1 /*- 2 * CAM IO Scheduler Interface 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 2015 Netflix, Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 #include "opt_cam.h" 33 #include "opt_ddb.h" 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/bio.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mutex.h> 46 #include <sys/sbuf.h> 47 #include <sys/sysctl.h> 48 49 #include <cam/cam.h> 50 #include <cam/cam_ccb.h> 51 #include <cam/cam_periph.h> 52 #include <cam/cam_xpt_periph.h> 53 #include <cam/cam_xpt_internal.h> 54 #include <cam/cam_iosched.h> 55 56 #include <ddb/ddb.h> 57 58 static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler", 59 "CAM I/O Scheduler buffers"); 60 61 /* 62 * Default I/O scheduler for FreeBSD. This implementation is just a thin-vineer 63 * over the bioq_* interface, with notions of separate calls for normal I/O and 64 * for trims. 65 * 66 * When CAM_IOSCHED_DYNAMIC is defined, the scheduler is enhanced to dynamically 67 * steer the rate of one type of traffic to help other types of traffic (eg 68 * limit writes when read latency deteriorates on SSDs). 69 */ 70 71 #ifdef CAM_IOSCHED_DYNAMIC 72 73 static bool do_dynamic_iosched = 1; 74 SYSCTL_BOOL(_kern_cam, OID_AUTO, do_dynamic_iosched, CTLFLAG_RD | CTLFLAG_TUN, 75 &do_dynamic_iosched, 1, 76 "Enable Dynamic I/O scheduler optimizations."); 77 78 /* 79 * For an EMA, with an alpha of alpha, we know 80 * alpha = 2 / (N + 1) 81 * or 82 * N = 1 + (2 / alpha) 83 * where N is the number of samples that 86% of the current 84 * EMA is derived from. 85 * 86 * So we invent[*] alpha_bits: 87 * alpha_bits = -log_2(alpha) 88 * alpha = 2^-alpha_bits 89 * So 90 * N = 1 + 2^(alpha_bits + 1) 91 * 92 * The default 9 gives a 1025 lookback for 86% of the data. 93 * For a brief intro: https://en.wikipedia.org/wiki/Moving_average 94 * 95 * [*] Steal from the load average code and many other places. 96 * Note: See computation of EMA and EMVAR for acceptable ranges of alpha. 97 */ 98 static int alpha_bits = 9; 99 SYSCTL_INT(_kern_cam, OID_AUTO, iosched_alpha_bits, CTLFLAG_RW | CTLFLAG_TUN, 100 &alpha_bits, 1, 101 "Bits in EMA's alpha."); 102 103 struct iop_stats; 104 struct cam_iosched_softc; 105 106 int iosched_debug = 0; 107 108 typedef enum { 109 none = 0, /* No limits */ 110 queue_depth, /* Limit how many ops we queue to SIM */ 111 iops, /* Limit # of IOPS to the drive */ 112 bandwidth, /* Limit bandwidth to the drive */ 113 limiter_max 114 } io_limiter; 115 116 static const char *cam_iosched_limiter_names[] = 117 { "none", "queue_depth", "iops", "bandwidth" }; 118 119 /* 120 * Called to initialize the bits of the iop_stats structure relevant to the 121 * limiter. Called just after the limiter is set. 122 */ 123 typedef int l_init_t(struct iop_stats *); 124 125 /* 126 * Called every tick. 127 */ 128 typedef int l_tick_t(struct iop_stats *); 129 130 /* 131 * Called to see if the limiter thinks this IOP can be allowed to 132 * proceed. If so, the limiter assumes that the IOP proceeded 133 * and makes any accounting of it that's needed. 134 */ 135 typedef int l_iop_t(struct iop_stats *, struct bio *); 136 137 /* 138 * Called when an I/O completes so the limiter can update its 139 * accounting. Pending I/Os may complete in any order (even when 140 * sent to the hardware at the same time), so the limiter may not 141 * make any assumptions other than this I/O has completed. If it 142 * returns 1, then xpt_schedule() needs to be called again. 143 */ 144 typedef int l_iodone_t(struct iop_stats *, struct bio *); 145 146 static l_iop_t cam_iosched_qd_iop; 147 static l_iop_t cam_iosched_qd_caniop; 148 static l_iodone_t cam_iosched_qd_iodone; 149 150 static l_init_t cam_iosched_iops_init; 151 static l_tick_t cam_iosched_iops_tick; 152 static l_iop_t cam_iosched_iops_caniop; 153 static l_iop_t cam_iosched_iops_iop; 154 155 static l_init_t cam_iosched_bw_init; 156 static l_tick_t cam_iosched_bw_tick; 157 static l_iop_t cam_iosched_bw_caniop; 158 static l_iop_t cam_iosched_bw_iop; 159 160 struct limswitch { 161 l_init_t *l_init; 162 l_tick_t *l_tick; 163 l_iop_t *l_iop; 164 l_iop_t *l_caniop; 165 l_iodone_t *l_iodone; 166 } limsw[] = 167 { 168 { /* none */ 169 .l_init = NULL, 170 .l_tick = NULL, 171 .l_iop = NULL, 172 .l_iodone= NULL, 173 }, 174 { /* queue_depth */ 175 .l_init = NULL, 176 .l_tick = NULL, 177 .l_caniop = cam_iosched_qd_caniop, 178 .l_iop = cam_iosched_qd_iop, 179 .l_iodone= cam_iosched_qd_iodone, 180 }, 181 { /* iops */ 182 .l_init = cam_iosched_iops_init, 183 .l_tick = cam_iosched_iops_tick, 184 .l_caniop = cam_iosched_iops_caniop, 185 .l_iop = cam_iosched_iops_iop, 186 .l_iodone= NULL, 187 }, 188 { /* bandwidth */ 189 .l_init = cam_iosched_bw_init, 190 .l_tick = cam_iosched_bw_tick, 191 .l_caniop = cam_iosched_bw_caniop, 192 .l_iop = cam_iosched_bw_iop, 193 .l_iodone= NULL, 194 }, 195 }; 196 197 struct iop_stats { 198 /* 199 * sysctl state for this subnode. 200 */ 201 struct sysctl_ctx_list sysctl_ctx; 202 struct sysctl_oid *sysctl_tree; 203 204 /* 205 * Information about the current rate limiters, if any 206 */ 207 io_limiter limiter; /* How are I/Os being limited */ 208 int min; /* Low range of limit */ 209 int max; /* High range of limit */ 210 int current; /* Current rate limiter */ 211 int l_value1; /* per-limiter scratch value 1. */ 212 int l_value2; /* per-limiter scratch value 2. */ 213 214 /* 215 * Debug information about counts of I/Os that have gone through the 216 * scheduler. 217 */ 218 int pending; /* I/Os pending in the hardware */ 219 int queued; /* number currently in the queue */ 220 int total; /* Total for all time -- wraps */ 221 int in; /* number queued all time -- wraps */ 222 int out; /* number completed all time -- wraps */ 223 int errs; /* Number of I/Os completed with error -- wraps */ 224 225 /* 226 * Statistics on different bits of the process. 227 */ 228 /* Exp Moving Average, see alpha_bits for more details */ 229 sbintime_t ema; 230 sbintime_t emvar; 231 sbintime_t sd; /* Last computed sd */ 232 233 uint32_t state_flags; 234 #define IOP_RATE_LIMITED 1u 235 236 #define LAT_BUCKETS 15 /* < 1ms < 2ms ... < 2^(n-1)ms >= 2^(n-1)ms*/ 237 uint64_t latencies[LAT_BUCKETS]; 238 239 struct cam_iosched_softc *softc; 240 }; 241 242 typedef enum { 243 set_max = 0, /* current = max */ 244 read_latency, /* Steer read latency by throttling writes */ 245 cl_max /* Keep last */ 246 } control_type; 247 248 static const char *cam_iosched_control_type_names[] = 249 { "set_max", "read_latency" }; 250 251 struct control_loop { 252 /* 253 * sysctl state for this subnode. 254 */ 255 struct sysctl_ctx_list sysctl_ctx; 256 struct sysctl_oid *sysctl_tree; 257 258 sbintime_t next_steer; /* Time of next steer */ 259 sbintime_t steer_interval; /* How often do we steer? */ 260 sbintime_t lolat; 261 sbintime_t hilat; 262 int alpha; 263 control_type type; /* What type of control? */ 264 int last_count; /* Last I/O count */ 265 266 struct cam_iosched_softc *softc; 267 }; 268 269 #endif 270 271 struct cam_iosched_softc { 272 struct bio_queue_head bio_queue; 273 struct bio_queue_head trim_queue; 274 /* scheduler flags < 16, user flags >= 16 */ 275 uint32_t flags; 276 int sort_io_queue; 277 int trim_goal; /* # of trims to queue before sending */ 278 int trim_ticks; /* Max ticks to hold trims */ 279 int last_trim_tick; /* Last 'tick' time ld a trim */ 280 int queued_trims; /* Number of trims in the queue */ 281 #ifdef CAM_IOSCHED_DYNAMIC 282 int read_bias; /* Read bias setting */ 283 int current_read_bias; /* Current read bias state */ 284 int total_ticks; 285 int load; /* EMA of 'load average' of disk / 2^16 */ 286 287 struct bio_queue_head write_queue; 288 struct iop_stats read_stats, write_stats, trim_stats; 289 struct sysctl_ctx_list sysctl_ctx; 290 struct sysctl_oid *sysctl_tree; 291 292 int quanta; /* Number of quanta per second */ 293 struct callout ticker; /* Callout for our quota system */ 294 struct cam_periph *periph; /* cam periph associated with this device */ 295 uint32_t this_frac; /* Fraction of a second (1024ths) for this tick */ 296 sbintime_t last_time; /* Last time we ticked */ 297 struct control_loop cl; 298 sbintime_t max_lat; /* when != 0, if iop latency > max_lat, call max_lat_fcn */ 299 cam_iosched_latfcn_t latfcn; 300 void *latarg; 301 #endif 302 }; 303 304 #ifdef CAM_IOSCHED_DYNAMIC 305 /* 306 * helper functions to call the limsw functions. 