1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2014, Neel Natu (neel@freebsd.org) 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/queue.h> 35 #include <sys/kernel.h> 36 #include <sys/malloc.h> 37 #include <sys/lock.h> 38 #include <sys/mutex.h> 39 #include <sys/clock.h> 40 #include <sys/sysctl.h> 41 42 #include <machine/vmm.h> 43 44 #include <isa/rtc.h> 45 46 #include "vmm_ktr.h" 47 #include "vatpic.h" 48 #include "vioapic.h" 49 #include "vrtc.h" 50 51 /* Register layout of the RTC */ 52 struct rtcdev { 53 uint8_t sec; 54 uint8_t alarm_sec; 55 uint8_t min; 56 uint8_t alarm_min; 57 uint8_t hour; 58 uint8_t alarm_hour; 59 uint8_t day_of_week; 60 uint8_t day_of_month; 61 uint8_t month; 62 uint8_t year; 63 uint8_t reg_a; 64 uint8_t reg_b; 65 uint8_t reg_c; 66 uint8_t reg_d; 67 uint8_t nvram[36]; 68 uint8_t century; 69 uint8_t nvram2[128 - 51]; 70 } __packed; 71 CTASSERT(sizeof(struct rtcdev) == 128); 72 CTASSERT(offsetof(struct rtcdev, century) == RTC_CENTURY); 73 74 struct vrtc { 75 struct vm *vm; 76 struct mtx mtx; 77 struct callout callout; 78 u_int addr; /* RTC register to read or write */ 79 sbintime_t base_uptime; 80 time_t base_rtctime; 81 struct rtcdev rtcdev; 82 }; 83 84 #define VRTC_LOCK(vrtc) mtx_lock(&((vrtc)->mtx)) 85 #define VRTC_UNLOCK(vrtc) mtx_unlock(&((vrtc)->mtx)) 86 #define VRTC_LOCKED(vrtc) mtx_owned(&((vrtc)->mtx)) 87 88 /* 89 * RTC time is considered "broken" if: 90 * - RTC updates are halted by the guest 91 * - RTC date/time fields have invalid values 92 */ 93 #define VRTC_BROKEN_TIME ((time_t)-1) 94 95 #define RTC_IRQ 8 96 #define RTCSB_BIN 0x04 97 #define RTCSB_ALL_INTRS (RTCSB_UINTR | RTCSB_AINTR | RTCSB_PINTR) 98 #define rtc_halted(vrtc) ((vrtc->rtcdev.reg_b & RTCSB_HALT) != 0) 99 #define aintr_enabled(vrtc) (((vrtc)->rtcdev.reg_b & RTCSB_AINTR) != 0) 100 #define pintr_enabled(vrtc) (((vrtc)->rtcdev.reg_b & RTCSB_PINTR) != 0) 101 #define uintr_enabled(vrtc) (((vrtc)->rtcdev.reg_b & RTCSB_UINTR) != 0) 102 103 static void vrtc_callout_handler(void *arg); 104 static void vrtc_set_reg_c(struct vrtc *vrtc, uint8_t newval); 105 106 static MALLOC_DEFINE(M_VRTC, "vrtc", "bhyve virtual rtc"); 107 108 SYSCTL_DECL(_hw_vmm); 109 SYSCTL_NODE(_hw_vmm, OID_AUTO, vrtc, CTLFLAG_RW, NULL, NULL); 110 111 static int rtc_flag_broken_time = 1; 112 SYSCTL_INT(_hw_vmm_vrtc, OID_AUTO, flag_broken_time, CTLFLAG_RDTUN, 113 &rtc_flag_broken_time, 0, "Stop guest when invalid RTC time is detected"); 114 115 static __inline bool 116 divider_enabled(int reg_a) 117 { 118 /* 119 * The RTC is counting only when dividers are not held in reset. 120 */ 121 return ((reg_a & 0x70) == 0x20); 122 } 123 124 static __inline bool 125 update_enabled(struct vrtc *vrtc) 126 { 127 /* 128 * RTC date/time can be updated only if: 129 * - divider is not held in reset 130 * - guest has not disabled updates 131 * - the date/time fields have valid contents 132 */ 133 if (!divider_enabled(vrtc->rtcdev.reg_a)) 134 return (false); 135 136 if (rtc_halted(vrtc)) 137 return (false); 138 139 if (vrtc->base_rtctime == VRTC_BROKEN_TIME) 140 return (false); 141 142 return (true); 143 } 144 145 static time_t 146 vrtc_curtime(struct vrtc *vrtc, sbintime_t *basetime) 147 { 148 sbintime_t now, delta; 149 time_t t, secs; 150 151 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 152 153 t = vrtc->base_rtctime; 154 *basetime = vrtc->base_uptime; 155 if (update_enabled(vrtc)) { 156 now = sbinuptime(); 157 delta = now - vrtc->base_uptime; 158 KASSERT(delta >= 0, ("vrtc_curtime: uptime went backwards: " 159 "%#lx to %#lx", vrtc->base_uptime, now)); 160 secs = delta / SBT_1S; 161 t += secs; 162 *basetime += secs * SBT_1S; 163 } 164 return (t); 165 } 166 167 static __inline uint8_t 168 rtcset(struct rtcdev *rtc, int val) 169 { 170 171 KASSERT(val >= 0 && val < 100, ("%s: invalid bin2bcd index %d", 172 __func__, val)); 173 174 return ((rtc->reg_b & RTCSB_BIN) ? val : bin2bcd_data[val]); 175 } 176 177 static void 178 secs_to_rtc(time_t rtctime, struct vrtc *vrtc, int force_update) 179 { 180 struct clocktime ct; 181 struct timespec ts; 182 struct rtcdev *rtc; 183 int hour; 184 185 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 186 187 if (rtctime < 0) { 188 KASSERT(rtctime == VRTC_BROKEN_TIME, 189 ("%s: invalid vrtc time %#lx", __func__, rtctime)); 190 return; 191 } 192 193 /* 194 * If the RTC is halted then the guest has "ownership" of the 195 * date/time fields. Don't update the RTC date/time fields in 196 * this case (unless forced). 197 */ 198 if (rtc_halted(vrtc) && !force_update) 199 return; 200 201 ts.tv_sec = rtctime; 202 ts.tv_nsec = 0; 203 clock_ts_to_ct(&ts, &ct); 204 205 KASSERT(ct.sec >= 0 && ct.sec <= 59, ("invalid clocktime sec %d", 206 ct.sec)); 207 KASSERT(ct.min >= 0 && ct.min <= 59, ("invalid clocktime min %d", 208 ct.min)); 209 KASSERT(ct.hour >= 0 && ct.hour <= 23, ("invalid clocktime hour %d", 210 ct.hour)); 211 KASSERT(ct.dow >= 0 && ct.dow <= 6, ("invalid clocktime wday %d", 212 ct.dow)); 213 KASSERT(ct.day >= 1 && ct.day <= 31, ("invalid clocktime mday %d", 214 ct.day)); 215 KASSERT(ct.mon >= 1 && ct.mon <= 12, ("invalid clocktime month %d", 216 ct.mon)); 217 KASSERT(ct.year >= POSIX_BASE_YEAR, ("invalid clocktime year %d", 218 ct.year)); 219 220 rtc = &vrtc->rtcdev; 221 rtc->sec = rtcset(rtc, ct.sec); 222 rtc->min = rtcset(rtc, ct.min); 223 224 if (rtc->reg_b & RTCSB_24HR) { 225 hour = ct.hour; 226 } else { 227 /* 228 * Convert to the 12-hour format. 229 */ 230 switch (ct.hour) { 231 case 0: /* 12 AM */ 232 case 12: /* 12 PM */ 233 hour = 12; 234 break; 235 default: 236 /* 237 * The remaining 'ct.hour' values are interpreted as: 238 * [1 - 11] -> 1 - 11 AM 239 * [13 - 23] -> 1 - 11 PM 240 */ 241 hour = ct.hour % 12; 242 break; 243 } 244 } 245 246 rtc->hour = rtcset(rtc, hour); 247 248 if ((rtc->reg_b & RTCSB_24HR) == 0 && ct.hour >= 12) 249 rtc->hour |= 0x80; /* set MSB to indicate PM */ 250 251 rtc->day_of_week = rtcset(rtc, ct.dow + 1); 252 rtc->day_of_month = rtcset(rtc, ct.day); 253 rtc->month = rtcset(rtc, ct.mon); 254 rtc->year = rtcset(rtc, ct.year % 100); 255 rtc->century = rtcset(rtc, ct.year / 100); 256 } 257 258 static int 259 rtcget(struct rtcdev *rtc, int val, int *retval) 260 { 261 uint8_t upper, lower; 262 263 if (rtc->reg_b & RTCSB_BIN) { 264 *retval = val; 265 return (0); 266 } 267 268 lower = val & 0xf; 269 upper = (val >> 4) & 0xf; 