1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com) 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bhyve_snapshot.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/smp.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/pcpu.h> 40 #include <sys/proc.h> 41 #include <sys/reg.h> 42 #include <sys/smr.h> 43 #include <sys/sysctl.h> 44 45 #include <vm/vm.h> 46 #include <vm/pmap.h> 47 48 #include <machine/cpufunc.h> 49 #include <machine/psl.h> 50 #include <machine/md_var.h> 51 #include <machine/specialreg.h> 52 #include <machine/smp.h> 53 #include <machine/vmm.h> 54 #include <machine/vmm_dev.h> 55 #include <machine/vmm_instruction_emul.h> 56 #include <machine/vmm_snapshot.h> 57 58 #include "vmm_lapic.h" 59 #include "vmm_stat.h" 60 #include "vmm_ktr.h" 61 #include "vmm_ioport.h" 62 #include "vatpic.h" 63 #include "vlapic.h" 64 #include "vlapic_priv.h" 65 66 #include "x86.h" 67 #include "vmcb.h" 68 #include "svm.h" 69 #include "svm_softc.h" 70 #include "svm_msr.h" 71 #include "npt.h" 72 73 SYSCTL_DECL(_hw_vmm); 74 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 75 NULL); 76 77 /* 78 * SVM CPUID function 0x8000_000A, edx bit decoding. 79 */ 80 #define AMD_CPUID_SVM_NP BIT(0) /* Nested paging or RVI */ 81 #define AMD_CPUID_SVM_LBR BIT(1) /* Last branch virtualization */ 82 #define AMD_CPUID_SVM_SVML BIT(2) /* SVM lock */ 83 #define AMD_CPUID_SVM_NRIP_SAVE BIT(3) /* Next RIP is saved */ 84 #define AMD_CPUID_SVM_TSC_RATE BIT(4) /* TSC rate control. */ 85 #define AMD_CPUID_SVM_VMCB_CLEAN BIT(5) /* VMCB state caching */ 86 #define AMD_CPUID_SVM_FLUSH_BY_ASID BIT(6) /* Flush by ASID */ 87 #define AMD_CPUID_SVM_DECODE_ASSIST BIT(7) /* Decode assist */ 88 #define AMD_CPUID_SVM_PAUSE_INC BIT(10) /* Pause intercept filter. */ 89 #define AMD_CPUID_SVM_PAUSE_FTH BIT(12) /* Pause filter threshold */ 90 #define AMD_CPUID_SVM_AVIC BIT(13) /* AVIC present */ 91 92 #define VMCB_CACHE_DEFAULT (VMCB_CACHE_ASID | \ 93 VMCB_CACHE_IOPM | \ 94 VMCB_CACHE_I | \ 95 VMCB_CACHE_TPR | \ 96 VMCB_CACHE_CR2 | \ 97 VMCB_CACHE_CR | \ 98 VMCB_CACHE_DR | \ 99 VMCB_CACHE_DT | \ 100 VMCB_CACHE_SEG | \ 101 VMCB_CACHE_NP) 102 103 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT; 104 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean, 105 0, NULL); 106 107 static MALLOC_DEFINE(M_SVM, "svm", "svm"); 108 static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic"); 109 110 static uint32_t svm_feature = ~0U; /* AMD SVM features. */ 111 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0, 112 "SVM features advertised by CPUID.8000000AH:EDX"); 113 114 static int disable_npf_assist; 115 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN, 116 &disable_npf_assist, 0, NULL); 117 118 /* Maximum ASIDs supported by the processor */ 119 static uint32_t nasid; 120 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0, 121 "Number of ASIDs supported by this processor"); 122 123 /* Current ASID generation for each host cpu */ 124 static struct asid asid[MAXCPU]; 125 126 /* 127 * SVM host state saved area of size 4KB for each core. 128 */ 129 static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE); 130 131 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery"); 132 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry"); 133 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window"); 134 135 static int svm_getdesc(void *vcpui, int reg, struct seg_desc *desc); 136 static int svm_setreg(void *vcpui, int ident, uint64_t val); 137 138 static __inline int 139 flush_by_asid(void) 140 { 141 142 return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID); 143 } 144 145 static __inline int 146 decode_assist(void) 147 { 148 149 return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST); 150 } 151 152 static void 153 svm_disable(void *arg __unused) 154 { 155 uint64_t efer; 156 157 efer = rdmsr(MSR_EFER); 158 efer &= ~EFER_SVM; 159 wrmsr(MSR_EFER, efer); 160 } 161 162 /* 163 * Disable SVM on all CPUs. 164 */ 165 static int 166 svm_modcleanup(void) 167 { 168 169 smp_rendezvous(NULL, svm_disable, NULL, NULL); 170 return (0); 171 } 172 173 /* 174 * Verify that all the features required by bhyve are available. 