307 */ 308 static int 309 cam_iosched_limiter_init(struct iop_stats *ios) 310 { 311 int lim = ios->limiter; 312 313 /* maybe this should be a kassert */ 314 if (lim < none || lim >= limiter_max) 315 return EINVAL; 316 317 if (limsw[lim].l_init) 318 return limsw[lim].l_init(ios); 319 320 return 0; 321 } 322 323 static int 324 cam_iosched_limiter_tick(struct iop_stats *ios) 325 { 326 int lim = ios->limiter; 327 328 /* maybe this should be a kassert */ 329 if (lim < none || lim >= limiter_max) 330 return EINVAL; 331 332 if (limsw[lim].l_tick) 333 return limsw[lim].l_tick(ios); 334 335 return 0; 336 } 337 338 static int 339 cam_iosched_limiter_iop(struct iop_stats *ios, struct bio *bp) 340 { 341 int lim = ios->limiter; 342 343 /* maybe this should be a kassert */ 344 if (lim < none || lim >= limiter_max) 345 return EINVAL; 346 347 if (limsw[lim].l_iop) 348 return limsw[lim].l_iop(ios, bp); 349 350 return 0; 351 } 352 353 static int 354 cam_iosched_limiter_caniop(struct iop_stats *ios, struct bio *bp) 355 { 356 int lim = ios->limiter; 357 358 /* maybe this should be a kassert */ 359 if (lim < none || lim >= limiter_max) 360 return EINVAL; 361 362 if (limsw[lim].l_caniop) 363 return limsw[lim].l_caniop(ios, bp); 364 365 return 0; 366 } 367 368 static int 369 cam_iosched_limiter_iodone(struct iop_stats *ios, struct bio *bp) 370 { 371 int lim = ios->limiter; 372 373 /* maybe this should be a kassert */ 374 if (lim < none || lim >= limiter_max) 375 return 0; 376 377 if (limsw[lim].l_iodone) 378 return limsw[lim].l_iodone(ios, bp); 379 380 return 0; 381 } 382 383 /* 384 * Functions to implement the different kinds of limiters 385 */ 386 387 static int 388 cam_iosched_qd_iop(struct iop_stats *ios, struct bio *bp) 389 { 390 391 if (ios->current <= 0 || ios->pending < ios->current) 392 return 0; 393 394 return EAGAIN; 395 } 396 397 static int 398 cam_iosched_qd_caniop(struct iop_stats *ios, struct bio *bp) 399 { 400 401 if (ios->current <= 0 || ios->pending < ios->current) 402 return 0; 403 404 return EAGAIN; 405 } 406 407 static int 408 cam_iosched_qd_iodone(struct iop_stats *ios, struct bio *bp) 409 { 410 411 if (ios->current <= 0 || ios->pending != ios->current) 412 return 0; 413 414 return 1; 415 } 416 417 static int 418 cam_iosched_iops_init(struct iop_stats *ios) 419 { 420 421 ios->l_value1 = ios->current / ios->softc->quanta; 422 if (ios->l_value1 <= 0) 423 ios->l_value1 = 1; 424 ios->l_value2 = 0; 425 426 return 0; 427 } 428 429 static int 430 cam_iosched_iops_tick(struct iop_stats *ios) 431 { 432 int new_ios; 433 434 /* 435 * Allow at least one IO per tick until all 436 * the IOs for this interval have been spent. 437 */ 438 new_ios = (int)((ios->current * (uint64_t)ios->softc->this_frac) >> 16); 439 if (new_ios < 1 && ios->l_value2 < ios->current) { 440 new_ios = 1; 441 ios->l_value2++; 442 } 443 444 /* 445 * If this a new accounting interval, discard any "unspent" ios 446 * granted in the previous interval. Otherwise add the new ios to 447 * the previously granted ones that haven't been spent yet. 448 */ 449 if ((ios->softc->total_ticks % ios->softc->quanta) == 0) { 450 ios->l_value1 = new_ios; 451 ios->l_value2 = 1; 452 } else { 453 ios->l_value1 += new_ios; 454 } 455 456 return 0; 457 } 458 459 static int 460 cam_iosched_iops_caniop(struct iop_stats *ios, struct bio *bp) 461 { 462 463 /* 464 * So if we have any more IOPs left, allow it, 465 * otherwise wait. If current iops is 0, treat that 466 * as unlimited as a failsafe. 467 */ 468 if (ios->current > 0 && ios->l_value1 <= 0) 469 return EAGAIN; 470 return 0; 471 } 472 473 static int 474 cam_iosched_iops_iop(struct iop_stats *ios, struct bio *bp) 475 { 476 int rv; 477 478 rv = cam_iosched_limiter_caniop(ios, bp); 479 if (rv == 0) 480 ios->l_value1--; 481 482 return rv; 483 } 484 485 static int 486 cam_iosched_bw_init(struct iop_stats *ios) 487 { 488 489 /* ios->current is in kB/s, so scale to bytes */ 490 ios->l_value1 = ios->current * 1000 / ios->softc->quanta; 491 492 return 0; 493 } 494 495 static int 496 cam_iosched_bw_tick(struct iop_stats *ios) 497 { 498 int bw; 499 500 /* 501 * If we're in the hole for available quota from 502 * the last time, then add the quantum for this. 503 * If we have any left over from last quantum, 504 * then too bad, that's lost. Also, ios->current 505 * is in kB/s, so scale. 506 * 507 * We also allow up to 4 quanta of credits to 508 * accumulate to deal with burstiness. 4 is extremely 509 * arbitrary. 510 */ 511 bw = (int)((ios->current * 1000ull * (uint64_t)ios->softc->this_frac) >> 16); 512 if (ios->l_value1 < bw * 4) 513 ios->l_value1 += bw; 514 515 return 0; 516 } 517 518 static int 519 cam_iosched_bw_caniop(struct iop_stats *ios, struct bio *bp) 520 { 521 /* 522 * So if we have any more bw quota left, allow it, 523 * otherwise wait. Note, we'll go negative and that's 524 * OK. We'll just get a little less next quota. 525 * 526 * Note on going negative: that allows us to process 527 * requests in order better, since we won't allow 528 * shorter reads to get around the long one that we 529 * don't have the quota to do just yet. It also prevents 530 * starvation by being a little more permissive about 531 * what we let through this quantum (to prevent the 532 * starvation), at the cost of getting a little less 533 * next quantum. 534 * 535 * Also note that if the current limit is <= 0, 536 * we treat it as unlimited as a failsafe. 537 */ 538 if (ios->current > 0 && ios->l_value1 <= 0) 539 return EAGAIN; 540 541 return 0; 542 } 543 544 static int 545 cam_iosched_bw_iop(struct iop_stats *ios, struct bio *bp) 546 { 547 int rv; 548 549 rv = cam_iosched_limiter_caniop(ios, bp); 550 if (rv == 0) 551 ios->l_value1 -= bp->bio_length; 552 553 return rv; 554 } 555 556 static void cam_iosched_cl_maybe_steer(struct control_loop *clp); 557 558 static void 559 cam_iosched_ticker(void *arg) 560 { 561 struct cam_iosched_softc *isc = arg; 562 sbintime_t now, delta; 563 int pending; 564 565 callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc); 566 567 now = sbinuptime(); 568 delta = now - isc->last_time; 569 isc->this_frac = (uint32_t)delta >> 16; /* Note: discards seconds -- should be 0 harmless if not */ 570 isc->last_time = now; 571 572 cam_iosched_cl_maybe_steer(&isc->cl); 573 574 cam_iosched_limiter_tick(&isc->read_stats); 575 cam_iosched_limiter_tick(&isc->write_stats); 576 cam_iosched_limiter_tick(&isc->trim_stats); 577 578 cam_iosched_schedule(isc, isc->periph); 579 580 /* 581 * isc->load is an EMA of the pending I/Os at each tick. The number of 582 * pending I/Os is the sum of the I/Os queued to the hardware, and those 583 * in the software queue that could be queued to the hardware if there 584 * were slots. 585 * 586 * ios_stats.pending is a count of requests in the SIM right now for 587 * each of these types of I/O. So the total pending count is the sum of 588 * these I/Os and the sum of the queued I/Os still in the software queue 589 * for those operations that aren't being rate limited at the moment. 