xref: /freebsd/sys/arm/ti/cpsw/if_cpsw.c (revision bc7512cc58af2e8bbe5bbf5ca0059b1daa1da897)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
5  * Copyright (c) 2016 Rubicon Communications, LLC (Netgate)
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * TI Common Platform Ethernet Switch (CPSW) Driver
32  * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
33  *
34  * This controller is documented in the AM335x Technical Reference
35  * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
36  * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
37  *
38  * It is basically a single Ethernet port (port 0) wired internally to
39  * a 3-port store-and-forward switch connected to two independent
40  * "sliver" controllers (port 1 and port 2).  You can operate the
41  * controller in a variety of different ways by suitably configuring
42  * the slivers and the Address Lookup Engine (ALE) that routes packets
43  * between the ports.
44  *
45  * This code was developed and tested on a BeagleBone with
46  * an AM335x SoC.
47  */
48 
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51 
52 #include "opt_cpsw.h"
53 
54 #include <sys/param.h>
55 #include <sys/bus.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/mbuf.h>
59 #include <sys/module.h>
60 #include <sys/mutex.h>
61 #include <sys/rman.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65 
66 #include <machine/bus.h>
67 #include <machine/resource.h>
68 #include <machine/stdarg.h>
69 
70 #include <net/ethernet.h>
71 #include <net/bpf.h>
72 #include <net/if.h>
73 #include <net/if_dl.h>
74 #include <net/if_media.h>
75 #include <net/if_types.h>
76 
77 #include <dev/extres/syscon/syscon.h>
78 #include "syscon_if.h"
79 #include <arm/ti/am335x/am335x_scm.h>
80 
81 #include <dev/mii/mii.h>
82 #include <dev/mii/miivar.h>
83 
84 #include <dev/ofw/ofw_bus.h>
85 #include <dev/ofw/ofw_bus_subr.h>
86 
87 #include <dev/fdt/fdt_common.h>
88 
89 #ifdef CPSW_ETHERSWITCH
90 #include <dev/etherswitch/etherswitch.h>
91 #include "etherswitch_if.h"
92 #endif
93 
94 #include "if_cpswreg.h"
95 #include "if_cpswvar.h"
96 
97 #include "miibus_if.h"
98 
99 /* Device probe/attach/detach. */
100 static int cpsw_probe(device_t);
101 static int cpsw_attach(device_t);
102 static int cpsw_detach(device_t);
103 static int cpswp_probe(device_t);
104 static int cpswp_attach(device_t);
105 static int cpswp_detach(device_t);
106 
107 static phandle_t cpsw_get_node(device_t, device_t);
108 
109 /* Device Init/shutdown. */
110 static int cpsw_shutdown(device_t);
111 static void cpswp_init(void *);
112 static void cpswp_init_locked(void *);
113 static void cpswp_stop_locked(struct cpswp_softc *);
114 
115 /* Device Suspend/Resume. */
116 static int cpsw_suspend(device_t);
117 static int cpsw_resume(device_t);
118 
119 /* Ioctl. */
120 static int cpswp_ioctl(struct ifnet *, u_long command, caddr_t data);
121 
122 static int cpswp_miibus_readreg(device_t, int phy, int reg);
123 static int cpswp_miibus_writereg(device_t, int phy, int reg, int value);
124 static void cpswp_miibus_statchg(device_t);
125 
126 /* Send/Receive packets. */
127 static void cpsw_intr_rx(void *arg);
128 static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
129 static void cpsw_rx_enqueue(struct cpsw_softc *);
130 static void cpswp_start(struct ifnet *);
131 static void cpsw_intr_tx(void *);
132 static void cpswp_tx_enqueue(struct cpswp_softc *);
133 static int cpsw_tx_dequeue(struct cpsw_softc *);
134 
135 /* Misc interrupts and watchdog. */
136 static void cpsw_intr_rx_thresh(void *);
137 static void cpsw_intr_misc(void *);
138 static void cpswp_tick(void *);
139 static void cpswp_ifmedia_sts(struct ifnet *, struct ifmediareq *);
140 static int cpswp_ifmedia_upd(struct ifnet *);
141 static void cpsw_tx_watchdog(void *);
142 
143 /* ALE support */
144 static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t, uint32_t *);
145 static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t, uint32_t *);
146 static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t, int, uint8_t *);
147 static void cpsw_ale_dump_table(struct cpsw_softc *);
148 static int cpsw_ale_update_vlan_table(struct cpsw_softc *, int, int, int, int,
149 	int);
150 static int cpswp_ale_update_addresses(struct cpswp_softc *, int);
151 
152 /* Statistics and sysctls. */
153 static void cpsw_add_sysctls(struct cpsw_softc *);
154 static void cpsw_stats_collect(struct cpsw_softc *);
155 static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
156 
157 #ifdef CPSW_ETHERSWITCH
158 static etherswitch_info_t *cpsw_getinfo(device_t);
159 static int cpsw_getport(device_t, etherswitch_port_t *);
160 static int cpsw_setport(device_t, etherswitch_port_t *);
161 static int cpsw_getconf(device_t, etherswitch_conf_t *);
162 static int cpsw_getvgroup(device_t, etherswitch_vlangroup_t *);
163 static int cpsw_setvgroup(device_t, etherswitch_vlangroup_t *);
164 static int cpsw_readreg(device_t, int);
165 static int cpsw_writereg(device_t, int, int);
166 static int cpsw_readphy(device_t, int, int);
167 static int cpsw_writephy(device_t, int, int, int);
168 #endif
169 
170 /*
171  * Arbitrary limit on number of segments in an mbuf to be transmitted.
172  * Packets with more segments than this will be defragmented before
173  * they are queued.
174  */
175 #define	CPSW_TXFRAGS		16
176 
177 /* Shared resources. */
178 static device_method_t cpsw_methods[] = {
179 	/* Device interface */
180 	DEVMETHOD(device_probe,		cpsw_probe),
181 	DEVMETHOD(device_attach,	cpsw_attach),
182 	DEVMETHOD(device_detach,	cpsw_detach),
183 	DEVMETHOD(device_shutdown,	cpsw_shutdown),
184 	DEVMETHOD(device_suspend,	cpsw_suspend),
185 	DEVMETHOD(device_resume,	cpsw_resume),
186 	/* Bus interface */
187 	DEVMETHOD(bus_add_child,	device_add_child_ordered),
188 	/* OFW methods */
189 	DEVMETHOD(ofw_bus_get_node,	cpsw_get_node),
190 #ifdef CPSW_ETHERSWITCH
191 	/* etherswitch interface */
192 	DEVMETHOD(etherswitch_getinfo,	cpsw_getinfo),
193 	DEVMETHOD(etherswitch_readreg,	cpsw_readreg),
194 	DEVMETHOD(etherswitch_writereg,	cpsw_writereg),
195 	DEVMETHOD(etherswitch_readphyreg,	cpsw_readphy),
196 	DEVMETHOD(etherswitch_writephyreg,	cpsw_writephy),
197 	DEVMETHOD(etherswitch_getport,	cpsw_getport),
198 	DEVMETHOD(etherswitch_setport,	cpsw_setport),
199 	DEVMETHOD(etherswitch_getvgroup,	cpsw_getvgroup),
200 	DEVMETHOD(etherswitch_setvgroup,	cpsw_setvgroup),
201 	DEVMETHOD(etherswitch_getconf,	cpsw_getconf),
202 #endif
203 	DEVMETHOD_END
204 };
205 
206 static driver_t cpsw_driver = {
207 	"cpswss",
208 	cpsw_methods,
209 	sizeof(struct cpsw_softc),
210 };
211 
212 DRIVER_MODULE(cpswss, simplebus, cpsw_driver, 0, 0);
213 
214 /* Port/Slave resources. */
215 static device_method_t cpswp_methods[] = {
216 	/* Device interface */
217 	DEVMETHOD(device_probe,		cpswp_probe),
218 	DEVMETHOD(device_attach,	cpswp_attach),
219 	DEVMETHOD(device_detach,	cpswp_detach),
220 	/* MII interface */
221 	DEVMETHOD(miibus_readreg,	cpswp_miibus_readreg),
222 	DEVMETHOD(miibus_writereg,	cpswp_miibus_writereg),
223 	DEVMETHOD(miibus_statchg,	cpswp_miibus_statchg),
224 	DEVMETHOD_END
225 };
226 
227 static driver_t cpswp_driver = {
228 	"cpsw",
229 	cpswp_methods,
230 	sizeof(struct cpswp_softc),
231 };
232 
233 #ifdef CPSW_ETHERSWITCH
234 DRIVER_MODULE(etherswitch, cpswss, etherswitch_driver, 0, 0);
235 MODULE_DEPEND(cpswss, etherswitch, 1, 1, 1);
236 #endif
237 
238 DRIVER_MODULE(cpsw, cpswss, cpswp_driver, 0, 0);
239 DRIVER_MODULE(miibus, cpsw, miibus_driver, 0, 0);
240 MODULE_DEPEND(cpsw, ether, 1, 1, 1);
241 MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
242 
243 #ifdef CPSW_ETHERSWITCH
244 static struct cpsw_vlangroups cpsw_vgroups[CPSW_VLANS];
245 #endif
246 
247 static uint32_t slave_mdio_addr[] = { 0x4a100200, 0x4a100300 };
248 
249 static struct resource_spec irq_res_spec[] = {
250 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
251 	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
252 	{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
253 	{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
254 	{ -1, 0 }
255 };
256 
257 static struct {
258 	void (*cb)(void *);
259 } cpsw_intr_cb[] = {
260 	{ cpsw_intr_rx_thresh },
261 	{ cpsw_intr_rx },
262 	{ cpsw_intr_tx },
263 	{ cpsw_intr_misc },
264 };
265 
266 /* Number of entries here must match size of stats
267  * array in struct cpswp_softc. */
268 static struct cpsw_stat {
269 	int	reg;
270 	char *oid;
271 } cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
272 	{0x00, "GoodRxFrames"},
273 	{0x04, "BroadcastRxFrames"},
274 	{0x08, "MulticastRxFrames"},
275 	{0x0C, "PauseRxFrames"},
276 	{0x10, "RxCrcErrors"},
277 	{0x14, "RxAlignErrors"},
278 	{0x18, "OversizeRxFrames"},
279 	{0x1c, "RxJabbers"},
280 	{0x20, "ShortRxFrames"},
281 	{0x24, "RxFragments"},
282 	{0x30, "RxOctets"},
283 	{0x34, "GoodTxFrames"},
284 	{0x38, "BroadcastTxFrames"},
285 	{0x3c, "MulticastTxFrames"},
286 	{0x40, "PauseTxFrames"},
287 	{0x44, "DeferredTxFrames"},
288 	{0x48, "CollisionsTxFrames"},
289 	{0x4c, "SingleCollisionTxFrames"},
290 	{0x50, "MultipleCollisionTxFrames"},
291 	{0x54, "ExcessiveCollisions"},
292 	{0x58, "LateCollisions"},
293 	{0x5c, "TxUnderrun"},
294 	{0x60, "CarrierSenseErrors"},
295 	{0x64, "TxOctets"},
296 	{0x68, "RxTx64OctetFrames"},
297 	{0x6c, "RxTx65to127OctetFrames"},
298 	{0x70, "RxTx128to255OctetFrames"},
299 	{0x74, "RxTx256to511OctetFrames"},
300 	{0x78, "RxTx512to1024OctetFrames"},
301 	{0x7c, "RxTx1024upOctetFrames"},
302 	{0x80, "NetOctets"},
303 	{0x84, "RxStartOfFrameOverruns"},
304 	{0x88, "RxMiddleOfFrameOverruns"},
305 	{0x8c, "RxDmaOverruns"}
306 };
307 
308 /*
309  * Basic debug support.
310  */
311 
312 static void
313 cpsw_debugf_head(const char *funcname)
314 {
315 	int t = (int)(time_second % (24 * 60 * 60));
316 
317 	printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
318 }
319 
320 static void
321 cpsw_debugf(const char *fmt, ...)
