1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/module.h> 38 #include <sys/sysctl.h> 39 #include <sys/malloc.h> 40 #include <sys/pcpu.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 #include <sys/rwlock.h> 45 #include <sys/sched.h> 46 #include <sys/smp.h> 47 #include <sys/systm.h> 48 49 #include <vm/vm.h> 50 #include <vm/vm_object.h> 51 #include <vm/vm_page.h> 52 #include <vm/pmap.h> 53 #include <vm/vm_map.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_param.h> 56 57 #include <machine/cpu.h> 58 #include <machine/pcb.h> 59 #include <machine/smp.h> 60 #include <machine/md_var.h> 61 #include <x86/psl.h> 62 #include <x86/apicreg.h> 63 64 #include <machine/vmm.h> 65 #include <machine/vmm_dev.h> 66 #include <machine/vmm_instruction_emul.h> 67 68 #include "vmm_ioport.h" 69 #include "vmm_ktr.h" 70 #include "vmm_host.h" 71 #include "vmm_mem.h" 72 #include "vmm_util.h" 73 #include "vatpic.h" 74 #include "vatpit.h" 75 #include "vhpet.h" 76 #include "vioapic.h" 77 #include "vlapic.h" 78 #include "vpmtmr.h" 79 #include "vrtc.h" 80 #include "vmm_stat.h" 81 #include "vmm_lapic.h" 82 83 #include "io/ppt.h" 84 #include "io/iommu.h" 85 86 struct vlapic; 87 88 /* 89 * Initialization: 90 * (a) allocated when vcpu is created 91 * (i) initialized when vcpu is created and when it is reinitialized 92 * (o) initialized the first time the vcpu is created 93 * (x) initialized before use 94 */ 95 struct vcpu { 96 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 97 enum vcpu_state state; /* (o) vcpu state */ 98 int hostcpu; /* (o) vcpu's host cpu */ 99 int reqidle; /* (i) request vcpu to idle */ 100 struct vlapic *vlapic; /* (i) APIC device model */ 101 enum x2apic_state x2apic_state; /* (i) APIC mode */ 102 uint64_t exitintinfo; /* (i) events pending at VM exit */ 103 int nmi_pending; /* (i) NMI pending */ 104 int extint_pending; /* (i) INTR pending */ 105 int exception_pending; /* (i) exception pending */ 106 int exc_vector; /* (x) exception collateral */ 107 int exc_errcode_valid; 108 uint32_t exc_errcode; 109 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 110 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 111 void *stats; /* (a,i) statistics */ 112 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 113 uint64_t nextrip; /* (x) next instruction to execute */ 114 }; 115 116 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 117 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 118 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 119 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 120 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 121 122 struct mem_seg { 123 size_t len; 124 bool sysmem; 125 struct vm_object *object; 126 }; 127 #define VM_MAX_MEMSEGS 3 128 129 struct mem_map { 130 vm_paddr_t gpa; 131 size_t len; 132 vm_ooffset_t segoff; 133 int segid; 134 int prot; 135 int flags; 136 }; 137 #define VM_MAX_MEMMAPS 4 138 139 /* 140 * Initialization: 141 * (o) initialized the first time the VM is created 142 * (i) initialized when VM is created and when it is reinitialized 143 * (x) initialized before use 144 */ 145 struct vm { 146 void *cookie; /* (i) cpu-specific data */ 147 void *iommu; /* (x) iommu-specific data */ 148 struct vhpet *vhpet; /* (i) virtual HPET */ 149 struct vioapic *vioapic; /* (i) virtual ioapic */ 150 struct vatpic *vatpic; /* (i) virtual atpic */ 151 struct vatpit *vatpit; /* (i) virtual atpit */ 152 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 153 struct vrtc *vrtc; /* (o) virtual RTC */ 154 volatile cpuset_t active_cpus; /* (i) active vcpus */ 155 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 156 int suspend; /* (i) stop VM execution */ 157 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 158 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 159 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 160 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 161 void *rendezvous_arg; /* (x) rendezvous func/arg */ 162 vm_rendezvous_func_t rendezvous_func; 163 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 164 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */ 165 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */ 166 struct vmspace *vmspace; /* (o) guest's address space */ 167 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 168 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 169 /* The following describe the vm cpu topology */ 170 uint16_t sockets; /* (o) num of sockets */ 171 uint16_t cores; /* (o) num of cores/socket */ 172 uint16_t threads; /* (o) num of threads/core */ 173 uint16_t maxcpus; /* (o) max pluggable cpus */ 174 }; 175 176 static int vmm_initialized; 177 178 static struct vmm_ops *ops; 179 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 180 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 181 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 182 183 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 184 #define VMRUN(vmi, vcpu, rip, pmap, evinfo) \ 185 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO) 186 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 187 #define VMSPACE_ALLOC(min, max) \ 188 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 189 #define VMSPACE_FREE(vmspace) \ 190 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 191 #define VMGETREG(vmi, vcpu, num, retval) \ 192 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 193 #define VMSETREG(vmi, vcpu, num, val) \ 194 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 195 #define VMGETDESC(vmi, vcpu, num, desc) \ 196 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 197 #define VMSETDESC(vmi, vcpu, num, desc) \ 198 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 199 #define VMGETCAP(vmi, vcpu, num, retval) \ 200 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 201 #define VMSETCAP(vmi, vcpu, num, val) \ 202 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 203 #define VLAPIC_INIT(vmi, vcpu) \ 204 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 205 #define VLAPIC_CLEANUP(vmi, vlapic) \ 206 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 207 208 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 209 #define fpu_stop_emulating() clts() 210 211 SDT_PROVIDER_DEFINE(vmm); 212 213 static MALLOC_DEFINE(M_VM, "vm", "vm"); 214 215 /* statistics */ 216 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 217 218 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 219 NULL); 220 221 /* 222 * Halt the guest if all vcpus are executing a HLT instruction with 223 * interrupts disabled. 224 */ 225 static int halt_detection_enabled = 1; 226 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 227 &halt_detection_enabled, 0, 228 "Halt VM if all vcpus execute HLT with interrupts disabled"); 229 230 static int vmm_ipinum; 231 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 232 "IPI vector used for vcpu notifications"); 233 234 static int trace_guest_exceptions; 235 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 236 &trace_guest_exceptions, 0, 237 "Trap into hypervisor on all guest exceptions and reflect them back"); 238 239 static void vm_free_memmap(struct vm *vm, int ident); 240 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 241 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 242 243 #ifdef KTR 244 static const char * 245 vcpu_state2str(enum vcpu_state state) 246 { 247 248 switch (state) { 249 case VCPU_IDLE: 250 return ("idle"); 251 case VCPU_FROZEN: 252 return ("frozen"); 253 case VCPU_RUNNING: 254 return ("running"); 255 case VCPU_SLEEPING: 256 return ("sleeping"); 257 default: 258 return ("unknown"); 259 } 260 } 261 #endif 262 263 static void 264 vcpu_cleanup(struct vm *vm, int i, bool destroy) 265 { 266 struct vcpu *vcpu = &vm->vcpu[i]; 267 268 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 269 if (destroy) { 270 vmm_stat_free(vcpu->stats); 271 fpu_save_area_free(vcpu->guestfpu); 272 } 273 } 274 275 static void 276 vcpu_init(struct vm *vm, int vcpu_id, bool create) 277 { 278 struct vcpu *vcpu; 279 280 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 281 ("vcpu_init: invalid vcpu %d", vcpu_id)); 282 283 vcpu = &vm->vcpu[vcpu_id]; 284 285 if (create) { 286 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 287 "initialized", vcpu_id)); 288 vcpu_lock_init(vcpu); 289 vcpu->state = VCPU_IDLE; 290 vcpu->hostcpu = NOCPU; 291 vcpu->guestfpu = fpu_save_area_alloc(); 292 vcpu->stats = vmm_stat_alloc(); 293 } 294 295 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 296 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 297 vcpu->reqidle = 0; 298 vcpu->exitintinfo = 0; 299 vcpu->nmi_pending = 0; 300 vcpu->extint_pending = 0; 301 vcpu->exception_pending = 0; 302 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 