270 271 if (lower > 9 || upper > 9) 272 return (-1); 273 274 *retval = upper * 10 + lower; 275 return (0); 276 } 277 278 static time_t 279 rtc_to_secs(struct vrtc *vrtc) 280 { 281 struct clocktime ct; 282 struct timespec ts; 283 struct rtcdev *rtc; 284 struct vm *vm; 285 int century, error, hour, pm, year; 286 287 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 288 289 vm = vrtc->vm; 290 rtc = &vrtc->rtcdev; 291 292 bzero(&ct, sizeof(struct clocktime)); 293 294 error = rtcget(rtc, rtc->sec, &ct.sec); 295 if (error || ct.sec < 0 || ct.sec > 59) { 296 VM_CTR2(vm, "Invalid RTC sec %#x/%d", rtc->sec, ct.sec); 297 goto fail; 298 } 299 300 error = rtcget(rtc, rtc->min, &ct.min); 301 if (error || ct.min < 0 || ct.min > 59) { 302 VM_CTR2(vm, "Invalid RTC min %#x/%d", rtc->min, ct.min); 303 goto fail; 304 } 305 306 pm = 0; 307 hour = rtc->hour; 308 if ((rtc->reg_b & RTCSB_24HR) == 0) { 309 if (hour & 0x80) { 310 hour &= ~0x80; 311 pm = 1; 312 } 313 } 314 error = rtcget(rtc, hour, &ct.hour); 315 if ((rtc->reg_b & RTCSB_24HR) == 0) { 316 if (ct.hour >= 1 && ct.hour <= 12) { 317 /* 318 * Convert from 12-hour format to internal 24-hour 319 * representation as follows: 320 * 321 * 12-hour format ct.hour 322 * 12 AM 0 323 * 1 - 11 AM 1 - 11 324 * 12 PM 12 325 * 1 - 11 PM 13 - 23 326 */ 327 if (ct.hour == 12) 328 ct.hour = 0; 329 if (pm) 330 ct.hour += 12; 331 } else { 332 VM_CTR2(vm, "Invalid RTC 12-hour format %#x/%d", 333 rtc->hour, ct.hour); 334 goto fail; 335 } 336 } 337 338 if (error || ct.hour < 0 || ct.hour > 23) { 339 VM_CTR2(vm, "Invalid RTC hour %#x/%d", rtc->hour, ct.hour); 340 goto fail; 341 } 342 343 /* 344 * Ignore 'rtc->dow' because some guests like Linux don't bother 345 * setting it at all while others like OpenBSD/i386 set it incorrectly. 346 * 347 * clock_ct_to_ts() does not depend on 'ct.dow' anyways so ignore it. 348 */ 349 ct.dow = -1; 350 351 error = rtcget(rtc, rtc->day_of_month, &ct.day); 352 if (error || ct.day < 1 || ct.day > 31) { 353 VM_CTR2(vm, "Invalid RTC mday %#x/%d", rtc->day_of_month, 354 ct.day); 355 goto fail; 356 } 357 358 error = rtcget(rtc, rtc->month, &ct.mon); 359 if (error || ct.mon < 1 || ct.mon > 12) { 360 VM_CTR2(vm, "Invalid RTC month %#x/%d", rtc->month, ct.mon); 361 goto fail; 362 } 363 364 error = rtcget(rtc, rtc->year, &year); 365 if (error || year < 0 || year > 99) { 366 VM_CTR2(vm, "Invalid RTC year %#x/%d", rtc->year, year); 367 goto fail; 368 } 369 370 error = rtcget(rtc, rtc->century, ¢ury); 371 ct.year = century * 100 + year; 372 if (error || ct.year < POSIX_BASE_YEAR) { 373 VM_CTR2(vm, "Invalid RTC century %#x/%d", rtc->century, 374 ct.year); 375 goto fail; 376 } 377 378 error = clock_ct_to_ts(&ct, &ts); 379 if (error || ts.tv_sec < 0) { 380 VM_CTR3(vm, "Invalid RTC clocktime.date %04d-%02d-%02d", 381 ct.year, ct.mon, ct.day); 382 VM_CTR3(vm, "Invalid RTC clocktime.time %02d:%02d:%02d", 383 ct.hour, ct.min, ct.sec); 384 goto fail; 385 } 386 return (ts.tv_sec); /* success */ 387 fail: 388 /* 389 * Stop updating the RTC if the date/time fields programmed by 390 * the guest are invalid. 