322 {
323 	va_list ap;
324 
325 	va_start(ap, fmt);
326 	vprintf(fmt, ap);
327 	va_end(ap);
328 	printf("\n");
329 
330 }
331 
332 #define	CPSW_DEBUGF(_sc, a) do {					\
333 	if ((_sc)->debug) {						\
334 		cpsw_debugf_head(__func__);				\
335 		cpsw_debugf a;						\
336 	}								\
337 } while (0)
338 
339 /*
340  * Locking macros
341  */
342 #define	CPSW_TX_LOCK(sc) do {						\
343 		mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);		\
344 		mtx_lock(&(sc)->tx.lock);				\
345 } while (0)
346 
347 #define	CPSW_TX_UNLOCK(sc)	mtx_unlock(&(sc)->tx.lock)
348 #define	CPSW_TX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->tx.lock, MA_OWNED)
349 
350 #define	CPSW_RX_LOCK(sc) do {						\
351 		mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);		\
352 		mtx_lock(&(sc)->rx.lock);				\
353 } while (0)
354 
355 #define	CPSW_RX_UNLOCK(sc)		mtx_unlock(&(sc)->rx.lock)
356 #define	CPSW_RX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->rx.lock, MA_OWNED)
357 
358 #define CPSW_PORT_LOCK(_sc) do {					\
359 		mtx_assert(&(_sc)->lock, MA_NOTOWNED);			\
360 		mtx_lock(&(_sc)->lock);					\
361 } while (0)
362 
363 #define	CPSW_PORT_UNLOCK(_sc)	mtx_unlock(&(_sc)->lock)
364 #define	CPSW_PORT_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->lock, MA_OWNED)
365 
366 /*
367  * Read/Write macros
368  */
369 #define	cpsw_read_4(_sc, _reg)		bus_read_4((_sc)->mem_res, (_reg))
370 #define	cpsw_write_4(_sc, _reg, _val)					\
371 	bus_write_4((_sc)->mem_res, (_reg), (_val))
372 
373 #define	cpsw_cpdma_bd_offset(i)	(CPSW_CPPI_RAM_OFFSET + ((i)*16))
374 
375 #define	cpsw_cpdma_bd_paddr(sc, slot)					\
376 	BUS_SPACE_PHYSADDR(sc->mem_res, slot->bd_offset)
377 #define	cpsw_cpdma_read_bd(sc, slot, val)				\
378 	bus_read_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
379 #define	cpsw_cpdma_write_bd(sc, slot, val)				\
380 	bus_write_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
381 #define	cpsw_cpdma_write_bd_next(sc, slot, next_slot)			\
382 	cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
383 #define	cpsw_cpdma_write_bd_flags(sc, slot, val)			\
384 	bus_write_2(sc->mem_res, slot->bd_offset + 14, val)
385 #define	cpsw_cpdma_read_bd_flags(sc, slot)				\
386 	bus_read_2(sc->mem_res, slot->bd_offset + 14)
387 #define	cpsw_write_hdp_slot(sc, queue, slot)				\
388 	cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
389 #define	CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
390 #define	cpsw_read_cp(sc, queue)						\
391 	cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
392 #define	cpsw_write_cp(sc, queue, val)					\
393 	cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
394 #define	cpsw_write_cp_slot(sc, queue, slot)				\
395 	cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
396 
397 #if 0
398 /* XXX temporary function versions for debugging. */
399 static void
400 cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
401 {
402 	uint32_t reg = queue->hdp_offset;
403 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
404 	CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
405 	cpsw_write_4(sc, reg, v);
406 }
407 
408 static void
409 cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
410 {
411 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
412 	CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
413 	cpsw_write_cp(sc, queue, v);
414 }
415 #endif
416 
417 /*
418  * Expanded dump routines for verbose debugging.
419  */
420 static void
421 cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
422 {
423 	static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
424 	    "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
425 	    "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
426 	    "Port0"};
427 	struct cpsw_cpdma_bd bd;
428 	const char *sep;
429 	int i;
430 
431 	cpsw_cpdma_read_bd(sc, slot, &bd);
432 	printf("BD Addr : 0x%08x   Next  : 0x%08x\n",
433 	    cpsw_cpdma_bd_paddr(sc, slot), bd.next);
434 	printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
435 	printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
436 	printf("  Flags: ");
437 	sep = "";
438 	for (i = 0; i < 16; ++i) {
439 		if (bd.flags & (1 << (15 - i))) {
440 			printf("%s%s", sep, flags[i]);
441 			sep = ",";
442 		}
443 	}
444 	printf("\n");
445 	if (slot->mbuf) {
446 		printf("  Ether:  %14D\n",
447 		    (char *)(slot->mbuf->m_data), " ");
448 		printf("  Packet: %16D\n",
449 		    (char *)(slot->mbuf->m_data) + 14, " ");
450 	}
451 }
452 
453 #define	CPSW_DUMP_SLOT(cs, slot) do {				\
454 	IF_DEBUG(sc) {						\
455 		cpsw_dump_slot(sc, slot);			\
456 	}							\
457 } while (0)
458 
459 static void
460 cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
461 {
462 	struct cpsw_slot *slot;
463 	int i = 0;
464 	int others = 0;
465 
466 	STAILQ_FOREACH(slot, q, next) {
467 		if (i > CPSW_TXFRAGS)
468 			++others;
469 		else
470 			cpsw_dump_slot(sc, slot);
471 		++i;
472 	}
473 	if (others)
474 		printf(" ... and %d more.\n", others);
475 	printf("\n");
476 }
477 
478 #define CPSW_DUMP_QUEUE(sc, q) do {				\
479 	IF_DEBUG(sc) {						\
480 		cpsw_dump_queue(sc, q);				\
481 	}							\
482 } while (0)
483 
484 static void
485 cpsw_init_slots(struct cpsw_softc *sc)
486 {
487 	struct cpsw_slot *slot;
488 	int i;
489 
490 	STAILQ_INIT(&sc->avail);
491 
492 	/* Put the slot descriptors onto the global avail list. */
493 	for (i = 0; i < nitems(sc->_slots); i++) {
494 		slot = &sc->_slots[i];
495 		slot->bd_offset = cpsw_cpdma_bd_offset(i);
496 		STAILQ_INSERT_TAIL(&sc->avail, slot, next);
497 	}
498 }
499 
500 static int
501 cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
502 {
503 	const int max_slots = nitems(sc->_slots);
504 	struct cpsw_slot *slot;
505 	int i;
506 
507 	if (requested < 0)
508 		requested = max_slots;
509 
510 	for (i = 0; i < requested; ++i) {
511 		slot = STAILQ_FIRST(&sc->avail);
512 		if (slot == NULL)
513 			return (0);
514 		if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
515 			device_printf(sc->dev, "failed to create dmamap\n");
516 			return (ENOMEM);
517 		}
518 		STAILQ_REMOVE_HEAD(&sc->avail, next);
519 		STAILQ_INSERT_TAIL(&queue->avail, slot, next);
520 		++queue->avail_queue_len;
521 		++queue->queue_slots;
522 	}
523 	return (0);
524 }
525 
526 static void
527 cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
528 {
529 	int error __diagused;
530 
531 	if (slot->dmamap) {
532 		if (slot->mbuf)
533 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
534 		error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
535 		KASSERT(error == 0, ("Mapping still active"));
536 		slot->dmamap = NULL;
537 	}
538 	if (slot->mbuf) {
539 		m_freem(slot->mbuf);
540 		slot->mbuf = NULL;
541 	}
542 }
543 
544 static void
545 cpsw_reset(struct cpsw_softc *sc)
546 {
547 	int i;
548 
549 	callout_stop(&sc->watchdog.callout);
550 
551 	/* Reset RMII/RGMII wrapper. */
552 	cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
553 	while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
554 		;
555 
556 	/* Disable TX and RX interrupts for all cores. */
557 	for (i = 0; i < 3; ++i) {
558 		cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
559 		cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
560 		cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
561 		cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
562 	}
563 
564 	/* Reset CPSW subsystem. */
565 	cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
566 	while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
567 		;
568 
569 	/* Reset Sliver port 1 and 2 */
570 	for (i = 0; i < 2; i++) {
571 		/* Reset */
572 		cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
573 		while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
574 			;
575 	}
576 
577 	/* Reset DMA controller. */
578 	cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
579 	while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
580 		;
581 
582 	/* Disable TX & RX DMA */
583 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
584 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
585 
586 	/* Clear all queues. */
587 	for (i = 0; i < 8; i++) {
588 		cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
589 		cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
590 		cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
591 		cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
592 	}
593 
594 	/* Clear all interrupt Masks */
595 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
596 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
597 }
598 
599 static void
600 cpsw_init(struct cpsw_softc *sc)
601 {
602 	struct cpsw_slot *slot;
603 	uint32_t reg;
604 
605 	/* Disable the interrupt pacing. */
606 	reg = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
607 	reg &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
608 	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, reg);
609 
610 	/* Clear ALE */
611 	cpsw_write_4(sc, CPSW_ALE_CONTROL, CPSW_ALE_CTL_CLEAR_TBL);
612 
613 	/* Enable ALE */
614 	reg = CPSW_ALE_CTL_ENABLE;
615 	if (sc->dualemac)
616 		reg |= CPSW_ALE_CTL_VLAN_AWARE;
617 	cpsw_write_4(sc, CPSW_ALE_CONTROL, reg);
618 
619 	/* Set Host Port Mapping. */
620 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
621 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
622 
623 	/* Initialize ALE: set host port to forwarding(3). */
624 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(0),
625 	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
626 
627 	cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
628 
629 	/* Enable statistics for ports 0, 1 and 2 */
630 	cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
631 
632 	/* Turn off flow control. */
633 	cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
634 
635 	/* Make IP hdr aligned with 4 */
636 	cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
637 
638 	/* Initialize RX Buffer Descriptors */
639 	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), 0);
640 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
641 
642 	/* Enable TX & RX DMA */
643 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
644 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
645 
646 	/* Enable Interrupts for core 0 */
647 	cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
648 	cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
649 	cpsw_write_4(sc, CPSW_WR_C_TX_EN(0), 0xFF);
650 	cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x1F);
651 
652 	/* Enable host Error Interrupt */
653 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
654 
655 	/* Enable interrupts for RX and TX on Channel 0 */
656 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET,
657 	    CPSW_CPDMA_RX_INT(0) | CPSW_CPDMA_RX_INT_THRESH(0));
658 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_SET, 1);
659 
660 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
661 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
662 	cpsw_write_4(sc, MDIOCONTROL, MDIOCTL_ENABLE | MDIOCTL_FAULTENB | 0xff);
663 
664 	/* Select MII in GMII_SEL, Internal Delay mode */
665 	//ti_scm_reg_write_4(0x650, 0);
666 
667 	/* Initialize active queues. */
668 	slot = STAILQ_FIRST(&sc->tx.active);
669 	if (slot != NULL)
670 		cpsw_write_hdp_slot(sc, &sc->tx, slot);
671 	slot = STAILQ_FIRST(&sc->rx.active);
672 	if (slot != NULL)
673 		cpsw_write_hdp_slot(sc, &sc->rx, slot);
674 	cpsw_rx_enqueue(sc);
675 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), sc->rx.active_queue_len);
676 	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), CPSW_TXFRAGS);
677 
678 	/* Activate network interface. */
679 	sc->rx.running = 1;
680 	sc->tx.running = 1;
681 	sc->watchdog.timer = 0;
682 	callout_init(&sc->watchdog.callout, 0);
683 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
684 }
685 
686 /*
687  *
688  * Device Probe, Attach, Detach.
689  *
690  */
691 
692 static int
693 cpsw_probe(device_t dev)
694 {
695 
696 	if (!ofw_bus_status_okay(dev))
697 		return (ENXIO);
698 
699 	if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
700 		return (ENXIO);
701 
702 	device_set_desc(dev, "3-port Switch Ethernet Subsystem");
703 	return (BUS_PROBE_DEFAULT);
704 }
705 
706 static int
707 cpsw_intr_attach(struct cpsw_softc *sc)
708 {
709 	int i;
710 
711 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
712 		if (bus_setup_intr(sc->dev, sc->irq_res[i],
713 		    INTR_TYPE_NET | INTR_MPSAFE, NULL,
714 		    cpsw_intr_cb[i].cb, sc, &sc->ih_cookie[i]) != 0) {
715 			return (-1);
716 		}
717 	}
718 
719 	return (0);
720 }
721 
722 static void
723 cpsw_intr_detach(struct cpsw_softc *sc)
724 {
725 	int i;
726 
727 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
728 		if (sc->ih_cookie[i]) {
729 			bus_teardown_intr(sc->dev, sc->irq_res[i],
730 			    sc->ih_cookie[i]);
731 		}
732 	}
733 }
734 
735 static int
736 cpsw_get_fdt_data(struct cpsw_softc *sc, int port)
737 {
738 	char *name;
739 	int len, phy, vlan;
740 	pcell_t phy_id[3], vlan_id;
741 	phandle_t child;
742 	unsigned long mdio_child_addr;
743 
744 	/* Find any slave with phy-handle/phy_id */
745 	phy = -1;
746 	vlan = -1;
747 	for (child = OF_child(sc->node); child != 0; child = OF_peer(child)) {
748 		if (OF_getprop_alloc(child, "name", (void **)&name) < 0)
749 			continue;
750 		if (sscanf(name, "slave@%lx", &mdio_child_addr) != 1) {
751 			OF_prop_free(name);
752 			continue;
753 		}
754 		OF_prop_free(name);
755 
756 		if (mdio_child_addr != slave_mdio_addr[port] &&
757 		    mdio_child_addr != (slave_mdio_addr[port] & 0xFFF))
758 			continue;
759 
760 		if (fdt_get_phyaddr(child, NULL, &phy, NULL) != 0){
761 			/* Users with old DTB will have phy_id instead */
762 			phy = -1;
763 			len = OF_getproplen(child, "phy_id");
764 			if (len / sizeof(pcell_t) == 2) {
765 				/* Get phy address from fdt */
766 				if (OF_getencprop(child, "phy_id", phy_id, len) > 0)
767 					phy = phy_id[1];
768 			}
769 		}
770 
771 		len = OF_getproplen(child, "dual_emac_res_vlan");
772 		if (len / sizeof(pcell_t) == 1) {
773 			/* Get phy address from fdt */
774 			if (OF_getencprop(child, "dual_emac_res_vlan",
775 			    &vlan_id, len) > 0) {
776 				vlan = vlan_id;
777 			}
778 		}
779 
780 		break;
781 	}
782 	if (phy == -1)
783 		return (ENXIO);
784 	sc->port[port].phy = phy;
785 	sc->port[port].vlan = vlan;
786 
787 	return (0);
788 }
789 
790 static int
791 cpsw_attach(device_t dev)
792 {
793 	int error, i;
794 	struct cpsw_softc *sc;
795 	uint32_t reg;
796 
797 	sc = device_get_softc(dev);
798 	sc->dev = dev;
799 	sc->node = ofw_bus_get_node(dev);
800 	getbinuptime(&sc->attach_uptime);
801 
802 	if (OF_getencprop(sc->node, "active_slave", &sc->active_slave,
803 	    sizeof(sc->active_slave)) <= 0) {
804 		sc->active_slave = 0;
805 	}
806 	if (sc->active_slave > 1)
807 		sc->active_slave = 1;
808 
809 	if (OF_hasprop(sc->node, "dual_emac"))
810 		sc->dualemac = 1;
811 
812 	for (i = 0; i < CPSW_PORTS; i++) {
813 		if (!sc->dualemac && i != sc->active_slave)
814 			continue;
815 		if (cpsw_get_fdt_data(sc, i) != 0) {
816 			device_printf(dev,
817 			    "failed to get PHY address from FDT\n");
818 			return (ENXIO);
819 		}
820 	}
821 
822 	/* Initialize mutexes */
823 	mtx_init(&sc->tx.lock, device_get_nameunit(dev),
824 	    "cpsw TX lock", MTX_DEF);
825 	mtx_init(&sc->rx.lock, device_get_nameunit(dev),
826 	    "cpsw RX lock", MTX_DEF);
827 
828 	/* Allocate IRQ resources */
829 	error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
830 	if (error) {
831 		device_printf(dev, "could not allocate IRQ resources\n");
832 		cpsw_detach(dev);
833 		return (ENXIO);
834 	}
835 
836 	sc->mem_rid = 0;
837 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
838 	    &sc->mem_rid, RF_ACTIVE);
839 	if (sc->mem_res == NULL) {
840 		device_printf(sc->dev, "failed to allocate memory resource\n");
841 		cpsw_detach(dev);
842 		return (ENXIO);
843 	}
844 
845 	reg = cpsw_read_4(sc, CPSW_SS_IDVER);
846 	device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
847 		reg & 0xFF, (reg >> 11) & 0x1F);
848 
849 	cpsw_add_sysctls(sc);
850 
851 	/* Allocate a busdma tag and DMA safe memory for mbufs. */
852 	error = bus_dma_tag_create(
853 		bus_get_dma_tag(sc->dev),	/* parent */
854 		1, 0,				/* alignment, boundary */
855 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
856 		BUS_SPACE_MAXADDR,		/* highaddr */
857 		NULL, NULL,			/* filtfunc, filtfuncarg */
858 		MCLBYTES, CPSW_TXFRAGS,		/* maxsize, nsegments */
859 		MCLBYTES, 0,			/* maxsegsz, flags */
860 		NULL, NULL,			/* lockfunc, lockfuncarg */
861 		&sc->mbuf_dtag);		/* dmatag */
862 	if (error) {
863 		device_printf(dev, "bus_dma_tag_create failed\n");
864 		cpsw_detach(dev);
865 		return (error);
866 	}
867 
868 	/* Allocate a NULL buffer for padding. */
869 	sc->nullpad = malloc(ETHER_MIN_LEN, M_DEVBUF, M_WAITOK | M_ZERO);
870 
871 	cpsw_init_slots(sc);
872 
873 	/* Allocate slots to TX and RX queues. */
874 	STAILQ_INIT(&sc->rx.avail);
875 	STAILQ_INIT(&sc->rx.active);
876 	STAILQ_INIT(&sc->tx.avail);
877 	STAILQ_INIT(&sc->tx.active);
878 	// For now:  128 slots to TX, rest to RX.
