xref: /freebsd/sys/arm/freescale/imx/imx_gpt.c (revision ff0ba87247820afbdfdc1b307c803f7923d0e4d3)
1 /*-
2  * Copyright (c) 2012, 2013 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * This software was developed by Oleksandr Rybalko under sponsorship
6  * from the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1.	Redistributions of source code must retain the above copyright
12  *	notice, this list of conditions and the following disclaimer.
13  * 2.	Redistributions in binary form must reproduce the above copyright
14  *	notice, this list of conditions and the following disclaimer in the
15  *	documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/kernel.h>
37 #include <sys/module.h>
38 #include <sys/malloc.h>
39 #include <sys/rman.h>
40 #include <sys/timeet.h>
41 #include <sys/timetc.h>
42 #include <sys/watchdog.h>
43 #include <machine/bus.h>
44 #include <machine/cpu.h>
45 #include <machine/intr.h>
46 
47 #include <machine/fdt.h>
48 #include <dev/fdt/fdt_common.h>
49 #include <dev/ofw/openfirm.h>
50 #include <dev/ofw/ofw_bus.h>
51 #include <dev/ofw/ofw_bus_subr.h>
52 
53 #include <arm/freescale/imx/imx_gptvar.h>
54 #include <arm/freescale/imx/imx_gptreg.h>
55 
56 #include <sys/kdb.h>
57 #include <arm/freescale/imx/imx_ccmvar.h>
58 
59 #define	WRITE4(_sc, _r, _v)						\
60 	    bus_space_write_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r), (_v))
61 #define	READ4(_sc, _r)							\
62 	    bus_space_read_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r))
63 #define	SET4(_sc, _r, _m)						\
64 	    WRITE4((_sc), (_r), READ4((_sc), (_r)) | (_m))
65 #define	CLEAR4(_sc, _r, _m)						\
66 	    WRITE4((_sc), (_r), READ4((_sc), (_r)) & ~(_m))
67 
68 static u_int	imx_gpt_get_timecount(struct timecounter *);
69 static int	imx_gpt_timer_start(struct eventtimer *, sbintime_t,
70     sbintime_t);
71 static int	imx_gpt_timer_stop(struct eventtimer *);
72 
73 static int imx_gpt_intr(void *);
74 static int imx_gpt_probe(device_t);
75 static int imx_gpt_attach(device_t);
76 
77 static struct timecounter imx_gpt_timecounter = {
78 	.tc_name           = "iMXGPT",
79 	.tc_get_timecount  = imx_gpt_get_timecount,
80 	.tc_counter_mask   = ~0u,
81 	.tc_frequency      = 0,
82 	.tc_quality        = 1000,
83 };
84 
85 /* Global softc pointer for use in DELAY(). */
86 struct imx_gpt_softc *imx_gpt_sc = NULL;
87 
88 /*
89  * Hand-calibrated delay-loop counter.  This was calibrated on an i.MX6 running
90  * at 792mhz.  It will delay a bit too long on slower processors -- that's
91  * better than not delaying long enough.  In practice this is unlikely to get
92  * used much since the clock driver is one of the first to start up, and once
93  * we're attached the delay loop switches to using the timer hardware.