175 */ 176 static int 177 check_svm_features(void) 178 { 179 u_int regs[4]; 180 181 /* CPUID Fn8000_000A is for SVM */ 182 do_cpuid(0x8000000A, regs); 183 svm_feature &= regs[3]; 184 185 /* 186 * The number of ASIDs can be configured to be less than what is 187 * supported by the hardware but not more. 188 */ 189 if (nasid == 0 || nasid > regs[1]) 190 nasid = regs[1]; 191 KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid)); 192 193 /* bhyve requires the Nested Paging feature */ 194 if (!(svm_feature & AMD_CPUID_SVM_NP)) { 195 printf("SVM: Nested Paging feature not available.\n"); 196 return (ENXIO); 197 } 198 199 /* bhyve requires the NRIP Save feature */ 200 if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) { 201 printf("SVM: NRIP Save feature not available.\n"); 202 return (ENXIO); 203 } 204 205 return (0); 206 } 207 208 static void 209 svm_enable(void *arg __unused) 210 { 211 uint64_t efer; 212 213 efer = rdmsr(MSR_EFER); 214 efer |= EFER_SVM; 215 wrmsr(MSR_EFER, efer); 216 217 wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu])); 218 } 219 220 /* 221 * Return 1 if SVM is enabled on this processor and 0 otherwise. 222 */ 223 static int 224 svm_available(void) 225 { 226 uint64_t msr; 227 228 /* Section 15.4 Enabling SVM from APM2. */ 229 if ((amd_feature2 & AMDID2_SVM) == 0) { 230 printf("SVM: not available.\n"); 231 return (0); 232 } 233 234 msr = rdmsr(MSR_VM_CR); 235 if ((msr & VM_CR_SVMDIS) != 0) { 236 printf("SVM: disabled by BIOS.\n"); 237 return (0); 238 } 239 240 return (1); 241 } 242 243 static int 244 svm_modinit(int ipinum) 245 { 246 int error, cpu; 247 248 if (!svm_available()) 249 return (ENXIO); 250 251 error = check_svm_features(); 252 if (error) 253 return (error); 254 255 vmcb_clean &= VMCB_CACHE_DEFAULT; 256 257 for (cpu = 0; cpu < MAXCPU; cpu++) { 258 /* 259 * Initialize the host ASIDs to their "highest" valid values. 260 * 261 * The next ASID allocation will rollover both 'gen' and 'num' 262 * and start off the sequence at {1,1}. 263 */ 264 asid[cpu].gen = ~0UL; 265 asid[cpu].num = nasid - 1; 266 } 267 268 svm_msr_init(); 269 svm_npt_init(ipinum); 270 271 /* Enable SVM on all CPUs */ 272 smp_rendezvous(NULL, svm_enable, NULL, NULL); 273 274 return (0); 275 } 276 277 static void 278 svm_modresume(void) 279 { 280 281 svm_enable(NULL); 282 } 283 284 #ifdef BHYVE_SNAPSHOT 285 void 286 svm_set_tsc_offset(struct svm_vcpu *vcpu, uint64_t offset) 287 { 288 struct vmcb_ctrl *ctrl; 289 290 ctrl = svm_get_vmcb_ctrl(vcpu); 291 ctrl->tsc_offset = offset; 292 293 svm_set_dirty(vcpu, VMCB_CACHE_I); 294 SVM_CTR1(vcpu, "tsc offset changed to %#lx", offset); 295 296 vm_set_tsc_offset(vcpu->vcpu, offset); 297 } 298 #endif 299 300 /* Pentium compatible MSRs */ 301 #define MSR_PENTIUM_START 0 302 #define MSR_PENTIUM_END 0x1FFF 303 /* AMD 6th generation and Intel compatible MSRs */ 304 #define MSR_AMD6TH_START 0xC0000000UL 305 #define MSR_AMD6TH_END 0xC0001FFFUL 306 /* AMD 7th and 8th generation compatible MSRs */ 307 #define MSR_AMD7TH_START 0xC0010000UL 308 #define MSR_AMD7TH_END 0xC0011FFFUL 309 310 /* 311 * Get the index and bit position for a MSR in permission bitmap. 