1 /*- 2 * Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 19 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 20 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 21 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 22 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 /* 30 * Allwinner thermal sensor controller 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/bus.h> 39 #include <sys/rman.h> 40 #include <sys/kernel.h> 41 #include <sys/sysctl.h> 42 #include <sys/reboot.h> 43 #include <sys/module.h> 44 #include <sys/cpu.h> 45 #include <sys/taskqueue.h> 46 #include <machine/bus.h> 47 48 #include <dev/ofw/ofw_bus.h> 49 #include <dev/ofw/ofw_bus_subr.h> 50 51 #include <dev/extres/clk/clk.h> 52 #include <dev/extres/hwreset/hwreset.h> 53 #include <dev/extres/nvmem/nvmem.h> 54 55 #include <arm/allwinner/aw_sid.h> 56 57 #include "cpufreq_if.h" 58 #include "nvmem_if.h" 59 60 #define THS_CTRL0 0x00 61 #define THS_CTRL1 0x04 62 #define ADC_CALI_EN (1 << 17) 63 #define THS_CTRL2 0x40 64 #define SENSOR_ACQ1_SHIFT 16 65 #define SENSOR2_EN (1 << 2) 66 #define SENSOR1_EN (1 << 1) 67 #define SENSOR0_EN (1 << 0) 68 #define THS_INTC 0x44 69 #define THS_THERMAL_PER_SHIFT 12 70 #define THS_INTS 0x48 71 #define THS2_DATA_IRQ_STS (1 << 10) 72 #define THS1_DATA_IRQ_STS (1 << 9) 73 #define THS0_DATA_IRQ_STS (1 << 8) 74 #define SHUT_INT2_STS (1 << 6) 75 #define SHUT_INT1_STS (1 << 5) 76 #define SHUT_INT0_STS (1 << 4) 77 #define ALARM_INT2_STS (1 << 2) 78 #define ALARM_INT1_STS (1 << 1) 79 #define ALARM_INT0_STS (1 << 0) 80 #define THS_ALARM0_CTRL 0x50 81 #define ALARM_T_HOT_MASK 0xfff 82 #define ALARM_T_HOT_SHIFT 16 83 #define ALARM_T_HYST_MASK 0xfff 84 #define ALARM_T_HYST_SHIFT 0 85 #define THS_SHUTDOWN0_CTRL 0x60 86 #define SHUT_T_HOT_MASK 0xfff 87 #define SHUT_T_HOT_SHIFT 16 88 #define THS_FILTER 0x70 89 #define THS_CALIB0 0x74 90 #define THS_CALIB1 0x78 91 #define THS_DATA0 0x80 92 #define THS_DATA1 0x84 93 #define THS_DATA2 0x88 94 #define DATA_MASK 0xfff 95 96 #define A83T_CLK_RATE 24000000 97 #define A83T_ADC_ACQUIRE_TIME 23 /* 24Mhz/(23 + 1) = 1us */ 98 #define A83T_THERMAL_PER 1 /* 4096 * (1 + 1) / 24Mhz = 341 us */ 99 #define A83T_FILTER 0x5 /* Filter enabled, avg of 4 */ 100 #define A83T_TEMP_BASE 2719000 101 #define A83T_TEMP_MUL 1000 102 #define A83T_TEMP_DIV 14186 103 104 #define A64_CLK_RATE 4000000 105 #define A64_ADC_ACQUIRE_TIME 400 /* 4Mhz/(400 + 1) = 100 us */ 106 #define A64_THERMAL_PER 24 /* 4096 * (24 + 1) / 4Mhz = 25.6 ms */ 107 #define A64_FILTER 0x6 /* Filter enabled, avg of 8 */ 108 #define A64_TEMP_BASE 2170000 109 #define A64_TEMP_MUL 1000 110 #define A64_TEMP_DIV 8560 111 112 #define H3_CLK_RATE 