1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012, 2013 The FreeBSD Foundation 5 * 6 * This software was developed by Oleksandr Rybalko under sponsorship 7 * from the FreeBSD Foundation. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/bus.h> 37 #include <sys/kernel.h> 38 #include <sys/module.h> 39 #include <sys/rman.h> 40 #include <sys/timeet.h> 41 #include <sys/timetc.h> 42 #include <machine/bus.h> 43 #include <machine/intr.h> 44 #include <machine/machdep.h> /* For arm_set_delay */ 45 46 #include <dev/ofw/openfirm.h> 47 #include <dev/ofw/ofw_bus.h> 48 #include <dev/ofw/ofw_bus_subr.h> 49 50 #include <arm/freescale/imx/imx_ccmvar.h> 51 #include <arm/freescale/imx/imx_gptreg.h> 52 53 #define WRITE4(_sc, _r, _v) \ 54 bus_space_write_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r), (_v)) 55 #define READ4(_sc, _r) \ 56 bus_space_read_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r)) 57 #define SET4(_sc, _r, _m) \ 58 WRITE4((_sc), (_r), READ4((_sc), (_r)) | (_m)) 59 #define CLEAR4(_sc, _r, _m) \ 60 WRITE4((_sc), (_r), READ4((_sc), (_r)) & ~(_m)) 61 62 static u_int imx_gpt_get_timecount(struct timecounter *); 63 static int imx_gpt_timer_start(struct eventtimer *, sbintime_t, 64 sbintime_t); 65 static int imx_gpt_timer_stop(struct eventtimer *); 66 67 static void imx_gpt_do_delay(int, void *); 68 69 static int imx_gpt_intr(void *); 70 static int imx_gpt_probe(device_t); 71 static int imx_gpt_attach(device_t); 72 73 static struct timecounter imx_gpt_timecounter = { 74 .tc_name = "iMXGPT", 75 .tc_get_timecount = imx_gpt_get_timecount, 76 .tc_counter_mask = ~0u, 77 .tc_frequency = 0, 78 .tc_quality = 1000, 79 }; 80 81 struct imx_gpt_softc { 82 device_t sc_dev; 83 struct resource * res[2]; 84 bus_space_tag_t sc_iot; 85 bus_space_handle_t sc_ioh; 86 void * sc_ih; /* interrupt handler */ 87 uint32_t sc_period; 88 uint32_t sc_clksrc; 89 uint32_t clkfreq; 90 uint32_t ir_reg; 91 struct eventtimer et; 92 }; 93 94 /* Try to divide down an available fast clock to this frequency. */ 95 #define TARGET_FREQUENCY 1000000000 96 97 static struct resource_spec imx_gpt_spec[] = { 98 { SYS_RES_MEMORY, 0, RF_ACTIVE }, 99 { SYS_RES_IRQ, 0, RF_ACTIVE }, 100 { -1, 0 } 101 }; 102 103 static struct ofw_compat_data compat_data[] = { 104 {"fsl,imx6dl-gpt", 1}, 105 {"fsl,imx6q-gpt", 1}, 106 {"fsl,imx6ul-gpt", 1}, 107 {"fsl,imx53-gpt", 1}, 108 {"fsl,imx51-gpt", 1}, 109 {"fsl,imx31-gpt", 1}, 110 {"fsl,imx27-gpt", 1}, 111 {"fsl,imx25-gpt", 1}, 112 {NULL, 0} 113 }; 114 115 static int 116 imx_gpt_probe(device_t dev) 117 { 118 119 if (!ofw_bus_status_okay(dev)) 120 return (ENXIO); 121 122 /* 123 * We only support a single unit, because the only thing this driver 124 * does with the complex timer hardware is supply the system 125 * timecounter and eventtimer. There is nothing useful we can do with 126 * the additional device instances that exist in some chips. 