590 * 591 * The reason for the rate limiting bit is because those I/Os 592 * aren't part of the software queued load (since we could 593 * give them to hardware, but choose not to). 594 * 595 * Note: due to a bug in counting pending TRIM in the device, we 596 * don't include them in this count. We count each BIO_DELETE in 597 * the pending count, but the periph drivers collapse them down 598 * into one TRIM command. That one trim command gets the completion 599 * so the counts get off. 600 */ 601 pending = isc->read_stats.pending + isc->write_stats.pending /* + isc->trim_stats.pending */; 602 pending += !!(isc->read_stats.state_flags & IOP_RATE_LIMITED) * isc->read_stats.queued + 603 !!(isc->write_stats.state_flags & IOP_RATE_LIMITED) * isc->write_stats.queued /* + 604 !!(isc->trim_stats.state_flags & IOP_RATE_LIMITED) * isc->trim_stats.queued */ ; 605 pending <<= 16; 606 pending /= isc->periph->path->device->ccbq.total_openings; 607 608 isc->load = (pending + (isc->load << 13) - isc->load) >> 13; /* see above: 13 -> 16139 / 200/s = ~81s ~1 minute */ 609 610 isc->total_ticks++; 611 } 612 613 static void 614 cam_iosched_cl_init(struct control_loop *clp, struct cam_iosched_softc *isc) 615 { 616 617 clp->next_steer = sbinuptime(); 618 clp->softc = isc; 619 clp->steer_interval = SBT_1S * 5; /* Let's start out steering every 5s */ 620 clp->lolat = 5 * SBT_1MS; 621 clp->hilat = 15 * SBT_1MS; 622 clp->alpha = 20; /* Alpha == gain. 20 = .2 */ 623 clp->type = set_max; 624 } 625 626 static void 627 cam_iosched_cl_maybe_steer(struct control_loop *clp) 628 { 629 struct cam_iosched_softc *isc; 630 sbintime_t now, lat; 631 int old; 632 633 isc = clp->softc; 634 now = isc->last_time; 635 if (now < clp->next_steer) 636 return; 637 638 clp->next_steer = now + clp->steer_interval; 639 switch (clp->type) { 640 case set_max: 641 if (isc->write_stats.current != isc->write_stats.max) 642 printf("Steering write from %d kBps to %d kBps\n", 643 isc->write_stats.current, isc->write_stats.max); 644 isc->read_stats.current = isc->read_stats.max; 645 isc->write_stats.current = isc->write_stats.max; 646 isc->trim_stats.current = isc->trim_stats.max; 647 break; 648 case read_latency: 649 old = isc->write_stats.current; 650 lat = isc->read_stats.ema; 651 /* 652 * Simple PLL-like engine. Since we're steering to a range for 653 * the SP (set point) that makes things a little more 654 * complicated. In addition, we're not directly controlling our 655 * PV (process variable), the read latency, but instead are 656 * manipulating the write bandwidth limit for our MV 657 * (manipulation variable), analysis of this code gets a bit 658 * messy. Also, the MV is a very noisy control surface for read 659 * latency since it is affected by many hidden processes inside 660 * the device which change how responsive read latency will be 661 * in reaction to changes in write bandwidth. Unlike the classic 662 * boiler control PLL. this may result in over-steering while 663 * the SSD takes its time to react to the new, lower load. This 664 * is why we use a relatively low alpha of between .1 and .25 to 665 * compensate for this effect. At .1, it takes ~22 steering 666 * intervals to back off by a factor of 10. At .2 it only takes 667 * ~10. At .25 it only takes ~8. However some preliminary data 668 * from the SSD drives suggests a reasponse time in 10's of 669 * seconds before latency drops regardless of the new write 670 * rate. Careful observation will be required to tune this 671 * effectively. 672 * 673 * Also, when there's no read traffic, we jack up the write 674 * limit too regardless of the last read latency. 10 is 675 * somewhat arbitrary. 676 */ 677 if (lat < clp->lolat || isc->read_stats.total - clp->last_count < 10) 678 isc->write_stats.current = isc->write_stats.current * 679 (100 + clp->alpha) / 100; /* Scale up */ 680 else if (lat > clp->hilat) 681 isc->write_stats.current = isc->write_stats.current * 682 (100 - clp->alpha) / 100; /* Scale down */ 683 clp->last_count = isc->read_stats.total; 684 685 /* 686 * Even if we don't steer, per se, enforce the min/max limits as 687 * those may have changed. 688 */ 689 if (isc->write_stats.current < isc->write_stats.min) 690 isc->write_stats.current = isc->write_stats.min; 691 if (isc->write_stats.current > isc->write_stats.max) 692 isc->write_stats.current = isc->write_stats.max; 693 if (old != isc->write_stats.current && iosched_debug) 694 printf("Steering write from %d kBps to %d kBps due to latency of %jdus\n", 695 old, isc->write_stats.current, 696 (uintmax_t)((uint64_t)1000000 * (uint32_t)lat) >> 32); 697 break; 698 case cl_max: 699 break; 700 } 701 } 702 #endif 703 704 /* 705 * Trim or similar currently pending completion. Should only be set for 706 * those drivers wishing only one Trim active at a time. 707 */ 708 #define CAM_IOSCHED_FLAG_TRIM_ACTIVE (1ul << 0) 709 /* Callout active, and needs to be torn down */ 710 #define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE (1ul << 1) 711 712 /* Periph drivers set these flags to indicate work */ 713 #define CAM_IOSCHED_FLAG_WORK_FLAGS ((0xffffu) << 16) 714 715 #ifdef CAM_IOSCHED_DYNAMIC 716 static void 717 cam_iosched_io_metric_update(struct cam_iosched_softc *isc, 718 sbintime_t sim_latency, int cmd, size_t size); 719 #endif 720 721 static inline bool 722 cam_iosched_has_flagged_work(struct cam_iosched_softc *isc) 723 { 724 return !!(isc->flags & CAM_IOSCHED_FLAG_WORK_FLAGS); 725 } 726 727 static inline bool 728 cam_iosched_has_io(struct cam_iosched_softc *isc) 729 { 730 #ifdef CAM_IOSCHED_DYNAMIC 731 if (do_dynamic_iosched) { 732 struct bio *rbp = bioq_first(&isc->bio_queue); 733 struct bio *wbp = bioq_first(&isc->write_queue); 734 bool can_write = wbp != NULL && 735 cam_iosched_limiter_caniop(&isc->write_stats, wbp) == 0; 736 bool can_read = rbp != NULL && 737 cam_iosched_limiter_caniop(&isc->read_stats, rbp) == 0; 738 if (iosched_debug > 2) { 739 printf("can write %d: pending_writes %d max_writes %d\n", can_write, isc->write_stats.pending, isc->write_stats.max); 740 printf("can read %d: read_stats.pending %d max_reads %d\n", can_read, isc->read_stats.pending, isc->read_stats.max); 741 printf("Queued reads %d writes %d\n", isc->read_stats.queued, isc->write_stats.queued); 742 } 743 return can_read || can_write; 744 } 745 #endif 746 return bioq_first(&isc->bio_queue) != NULL; 747 } 748 749 static inline bool 750 cam_iosched_has_more_trim(struct cam_iosched_softc *isc) 751 { 752 struct bio *bp; 753 754 bp = bioq_first(&isc->trim_queue); 755 #ifdef CAM_IOSCHED_DYNAMIC 756 if (do_dynamic_iosched) { 757 /* 758 * If we're limiting trims, then defer action on trims 759 * for a bit. 760 */ 761 if (bp == NULL || cam_iosched_limiter_caniop(&isc->trim_stats, bp) != 0) 762 return false; 763 } 764 #endif 765 766 /* 767 * If we've set a trim_goal, then if we exceed that allow trims 768 * to be passed back to the driver. If we've also set a tick timeout 769 * allow trims back to the driver. Otherwise, don't allow trims yet. 770 */ 771 if (isc->trim_goal > 0) { 772 if (isc->queued_trims >= isc->trim_goal) 773 return true; 774 if (isc->queued_trims > 0 && 775 isc->trim_ticks > 0 && 776 ticks - isc->last_trim_tick > isc->trim_ticks) 777 return true; 778 return false; 779 } 780 781 /* NB: Should perhaps have a max trim active independent of I/O limiters */ 782 return !