879 	// XXX TODO: start with 32/64 and grow dynamically based on demand.
880 	if (cpsw_add_slots(sc, &sc->tx, 128) ||
881 	    cpsw_add_slots(sc, &sc->rx, -1)) {
882 		device_printf(dev, "failed to allocate dmamaps\n");
883 		cpsw_detach(dev);
884 		return (ENOMEM);
885 	}
886 	device_printf(dev, "Initial queue size TX=%d RX=%d\n",
887 	    sc->tx.queue_slots, sc->rx.queue_slots);
888 
889 	sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
890 	sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
891 
892 	if (cpsw_intr_attach(sc) == -1) {
893 		device_printf(dev, "failed to setup interrupts\n");
894 		cpsw_detach(dev);
895 		return (ENXIO);
896 	}
897 
898 #ifdef CPSW_ETHERSWITCH
899 	for (i = 0; i < CPSW_VLANS; i++)
900 		cpsw_vgroups[i].vid = -1;
901 #endif
902 
903 	/* Reset the controller. */
904 	cpsw_reset(sc);
905 	cpsw_init(sc);
906 
907 	for (i = 0; i < CPSW_PORTS; i++) {
908 		if (!sc->dualemac && i != sc->active_slave)
909 			continue;
910 		sc->port[i].dev = device_add_child(dev, "cpsw", i);
911 		if (sc->port[i].dev == NULL) {
912 			cpsw_detach(dev);
913 			return (ENXIO);
914 		}
915 	}
916 	bus_generic_probe(dev);
917 	bus_generic_attach(dev);
918 
919 	return (0);
920 }
921 
922 static int
923 cpsw_detach(device_t dev)
924 {
925 	struct cpsw_softc *sc;
926 	int error, i;
927 
928 	bus_generic_detach(dev);
929  	sc = device_get_softc(dev);
930 
931 	for (i = 0; i < CPSW_PORTS; i++) {
932 		if (sc->port[i].dev)
933 			device_delete_child(dev, sc->port[i].dev);
934 	}
935 
936 	if (device_is_attached(dev)) {
937 		callout_stop(&sc->watchdog.callout);
938 		callout_drain(&sc->watchdog.callout);
939 	}
940 
941 	/* Stop and release all interrupts */
942 	cpsw_intr_detach(sc);
943 
944 	/* Free dmamaps and mbufs */
945 	for (i = 0; i < nitems(sc->_slots); ++i)
946 		cpsw_free_slot(sc, &sc->_slots[i]);
947 
948 	/* Free null padding buffer. */
949 	if (sc->nullpad)
950 		free(sc->nullpad, M_DEVBUF);
951 
952 	/* Free DMA tag */
953 	if (sc->mbuf_dtag) {
954 		error = bus_dma_tag_destroy(sc->mbuf_dtag);
955 		KASSERT(error == 0, ("Unable to destroy DMA tag"));
956 	}
957 
958 	/* Free IO memory handler */
959 	if (sc->mem_res != NULL)
960 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res);
961 	bus_release_resources(dev, irq_res_spec, sc->irq_res);
962 
963 	/* Destroy mutexes */
964 	mtx_destroy(&sc->rx.lock);
965 	mtx_destroy(&sc->tx.lock);
966 
967 	/* Detach the switch device, if present. */
968 	error = bus_generic_detach(dev);
969 	if (error != 0)
970 		return (error);
971 
972 	return (device_delete_children(dev));
973 }
974 
975 static phandle_t
976 cpsw_get_node(device_t bus, device_t dev)
977 {
978 
979 	/* Share controller node with port device. */
980 	return (ofw_bus_get_node(bus));
981 }
982 
983 static int
984 cpswp_probe(device_t dev)
985 {
986 
987 	if (device_get_unit(dev) > 1) {
988 		device_printf(dev, "Only two ports are supported.\n");
989 		return (ENXIO);
990 	}
991 	device_set_desc(dev, "Ethernet Switch Port");
992 
993 	return (BUS_PROBE_DEFAULT);
994 }
995 
996 static int
997 cpswp_attach(device_t dev)
998 {
999 	int error;
1000 	struct ifnet *ifp;
1001 	struct cpswp_softc *sc;
1002 	uint32_t reg;
1003 	uint8_t mac_addr[ETHER_ADDR_LEN];
1004 	phandle_t opp_table;
1005 	struct syscon *syscon;
1006 
1007 	sc = device_get_softc(dev);
1008 	sc->dev = dev;
1009 	sc->pdev = device_get_parent(dev);
1010 	sc->swsc = device_get_softc(sc->pdev);
1011 	sc->unit = device_get_unit(dev);
1012 	sc->phy = sc->swsc->port[sc->unit].phy;
1013 	sc->vlan = sc->swsc->port[sc->unit].vlan;
1014 	if (sc->swsc->dualemac && sc->vlan == -1)
1015 		sc->vlan = sc->unit + 1;
1016 
1017 	if (sc->unit == 0) {
1018 		sc->physel = MDIOUSERPHYSEL0;
1019 		sc->phyaccess = MDIOUSERACCESS0;
1020 	} else {
1021 		sc->physel = MDIOUSERPHYSEL1;
1022 		sc->phyaccess = MDIOUSERACCESS1;
1023 	}
1024 
1025 	mtx_init(&sc->lock, device_get_nameunit(dev), "cpsw port lock",
1026 	    MTX_DEF);
1027 
1028 	/* Allocate network interface */
1029 	ifp = sc->ifp = if_alloc(IFT_ETHER);
1030 	if (ifp == NULL) {
1031 		cpswp_detach(dev);
1032 		return (ENXIO);
1033 	}
1034 
1035 	if_initname(ifp, device_get_name(sc->dev), sc->unit);
1036 	ifp->if_softc = sc;
1037 	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
1038 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
1039 	ifp->if_capenable = ifp->if_capabilities;
1040 
1041 	ifp->if_init = cpswp_init;
1042 	ifp->if_start = cpswp_start;
1043 	ifp->if_ioctl = cpswp_ioctl;
1044 
1045 	ifp->if_snd.ifq_drv_maxlen = sc->swsc->tx.queue_slots;
1046 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1047 	IFQ_SET_READY(&ifp->if_snd);
1048 
1049 	/* FIXME: For now; Go and kidnap syscon from opp-table */
1050 	/* ti,cpsw actually have an optional syscon reference but only for am33xx?? */
1051 	opp_table = OF_finddevice("/opp-table");
1052 	if (opp_table == -1) {
1053 		device_printf(dev, "Cant find /opp-table\n");
1054 		cpswp_detach(dev);
1055 		return (ENXIO);
1056 	}
1057 	if (!OF_hasprop(opp_table, "syscon")) {
1058 		device_printf(dev, "/opp-table doesnt have required syscon property\n");
1059 		cpswp_detach(dev);
1060 		return (ENXIO);
1061 	}
1062 	if (syscon_get_by_ofw_property(dev, opp_table, "syscon", &syscon) != 0) {
1063 		device_printf(dev, "Failed to get syscon\n");
1064 		cpswp_detach(dev);
1065 		return (ENXIO);
1066 	}
1067 
1068 	/* Get high part of MAC address from control module (mac_id[0|1]_hi) */
1069 	reg = SYSCON_READ_4(syscon, SCM_MAC_ID0_HI + sc->unit * 8);
1070 	mac_addr[0] = reg & 0xFF;
1071 	mac_addr[1] = (reg >>  8) & 0xFF;
1072 	mac_addr[2] = (reg >> 16) & 0xFF;
1073 	mac_addr[3] = (reg >> 24) & 0xFF;
1074 
1075 	/* Get low part of MAC address from control module (mac_id[0|1]_lo) */
1076 	reg = SYSCON_READ_4(syscon, SCM_MAC_ID0_LO + sc->unit * 8);
1077 	mac_addr[4] = reg & 0xFF;
1078 	mac_addr[5] = (reg >>  8) & 0xFF;
1079 
1080 	error = mii_attach(dev, &sc->miibus, ifp, cpswp_ifmedia_upd,
1081 	    cpswp_ifmedia_sts, BMSR_DEFCAPMASK, sc->phy, MII_OFFSET_ANY, 0);
1082 	if (error) {
1083 		device_printf(dev, "attaching PHYs failed\n");
1084 		cpswp_detach(dev);
1085 		return (error);
1086 	}
1087 	sc->mii = device_get_softc(sc->miibus);
1088 
1089 	/* Select PHY and enable interrupts */
1090 	cpsw_write_4(sc->swsc, sc->physel,
1091 	    MDIO_PHYSEL_LINKINTENB | (sc->phy & 0x1F));
1092 
1093 	ether_ifattach(sc->ifp, mac_addr);
1094 	callout_init(&sc->mii_callout, 0);
1095 
1096 	return (0);
1097 }
1098 
1099 static int
1100 cpswp_detach(device_t dev)
1101 {
1102 	struct cpswp_softc *sc;
1103 
1104 	sc = device_get_softc(dev);
1105 	CPSW_DEBUGF(sc->swsc, (""));
1106 	if (device_is_attached(dev)) {
1107 		ether_ifdetach(sc->ifp);
1108 		CPSW_PORT_LOCK(sc);
1109 		cpswp_stop_locked(sc);
1110 		CPSW_PORT_UNLOCK(sc);
1111 		callout_drain(&sc->mii_callout);
1112 	}
1113 
1114 	bus_generic_detach(dev);
1115 
1116 	if_free(sc->ifp);
1117 	mtx_destroy(&sc->lock);
1118 
1119 	return (0);
1120 }
1121 
1122 /*
1123  *
1124  * Init/Shutdown.
