (--bus->refcount > 0) { 4761 xpt_unlock_buses(); 4762 return; 4763 } 4764 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4765 xsoftc.bus_generation++; 4766 xpt_unlock_buses(); 4767 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4768 ("destroying bus, but target list is not empty")); 4769 cam_sim_release(bus->sim); 4770 mtx_destroy(&bus->eb_mtx); 4771 free(bus, M_CAMXPT); 4772 } 4773 4774 static struct cam_et * 4775 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4776 { 4777 struct cam_et *cur_target, *target; 4778 4779 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4780 mtx_assert(&bus->eb_mtx, MA_OWNED); 4781 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4782 M_NOWAIT|M_ZERO); 4783 if (target == NULL) 4784 return (NULL); 4785 4786 TAILQ_INIT(&target->ed_entries); 4787 target->bus = bus; 4788 target->target_id = target_id; 4789 target->refcount = 1; 4790 target->generation = 0; 4791 target->luns = NULL; 4792 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4793 timevalclear(&target->last_reset); 4794 /* 4795 * Hold a reference to our parent bus so it 4796 * will not go away before we do. 4797 */ 4798 bus->refcount++; 4799 4800 /* Insertion sort into our bus's target list */ 4801 cur_target = TAILQ_FIRST(&bus->et_entries); 4802 while (cur_target != NULL && cur_target->target_id < target_id) 4803 cur_target = TAILQ_NEXT(cur_target, links); 4804 if (cur_target != NULL) { 4805 TAILQ_INSERT_BEFORE(cur_target, target, links); 4806 } else { 4807 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4808 } 4809 bus->generation++; 4810 return (target); 4811 } 4812 4813 static void 4814 xpt_acquire_target(struct cam_et *target) 4815 { 4816 struct cam_eb *bus = target->bus; 4817 4818 mtx_lock(&bus->eb_mtx); 4819 target->refcount++; 4820 mtx_unlock(&bus->eb_mtx); 4821 } 4822 4823 static void 4824 xpt_release_target(struct cam_et *target) 4825 { 4826 struct cam_eb *bus = target->bus; 4827 4828 mtx_lock(&bus->eb_mtx); 4829 if (--target->refcount > 0) { 4830 mtx_unlock(&bus->eb_mtx); 4831 return; 4832 } 4833 TAILQ_REMOVE(&bus->et_entries, target, links); 4834 bus->generation++; 4835 mtx_unlock(&bus->eb_mtx); 4836 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4837 ("destroying target, but device list is not empty")); 4838 xpt_release_bus(bus); 4839 mtx_destroy(&target->luns_mtx); 4840 if (target->luns) 4841 free(target->luns, M_CAMXPT); 4842 free(target, M_CAMXPT); 4843 } 4844 4845 static struct cam_ed * 4846 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4847 lun_id_t lun_id) 4848 { 4849 struct cam_ed *device; 4850 4851 device = xpt_alloc_device(bus, target, lun_id); 4852 if (device == NULL) 4853 return (NULL); 4854 4855 device->mintags = 1; 4856 device->maxtags = 1; 4857 return (device); 4858 } 4859 4860 static void 4861 xpt_destroy_device(void *context, int pending) 4862 { 4863 struct cam_ed *device = context; 4864 4865 mtx_lock(&device->device_mtx); 4866 mtx_destroy(&device->device_mtx); 4867 free(device, M_CAMDEV); 4868 } 4869 4870 struct cam_ed * 4871 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4872 { 4873 struct cam_ed *cur_device, *device; 4874 struct cam_devq *devq; 4875 cam_status status; 4876 4877 mtx_assert(&bus->eb_mtx, MA_OWNED); 4878 /* Make space for us in the device queue on our bus */ 4879 devq = bus->sim->devq; 4880 mtx_lock(&devq->send_mtx); 4881 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4882 mtx_unlock(&devq->send_mtx); 4883 if (status != CAM_REQ_CMP) 4884 return (NULL); 4885 4886 device = (struct cam_ed *)malloc(sizeof(*device), 4887 M_CAMDEV, M_NOWAIT|M_ZERO); 4888 if (device == NULL) 4889 return (NULL); 4890 4891 cam_init_pinfo(&device->devq_entry); 4892 device->target = target; 4893 device->lun_id = lun_id; 4894 device->sim = bus->sim; 4895 if (cam_ccbq_init(&device->ccbq, 4896 bus->sim->max_dev_openings) != 0) { 4897 free(device, M_CAMDEV); 4898 return (NULL); 