391 */ 392 VM_CTR0(vrtc->vm, "Invalid RTC date/time programming detected"); 393 return (VRTC_BROKEN_TIME); 394 } 395 396 static int 397 vrtc_time_update(struct vrtc *vrtc, time_t newtime, sbintime_t newbase) 398 { 399 struct rtcdev *rtc; 400 sbintime_t oldbase; 401 time_t oldtime; 402 uint8_t alarm_sec, alarm_min, alarm_hour; 403 404 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 405 406 rtc = &vrtc->rtcdev; 407 alarm_sec = rtc->alarm_sec; 408 alarm_min = rtc->alarm_min; 409 alarm_hour = rtc->alarm_hour; 410 411 oldtime = vrtc->base_rtctime; 412 VM_CTR2(vrtc->vm, "Updating RTC secs from %#lx to %#lx", 413 oldtime, newtime); 414 415 oldbase = vrtc->base_uptime; 416 VM_CTR2(vrtc->vm, "Updating RTC base uptime from %#lx to %#lx", 417 oldbase, newbase); 418 vrtc->base_uptime = newbase; 419 420 if (newtime == oldtime) 421 return (0); 422 423 /* 424 * If 'newtime' indicates that RTC updates are disabled then just 425 * record that and return. There is no need to do alarm interrupt 426 * processing in this case. 427 */ 428 if (newtime == VRTC_BROKEN_TIME) { 429 vrtc->base_rtctime = VRTC_BROKEN_TIME; 430 return (0); 431 } 432 433 /* 434 * Return an error if RTC updates are halted by the guest. 435 */ 436 if (rtc_halted(vrtc)) { 437 VM_CTR0(vrtc->vm, "RTC update halted by guest"); 438 return (EBUSY); 439 } 440 441 do { 442 /* 443 * If the alarm interrupt is enabled and 'oldtime' is valid 444 * then visit all the seconds between 'oldtime' and 'newtime' 445 * to check for the alarm condition. 446 * 447 * Otherwise move the RTC time forward directly to 'newtime'. 448 */ 449 if (aintr_enabled(vrtc) && oldtime != VRTC_BROKEN_TIME) 450 vrtc->base_rtctime++; 451 else 452 vrtc->base_rtctime = newtime; 453 454 if (aintr_enabled(vrtc)) { 455 /* 456 * Update the RTC date/time fields before checking 457 * if the alarm conditions are satisfied. 458 */ 459 secs_to_rtc(vrtc->base_rtctime, vrtc, 0); 460 461 if ((alarm_sec >= 0xC0 || alarm_sec == rtc->sec) && 462 (alarm_min >= 0xC0 || alarm_min == rtc->min) && 463 (alarm_hour >= 0xC0 || alarm_hour == rtc->hour)) { 464 vrtc_set_reg_c(vrtc, rtc->reg_c | RTCIR_ALARM); 465 } 466 } 467 } while (vrtc->base_rtctime != newtime); 468 469 if (uintr_enabled(vrtc)) 470 vrtc_set_reg_c(vrtc, rtc->reg_c | RTCIR_UPDATE); 471 472 return (0); 473 } 474 475 static sbintime_t 476 vrtc_freq(struct vrtc *vrtc) 477 { 478 int ratesel; 479 480 static sbintime_t pf[16] = { 481 0, 482 SBT_1S / 256, 483 SBT_1S / 128, 484 SBT_1S / 8192, 485 SBT_1S / 4096, 486 SBT_1S / 2048, 487 SBT_1S / 1024, 488 SBT_1S / 512, 489 SBT_1S / 256, 490 SBT_1S / 128, 491 SBT_1S / 64, 492 SBT_1S / 32, 493 SBT_1S / 16, 494 SBT_1S / 8, 495 SBT_1S / 4, 496 SBT_1S / 2, 497 }; 498 499 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 500 501 /* 502 * If both periodic and alarm interrupts are enabled then use the 503 * periodic frequency to drive the callout. The minimum periodic 504 * frequency (2 Hz) is higher than the alarm frequency (1 Hz) so 505 * piggyback the alarm on top of it. The same argument applies to 506 * the update interrupt. 