1125  *
1126  */
1127 
1128 static int
1129 cpsw_ports_down(struct cpsw_softc *sc)
1130 {
1131 	struct cpswp_softc *psc;
1132 	struct ifnet *ifp1, *ifp2;
1133 
1134 	if (!sc->dualemac)
1135 		return (1);
1136 	psc = device_get_softc(sc->port[0].dev);
1137 	ifp1 = psc->ifp;
1138 	psc = device_get_softc(sc->port[1].dev);
1139 	ifp2 = psc->ifp;
1140 	if ((ifp1->if_flags & IFF_UP) == 0 && (ifp2->if_flags & IFF_UP) == 0)
1141 		return (1);
1142 
1143 	return (0);
1144 }
1145 
1146 static void
1147 cpswp_init(void *arg)
1148 {
1149 	struct cpswp_softc *sc = arg;
1150 
1151 	CPSW_DEBUGF(sc->swsc, (""));
1152 	CPSW_PORT_LOCK(sc);
1153 	cpswp_init_locked(arg);
1154 	CPSW_PORT_UNLOCK(sc);
1155 }
1156 
1157 static void
1158 cpswp_init_locked(void *arg)
1159 {
1160 #ifdef CPSW_ETHERSWITCH
1161 	int i;
1162 #endif
1163 	struct cpswp_softc *sc = arg;
1164 	struct ifnet *ifp;
1165 	uint32_t reg;
1166 
1167 	CPSW_DEBUGF(sc->swsc, (""));
1168 	CPSW_PORT_LOCK_ASSERT(sc);
1169 	ifp = sc->ifp;
1170 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1171 		return;
1172 
1173 	getbinuptime(&sc->init_uptime);
1174 
1175 	if (!sc->swsc->rx.running && !sc->swsc->tx.running) {
1176 		/* Reset the controller. */
1177 		cpsw_reset(sc->swsc);
1178 		cpsw_init(sc->swsc);
1179 	}
1180 
1181 	/* Set Slave Mapping. */
1182 	cpsw_write_4(sc->swsc, CPSW_SL_RX_PRI_MAP(sc->unit), 0x76543210);
1183 	cpsw_write_4(sc->swsc, CPSW_PORT_P_TX_PRI_MAP(sc->unit + 1),
1184 	    0x33221100);
1185 	cpsw_write_4(sc->swsc, CPSW_SL_RX_MAXLEN(sc->unit), 0x5f2);
1186 	/* Enable MAC RX/TX modules. */
1187 	/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
1188 	/* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
1189 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1190 	reg |= CPSW_SL_MACTL_GMII_ENABLE;
1191 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1192 
1193 	/* Initialize ALE: set port to forwarding, initialize addrs */
1194 	cpsw_write_4(sc->swsc, CPSW_ALE_PORTCTL(sc->unit + 1),
1195 	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
1196 	cpswp_ale_update_addresses(sc, 1);
1197 
1198 	if (sc->swsc->dualemac) {
1199 		/* Set Port VID. */
1200 		cpsw_write_4(sc->swsc, CPSW_PORT_P_VLAN(sc->unit + 1),
1201 		    sc->vlan & 0xfff);
1202 		cpsw_ale_update_vlan_table(sc->swsc, sc->vlan,
1203 		    (1 << (sc->unit + 1)) | (1 << 0), /* Member list */
1204 		    (1 << (sc->unit + 1)) | (1 << 0), /* Untagged egress */
1205 		    (1 << (sc->unit + 1)) | (1 << 0), 0); /* mcast reg flood */
1206 #ifdef CPSW_ETHERSWITCH
1207 		for (i = 0; i < CPSW_VLANS; i++) {
1208 			if (cpsw_vgroups[i].vid != -1)
1209 				continue;
1210 			cpsw_vgroups[i].vid = sc->vlan;
1211 			break;
1212 		}
1213 #endif
1214 	}
1215 
1216 	mii_mediachg(sc->mii);
1217 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
1218 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1219 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1220 }
1221 
1222 static int
1223 cpsw_shutdown(device_t dev)
1224 {
1225 	struct cpsw_softc *sc;
1226 	struct cpswp_softc *psc;
1227 	int i;
1228 
1229  	sc = device_get_softc(dev);
1230 	CPSW_DEBUGF(sc, (""));
1231 	for (i = 0; i < CPSW_PORTS; i++) {
1232 		if (!sc->dualemac && i != sc->active_slave)
1233 			continue;
1234 		psc = device_get_softc(sc->port[i].dev);
1235 		CPSW_PORT_LOCK(psc);
1236 		cpswp_stop_locked(psc);
1237 		CPSW_PORT_UNLOCK(psc);
1238 	}
1239 
1240 	return (0);
1241 }
1242 
1243 static void
1244 cpsw_rx_teardown(struct cpsw_softc *sc)
1245 {
1246 	int i = 0;
1247 
1248 	CPSW_RX_LOCK(sc);
1249 	CPSW_DEBUGF(sc, ("starting RX teardown"));
1250 	sc->rx.teardown = 1;
1251 	cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
1252 	CPSW_RX_UNLOCK(sc);
1253 	while (sc->rx.running) {
1254 		if (++i > 10) {
1255 			device_printf(sc->dev,
1256 			    "Unable to cleanly shutdown receiver\n");
1257 			return;
1258 		}
1259 		DELAY(200);
1260 	}
1261 	if (!sc->rx.running)
1262 		CPSW_DEBUGF(sc, ("finished RX teardown (%d retries)", i));
1263 }
1264 
1265 static void
1266 cpsw_tx_teardown(struct cpsw_softc *sc)
1267 {
1268 	int i = 0;
1269 
1270 	CPSW_TX_LOCK(sc);
1271 	CPSW_DEBUGF(sc, ("starting TX teardown"));
1272 	/* Start the TX queue teardown if queue is not empty. */
1273 	if (STAILQ_FIRST(&sc->tx.active) != NULL)
1274 		cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
1275 	else
1276 		sc->tx.teardown = 1;
1277 	cpsw_tx_dequeue(sc);
1278 	while (sc->tx.running && ++i < 10) {
1279 		DELAY(200);
1280 		cpsw_tx_dequeue(sc);
1281 	}
1282 	if (sc->tx.running) {
1283 		device_printf(sc->dev,
1284 		    "Unable to cleanly shutdown transmitter\n");
1285 	}
1286 	CPSW_DEBUGF(sc,
1287 	    ("finished TX teardown (%d retries, %d idle buffers)", i,
1288 	     sc->tx.active_queue_len));
1289 	CPSW_TX_UNLOCK(sc);
1290 }
1291 
1292 static void
1293 cpswp_stop_locked(struct cpswp_softc *sc)
1294 {
1295 	struct ifnet *ifp;
1296 	uint32_t reg;
1297 
1298 	ifp = sc->ifp;
1299 	CPSW_DEBUGF(sc->swsc, (""));
1300 	CPSW_PORT_LOCK_ASSERT(sc);
1301 
1302 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1303 		return;
1304 
1305 	/* Disable interface */
1306 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1307 	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1308 
1309 	/* Stop ticker */
1310 	callout_stop(&sc->mii_callout);
1311 
1312 	/* Tear down the RX/TX queues. */
1313 	if (cpsw_ports_down(sc->swsc)) {
1314 		cpsw_rx_teardown(sc->swsc);
1315 		cpsw_tx_teardown(sc->swsc);
1316 	}
1317 
1318 	/* Stop MAC RX/TX modules. */
1319 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1320 	reg &= ~CPSW_SL_MACTL_GMII_ENABLE;
1321 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1322 
1323 	if (cpsw_ports_down(sc->swsc)) {
1324 		/* Capture stats before we reset controller. */
1325 		cpsw_stats_collect(sc->swsc);
1326 
1327 		cpsw_reset(sc->swsc);
1328 		cpsw_init(sc->swsc);
1329 	}
1330 }
1331 
1332 /*
1333  *  Suspend/Resume.
1334  */
1335 
1336 static int
1337 cpsw_suspend(device_t dev)
1338 {
1339 	struct cpsw_softc *sc;
1340 	struct cpswp_softc *psc;
1341 	int i;
1342 
1343 	sc = device_get_softc(dev);
1344 	CPSW_DEBUGF(sc, (""));
1345 	for (i = 0; i < CPSW_PORTS; i++) {
1346 		if (!sc->dualemac && i != sc->active_slave)
1347 			continue;
1348 		psc = device_get_softc(sc->port[i].dev);
1349 		CPSW_PORT_LOCK(psc);
1350 		cpswp_stop_locked(psc);
1351 		CPSW_PORT_UNLOCK(psc);
1352 	}
1353 
1354 	return (0);
1355 }
1356 
1357 static int
1358 cpsw_resume(device_t dev)
1359 {
1360 	struct cpsw_softc *sc;
1361 
1362 	sc  = device_get_softc(dev);
1363 	CPSW_DEBUGF(sc, ("UNIMPLEMENTED"));
1364 
1365 	return (0);
1366 }
1367 
1368 /*
1369  *
1370  *  IOCTL
1371  *
1372  */
1373 
1374 static void
1375 cpsw_set_promisc(struct cpswp_softc *sc, int set)
1376 {
1377 	uint32_t reg;
1378 
1379 	/*
1380 	 * Enabling promiscuous mode requires ALE_BYPASS to be enabled.
1381 	 * That disables the ALE forwarding logic and causes every
1382 	 * packet to be sent only to the host port.  In bypass mode,
1383 	 * the ALE processes host port transmit packets the same as in
1384 	 * normal mode.
1385 	 */
1386 	reg = cpsw_read_4(sc->swsc, CPSW_ALE_CONTROL);
1387 	reg &= ~CPSW_ALE_CTL_BYPASS;
1388 	if (set)
1389 		reg |= CPSW_ALE_CTL_BYPASS;
1390 	cpsw_write_4(sc->swsc, CPSW_ALE_CONTROL, reg);
1391 }
1392 
1393 static void
1394 cpsw_set_allmulti(struct cpswp_softc *sc, int set)
1395 {
1396 	if (set) {
1397 		printf("All-multicast mode unimplemented\n");
1398 	}
1399 }
1400 
1401 static int
1402 cpswp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1403 {
1404 	struct cpswp_softc *sc;
1405 	struct ifreq *ifr;
1406 	int error;
1407 	uint32_t changed;
1408 
1409 	error = 0;
1410 	sc = ifp->if_softc;
1411 	ifr = (struct ifreq *)data;
1412 
1413 	switch (command) {
1414 	case SIOCSIFCAP:
1415 		changed = ifp->if_capenable ^ ifr->ifr_reqcap;
1416 		if (changed & IFCAP_HWCSUM) {
1417 			if ((ifr->ifr_reqcap & changed) & IFCAP_HWCSUM)
1418 				ifp->if_capenable |= IFCAP_HWCSUM;
1419 			else
1420 				ifp->if_capenable &= ~IFCAP_HWCSUM;
1421 		}
1422 		error = 0;
1423 		break;
1424 	case SIOCSIFFLAGS:
1425 		CPSW_PORT_LOCK(sc);
1426 		if (ifp->if_flags & IFF_UP) {
1427 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1428 				changed = ifp->if_flags ^ sc->if_flags;
1429 				CPSW_DEBUGF(sc->swsc,
1430 				    ("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)",
1431 				    changed));
1432 				if (changed & IFF_PROMISC)
1433 					cpsw_set_promisc(sc,
1434 					    ifp->if_flags & IFF_PROMISC);
1435 				if (changed & IFF_ALLMULTI)
1436 					cpsw_set_allmulti(sc,
1437 					    ifp->if_flags & IFF_ALLMULTI);
1438 			} else {
1439 				CPSW_DEBUGF(sc->swsc,
1440 				    ("SIOCSIFFLAGS: starting up"));
1441 				cpswp_init_locked(sc);
1442 			}
1443 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1444 			CPSW_DEBUGF(sc->swsc, ("SIOCSIFFLAGS: shutting down"));
1445 			cpswp_stop_locked(sc);
1446 		}
1447 
1448 		sc->if_flags = ifp->if_flags;
1449 		CPSW_PORT_UNLOCK(sc);
1450 		break;
1451 	case SIOCADDMULTI:
1452 		cpswp_ale_update_addresses(sc, 0);
1453 		break;
1454 	case SIOCDELMULTI:
1455 		/* Ugh.  DELMULTI doesn't provide the specific address
1456 		   being removed, so the best we can do is remove
1457 		   everything and rebuild it all. */
1458 		cpswp_ale_update_addresses(sc, 1);
1459 		break;
1460 	case SIOCGIFMEDIA:
1461 	case SIOCSIFMEDIA:
1462 		error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1463 		break;
1464 	default:
1465 		error = ether_ioctl(ifp, command, data);
1466 	}
1467 	return (error);
1468 }
1469 
1470 /*
1471  *
1472  * MIIBUS
1473  *
1474  */
1475 static int
1476 cpswp_miibus_ready(struct cpsw_softc *sc, uint32_t reg)
1477 {
1478 	uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1479 
1480 	while (--retries) {
1481 		r = cpsw_read_4(sc, reg);
1482 		if ((r & MDIO_PHYACCESS_GO) == 0)
1483 			return (1);
1484 		DELAY(CPSW_MIIBUS_DELAY);
1485 	}
1486 
1487 	return (0);
1488 }
1489 
1490 static int
1491 cpswp_miibus_readreg(device_t dev, int phy, int reg)
1492 {
1493 	struct cpswp_softc *sc;
1494 	uint32_t cmd, r;
1495 
1496 	sc = device_get_softc(dev);
1497 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1498 		device_printf(dev, "MDIO not ready to read\n");
1499 		return (0);
1500 	}
1501 
1502 	/* Set GO, reg, phy */
1503 	cmd = MDIO_PHYACCESS_GO | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1504 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1505 
1506 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1507 		device_printf(dev, "MDIO timed out during read\n");
1508 		return (0);
1509 	}
1510 
1511 	r = cpsw_read_4(sc->swsc, sc->phyaccess);
1512 	if ((r & MDIO_PHYACCESS_ACK) == 0) {
1513 		device_printf(dev, "Failed to read from PHY.\n");
1514 		r = 0;
1515 	}
1516 	return (r & 0xFFFF);
1517 }
1518 
1519 static int
1520 cpswp_miibus_writereg(device_t dev, int phy, int reg, int value)
1521 {
1522 	struct cpswp_softc *sc;
1523 	uint32_t cmd;
1524 
1525 	sc = device_get_softc(dev);
1526 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1527 		device_printf(dev, "MDIO not ready to write\n");
1528 		return (0);
1529 	}
1530 
1531 	/* Set GO, WRITE, reg, phy, and value */
1532 	cmd = MDIO_PHYACCESS_GO | MDIO_PHYACCESS_WRITE |
1533 	    (reg & 0x1F) << 21 | (phy & 0x1F) << 16 | (value & 0xFFFF);
1534 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1535 
1536 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1537 		device_printf(dev, "MDIO timed out during write\n");
1538 		return (0);
1539 	}
1540 
1541 	return (0);
1542 }
1543 
1544 static void
1545 cpswp_miibus_statchg(device_t dev)
1546 {
1547 	struct cpswp_softc *sc;
1548 	uint32_t mac_control, reg;
1549 
1550 	sc = device_get_softc(dev);
1551 	CPSW_DEBUGF(sc->swsc, (""));
1552 
1553 	reg = CPSW_SL_MACCONTROL(sc->unit);
1554 	mac_control = cpsw_read_4(sc->swsc, reg);
1555 	mac_control &= ~(CPSW_SL_MACTL_GIG | CPSW_SL_MACTL_IFCTL_A |
1556 	    CPSW_SL_MACTL_IFCTL_B | CPSW_SL_MACTL_FULLDUPLEX);
1557 
1558 	switch(IFM_SUBTYPE(sc->mii->mii_media_active)) {
1559 	case IFM_1000_SX:
1560 	case IFM_1000_LX:
1561 	case IFM_1000_CX:
1562 	case IFM_1000_T:
1563 		mac_control |= CPSW_SL_MACTL_GIG;
1564 		break;
1565 
1566 	case IFM_100_TX:
1567 		mac_control |= CPSW_SL_MACTL_IFCTL_A;
1568 		break;
1569 	}
1570 	if (sc->mii->mii_media_active & IFM_FDX)
1571 		mac_control |= CPSW_SL_MACTL_FULLDUPLEX;
1572 
1573 	cpsw_write_4(sc->swsc, reg, mac_control);
1574 }
1575 
1576 /*
1577  *
1578  * Transmit/Receive Packets.