4000000 113 #define H3_ADC_ACQUIRE_TIME 0x3f 114 #define H3_THERMAL_PER 401 115 #define H3_FILTER 0x6 /* Filter enabled, avg of 8 */ 116 #define H3_TEMP_BASE 217 117 #define H3_TEMP_MUL 1000 118 #define H3_TEMP_DIV 8253 119 #define H3_TEMP_MINUS 1794000 120 #define H3_INIT_ALARM 90 /* degC */ 121 #define H3_INIT_SHUT 105 /* degC */ 122 123 #define H5_CLK_RATE 24000000 124 #define H5_ADC_ACQUIRE_TIME 479 /* 24Mhz/479 = 20us */ 125 #define H5_THERMAL_PER 58 /* 4096 * (58 + 1) / 24Mhz = 10ms */ 126 #define H5_FILTER 0x6 /* Filter enabled, avg of 8 */ 127 #define H5_TEMP_BASE 233832448 128 #define H5_TEMP_MUL 124885 129 #define H5_TEMP_DIV 20 130 #define H5_TEMP_BASE_CPU 271581184 131 #define H5_TEMP_MUL_CPU 152253 132 #define H5_TEMP_BASE_GPU 289406976 133 #define H5_TEMP_MUL_GPU 166724 134 #define H5_INIT_CPU_ALARM 80 /* degC */ 135 #define H5_INIT_CPU_SHUT 96 /* degC */ 136 #define H5_INIT_GPU_ALARM 84 /* degC */ 137 #define H5_INIT_GPU_SHUT 100 /* degC */ 138 139 #define TEMP_C_TO_K 273 140 #define SENSOR_ENABLE_ALL (SENSOR0_EN|SENSOR1_EN|SENSOR2_EN) 141 #define SHUT_INT_ALL (SHUT_INT0_STS|SHUT_INT1_STS|SHUT_INT2_STS) 142 #define ALARM_INT_ALL (ALARM_INT0_STS) 143 144 #define MAX_SENSORS 3 145 #define MAX_CF_LEVELS 64 146 147 #define THROTTLE_ENABLE_DEFAULT 1 148 149 /* Enable thermal throttling */ 150 static int aw_thermal_throttle_enable = THROTTLE_ENABLE_DEFAULT; 151 TUNABLE_INT("hw.aw_thermal.throttle_enable", &aw_thermal_throttle_enable); 152 153 struct aw_thermal_sensor { 154 const char *name; 155 const char *desc; 156 int init_alarm; 157 int init_shut; 158 }; 159 160 struct aw_thermal_config { 161 struct aw_thermal_sensor sensors[MAX_SENSORS]; 162 int nsensors; 163 uint64_t clk_rate; 164 uint32_t adc_acquire_time; 165 int adc_cali_en; 166 uint32_t filter; 167 uint32_t thermal_per; 168 int (*to_temp)(uint32_t, int); 169 uint32_t (*to_reg)(int, int); 170 int temp_base; 171 int temp_mul; 172 int temp_div; 173 int calib0, calib1; 174 uint32_t calib0_mask, calib1_mask; 175 }; 176 177 static int 178 a83t_to_temp(uint32_t val, int sensor) 179 { 180 return ((A83T_TEMP_BASE - (val * A83T_TEMP_MUL)) / A83T_TEMP_DIV); 181 } 182 183 static const struct aw_thermal_config a83t_config = { 184 .nsensors = 3, 185 .sensors = { 186 [0] = { 187 .name = "cluster0", 188 .desc = "CPU cluster 0 temperature", 189 }, 190 [1] = { 191 .name = "cluster1", 192 .desc = "CPU cluster 1 temperature", 193 }, 194 [2] = { 195 .name = "gpu", 196 .desc = "GPU temperature", 197 }, 198 }, 199 .clk_rate = A83T_CLK_RATE, 200 .adc_acquire_time = A83T_ADC_ACQUIRE_TIME, 201 .adc_cali_en = 1, 202 .filter = A83T_FILTER, 203 .thermal_per = A83T_THERMAL_PER, 204 .to_temp = a83t_to_temp, 205 .calib0_mask = 0xffffffff, 206 .calib1_mask = 0xffff, 207 }; 208 209 static int 210 a64_to_temp(uint32_t val, int sensor) 211 { 212 return ((A64_TEMP_BASE - (val * A64_TEMP_MUL)) / A64_TEMP_DIV); 213 } 214 215 static const struct aw_thermal_config a64_config = { 216 .nsensors = 3, 217 .sensors = { 218 [0] = { 219 .name = "cpu", 220 .desc = "CPU temperature", 221 }, 222 [1] = { 223 .name = "gpu1", 224 .desc = "GPU temperature 1", 225 }, 226 [2] = { 227 .name = "gpu2", 228 .desc = "GPU temperature 2", 229 }, 230 }, 231 .clk_rate = A64_CLK_RATE, 232 .adc_acquire_time = A64_ADC_ACQUIRE_TIME, 233 .adc_cali_en = 1, 234 .filter = A64_FILTER, 235 .thermal_per = A64_THERMAL_PER, 236 .to_temp = a64_to_temp, 237 .calib0_mask = 0xffffffff, 238 .calib1_mask = 0xffff, 239 }; 240 241 static int 242 h3_to_temp(uint32_t val, int sensor) 243 { 244 return (H3_TEMP_BASE - ((val * H3_TEMP_MUL) / H3_TEMP_DIV)); 245 } 246 247 static uint32_t 248 h3_to_reg(int val, int sensor) 249 { 250 return ((H3_TEMP_MINUS - (val * H3_TEMP_DIV)) / H3_TEMP_MUL); 251 } 252 253 static const struct aw_thermal_config h3_config = { 254 .nsensors = 1, 255 .sensors = { 256 [0] = { 257 .name = "cpu", 258 .desc = "CPU temperature", 259 .init_alarm = H3_INIT_ALARM, 260 .init_shut = H3_INIT_SHUT, 261 }, 262 }, 263 .clk_rate = H3_CLK_RATE, 264 .adc_acquire_time = H3_ADC_ACQUIRE_TIME, 265 .adc_cali_en = 1, 266 .filter = H3_FILTER, 267 .thermal_per = H3_THERMAL_PER, 268 .to_temp = h3_to_temp, 269 .to_reg = h3_to_reg, 270 .calib0_mask = 0xffff, 271 }; 272 273 static int 274 h5_to_temp(uint32_t val, int sensor) 275 { 276 int tmp; 277 278 /* Temp is lower than 70 degrees */ 279 if (val > 0x500) { 280 tmp = H5_TEMP_BASE - (val * H5_TEMP_MUL); 281 tmp >>= H5_TEMP_DIV; 282 return (tmp); 283 } 284 285 if (sensor == 0) 286 tmp = H5_TEMP_BASE_CPU - (val * H5_TEMP_MUL_CPU); 287 else if (sensor == 1) 288 tmp = H5_TEMP_BASE_GPU - (val * H5_TEMP_MUL_GPU); 289 else { 290 printf("Unknown sensor %d\n", sensor); 291 return (val); 292 } 293 294 tmp >>= H5_TEMP_DIV; 295 return (tmp); 296 } 297 298 static uint32_t 299 h5_to_reg(int val, int sensor) 300 { 301 int tmp; 302 303 if (val < 70) { 304 tmp = H5_TEMP_BASE - (val << H5_TEMP_DIV); 305 tmp /= H5_TEMP_MUL; 306 } else { 307 if (sensor == 0) { 308 tmp = H5_TEMP_BASE_CPU - (val << H5_TEMP_DIV); 309 tmp /= H5_TEMP_MUL_CPU; 310 } else if (sensor == 1) { 311 tmp = H5_TEMP_BASE_GPU - (val << H5_TEMP_DIV); 312 tmp /= H5_TEMP_MUL_GPU; 313 } else { 314 printf("Unknown sensor %d\n", sensor); 315 return (val); 316 } 317 } 318 319 return ((uint32_t)tmp); 320 } 321 322 static const struct aw_thermal_config h5_config = { 323 .nsensors = 2, 324 .sensors = { 325 [0] = { 326 .name = "cpu", 327 .desc = "CPU temperature", 328 .init_alarm = H5_INIT_CPU_ALARM, 329 .init_shut = H5_INIT_CPU_SHUT, 330 }, 331 [1] = { 332 .name = "gpu", 333 .desc = "GPU temperature", 334 .init_alarm = H5_INIT_GPU_ALARM, 335 .init_shut = H5_INIT_GPU_SHUT, 336 }, 337 }, 338 .clk_rate = H5_CLK_RATE, 339 .adc_acquire_time = H5_ADC_ACQUIRE_TIME, 340 .filter = H5_FILTER, 341 .thermal_per = H5_THERMAL_PER, 342 .to_temp = h5_to_temp, 343 .to_reg = h5_to_reg, 344 .calib0_mask = 0xffffffff, 345 }; 346 347 static struct ofw_compat_data compat_data[] = { 348 { "allwinner,sun8i-a83t-ths", (uintptr_t)&a83t_config }, 349 { "allwinner,sun8i-h3-ths", (uintptr_t)&h3_config }, 350 { "allwinner,sun50i-a64-ths", (uintptr_t)&a64_config }, 351 { "allwinner,sun50i-h5-ths", (uintptr_t)&h5_config }, 352 { NULL, (uintptr_t)NULL } 353 }; 354 355 #define THS_CONF(d) \ 356 (void *)ofw_bus_search_compatible((d), compat_data)->ocd_data 357 358 struct aw_thermal_softc { 359 device_t dev; 360 struct resource *res[2]; 361 struct aw_thermal_config *conf; 362 363 struct task cf_task; 364 int throttle; 365 int min_freq; 366 struct cf_level levels[MAX_CF_LEVELS]; 367 eventhandler_tag cf_pre_tag; 368 369 clk_t clk_apb; 370 clk_t clk_ths; 371 }; 372 373 static struct resource_spec aw_thermal_spec[] = { 374 { SYS_RES_MEMORY, 0, RF_ACTIVE }, 375 { SYS_RES_IRQ, 0, RF_ACTIVE }, 376 { -1, 0 } 377 }; 378 379 #define RD4(sc, reg) bus_read_4((sc)->res[0], (reg)) 380 #define WR4(sc, reg, val) bus_write_4((sc)->res[0], (reg), (val)) 381 382 static int 383 aw_thermal_init(struct aw_thermal_softc *sc) 384 { 385 phandle_t node; 386 uint32_t calib[2]; 387 int error; 388 389 node = ofw_bus_get_node(sc->dev); 390 if (nvmem_get_cell_len(node, "ths-calib") > sizeof(calib)) { 391 device_printf(sc->dev, "ths-calib nvmem cell is too large\n"); 392 return (ENXIO); 393 } 394 error = nvmem_read_cell_by_name(node, "ths-calib", 395 (void *)&calib, nvmem_get_cell_len(node, "ths-calib")); 396 /* Read calibration settings from EFUSE */ 397 if (error != 0) { 398 device_printf(sc->dev, "Cannot read THS efuse\n"); 399 return (error); 400 } 401 402 calib[0] &= sc->conf->calib0_mask; 403 calib[1] &= sc->conf->calib1_mask; 404 405 /* Write calibration settings to thermal controller */ 406 if (calib[0] != 0) 407 WR4(sc, THS_CALIB0, calib[0]); 408 if (calib[1] != 0) 409 WR4(sc, THS_CALIB1, calib[1]); 410 411 /* Configure ADC acquire time (CLK_IN/(N+1)) and enable sensors */ 412 WR4(sc, THS_CTRL1, ADC_CALI_EN); 413 WR4(sc, THS_CTRL0, sc->conf->adc_acquire_time); 414 WR4(sc, THS_CTRL2, sc->conf->adc_acquire_time << SENSOR_ACQ1_SHIFT); 415 416 /* Set