(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) && bp != NULL; 783 } 784 785 #define cam_iosched_sort_queue(isc) ((isc)->sort_io_queue >= 0 ? \ 786 (isc)->sort_io_queue : cam_sort_io_queues) 787 788 static inline bool 789 cam_iosched_has_work(struct cam_iosched_softc *isc) 790 { 791 #ifdef CAM_IOSCHED_DYNAMIC 792 if (iosched_debug > 2) 793 printf("has work: %d %d %d\n", cam_iosched_has_io(isc), 794 cam_iosched_has_more_trim(isc), 795 cam_iosched_has_flagged_work(isc)); 796 #endif 797 798 return cam_iosched_has_io(isc) || 799 cam_iosched_has_more_trim(isc) || 800 cam_iosched_has_flagged_work(isc); 801 } 802 803 #ifdef CAM_IOSCHED_DYNAMIC 804 static void 805 cam_iosched_iop_stats_init(struct cam_iosched_softc *isc, struct iop_stats *ios) 806 { 807 808 ios->limiter = none; 809 ios->in = 0; 810 ios->max = ios->current = 300000; 811 ios->min = 1; 812 ios->out = 0; 813 ios->errs = 0; 814 ios->pending = 0; 815 ios->queued = 0; 816 ios->total = 0; 817 ios->ema = 0; 818 ios->emvar = 0; 819 ios->softc = isc; 820 cam_iosched_limiter_init(ios); 821 } 822 823 static int 824 cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS) 825 { 826 char buf[16]; 827 struct iop_stats *ios; 828 struct cam_iosched_softc *isc; 829 int value, i, error; 830 const char *p; 831 832 ios = arg1; 833 isc = ios->softc; 834 value = ios->limiter; 835 if (value < none || value >= limiter_max) 836 p = "UNKNOWN"; 837 else 838 p = cam_iosched_limiter_names[value]; 839 840 strlcpy(buf, p, sizeof(buf)); 841 error = sysctl_handle_string(oidp, buf, sizeof(buf), req); 842 if (error != 0 || req->newptr == NULL) 843 return error; 844 845 cam_periph_lock(isc->periph); 846 847 for (i = none; i < limiter_max; i++) { 848 if (strcmp(buf, cam_iosched_limiter_names[i]) != 0) 849 continue; 850 ios->limiter = i; 851 error = cam_iosched_limiter_init(ios); 852 if (error != 0) { 853 ios->limiter = value; 854 cam_periph_unlock(isc->periph); 855 return error; 856 } 857 /* Note: disk load averate requires ticker to be always running */ 858 callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc); 859 isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE; 860 861 cam_periph_unlock(isc->periph); 862 return 0; 863 } 864 865 cam_periph_unlock(isc->periph); 866 return EINVAL; 867 } 868 869 static int 870 cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS) 871 { 872 char buf[16]; 873 struct control_loop *clp; 874 struct cam_iosched_softc *isc; 875 int value, i, error; 876 const char *p; 877 878 clp = arg1; 879 isc = clp->softc; 880 value = clp->type; 881 if (value < none || value >= cl_max) 882 p = "UNKNOWN"; 883 else 884 p = cam_iosched_control_type_names[value]; 885 886 strlcpy(buf, p, sizeof(buf)); 887 error = sysctl_handle_string(oidp, buf, sizeof(buf), req); 888 if (error != 0 || req->newptr == NULL) 889 return error; 890 891 for (i = set_max; i < cl_max; i++) { 892 if (strcmp(buf, cam_iosched_control_type_names[i]) != 0) 893 continue; 894 cam_periph_lock(isc->periph); 895 clp->type = i; 896 cam_periph_unlock(isc->periph); 897 return 0; 898 } 899 900 return EINVAL; 901 } 902 903 static int 904 cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS) 905 { 906 char buf[16]; 907 sbintime_t value; 908 int error; 909 uint64_t us; 910 911 value = *(sbintime_t *)arg1; 912 us = (uint64_t)value / SBT_1US; 913 snprintf(buf, sizeof(buf), "%ju", (intmax_t)us); 914 error = sysctl_handle_string(oidp, buf, sizeof(buf), req); 915 if (error != 0 || req->newptr == NULL) 916 return error; 917 us = strtoul(buf, NULL, 10); 918 if (us == 0) 919 return EINVAL; 920 *(sbintime_t *)arg1 = us * SBT_1US; 921 return 0; 922 } 923 924 static int 925 cam_iosched_sysctl_latencies(SYSCTL_HANDLER_ARGS) 926 { 927 int i, error; 928 struct sbuf sb; 929 uint64_t *latencies; 930 931 latencies = arg1; 932 sbuf_new_for_sysctl(&sb, NULL, LAT_BUCKETS * 16, req); 933 934 for (i = 0; i < LAT_BUCKETS - 1; i++) 935 sbuf_printf(&sb, "%jd,", (intmax_t)latencies[i]); 936 sbuf_printf(&sb, "%jd", (intmax_t)latencies[LAT_BUCKETS - 1]); 937 error = sbuf_finish(&sb); 938 sbuf_delete(&sb); 939 940 return (error); 941 } 942 943 static int 944 cam_iosched_quanta_sysctl(SYSCTL_HANDLER_ARGS) 945 { 946 int *quanta; 947 int error, value; 948 949 quanta = (unsigned *)arg1; 950 value = *quanta; 951 952 error = sysctl_handle_int(oidp, (int *)&value, 0, req); 953 if ((error != 0) || (req->newptr == NULL)) 954 return (error); 955 956 if (value < 1 || value > hz) 957 return (EINVAL); 958 959 *quanta = value; 960 961 return (0); 962 } 963 964 static void 965 cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc *isc, struct iop_stats *ios, char *name) 966 { 967 struct sysctl_oid_list *n; 968 struct sysctl_ctx_list *ctx; 969 970 ios->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx, 971 SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, name, 972 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, name); 973 n = SYSCTL_CHILDREN(ios->sysctl_tree); 974 ctx = &ios->sysctl_ctx; 975 976 SYSCTL_ADD_UQUAD(ctx, n, 977 OID_AUTO, "ema", CTLFLAG_RD, 978 &ios->ema, 979 "Fast Exponentially Weighted Moving Average"); 980 SYSCTL_ADD_UQUAD(ctx, n, 981 OID_AUTO, "emvar", CTLFLAG_RD, 982 &ios->emvar, 983 "Fast Exponentially Weighted Moving Variance"); 984 985 SYSCTL_ADD_INT(ctx, n, 986 OID_AUTO, "pending", CTLFLAG_RD, 987 &ios->pending, 0, 988 "Instantaneous # of pending transactions"); 989 SYSCTL_ADD_INT(ctx, n, 990 OID_AUTO, "count", CTLFLAG_RD, 991 &ios->total, 0, 992 "# of transactions submitted to hardware"); 993 SYSCTL_ADD_INT(ctx, n, 994 OID_AUTO, "queued", CTLFLAG_RD, 995 &ios->queued, 0, 996 "# of transactions in the queue"); 997 SYSCTL_ADD_INT(ctx, n, 998 OID_AUTO, "in", CTLFLAG_RD, 999 &ios->in, 0, 1000 "# of transactions queued to driver"); 1001 SYSCTL_ADD_INT(ctx, n, 1002 OID_AUTO, "out", CTLFLAG_RD, 1003 &ios->out, 0, 1004 "# of transactions completed (including with error)"); 1005 SYSCTL_ADD_INT(ctx, n, 1006 OID_AUTO, "errs", CTLFLAG_RD, 1007 &ios->errs, 0, 1008 "# of transactions completed with an error"); 1009 1010 SYSCTL_ADD_PROC(ctx, n, 1011 OID_AUTO, "limiter", 1012 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 1013 ios, 0, cam_iosched_limiter_sysctl, "A", 1014 "Current limiting type."); 1015 SYSCTL_ADD_INT(ctx, n, 1016 OID_AUTO, "min", CTLFLAG_RW, 1017 &ios->min, 0, 1018 "min resource"); 1019 SYSCTL_ADD_INT(ctx, n, 1020 OID_AUTO, "max", CTLFLAG_RW, 1021 &ios->max, 0, 1022 "max resource"); 1023 SYSCTL_ADD_INT(ctx, n, 1024 OID_AUTO, "current", CTLFLAG_RW, 1025 &ios->current, 0, 1026 "current resource"); 1027 1028 SYSCTL_ADD_PROC(ctx, n, 1029 OID_AUTO, "latencies", 1030 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 1031 &ios->latencies, 0, 1032 cam_iosched_sysctl_latencies, "A", 1033 "Array of power of 2 latency from 1ms to 1.024s"); 1034 } 1035 1036 static void 1037 cam_iosched_iop_stats_fini(struct iop_stats *ios) 1038 { 1039 if (ios->sysctl_tree) 1040 if (sysctl_ctx_free(&ios->sysctl_ctx) != 0) 1041 printf("can't remove iosched sysctl stats context\n"); 1042 } 1043 1044 static void 1045 cam_iosched_cl_sysctl_init(struct cam_iosched_softc *isc) 1046 { 1047 struct sysctl_oid_list *n; 1048 struct sysctl_ctx_list *ctx; 1049 struct control_loop *clp; 1050 1051 clp = &isc->cl; 1052 clp->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx, 1053 SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, "control", 1054 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Control loop info"); 1055 n = SYSCTL_CHILDREN(clp->sysctl_tree); 1056 ctx = &clp->sysctl_ctx; 1057 1058 SYSCTL_ADD_PROC(ctx, n, 1059 OID_AUTO, "type", 1060 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 1061 clp, 0, cam_iosched_control_type_sysctl, "A", 1062 "Control loop algorithm"); 1063 SYSCTL_ADD_PROC(ctx, n, 1064 OID_AUTO, "steer_interval", 1065 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 1066 &clp->steer_interval, 0, cam_iosched_sbintime_sysctl, "A", 1067 "How often to steer (in us)"); 1068 SYSCTL_ADD_PROC(ctx, n, 1069 OID_AUTO, "lolat", 1070 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 1071 &clp->lolat, 0, cam_iosched_sbintime_sysctl, "A", 1072 "Low water mark for Latency (in us)"); 1073 SYSCTL_ADD_PROC(ctx, n, 1074 OID_AUTO, "hilat", 1075 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 1076 &clp->hilat, 0, cam_iosched_sbintime_sysctl, "A", 1077 "Hi water mark for Latency (in us)"); 1078 SYSCTL_ADD_INT(ctx, n, 1079 OID_AUTO, "alpha", CTLFLAG_RW, 1080 &clp->alpha, 0, 1081 "Alpha for PLL (x100) aka gain"); 1082 } 1083 1084 static void 1085 cam_iosched_cl_sysctl_fini(struct control_loop *clp) 1086 { 1087 if (clp->sysctl_tree) 1088 if (sysctl_ctx_free(&clp->sysctl_ctx) != 0) 1089 printf("can't remove iosched sysctl control loop context\n"); 1090 } 1091 #endif 1092 1093 /* 1094 * Allocate the iosched structure. This also insulates callers from knowing 1095 * sizeof struct cam_iosched_softc. 