507 */ 508 if (pintr_enabled(vrtc) && divider_enabled(vrtc->rtcdev.reg_a)) { 509 ratesel = vrtc->rtcdev.reg_a & 0xf; 510 return (pf[ratesel]); 511 } else if (aintr_enabled(vrtc) && update_enabled(vrtc)) { 512 return (SBT_1S); 513 } else if (uintr_enabled(vrtc) && update_enabled(vrtc)) { 514 return (SBT_1S); 515 } else { 516 return (0); 517 } 518 } 519 520 static void 521 vrtc_callout_reset(struct vrtc *vrtc, sbintime_t freqsbt) 522 { 523 524 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 525 526 if (freqsbt == 0) { 527 if (callout_active(&vrtc->callout)) { 528 VM_CTR0(vrtc->vm, "RTC callout stopped"); 529 callout_stop(&vrtc->callout); 530 } 531 return; 532 } 533 VM_CTR1(vrtc->vm, "RTC callout frequency %d hz", SBT_1S / freqsbt); 534 callout_reset_sbt(&vrtc->callout, freqsbt, 0, vrtc_callout_handler, 535 vrtc, 0); 536 } 537 538 static void 539 vrtc_callout_handler(void *arg) 540 { 541 struct vrtc *vrtc = arg; 542 sbintime_t freqsbt, basetime; 543 time_t rtctime; 544 int error; 545 546 VM_CTR0(vrtc->vm, "vrtc callout fired"); 547 548 VRTC_LOCK(vrtc); 549 if (callout_pending(&vrtc->callout)) /* callout was reset */ 550 goto done; 551 552 if (!callout_active(&vrtc->callout)) /* callout was stopped */ 553 goto done; 554 555 callout_deactivate(&vrtc->callout); 556 557 KASSERT((vrtc->rtcdev.reg_b & RTCSB_ALL_INTRS) != 0, 558 ("gratuitous vrtc callout")); 559 560 if (pintr_enabled(vrtc)) 561 vrtc_set_reg_c(vrtc, vrtc->rtcdev.reg_c | RTCIR_PERIOD); 562 563 if (aintr_enabled(vrtc) || uintr_enabled(vrtc)) { 564 rtctime = vrtc_curtime(vrtc, &basetime); 565 error = vrtc_time_update(vrtc, rtctime, basetime); 566 KASSERT(error == 0, ("%s: vrtc_time_update error %d", 567 __func__, error)); 568 } 569 570 freqsbt = vrtc_freq(vrtc); 571 KASSERT(freqsbt != 0, ("%s: vrtc frequency cannot be zero", __func__)); 572 vrtc_callout_reset(vrtc, freqsbt); 573 done: 574 VRTC_UNLOCK(vrtc); 575 } 576 577 static __inline void 578 vrtc_callout_check(struct vrtc *vrtc, sbintime_t freq) 579 { 580 int active; 581 582 active = callout_active(&vrtc->callout) ? 1 : 0; 583 KASSERT((freq == 0 && !active) || (freq != 0 && active), 584 ("vrtc callout %s with frequency %#lx", 585 active ? "active" : "inactive", freq)); 586 } 587 588 static void 589 vrtc_set_reg_c(struct vrtc *vrtc, uint8_t newval) 590 { 591 struct rtcdev *rtc; 592 int oldirqf, newirqf; 593 uint8_t oldval, changed; 594 595 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 596 597 rtc = &vrtc->rtcdev; 598 newval &= RTCIR_ALARM | RTCIR_PERIOD | RTCIR_UPDATE; 599 600 oldirqf = rtc->reg_c & RTCIR_INT; 601 if ((aintr_enabled(vrtc) && (newval & RTCIR_ALARM) != 0) || 602 (pintr_enabled(vrtc) && (newval & RTCIR_PERIOD) != 0) || 603 (uintr_enabled(vrtc) && (newval & RTCIR_UPDATE) != 0)) { 604 newirqf = RTCIR_INT; 605 } else { 606 newirqf = 0; 607 } 608 609 oldval = rtc->reg_c; 610 rtc->reg_c = newirqf | newval; 611 changed = oldval ^ rtc->reg_c; 612 if (changed) { 613 VM_CTR2(vrtc->vm, "RTC reg_c changed from %#x to %#x", 614 oldval, rtc->reg_c); 615 } 616 617 if (!oldirqf && newirqf) { 618 VM_CTR1(vrtc->vm, "RTC irq %d asserted", RTC_IRQ); 619 vatpic_pulse_irq(vrtc->vm, RTC_IRQ); 620 vioapic_pulse_irq(vrtc->vm, RTC_IRQ); 621 } else if (oldirqf && !newirqf) { 622 VM_CTR1(vrtc->vm, "RTC irq %d deasserted", RTC_IRQ); 623 } 624 } 625 626 static int 627 vrtc_set_reg_b(struct vrtc *vrtc, uint8_t newval) 