312 * Two bits are used for each MSR: lower bit for read and higher bit for write. 313 */ 314 static int 315 svm_msr_index(uint64_t msr, int *index, int *bit) 316 { 317 uint32_t base, off; 318 319 *index = -1; 320 *bit = (msr % 4) * 2; 321 base = 0; 322 323 if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) { 324 *index = msr / 4; 325 return (0); 326 } 327 328 base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1); 329 if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) { 330 off = (msr - MSR_AMD6TH_START); 331 *index = (off + base) / 4; 332 return (0); 333 } 334 335 base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1); 336 if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) { 337 off = (msr - MSR_AMD7TH_START); 338 *index = (off + base) / 4; 339 return (0); 340 } 341 342 return (EINVAL); 343 } 344 345 /* 346 * Allow vcpu to read or write the 'msr' without trapping into the hypervisor. 347 */ 348 static void 349 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write) 350 { 351 int index, bit, error __diagused; 352 353 error = svm_msr_index(msr, &index, &bit); 354 KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr)); 355 KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE, 356 ("%s: invalid index %d for msr %#lx", __func__, index, msr)); 357 KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d " 358 "msr %#lx", __func__, bit, msr)); 359 360 if (read) 361 perm_bitmap[index] &= ~(1UL << bit); 362 363 if (write) 364 perm_bitmap[index] &= ~(2UL << bit); 365 } 366 367 static void 368 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr) 369 { 370 371 svm_msr_perm(perm_bitmap, msr, true, true); 372 } 373 374 static void 375 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr) 376 { 377 378 svm_msr_perm(perm_bitmap, msr, true, false); 379 } 380 381 static __inline int 382 svm_get_intercept(struct svm_vcpu *vcpu, int idx, uint32_t bitmask) 383 { 384 struct vmcb_ctrl *ctrl; 385 386 KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx)); 387 388 ctrl = svm_get_vmcb_ctrl(vcpu); 389 return (ctrl->intercept[idx] & bitmask ? 1 : 0); 390 } 391 392 static __inline void 393 svm_set_intercept(struct svm_vcpu *vcpu, int idx, uint32_t bitmask, int enabled) 394 { 395 struct vmcb_ctrl *ctrl; 396 uint32_t oldval; 397 398 KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx)); 399 400 ctrl = svm_get_vmcb_ctrl(vcpu); 401 oldval = ctrl->intercept[idx]; 402 403 if (enabled) 404 ctrl->intercept[idx] |= bitmask; 405 else 406 ctrl->intercept[idx] &= ~bitmask; 407 408 if (ctrl->intercept[idx] != oldval) { 409 svm_set_dirty(vcpu, VMCB_CACHE_I); 410 SVM_CTR3(vcpu, "intercept[%d] modified from %#x to %#x", idx, 411 oldval, ctrl->intercept[idx]); 412 } 413 } 414 415 static __inline void 416 svm_disable_intercept(struct svm_vcpu *vcpu, int off, uint32_t bitmask) 417 { 418 419 svm_set_intercept(vcpu, off, bitmask, 0); 420 } 421 422 static __inline void 423 svm_enable_intercept(struct svm_vcpu *vcpu, int off, uint32_t bitmask) 424 { 425 426 svm_set_intercept(vcpu, off, bitmask, 1); 427 } 428 429 static void 430 vmcb_init(struct svm_softc *sc, struct svm_vcpu *vcpu, uint64_t iopm_base_pa, 431 uint64_t msrpm_base_pa, uint64_t np_pml4) 432 { 433 struct vmcb_ctrl *ctrl; 434 struct vmcb_state *state; 435 uint32_t mask; 436 int n; 437 438 ctrl = svm_get_vmcb_ctrl(vcpu); 439 state = svm_get_vmcb_state(vcpu); 440 441 ctrl->iopm_base_pa = iopm_base_pa; 442 ctrl->msrpm_base_pa = msrpm_base_pa; 443 444 /* Enable nested paging */ 445 ctrl->np_enable = 1; 446 ctrl->n_cr3 = np_pml4; 447 448 /* 449 * Intercept accesses to the control registers that are not shadowed 450 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8. 