127 */ 128 if (device_get_unit(dev) > 0) 129 return (ENXIO); 130 131 if (ofw_bus_search_compatible(dev, compat_data)->ocd_data != 0) { 132 device_set_desc(dev, "Freescale i.MX GPT timer"); 133 return (BUS_PROBE_DEFAULT); 134 } 135 136 return (ENXIO); 137 } 138 139 static int 140 imx_gpt_attach(device_t dev) 141 { 142 struct imx_gpt_softc *sc; 143 int ctlreg, err; 144 uint32_t basefreq, prescale, setup_ticks, t1, t2; 145 146 sc = device_get_softc(dev); 147 148 if (bus_alloc_resources(dev, imx_gpt_spec, sc->res)) { 149 device_printf(dev, "could not allocate resources\n"); 150 return (ENXIO); 151 } 152 153 sc->sc_dev = dev; 154 sc->sc_iot = rman_get_bustag(sc->res[0]); 155 sc->sc_ioh = rman_get_bushandle(sc->res[0]); 156 157 /* 158 * For now, just automatically choose a good clock for the hardware 159 * we're running on. Eventually we could allow selection from the fdt; 160 * the code in this driver will cope with any clock frequency. 161 */ 162 sc->sc_clksrc = GPT_CR_CLKSRC_IPG; 163 164 ctlreg = 0; 165 166 switch (sc->sc_clksrc) { 167 case GPT_CR_CLKSRC_32K: 168 basefreq = 32768; 169 break; 170 case GPT_CR_CLKSRC_IPG: 171 basefreq = imx_ccm_ipg_hz(); 172 break; 173 case GPT_CR_CLKSRC_IPG_HIGH: 174 basefreq = imx_ccm_ipg_hz() * 2; 175 break; 176 case GPT_CR_CLKSRC_24M: 177 ctlreg |= GPT_CR_24MEN; 178 basefreq = 24000000; 179 break; 180 case GPT_CR_CLKSRC_NONE:/* Can't run without a clock. */ 181 case GPT_CR_CLKSRC_EXT: /* No way to get the freq of an ext clock. */ 182 default: 183 device_printf(dev, "Unsupported clock source '%d'\n", 184 sc->sc_clksrc); 185 return (EINVAL); 186 } 187 188 /* 189 * The following setup sequence is from the I.MX6 reference manual, 190 * "Selecting the clock source". First, disable the clock and 191 * interrupts. This also clears input and output mode bits and in 192 * general completes several of the early steps in the procedure. 193 */ 194 WRITE4(sc, IMX_GPT_CR, 0); 195 WRITE4(sc, IMX_GPT_IR, 0); 196 197 /* Choose the clock and the power-saving behaviors. */ 198 ctlreg |= 199 sc->sc_clksrc | /* Use selected clock */ 200 GPT_CR_FRR | /* Just count (FreeRunner mode) */ 201 GPT_CR_STOPEN | /* Run in STOP mode */ 202 GPT_CR_DOZEEN | /* Run in DOZE mode */ 203 GPT_CR_WAITEN | /* Run in WAIT mode */ 204 GPT_CR_DBGEN; /* Run in DEBUG mode */ 205 WRITE4(sc, IMX_GPT_CR, ctlreg); 206 207 /* 208 * The datasheet says to do the software reset after choosing the clock 209 * source. It says nothing about needing to wait for the reset to 210 * complete, but the register description does document the fact that 211 * the reset isn't complete until the SWR bit reads 0, so let's be safe. 212 * The reset also clears all registers except for a few of the bits in 213 * CR, but we'll rewrite all the CR bits when we start the counter. 