303 fpu_save_area_reset(vcpu->guestfpu); 304 vmm_stat_init(vcpu->stats); 305 } 306 307 int 308 vcpu_trace_exceptions(struct vm *vm, int vcpuid) 309 { 310 311 return (trace_guest_exceptions); 312 } 313 314 struct vm_exit * 315 vm_exitinfo(struct vm *vm, int cpuid) 316 { 317 struct vcpu *vcpu; 318 319 if (cpuid < 0 || cpuid >= vm->maxcpus) 320 panic("vm_exitinfo: invalid cpuid %d", cpuid); 321 322 vcpu = &vm->vcpu[cpuid]; 323 324 return (&vcpu->exitinfo); 325 } 326 327 static void 328 vmm_resume(void) 329 { 330 VMM_RESUME(); 331 } 332 333 static int 334 vmm_init(void) 335 { 336 int error; 337 338 vmm_host_state_init(); 339 340 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 341 &IDTVEC(justreturn)); 342 if (vmm_ipinum < 0) 343 vmm_ipinum = IPI_AST; 344 345 error = vmm_mem_init(); 346 if (error) 347 return (error); 348 349 if (vmm_is_intel()) 350 ops = &vmm_ops_intel; 351 else if (vmm_is_svm()) 352 ops = &vmm_ops_amd; 353 else 354 return (ENXIO); 355 356 vmm_resume_p = vmm_resume; 357 358 return (VMM_INIT(vmm_ipinum)); 359 } 360 361 static int 362 vmm_handler(module_t mod, int what, void *arg) 363 { 364 int error; 365 366 switch (what) { 367 case MOD_LOAD: 368 vmmdev_init(); 369 error = vmm_init(); 370 if (error == 0) 371 vmm_initialized = 1; 372 break; 373 case MOD_UNLOAD: 374 error = vmmdev_cleanup(); 375 if (error == 0) { 376 vmm_resume_p = NULL; 377 iommu_cleanup(); 378 if (vmm_ipinum != IPI_AST) 379 lapic_ipi_free(vmm_ipinum); 380 error = VMM_CLEANUP(); 381 /* 382 * Something bad happened - prevent new 383 * VMs from being created 384 */ 385 if (error) 386 vmm_initialized = 0; 387 } 388 break; 389 default: 390 error = 0; 391 break; 392 } 393 return (error); 394 } 395 396 static moduledata_t vmm_kmod = { 397 "vmm", 398 vmm_handler, 399 NULL 400 }; 401 402 /* 403 * vmm initialization has the following dependencies: 404 * 405 * - VT-x initialization requires smp_rendezvous() and therefore must happen 406 * after SMP is fully functional (after SI_SUB_SMP). 407 */ 408 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 409 MODULE_VERSION(vmm, 1); 410 411 static void 412 vm_init(struct vm *vm, bool create) 413 { 414 int i; 415 416 vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace)); 417 vm->iommu = NULL; 418 vm->vioapic = vioapic_init(vm); 419 vm->vhpet = vhpet_init(vm); 420 vm->vatpic = vatpic_init(vm); 421 vm->vatpit = vatpit_init(vm); 422 vm->vpmtmr = vpmtmr_init(vm); 423 if (create) 424 vm->vrtc = vrtc_init(vm); 425 426 CPU_ZERO(&vm->active_cpus); 427 CPU_ZERO(&vm->debug_cpus); 428 429 vm->suspend = 0; 430 CPU_ZERO(&vm->suspended_cpus); 431 432 for (i = 0; i < vm->maxcpus; i++) 433 vcpu_init(vm, i, create); 434 } 435 436 /* 437 * The default CPU topology is a single thread per package. 438 */ 439 u_int cores_per_package = 1; 440 u_int threads_per_core = 1; 441 442 int 443 vm_create(const char *name, struct vm **retvm) 444 { 445 struct vm *vm; 446 struct vmspace *vmspace; 447 448 /* 449 * If vmm.ko could not be successfully initialized then don't attempt 450 * to create the virtual machine. 451 */ 452 if (!vmm_initialized) 453 return (ENXIO); 454 455 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 456 return (EINVAL); 457 458 vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS); 459 if (vmspace == NULL) 460 return (ENOMEM); 461 462 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 463 strcpy(vm->name, name); 464 vm->vmspace = vmspace; 465 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 466 467 vm->sockets = 1; 468 vm->cores = cores_per_package; /* XXX backwards compatibility */ 469 vm->threads = threads_per_core; /* XXX backwards compatibility */ 470 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 471 472 vm_init(vm, true); 473 474 *retvm = vm; 475 return (0); 476 } 477 478 void 479 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 480 uint16_t *threads, uint16_t *maxcpus) 481 { 482 *sockets = vm->sockets; 483 *cores = vm->cores; 484 *threads = vm->threads; 485 *maxcpus = vm->maxcpus; 486 } 487 488 uint16_t 489 vm_get_maxcpus(struct vm *vm) 490 { 491 return (vm->maxcpus); 492 } 493 494 int 495 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 496 uint16_t threads, uint16_t maxcpus) 497 { 498 if (maxcpus != 0) 499 return (EINVAL); /* XXX remove when supported */ 500 if ((sockets * cores * threads) > vm->maxcpus) 501 return (EINVAL); 502 /* XXX need to check sockets * cores * threads == vCPU, how? */ 503 vm->sockets = sockets; 504 vm->cores = cores; 505 vm->threads = threads; 506 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 507 return(0); 508 } 509 510 static void 511 vm_cleanup(struct vm *vm, bool destroy) 512 { 513 struct mem_map *mm; 514 int i; 515 516 ppt_unassign_all(vm); 517 518 if (vm->iommu != NULL) 519 iommu_destroy_domain(vm->iommu); 520 521 if (destroy) 522 vrtc_cleanup(vm->vrtc); 523 else 524 vrtc_reset(vm->vrtc); 525 vpmtmr_cleanup(vm->vpmtmr); 526 vatpit_cleanup(vm->vatpit); 527 vhpet_cleanup(vm->vhpet); 528 vatpic_cleanup(vm->vatpic); 529 vioapic_cleanup(vm->vioapic); 530 531 for (i = 0; i < vm->maxcpus; i++) 532 vcpu_cleanup(vm, i, destroy); 533 534 VMCLEANUP(vm->cookie); 535 536 /* 537 * System memory is removed from the guest address space only when 538 * the VM is destroyed. This is because the mapping remains the same 539 * across VM reset. 540 * 541 * Device memory can be relocated by the guest (e.g. using PCI BARs) 542 * so those mappings are removed on a VM reset. 543 */ 544 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 545 mm = &vm->mem_maps[i]; 546 if (destroy || !sysmem_mapping(vm, mm)) 547 vm_free_memmap(vm, i); 548 } 549 550 if (destroy) { 551 for (i = 0; i < VM_MAX_MEMSEGS; i++) 552 vm_free_memseg(vm, i); 553 554 VMSPACE_FREE(vm->vmspace); 555 vm->vmspace = NULL; 556 } 557 } 558 559 void 560 vm_destroy(struct vm *vm) 561 { 562 vm_cleanup(vm, true); 563 free(vm, M_VM); 564 } 565 566 int 567 vm_reinit(struct vm *vm) 568 { 569 int error; 570 571 /* 572 * A virtual machine can be reset only if all vcpus are suspended. 573 */ 574 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 575 vm_cleanup(vm, false); 576 vm_init(vm, false); 577 error = 0; 578 } else { 579 error = EBUSY; 580 } 581 582 return (error); 583 } 584 585 const char * 586 vm_name(struct vm *vm) 587 { 588 return (vm->name); 589 } 590 591 int 592 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 593 { 594 vm_object_t obj; 595 596 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 597 return (ENOMEM); 598 else 599 return (0); 600 } 601 602 int 603 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 604 { 605 606 vmm_mmio_free(vm->vmspace, gpa, len); 607 return (0); 608 } 609 610 /* 611 * Return 'true' if 'gpa' is allocated in the guest address space. 612 * 613 * This function is called in the context of a running vcpu which acts as 614 * an implicit lock on 'vm->mem_maps[]'. 615 */ 616 bool 617 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa) 618 { 619 struct mem_map *mm; 620 int i; 621 622 #ifdef INVARIANTS 623 int hostcpu, state; 624 state = vcpu_get_state(vm, vcpuid, &hostcpu); 625 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 626 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 627 #endif 628 629 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 630 mm = &vm->mem_maps[i]; 631 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 632 return (true); /* 'gpa' is sysmem or devmem */ 633 } 634 635 if (ppt_is_mmio(vm, gpa)) 636 return (true); /* 'gpa' is pci passthru mmio */ 637 638 return (false); 639 } 640 641 int 642 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 643 { 644 struct mem_seg *seg; 645 vm_object_t obj; 646 647 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 648 return (EINVAL); 649 650 if (len == 0 || (len & PAGE_MASK)) 651 return (EINVAL); 652 653 seg = &vm->mem_segs[ident]; 654 if (seg->object != NULL) { 655 if (seg->len == len && seg->sysmem == sysmem) 656 return (EEXIST); 657 else 658 return (EINVAL); 659 } 660 661 obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT); 662 if (obj == NULL) 663 return (ENOMEM); 664 665 seg->len = len; 666 seg->object = obj; 667 seg->sysmem = sysmem; 668 return (0); 669 } 670 671 int 672 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 673 vm_object_t *objptr) 674 { 675 struct mem_seg *seg; 676 677 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 678 return (EINVAL); 679 680 seg = &vm->mem_segs[ident]; 681 if (len) 682 *len = seg->len; 683 if (sysmem) 684 *sysmem = seg->sysmem; 685 if (objptr) 686 *objptr = seg->object; 687 return (0); 688 } 689 690 void 691 vm_free_memseg(struct vm *vm, int ident) 692 { 693 struct mem_seg *seg; 694 695 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 696 ("%s: invalid memseg ident %d", __func__, ident)); 697 698 seg = &vm->mem_segs[ident]; 699 if (seg->object != NULL) { 700 vm_object_deallocate(seg->object); 701 bzero(seg, sizeof(struct mem_seg)); 702 } 703 } 704 705 int 706 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 707 size_t len, int prot, int flags) 708 { 709 struct mem_seg *seg; 710 struct mem_map *m, *map; 711 vm_ooffset_t last; 712 int i, error; 713 714 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 715 return (EINVAL); 716 717 if (flags & ~VM_MEMMAP_F_WIRED) 718 return (EINVAL); 719 720 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 721 return (EINVAL); 722 723 seg = &vm->mem_segs[segid]; 724 if (seg->object == NULL) 725 return (EINVAL); 726 727 last = first + len; 728 if (first < 0 || first >= last || last > seg->len) 729 return (EINVAL); 730 731 if ((gpa | first | last) & PAGE_MASK) 732 return (EINVAL); 733 734 map = NULL; 735 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 736 m = &vm->mem_maps[i]; 737 if (m->len == 0) { 738 map = m; 739 break; 740 } 741 } 742 743 if (map == NULL) 744 return (ENOSPC); 745 746 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 747 len, 0, VMFS_NO_SPACE, prot, prot, 0); 748 if (error != KERN_SUCCESS) 749 return (EFAULT); 750 751 vm_object_reference(seg->object); 752 753 if (flags & VM_MEMMAP_F_WIRED) { 754 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 755 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 756 if (error != KERN_SUCCESS) { 757 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 758 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 759 EFAULT); 760 } 761 } 762 763 map->gpa = gpa; 764 map->len = len; 765 map->segoff = first; 766 map->segid = segid; 767 map->prot = prot; 768 map->flags = flags; 769 return (0); 770 } 771 772 int 773 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 774 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 775 { 776 struct mem_map *mm, *mmnext; 777 int i; 778 779 mmnext = NULL; 780 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 781 mm = &vm->mem_maps[i]; 782 if (mm->len == 0 || mm->gpa < *gpa) 783 continue; 784 if (mmnext == NULL || mm->gpa < mmnext->gpa) 785 mmnext = mm; 786 } 787 788 if (mmnext != NULL) { 789 *gpa = mmnext->gpa; 790 if (segid) 791 *segid = mmnext->segid; 792 if (segoff) 793 *segoff = mmnext->segoff; 794 if (len) 795 *len = mmnext->len; 796 if (prot) 797 *prot = mmnext->prot; 798 if (flags) 799 *flags = mmnext->flags; 800 return (0); 801 } else { 802 return (ENOENT); 803 } 804 } 805 806 static void 807 vm_free_memmap(struct vm *vm, int ident) 808 { 809 struct mem_map *mm; 810 int error; 811 812 mm = &vm->mem_maps[ident]; 813 if (mm->len) { 814 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 815 mm->gpa + mm->len); 816 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 817 __func__, error)); 818 bzero(mm, sizeof(struct mem_map)); 819 } 820 } 821 822 static __inline bool 823 sysmem_mapping(struct vm *vm, struct mem_map *mm) 824 { 825 826 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 827 return (true); 828 else 829 return (false); 830 } 831 832 vm_paddr_t 833 vmm_sysmem_maxaddr(struct vm *vm) 834 { 835 struct mem_map *mm; 836 vm_paddr_t maxaddr; 837 int i; 838 839 maxaddr = 0; 840 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 841 mm = &vm->mem_maps[i]; 842 if (sysmem_mapping(vm, mm)) { 843 if (maxaddr < mm->gpa + mm->len) 844 maxaddr = mm->gpa + mm->len; 845 } 846 } 847 return (maxaddr); 848 } 849 850 static void 851 vm_iommu_modify(struct vm *vm, bool map) 852 { 853 int i, sz; 854 vm_paddr_t gpa, hpa; 855 struct mem_map *mm; 856 void *vp, *cookie, *host_domain; 857 858 sz = PAGE_SIZE; 859 host_domain = iommu_host_domain(); 860 861 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 862 mm = &vm->mem_maps[i]; 863 if (!sysmem_mapping(vm, mm)) 864 continue; 865 866 if (map) { 867 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 868 ("iommu map found invalid memmap %#lx/%#lx/%#x", 869 mm->gpa, mm->len, mm->flags)); 870 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 871 continue; 872 mm->flags |= VM_MEMMAP_F_IOMMU; 873 } else { 874 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 875 continue; 876 mm->flags &= ~VM_MEMMAP_F_IOMMU; 877 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 878 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 879 mm->gpa, mm->len, mm->flags)); 880 } 881 882 gpa = mm->gpa; 883 while (gpa < mm->gpa + mm->len) { 884 vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE, 885 &cookie); 886 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 887 vm_name(vm), gpa)); 888 889 vm_gpa_release(cookie); 890 891 hpa = DMAP_TO_PHYS((uintptr_t)vp); 892 if (map) { 893 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 894 iommu_remove_mapping(host_domain, hpa, sz); 895 } else { 896 iommu_remove_mapping(vm->iommu, gpa, sz); 897 iommu_create_mapping(host_domain, hpa, hpa, sz); 898 } 899 900 gpa += PAGE_SIZE; 901 } 902 } 903 904 /* 905 * Invalidate the cached translations associated with the domain 906 * from which pages were removed. 907 */ 908 if (map) 909 iommu_invalidate_tlb(host_domain); 910 else 911 iommu_invalidate_tlb(vm->iommu); 912 } 913 914 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), false) 915 #define vm_iommu_map(vm) vm_iommu_modify((vm), true) 916 917 int 918 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 919 { 920 int error; 921 922 error = ppt_unassign_device(vm, bus, slot, func); 923 if (error) 924 return (error); 925 926 if (ppt_assigned_devices(vm) == 0) 927 vm_iommu_unmap(vm); 928 929 return (0); 930 } 931 932 int 933 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 934 { 935 int error; 936 vm_paddr_t maxaddr; 937 938 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 939 if (ppt_assigned_devices(vm) == 0) { 940 KASSERT(vm->iommu == NULL, 941 ("vm_assign_pptdev: iommu must be NULL")); 942 maxaddr = vmm_sysmem_maxaddr(vm); 943 vm->iommu = iommu_create_domain(maxaddr); 944 if (vm->iommu == NULL) 945 return (ENXIO); 946 vm_iommu_map(vm); 947 } 948 949 error = ppt_assign_device(vm, bus, slot, func); 950 return (error); 951 } 952 953 void * 954 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot, 955 void **cookie) 956 { 957 int i, count, pageoff; 958 struct mem_map *mm; 959 vm_page_t m; 960 #ifdef INVARIANTS 961 /* 962 * All vcpus are frozen by ioctls that modify the memory map 963 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is 964 * guaranteed if at least one vcpu is in the VCPU_FROZEN state. 965 */ 966 int state; 967 KASSERT(vcpuid >= -1 && vcpuid < vm->maxcpus, ("%s: invalid vcpuid %d", 968 __func__, vcpuid)); 969 for (i = 0; i < vm->maxcpus; i++) { 970 if (vcpuid != -1 && vcpuid != i) 971 continue; 972 state = vcpu_get_state(vm, i, NULL); 973 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 974 __func__, state)); 975 } 976 #endif 977 pageoff = gpa & PAGE_MASK; 978 if (len > PAGE_SIZE - pageoff) 979 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 980 981 count = 0; 982 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 983 mm = &vm->mem_maps[i]; 984 if (sysmem_mapping(vm, mm) && gpa >= mm->gpa && 985 gpa < mm->gpa + mm->len) { 986 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 987 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 988 break; 989 } 990 } 991 992 if (count == 1) { 993 *cookie = m; 994 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 995 } else { 996 *cookie = NULL; 997 return (NULL); 998 } 999 } 1000 1001 void 1002 vm_gpa_release(void *cookie) 1003 { 1004 vm_page_t m = cookie; 1005 1006 vm_page_unwire(m, PQ_ACTIVE); 1007 } 1008 1009 int 1010 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 1011 { 1012 1013 if (vcpu < 0 || vcpu >= vm->maxcpus) 1014 return (EINVAL); 1015 1016 if (reg >= VM_REG_LAST) 1017 return (EINVAL); 1018 1019 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 1020 } 1021 1022 int 1023 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) 1024 { 1025 struct vcpu *vcpu; 1026 int error; 1027 1028 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1029 return (EINVAL); 1030 1031 if (reg >= VM_REG_LAST) 1032 return (EINVAL); 1033 1034 error = VMSETREG(vm->cookie, vcpuid, reg, val); 1035 if (error || reg != VM_REG_GUEST_RIP) 1036 return (error); 1037 1038 /* Set 'nextrip' to match the value of %rip */ 1039 VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val); 1040 vcpu = &vm->vcpu[vcpuid]; 1041 vcpu->nextrip = val; 1042 return (0); 1043 } 1044 1045 static bool 1046 is_descriptor_table(int reg) 1047 { 1048 1049 switch (reg) { 1050 case VM_REG_GUEST_IDTR: 1051 case VM_REG_GUEST_GDTR: 1052 return (true); 1053 default: 1054 return (false); 1055 } 1056 } 1057 1058 static bool 1059 