thermal period */ 417 WR4(sc, THS_INTC, sc->conf->thermal_per << THS_THERMAL_PER_SHIFT); 418 419 /* Enable average filter */ 420 WR4(sc, THS_FILTER, sc->conf->filter); 421 422 /* Enable interrupts */ 423 WR4(sc, THS_INTS, RD4(sc, THS_INTS)); 424 WR4(sc, THS_INTC, RD4(sc, THS_INTC) | SHUT_INT_ALL | ALARM_INT_ALL); 425 426 /* Enable sensors */ 427 WR4(sc, THS_CTRL2, RD4(sc, THS_CTRL2) | SENSOR_ENABLE_ALL); 428 429 return (0); 430 } 431 432 static int 433 aw_thermal_gettemp(struct aw_thermal_softc *sc, int sensor) 434 { 435 uint32_t val; 436 437 val = RD4(sc, THS_DATA0 + (sensor * 4)); 438 439 return (sc->conf->to_temp(val, sensor)); 440 } 441 442 static int 443 aw_thermal_getshut(struct aw_thermal_softc *sc, int sensor) 444 { 445 uint32_t val; 446 447 val = RD4(sc, THS_SHUTDOWN0_CTRL + (sensor * 4)); 448 val = (val >> SHUT_T_HOT_SHIFT) & SHUT_T_HOT_MASK; 449 450 return (sc->conf->to_temp(val, sensor)); 451 } 452 453 static void 454 aw_thermal_setshut(struct aw_thermal_softc *sc, int sensor, int temp) 455 { 456 uint32_t val; 457 458 val = RD4(sc, THS_SHUTDOWN0_CTRL + (sensor * 4)); 459 val &= ~(SHUT_T_HOT_MASK << SHUT_T_HOT_SHIFT); 460 val |= (sc->conf->to_reg(temp, sensor) << SHUT_T_HOT_SHIFT); 461 WR4(sc, THS_SHUTDOWN0_CTRL + (sensor * 4), val); 462 } 463 464 static int 465 aw_thermal_gethyst(struct aw_thermal_softc *sc, int sensor) 466 { 467 uint32_t val; 468 469 val = RD4(sc, THS_ALARM0_CTRL + (sensor * 4)); 470 val = (val >> ALARM_T_HYST_SHIFT) & ALARM_T_HYST_MASK; 471 472 return (sc->conf->to_temp(val, sensor)); 473 } 474 475 static int 476 aw_thermal_getalarm(struct aw_thermal_softc *sc, int sensor) 477 { 478 uint32_t val; 479 480 val = RD4(sc, THS_ALARM0_CTRL + (sensor * 4)); 481 val = (val >> ALARM_T_HOT_SHIFT) & ALARM_T_HOT_MASK; 482 483 return (sc->conf->to_temp(val, sensor)); 484 } 485 486 static void 487 aw_thermal_setalarm(struct aw_thermal_softc *sc, int sensor, int temp) 488 { 489 uint32_t val; 490 491 val = RD4(sc, THS_ALARM0_CTRL + (sensor * 4)); 492 val &= ~(ALARM_T_HOT_MASK << ALARM_T_HOT_SHIFT); 493 val |= (sc->conf->to_reg(temp, sensor) << ALARM_T_HOT_SHIFT); 494 WR4(sc, THS_ALARM0_CTRL + (sensor * 4), val); 495 } 496 497 static int 498 aw_thermal_sysctl(SYSCTL_HANDLER_ARGS) 499 { 500 struct aw_thermal_softc *sc; 501 int sensor, val; 502 503 sc = arg1; 504 sensor = arg2; 505 506 val = aw_thermal_gettemp(sc, sensor) + TEMP_C_TO_K; 507 508 return sysctl_handle_opaque(oidp, &val, sizeof(val), req); 509 } 510 511 static void 512 aw_thermal_throttle(struct aw_thermal_softc *sc, int enable) 513 { 514 device_t cf_dev; 515 int count, error; 516 517 if (enable == sc->throttle) 518 return; 519 520 if (enable != 0) { 