1096 */ 1097 int 1098 cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph) 1099 { 1100 1101 *iscp = malloc(sizeof(**iscp), M_CAMSCHED, M_NOWAIT | M_ZERO); 1102 if (*iscp == NULL) 1103 return ENOMEM; 1104 #ifdef CAM_IOSCHED_DYNAMIC 1105 if (iosched_debug) 1106 printf("CAM IOSCHEDULER Allocating entry at %p\n", *iscp); 1107 #endif 1108 (*iscp)->sort_io_queue = -1; 1109 bioq_init(&(*iscp)->bio_queue); 1110 bioq_init(&(*iscp)->trim_queue); 1111 #ifdef CAM_IOSCHED_DYNAMIC 1112 if (do_dynamic_iosched) { 1113 bioq_init(&(*iscp)->write_queue); 1114 (*iscp)->read_bias = 100; 1115 (*iscp)->current_read_bias = 100; 1116 (*iscp)->quanta = min(hz, 200); 1117 cam_iosched_iop_stats_init(*iscp, &(*iscp)->read_stats); 1118 cam_iosched_iop_stats_init(*iscp, &(*iscp)->write_stats); 1119 cam_iosched_iop_stats_init(*iscp, &(*iscp)->trim_stats); 1120 (*iscp)->trim_stats.max = 1; /* Trims are special: one at a time for now */ 1121 (*iscp)->last_time = sbinuptime(); 1122 callout_init_mtx(&(*iscp)->ticker, cam_periph_mtx(periph), 0); 1123 (*iscp)->periph = periph; 1124 cam_iosched_cl_init(&(*iscp)->cl, *iscp); 1125 callout_reset(&(*iscp)->ticker, hz / (*iscp)->quanta, cam_iosched_ticker, *iscp); 1126 (*iscp)->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE; 1127 } 1128 #endif 1129 1130 return 0; 1131 } 1132 1133 /* 1134 * Reclaim all used resources. This assumes that other folks have 1135 * drained the requests in the hardware. Maybe an unwise assumption. 1136 */ 1137 void 1138 cam_iosched_fini(struct cam_iosched_softc *isc) 1139 { 1140 if (isc) { 1141 cam_iosched_flush(isc, NULL, ENXIO); 1142 #ifdef CAM_IOSCHED_DYNAMIC 1143 cam_iosched_iop_stats_fini(&isc->read_stats); 1144 cam_iosched_iop_stats_fini(&isc->write_stats); 1145 cam_iosched_iop_stats_fini(&isc->trim_stats); 1146 cam_iosched_cl_sysctl_fini(&isc->cl); 1147 if (isc->sysctl_tree) 1148 if (sysctl_ctx_free(&isc->sysctl_ctx) != 0) 1149 printf("can't remove iosched sysctl stats context\n"); 1150 if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) { 1151 callout_drain(&isc->ticker); 1152 isc->flags &= ~ CAM_IOSCHED_FLAG_CALLOUT_ACTIVE; 1153 } 1154 #endif 1155 free(isc, M_CAMSCHED); 1156 } 1157 } 1158 1159 /* 1160 * After we're sure we're attaching a device, go ahead and add 1161 * hooks for any sysctl we may wish to honor. 1162 */ 1163 void cam_iosched_sysctl_init(struct cam_iosched_softc *isc, 1164 struct sysctl_ctx_list *ctx, struct sysctl_oid *node) 1165 { 1166 struct sysctl_oid_list *n; 1167 1168 n = SYSCTL_CHILDREN(node); 1169 SYSCTL_ADD_INT(ctx, n, 1170 OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE, 1171 &isc->sort_io_queue, 0, 1172 "Sort IO queue to try and optimise disk access patterns"); 1173 SYSCTL_ADD_INT(ctx, n, 1174 OID_AUTO, "trim_goal", CTLFLAG_RW, 1175 &isc->trim_goal, 0, 1176 "Number of trims to try to accumulate before sending to hardware"); 1177 SYSCTL_ADD_INT(ctx, n, 1178 OID_AUTO, "trim_ticks", CTLFLAG_RW, 1179 &isc->trim_goal, 0, 1180 "IO Schedul qaunta to hold back trims for when accumulating"); 1181 1182 #ifdef CAM_IOSCHED_DYNAMIC 1183 if (!do_dynamic_iosched) 1184 return; 1185 1186 isc->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx, 1187 SYSCTL_CHILDREN(node), OID_AUTO, "iosched", 1188 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "I/O scheduler statistics"); 1189 n = SYSCTL_CHILDREN(isc->sysctl_tree); 1190 ctx = &isc->sysctl_ctx; 1191 1192 cam_iosched_iop_stats_sysctl_init(isc, &isc->read_stats, "read"); 1193 cam_iosched_iop_stats_sysctl_init(isc, &isc->write_stats, "write"); 1194 cam_iosched_iop_stats_sysctl_init(isc, &isc->trim_stats, "trim"); 1195 cam_iosched_cl_sysctl_init(isc); 1196 1197 SYSCTL_ADD_INT(ctx, n, 1198 OID_AUTO, "read_bias", CTLFLAG_RW, 1199 &isc->read_bias, 100, 1200 "How biased towards read should we be independent of limits"); 1201 1202 SYSCTL_ADD_PROC(ctx, n, 1203 OID_AUTO, "quanta", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 1204 &isc->quanta, 0, cam_iosched_quanta_sysctl, "I", 1205 "How many quanta per second do we slice the I/O up into"); 1206 1207 SYSCTL_ADD_INT(ctx, n, 1208 OID_AUTO, "total_ticks", CTLFLAG_RD, 1209 &isc->total_ticks, 0, 1210 "Total number of ticks we've done"); 1211 1212 SYSCTL_ADD_INT(ctx, n, 1213 OID_AUTO, "load", CTLFLAG_RD, 1214 &isc->load, 0, 1215 "scaled load average / 100"); 1216 1217 SYSCTL_ADD_U64(ctx, n, 1218 OID_AUTO, "latency_trigger", CTLFLAG_RW, 1219 &isc->max_lat, 0, 1220 "Latency treshold to trigger callbacks"); 1221 #endif 1222 } 1223 1224 void 1225 cam_iosched_set_latfcn(struct cam_iosched_softc *isc, 1226 cam_iosched_latfcn_t fnp, void *argp) 1227 { 1228 #ifdef CAM_IOSCHED_DYNAMIC 1229 isc->latfcn = fnp; 1230 isc->latarg = argp; 1231 #endif 1232 } 1233 1234 /* 1235 * Client drivers can set two parameters. "goal" is the number of BIO_DELETEs 1236 * that will be queued up before iosched will "release" the trims to the client 1237 * driver to wo with what they will (usually combine as many as possible). If we 1238 * don't get this many, after trim_ticks we'll submit the I/O anyway with 1239 * whatever we have. We do need an I/O of some kind of to clock the deferred 1240 * trims out to disk. Since we will eventually get a write for the super block 1241 * or something before we shutdown, the trims will complete. To be safe, when a 1242 * BIO_FLUSH is presented to the iosched work queue, we set the ticks time far 1243 * enough in the past so we'll present the BIO_DELETEs to the client driver. 1244 * There might be a race if no BIO_DELETESs were queued, a BIO_FLUSH comes in 1245 * and then a BIO_DELETE is sent down. No know client does this, and there's 1246 * already a race between an ordered BIO_FLUSH and any BIO_DELETEs in flight, 1247 * but no client depends on the ordering being honored. 1248 * 1249 * XXX I'm not sure what the interaction between UFS direct BIOs and the BUF 1250 * flushing on shutdown. I think there's bufs that would be dependent on the BIO 1251 * finishing to write out at least metadata, so we'll be fine. To be safe, keep 1252 * the number of ticks low (less than maybe 10s) to avoid shutdown races. 