1579  *
1580  */
1581 static void
1582 cpsw_intr_rx(void *arg)
1583 {
1584 	struct cpsw_softc *sc;
1585 	struct ifnet *ifp;
1586 	struct mbuf *received, *next;
1587 
1588 	sc = (struct cpsw_softc *)arg;
1589 	CPSW_RX_LOCK(sc);
1590 	if (sc->rx.teardown) {
1591 		sc->rx.running = 0;
1592 		sc->rx.teardown = 0;
1593 		cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1594 	}
1595 	received = cpsw_rx_dequeue(sc);
1596 	cpsw_rx_enqueue(sc);
1597 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1598 	CPSW_RX_UNLOCK(sc);
1599 
1600 	while (received != NULL) {
1601 		next = received->m_nextpkt;
1602 		received->m_nextpkt = NULL;
1603 		ifp = received->m_pkthdr.rcvif;
1604 		(*ifp->if_input)(ifp, received);
1605 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1606 		received = next;
1607 	}
1608 }
1609 
1610 static struct mbuf *
1611 cpsw_rx_dequeue(struct cpsw_softc *sc)
1612 {
1613 	int nsegs, port, removed;
1614 	struct cpsw_cpdma_bd bd;
1615 	struct cpsw_slot *last, *slot;
1616 	struct cpswp_softc *psc;
1617 	struct mbuf *m, *m0, *mb_head, *mb_tail;
1618 	uint16_t m0_flags;
1619 
1620 	nsegs = 0;
1621 	m0 = NULL;
1622 	last = NULL;
1623 	mb_head = NULL;
1624 	mb_tail = NULL;
1625 	removed = 0;
1626 
1627 	/* Pull completed packets off hardware RX queue. */
1628 	while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1629 		cpsw_cpdma_read_bd(sc, slot, &bd);
1630 
1631 		/*
1632 		 * Stop on packets still in use by hardware, but do not stop
1633 		 * on packets with the teardown complete flag, they will be
1634 		 * discarded later.
1635 		 */
1636 		if ((bd.flags & (CPDMA_BD_OWNER | CPDMA_BD_TDOWNCMPLT)) ==
1637 		    CPDMA_BD_OWNER)
1638 			break;
1639 
1640 		last = slot;
1641 		++removed;
1642 		STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1643 		STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1644 
1645 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1646 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1647 
1648 		m = slot->mbuf;
1649 		slot->mbuf = NULL;
1650 
1651 		if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1652 			CPSW_DEBUGF(sc, ("RX teardown is complete"));
1653 			m_freem(m);
1654 			sc->rx.running = 0;
1655 			sc->rx.teardown = 0;
1656 			break;
1657 		}
1658 
1659 		port = (bd.flags & CPDMA_BD_PORT_MASK) - 1;
1660 		KASSERT(port >= 0 && port <= 1,
1661 		    ("patcket received with invalid port: %d", port));
1662 		psc = device_get_softc(sc->port[port].dev);
1663 
1664 		/* Set up mbuf */
1665 		m->m_data += bd.bufoff;
1666 		m->m_len = bd.buflen;
1667 		if (bd.flags & CPDMA_BD_SOP) {
1668 			m->m_pkthdr.len = bd.pktlen;
1669 			m->m_pkthdr.rcvif = psc->ifp;
1670 			m->m_flags |= M_PKTHDR;
1671 			m0_flags = bd.flags;
1672 			m0 = m;
1673 		}
1674 		nsegs++;
1675 		m->m_next = NULL;
1676 		m->m_nextpkt = NULL;
1677 		if (bd.flags & CPDMA_BD_EOP && m0 != NULL) {
1678 			if (m0_flags & CPDMA_BD_PASS_CRC)
1679 				m_adj(m0, -ETHER_CRC_LEN);
1680 			m0_flags = 0;
1681 			m0 = NULL;
1682 			if (nsegs > sc->rx.longest_chain)
1683 				sc->rx.longest_chain = nsegs;
1684 			nsegs = 0;
1685 		}
1686 
1687 		if ((psc->ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1688 			/* check for valid CRC by looking into pkt_err[5:4] */
1689 			if ((bd.flags &
1690 			    (CPDMA_BD_SOP | CPDMA_BD_PKT_ERR_MASK)) ==
1691 			    CPDMA_BD_SOP) {
1692 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1693 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1694 				m->m_pkthdr.csum_data = 0xffff;
1695 			}
1696 		}
1697 
1698 		if (STAILQ_FIRST(&sc->rx.active) != NULL &&
1699 		    (bd.flags & (CPDMA_BD_EOP | CPDMA_BD_EOQ)) ==
1700 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
1701 			cpsw_write_hdp_slot(sc, &sc->rx,
1702 			    STAILQ_FIRST(&sc->rx.active));
1703 			sc->rx.queue_restart++;
1704 		}
1705 
1706 		/* Add mbuf to packet list to be returned. */
1707 		if (mb_tail != NULL && (bd.flags & CPDMA_BD_SOP)) {
1708 			mb_tail->m_nextpkt = m;
1709 		} else if (mb_tail != NULL) {
1710 			mb_tail->m_next = m;
1711 		} else if (mb_tail == NULL && (bd.flags & CPDMA_BD_SOP) == 0) {
1712 			if (bootverbose)
1713 				printf(
1714 				    "%s: %s: discanding fragment packet w/o header\n",
1715 				    __func__, psc->ifp->if_xname);
1716 			m_freem(m);
1717 			continue;
1718 		} else {
1719 			mb_head = m;
1720 		}
1721 		mb_tail = m;
1722 	}
1723 
1724 	if (removed != 0) {
1725 		cpsw_write_cp_slot(sc, &sc->rx, last);
1726 		sc->rx.queue_removes += removed;
1727 		sc->rx.avail_queue_len += removed;
1728 		sc->rx.active_queue_len -= removed;
1729 		if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1730 			sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1731 		CPSW_DEBUGF(sc, ("Removed %d received packet(s) from RX queue", removed));
1732 	}
1733 
1734 	return (mb_head);
1735 }
1736 
1737 static void
1738 cpsw_rx_enqueue(struct cpsw_softc *sc)
1739 {
1740 	bus_dma_segment_t seg[1];
1741 	struct cpsw_cpdma_bd bd;
1742 	struct cpsw_slot *first_new_slot, *last_old_slot, *next, *slot;
1743 	int error, nsegs, added = 0;
1744 
1745 	/* Register new mbufs with hardware. */
1746 	first_new_slot = NULL;
1747 	last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1748 	while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1749 		if (first_new_slot == NULL)
1750 			first_new_slot = slot;
1751 		if (slot->mbuf == NULL) {
1752 			slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1753 			if (slot->mbuf == NULL) {
1754 				device_printf(sc->dev,
1755 				    "Unable to fill RX queue\n");
1756 				break;
1757 			}
1758 			slot->mbuf->m_len =
1759 			    slot->mbuf->m_pkthdr.len =
1760 			    slot->mbuf->m_ext.ext_size;
1761 		}
1762 
1763 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1764 		    slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1765 
1766 		KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1767 		KASSERT(error == 0, ("DMA error (error=%d)", error));
1768 		if (error != 0 || nsegs != 1) {
1769 			device_printf(sc->dev,
1770 			    "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1771 			    __func__, nsegs, error);
1772 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1773 			m_freem(slot->mbuf);
1774 			slot->mbuf = NULL;
1775 			break;
1776 		}
1777 
1778 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1779 
1780 		/* Create and submit new rx descriptor. */
1781 		if ((next = STAILQ_NEXT(slot, next)) != NULL)
1782 			bd.next = cpsw_cpdma_bd_paddr(sc, next);
1783 		else
1784 			bd.next = 0;
1785 		bd.bufptr = seg->ds_addr;
1786 		bd.bufoff = 0;
1787 		bd.buflen = MCLBYTES - 1;
1788 		bd.pktlen = bd.buflen;
1789 		bd.flags = CPDMA_BD_OWNER;
1790 		cpsw_cpdma_write_bd(sc, slot, &bd);
1791 		++added;
1792 
1793 		STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1794 		STAILQ_INSERT_TAIL(&sc->rx.active, slot, next);
1795 	}
1796 
1797 	if (added == 0 || first_new_slot == NULL)
1798 		return;
1799 
1800 	CPSW_DEBUGF(sc, ("Adding %d buffers to RX queue", added));
1801 
1802 	/* Link new entries to hardware RX queue. */
1803 	if (last_old_slot == NULL) {
1804 		/* Start a fresh queue. */
1805 		cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1806 	} else {
1807 		/* Add buffers to end of current queue. */
1808 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1809 	}
1810 	sc->rx.queue_adds += added;
1811 	sc->rx.avail_queue_len -= added;
1812 	sc->rx.active_queue_len += added;
1813 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), added);
1814 	if (sc->rx.active_queue_len > sc->rx.max_active_queue_len)
1815 		sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1816 }
1817 
1818 static void
1819 cpswp_start(struct ifnet *ifp)
1820 {
1821 	struct cpswp_softc *sc;
1822 
1823 	sc = ifp->if_softc;
1824 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1825 	    sc->swsc->tx.running == 0) {
1826 		return;
1827 	}
1828 	CPSW_TX_LOCK(sc->swsc);
1829 	cpswp_tx_enqueue(sc);
1830 	cpsw_tx_dequeue(sc->swsc);
1831 	CPSW_TX_UNLOCK(sc->swsc);
1832 }
1833 
1834 static void
1835 cpsw_intr_tx(void *arg)
1836 {
1837 	struct cpsw_softc *sc;
1838 
1839 	sc = (struct cpsw_softc *)arg;
1840 	CPSW_TX_LOCK(sc);
1841 	if (cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)) == 0xfffffffc)
1842 		cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1843 	cpsw_tx_dequeue(sc);
1844 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 2);
1845 	CPSW_TX_UNLOCK(sc);
1846 }
1847 
1848 static void
1849 cpswp_tx_enqueue(struct cpswp_softc *sc)
1850 {
1851 	bus_dma_segment_t segs[CPSW_TXFRAGS];
1852 	struct cpsw_cpdma_bd bd;
1853 	struct cpsw_slot *first_new_slot, *last, *last_old_slot, *next, *slot;
1854 	struct mbuf *m0;
1855 	int error, nsegs, seg, added = 0, padlen;
1856 
1857 	/* Pull pending packets from IF queue and prep them for DMA. */
1858 	last = NULL;
1859 	first_new_slot = NULL;
1860 	last_old_slot = STAILQ_LAST(&sc->swsc->tx.active, cpsw_slot, next);
1861 	while ((slot = STAILQ_FIRST(&sc->swsc->tx.avail)) != NULL) {
1862 		IF_DEQUEUE(&sc->ifp->if_snd, m0);
1863 		if (m0 == NULL)
1864 			break;
1865 
1866 		slot->mbuf = m0;
1867 		padlen = ETHER_MIN_LEN - ETHER_CRC_LEN - m0->m_pkthdr.len;
1868 		if (padlen < 0)
1869 			padlen = 0;
1870 		else if (padlen > 0)
1871 			m_append(slot->mbuf, padlen, sc->swsc->nullpad);
1872 
1873 		/* Create mapping in DMA memory */
1874 		error = bus_dmamap_load_mbuf_sg(sc->swsc->mbuf_dtag,
1875 		    slot->dmamap, slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1876 		/* If the packet is too fragmented, try to simplify. */
1877 		if (error == EFBIG ||
1878 		    (error == 0 && nsegs > sc->swsc->tx.avail_queue_len)) {
1879 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1880 			m0 = m_defrag(slot->mbuf, M_NOWAIT);
1881 			if (m0 == NULL) {
1882 				device_printf(sc->dev,
1883 				    "Can't defragment packet; dropping\n");
1884 				m_freem(slot->mbuf);
1885 			} else {
1886 				CPSW_DEBUGF(sc->swsc,
1887 				    ("Requeueing defragmented packet"));
1888 				IF_PREPEND(&sc->ifp->if_snd, m0);
1889 			}
1890 			slot->mbuf = NULL;
1891 			continue;
1892 		}
1893 		if (error != 0) {
1894 			device_printf(sc->dev,
1895 			    "%s: Can't setup DMA (error=%d), dropping packet\n",
1896 			    __func__, error);
1897 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1898 			m_freem(slot->mbuf);
1899 			slot->mbuf = NULL;
1900 			break;
1901 		}
1902 
1903 		bus_dmamap_sync(sc->swsc->mbuf_dtag, slot->dmamap,
1904 				BUS_DMASYNC_PREWRITE);
1905 
1906 		CPSW_DEBUGF(sc->swsc,
1907 		    ("Queueing TX packet: %d segments + %d pad bytes",
1908 		    nsegs, padlen));
1909 
1910 		if (first_new_slot == NULL)
1911 			first_new_slot = slot;
1912 
1913 		/* Link from the previous descriptor. */
1914 		if (last != NULL)
1915 			cpsw_cpdma_write_bd_next(sc->swsc, last, slot);
1916 
1917 		slot->ifp = sc->ifp;
1918 
1919 		/* If there is only one segment, the for() loop
1920 		 * gets skipped and the single buffer gets set up
1921 		 * as both SOP and EOP. */
1922 		if (nsegs > 1) {
1923 			next = STAILQ_NEXT(slot, next);
1924 			bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1925 		} else
1926 			bd.next = 0;
1927 		/* Start by setting up the first buffer. */
1928 		bd.bufptr = segs[0].ds_addr;
1929 		bd.bufoff = 0;
1930 		bd.buflen = segs[0].ds_len;
1931 		bd.pktlen = m_length(slot->mbuf, NULL);
1932 		bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER;
1933 		if (sc->swsc->dualemac) {
1934 			bd.flags |= CPDMA_BD_TO_PORT;
1935 			bd.flags |= ((sc->unit + 1) & CPDMA_BD_PORT_MASK);
1936 		}
1937 		for (seg = 1; seg < nsegs; ++seg) {
1938 			/* Save the previous buffer (which isn't EOP) */
1939 			cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1940 			STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1941 			STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1942 			slot = STAILQ_FIRST(&sc->swsc->tx.avail);
1943 
1944 			/* Setup next buffer (which isn't SOP) */