451 */ 452 for (n = 0; n < 16; n++) { 453 mask = (BIT(n) << 16) | BIT(n); 454 if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8) 455 svm_disable_intercept(vcpu, VMCB_CR_INTCPT, mask); 456 else 457 svm_enable_intercept(vcpu, VMCB_CR_INTCPT, mask); 458 } 459 460 /* 461 * Intercept everything when tracing guest exceptions otherwise 462 * just intercept machine check exception. 463 */ 464 if (vcpu_trace_exceptions(vcpu->vcpu)) { 465 for (n = 0; n < 32; n++) { 466 /* 467 * Skip unimplemented vectors in the exception bitmap. 468 */ 469 if (n == 2 || n == 9) { 470 continue; 471 } 472 svm_enable_intercept(vcpu, VMCB_EXC_INTCPT, BIT(n)); 473 } 474 } else { 475 svm_enable_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC)); 476 } 477 478 /* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */ 479 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO); 480 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR); 481 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID); 482 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR); 483 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT); 484 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI); 485 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI); 486 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN); 487 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_FERR_FREEZE); 488 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVD); 489 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVLPGA); 490 491 svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR); 492 svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT); 493 494 /* 495 * Intercept SVM instructions since AMD enables them in guests otherwise. 496 * Non-intercepted VMMCALL causes #UD, skip it. 497 */ 498 svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMLOAD); 499 svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMSAVE); 500 svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_STGI); 501 svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_CLGI); 502 svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_SKINIT); 503 svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_ICEBP); 504 if (vcpu_trap_wbinvd(vcpu->vcpu)) { 505 svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, 506 VMCB_INTCPT_WBINVD); 507 } 508 509 /* 510 * From section "Canonicalization and Consistency Checks" in APMv2 511 * the VMRUN intercept bit must be set to pass the consistency check. 512 */ 513 svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN); 514 515 /* 516 * The ASID will be set to a non-zero value just before VMRUN. 517 */ 518 ctrl->asid = 0; 519 520 /* 521 * Section 15.21.1, Interrupt Masking in EFLAGS 522 * Section 15.21.2, Virtualizing APIC.TPR 523 * 524 * This must be set for %rflag and %cr8 isolation of guest and host. 525 */ 526 ctrl->v_intr_masking = 1; 527 528 /* Enable Last Branch Record aka LBR for debugging */ 529 ctrl->lbr_virt_en = 1; 530 state->dbgctl = BIT(0); 531 532 /* EFER_SVM must always be set when the guest is executing */ 533 state->efer = EFER_SVM; 534 535 /* Set up the PAT to power-on state */ 536 state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK) | 537 PAT_VALUE(1, PAT_WRITE_THROUGH) | 538 PAT_VALUE(2, PAT_UNCACHED) | 539 PAT_VALUE(3, PAT_UNCACHEABLE) | 540 PAT_VALUE(4, PAT_WRITE_BACK) | 541 PAT_VALUE(5, PAT_WRITE_THROUGH) | 542 PAT_VALUE(6, PAT_UNCACHED) | 543 PAT_VALUE(7, PAT_UNCACHEABLE); 544 545 /* Set up DR6/7 to power-on state */ 546 state->dr6 = DBREG_DR6_RESERVED1; 547 state->dr7 = DBREG_DR7_RESERVED1; 548 } 549 550 /* 551 * Initialize a virtual machine. 