628 { 629 struct rtcdev *rtc; 630 sbintime_t oldfreq, newfreq, basetime; 631 time_t curtime, rtctime; 632 int error; 633 uint8_t oldval, changed; 634 635 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 636 637 rtc = &vrtc->rtcdev; 638 oldval = rtc->reg_b; 639 oldfreq = vrtc_freq(vrtc); 640 641 rtc->reg_b = newval; 642 changed = oldval ^ newval; 643 if (changed) { 644 VM_CTR2(vrtc->vm, "RTC reg_b changed from %#x to %#x", 645 oldval, newval); 646 } 647 648 if (changed & RTCSB_HALT) { 649 if ((newval & RTCSB_HALT) == 0) { 650 rtctime = rtc_to_secs(vrtc); 651 basetime = sbinuptime(); 652 if (rtctime == VRTC_BROKEN_TIME) { 653 if (rtc_flag_broken_time) 654 return (-1); 655 } 656 } else { 657 curtime = vrtc_curtime(vrtc, &basetime); 658 KASSERT(curtime == vrtc->base_rtctime, ("%s: mismatch " 659 "between vrtc basetime (%#lx) and curtime (%#lx)", 660 __func__, vrtc->base_rtctime, curtime)); 661 662 /* 663 * Force a refresh of the RTC date/time fields so 664 * they reflect the time right before the guest set 665 * the HALT bit. 666 */ 667 secs_to_rtc(curtime, vrtc, 1); 668 669 /* 670 * Updates are halted so mark 'base_rtctime' to denote 671 * that the RTC date/time is in flux. 672 */ 673 rtctime = VRTC_BROKEN_TIME; 674 rtc->reg_b &= ~RTCSB_UINTR; 675 } 676 error = vrtc_time_update(vrtc, rtctime, basetime); 677 KASSERT(error == 0, ("vrtc_time_update error %d", error)); 678 } 679 680 /* 681 * Side effect of changes to the interrupt enable bits. 682 */ 683 if (changed & RTCSB_ALL_INTRS) 684 vrtc_set_reg_c(vrtc, vrtc->rtcdev.reg_c); 685 686 /* 687 * Change the callout frequency if it has changed. 688 */ 689 newfreq = vrtc_freq(vrtc); 690 if (newfreq != oldfreq) 691 vrtc_callout_reset(vrtc, newfreq); 692 else 693 vrtc_callout_check(vrtc, newfreq); 694 695 /* 696 * The side effect of bits that control the RTC date/time format 697 * is handled lazily when those fields are actually read. 698 */ 699 return (0); 700 } 701 702 static void 703 vrtc_set_reg_a(struct vrtc *vrtc, uint8_t newval) 704 { 705 sbintime_t oldfreq, newfreq; 706 uint8_t oldval, changed; 707 708 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 709 710 newval &= ~RTCSA_TUP; 711 oldval = vrtc->rtcdev.reg_a; 712 oldfreq = vrtc_freq(vrtc); 713 714 if (divider_enabled(oldval) && !divider_enabled(newval)) { 715 VM_CTR2(vrtc->vm, "RTC divider held in reset at %#lx/%#lx", 716 vrtc->base_rtctime, vrtc->base_uptime); 717 } else if (!divider_enabled(oldval) && divider_enabled(newval)) { 718 /* 719 * If the dividers are coming out of reset then update 720 * 'base_uptime' before this happens. This is done to 721 * maintain the illusion that the RTC date/time was frozen 722 * while the dividers were disabled. 