1945 			if (nsegs > seg + 1) {
1946 				next = STAILQ_NEXT(slot, next);
1947 				bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1948 			} else
1949 				bd.next = 0;
1950 			bd.bufptr = segs[seg].ds_addr;
1951 			bd.bufoff = 0;
1952 			bd.buflen = segs[seg].ds_len;
1953 			bd.pktlen = 0;
1954 			bd.flags = CPDMA_BD_OWNER;
1955 		}
1956 
1957 		/* Save the final buffer. */
1958 		bd.flags |= CPDMA_BD_EOP;
1959 		cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1960 		STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1961 		STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1962 
1963 		last = slot;
1964 		added += nsegs;
1965 		if (nsegs > sc->swsc->tx.longest_chain)
1966 			sc->swsc->tx.longest_chain = nsegs;
1967 
1968 		BPF_MTAP(sc->ifp, m0);
1969 	}
1970 
1971 	if (first_new_slot == NULL)
1972 		return;
1973 
1974 	/* Attach the list of new buffers to the hardware TX queue. */
1975 	if (last_old_slot != NULL &&
1976 	    (cpsw_cpdma_read_bd_flags(sc->swsc, last_old_slot) &
1977 	     CPDMA_BD_EOQ) == 0) {
1978 		/* Add buffers to end of current queue. */
1979 		cpsw_cpdma_write_bd_next(sc->swsc, last_old_slot,
1980 		    first_new_slot);
1981 	} else {
1982 		/* Start a fresh queue. */
1983 		cpsw_write_hdp_slot(sc->swsc, &sc->swsc->tx, first_new_slot);
1984 	}
1985 	sc->swsc->tx.queue_adds += added;
1986 	sc->swsc->tx.avail_queue_len -= added;
1987 	sc->swsc->tx.active_queue_len += added;
1988 	if (sc->swsc->tx.active_queue_len > sc->swsc->tx.max_active_queue_len) {
1989 		sc->swsc->tx.max_active_queue_len = sc->swsc->tx.active_queue_len;
1990 	}
1991 	CPSW_DEBUGF(sc->swsc, ("Queued %d TX packet(s)", added));
1992 }
1993 
1994 static int
1995 cpsw_tx_dequeue(struct cpsw_softc *sc)
1996 {
1997 	struct cpsw_slot *slot, *last_removed_slot = NULL;
1998 	struct cpsw_cpdma_bd bd;
1999 	uint32_t flags, removed = 0;
2000 
2001 	/* Pull completed buffers off the hardware TX queue. */
2002 	slot = STAILQ_FIRST(&sc->tx.active);
2003 	while (slot != NULL) {
2004 		flags = cpsw_cpdma_read_bd_flags(sc, slot);
2005 
2006 		/* TearDown complete is only marked on the SOP for the packet. */
2007 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) ==
2008 		    (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) {
2009 			sc->tx.teardown = 1;
2010 		}
2011 
2012 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_OWNER)) ==
2013 		    (CPDMA_BD_SOP | CPDMA_BD_OWNER) && sc->tx.teardown == 0)
2014 			break; /* Hardware is still using this packet. */
2015 
2016 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
2017 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
2018 		m_freem(slot->mbuf);
2019 		slot->mbuf = NULL;
2020 
2021 		if (slot->ifp) {
2022 			if (sc->tx.teardown == 0)
2023 				if_inc_counter(slot->ifp, IFCOUNTER_OPACKETS, 1);
2024 			else
2025 				if_inc_counter(slot->ifp, IFCOUNTER_OQDROPS, 1);
2026 		}
2027 
2028 		/* Dequeue any additional buffers used by this packet. */
2029 		while (slot != NULL && slot->mbuf == NULL) {
2030 			STAILQ_REMOVE_HEAD(&sc->tx.active, next);
2031 			STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
2032 			++removed;
2033 			last_removed_slot = slot;
2034 			slot = STAILQ_FIRST(&sc->tx.active);
2035 		}
2036 
2037 		cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
2038 
2039 		/* Restart the TX queue if necessary. */
2040 		cpsw_cpdma_read_bd(sc, last_removed_slot, &bd);
2041 		if (slot != NULL && bd.next != 0 && (bd.flags &
2042 		    (CPDMA_BD_EOP | CPDMA_BD_OWNER | CPDMA_BD_EOQ)) ==
2043 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
2044 			cpsw_write_hdp_slot(sc, &sc->tx, slot);
2045 			sc->tx.queue_restart++;
2046 			break;
2047 		}
2048 	}
2049 
2050 	if (removed != 0) {
2051 		sc->tx.queue_removes += removed;
2052 		sc->tx.active_queue_len -= removed;
2053 		sc->tx.avail_queue_len += removed;
2054 		if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
2055 			sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
2056 		CPSW_DEBUGF(sc, ("TX removed %d completed packet(s)", removed));
2057 	}
2058 
2059 	if (sc->tx.teardown && STAILQ_EMPTY(&sc->tx.active)) {
2060 		CPSW_DEBUGF(sc, ("TX teardown is complete"));
2061 		sc->tx.teardown = 0;
2062 		sc->tx.running = 0;
2063 	}
2064 
2065 	return (removed);
2066 }
2067 
2068 /*
2069  *
2070  * Miscellaneous interrupts.
2071  *
2072  */
2073 
2074 static void
2075 cpsw_intr_rx_thresh(void *arg)
2076 {
2077 	struct cpsw_softc *sc;
2078 	struct ifnet *ifp;
2079 	struct mbuf *received, *next;
2080 
2081 	sc = (struct cpsw_softc *)arg;
2082 	CPSW_RX_LOCK(sc);
2083 	received = cpsw_rx_dequeue(sc);
2084 	cpsw_rx_enqueue(sc);
2085 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
2086 	CPSW_RX_UNLOCK(sc);
2087 
2088 	while (received != NULL) {
2089 		next = received->m_nextpkt;
2090 		received->m_nextpkt = NULL;
2091 		ifp = received->m_pkthdr.rcvif;
2092 		(*ifp->if_input)(ifp, received);
2093 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2094 		received = next;
2095 	}
2096 }
2097 
2098 static void
2099 cpsw_intr_misc_host_error(struct cpsw_softc *sc)
2100 {
2101 	uint32_t intstat;
2102 	uint32_t dmastat;
2103 	int txerr, rxerr, txchan, rxchan;
2104 
2105 	printf("\n\n");
2106 	device_printf(sc->dev,
2107 	    "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
2108 	printf("\n\n");
2109 	intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
2110 	device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
2111 	dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
2112 	device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
2113 
2114 	txerr = (dmastat >> 20) & 15;
2115 	txchan = (dmastat >> 16) & 7;
2116 	rxerr = (dmastat >> 12) & 15;
2117 	rxchan = (dmastat >> 8) & 7;
2118 
2119 	switch (txerr) {
2120 	case 0: break;
2121 	case 1:	printf("SOP error on TX channel %d\n", txchan);
2122 		break;
2123 	case 2:	printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
2124 		break;
2125 	case 3:	printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
2126 		break;
2127 	case 4:	printf("Zero Buffer Pointer on TX channel %d\n", txchan);
2128 		break;
2129 	case 5:	printf("Zero Buffer Length on TX channel %d\n", txchan);
2130 		break;
2131 	case 6:	printf("Packet length error on TX channel %d\n", txchan);
2132 		break;
2133 	default: printf("Unknown error on TX channel %d\n", txchan);
2134 		break;
2135 	}
2136 
2137 	if (txerr != 0) {
2138 		printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
2139 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
2140 		printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
2141 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
2142 		cpsw_dump_queue(sc, &sc->tx.active);
2143 	}
2144 
2145 	switch (rxerr) {
2146 	case 0: break;
2147 	case 2:	printf("Ownership bit not set on RX channel %d\n", rxchan);
2148 		break;
2149 	case 4:	printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
2150 		break;
2151 	case 5:	printf("Zero Buffer Length on RX channel %d\n", rxchan);
2152 		break;
2153 	case 6:	printf("Buffer offset too big on RX channel %d\n", rxchan);
2154 		break;
2155 	default: printf("Unknown RX error on RX channel %d\n", rxchan);
2156 		break;
2157 	}
2158 
2159 	if (rxerr != 0) {
2160 		printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
2161 		    rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
2162 		printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
2163 		    rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
2164 		cpsw_dump_queue(sc, &sc->rx.active);
2165 	}
2166 
2167 	printf("\nALE Table\n");
2168 	cpsw_ale_dump_table(sc);
2169 
2170 	// XXX do something useful here??
2171 	panic("CPSW HOST ERROR INTERRUPT");
2172 
2173 	// Suppress this interrupt in the future.
2174 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
2175 	printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
2176 	// The watchdog will probably reset the controller
2177 	// in a little while.  It will probably fail again.
2178 }
2179 
2180 static void
2181 cpsw_intr_misc(void *arg)
2182 {
2183 	struct cpsw_softc *sc = arg;
2184 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
2185 
2186 	if (stat & CPSW_WR_C_MISC_EVNT_PEND)
2187 		CPSW_DEBUGF(sc, ("Time sync event interrupt unimplemented"));
2188 	if (stat & CPSW_WR_C_MISC_STAT_PEND)
2189 		cpsw_stats_collect(sc);
2190 	if (stat & CPSW_WR_C_MISC_HOST_PEND)
2191 		cpsw_intr_misc_host_error(sc);
2192 	if (stat & CPSW_WR_C_MISC_MDIOLINK) {
2193 		cpsw_write_4(sc, MDIOLINKINTMASKED,
2194 		    cpsw_read_4(sc, MDIOLINKINTMASKED));
2195 	}
2196 	if (stat & CPSW_WR_C_MISC_MDIOUSER) {
2197 		CPSW_DEBUGF(sc,
2198 		    ("MDIO operation completed interrupt unimplemented"));
2199 	}
2200 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
2201 }
2202 
2203 /*
2204  *
2205  * Periodic Checks and Watchdog.
2206  *
2207  */
2208 
2209 static void
2210 cpswp_tick(void *msc)
2211 {
2212 	struct cpswp_softc *sc = msc;
2213 
2214 	/* Check for media type change */
2215 	mii_tick(sc->mii);
2216 	if (sc->media_status != sc->mii->mii_media.ifm_media) {
2217 		printf("%s: media type changed (ifm_media=%x)\n", __func__,
2218 			sc->mii->mii_media.ifm_media);
2219 		cpswp_ifmedia_upd(sc->ifp);
2220 	}
2221 
2222 	/* Schedule another timeout one second from now */
2223 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
2224 }
2225 
2226 static void
2227 cpswp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2228 {
2229 	struct cpswp_softc *sc;
2230 	struct mii_data *mii;
2231 
2232 	sc = ifp->if_softc;
2233 	CPSW_DEBUGF(sc->swsc, (""));
2234 	CPSW_PORT_LOCK(sc);
2235 
2236 	mii = sc->mii;
2237 	mii_pollstat(mii);
2238 
2239 	ifmr->ifm_active = mii->mii_media_active;
2240 	ifmr->ifm_status = mii->mii_media_status;
2241 	CPSW_PORT_UNLOCK(sc);
2242 }
2243 
2244 static int
2245 cpswp_ifmedia_upd(struct ifnet *ifp)
2246 {
2247 	struct cpswp_softc *sc;
2248 
2249 	sc = ifp->if_softc;
2250 	CPSW_DEBUGF(sc->swsc, (""));
2251 	CPSW_PORT_LOCK(sc);
2252 	mii_mediachg(sc->mii);
2253 	sc->media_status = sc->mii->mii_media.ifm_media;
2254 	CPSW_PORT_UNLOCK(sc);
2255 
2256 	return (0);
2257 }
2258 
2259 static void
2260 cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
2261 {
2262 	struct cpswp_softc *psc;
2263 	int i;
2264 
2265 	cpsw_debugf_head("CPSW watchdog");
2266 	device_printf(sc->dev, "watchdog timeout\n");
2267 	printf("CPSW_CPDMA_TX%d_HDP=0x%x\n", 0,
2268 	    cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(0)));
2269 	printf("CPSW_CPDMA_TX%d_CP=0x%x\n", 0,
2270 	    cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)));
2271 	cpsw_dump_queue(sc, &sc->tx.active);
2272 	for (i = 0; i < CPSW_PORTS; i++) {
2273 		if (!sc->dualemac && i != sc->active_slave)
2274 			continue;
2275 		psc = device_get_softc(sc->port[i].dev);
2276 		CPSW_PORT_LOCK(psc);
2277 		cpswp_stop_locked(psc);
2278 		CPSW_PORT_UNLOCK(psc);
2279 	}
2280 }
2281 
2282 static void
2283 cpsw_tx_watchdog(void *msc)
2284 {
2285 	struct cpsw_softc *sc;
2286 
2287 	sc = msc;
2288 	CPSW_TX_LOCK(sc);
2289 	if (sc->tx.active_queue_len == 0 || !sc->tx.running) {
2290 		sc->watchdog.timer = 0; /* Nothing to do. */
2291 	} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
2292 		sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
2293 	} else if (cpsw_tx_dequeue(sc) > 0) {
2294 		sc->watchdog.timer = 0;  /* We just did something. */
2295 	} else {
2296 		/* There was something to do but it didn't get done. */
2297 		++sc->watchdog.timer;
2298 		if (sc->watchdog.timer > 5) {
2299 			sc->watchdog.timer = 0;
2300 			++sc->watchdog.resets;
2301 			cpsw_tx_watchdog_full_reset(sc);
2302 		}
2303 	}
2304 	sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
2305 	CPSW_TX_UNLOCK(sc);
2306 
2307 	/* Schedule another timeout one second from now */
2308 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
2309 }
2310 
2311 /*
2312  *
2313  * ALE support routines.