is_segment_register(int reg) 1060 { 1061 1062 switch (reg) { 1063 case VM_REG_GUEST_ES: 1064 case VM_REG_GUEST_CS: 1065 case VM_REG_GUEST_SS: 1066 case VM_REG_GUEST_DS: 1067 case VM_REG_GUEST_FS: 1068 case VM_REG_GUEST_GS: 1069 case VM_REG_GUEST_TR: 1070 case VM_REG_GUEST_LDTR: 1071 return (true); 1072 default: 1073 return (false); 1074 } 1075 } 1076 1077 int 1078 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 1079 struct seg_desc *desc) 1080 { 1081 1082 if (vcpu < 0 || vcpu >= vm->maxcpus) 1083 return (EINVAL); 1084 1085 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1086 return (EINVAL); 1087 1088 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 1089 } 1090 1091 int 1092 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 1093 struct seg_desc *desc) 1094 { 1095 if (vcpu < 0 || vcpu >= vm->maxcpus) 1096 return (EINVAL); 1097 1098 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1099 return (EINVAL); 1100 1101 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 1102 } 1103 1104 static void 1105 restore_guest_fpustate(struct vcpu *vcpu) 1106 { 1107 1108 /* flush host state to the pcb */ 1109 fpuexit(curthread); 1110 1111 /* restore guest FPU state */ 1112 fpu_stop_emulating(); 1113 fpurestore(vcpu->guestfpu); 1114 1115 /* restore guest XCR0 if XSAVE is enabled in the host */ 1116 if (rcr4() & CR4_XSAVE) 1117 load_xcr(0, vcpu->guest_xcr0); 1118 1119 /* 1120 * The FPU is now "dirty" with the guest's state so turn on emulation 1121 * to trap any access to the FPU by the host. 1122 */ 1123 fpu_start_emulating(); 1124 } 1125 1126 static void 1127 save_guest_fpustate(struct vcpu *vcpu) 1128 { 1129 1130 if ((rcr0() & CR0_TS) == 0) 1131 panic("fpu emulation not enabled in host!"); 1132 1133 /* save guest XCR0 and restore host XCR0 */ 1134 if (rcr4() & CR4_XSAVE) { 1135 vcpu->guest_xcr0 = rxcr(0); 1136 load_xcr(0, vmm_get_host_xcr0()); 1137 } 1138 1139 /* save guest FPU state */ 1140 fpu_stop_emulating(); 1141 fpusave(vcpu->guestfpu); 1142 fpu_start_emulating(); 1143 } 1144 1145 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1146 1147 static int 1148 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1149 bool from_idle) 1150 { 1151 struct vcpu *vcpu; 1152 int error; 1153 1154 vcpu = &vm->vcpu[vcpuid]; 1155 vcpu_assert_locked(vcpu); 1156 1157 /* 1158 * State transitions from the vmmdev_ioctl() must always begin from 1159 * the VCPU_IDLE state. This guarantees that there is only a single 1160 * ioctl() operating on a vcpu at any point. 1161 */ 1162 if (from_idle) { 1163 while (vcpu->state != VCPU_IDLE) { 1164 vcpu->reqidle = 1; 1165 vcpu_notify_event_locked(vcpu, false); 1166 VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to " 1167 "idle requested", vcpu_state2str(vcpu->state)); 1168 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1169 } 1170 } else { 1171 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1172 "vcpu idle state")); 1173 } 1174 1175 if (vcpu->state == VCPU_RUNNING) { 1176 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1177 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1178 } else { 1179 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1180 "vcpu that is not running", vcpu->hostcpu)); 1181 } 1182 1183 /* 1184 * The following state transitions are allowed: 1185 * IDLE -> FROZEN -> IDLE 1186 * FROZEN -> RUNNING -> FROZEN 1187 * FROZEN -> SLEEPING -> FROZEN 1188 */ 1189 switch (vcpu->state) { 1190 case VCPU_IDLE: 1191 case VCPU_RUNNING: 1192 case VCPU_SLEEPING: 1193 error = (newstate != VCPU_FROZEN); 1194 break; 1195 case VCPU_FROZEN: 1196 error = (newstate == VCPU_FROZEN); 1197 break; 1198 default: 1199 error = 1; 1200 break; 1201 } 1202 1203 if (error) 1204 return (EBUSY); 1205 1206 VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s", 1207 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1208 1209 vcpu->state = newstate; 1210 if (newstate == VCPU_RUNNING) 1211 vcpu->hostcpu = curcpu; 1212 else 1213 vcpu->hostcpu = NOCPU; 1214 1215 if (newstate == VCPU_IDLE) 1216 wakeup(&vcpu->state); 1217 1218 return (0); 1219 } 1220 1221 static void 1222 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1223 { 1224 int error; 1225 1226 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1227 panic("Error %d setting state to %d\n", error, newstate); 1228 } 1229 1230 static void 1231 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1232 { 1233 int error; 1234 1235 if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0) 1236 panic("Error %d setting state to %d", error, newstate); 1237 } 1238 1239 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1240 do { \ 1241 if (vcpuid >= 0) \ 1242 VCPU_CTR0(vm, vcpuid, fmt); \ 1243 else \ 1244 VM_CTR0(vm, fmt); \ 1245 } while (0) 1246 1247 static int 1248 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1249 { 1250 struct thread *td; 1251 int error; 1252 1253 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 1254 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1255 1256 error = 0; 1257 td = curthread; 1258 mtx_lock(&vm->rendezvous_mtx); 1259 while (vm->rendezvous_func != NULL) { 1260 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1261 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 1262 1263 if (vcpuid != -1 && 1264 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1265 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1266 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1267 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1268 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1269 } 1270 if (CPU_CMP(&vm->rendezvous_req_cpus, 1271 &vm->rendezvous_done_cpus) == 0) { 1272 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1273 vm->rendezvous_func = NULL; 1274 wakeup(&vm->rendezvous_func); 1275 break; 1276 } 1277 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1278 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1279 "vmrndv", hz); 1280 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1281 mtx_unlock(&vm->rendezvous_mtx); 1282 error = thread_check_susp(td, true); 1283 if (error != 0) 1284 return (error); 1285 mtx_lock(&vm->rendezvous_mtx); 1286 } 1287 } 1288 mtx_unlock(&vm->rendezvous_mtx); 1289 return (0); 1290 } 1291 1292 /* 1293 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1294 */ 1295 static int 1296 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1297 { 1298 struct vcpu *vcpu; 1299 const char *wmesg; 1300 struct thread *td; 1301 int error, t, vcpu_halted, vm_halted; 1302 1303 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1304 1305 vcpu = &vm->vcpu[vcpuid]; 1306 vcpu_halted = 0; 1307 vm_halted = 0; 1308 error = 0; 1309 td = curthread; 1310 1311 vcpu_lock(vcpu); 1312 while (1) { 1313 /* 1314 * Do a final check for pending NMI or interrupts before 1315 * really putting this thread to sleep. Also check for 1316 * software events that would cause this vcpu to wakeup. 1317 * 1318 * These interrupts/events could have happened after the 1319 * vcpu returned from VMRUN() and before it acquired the 1320 * vcpu lock above. 1321 */ 1322 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1323 break; 1324 if (vm_nmi_pending(vm, vcpuid)) 1325 break; 1326 if (!intr_disabled) { 1327 if (vm_extint_pending(vm, vcpuid) || 1328 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1329 break; 1330 } 1331 } 1332 1333 /* Don't go to sleep if the vcpu thread needs to yield */ 1334 if (vcpu_should_yield(vm, vcpuid)) 1335 break; 1336 1337 if (vcpu_debugged(vm, vcpuid)) 1338 break; 1339 1340 /* 1341 * Some Linux guests implement "halt" by having all vcpus 1342 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1343 * track of the vcpus that have entered this state. When all 1344 * vcpus enter the halted state the virtual machine is halted. 1345 */ 1346 if (intr_disabled) { 1347 wmesg = "vmhalt"; 1348 VCPU_CTR0(vm, vcpuid, "Halted"); 1349 if (!vcpu_halted && halt_detection_enabled) { 1350 vcpu_halted = 1; 1351 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1352 } 1353 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1354 vm_halted = 1; 1355 break; 1356 } 1357 } else { 1358 wmesg = "vmidle"; 1359 } 1360 1361 t = ticks; 1362 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1363 /* 1364 * XXX msleep_spin() cannot be interrupted by signals so 1365 * wake up periodically to check pending signals. 