1253 */ 1254 1255 void 1256 cam_iosched_set_trim_goal(struct cam_iosched_softc *isc, int goal) 1257 { 1258 1259 isc->trim_goal = goal; 1260 } 1261 1262 void 1263 cam_iosched_set_trim_ticks(struct cam_iosched_softc *isc, int trim_ticks) 1264 { 1265 1266 isc->trim_ticks = trim_ticks; 1267 } 1268 1269 /* 1270 * Flush outstanding I/O. Consumers of this library don't know all the 1271 * queues we may keep, so this allows all I/O to be flushed in one 1272 * convenient call. 1273 */ 1274 void 1275 cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err) 1276 { 1277 bioq_flush(&isc->bio_queue, stp, err); 1278 bioq_flush(&isc->trim_queue, stp, err); 1279 #ifdef CAM_IOSCHED_DYNAMIC 1280 if (do_dynamic_iosched) 1281 bioq_flush(&isc->write_queue, stp, err); 1282 #endif 1283 } 1284 1285 #ifdef CAM_IOSCHED_DYNAMIC 1286 static struct bio * 1287 cam_iosched_get_write(struct cam_iosched_softc *isc) 1288 { 1289 struct bio *bp; 1290 1291 /* 1292 * We control the write rate by controlling how many requests we send 1293 * down to the drive at any one time. Fewer requests limits the 1294 * effects of both starvation when the requests take a while and write 1295 * amplification when each request is causing more than one write to 1296 * the NAND media. Limiting the queue depth like this will also limit 1297 * the write throughput and give and reads that want to compete to 1298 * compete unfairly. 1299 */ 1300 bp = bioq_first(&isc->write_queue); 1301 if (bp == NULL) { 1302 if (iosched_debug > 3) 1303 printf("No writes present in write_queue\n"); 1304 return NULL; 1305 } 1306 1307 /* 1308 * If pending read, prefer that based on current read bias 1309 * setting. 1310 */ 1311 if (bioq_first(&isc->bio_queue) && isc->current_read_bias) { 1312 if (iosched_debug) 1313 printf( 1314 "Reads present and current_read_bias is %d queued " 1315 "writes %d queued reads %d\n", 1316 isc->current_read_bias, isc->write_stats.queued, 1317 isc->read_stats.queued); 1318 isc->current_read_bias--; 1319 /* We're not limiting writes, per se, just doing reads first */ 1320 return NULL; 1321 } 1322 1323 /* 1324 * See if our current limiter allows this I/O. 1325 */ 1326 if (cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) { 1327 if (iosched_debug) 1328 printf("Can't write because limiter says no.\n"); 1329 isc->write_stats.state_flags |= IOP_RATE_LIMITED; 1330 return NULL; 1331 } 1332 1333 /* 1334 * Let's do this: We've passed all the gates and we're a go 1335 * to schedule the I/O in the SIM. 1336 */ 1337 isc->current_read_bias = isc->read_bias; 1338 bioq_remove(&isc->write_queue, bp); 1339 if (bp->bio_cmd == BIO_WRITE) { 1340 isc->write_stats.queued--; 1341 isc->write_stats.total++; 1342 isc->write_stats.pending++; 1343 } 1344 if (iosched_debug > 9) 1345 printf("HWQ : %p %#x\n", bp, bp->bio_cmd); 1346 isc->write_stats.state_flags &= ~IOP_RATE_LIMITED; 1347 return bp; 1348 } 1349 #endif 1350 1351 /* 1352 * Put back a trim that you weren't able to actually schedule this time. 1353 */ 1354 void 1355 cam_iosched_put_back_trim(struct cam_iosched_softc *isc, struct bio *bp) 1356 { 1357 bioq_insert_head(&isc->trim_queue, bp); 1358 if (isc->queued_trims == 0) 1359 isc->last_trim_tick = ticks; 1360 isc->queued_trims++; 1361 #ifdef CAM_IOSCHED_DYNAMIC 1362 isc->trim_stats.queued++; 1363 isc->trim_stats.total--; /* since we put it back, don't double count */ 1364 isc->trim_stats.pending--; 1365 #endif 1366 } 1367 1368 /* 1369 * gets the next trim from the trim queue. 1370 * 1371 * Assumes we're called with the periph lock held. It removes this 1372 * trim from the queue and the device must explicitly reinsert it 1373 * should the need arise. 1374 */ 1375 struct bio * 1376 cam_iosched_next_trim(struct cam_iosched_softc *isc) 1377 { 1378 struct bio *bp; 1379 1380 bp = bioq_first(&isc->trim_queue); 1381 if (bp == NULL) 1382 return NULL; 1383 bioq_remove(&isc->trim_queue, bp); 1384 isc->queued_trims--; 1385 isc->last_trim_tick = ticks; /* Reset the tick timer when we take trims */ 1386 #ifdef CAM_IOSCHED_DYNAMIC 1387 isc->trim_stats.queued--; 1388 isc->trim_stats.total++; 1389 isc->trim_stats.pending++; 1390 #endif 1391 return bp; 1392 } 1393 1394 /* 1395 * gets an available trim from the trim queue, if there's no trim 1396 * already pending. It removes this trim from the queue and the device 1397 * must explicitly reinsert it should the need arise. 1398 * 1399 * Assumes we're called with the periph lock held. 1400 */ 1401 struct bio * 1402 cam_iosched_get_trim(struct cam_iosched_softc *isc) 1403 { 1404 #ifdef CAM_IOSCHED_DYNAMIC 1405 struct bio *bp; 1406 #endif 1407 1408 if (!cam_iosched_has_more_trim(isc)) 1409 return NULL; 1410 #ifdef CAM_IOSCHED_DYNAMIC 1411 bp = bioq_first(&isc->trim_queue); 1412 if (bp == NULL) 1413 return NULL; 1414 1415 /* 1416 * If pending read, prefer that based on current read bias setting. The 1417 * read bias is shared for both writes and TRIMs, but on TRIMs the bias 1418 * is for a combined TRIM not a single TRIM request that's come in. 1419 */ 1420 if (do_dynamic_iosched) { 1421 if (bioq_first(&isc->bio_queue) && isc->current_read_bias) { 1422 if (iosched_debug) 1423 printf("Reads present and current_read_bias is %d" 1424 " queued trims %d queued reads %d\n", 1425 isc->current_read_bias, isc->trim_stats.queued, 1426 isc->read_stats.queued); 1427 isc->current_read_bias--; 1428 /* We're not limiting TRIMS, per se, just doing reads first */ 1429 return NULL; 1430 } 1431 /* 1432 * We're going to do a trim, so reset the bias. 1433 */ 1434 isc->current_read_bias = isc->read_bias; 1435 } 1436 1437 /* 1438 * See if our current limiter allows this I/O. Because we only call this 1439 * here, and not in next_trim, the 'bandwidth' limits for trims won't 1440 * work, while the iops or max queued limits will work. It's tricky 1441 * because we want the limits to be from the perspective of the 1442 * "commands sent to the device." To make iops work, we need to check 1443 * only here (since we want all the ops we combine to count as one). To 1444 * make bw limits work, we'd need to check in next_trim, but that would 1445 * have the effect of limiting the iops as seen from the upper layers. 1446 */ 1447 if (cam_iosched_limiter_iop(&isc->trim_stats, bp) != 0) { 1448 if (iosched_debug) 1449 printf("Can't trim because limiter says no.\n"); 1450 isc->trim_stats.state_flags |= IOP_RATE_LIMITED; 1451 return NULL; 1452 } 1453 isc->current_read_bias = isc->read_bias; 1454 isc->trim_stats.state_flags &= ~IOP_RATE_LIMITED; 1455 /* cam_iosched_next_trim below keeps proper book */ 1456 #endif 1457 return cam_iosched_next_trim(isc); 1458 } 1459 1460 /* 1461 * Determine what the next bit of work to do is for the periph. The 1462 * default implementation looks to see if we have trims to do, but no 1463 * trims outstanding. If so, we do that. Otherwise we see if we have 1464 * other work. If we do, then we do that. Otherwise why were we called? 1465 */ 1466 struct bio * 1467 cam_iosched_next_bio(struct cam_iosched_softc *isc) 1468 { 1469 struct bio *bp; 1470 1471 /* 1472 * See if we have a trim that can be scheduled. We can only send one 1473 * at a time down, so this takes that into account. 1474 * 1475 * XXX newer TRIM commands are queueable. Revisit this when we 1476 * implement them. 1477 */ 1478 if ((bp = cam_iosched_get_trim(isc)) != NULL) 1479 return bp; 1480 1481 #ifdef CAM_IOSCHED_DYNAMIC 1482 /* 1483 * See if we have any pending writes, and room in the queue for them, 1484 * and if so, those are next. 1485 */ 1486 if (do_dynamic_iosched) { 1487 if ((bp = cam_iosched_get_write(isc)) != NULL) 1488 return bp; 1489 } 1490 #endif 1491 1492 /* 1493 * next, see if there's other, normal I/O waiting. If so return that. 1494 */ 1495 if ((bp = bioq_first(&isc->bio_queue)) == NULL) 1496 return NULL; 1497 1498 #ifdef CAM_IOSCHED_DYNAMIC 1499 /* 1500 * For the dynamic scheduler, bio_queue is only for reads, so enforce 1501 * the limits here. Enforce only for reads. 