2314  *
2315  */
2316 
2317 static void
2318 cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2319 {
2320 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
2321 	ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
2322 	ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
2323 	ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
2324 }
2325 
2326 static void
2327 cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2328 {
2329 	cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
2330 	cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
2331 	cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
2332 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
2333 }
2334 
2335 static void
2336 cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
2337 {
2338 	int i;
2339 	uint32_t ale_entry[3];
2340 
2341 	/* First four entries are link address and broadcast. */
2342 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2343 		cpsw_ale_read_entry(sc, i, ale_entry);
2344 		if ((ALE_TYPE(ale_entry) == ALE_TYPE_ADDR ||
2345 		    ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR) &&
2346 		    ALE_MCAST(ale_entry)  == 1) { /* MCast link addr */
2347 			ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2348 			cpsw_ale_write_entry(sc, i, ale_entry);
2349 		}
2350 	}
2351 }
2352 
2353 static int
2354 cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, int vlan,
2355 	uint8_t *mac)
2356 {
2357 	int free_index = -1, matching_index = -1, i;
2358 	uint32_t ale_entry[3], ale_type;
2359 
2360 	/* Find a matching entry or a free entry. */
2361 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2362 		cpsw_ale_read_entry(sc, i, ale_entry);
2363 
2364 		/* Entry Type[61:60] is 0 for free entry */
2365 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2366 			free_index = i;
2367 
2368 		if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
2369 		    (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
2370 		    (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
2371 		    (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
2372 		    (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
2373 		    (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
2374 			matching_index = i;
2375 			break;
2376 		}
2377 	}
2378 
2379 	if (matching_index < 0) {
2380 		if (free_index < 0)
2381 			return (ENOMEM);
2382 		i = free_index;
2383 	}
2384 
2385 	if (vlan != -1)
2386 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | vlan << 16;
2387 	else
2388 		ale_type = ALE_TYPE_ADDR << 28;
2389 
2390 	/* Set MAC address */
2391 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2392 	ale_entry[1] = mac[0] << 8 | mac[1];
2393 
2394 	/* Entry type[61:60] and Mcast fwd state[63:62] is fw(3). */
2395 	ale_entry[1] |= ALE_MCAST_FWD | ale_type;
2396 
2397 	/* Set portmask [68:66] */
2398 	ale_entry[2] = (portmap & 7) << 2;
2399 
2400 	cpsw_ale_write_entry(sc, i, ale_entry);
2401 
2402 	return 0;
2403 }
2404 
2405 static void
2406 cpsw_ale_dump_table(struct cpsw_softc *sc) {
2407 	int i;
2408 	uint32_t ale_entry[3];
2409 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2410 		cpsw_ale_read_entry(sc, i, ale_entry);
2411 		switch (ALE_TYPE(ale_entry)) {
2412 		case ALE_TYPE_VLAN:
2413 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2414 				ale_entry[1], ale_entry[0]);
2415 			printf("type: %u ", ALE_TYPE(ale_entry));
2416 			printf("vlan: %u ", ALE_VLAN(ale_entry));
2417 			printf("untag: %u ", ALE_VLAN_UNTAG(ale_entry));
2418 			printf("reg flood: %u ", ALE_VLAN_REGFLOOD(ale_entry));
2419 			printf("unreg flood: %u ", ALE_VLAN_UNREGFLOOD(ale_entry));
2420 			printf("members: %u ", ALE_VLAN_MEMBERS(ale_entry));
2421 			printf("\n");
2422 			break;
2423 		case ALE_TYPE_ADDR:
2424 		case ALE_TYPE_VLAN_ADDR:
2425 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2426 				ale_entry[1], ale_entry[0]);
2427 			printf("type: %u ", ALE_TYPE(ale_entry));
2428 			printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
2429 				(ale_entry[1] >> 8) & 0xFF,
2430 				(ale_entry[1] >> 0) & 0xFF,
2431 				(ale_entry[0] >>24) & 0xFF,
2432 				(ale_entry[0] >>16) & 0xFF,
2433 				(ale_entry[0] >> 8) & 0xFF,
2434 				(ale_entry[0] >> 0) & 0xFF);
2435 			printf(ALE_MCAST(ale_entry) ? "mcast " : "ucast ");
2436 			if (ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR)
2437 				printf("vlan: %u ", ALE_VLAN(ale_entry));
2438 			printf("port: %u ", ALE_PORTS(ale_entry));
2439 			printf("\n");
2440 			break;
2441 		}
2442 	}
2443 	printf("\n");
2444 }
2445 
2446 static u_int
2447 cpswp_set_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2448 {
2449 	struct cpswp_softc *sc = arg;
2450 	uint32_t portmask;
2451 
2452 	if (sc->swsc->dualemac)
2453 		portmask = 1 << (sc->unit + 1) | 1 << 0;
2454 	else
2455 		portmask = 7;
2456 
2457 	cpsw_ale_mc_entry_set(sc->swsc, portmask, sc->vlan, LLADDR(sdl));
2458 
2459 	return (1);
2460 }
2461 
2462 static int
2463 cpswp_ale_update_addresses(struct cpswp_softc *sc, int purge)
2464 {
2465 	uint8_t *mac;
2466 	uint32_t ale_entry[3], ale_type, portmask;
2467 
2468 	if (sc->swsc->dualemac) {
2469 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | sc->vlan << 16;
2470 		portmask = 1 << (sc->unit + 1) | 1 << 0;
2471 	} else {
2472 		ale_type = ALE_TYPE_ADDR << 28;
2473 		portmask = 7;
2474 	}
2475 
2476 	/*
2477 	 * Route incoming packets for our MAC address to Port 0 (host).
2478 	 * For simplicity, keep this entry at table index 0 for port 1 and
2479 	 * at index 2 for port 2 in the ALE.
2480 	 */
2481 	mac = LLADDR((struct sockaddr_dl *)sc->ifp->if_addr->ifa_addr);
2482 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2483 	ale_entry[1] = ale_type | mac[0] << 8 | mac[1]; /* addr entry + mac */
2484 	ale_entry[2] = 0; /* port = 0 */
2485 	cpsw_ale_write_entry(sc->swsc, 0 + 2 * sc->unit, ale_entry);
2486 
2487 	/* Set outgoing MAC Address for slave port. */
2488 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_HI(sc->unit + 1),
2489 	    mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
2490 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_LO(sc->unit + 1),
2491 	    mac[5] << 8 | mac[4]);
2492 
2493 	/* Keep the broadcast address at table entry 1 (or 3). */
2494 	ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
2495 	/* ALE_MCAST_FWD, Addr type, upper 16 bits of Mac */
2496 	ale_entry[1] = ALE_MCAST_FWD | ale_type | 0xffff;
2497 	ale_entry[2] = portmask << 2;
2498 	cpsw_ale_write_entry(sc->swsc, 1 + 2 * sc->unit, ale_entry);
2499 
2500 	/* SIOCDELMULTI doesn't specify the particular address
2501 	   being removed, so we have to remove all and rebuild. */
2502 	if (purge)
2503 		cpsw_ale_remove_all_mc_entries(sc->swsc);
2504 
2505         /* Set other multicast addrs desired. */
2506 	if_foreach_llmaddr(sc->ifp, cpswp_set_maddr, sc);
2507 
2508 	return (0);
2509 }
2510 
2511 static int
2512 cpsw_ale_update_vlan_table(struct cpsw_softc *sc, int vlan, int ports,
2513 	int untag, int mcregflood, int mcunregflood)
2514 {
2515 	int free_index, i, matching_index;
2516 	uint32_t ale_entry[3];
2517 
2518 	free_index = matching_index = -1;
2519 	/* Find a matching entry or a free entry. */
2520 	for (i = 5; i < CPSW_MAX_ALE_ENTRIES; i++) {
2521 		cpsw_ale_read_entry(sc, i, ale_entry);
2522 
2523 		/* Entry Type[61:60] is 0 for free entry */
2524 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2525 			free_index = i;
2526 
2527 		if (ALE_VLAN(ale_entry) == vlan) {
2528 			matching_index = i;
2529 			break;
2530 		}
2531 	}
2532 
2533 	if (matching_index < 0) {
2534 		if (free_index < 0)
2535 			return (-1);
2536 		i = free_index;
2537 	}
2538 
2539 	ale_entry[0] = (untag & 7) << 24 | (mcregflood & 7) << 16 |
2540 	    (mcunregflood & 7) << 8 | (ports & 7);
2541 	ale_entry[1] = ALE_TYPE_VLAN << 28 | vlan << 16;
2542 	ale_entry[2] = 0;
2543 	cpsw_ale_write_entry(sc, i, ale_entry);
2544 
2545 	return (0);
2546 }
2547 
2548 /*
2549  *
2550  * Statistics and Sysctls.