4899 } 4900 SLIST_INIT(&device->asyncs); 4901 SLIST_INIT(&device->periphs); 4902 device->generation = 0; 4903 device->flags = CAM_DEV_UNCONFIGURED; 4904 device->tag_delay_count = 0; 4905 device->tag_saved_openings = 0; 4906 device->refcount = 1; 4907 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4908 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4909 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4910 /* 4911 * Hold a reference to our parent bus so it 4912 * will not go away before we do. 4913 */ 4914 target->refcount++; 4915 4916 cur_device = TAILQ_FIRST(&target->ed_entries); 4917 while (cur_device != NULL && cur_device->lun_id < lun_id) 4918 cur_device = TAILQ_NEXT(cur_device, links); 4919 if (cur_device != NULL) 4920 TAILQ_INSERT_BEFORE(cur_device, device, links); 4921 else 4922 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4923 target->generation++; 4924 return (device); 4925 } 4926 4927 void 4928 xpt_acquire_device(struct cam_ed *device) 4929 { 4930 struct cam_eb *bus = device->target->bus; 4931 4932 mtx_lock(&bus->eb_mtx); 4933 device->refcount++; 4934 mtx_unlock(&bus->eb_mtx); 4935 } 4936 4937 void 4938 xpt_release_device(struct cam_ed *device) 4939 { 4940 struct cam_eb *bus = device->target->bus; 4941 struct cam_devq *devq; 4942 4943 mtx_lock(&bus->eb_mtx); 4944 if (--device->refcount > 0) { 4945 mtx_unlock(&bus->eb_mtx); 4946 return; 4947 } 4948 4949 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4950 device->target->generation++; 4951 mtx_unlock(&bus->eb_mtx); 4952 4953 /* Release our slot in the devq */ 4954 devq = bus->sim->devq; 4955 mtx_lock(&devq->send_mtx); 4956 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4957 mtx_unlock(&devq->send_mtx); 4958 4959 KASSERT(SLIST_EMPTY(&device->periphs), 4960 ("destroying device, but periphs list is not empty")); 4961 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4962 ("destroying device while still queued for ccbs")); 4963 4964 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4965 callout_stop(&device->callout); 4966 4967 xpt_release_target(device->target); 4968 4969 cam_ccbq_fini(&device->ccbq); 4970 /* 4971 * Free allocated memory. free(9) does nothing if the 4972 * supplied pointer is NULL, so it is safe to call without 4973 * checking. 4974 */ 4975 free(device->supported_vpds, M_CAMXPT); 4976 free(device->device_id, M_CAMXPT); 4977 free(device->ext_inq, M_CAMXPT); 4978 free(device->physpath, M_CAMXPT); 4979 free(device->rcap_buf, M_CAMXPT); 4980 free(device->serial_num, M_CAMXPT); 4981 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4982 } 4983 4984 u_int32_t 4985 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4986 { 4987 int result; 4988 struct cam_ed *dev; 4989 4990 dev = path->device; 4991 mtx_lock(&dev->sim->devq->send_mtx); 4992 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4993 mtx_unlock(&dev->sim->devq->send_mtx); 4994 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4995 || (dev->inq_flags & SID_CmdQue) != 0) 4996 dev->tag_saved_openings = newopenings; 4997 return (result); 4998 } 4999 5000 static struct cam_eb * 5001 xpt_find_bus(path_id_t path_id) 5002 { 5003 struct cam_eb *bus; 5004 5005 xpt_lock_buses(); 5006 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 5007 bus != NULL; 5008 bus = TAILQ_NEXT(bus, links)) { 5009 if (bus->path_id == path_id) { 5010 bus->refcount++; 5011 break; 5012 } 5013 } 5014 xpt_unlock_buses(); 5015 return (bus); 5016 } 5017 5018 static struct cam_et * 5019 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5020 { 5021 struct cam_et *target; 5022 5023 mtx_assert(&bus->eb_mtx, MA_OWNED); 5024 for (target = TAILQ_FIRST(&bus->et_entries); 5025 target != NULL; 5026 target = TAILQ_NEXT(target, links)) { 5027 if (target->target_id == target_id) { 5028 target->refcount++; 5029 break; 5030 } 5031 } 5032 return (target); 5033 } 5034 5035 static struct cam_ed * 5036 