1366 */ 1367 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1368 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1369 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1370 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1371 vcpu_unlock(vcpu); 1372 error = thread_check_susp(td, false); 1373 if (error != 0) 1374 return (error); 1375 vcpu_lock(vcpu); 1376 } 1377 } 1378 1379 if (vcpu_halted) 1380 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1381 1382 vcpu_unlock(vcpu); 1383 1384 if (vm_halted) 1385 vm_suspend(vm, VM_SUSPEND_HALT); 1386 1387 return (0); 1388 } 1389 1390 static int 1391 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1392 { 1393 int rv, ftype; 1394 struct vm_map *map; 1395 struct vcpu *vcpu; 1396 struct vm_exit *vme; 1397 1398 vcpu = &vm->vcpu[vcpuid]; 1399 vme = &vcpu->exitinfo; 1400 1401 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1402 __func__, vme->inst_length)); 1403 1404 ftype = vme->u.paging.fault_type; 1405 KASSERT(ftype == VM_PROT_READ || 1406 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1407 ("vm_handle_paging: invalid fault_type %d", ftype)); 1408 1409 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1410 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1411 vme->u.paging.gpa, ftype); 1412 if (rv == 0) { 1413 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1414 ftype == VM_PROT_READ ? "accessed" : "dirty", 1415 vme->u.paging.gpa); 1416 goto done; 1417 } 1418 } 1419 1420 map = &vm->vmspace->vm_map; 1421 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1422 1423 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1424 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1425 1426 if (rv != KERN_SUCCESS) 1427 return (EFAULT); 1428 done: 1429 return (0); 1430 } 1431 1432 static int 1433 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1434 { 1435 struct vie *vie; 1436 struct vcpu *vcpu; 1437 struct vm_exit *vme; 1438 uint64_t gla, gpa, cs_base; 1439 struct vm_guest_paging *paging; 1440 mem_region_read_t mread; 1441 mem_region_write_t mwrite; 1442 enum vm_cpu_mode cpu_mode; 1443 int cs_d, error, fault; 1444 1445 vcpu = &vm->vcpu[vcpuid]; 1446 vme = &vcpu->exitinfo; 1447 1448 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1449 __func__, vme->inst_length)); 1450 1451 gla = vme->u.inst_emul.gla; 1452 gpa = vme->u.inst_emul.gpa; 1453 cs_base = vme->u.inst_emul.cs_base; 1454 cs_d = vme->u.inst_emul.cs_d; 1455 vie = &vme->u.inst_emul.vie; 1456 paging = &vme->u.inst_emul.paging; 1457 cpu_mode = paging->cpu_mode; 1458 1459 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1460 1461 /* Fetch, decode and emulate the faulting instruction */ 1462 if (vie->num_valid == 0) { 1463 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip + 1464 cs_base, VIE_INST_SIZE, vie, &fault); 1465 } else { 1466 /* 1467 * The instruction bytes have already been copied into 'vie' 1468 */ 1469 error = fault = 0; 1470 } 1471 if (error || fault) 1472 return (error); 1473 1474 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) { 1475 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx", 1476 vme->rip + cs_base); 1477 *retu = true; /* dump instruction bytes in userspace */ 1478 return (0); 1479 } 1480 1481 /* 1482 * Update 'nextrip' based on the length of the emulated instruction. 1483 */ 1484 vme->inst_length = vie->num_processed; 1485 vcpu->nextrip += vie->num_processed; 1486 VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction " 1487 "decoding", vcpu->nextrip); 1488 1489 /* return to userland unless this is an in-kernel emulated device */ 1490 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1491 mread = lapic_mmio_read; 1492 mwrite = lapic_mmio_write; 1493 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1494 mread = vioapic_mmio_read; 1495 mwrite = vioapic_mmio_write; 1496 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1497 mread = vhpet_mmio_read; 1498 mwrite = vhpet_mmio_write; 1499 } else { 1500 *retu = true; 1501 return (0); 1502 } 1503 1504 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1505 mread, mwrite, retu); 1506 1507 return (error); 1508 } 1509 1510 static int 1511 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1512 { 1513 int error, i; 1514 struct vcpu *vcpu; 1515 struct thread *td; 1516 1517 error = 0; 1518 vcpu = &vm->vcpu[vcpuid]; 1519 td = curthread; 1520 1521 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1522 1523 /* 1524 * Wait until all 'active_cpus' have suspended themselves. 1525 * 1526 * Since a VM may be suspended at any time including when one or 1527 * more vcpus are doing a rendezvous we need to call the rendezvous 1528 * handler while we are waiting to prevent a deadlock. 1529 */ 1530 vcpu_lock(vcpu); 1531 while (error == 0) { 1532 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1533 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1534 break; 1535 } 1536 1537 if (vm->rendezvous_func == NULL) { 1538 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1539 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1540 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1541 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1542 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1543 vcpu_unlock(vcpu); 1544 error = thread_check_susp(td, false); 1545 vcpu_lock(vcpu); 1546 } 1547 } else { 1548 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1549 vcpu_unlock(vcpu); 1550 error = vm_handle_rendezvous(vm, vcpuid); 1551 vcpu_lock(vcpu); 1552 } 1553 } 1554 vcpu_unlock(vcpu); 1555 1556 /* 1557 * Wakeup the other sleeping vcpus and return to userspace. 1558 */ 1559 for (i = 0; i < vm->maxcpus; i++) { 1560 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1561 vcpu_notify_event(vm, i, false); 1562 } 1563 } 1564 1565 *retu = true; 1566 return (error); 1567 } 1568 1569 static int 1570 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu) 1571 { 1572 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 1573 1574 vcpu_lock(vcpu); 1575 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1576 vcpu->reqidle = 0; 1577 vcpu_unlock(vcpu); 1578 *retu = true; 1579 return (0); 1580 } 1581 1582 int 1583 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1584 { 1585 int i; 1586 1587 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1588 return (EINVAL); 1589 1590 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1591 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1592 vm->suspend, how); 1593 return (EALREADY); 1594 } 1595 1596 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1597 1598 /* 1599 * Notify all active vcpus that they are now suspended. 1600 */ 1601 for (i = 0; i < vm->maxcpus; i++) { 1602 if (CPU_ISSET(i, &vm->active_cpus)) 1603 vcpu_notify_event(vm, i, false); 1604 } 1605 1606 return (0); 1607 } 1608 1609 void 1610 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1611 { 1612 struct vm_exit *vmexit; 1613 1614 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1615 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1616 1617 vmexit = vm_exitinfo(vm, vcpuid); 1618 vmexit->rip = rip; 1619 vmexit->inst_length = 0; 1620 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1621 vmexit->u.suspended.how = vm->suspend; 1622 } 1623 1624 void 1625 vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip) 1626 { 1627 struct vm_exit *vmexit; 1628 1629 vmexit = vm_exitinfo(vm, vcpuid); 1630 vmexit->rip = rip; 1631 vmexit->inst_length = 0; 1632 vmexit->exitcode = VM_EXITCODE_DEBUG; 1633 } 1634 1635 void 1636 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1637 { 1638 struct vm_exit *vmexit; 1639 1640 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1641 1642 vmexit = vm_exitinfo(vm, vcpuid); 1643 vmexit->rip = rip; 1644 vmexit->inst_length = 0; 1645 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1646 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1647 } 1648 1649 void 1650 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip) 1651 { 1652 struct vm_exit *vmexit; 1653 1654 vmexit = vm_exitinfo(vm, vcpuid); 1655 vmexit->rip = rip; 1656 vmexit->inst_length = 0; 1657 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1658 vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1); 1659 } 1660 1661 void 1662 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1663 { 1664 struct vm_exit *vmexit; 1665 1666 vmexit = vm_exitinfo(vm, vcpuid); 1667 vmexit->rip = rip; 1668 vmexit->inst_length = 0; 1669 vmexit->exitcode = VM_EXITCODE_BOGUS; 1670 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1671 } 1672 1673 int 1674 vm_run(struct vm *vm, struct vm_run *vmrun) 1675 { 1676 struct vm_eventinfo evinfo; 1677 int error, vcpuid; 1678 struct vcpu *vcpu; 1679 struct pcb *pcb; 1680 uint64_t tscval; 1681 struct vm_exit *vme; 1682 bool retu, intr_disabled; 1683 pmap_t pmap; 1684 1685 vcpuid = vmrun->cpuid; 1686 1687 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1688 return (EINVAL); 1689 1690 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1691 return (EINVAL); 1692 1693 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1694 return (EINVAL); 1695 1696 pmap = vmspace_pmap(vm->vmspace); 1697 vcpu = &vm->vcpu[vcpuid]; 