94  */
95 static const int imx_gpt_delay_count = 78;
96 
97 /* Try to divide down an available fast clock to this frequency. */
98 #define	TARGET_FREQUENCY	1000000000
99 
100 /* Don't try to set an event timer period smaller than this. */
101 #define	MIN_ET_PERIOD		10LLU
102 
103 
104 static struct resource_spec imx_gpt_spec[] = {
105 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
106 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
107 	{ -1, 0 }
108 };
109 
110 static struct ofw_compat_data compat_data[] = {
111 	{"fsl,imx6q-gpt",  1},
112 	{"fsl,imx53-gpt",  1},
113 	{"fsl,imx51-gpt",  1},
114 	{"fsl,imx31-gpt",  1},
115 	{"fsl,imx27-gpt",  1},
116 	{"fsl,imx25-gpt",  1},
117 	{NULL,             0}
118 };
119 
120 static int
121 imx_gpt_probe(device_t dev)
122 {
123 
124 	if (!ofw_bus_status_okay(dev))
125 		return (ENXIO);
126 
127 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data != 0) {
128 		device_set_desc(dev, "Freescale i.MX GPT timer");
129 		return (BUS_PROBE_DEFAULT);
130 	}
131 
132 	return (ENXIO);
133 }
134 
135 static int
136 imx_gpt_attach(device_t dev)
137 {
138 	struct imx_gpt_softc *sc;
139 	int ctlreg, err;
140 	uint32_t basefreq, prescale;
141 
142 	sc = device_get_softc(dev);
143 
144 	if (bus_alloc_resources(dev, imx_gpt_spec, sc->res)) {
145 		device_printf(dev, "could not allocate resources\n");
146 		return (ENXIO);
147 	}
148 
149 	sc->sc_dev = dev;
150 	sc->sc_iot = rman_get_bustag(sc->res[0]);
151 	sc->sc_ioh = rman_get_bushandle(sc->res[0]);
152 
153 	/*
154 	 * For now, just automatically choose a good clock for the hardware
155 	 * we're running on.  Eventually we could allow selection from the fdt;
156 	 * the code in this driver will cope with any clock frequency.
157 	 */
158 	sc->sc_clksrc = GPT_CR_CLKSRC_IPG;
159 
160 	ctlreg = 0;
161 
162 	switch (sc->sc_clksrc) {
163 	case GPT_CR_CLKSRC_32K:
164 		basefreq = 32768;
165 		break;
166 	case GPT_CR_CLKSRC_IPG:
167 		basefreq = imx_ccm_ipg_hz();
168 		break;
169 	case GPT_CR_CLKSRC_IPG_HIGH:
170 		basefreq = imx_ccm_ipg_hz() * 2;
171 		break;
172 	case GPT_CR_CLKSRC_24M:
173 		ctlreg |= GPT_CR_24MEN;
174 		basefreq = 24000000;
175 		break;
176 	case GPT_CR_CLKSRC_NONE:/* Can't run without a clock. */
177 	case GPT_CR_CLKSRC_EXT:	/* No way to get the freq of an ext clock. */
178 	default:
179 		device_printf(dev, "Unsupported clock source '%d'\n",
180 		    sc->sc_clksrc);
181 		return (EINVAL);
182 	}
183 
184 	/*
185 	 * The following setup sequence is from the I.MX6 reference manual,
186 	 * "Selecting the clock source".  First, disable the clock and
187 	 * interrupts.  This also clears input and output mode bits and in
188 	 * general completes several of the early steps in the procedure.
189 	 */
190 	WRITE4(sc, IMX_GPT_CR, 0);
191 	WRITE4(sc, IMX_GPT_IR, 0);
192 
193 	/* Choose the clock and the power-saving behaviors. */
194 	ctlreg |=
195 	    sc->sc_clksrc |	/* Use selected clock */
196 	    GPT_CR_FRR |	/* Just count (FreeRunner mode) */
197 	    GPT_CR_STOPEN |	/* Run in STOP mode */
198 	    GPT_CR_DOZEEN |	/* Run in DOZE mode */
199 	    GPT_CR_WAITEN |	/* Run in WAIT mode */
200 	    GPT_CR_DBGEN;	/* Run in DEBUG mode */
201 	WRITE4(sc, IMX_GPT_CR, ctlreg);
202 
203 	/*
204 	 * The datasheet says to do the software reset after choosing the clock
205 	 * source.  It says nothing about needing to wait for the reset to
206 	 * complete, but the register description does document the fact that
207 	 * the reset isn't complete until the SWR bit reads 0, so let's be safe.
208 	 * The reset also clears all registers except for a few of the bits in
209 	 * CR, but we'll rewrite all the CR bits when we start the counter.