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5037 { 5038 struct cam_ed *device; 5039 5040 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 5041 for (device = TAILQ_FIRST(&target->ed_entries); 5042 device != NULL; 5043 device = TAILQ_NEXT(device, links)) { 5044 if (device->lun_id == lun_id) { 5045 device->refcount++; 5046 break; 5047 } 5048 } 5049 return (device); 5050 } 5051 5052 void 5053 xpt_start_tags(struct cam_path *path) 5054 { 5055 struct ccb_relsim crs; 5056 struct cam_ed *device; 5057 struct cam_sim *sim; 5058 int newopenings; 5059 5060 device = path->device; 5061 sim = path->bus->sim; 5062 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5063 xpt_freeze_devq(path, /*count*/1); 5064 device->inq_flags |= SID_CmdQue; 5065 if (device->tag_saved_openings != 0) 5066 newopenings = device->tag_saved_openings; 5067 else 5068 newopenings = min(device->maxtags, 5069 sim->max_tagged_dev_openings); 5070 xpt_dev_ccbq_resize(path, newopenings); 5071 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5072 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5073 crs.ccb_h.func_code = XPT_REL_SIMQ; 5074 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5075 crs.openings 5076 = crs.release_timeout 5077 = crs.qfrozen_cnt 5078 = 0; 5079 xpt_action((union ccb *)&crs); 5080 } 5081 5082 void 5083 xpt_stop_tags(struct cam_path *path) 5084 { 5085 struct ccb_relsim crs; 5086 struct cam_ed *device; 5087 struct cam_sim *sim; 5088 5089 device = path->device; 5090 sim = path->bus->sim; 5091 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5092 device->tag_delay_count = 0; 5093 xpt_freeze_devq(path, /*count*/1); 5094 device->inq_flags &= ~SID_CmdQue; 5095 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 5096 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5097 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5098 crs.ccb_h.func_code = XPT_REL_SIMQ; 5099 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5100 crs.openings 5101 = crs.release_timeout 5102 = crs.qfrozen_cnt 5103 = 0; 5104 xpt_action((union ccb *)&crs); 5105 } 5106 5107 static void 5108 xpt_boot_delay(void *arg) 5109 { 5110 5111 xpt_release_boot(); 5112 } 5113 5114 static void 5115 xpt_config(void *arg) 5116 { 5117 /* 5118 * Now that interrupts are enabled, go find our devices 5119 */ 5120 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 5121 printf("xpt_config: failed to create taskqueue thread.\n"); 5122 5123 /* Setup debugging path */ 5124 if (cam_dflags != CAM_DEBUG_NONE) { 5125 if (xpt_create_path(&cam_dpath, NULL, 5126 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 5127 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 5128 printf("xpt_config: xpt_create_path() failed for debug" 5129 " target %d:%d:%d, debugging disabled\n", 5130 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 5131 cam_dflags = CAM_DEBUG_NONE; 5132 } 5133 } else 5134 cam_dpath = NULL; 5135 5136 periphdriver_init(1); 5137 xpt_hold_boot(); 5138 callout_init(&xsoftc.boot_callout, 1); 5139 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 5140 xpt_boot_delay, NULL, 0); 5141 /* Fire up rescan thread. */ 5142 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 5143 "cam", "scanner")) { 5144 printf("xpt_config: failed to create rescan thread.\n"); 5145 } 5146 } 5147 5148 void 5149 xpt_hold_boot(void) 5150 { 5151 xpt_lock_buses(); 5152 xsoftc.buses_to_config++; 5153 xpt_unlock_buses(); 5154 } 5155 5156 void 5157 xpt_release_boot(void) 5158 { 5159 xpt_lock_buses(); 5160 xsoftc.buses_to_config--; 5161 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 5162 struct xpt_task *task; 5163 5164 xsoftc.buses_config_done = 1; 5165 xpt_unlock_buses(); 5166 /* Call manually because we don't have any buses */ 5167 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 5168 if (task != NULL) { 5169 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 5170 taskqueue_enqueue(taskqueue_thread, &task->task); 5171 } 5172 } else 5173 xpt_unlock_buses(); 5174 } 5175 5176 /* 5177 * If the given device only has one peripheral attached to it, and if that 5178 * peripheral is the passthrough driver, announce it. This insures that the 5179 * user sees some sort of announcement for every peripheral in their system. 