521 /* Set the lowest available frequency */ 522 cf_dev = devclass_get_device(devclass_find("cpufreq"), 0); 523 if (cf_dev == NULL) 524 return; 525 count = MAX_CF_LEVELS; 526 error = CPUFREQ_LEVELS(cf_dev, sc->levels, &count); 527 if (error != 0 || count == 0) 528 return; 529 sc->min_freq = sc->levels[count - 1].total_set.freq; 530 error = CPUFREQ_SET(cf_dev, &sc->levels[count - 1], 531 CPUFREQ_PRIO_USER); 532 if (error != 0) 533 return; 534 } 535 536 sc->throttle = enable; 537 } 538 539 static void 540 aw_thermal_cf_task(void *arg, int pending) 541 { 542 struct aw_thermal_softc *sc; 543 544 sc = arg; 545 546 aw_thermal_throttle(sc, 1); 547 } 548 549 static void 550 aw_thermal_cf_pre_change(void *arg, const struct cf_level *level, int *status) 551 { 552 struct aw_thermal_softc *sc; 553 int temp_cur, temp_alarm; 554 555 sc = arg; 556 557 if (aw_thermal_throttle_enable == 0 || sc->throttle == 0 || 558 level->total_set.freq == sc->min_freq) 559 return; 560 561 temp_cur = aw_thermal_gettemp(sc, 0); 562 temp_alarm = aw_thermal_getalarm(sc, 0); 563 564 if (temp_cur < temp_alarm) 565 aw_thermal_throttle(sc, 0); 566 else 567 *status = ENXIO; 568 } 569 570 static void 571 aw_thermal_intr(void *arg) 572 { 573 struct aw_thermal_softc *sc; 574 device_t dev; 575 uint32_t ints; 576 577 dev = arg; 578 sc = device_get_softc(dev); 579 580 ints = RD4(sc, THS_INTS); 581 WR4(sc, THS_INTS, ints); 582 583 if ((ints & SHUT_INT_ALL) != 0) { 584 device_printf(dev, 585 "WARNING - current temperature exceeds safe limits\n"); 586 shutdown_nice(RB_POWEROFF); 587 } 588 589 if ((ints & ALARM_INT_ALL) != 0) 590 taskqueue_enqueue(taskqueue_thread, &sc->cf_task); 591 } 592 593 static int 594 aw_thermal_probe(device_t dev) 595 { 596 if (!ofw_bus_status_okay(dev)) 597 return (ENXIO); 598 599 if (THS_CONF(dev) == NULL) 600 return (ENXIO); 601 602 device_set_desc(dev, "Allwinner Thermal Sensor Controller"); 603 return (BUS_PROBE_DEFAULT); 604 } 605 606 static int 607 aw_thermal_attach(device_t dev) 608 { 609 struct aw_thermal_softc *sc; 610 hwreset_t rst; 611 int i, error; 612 void *ih; 613 614 sc = device_get_softc(dev); 615 sc->dev = dev; 616 rst = NULL; 617 ih = NULL; 618 619 sc->conf = THS_CONF(dev); 620 TASK_INIT(&sc->cf_task, 0, aw_thermal_cf_task, sc); 621 622 if (bus_alloc_resources(dev, aw_thermal_spec, sc->res) != 0) { 623 device_printf(dev, "cannot allocate resources for device\n"); 624 return (ENXIO); 625 } 626 627 if (clk_get_by_ofw_name(dev, 0, "apb", &sc->clk_apb) == 0) { 628 error = clk_enable(sc->clk_apb); 629 if (error != 0) { 630 device_printf(dev, "cannot enable apb clock\n"); 631 goto fail; 632 } 633 } 634 635 if (clk_get_by_ofw_name(dev, 