214 */ 215 WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_SWR); 216 while (READ4(sc, IMX_GPT_CR) & GPT_CR_SWR) 217 continue; 218 219 /* Set a prescaler value that gets us near the target frequency. */ 220 if (basefreq < TARGET_FREQUENCY) { 221 prescale = 0; 222 sc->clkfreq = basefreq; 223 } else { 224 prescale = basefreq / TARGET_FREQUENCY; 225 sc->clkfreq = basefreq / prescale; 226 prescale -= 1; /* 1..n range is 0..n-1 in hardware. */ 227 } 228 WRITE4(sc, IMX_GPT_PR, prescale); 229 230 /* Clear the status register. */ 231 WRITE4(sc, IMX_GPT_SR, GPT_IR_ALL); 232 233 /* Start the counter. */ 234 WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_EN); 235 236 if (bootverbose) 237 device_printf(dev, "Running on %dKHz clock, base freq %uHz CR=0x%08x, PR=0x%08x\n", 238 sc->clkfreq / 1000, basefreq, READ4(sc, IMX_GPT_CR), READ4(sc, IMX_GPT_PR)); 239 240 /* Setup the timer interrupt. */ 241 err = bus_setup_intr(dev, sc->res[1], INTR_TYPE_CLK, imx_gpt_intr, 242 NULL, sc, &sc->sc_ih); 243 if (err != 0) { 244 bus_release_resources(dev, imx_gpt_spec, sc->res); 245 device_printf(dev, "Unable to setup the clock irq handler, " 246 "err = %d\n", err); 247 return (ENXIO); 248 } 249 250 /* 251 * Measure how many clock ticks it takes to setup a one-shot event (it's 252 * longer than you might think, due to wait states in accessing gpt 253 * registers). Scale up the result by a factor of 1.5 to be safe, 254 * and use that to set the minimum eventtimer period we can schedule. In 255 * the real world, the value works out to about 750ns on imx5 hardware. 256 */ 257 t1 = READ4(sc, IMX_GPT_CNT); 258 WRITE4(sc, IMX_GPT_OCR3, 0); 259 t2 = READ4(sc, IMX_GPT_CNT); 260 setup_ticks = ((t2 - t1 + 1) * 3) / 2; 261 262 /* Register as an eventtimer. */ 263 sc->et.et_name = "iMXGPT"; 264 sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERIODIC; 265 sc->et.et_quality = 800; 266 sc->et.et_frequency = sc->clkfreq; 267 sc->et.et_min_period = ((uint64_t)setup_ticks << 32) / sc->clkfreq; 268 sc->et.et_max_period = ((uint64_t)0xfffffffe << 32) / sc->clkfreq; 269 sc->et.et_start = imx_gpt_timer_start; 270 sc->et.et_stop = imx_gpt_timer_stop; 271 sc->et.et_priv = sc; 272 et_register(&sc->et); 273 274 /* Register as a timecounter. */ 275 imx_gpt_timecounter.tc_frequency = sc->clkfreq; 276 imx_gpt_timecounter.tc_priv = sc; 277 tc_init(&imx_gpt_timecounter); 278 279 /* If this is the first unit, store the softc for use in DELAY. */ 280 if (device_get_unit(dev) == 0) { 281 arm_set_delay(imx_gpt_do_delay, sc); 282 } 283 284 return (0); 285 } 286 287 static int 288 imx_gpt_timer_start(struct eventtimer *et, sbintime_t first, sbintime_t period) 289 { 290 struct imx_gpt_softc *sc; 291 uint32_t ticks; 292 293 sc = (struct imx_gpt_softc *)et->et_priv; 294 295 if (period != 0) { 296 sc->sc_period = ((uint32_t)et->et_frequency * period) >> 32; 297 /* Set expected value */ 298 WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) + sc->sc_period); 299 /* Enable compare register 2 Interrupt */ 300 sc->ir_reg |= GPT_IR_OF2; 301 WRITE4(sc, IMX_GPT_IR, sc->ir_reg); 302 return (0); 303 } else if (first != 0) { 304 /* Enable compare register 3 interrupt if not already on. */ 305 if ((sc->ir_reg & GPT_IR_OF3) == 0) { 306 sc->ir_reg |= GPT_IR_OF3; 307 WRITE4(sc, IMX_GPT_IR, sc->ir_reg); 308 } 309 ticks = ((uint32_t)et->et_frequency * first) >> 32; 310 /* Do not disturb, otherwise event will be lost */ 311 spinlock_enter(); 312 /* Set expected