5180 */ 5181 static int 5182 xptpassannouncefunc(struct cam_ed *device, void *arg) 5183 { 5184 struct cam_periph *periph; 5185 int i; 5186 5187 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 5188 periph = SLIST_NEXT(periph, periph_links), i++); 5189 5190 periph = SLIST_FIRST(&device->periphs); 5191 if ((i == 1) 5192 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5193 xpt_announce_periph(periph, NULL); 5194 5195 return(1); 5196 } 5197 5198 static void 5199 xpt_finishconfig_task(void *context, int pending) 5200 { 5201 5202 periphdriver_init(2); 5203 /* 5204 * Check for devices with no "standard" peripheral driver 5205 * attached. For any devices like that, announce the 5206 * passthrough driver so the user will see something. 5207 */ 5208 if (!bootverbose) 5209 xpt_for_all_devices(xptpassannouncefunc, NULL); 5210 5211 /* Release our hook so that the boot can continue. */ 5212 config_intrhook_disestablish(xsoftc.xpt_config_hook); 5213 free(xsoftc.xpt_config_hook, M_CAMXPT); 5214 xsoftc.xpt_config_hook = NULL; 5215 5216 free(context, M_CAMXPT); 5217 } 5218 5219 cam_status 5220 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5221 struct cam_path *path) 5222 { 5223 struct ccb_setasync csa; 5224 cam_status status; 5225 int xptpath = 0; 5226 5227 if (path == NULL) { 5228 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5229 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5230 if (status != CAM_REQ_CMP) 5231 return (status); 5232 xpt_path_lock(path); 5233 xptpath = 1; 5234 } 5235 5236 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5237 csa.ccb_h.func_code = XPT_SASYNC_CB; 5238 csa.event_enable = event; 5239 csa.callback = cbfunc; 5240 csa.callback_arg = cbarg; 5241 xpt_action((union ccb *)&csa); 5242 status = csa.ccb_h.status; 5243 5244 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, 5245 ("xpt_register_async: func %p\n", cbfunc)); 5246 5247 if (xptpath) { 5248 xpt_path_unlock(path); 5249 xpt_free_path(path); 5250 } 5251 5252 if ((status == CAM_REQ_CMP) && 5253 (csa.event_enable & AC_FOUND_DEVICE)) { 5254 /* 5255 * Get this peripheral up to date with all 5256 * the currently existing devices. 5257 */ 5258 xpt_for_all_devices(xptsetasyncfunc, &csa); 5259 } 5260 if ((status == CAM_REQ_CMP) && 5261 (csa.event_enable & AC_PATH_REGISTERED)) { 5262 /* 5263 * Get this peripheral up to date with all 5264 * the currently existing buses. 5265 */ 5266 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5267 } 5268 5269 return (status); 5270 } 5271 5272 static void 5273 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5274 { 5275 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5276 5277 switch (work_ccb->ccb_h.func_code) { 5278 /* Common cases first */ 5279 case XPT_PATH_INQ: /* Path routing inquiry */ 5280 { 5281 struct ccb_pathinq *cpi; 5282 5283 cpi = &work_ccb->cpi; 5284 cpi->version_num = 1; /* XXX??? */ 5285 cpi->hba_inquiry = 0; 5286 cpi->target_sprt = 0; 5287 cpi->hba_misc = 0; 5288 cpi->hba_eng_cnt = 0; 5289 cpi->max_target = 0; 5290 cpi->max_lun = 0; 5291 cpi->initiator_id = 0; 5292 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5293 strlcpy(cpi->hba_vid, "", HBA_IDLEN); 5294 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5295 cpi->unit_number = sim->unit_number; 5296 cpi->bus_id = sim->bus_id; 5297 cpi->base_transfer_speed = 0; 5298 cpi->protocol = PROTO_UNSPECIFIED; 5299 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5300 cpi->transport = XPORT_UNSPECIFIED; 5301 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5302 cpi->ccb_h.status = CAM_REQ_CMP; 5303 