2551  *
2552  */
2553 
2554 #if 0
2555 static void
2556 cpsw_stats_dump(struct cpsw_softc *sc)
2557 {
2558 	int i;
2559 	uint32_t r;
2560 
2561 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2562 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2563 		    cpsw_stat_sysctls[i].reg);
2564 		CPSW_DEBUGF(sc, ("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2565 		    (intmax_t)sc->shadow_stats[i], r,
2566 		    (intmax_t)sc->shadow_stats[i] + r));
2567 	}
2568 }
2569 #endif
2570 
2571 static void
2572 cpsw_stats_collect(struct cpsw_softc *sc)
2573 {
2574 	int i;
2575 	uint32_t r;
2576 
2577 	CPSW_DEBUGF(sc, ("Controller shadow statistics updated."));
2578 
2579 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2580 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2581 		    cpsw_stat_sysctls[i].reg);
2582 		sc->shadow_stats[i] += r;
2583 		cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg,
2584 		    r);
2585 	}
2586 }
2587 
2588 static int
2589 cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2590 {
2591 	struct cpsw_softc *sc;
2592 	struct cpsw_stat *stat;
2593 	uint64_t result;
2594 
2595 	sc = (struct cpsw_softc *)arg1;
2596 	stat = &cpsw_stat_sysctls[oidp->oid_number];
2597 	result = sc->shadow_stats[oidp->oid_number];
2598 	result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2599 	return (sysctl_handle_64(oidp, &result, 0, req));
2600 }
2601 
2602 static int
2603 cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2604 {
2605 	struct cpsw_softc *sc;
2606 	struct bintime t;
2607 	unsigned result;
2608 
2609 	sc = (struct cpsw_softc *)arg1;
2610 	getbinuptime(&t);
2611 	bintime_sub(&t, &sc->attach_uptime);
2612 	result = t.sec;
2613 	return (sysctl_handle_int(oidp, &result, 0, req));
2614 }
2615 
2616 static int
2617 cpsw_intr_coalesce(SYSCTL_HANDLER_ARGS)
2618 {
2619 	int error;
2620 	struct cpsw_softc *sc;
2621 	uint32_t ctrl, intr_per_ms;
2622 
2623 	sc = (struct cpsw_softc *)arg1;
2624 	error = sysctl_handle_int(oidp, &sc->coal_us, 0, req);
2625 	if (error != 0 || req->newptr == NULL)
2626 		return (error);
2627 
2628 	ctrl = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
2629 	ctrl &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
2630 	if (sc->coal_us == 0) {
2631 		/* Disable the interrupt pace hardware. */
2632 		cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2633 		cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), 0);
2634 		cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), 0);
2635 		return (0);
2636 	}
2637 
2638 	if (sc->coal_us > CPSW_WR_C_IMAX_US_MAX)
2639 		sc->coal_us = CPSW_WR_C_IMAX_US_MAX;
2640 	if (sc->coal_us < CPSW_WR_C_IMAX_US_MIN)
2641 		sc->coal_us = CPSW_WR_C_IMAX_US_MIN;
2642 	intr_per_ms = 1000 / sc->coal_us;
2643 	/* Just to make sure... */
2644 	if (intr_per_ms > CPSW_WR_C_IMAX_MAX)
2645 		intr_per_ms = CPSW_WR_C_IMAX_MAX;
2646 	if (intr_per_ms < CPSW_WR_C_IMAX_MIN)
2647 		intr_per_ms = CPSW_WR_C_IMAX_MIN;
2648 
2649 	/* Set the prescale to produce 4us pulses from the 125 Mhz clock. */
2650 	ctrl |= (125 * 4) & CPSW_WR_INT_PRESCALE_MASK;
2651 
2652 	/* Enable the interrupt pace hardware. */
2653 	cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), intr_per_ms);
2654 	cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), intr_per_ms);
2655 	ctrl |= CPSW_WR_INT_C0_RX_PULSE | CPSW_WR_INT_C0_TX_PULSE;
2656 	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2657 
2658 	return (0);
2659 }
2660 
2661 static int
2662 cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2663 {
2664 	struct cpsw_softc *swsc;
2665 	struct cpswp_softc *sc;
2666 	struct bintime t;
2667 	unsigned result;
2668 
2669 	swsc = arg1;
2670 	sc = device_get_softc(swsc->port[arg2].dev);
2671 	if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
2672 		getbinuptime(&t);
2673 		bintime_sub(&t, &sc->init_uptime);
2674 		result = t.sec;
2675 	} else
2676 		result = 0;
2677 	return (sysctl_handle_int(oidp, &result, 0, req));
2678 }
2679 
2680 static void
2681 cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2682 	struct cpsw_queue *queue)
2683 {
2684 	struct sysctl_oid_list *parent;
2685 
2686 	parent = SYSCTL_CHILDREN(node);
2687 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2688 	    CTLFLAG_RD, &queue->queue_slots, 0,
2689 	    "Total buffers currently assigned to this queue");
2690 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2691 	    CTLFLAG_RD, &queue->active_queue_len, 0,
2692 	    "Buffers currently registered with hardware controller");
2693 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2694 	    CTLFLAG_RD, &queue->max_active_queue_len, 0,
2695 	    "Max value of activeBuffers since last driver reset");
2696 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2697 	    CTLFLAG_RD, &queue->avail_queue_len, 0,
2698 	    "Buffers allocated to this queue but not currently "
2699 	    "registered with hardware controller");
2700 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2701 	    CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2702 	    "Max value of availBuffers since last driver reset");
2703 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2704 	    CTLFLAG_RD, &queue->queue_adds, 0,
2705 	    "Total buffers added to queue");
2706 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2707 	    CTLFLAG_RD, &queue->queue_removes, 0,
2708 	    "Total buffers removed from queue");
2709 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "queueRestart",
2710 	    CTLFLAG_RD, &queue->queue_restart, 0,
2711 	    "Total times the queue has been restarted");
2712 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2713 	    CTLFLAG_RD, &queue->longest_chain, 0,
2714 	    "Max buffers used for a single packet");
2715 }
2716 
2717 static void
2718 cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2719 	struct cpsw_softc *sc)
2720 {
2721 	struct sysctl_oid_list *parent;
2722 
2723 	parent = SYSCTL_CHILDREN(node);
2724 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2725 	    CTLFLAG_RD, &sc->watchdog.resets, 0,
2726 	    "Total number of watchdog resets");
2727 }
2728 
2729 static void
2730 cpsw_add_sysctls(struct cpsw_softc *sc)
2731 {
2732 	struct sysctl_ctx_list *ctx;
2733 	struct sysctl_oid *stats_node, *queue_node, *node;
2734 	struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2735 	struct sysctl_oid_list *ports_parent, *port_parent;
2736 	char port[16];
2737 	int i;
2738 
2739 	ctx = device_get_sysctl_ctx(sc->dev);
2740 	parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2741 
2742 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "debug",
2743 	    CTLFLAG_RW, &sc->debug, 0, "Enable switch debug messages");
2744 
2745 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2746 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2747 	    sc, 0, cpsw_stat_attached, "IU",
2748 	    "Time since driver attach");
2749 
2750 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "intr_coalesce_us",
2751 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
2752 	    sc, 0, cpsw_intr_coalesce, "IU",
2753 	    "minimum time between interrupts");
2754 
2755 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "ports",
2756 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Ports Statistics");
2757 	ports_parent = SYSCTL_CHILDREN(node);
2758 	for (i = 0; i < CPSW_PORTS; i++) {
2759 		if (!sc->dualemac && i != sc->active_slave)
2760 			continue;
2761 		port[0] = '0' + i;
2762 		port[1] = '\0';
2763 		node = SYSCTL_ADD_NODE(ctx, ports_parent, OID_AUTO,
2764 		    port, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
2765 		    "CPSW Port Statistics");
2766 		port_parent = SYSCTL_CHILDREN(node);
2767 		SYSCTL_ADD_PROC(ctx, port_parent, OID_AUTO, "uptime",
2768 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, i,
2769 		    cpsw_stat_uptime, "IU", "Seconds since driver init");
2770 	}
2771 
2772 	stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2773 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Statistics");
2774 	stats_parent = SYSCTL_CHILDREN(stats_node);
2775 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2776 		SYSCTL_ADD_PROC(ctx, stats_parent, i,
2777 				cpsw_stat_sysctls[i].oid,
2778 				CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2779 				sc, 0, cpsw_stats_sysctl, "IU",
2780 				cpsw_stat_sysctls[i].oid);
2781 	}
2782 
2783 	queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2784 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Queue Statistics");
2785 	queue_parent = SYSCTL_CHILDREN(queue_node);
2786 
2787 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2788 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Statistics");
2789 	cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2790 
2791 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2792 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Statistics");
2793 	cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2794 
2795 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2796 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Watchdog Statistics");
2797 	cpsw_add_watchdog_sysctls(ctx, node, sc);
2798 }
2799 
2800 #ifdef CPSW_ETHERSWITCH
2801 static etherswitch_info_t etherswitch_info = {
2802 	.es_nports =		CPSW_PORTS + 1,
2803 	.es_nvlangroups =	CPSW_VLANS,
2804 	.es_name =		"TI Common Platform Ethernet Switch (CPSW)",
2805 	.es_vlan_caps =		ETHERSWITCH_VLAN_DOT1Q,
2806 };
2807 
2808 static etherswitch_info_t *
2809 cpsw_getinfo(device_t dev)
2810 {
2811 	return (&etherswitch_info);
2812 }
2813 
2814 static int
2815 cpsw_getport(device_t dev, etherswitch_port_t *p)
2816 {
2817 	int err;
2818 	struct cpsw_softc *sc;
2819 	struct cpswp_softc *psc;
2820 	struct ifmediareq *ifmr;
2821 	uint32_t reg;
2822 
2823 	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2824 		return (ENXIO);
2825 
2826 	err = 0;
2827 	sc = device_get_softc(dev);
2828 	if (p->es_port == CPSW_CPU_PORT) {
2829 		p->es_flags |= ETHERSWITCH_PORT_CPU;
2830  		ifmr = &p->es_ifmr;
2831 		ifmr->ifm_current = ifmr->ifm_active =
2832 		    IFM_ETHER | IFM_1000_T | IFM_FDX;
2833 		ifmr->ifm_mask = 0;
2834 		ifmr->ifm_status = IFM_ACTIVE | IFM_AVALID;
2835 		ifmr->ifm_count = 0;
2836 	} else {
2837 		psc = device_get_softc(sc->port[p->es_port - 1].dev);
2838 		err = ifmedia_ioctl(psc->ifp, &p->es_ifr,
2839 		    &psc->mii->mii_media, SIOCGIFMEDIA);
2840 	}
2841 	reg = cpsw_read_4(sc, CPSW_PORT_P_VLAN(p->es_port));
2842 	p->es_pvid = reg & ETHERSWITCH_VID_MASK;
2843 
2844 	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2845 	if (reg & ALE_PORTCTL_DROP_UNTAGGED)
2846 		p->es_flags |= ETHERSWITCH_PORT_DROPUNTAGGED;
2847 	if (reg & ALE_PORTCTL_INGRESS)
2848 		p->es_flags |= ETHERSWITCH_PORT_INGRESS;
2849 
2850 	return (err);
2851 }
2852 
2853 static int
2854 cpsw_setport(device_t dev, etherswitch_port_t *p)
2855 {
2856 	struct cpsw_softc *sc;
2857 	struct cpswp_softc *psc;
2858 	struct ifmedia *ifm;
2859 	uint32_t reg;
2860 
2861 	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2862 		return (ENXIO);
2863 
2864 	sc = device_get_softc(dev);
2865 	if (p->es_pvid != 0) {
2866 		cpsw_write_4(sc, CPSW_PORT_P_VLAN(p->es_port),
2867 		    p->es_pvid & ETHERSWITCH_VID_MASK);
2868 	}
2869 
2870 	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2871 	if (p->es_flags & ETHERSWITCH_PORT_DROPUNTAGGED)
2872 		reg |= ALE_PORTCTL_DROP_UNTAGGED;
2873 	else
2874 		reg &= ~ALE_PORTCTL_DROP_UNTAGGED;
2875 	if (p->es_flags & ETHERSWITCH_PORT_INGRESS)
2876 		reg |= ALE_PORTCTL_INGRESS;
2877 	else
2878 		reg &= ~ALE_PORTCTL_INGRESS;
2879 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(p->es_port), reg);
2880 
2881 	/* CPU port does not allow media settings. */
2882 	if (p->es_port == CPSW_CPU_PORT)
2883 		return (0);
2884 
2885 	psc = device_get_softc(sc->port[p->es_port - 1].dev);
2886 	ifm = &psc->mii->mii_media;
2887 
2888 	return (ifmedia_ioctl(psc->ifp, &p->es_ifr, ifm, SIOCSIFMEDIA));
2889 }
2890 
2891 static int
2892 cpsw_getconf(device_t dev, etherswitch_conf_t *conf)
2893 {
2894 
2895 	/* Return the VLAN mode. */
2896 	conf->cmd = ETHERSWITCH_CONF_VLAN_MODE;
2897 	conf->vlan_mode = ETHERSWITCH_VLAN_DOT1Q;
2898 
2899 	return (0);
2900 }
2901 
2902 static int
2903 cpsw_getvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2904 {
2905 	int i, vid;
2906 	uint32_t ale_entry[3];
2907 	struct cpsw_softc *sc;
2908 
2909 	sc = device_get_softc(dev);
2910 
2911 	if (vg->es_vlangroup >= CPSW_VLANS)
2912 		return (EINVAL);
2913 
2914 	vg->es_vid = 0;
2915 	vid = cpsw_vgroups[vg->es_vlangroup].vid;
2916 	if (vid == -1)
2917 		return (0);
2918 
2919 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2920 		cpsw_ale_read_entry(sc, i, ale_entry);
2921 		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2922 			continue;
2923 		if (vid != ALE_VLAN(ale_entry))
2924 			continue;
2925 
2926 		vg->es_fid = 0;
2927 		vg->es_vid = ALE_VLAN(ale_entry) | ETHERSWITCH_VID_VALID;
2928 		vg->es_member_ports = ALE_VLAN_MEMBERS(ale_entry);
2929 		vg->es_untagged_ports = ALE_VLAN_UNTAG(ale_entry);
2930 	}
2931 
2932 	return (0);
2933 }
2934 
2935 static void
2936 cpsw_remove_vlan(struct cpsw_softc *sc, int vlan)
2937 {
2938 	int i;
2939 	uint32_t ale_entry[3];
2940 
2941 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2942 		cpsw_ale_read_entry(sc, i, ale_entry);
2943 		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2944 			continue;
2945 		if (vlan != ALE_VLAN(ale_entry))
2946 			continue;
2947 		ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2948 		cpsw_ale_write_entry(sc, i, ale_entry);
2949 		break;
2950 	}
2951 }
2952 
2953 static int
2954 cpsw_setvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2955 {
2956 	int i;
2957 	struct cpsw_softc *sc;
2958 
2959 	sc = device_get_softc(dev);
2960 
2961 	for (i = 0; i < CPSW_VLANS; i++) {
2962 		/* Is this Vlan ID in use by another vlangroup ? */
2963 		if (vg->es_vlangroup != i && cpsw_vgroups[i].vid == vg->es_vid)
2964 			return (EINVAL);
2965 	}
2966 
2967 	if (vg->es_vid == 0) {
2968 		if (cpsw_vgroups[vg->es_vlangroup].vid == -1)
2969 			return (0);
2970 		cpsw_remove_vlan(sc, cpsw_vgroups[vg->es_vlangroup].vid);
2971 		cpsw_vgroups[vg->es_vlangroup].vid = -1;
2972 		vg->es_untagged_ports = 0;
2973 		vg->es_member_ports = 0;
2974 		vg->es_vid = 0;
2975 		return (0);
2976 	}
2977 
2978 	vg->es_vid &= ETHERSWITCH_VID_MASK;
2979 	vg->es_member_ports &= CPSW_PORTS_MASK;
2980 	vg->es_untagged_ports &= CPSW_PORTS_MASK;
2981 
2982 	if (cpsw_vgroups[vg->es_vlangroup].vid != -1 &&
2983 	    cpsw_vgroups[vg->es_vlangroup].vid != vg->es_vid)
2984 		return (EINVAL);
2985 
2986 	cpsw_vgroups[vg->es_vlangroup].vid = vg->es_vid;
2987 	cpsw_ale_update_vlan_table(sc, vg->es_vid, vg->es_member_ports,
2988 	    vg->es_untagged_ports, vg->es_member_ports, 0);
2989 
2990 	return (0);
2991 }
2992 
2993 static int
2994 cpsw_readreg(device_t dev, int addr)
2995 {
2996 
2997 	/* Not supported. */
2998 	return (0);
2999 }
3000 
3001 static int
3002 cpsw_writereg(device_t dev, int addr, int value)
3003 {
3004 
3005 	/* Not supported. */
3006 	return (0);
3007 }
3008 
3009 static int
3010 cpsw_readphy(device_t dev, int phy, int reg)
3011 {
3012 
3013 	/* Not supported. */
3014 	return (0);
3015 }
3016 
3017 static int
3018 cpsw_writephy(device_t dev, int phy, int reg, int data)
3019 {
3020 
3021 	/* Not supported. */
3022 	return (0);
3023 }
3024 #endif
3025