723 */ 724 vrtc->base_uptime = sbinuptime(); 725 VM_CTR2(vrtc->vm, "RTC divider out of reset at %#lx/%#lx", 726 vrtc->base_rtctime, vrtc->base_uptime); 727 } else { 728 /* NOTHING */ 729 } 730 731 vrtc->rtcdev.reg_a = newval; 732 changed = oldval ^ newval; 733 if (changed) { 734 VM_CTR2(vrtc->vm, "RTC reg_a changed from %#x to %#x", 735 oldval, newval); 736 } 737 738 /* 739 * Side effect of changes to rate select and divider enable bits. 740 */ 741 newfreq = vrtc_freq(vrtc); 742 if (newfreq != oldfreq) 743 vrtc_callout_reset(vrtc, newfreq); 744 else 745 vrtc_callout_check(vrtc, newfreq); 746 } 747 748 int 749 vrtc_set_time(struct vm *vm, time_t secs) 750 { 751 struct vrtc *vrtc; 752 int error; 753 754 vrtc = vm_rtc(vm); 755 VRTC_LOCK(vrtc); 756 error = vrtc_time_update(vrtc, secs, sbinuptime()); 757 VRTC_UNLOCK(vrtc); 758 759 if (error) { 760 VM_CTR2(vrtc->vm, "Error %d setting RTC time to %#lx", error, 761 secs); 762 } else { 763 VM_CTR1(vrtc->vm, "RTC time set to %#lx", secs); 764 } 765 766 return (error); 767 } 768 769 time_t 770 vrtc_get_time(struct vm *vm) 771 { 772 struct vrtc *vrtc; 773 sbintime_t basetime; 774 time_t t; 775 776 vrtc = vm_rtc(vm); 777 VRTC_LOCK(vrtc); 778 t = vrtc_curtime(vrtc, &basetime); 779 VRTC_UNLOCK(vrtc); 780 781 return (t); 782 } 783 784 int 785 vrtc_nvram_write(struct vm *vm, int offset, uint8_t value) 786 { 787 struct vrtc *vrtc; 788 uint8_t *ptr; 789 790 vrtc = vm_rtc(vm); 791 792 /* 793 * Don't allow writes to RTC control registers or the date/time fields. 794 */ 795 if (offset < offsetof(struct rtcdev, nvram[0]) || 796 offset == RTC_CENTURY || offset >= sizeof(struct rtcdev)) { 797 VM_CTR1(vrtc->vm, "RTC nvram write to invalid offset %d", 798 offset); 799 return (EINVAL); 800 } 801 802 VRTC_LOCK(vrtc); 803 ptr = (uint8_t *)(&vrtc->rtcdev); 804 ptr[offset] = value; 805 VM_CTR2(vrtc->vm, "RTC nvram write %#x to offset %#x", value, offset); 806 VRTC_UNLOCK(vrtc); 807 808 return (0); 809 } 810 811 int 812 vrtc_nvram_read(struct vm *vm, int offset, uint8_t *retval) 813 { 814 struct vrtc *vrtc; 815 sbintime_t basetime; 816 time_t curtime; 817 uint8_t *ptr; 818 819 /* 820 * Allow all offsets in the RTC to be read. 821 */ 822 if (offset < 0 || offset >= sizeof(struct rtcdev)) 823 return (EINVAL); 824 825 vrtc = vm_rtc(vm); 826 VRTC_LOCK(vrtc); 827 828 /* 829 * Update RTC date/time fields if necessary. 830 */ 831 if (offset < 10 || offset == RTC_CENTURY) { 832 curtime = vrtc_curtime(vrtc, &basetime); 833 secs_to_rtc(curtime, vrtc, 0); 834 } 835 836 ptr = (uint8_t *)(&vrtc->rtcdev); 837 *retval = ptr[offset]; 838 839 VRTC_UNLOCK(vrtc); 840 return (0); 841 } 842 843 int 844 vrtc_addr_handler(struct vm *vm, int vcpuid, bool in, int port, int bytes, 845 uint32_t *val) 846 { 847 struct vrtc *vrtc; 848 849 vrtc = vm_rtc(vm); 850 851 if (bytes != 1) 852 return (-1); 853 854 if (in) { 855 *val = 0xff; 856 return (0); 857 } 858 859 VRTC_LOCK(vrtc); 860 vrtc->addr = *val & 0x7f; 861 VRTC_UNLOCK(vrtc); 862 863 return (0); 864 } 865 866 int 867 vrtc_data_handler(struct vm *vm, int vcpuid, bool in, int port, int bytes, 868 uint32_t *val) 869 { 870 struct vrtc *vrtc; 871 struct rtcdev *rtc; 872 sbintime_t basetime; 873 time_t curtime; 874 int error, offset; 875 876 vrtc = vm_rtc(vm); 877 rtc = &vrtc->rtcdev; 878 879 if (bytes != 1) 880 return (-1); 881 882 VRTC_LOCK(vrtc); 883 offset = vrtc->addr; 884 if (offset >= sizeof(struct rtcdev)) { 885 VRTC_UNLOCK(vrtc); 886 return (-1); 887 } 888 889 error = 0; 890 curtime = vrtc_curtime(vrtc, &basetime); 891 vrtc_time_update(vrtc, curtime, basetime); 892 893 /* 894 * Update RTC date/time fields if necessary. 