xpt_done(work_ccb); 5304 break; 5305 } 5306 default: 5307 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5308 xpt_done(work_ccb); 5309 break; 5310 } 5311 } 5312 5313 /* 5314 * The xpt as a "controller" has no interrupt sources, so polling 5315 * is a no-op. 5316 */ 5317 static void 5318 xptpoll(struct cam_sim *sim) 5319 { 5320 } 5321 5322 void 5323 xpt_lock_buses(void) 5324 { 5325 mtx_lock(&xsoftc.xpt_topo_lock); 5326 } 5327 5328 void 5329 xpt_unlock_buses(void) 5330 { 5331 mtx_unlock(&xsoftc.xpt_topo_lock); 5332 } 5333 5334 struct mtx * 5335 xpt_path_mtx(struct cam_path *path) 5336 { 5337 5338 return (&path->device->device_mtx); 5339 } 5340 5341 static void 5342 xpt_done_process(struct ccb_hdr *ccb_h) 5343 { 5344 struct cam_sim *sim; 5345 struct cam_devq *devq; 5346 struct mtx *mtx = NULL; 5347 5348 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 5349 struct ccb_scsiio *csio; 5350 5351 if (ccb_h->func_code == XPT_SCSI_IO) { 5352 csio = &((union ccb *)ccb_h)->csio; 5353 if (csio->bio != NULL) 5354 biotrack(csio->bio, __func__); 5355 } 5356 #endif 5357 5358 if (ccb_h->flags & CAM_HIGH_POWER) { 5359 struct highpowerlist *hphead; 5360 struct cam_ed *device; 5361 5362 mtx_lock(&xsoftc.xpt_highpower_lock); 5363 hphead = &xsoftc.highpowerq; 5364 5365 device = STAILQ_FIRST(hphead); 5366 5367 /* 5368 * Increment the count since this command is done. 5369 */ 5370 xsoftc.num_highpower++; 5371 5372 /* 5373 * Any high powered commands queued up? 5374 */ 5375 if (device != NULL) { 5376 5377 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5378 mtx_unlock(&xsoftc.xpt_highpower_lock); 5379 5380 mtx_lock(&device->sim->devq->send_mtx); 5381 xpt_release_devq_device(device, 5382 /*count*/1, /*runqueue*/TRUE); 5383 mtx_unlock(&device->sim->devq->send_mtx); 5384 } else 5385 mtx_unlock(&xsoftc.xpt_highpower_lock); 5386 } 5387 5388 sim = ccb_h->path->bus->sim; 5389 5390 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5391 xpt_release_simq(sim, /*run_queue*/FALSE); 5392 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5393 } 5394 5395 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5396 && (ccb_h->status & CAM_DEV_QFRZN)) { 5397 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5398 ccb_h->status &= ~CAM_DEV_QFRZN; 5399 } 5400 5401 devq = sim->devq; 5402 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5403 struct cam_ed *dev = ccb_h->path->device; 5404 5405 mtx_lock(&devq->send_mtx); 5406 devq->send_active--; 5407 devq->send_openings++; 5408 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5409 5410 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5411 && (dev->ccbq.dev_active == 0))) { 5412 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5413 xpt_release_devq_device(dev, /*count*/1, 5414 /*run_queue*/FALSE); 5415 } 5416 5417 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5418 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5419 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5420 xpt_release_devq_device(dev, /*count*/1, 5421 /*run_queue*/FALSE); 5422 } 5423 5424 if (!device_is_queued(dev)) 5425 (void)xpt_schedule_devq(devq, dev); 5426 xpt_run_devq(devq); 5427 mtx_unlock(&devq->send_mtx); 5428 5429 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5430 mtx = xpt_path_mtx(ccb_h->path); 5431 mtx_lock(mtx); 5432 5433 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5434 && (--dev->tag_delay_count == 0)) 5435 xpt_start_tags(ccb_h->path); 5436 } 5437 } 5438 5439 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5440 if (mtx == NULL) { 5441 mtx = xpt_path_mtx(ccb_h->path); 5442 mtx_lock(mtx); 5443 } 5444 } else { 5445 if (mtx != NULL) { 5446 mtx_unlock(mtx); 5447 mtx = NULL; 5448 } 5449 } 5450 5451 /* Call the peripheral driver's callback */ 5452 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5453 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5454 if (mtx != NULL) 5455 