1502 */ 1503 if (do_dynamic_iosched) { 1504 if (bp->bio_cmd == BIO_READ && 1505 cam_iosched_limiter_iop(&isc->read_stats, bp) != 0) { 1506 isc->read_stats.state_flags |= IOP_RATE_LIMITED; 1507 return NULL; 1508 } 1509 } 1510 isc->read_stats.state_flags &= ~IOP_RATE_LIMITED; 1511 #endif 1512 bioq_remove(&isc->bio_queue, bp); 1513 #ifdef CAM_IOSCHED_DYNAMIC 1514 if (do_dynamic_iosched) { 1515 if (bp->bio_cmd == BIO_READ) { 1516 isc->read_stats.queued--; 1517 isc->read_stats.total++; 1518 isc->read_stats.pending++; 1519 } else 1520 printf("Found bio_cmd = %#x\n", bp->bio_cmd); 1521 } 1522 if (iosched_debug > 9) 1523 printf("HWQ : %p %#x\n", bp, bp->bio_cmd); 1524 #endif 1525 return bp; 1526 } 1527 1528 /* 1529 * Driver has been given some work to do by the block layer. Tell the 1530 * scheduler about it and have it queue the work up. The scheduler module 1531 * will then return the currently most useful bit of work later, possibly 1532 * deferring work for various reasons. 1533 */ 1534 void 1535 cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp) 1536 { 1537 1538 /* 1539 * A BIO_SPEEDUP from the uppper layers means that they have a block 1540 * shortage. At the present, this is only sent when we're trying to 1541 * allocate blocks, but have a shortage before giving up. bio_length is 1542 * the size of their shortage. We will complete just enough BIO_DELETEs 1543 * in the queue to satisfy the need. If bio_length is 0, we'll complete 1544 * them all. This allows the scheduler to delay BIO_DELETEs to improve 1545 * read/write performance without worrying about the upper layers. When 1546 * it's possibly a problem, we respond by pretending the BIO_DELETEs 1547 * just worked. We can't do anything about the BIO_DELETEs in the 1548 * hardware, though. We have to wait for them to complete. 1549 */ 1550 if (bp->bio_cmd == BIO_SPEEDUP) { 1551 off_t len; 1552 struct bio *nbp; 1553 1554 len = 0; 1555 while (bioq_first(&isc->trim_queue) && 1556 (bp->bio_length == 0 || len < bp->bio_length)) { 1557 nbp = bioq_takefirst(&isc->trim_queue); 1558 len += nbp->bio_length; 1559 nbp->bio_error = 0; 1560 biodone(nbp); 1561 } 1562 if (bp->bio_length > 0) { 1563 if (bp->bio_length > len) 1564 bp->bio_resid = bp->bio_length - len; 1565 else 1566 bp->bio_resid = 0; 1567 } 1568 bp->bio_error = 0; 1569 biodone(bp); 1570 return; 1571 } 1572 1573 /* 1574 * If we get a BIO_FLUSH, and we're doing delayed BIO_DELETEs then we 1575 * set the last tick time to one less than the current ticks minus the 1576 * delay to force the BIO_DELETEs to be presented to the client driver. 1577 */ 1578 if (bp->bio_cmd == BIO_FLUSH && isc->trim_ticks > 0) 1579 isc->last_trim_tick = ticks - isc->trim_ticks - 1; 1580 1581 /* 1582 * Put all trims on the trim queue. Otherwise put the work on the bio 1583 * queue. 1584 */ 1585 if (bp->bio_cmd == BIO_DELETE) { 1586 bioq_insert_tail(&isc->trim_queue, bp); 1587 if (isc->queued_trims == 0) 1588 isc->last_trim_tick = ticks; 1589 isc->queued_trims++; 1590 #ifdef CAM_IOSCHED_DYNAMIC 1591 isc->trim_stats.in++; 1592 isc->trim_stats.queued++; 1593 #endif 1594 } 1595 #ifdef CAM_IOSCHED_DYNAMIC 1596 else if (do_dynamic_iosched && (bp->bio_cmd != BIO_READ)) { 1597 if (cam_iosched_sort_queue(isc)) 1598 bioq_disksort(&isc->write_queue, bp); 1599 else 1600 bioq_insert_tail(&isc->write_queue, bp); 1601 if (iosched_debug > 9) 1602 printf("Qw : %p %#x\n", bp, bp->bio_cmd); 1603 if (bp->bio_cmd == BIO_WRITE) { 1604 isc->write_stats.in++; 1605 isc->write_stats.queued++; 1606 } 1607 } 1608 #endif 1609 else { 1610 if (cam_iosched_sort_queue(isc)) 1611 bioq_disksort(&isc->bio_queue, bp); 1612 else 1613 bioq_insert_tail(&isc->bio_queue, bp); 1614 #ifdef CAM_IOSCHED_DYNAMIC 1615 if (iosched_debug > 9) 1616 printf("Qr : %p %#x\n", bp, bp->bio_cmd); 1617 if (bp->bio_cmd == BIO_READ) { 1618 isc->read_stats.in++; 1619 isc->read_stats.queued++; 1620 } else if (bp->bio_cmd == BIO_WRITE) { 1621 isc->write_stats.in++; 1622 isc->write_stats.queued++; 1623 } 1624 #endif 1625 } 1626 } 1627 1628 /* 1629 * If we have work, get it scheduled. Called with the periph lock held. 1630 */ 1631 void 1632 cam_iosched_schedule(struct cam_iosched_softc *isc, struct cam_periph *periph) 1633 { 1634 1635 if (cam_iosched_has_work(isc)) 1636 xpt_schedule(periph, CAM_PRIORITY_NORMAL); 1637 } 1638 1639 /* 1640 * Complete a trim request. Mark that we no longer have one in flight. 1641 */ 1642 void 1643 cam_iosched_trim_done(struct cam_iosched_softc *isc) 1644 { 1645 1646 isc->flags &= ~CAM_IOSCHED_FLAG_TRIM_ACTIVE; 1647 } 1648 1649 /* 1650 * Complete a bio. Called before we release the ccb with xpt_release_ccb so we 1651 * might use notes in the ccb for statistics. 1652 */ 1653 int 1654 cam_iosched_bio_complete(struct cam_iosched_softc *isc, struct bio *bp, 1655 union ccb *done_ccb) 1656 { 1657 int retval = 0; 1658 #ifdef CAM_IOSCHED_DYNAMIC 1659 if (!do_dynamic_iosched) 1660 return retval; 1661 1662 if (iosched_debug > 10) 1663 printf("done: %p %#x\n", bp, bp->bio_cmd); 1664 if (bp->bio_cmd == BIO_WRITE) { 1665 retval = cam_iosched_limiter_iodone(&isc->write_stats, bp); 1666 if ((bp->bio_flags & BIO_ERROR) != 0) 1667 isc->write_stats.errs++; 1668 isc->write_stats.out++; 1669 isc->write_stats.pending--; 1670 } else if (bp->bio_cmd == BIO_READ) { 1671 retval = cam_iosched_limiter_iodone(&isc->read_stats, bp); 1672 if ((bp->bio_flags & BIO_ERROR) != 0) 1673 isc->read_stats.errs++; 1674 isc->read_stats.out++; 1675 isc->read_stats.pending--; 1676 } else if (bp->bio_cmd == BIO_DELETE) { 1677 if ((bp->bio_flags & BIO_ERROR) != 0) 1678 isc->trim_stats.errs++; 1679 isc->trim_stats.out++; 1680 isc->trim_stats.pending--; 1681 } else if (bp->bio_cmd != BIO_FLUSH) { 1682 if (iosched_debug) 1683 printf("Completing command with bio_cmd == %#x\n", bp->bio_cmd); 1684 } 1685 1686 if ((bp->bio_flags & BIO_ERROR) == 0 && done_ccb != NULL && 1687 (done_ccb->ccb_h.status & CAM_QOS_VALID) != 0) { 1688 sbintime_t sim_latency; 1689 1690 sim_latency = cam_iosched_sbintime_t(done_ccb->ccb_h.qos.periph_data); 1691 1692 cam_iosched_io_metric_update(isc, sim_latency, 1693 bp->bio_cmd, bp->bio_bcount); 1694 /* 1695 * Debugging code: allow callbacks to the periph driver when latency max 1696 * is exceeded. This can be useful for triggering external debugging actions. 1697 */ 1698 if (isc->latfcn && isc->max_lat != 0 && sim_latency > isc->max_lat) 1699 isc->latfcn(isc->latarg, sim_latency, bp); 1700 } 1701 1702 #endif 1703 return retval; 1704 } 1705 1706 /* 1707 * Tell the io scheduler that you've pushed a trim down into the sim. 1708 * This also tells the I/O scheduler not to push any more trims down, so 1709 * some periphs do not call it if they can cope with multiple trims in flight. 1710 */ 1711 void 1712 cam_iosched_submit_trim(struct cam_iosched_softc *isc) 1713 { 1714 1715 isc->flags |= CAM_IOSCHED_FLAG_TRIM_ACTIVE; 1716 } 1717 1718 /* 1719 * Change the sorting policy hint for I/O transactions for this device. 1720 */ 1721 void 1722 cam_iosched_set_sort_queue(struct cam_iosched_softc *isc, int val) 1723 { 1724 1725 isc->sort_io_queue = val; 1726 } 1727 1728 int 1729 cam_iosched_has_work_flags(struct cam_iosched_softc *isc, uint32_t flags) 1730 { 1731 return isc->flags & flags; 1732 } 1733 1734 void 1735 cam_iosched_set_work_flags(struct cam_iosched_softc *isc, uint32_t flags) 1736 { 1737 isc->flags |= flags; 1738 } 1739 1740 void 1741 cam_iosched_clr_work_flags(struct cam_iosched_softc *isc, uint32_t flags) 1742 { 1743 isc->flags &= ~flags; 1744 } 1745 1746 #ifdef CAM_IOSCHED_DYNAMIC 1747 /* 1748 * After the method presented in Jack Crenshaw's 1998 article "Integer 1749 * Square Roots," reprinted at 1750 * http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots 1751 * and well worth the read. Briefly, we find the power of 4 that's the 1752 * largest smaller than val. We then check each smaller power of 4 to 1753 * see if val is still bigger. The right shifts at each step divide 1754 * the result by 2 which after successive application winds up 1755 * accumulating the right answer. It could also have been accumulated 1756 * using a separate root counter, but this code is smaller and faster 1757 * than that method. This method is also integer size invariant. 