210 	 */
211 	WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_SWR);
212 	while (READ4(sc, IMX_GPT_CR) & GPT_CR_SWR)
213 		continue;
214 
215 	/* Set a prescaler value that gets us near the target frequency. */
216 	if (basefreq < TARGET_FREQUENCY) {
217 		prescale = 0;
218 		sc->clkfreq = basefreq;
219 	} else {
220 		prescale = basefreq / TARGET_FREQUENCY;
221 		sc->clkfreq = basefreq / prescale;
222 		prescale -= 1; /* 1..n range is 0..n-1 in hardware. */
223 	}
224 	WRITE4(sc, IMX_GPT_PR, prescale);
225 
226 	/* Clear the status register. */
227 	WRITE4(sc, IMX_GPT_SR, GPT_IR_ALL);
228 
229 	/* Start the counter. */
230 	WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_EN);
231 
232 	if (bootverbose)
233 		device_printf(dev, "Running on %dKHz clock, base freq %uHz CR=0x%08x, PR=0x%08x\n",
234 		    sc->clkfreq / 1000, basefreq, READ4(sc, IMX_GPT_CR), READ4(sc, IMX_GPT_PR));
235 
236 	/* Setup the timer interrupt. */
237 	err = bus_setup_intr(dev, sc->res[1], INTR_TYPE_CLK, imx_gpt_intr,
238 	    NULL, sc, &sc->sc_ih);
239 	if (err != 0) {
240 		bus_release_resources(dev, imx_gpt_spec, sc->res);
241 		device_printf(dev, "Unable to setup the clock irq handler, "
242 		    "err = %d\n", err);
243 		return (ENXIO);
244 	}
245 
246 	/* Register as an eventtimer. */
247 	sc->et.et_name = "iMXGPT";
248 	sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERIODIC;
249 	sc->et.et_quality = 800;
250 	sc->et.et_frequency = sc->clkfreq;
251 	sc->et.et_min_period = (MIN_ET_PERIOD << 32) / sc->et.et_frequency;
252 	sc->et.et_max_period = (0xfffffffeLLU << 32) / sc->et.et_frequency;
253 	sc->et.et_start = imx_gpt_timer_start;
254 	sc->et.et_stop = imx_gpt_timer_stop;
255 	sc->et.et_priv = sc;
256 	et_register(&sc->et);
257 
258 	/* Register as a timecounter. */
259 	imx_gpt_timecounter.tc_frequency = sc->clkfreq;
260 	tc_init(&imx_gpt_timecounter);
261 
262 	/* If this is the first unit, store the softc for use in DELAY. */
263 	if (device_get_unit(dev) == 0)
264 	    imx_gpt_sc = sc;
265 
266 	return (0);
267 }
268 
269 static int
270 imx_gpt_timer_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
271 {
272 	struct imx_gpt_softc *sc;
273 	uint32_t ticks;
274 
275 	sc = (struct imx_gpt_softc *)et->et_priv;
276 
277 	if (period != 0) {
278 		sc->sc_period = ((uint32_t)et->et_frequency * period) >> 32;
279 		/* Set expected value */
280 		WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) + sc->sc_period);
281 		/* Enable compare register 2 Interrupt */
282 		SET4(sc, IMX_GPT_IR, GPT_IR_OF2);
283 		return (0);
284 	} else if (first != 0) {
285 		ticks = ((uint32_t)et->et_frequency * first) >> 32;
286 		/* Do not disturb, otherwise event will be lost */
287 		spinlock_enter();
288 		/* Set expected value */
289 		WRITE4(sc, IMX_GPT_OCR3, READ4(sc, IMX_GPT_CNT) + ticks);
290 		/* Enable compare register 1 Interrupt */
291 		SET4(sc, IMX_GPT_IR, GPT_IR_OF3);
292 		/* Now everybody can relax */
293 		spinlock_exit();
294 		return (0);
295 	}
296 
297 	return (EINVAL);
298 }
299 
300 static int
301 imx_gpt_timer_stop(struct eventtimer *et)
302 {
303 	struct imx_gpt_softc *sc;
304 
305 	sc = (struct imx_gpt_softc *)et->et_priv;
306 
307 	/* Disable OF2 Interrupt */
308 	CLEAR4(sc, IMX_GPT_IR, GPT_IR_OF2);
309 	WRITE4(sc, IMX_GPT_SR, GPT_IR_OF2);
310 	sc->sc_period = 0;
311 
312 	return (0);
313 }
314 
315 int
316 imx_gpt_get_timerfreq(struct imx_gpt_softc *sc)
317 {
318 
319 	return (sc->clkfreq);
320 }
321 
322 static int
323 imx_gpt_intr(void *arg)
324 {
325 	struct imx_gpt_softc *sc;
326 	uint32_t status;
327 
328 	sc = (struct imx_gpt_softc *)arg;
329 
330 	status = READ4(sc, IMX_GPT_SR);
331 
332 	/*
333 	* Clear interrupt status before invoking event callbacks.  The callback
334 	* often sets up a new one-shot timer event and if the interval is short
335 	* enough it can fire before we get out of this function.  If we cleared
336 	* at the bottom we'd miss the interrupt and hang until the clock wraps.