0, "ths", &sc->clk_ths) == 0) { 636 error = clk_set_freq(sc->clk_ths, sc->conf->clk_rate, 0); 637 if (error != 0) { 638 device_printf(dev, "cannot set ths clock rate\n"); 639 goto fail; 640 } 641 error = clk_enable(sc->clk_ths); 642 if (error != 0) { 643 device_printf(dev, "cannot enable ths clock\n"); 644 goto fail; 645 } 646 } 647 648 if (hwreset_get_by_ofw_idx(dev, 0, 0, &rst) == 0) { 649 error = hwreset_deassert(rst); 650 if (error != 0) { 651 device_printf(dev, "cannot de-assert reset\n"); 652 goto fail; 653 } 654 } 655 656 error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_MISC | INTR_MPSAFE, 657 NULL, aw_thermal_intr, dev, &ih); 658 if (error != 0) { 659 device_printf(dev, "cannot setup interrupt handler\n"); 660 goto fail; 661 } 662 663 for (i = 0; i < sc->conf->nsensors; i++) { 664 if (sc->conf->sensors[i].init_alarm > 0) 665 aw_thermal_setalarm(sc, i, 666 sc->conf->sensors[i].init_alarm); 667 if (sc->conf->sensors[i].init_shut > 0) 668 aw_thermal_setshut(sc, i, 669 sc->conf->sensors[i].init_shut); 670 } 671 672 if (aw_thermal_init(sc) != 0) 673 goto fail; 674 675 for (i = 0; i < sc->conf->nsensors; i++) 676 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 677 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 678 OID_AUTO, sc->conf->sensors[i].name, 679 CTLTYPE_INT | CTLFLAG_RD, 680 sc, i, aw_thermal_sysctl, "IK0", 681 sc->conf->sensors[i].desc); 682 683 if (bootverbose) 684 for (i = 0; i < sc->conf->nsensors; i++) { 685 device_printf(dev, 686 "%s: alarm %dC hyst %dC shut %dC\n", 687 sc->conf->sensors[i].name, 688 aw_thermal_getalarm(sc, i), 689 aw_thermal_gethyst(sc, i), 690 aw_thermal_getshut(sc, i)); 691 } 692 693 sc->cf_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change, 694 aw_thermal_cf_pre_change, sc, EVENTHANDLER_PRI_FIRST); 695 696 return (0); 697 698 fail: 699 if (ih != NULL) 700 bus_teardown_intr(dev, sc->res[1], ih); 701 if (rst != NULL) 702 hwreset_release(rst); 703 if (sc->clk_apb != NULL) 704 clk_release(sc->clk_apb); 705 if (sc->clk_ths != NULL) 706 clk_release(sc->clk_ths); 707 bus_release_resources(dev, aw_thermal_spec, sc->res); 708 709 return (ENXIO); 710 } 711 712 static device_method_t aw_thermal_methods[] = { 713 /* Device interface */ 714 DEVMETHOD(device_probe, aw_thermal_probe), 715 DEVMETHOD(device_attach, aw_thermal_attach), 716 717 DEVMETHOD_END 718 }; 719 720 static driver_t aw_thermal_driver = { 721 "aw_thermal", 722 aw_thermal_methods, 723 sizeof(struct aw_thermal_softc), 724 }; 725 726 static devclass_t aw_thermal_devclass; 727 728 DRIVER_MODULE(aw_thermal, simplebus, aw_thermal_driver, aw_thermal_devclass, 729 0, 0); 730 MODULE_VERSION(aw_thermal, 1); 731