1758 * It returns floor(sqrt((float)val)), or the largest integer less than 1759 * or equal to the square root. 1760 */ 1761 static uint64_t 1762 isqrt64(uint64_t val) 1763 { 1764 uint64_t res = 0; 1765 uint64_t bit = 1ULL << (sizeof(uint64_t) * NBBY - 2); 1766 1767 /* 1768 * Find the largest power of 4 smaller than val. 1769 */ 1770 while (bit > val) 1771 bit >>= 2; 1772 1773 /* 1774 * Accumulate the answer, one bit at a time (we keep moving 1775 * them over since 2 is the square root of 4 and we test 1776 * powers of 4). We accumulate where we find the bit, but 1777 * the successive shifts land the bit in the right place 1778 * by the end. 1779 */ 1780 while (bit != 0) { 1781 if (val >= res + bit) { 1782 val -= res + bit; 1783 res = (res >> 1) + bit; 1784 } else 1785 res >>= 1; 1786 bit >>= 2; 1787 } 1788 1789 return res; 1790 } 1791 1792 static sbintime_t latencies[LAT_BUCKETS - 1] = { 1793 SBT_1MS << 0, 1794 SBT_1MS << 1, 1795 SBT_1MS << 2, 1796 SBT_1MS << 3, 1797 SBT_1MS << 4, 1798 SBT_1MS << 5, 1799 SBT_1MS << 6, 1800 SBT_1MS << 7, 1801 SBT_1MS << 8, 1802 SBT_1MS << 9, 1803 SBT_1MS << 10, 1804 SBT_1MS << 11, 1805 SBT_1MS << 12, 1806 SBT_1MS << 13 /* 8.192s */ 1807 }; 1808 1809 static void 1810 cam_iosched_update(struct iop_stats *iop, sbintime_t sim_latency) 1811 { 1812 sbintime_t y, deltasq, delta; 1813 int i; 1814 1815 /* 1816 * Keep counts for latency. We do it by power of two buckets. 1817 * This helps us spot outlier behavior obscured by averages. 1818 */ 1819 for (i = 0; i < LAT_BUCKETS - 1; i++) { 1820 if (sim_latency < latencies[i]) { 1821 iop->latencies[i]++; 1822 break; 1823 } 1824 } 1825 if (i == LAT_BUCKETS - 1) 1826 iop->latencies[i]++; /* Put all > 8192ms values into the last bucket. */ 1827 1828 /* 1829 * Classic exponentially decaying average with a tiny alpha 1830 * (2 ^ -alpha_bits). For more info see the NIST statistical 1831 * handbook. 1832 * 1833 * ema_t = y_t * alpha + ema_t-1 * (1 - alpha) [nist] 1834 * ema_t = y_t * alpha + ema_t-1 - alpha * ema_t-1 1835 * ema_t = alpha * y_t - alpha * ema_t-1 + ema_t-1 1836 * alpha = 1 / (1 << alpha_bits) 1837 * sub e == ema_t-1, b == 1/alpha (== 1 << alpha_bits), d == y_t - ema_t-1 1838 * = y_t/b - e/b + be/b 1839 * = (y_t - e + be) / b 1840 * = (e + d) / b 1841 * 1842 * Since alpha is a power of two, we can compute this w/o any mult or 1843 * division. 1844 * 1845 * Variance can also be computed. Usually, it would be expressed as follows: 1846 * diff_t = y_t - ema_t-1 1847 * emvar_t = (1 - alpha) * (emavar_t-1 + diff_t^2 * alpha) 1848 * = emavar_t-1 - alpha * emavar_t-1 + delta_t^2 * alpha - (delta_t * alpha)^2 1849 * sub b == 1/alpha (== 1 << alpha_bits), e == emavar_t-1, d = delta_t^2 1850 * = e - e/b + dd/b + dd/bb 1851 * = (bbe - be + bdd + dd) / bb 1852 * = (bbe + b(dd-e) + dd) / bb (which is expanded below bb = 1<<(2*alpha_bits)) 1853 */ 1854 /* 1855 * XXX possible numeric issues 1856 * o We assume right shifted integers do the right thing, since that's 1857 * implementation defined. You can change the right shifts to / (1LL << alpha). 1858 * o alpha_bits = 9 gives ema ceiling of 23 bits of seconds for ema and 14 bits 1859 * for emvar. This puts a ceiling of 13 bits on alpha since we need a 1860 * few tens of seconds of representation. 1861 * o We mitigate alpha issues by never setting it too high. 1862 */ 1863 y = sim_latency; 1864 delta = (y - iop->ema); /* d */ 1865 iop->ema = ((iop->ema << alpha_bits) + delta) >> alpha_bits; 1866 1867 /* 1868 * Were we to naively plow ahead at this point, we wind up with many numerical 1869 * issues making any SD > ~3ms unreliable. So, we shift right by 12. This leaves 1870 * us with microsecond level precision in the input, so the same in the 1871 * output. It means we can't overflow deltasq unless delta > 4k seconds. It 1872 * also means that emvar can be up 46 bits 40 of which are fraction, which 1873 * gives us a way to measure up to ~8s in the SD before the computation goes 1874 * unstable. Even the worst hard disk rarely has > 1s service time in the 1875 * drive. It does mean we have to shift left 12 bits after taking the 1876 * square root to compute the actual standard deviation estimate. This loss of 1877 * precision is preferable to needing int128 types to work. The above numbers 1878 * assume alpha=9. 10 or 11 are ok, but we start to run into issues at 12, 1879 * so 12 or 13 is OK for EMA, EMVAR and SD will be wrong in those cases. 1880 */ 1881 delta >>= 12; 1882 deltasq = delta * delta; /* dd */ 1883 iop->emvar = ((iop->emvar << (2 * alpha_bits)) + /* bbe */ 1884 ((deltasq - iop->emvar) << alpha_bits) + /* b(dd-e) */ 1885 deltasq) /* dd */ 1886 >> (2 * alpha_bits); /* div bb */ 1887 iop->sd = (sbintime_t)isqrt64((uint64_t)iop->emvar) << 12; 1888 } 1889 1890 static void 1891 cam_iosched_io_metric_update(struct cam_iosched_softc *isc, 1892 sbintime_t sim_latency, int cmd, size_t size) 1893 { 1894 /* xxx Do we need to scale based on the size of the I/O ? */ 1895 switch (cmd) { 1896 case BIO_READ: 1897 cam_iosched_update(&isc->read_stats, sim_latency); 1898 break; 1899 case BIO_WRITE: 1900 cam_iosched_update(&isc->write_stats, sim_latency); 1901 break; 1902 case BIO_DELETE: 1903 cam_iosched_update(&isc->trim_stats, sim_latency); 1904 break; 1905 default: 1906 break; 1907 } 1908 } 1909 1910 #ifdef DDB 1911 static int biolen(struct bio_queue_head *bq) 1912 { 1913 int i = 0; 1914 struct bio *bp; 1915 1916 TAILQ_FOREACH(bp, &bq->queue, bio_queue) { 1917 i++; 1918 } 1919 return i; 1920 } 1921 1922 /* 1923 * Show the internal state of the I/O scheduler. 1924 */ 1925 DB_SHOW_COMMAND(iosched, cam_iosched_db_show) 1926 { 1927 struct cam_iosched_softc *isc; 1928 1929 if (!have_addr) { 1930 db_printf("Need addr\n"); 1931 return; 1932 } 1933 isc = (struct cam_iosched_softc *)addr; 1934 db_printf("pending_reads: %d\n", isc->read_stats.pending); 1935 db_printf("min_reads: %d\n", isc->read_stats.min); 1936 db_printf("max_reads: %d\n", isc->read_stats.max); 1937 db_printf("reads: %d\n", isc->read_stats.total); 1938 db_printf("in_reads: %d\n", isc->read_stats.in); 1939 db_printf("out_reads: %d\n", isc->read_stats.out); 1940 db_printf("queued_reads: %d\n", isc->read_stats.queued); 1941 db_printf("Read Q len %d\n", biolen(&isc->bio_queue)); 1942 db_printf("pending_writes: %d\n", isc->write_stats.pending); 1943 db_printf("min_writes: %d\n", isc->write_stats.min); 1944 db_printf("max_writes: %d\n", isc->write_stats.max); 1945 db_printf("writes: %d\n", isc->write_stats.total); 1946 db_printf("in_writes: %d\n", isc->write_stats.in); 1947 db_printf("out_writes: %d\n", isc->write_stats.out); 1948 db_printf("queued_writes: %d\n", isc->write_stats.queued); 1949 db_printf("Write Q len %d\n", biolen(&isc->write_queue)); 1950 db_printf("pending_trims: %d\n", isc->trim_stats.pending); 1951 db_printf("min_trims: %d\n", isc->trim_stats.min); 1952 db_printf("max_trims: %d\n", isc->trim_stats.max); 1953 db_printf("trims: %d\n", isc->trim_stats.total); 1954 db_printf("in_trims: %d\n", isc->trim_stats.in); 1955 db_printf("out_trims: %d\n", isc->trim_stats.out); 1956 db_printf("queued_trims: %d\n", isc->trim_stats.queued); 1957 db_printf("Trim Q len %d\n", biolen(&isc->trim_queue)); 1958 db_printf("read_bias: %d\n", isc->read_bias); 1959 db_printf("current_read_bias: %d\n", isc->current_read_bias); 1960 db_printf("Trim active? %s\n", 1961 (isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) ? "yes" : "no"); 1962 } 1963 #endif 1964 #endif 1965