337 	*/
338 	WRITE4(sc, IMX_GPT_SR, status);
339 
340 	/* Handle one-shot timer events. */
341 	if (status & GPT_IR_OF3) {
342 		if (sc->et.et_active) {
343 			sc->et.et_event_cb(&sc->et, sc->et.et_arg);
344 		}
345 	}
346 
347 	/* Handle periodic timer events. */
348 	if (status & GPT_IR_OF2) {
349 		if (sc->et.et_active)
350 			sc->et.et_event_cb(&sc->et, sc->et.et_arg);
351 		if (sc->sc_period != 0)
352 			WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) +
353 			    sc->sc_period);
354 	}
355 
356 	return (FILTER_HANDLED);
357 }
358 
359 u_int
360 imx_gpt_get_timecount(struct timecounter *tc)
361 {
362 
363 	if (imx_gpt_sc == NULL)
364 		return (0);
365 
366 	return (READ4(imx_gpt_sc, IMX_GPT_CNT));
367 }
368 
369 static device_method_t imx_gpt_methods[] = {
370 	DEVMETHOD(device_probe,		imx_gpt_probe),
371 	DEVMETHOD(device_attach,	imx_gpt_attach),
372 
373 	DEVMETHOD_END
374 };
375 
376 static driver_t imx_gpt_driver = {
377 	"imx_gpt",
378 	imx_gpt_methods,
379 	sizeof(struct imx_gpt_softc),
380 };
381 
382 static devclass_t imx_gpt_devclass;
383 
384 EARLY_DRIVER_MODULE(imx_gpt, simplebus, imx_gpt_driver, imx_gpt_devclass, 0,
385     0, BUS_PASS_TIMER);
386 
387 void
388 DELAY(int usec)
389 {
390 	uint64_t curcnt, endcnt, startcnt, ticks;
391 
392 	/* If the timer hardware is not accessible, just use a loop. */
393 	if (imx_gpt_sc == NULL) {
394 		while (usec-- > 0)
395 			for (ticks = 0; ticks < imx_gpt_delay_count; ++ticks)
396 				cpufunc_nullop();
397 		return;
398 	}
399 
400 	/*
401 	 * Calculate the tick count with 64-bit values so that it works for any
402 	 * clock frequency.  Loop until the hardware count reaches start+ticks.
403 	 * If the 32-bit hardware count rolls over while we're looping, just
404 	 * manually do a carry into the high bits after each read; don't worry
405 	 * that doing this on each loop iteration is inefficient -- we're trying
406 	 * to waste time here.
407 	 */
408 	ticks = 1 + ((uint64_t)usec * imx_gpt_sc->clkfreq) / 1000000;
409 	curcnt = startcnt = READ4(imx_gpt_sc, IMX_GPT_CNT);
410 	endcnt = startcnt + ticks;
411 	while (curcnt < endcnt) {
412 		curcnt = READ4(imx_gpt_sc, IMX_GPT_CNT);
413 		if (curcnt < startcnt)
414 			curcnt += 1ULL << 32;
415 	}
416 }
417