895 * 896 * This is not just for reads of the RTC. The side-effect of writing 897 * the century byte requires other RTC date/time fields (e.g. sec) 898 * to be updated here. 899 */ 900 if (offset < 10 || offset == RTC_CENTURY) 901 secs_to_rtc(curtime, vrtc, 0); 902 903 if (in) { 904 if (offset == 12) { 905 /* 906 * XXX 907 * reg_c interrupt flags are updated only if the 908 * corresponding interrupt enable bit in reg_b is set. 909 */ 910 *val = vrtc->rtcdev.reg_c; 911 vrtc_set_reg_c(vrtc, 0); 912 } else { 913 *val = *((uint8_t *)rtc + offset); 914 } 915 VCPU_CTR2(vm, vcpuid, "Read value %#x from RTC offset %#x", 916 *val, offset); 917 } else { 918 switch (offset) { 919 case 10: 920 VCPU_CTR1(vm, vcpuid, "RTC reg_a set to %#x", *val); 921 vrtc_set_reg_a(vrtc, *val); 922 break; 923 case 11: 924 VCPU_CTR1(vm, vcpuid, "RTC reg_b set to %#x", *val); 925 error = vrtc_set_reg_b(vrtc, *val); 926 break; 927 case 12: 928 VCPU_CTR1(vm, vcpuid, "RTC reg_c set to %#x (ignored)", 929 *val); 930 break; 931 case 13: 932 VCPU_CTR1(vm, vcpuid, "RTC reg_d set to %#x (ignored)", 933 *val); 934 break; 935 case 0: 936 /* 937 * High order bit of 'seconds' is readonly. 938 */ 939 *val &= 0x7f; 940 /* FALLTHRU */ 941 default: 942 VCPU_CTR2(vm, vcpuid, "RTC offset %#x set to %#x", 943 offset, *val); 944 *((uint8_t *)rtc + offset) = *val; 945 break; 946 } 947 948 /* 949 * XXX some guests (e.g. OpenBSD) write the century byte 950 * outside of RTCSB_HALT so re-calculate the RTC date/time. 951 */ 952 if (offset == RTC_CENTURY && !rtc_halted(vrtc)) { 953 curtime = rtc_to_secs(vrtc); 954 error = vrtc_time_update(vrtc, curtime, sbinuptime()); 955 KASSERT(!error, ("vrtc_time_update error %d", error)); 956 if (curtime == VRTC_BROKEN_TIME && rtc_flag_broken_time) 957 error = -1; 958 } 959 } 960 VRTC_UNLOCK(vrtc); 961 return (error); 962 } 963 964 void 965 vrtc_reset(struct vrtc *vrtc) 966 { 967 struct rtcdev *rtc; 968 969 VRTC_LOCK(vrtc); 970 971 rtc = &vrtc->rtcdev; 972 vrtc_set_reg_b(vrtc, rtc->reg_b & ~(RTCSB_ALL_INTRS | RTCSB_SQWE)); 973 vrtc_set_reg_c(vrtc, 0); 974 KASSERT(!callout_active(&vrtc->callout), ("rtc callout still active")); 975 976 VRTC_UNLOCK(vrtc); 977 } 978 979 struct vrtc * 980 vrtc_init(struct vm *vm) 981 { 982 struct vrtc *vrtc; 983 struct rtcdev *rtc; 984 time_t curtime; 985 986 vrtc = malloc(sizeof(struct vrtc), M_VRTC, M_WAITOK | M_ZERO); 987 vrtc->vm = vm; 988 mtx_init(&vrtc->mtx, "vrtc lock", NULL, MTX_DEF); 989 callout_init(&vrtc->callout, 1); 990 991 /* Allow dividers to keep time but disable everything else */ 992 rtc = &vrtc->rtcdev; 993 rtc->reg_a = 0x20; 994 rtc->reg_b = RTCSB_24HR; 995 rtc->reg_c = 0; 996 rtc->reg_d = RTCSD_PWR; 997 998 /* Reset the index register to a safe value. */ 999 vrtc->addr = RTC_STATUSD; 1000 1001 /* 1002 * Initialize RTC time to 00:00:00 Jan 1, 1970. 1003 */ 1004 curtime = 0; 1005 1006 VRTC_LOCK(vrtc); 1007 vrtc->base_rtctime = VRTC_BROKEN_TIME; 1008 vrtc_time_update(vrtc, curtime, sbinuptime()); 1009 secs_to_rtc(curtime, vrtc, 0); 1010 VRTC_UNLOCK(vrtc); 1011 1012 return (vrtc); 1013 } 1014 1015 void 1016 vrtc_cleanup(struct vrtc *vrtc) 1017 { 1018 1019 callout_drain(&vrtc->callout); 1020 free(vrtc, M_VRTC); 1021 } 1022