1698 vme = &vcpu->exitinfo; 1699 evinfo.rptr = &vm->rendezvous_func; 1700 evinfo.sptr = &vm->suspend; 1701 evinfo.iptr = &vcpu->reqidle; 1702 restart: 1703 critical_enter(); 1704 1705 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1706 ("vm_run: absurd pm_active")); 1707 1708 tscval = rdtsc(); 1709 1710 pcb = PCPU_GET(curpcb); 1711 set_pcb_flags(pcb, PCB_FULL_IRET); 1712 1713 restore_guest_fpustate(vcpu); 1714 1715 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1716 error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo); 1717 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1718 1719 save_guest_fpustate(vcpu); 1720 1721 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1722 1723 critical_exit(); 1724 1725 if (error == 0) { 1726 retu = false; 1727 vcpu->nextrip = vme->rip + vme->inst_length; 1728 switch (vme->exitcode) { 1729 case VM_EXITCODE_REQIDLE: 1730 error = vm_handle_reqidle(vm, vcpuid, &retu); 1731 break; 1732 case VM_EXITCODE_SUSPENDED: 1733 error = vm_handle_suspend(vm, vcpuid, &retu); 1734 break; 1735 case VM_EXITCODE_IOAPIC_EOI: 1736 vioapic_process_eoi(vm, vcpuid, 1737 vme->u.ioapic_eoi.vector); 1738 break; 1739 case VM_EXITCODE_RENDEZVOUS: 1740 error = vm_handle_rendezvous(vm, vcpuid); 1741 break; 1742 case VM_EXITCODE_HLT: 1743 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1744 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1745 break; 1746 case VM_EXITCODE_PAGING: 1747 error = vm_handle_paging(vm, vcpuid, &retu); 1748 break; 1749 case VM_EXITCODE_INST_EMUL: 1750 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1751 break; 1752 case VM_EXITCODE_INOUT: 1753 case VM_EXITCODE_INOUT_STR: 1754 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1755 break; 1756 case VM_EXITCODE_MONITOR: 1757 case VM_EXITCODE_MWAIT: 1758 case VM_EXITCODE_VMINSN: 1759 vm_inject_ud(vm, vcpuid); 1760 break; 1761 default: 1762 retu = true; /* handled in userland */ 1763 break; 1764 } 1765 } 1766 1767 if (error == 0 && retu == false) 1768 goto restart; 1769 1770 VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode); 1771 1772 /* copy the exit information */ 1773 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1774 return (error); 1775 } 1776 1777 int 1778 vm_restart_instruction(void *arg, int vcpuid) 1779 { 1780 struct vm *vm; 1781 struct vcpu *vcpu; 1782 enum vcpu_state state; 1783 uint64_t rip; 1784 int error; 1785 1786 vm = arg; 1787 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1788 return (EINVAL); 1789 1790 vcpu = &vm->vcpu[vcpuid]; 1791 state = vcpu_get_state(vm, vcpuid, NULL); 1792 if (state == VCPU_RUNNING) { 1793 /* 1794 * When a vcpu is "running" the next instruction is determined 1795 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1796 * Thus setting 'inst_length' to zero will cause the current 1797 * instruction to be restarted. 1798 */ 1799 vcpu->exitinfo.inst_length = 0; 1800 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by " 1801 "setting inst_length to zero", vcpu->exitinfo.rip); 1802 } else if (state == VCPU_FROZEN) { 1803 /* 1804 * When a vcpu is "frozen" it is outside the critical section 1805 * around VMRUN() and 'nextrip' points to the next instruction. 1806 * Thus instruction restart is achieved by setting 'nextrip' 1807 * to the vcpu's %rip. 1808 */ 1809 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); 1810 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1811 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating " 1812 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1813 vcpu->nextrip = rip; 1814 } else { 1815 panic("%s: invalid state %d", __func__, state); 1816 } 1817 return (0); 1818 } 1819 1820 int 1821 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1822 { 1823 struct vcpu *vcpu; 1824 int type, vector; 1825 1826 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1827 return (EINVAL); 1828 1829 vcpu = &vm->vcpu[vcpuid]; 1830 1831 if (info & VM_INTINFO_VALID) { 1832 type = info & VM_INTINFO_TYPE; 1833 vector = info & 0xff; 1834 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1835 return (EINVAL); 1836 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1837 return (EINVAL); 1838 if (info & VM_INTINFO_RSVD) 1839 return (EINVAL); 1840 } else { 1841 info = 0; 1842 } 1843 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1844 vcpu->exitintinfo = info; 1845 return (0); 1846 } 1847 1848 enum exc_class { 1849 EXC_BENIGN, 1850 EXC_CONTRIBUTORY, 1851 EXC_PAGEFAULT 1852 }; 1853 1854 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1855 1856 static enum exc_class 1857 exception_class(uint64_t info) 1858 { 1859 int type, vector; 1860 1861 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1862 type = info & VM_INTINFO_TYPE; 1863 vector = info & 0xff; 1864 1865 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1866 switch (type) { 1867 case VM_INTINFO_HWINTR: 1868 case VM_INTINFO_SWINTR: 1869 case VM_INTINFO_NMI: 1870 return (EXC_BENIGN); 1871 default: 1872 /* 1873 * Hardware exception. 1874 * 1875 * SVM and VT-x use identical type values to represent NMI, 1876 * hardware interrupt and software interrupt. 1877 * 1878 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1879 * for exceptions except #BP and #OF. #BP and #OF use a type 1880 * value of '5' or '6'. Therefore we don't check for explicit 1881 * values of 'type' to classify 'intinfo' into a hardware 1882 * exception. 1883 */ 1884 break; 1885 } 1886 1887 switch (vector) { 1888 case IDT_PF: 1889 case IDT_VE: 1890 return (EXC_PAGEFAULT); 1891 case IDT_DE: 1892 case IDT_TS: 1893 case IDT_NP: 1894 case IDT_SS: 1895 case IDT_GP: 1896 return (EXC_CONTRIBUTORY); 1897 default: 1898 return (EXC_BENIGN); 1899 } 1900 } 1901 1902 static int 1903 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1904 uint64_t *retinfo) 1905 { 1906 enum exc_class exc1, exc2; 1907 int type1, vector1; 1908 1909 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1910 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1911 1912 /* 1913 * If an exception occurs while attempting to call the double-fault 1914 * handler the processor enters shutdown mode (aka triple fault). 1915 */ 1916 type1 = info1 & VM_INTINFO_TYPE; 1917 vector1 = info1 & 0xff; 1918 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1919 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1920 info1, info2); 1921 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1922 *retinfo = 0; 1923 return (0); 1924 } 1925 1926 /* 1927 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1928 */ 1929 exc1 = exception_class(info1); 1930 exc2 = exception_class(info2); 1931 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1932 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1933 /* Convert nested fault into a double fault. */ 1934 *retinfo = IDT_DF; 1935 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1936 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1937 } else { 1938 /* Handle exceptions serially */ 1939 *retinfo = info2; 1940 } 1941 return (1); 1942 } 1943 1944 static uint64_t 1945 vcpu_exception_intinfo(struct vcpu *vcpu) 1946 { 1947 uint64_t info = 0; 1948 1949 if (vcpu->exception_pending) { 1950 info = vcpu->exc_vector & 0xff; 1951 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1952 if (vcpu->exc_errcode_valid) { 1953 info |= VM_INTINFO_DEL_ERRCODE; 1954 info |= (uint64_t)vcpu->exc_errcode << 32; 1955 } 1956 } 1957 return (info); 1958 } 1959 1960 int 1961 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 1962 { 1963 struct vcpu *vcpu; 1964 uint64_t info1, info2; 1965 int valid; 1966 1967 KASSERT(vcpuid >= 0 && 1968 vcpuid < vm->maxcpus, ("invalid vcpu %d", vcpuid)); 1969 1970 vcpu = &vm->vcpu[vcpuid]; 1971 1972 info1 = vcpu->exitintinfo; 1973 vcpu->exitintinfo = 0; 1974 1975 info2 = 0; 1976 if (vcpu->exception_pending) { 1977 info2 = vcpu_exception_intinfo(vcpu); 1978 vcpu->exception_pending = 0; 1979 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 1980 vcpu->exc_vector, info2); 1981 } 1982 1983 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 1984 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 1985 } else if (info1 & VM_INTINFO_VALID) { 1986 *retinfo = info1; 1987 valid = 1; 1988 } else if (info2 & VM_INTINFO_VALID) { 1989 *retinfo = info2; 1990 valid = 1; 1991 } else { 1992 valid = 0; 1993 } 1994 1995 if (valid) { 1996 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 1997 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 1998 } 1999 2000 return (valid); 2001 } 2002 2003 int 2004 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 2005 { 2006 struct vcpu *vcpu; 2007 2008 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2009 return (EINVAL); 2010 2011 vcpu = &vm->vcpu[vcpuid]; 2012 *info1 = vcpu->exitintinfo; 2013 *info2 = vcpu_exception_intinfo(vcpu); 2014 return (0); 2015 } 2016 2017 int 2018 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid, 2019 uint32_t errcode, int restart_instruction) 2020 { 2021 struct vcpu *vcpu; 2022 uint64_t regval; 2023 int error; 2024 2025 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2026 return (EINVAL); 2027 2028 if (vector < 0 || vector >= 32) 2029 return (EINVAL); 2030 2031 /* 2032 * A double fault exception should never be injected directly into 2033 * the guest. It is a derived exception that results from specific 2034 * combinations of nested faults. 