value */ 313 WRITE4(sc, IMX_GPT_OCR3, READ4(sc, IMX_GPT_CNT) + ticks); 314 /* Now everybody can relax */ 315 spinlock_exit(); 316 return (0); 317 } 318 319 return (EINVAL); 320 } 321 322 static int 323 imx_gpt_timer_stop(struct eventtimer *et) 324 { 325 struct imx_gpt_softc *sc; 326 327 sc = (struct imx_gpt_softc *)et->et_priv; 328 329 /* Disable interrupts and clear any pending status. */ 330 sc->ir_reg &= ~(GPT_IR_OF2 | GPT_IR_OF3); 331 WRITE4(sc, IMX_GPT_IR, sc->ir_reg); 332 WRITE4(sc, IMX_GPT_SR, GPT_IR_OF2 | GPT_IR_OF3); 333 sc->sc_period = 0; 334 335 return (0); 336 } 337 338 static int 339 imx_gpt_intr(void *arg) 340 { 341 struct imx_gpt_softc *sc; 342 uint32_t status; 343 344 sc = (struct imx_gpt_softc *)arg; 345 346 status = READ4(sc, IMX_GPT_SR); 347 348 /* 349 * Clear interrupt status before invoking event callbacks. The callback 350 * often sets up a new one-shot timer event and if the interval is short 351 * enough it can fire before we get out of this function. If we cleared 352 * at the bottom we'd miss the interrupt and hang until the clock wraps. 353 */ 354 WRITE4(sc, IMX_GPT_SR, status); 355 356 /* Handle one-shot timer events. */ 357 if (status & GPT_IR_OF3) { 358 if (sc->et.et_active) { 359 sc->et.et_event_cb(&sc->et, sc->et.et_arg); 360 } 361 } 362 363 /* Handle periodic timer events. */ 364 if (status & GPT_IR_OF2) { 365 if (sc->et.et_active) 366 sc->et.et_event_cb(&sc->et, sc->et.et_arg); 367 if (sc->sc_period != 0) 368 WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) + 369 sc->sc_period); 370 } 371 372 return (FILTER_HANDLED); 373 } 374 375 static u_int 376 imx_gpt_get_timecount(struct timecounter *tc) 377 { 378 struct imx_gpt_softc *sc; 379 380 sc = tc->tc_priv; 381 return (READ4(sc, IMX_GPT_CNT)); 382 } 383 384 static device_method_t imx_gpt_methods[] = { 385 DEVMETHOD(device_probe, imx_gpt_probe), 386 DEVMETHOD(device_attach, imx_gpt_attach), 387 388 DEVMETHOD_END 389 }; 390 391 static driver_t imx_gpt_driver = { 392 "imx_gpt", 393 imx_gpt_methods, 394 sizeof(struct imx_gpt_softc), 395 }; 396 397 static devclass_t imx_gpt_devclass; 398 399 EARLY_DRIVER_MODULE(imx_gpt, simplebus, imx_gpt_driver, imx_gpt_devclass, 0, 400 0, BUS_PASS_TIMER); 401 402 static void 403 imx_gpt_do_delay(int usec, void *arg) 404 { 405 struct imx_gpt_softc *sc = arg; 406 uint64_t curcnt, endcnt, startcnt, ticks; 407 408 /* 409 * Calculate the tick count with 64-bit values so that it works for any 410 * clock frequency. Loop until the hardware count reaches start+ticks. 411 * If the 32-bit hardware count rolls over while we're looping, just 412 * manually do a carry into the high bits after each read; don't worry 413 * that doing this on each loop iteration is inefficient -- we're trying 414 * to waste time here. 415 */ 416 ticks = 1 + ((uint64_t)usec * sc->clkfreq) / 1000000; 417 curcnt = startcnt = READ4(sc, IMX_GPT_CNT); 418 endcnt = startcnt + ticks; 419 while (curcnt < endcnt) { 420 curcnt = READ4(sc, IMX_GPT_CNT); 421 if (curcnt < startcnt) 422 curcnt += 1ULL << 32; 423 } 424 } 425