mtx_unlock(mtx); 5456 } 5457 5458 void 5459 xpt_done_td(void *arg) 5460 { 5461 struct cam_doneq *queue = arg; 5462 struct ccb_hdr *ccb_h; 5463 STAILQ_HEAD(, ccb_hdr) doneq; 5464 5465 STAILQ_INIT(&doneq); 5466 mtx_lock(&queue->cam_doneq_mtx); 5467 while (1) { 5468 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5469 queue->cam_doneq_sleep = 1; 5470 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5471 PRIBIO, "-", 0); 5472 queue->cam_doneq_sleep = 0; 5473 } 5474 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5475 mtx_unlock(&queue->cam_doneq_mtx); 5476 5477 THREAD_NO_SLEEPING(); 5478 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5479 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5480 xpt_done_process(ccb_h); 5481 } 5482 THREAD_SLEEPING_OK(); 5483 5484 mtx_lock(&queue->cam_doneq_mtx); 5485 } 5486 } 5487 5488 static void 5489 camisr_runqueue(void) 5490 { 5491 struct ccb_hdr *ccb_h; 5492 struct cam_doneq *queue; 5493 int i; 5494 5495 /* Process global queues. */ 5496 for (i = 0; i < cam_num_doneqs; i++) { 5497 queue = &cam_doneqs[i]; 5498 mtx_lock(&queue->cam_doneq_mtx); 5499 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5500 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5501 mtx_unlock(&queue->cam_doneq_mtx); 5502 xpt_done_process(ccb_h); 5503 mtx_lock(&queue->cam_doneq_mtx); 5504 } 5505 mtx_unlock(&queue->cam_doneq_mtx); 5506 } 5507 } 5508 5509 struct kv 5510 { 5511 uint32_t v; 5512 const char *name; 5513 }; 5514 5515 static struct kv map[] = { 5516 { XPT_NOOP, "XPT_NOOP" }, 5517 { XPT_SCSI_IO, "XPT_SCSI_IO" }, 5518 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, 5519 { XPT_GDEVLIST, "XPT_GDEVLIST" }, 5520 { XPT_PATH_INQ, "XPT_PATH_INQ" }, 5521 { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, 5522 { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, 5523 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, 5524 { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, 5525 { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, 5526 { XPT_DEBUG, "XPT_DEBUG" }, 5527 { XPT_PATH_STATS, "XPT_PATH_STATS" }, 5528 { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, 5529 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, 5530 { XPT_ASYNC, "XPT_ASYNC" }, 5531 { XPT_ABORT, "XPT_ABORT" }, 5532 { XPT_RESET_BUS, "XPT_RESET_BUS" }, 5533 { XPT_RESET_DEV, "XPT_RESET_DEV" }, 5534 { XPT_TERM_IO, "XPT_TERM_IO" }, 5535 { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, 5536 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, 5537 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, 5538 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, 5539 { XPT_ATA_IO, "XPT_ATA_IO" }, 5540 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, 5541 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, 5542 { XPT_NVME_IO, "XPT_NVME_IO" }, 5543 { XPT_MMCSD_IO, "XPT_MMCSD_IO" }, 5544 { XPT_SMP_IO, "XPT_SMP_IO" }, 5545 { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, 5546 { XPT_ENG_INQ, "XPT_ENG_INQ" }, 5547 { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, 5548 { XPT_EN_LUN, "XPT_EN_LUN" }, 5549 { XPT_TARGET_IO, "XPT_TARGET_IO" }, 5550 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, 5551 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, 5552 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, 5553 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, 5554 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, 5555 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, 5556 { 0, 0 } 5557 }; 5558 5559 static const char * 5560 xpt_action_name(uint32_t action) 5561 { 5562 static char buffer[32]; /* Only for unknown messages -- racy */ 5563 struct kv *walker = map; 5564 5565 while (walker->name != NULL) { 5566 if (walker->v == action) 5567 return (walker->name); 5568 walker++; 5569 } 5570 5571 snprintf(buffer, sizeof(buffer), "%#x", action); 5572 return (buffer); 5573 } 5574