2035 */ 2036 if (vector == IDT_DF) 2037 return (EINVAL); 2038 2039 vcpu = &vm->vcpu[vcpuid]; 2040 2041 if (vcpu->exception_pending) { 2042 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 2043 "pending exception %d", vector, vcpu->exc_vector); 2044 return (EBUSY); 2045 } 2046 2047 if (errcode_valid) { 2048 /* 2049 * Exceptions don't deliver an error code in real mode. 2050 */ 2051 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val); 2052 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2053 if (!(regval & CR0_PE)) 2054 errcode_valid = 0; 2055 } 2056 2057 /* 2058 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2059 * 2060 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2061 * one instruction or incurs an exception. 2062 */ 2063 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 2064 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2065 __func__, error)); 2066 2067 if (restart_instruction) 2068 vm_restart_instruction(vm, vcpuid); 2069 2070 vcpu->exception_pending = 1; 2071 vcpu->exc_vector = vector; 2072 vcpu->exc_errcode = errcode; 2073 vcpu->exc_errcode_valid = errcode_valid; 2074 VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector); 2075 return (0); 2076 } 2077 2078 void 2079 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 2080 int errcode) 2081 { 2082 struct vm *vm; 2083 int error, restart_instruction; 2084 2085 vm = vmarg; 2086 restart_instruction = 1; 2087 2088 error = vm_inject_exception(vm, vcpuid, vector, errcode_valid, 2089 errcode, restart_instruction); 2090 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2091 } 2092 2093 void 2094 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 2095 { 2096 struct vm *vm; 2097 int error; 2098 2099 vm = vmarg; 2100 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 2101 error_code, cr2); 2102 2103 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 2104 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2105 2106 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 2107 } 2108 2109 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2110 2111 int 2112 vm_inject_nmi(struct vm *vm, int vcpuid) 2113 { 2114 struct vcpu *vcpu; 2115 2116 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2117 return (EINVAL); 2118 2119 vcpu = &vm->vcpu[vcpuid]; 2120 2121 vcpu->nmi_pending = 1; 2122 vcpu_notify_event(vm, vcpuid, false); 2123 return (0); 2124 } 2125 2126 int 2127 vm_nmi_pending(struct vm *vm, int vcpuid) 2128 { 2129 struct vcpu *vcpu; 2130 2131 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2132 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2133 2134 vcpu = &vm->vcpu[vcpuid]; 2135 2136 return (vcpu->nmi_pending); 2137 } 2138 2139 void 2140 vm_nmi_clear(struct vm *vm, int vcpuid) 2141 { 2142 struct vcpu *vcpu; 2143 2144 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2145 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2146 2147 vcpu = &vm->vcpu[vcpuid]; 2148 2149 if (vcpu->nmi_pending == 0) 2150 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2151 2152 vcpu->nmi_pending = 0; 2153 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 2154 } 2155 2156 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2157 2158 int 2159 vm_inject_extint(struct vm *vm, int vcpuid) 2160 { 2161 struct vcpu *vcpu; 2162 2163 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2164 return (EINVAL); 2165 2166 vcpu = &vm->vcpu[vcpuid]; 2167 2168 vcpu->extint_pending = 1; 2169 vcpu_notify_event(vm, vcpuid, false); 2170 return (0); 2171 } 2172 2173 int 2174 vm_extint_pending(struct vm *vm, int vcpuid) 2175 { 2176 struct vcpu *vcpu; 2177 2178 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2179 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2180 2181 vcpu = &vm->vcpu[vcpuid]; 2182 2183 return (vcpu->extint_pending); 2184 } 2185 2186 void 2187 vm_extint_clear(struct vm *vm, int vcpuid) 2188 { 2189 struct vcpu *vcpu; 2190 2191 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2192 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2193 2194 vcpu = &vm->vcpu[vcpuid]; 2195 2196 if (vcpu->extint_pending == 0) 2197 panic("vm_extint_clear: inconsistent extint_pending state"); 2198 2199 vcpu->extint_pending = 0; 2200 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 2201 } 2202 2203 int 2204 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 2205 { 2206 if (vcpu < 0 || vcpu >= vm->maxcpus) 2207 return (EINVAL); 2208 2209 if (type < 0 || type >= VM_CAP_MAX) 2210 return (EINVAL); 2211 2212 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 2213 } 2214 2215 int 2216 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 2217 { 2218 if (vcpu < 0 || vcpu >= vm->maxcpus) 2219 return (EINVAL); 2220 2221 if (type < 0 || type >= VM_CAP_MAX) 2222 return (EINVAL); 2223 2224 return (VMSETCAP(vm->cookie, vcpu, type, val)); 2225 } 2226 2227 struct vlapic * 2228 vm_lapic(struct vm *vm, int cpu) 2229 { 2230 return (vm->vcpu[cpu].vlapic); 2231 } 2232 2233 struct vioapic * 2234 vm_ioapic(struct vm *vm) 2235 { 2236 2237 return (vm->vioapic); 2238 } 2239 2240 struct vhpet * 2241 vm_hpet(struct vm *vm) 2242 { 2243 2244 return (vm->vhpet); 2245 } 2246 2247 bool 2248 vmm_is_pptdev(int bus, int slot, int func) 2249 { 2250 int b, f, i, n, s; 2251 char *val, *cp, *cp2; 2252 bool found; 2253 2254 /* 2255 * XXX 2256 * The length of an environment variable is limited to 128 bytes which 2257 * puts an upper limit on the number of passthru devices that may be 2258 * specified using a single environment variable. 2259 * 2260 * Work around this by scanning multiple environment variable 2261 * names instead of a single one - yuck! 2262 */ 2263 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2264 2265 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2266 found = false; 2267 for (i = 0; names[i] != NULL && !found; i++) { 2268 cp = val = kern_getenv(names[i]); 2269 while (cp != NULL && *cp != '\0') { 2270 if ((cp2 = strchr(cp, ' ')) != NULL) 2271 *cp2 = '\0'; 2272 2273 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2274 if (n == 3 && bus == b && slot == s && func == f) { 2275 found = true; 2276 break; 2277 } 2278 2279 if (cp2 != NULL) 2280 *cp2++ = ' '; 2281 2282 cp = cp2; 2283 } 2284 freeenv(val); 2285 } 2286 return (found); 2287 } 2288 2289 void * 2290 vm_iommu_domain(struct vm *vm) 2291 { 2292 2293 return (vm->iommu); 2294 } 2295 2296 int 2297 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 2298 bool from_idle) 2299 { 2300 int error; 2301 struct vcpu *vcpu; 2302 2303 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2304 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 2305 2306 vcpu = &vm->vcpu[vcpuid]; 2307 2308 vcpu_lock(vcpu); 2309 error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle); 2310 vcpu_unlock(vcpu); 2311 2312 return (error); 2313 } 2314 2315 enum vcpu_state 2316 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 2317 { 2318 struct vcpu *vcpu; 2319 enum vcpu_state state; 2320 2321 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2322 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 2323 2324 vcpu = &vm->vcpu[vcpuid]; 2325 2326 vcpu_lock(vcpu); 2327 state = vcpu->state; 2328 if (hostcpu != NULL) 2329 *hostcpu = vcpu->hostcpu; 2330 vcpu_unlock(vcpu); 2331 2332 return (state); 2333 } 2334 2335 int 2336 vm_activate_cpu(struct vm *vm, int vcpuid) 2337 { 2338 2339 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2340 return (EINVAL); 2341 2342 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2343 return (EBUSY); 2344 2345 VCPU_CTR0(vm, vcpuid, "activated"); 2346 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2347 return (0); 2348 } 2349 2350 int 2351 vm_suspend_cpu(struct vm *vm, int vcpuid) 2352 { 2353 int i; 2354 2355 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2356 return (EINVAL); 2357 2358 if (vcpuid == -1) { 2359 vm->debug_cpus = vm->active_cpus; 2360 for (i = 0; i < vm->maxcpus; i++) { 2361 if (CPU_ISSET(i, &vm->active_cpus)) 2362 vcpu_notify_event(vm, i, false); 2363 } 2364 } else { 2365 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 2366 return (EINVAL); 2367 2368 CPU_SET_ATOMIC(vcpuid, &vm->debug_cpus); 2369 vcpu_notify_event(vm, vcpuid, false); 2370 } 2371 return (0); 2372 } 2373 2374 int 2375 vm_resume_cpu(struct vm *vm, int vcpuid) 2376 { 2377 2378 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2379 return (EINVAL); 2380 2381 if (vcpuid == -1) { 2382 CPU_ZERO(&vm->debug_cpus); 2383 } else { 2384 if (!CPU_ISSET(vcpuid, &vm->debug_cpus)) 2385 return (EINVAL); 2386 2387 CPU_CLR_ATOMIC(vcpuid, &vm->debug_cpus); 2388 } 2389 return (0); 2390 } 2391 2392 int 2393 vcpu_debugged(struct vm *vm, int vcpuid) 2394 { 2395 2396 return (CPU_ISSET(vcpuid, &vm->debug_cpus)); 2397 } 2398 2399 cpuset_t 2400 vm_active_cpus(struct vm *vm) 2401 { 2402 2403 return (vm->active_cpus); 2404 } 2405 2406 cpuset_t 2407 vm_debug_cpus(struct vm *vm) 2408 { 2409 2410 return (vm->debug_cpus); 2411 } 2412 2413 cpuset_t 2414 vm_suspended_cpus(struct vm *vm) 2415 { 2416 2417 return (vm->suspended_cpus); 2418 } 2419 2420 void * 2421 vcpu_stats(struct vm *vm, int vcpuid) 2422 { 2423 2424 return (vm->vcpu[vcpuid].stats); 2425 } 2426 2427 int 2428 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2429 { 2430 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2431 return (EINVAL); 2432 2433 *state = vm->vcpu[vcpuid].x2apic_state; 2434 2435 return (0); 2436 } 2437 2438 int 2439 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2440 { 2441 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2442 return (EINVAL); 2443 2444 if (state >= X2APIC_STATE_LAST) 2445 return (EINVAL); 2446 2447 vm->vcpu[vcpuid].x2apic_state = state; 2448 2449 vlapic_set_x2apic_state(vm, vcpuid, state); 2450 2451 return (0); 2452 } 2453 2454 /* 2455 * This function is called to ensure that a vcpu "sees" a pending event 2456 * as soon as possible: 2457 * - If the vcpu thread is sleeping then it is woken up. 2458 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2459 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2460 */ 2461 static void 2462 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2463 { 2464 int hostcpu; 2465 2466 hostcpu = vcpu->hostcpu; 2467 if (vcpu->state == VCPU_RUNNING) { 2468 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2469 if (hostcpu != curcpu) { 2470 if (lapic_intr) { 2471 vlapic_post_intr(vcpu->vlapic, hostcpu, 2472 vmm_ipinum); 2473 } else { 2474 ipi_cpu(hostcpu, vmm_ipinum); 2475 } 2476 } else { 2477 /* 2478 * If the 'vcpu' is running on 'curcpu' then it must 2479 * be sending a notification to itself (e.g. SELF_IPI). 2480 * The pending event will be picked up when the vcpu 2481 * transitions back to guest context. 2482 */ 2483 } 2484 } else { 2485 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2486 "with hostcpu %d", vcpu->state, hostcpu)); 2487 if (vcpu->state == VCPU_SLEEPING) 2488 wakeup_one(vcpu); 2489 } 2490 } 2491 2492 void 2493 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2494 { 2495 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 2496 2497 vcpu_lock(vcpu); 2498 vcpu_notify_event_locked(vcpu, lapic_intr); 2499 vcpu_unlock(vcpu); 2500 } 2501 2502 struct vmspace * 2503 vm_get_vmspace(struct vm *vm) 2504 { 2505 2506 return (vm->vmspace); 2507 } 2508 2509 int 2510 vm_apicid2vcpuid(struct vm *vm, int apicid) 2511 { 2512 /* 2513 * XXX apic id is assumed to be numerically identical to vcpu id 2514 */ 2515 return (apicid); 2516 } 2517 2518 int 2519 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2520 vm_rendezvous_func_t func, void *arg) 2521 { 2522 int error, i; 2523 2524 /* 2525 * Enforce that this function is called without any locks 2526 */ 2527 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2528 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 2529 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2530 2531 restart: 2532 mtx_lock(&vm->rendezvous_mtx); 2533 if (vm->rendezvous_func != NULL) { 2534 /* 2535 * If a rendezvous is already in progress then we need to 2536 * call the rendezvous handler in case this 'vcpuid' is one 2537 * of the targets of the rendezvous. 2538 */ 2539 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2540 mtx_unlock(&vm->rendezvous_mtx); 2541 error = vm_handle_rendezvous(vm, vcpuid); 2542 if (error != 0) 2543 return (error); 2544 goto restart; 2545 } 2546 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2547 "rendezvous is still in progress")); 2548 2549 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2550 vm->rendezvous_req_cpus = dest; 2551 CPU_ZERO(&vm->rendezvous_done_cpus); 2552 vm->rendezvous_arg = arg; 2553 vm->rendezvous_func = func; 2554 mtx_unlock(&vm->rendezvous_mtx); 2555 2556 /* 2557 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2558 * vcpus so they handle the rendezvous as soon as possible. 2559 */ 2560 for (i = 0; i < vm->maxcpus; i++) { 2561 if (CPU_ISSET(i, &dest)) 2562 vcpu_notify_event(vm, i, false); 2563 } 2564 2565 return (vm_handle_rendezvous(vm, vcpuid)); 2566 } 2567 2568 struct vatpic * 2569 vm_atpic(struct vm *vm) 2570 { 2571 return (vm->vatpic); 2572 } 2573 2574 struct vatpit * 2575 vm_atpit(struct vm *vm) 2576 { 2577 return (vm->vatpit); 2578 } 2579 2580 struct vpmtmr * 2581 vm_pmtmr(struct vm *vm) 2582 { 2583 2584 return (vm->vpmtmr); 2585 } 2586 2587 struct vrtc * 2588 vm_rtc(struct vm *vm) 2589 { 2590 2591 return (vm->vrtc); 2592 } 2593 2594 enum vm_reg_name 2595 vm_segment_name(int seg) 2596 { 2597 static enum vm_reg_name seg_names[] = { 2598 VM_REG_GUEST_ES, 2599 VM_REG_GUEST_CS, 2600 VM_REG_GUEST_SS, 2601 VM_REG_GUEST_DS, 2602 VM_REG_GUEST_FS, 2603 VM_REG_GUEST_GS 2604 }; 2605 2606 KASSERT(seg >= 0 && seg < nitems(seg_names), 2607 ("%s: invalid segment encoding %d", __func__, seg)); 2608 return (seg_names[seg]); 2609 } 2610 2611 void 2612 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2613 int num_copyinfo) 2614 { 2615 int idx; 2616 2617 for (idx = 0; idx < num_copyinfo; idx++) { 2618 if (copyinfo[idx].cookie != NULL) 2619 vm_gpa_release(copyinfo[idx].cookie); 2620 } 2621 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2622 } 2623 2624 int 2625 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2626 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2627 int num_copyinfo, int *fault) 2628 { 2629 int error, idx, nused; 2630 size_t n, off, remaining; 2631 void *hva, *cookie; 2632 uint64_t gpa; 2633 2634 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2635 2636 nused = 0; 2637 remaining = len; 2638 while (remaining > 0) { 2639 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2640 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault); 2641 if (error || *fault) 2642 return (error); 2643 off = gpa & PAGE_MASK; 2644 n = min(remaining, PAGE_SIZE - off); 2645 copyinfo[nused].gpa = gpa; 2646 copyinfo[nused].len = n; 2647 remaining -= n; 2648 gla += n; 2649 nused++; 2650 } 2651 2652 for (idx = 0; idx < nused; idx++) { 2653 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa, 2654 copyinfo[idx].len, prot, &cookie); 2655 if (hva == NULL) 2656 break; 2657 copyinfo[idx].hva = hva; 2658 copyinfo[idx].cookie = cookie; 2659 } 2660 2661 if (idx != nused) { 2662 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2663 return (EFAULT); 2664 } else { 2665 *fault = 0; 2666 return (0); 2667 } 2668 } 2669 2670 void 2671 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2672 size_t len) 2673 { 2674 char *dst; 2675 int idx; 2676 2677 dst = kaddr; 2678 idx = 0; 2679 while (len > 0) { 2680 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2681 len -= copyinfo[idx].len; 2682 dst += copyinfo[idx].len; 2683 idx++; 2684 } 2685 } 2686 2687 void 2688 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2689 struct vm_copyinfo *copyinfo, size_t len) 2690 { 2691 const char *src; 2692 int idx; 2693 2694 src = kaddr; 2695 idx = 0; 2696 while (len > 0) { 2697 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2698 len -= copyinfo[idx].len; 2699 src += copyinfo[idx].len; 2700 idx++; 2701 } 2702 } 2703 2704 /* 2705 * Return the amount of in-use and wired memory for the VM. Since 2706 * these are global stats, only return the values with for vCPU 0 2707 */ 2708 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2709 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2710 2711 static void 2712 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2713 { 2714 2715 if (vcpu == 0) { 2716 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2717 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2718 } 2719 } 2720 2721 static void 2722 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2723 { 2724 2725 if (vcpu == 0) { 2726 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2727 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2728 } 2729 } 2730 2731 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2732 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2733