552 */ 553 static void * 554 svm_init(struct vm *vm, pmap_t pmap) 555 { 556 struct svm_softc *svm_sc; 557 558 svm_sc = malloc(sizeof (*svm_sc), M_SVM, M_WAITOK | M_ZERO); 559 560 svm_sc->msr_bitmap = contigmalloc(SVM_MSR_BITMAP_SIZE, M_SVM, 561 M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0); 562 if (svm_sc->msr_bitmap == NULL) 563 panic("contigmalloc of SVM MSR bitmap failed"); 564 svm_sc->iopm_bitmap = contigmalloc(SVM_IO_BITMAP_SIZE, M_SVM, 565 M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0); 566 if (svm_sc->iopm_bitmap == NULL) 567 panic("contigmalloc of SVM IO bitmap failed"); 568 569 svm_sc->vm = vm; 570 svm_sc->nptp = vtophys(pmap->pm_pmltop); 571 572 /* 573 * Intercept read and write accesses to all MSRs. 574 */ 575 memset(svm_sc->msr_bitmap, 0xFF, SVM_MSR_BITMAP_SIZE); 576 577 /* 578 * Access to the following MSRs is redirected to the VMCB when the 579 * guest is executing. Therefore it is safe to allow the guest to 580 * read/write these MSRs directly without hypervisor involvement. 581 */ 582 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE); 583 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE); 584 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE); 585 586 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR); 587 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR); 588 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR); 589 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK); 590 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR); 591 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR); 592 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR); 593 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT); 594 595 svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC); 596 597 /* 598 * Intercept writes to make sure that the EFER_SVM bit is not cleared. 599 */ 600 svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER); 601 602 /* Intercept access to all I/O ports. */ 603 memset(svm_sc->iopm_bitmap, 0xFF, SVM_IO_BITMAP_SIZE); 604 605 return (svm_sc); 606 } 607 608 static void * 609 svm_vcpu_init(void *vmi, struct vcpu *vcpu1, int vcpuid) 610 { 611 struct svm_softc *sc = vmi; 612 struct svm_vcpu *vcpu; 613 614 vcpu = malloc(sizeof(*vcpu), M_SVM, M_WAITOK | M_ZERO); 615 vcpu->sc = sc; 616 vcpu->vcpu = vcpu1; 617 vcpu->vcpuid = vcpuid; 618 vcpu->vmcb = malloc_aligned(sizeof(struct vmcb), PAGE_SIZE, M_SVM, 619 M_WAITOK | M_ZERO); 620 vcpu->nextrip = ~0; 621 vcpu->lastcpu = NOCPU; 622 vcpu->vmcb_pa = vtophys(vcpu->vmcb); 623 vmcb_init(sc, vcpu, vtophys(sc->iopm_bitmap), vtophys(sc->msr_bitmap), 624 sc->nptp); 625 svm_msr_guest_init(sc, vcpu); 626 return (vcpu); 627 } 628 629 /* 630 * Collateral for a generic SVM VM-exit. 631 */ 632 static void 633 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2) 634 { 635 636 vme->exitcode = VM_EXITCODE_SVM; 637 vme->u.svm.exitcode = code; 638 vme->u.svm.exitinfo1 = info1; 639 vme->u.svm.exitinfo2 = info2; 640 } 641 642 static int 643 svm_cpl(struct vmcb_state *state) 644 { 645 646 /* 647 * From APMv2: 648 * "Retrieve the CPL from the CPL field in the VMCB, not 649 * from any segment DPL" 650 */ 651 return (state->cpl); 652 } 653 654 static enum vm_cpu_mode 655 svm_vcpu_mode(struct vmcb *vmcb) 656 { 657 struct vmcb_segment seg; 658 struct vmcb_state *state; 659 int error __diagused; 660 661 state = &vmcb->state; 662 663 if (state->efer & EFER_LMA) { 664 error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg); 665 KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__, 666 error)); 667 668 /* 669 * Section 4.8.1 for APM2, check if Code Segment has 670 * Long attribute set in descriptor. 671 */ 672 if (seg.attrib & VMCB_CS_ATTRIB_L) 673 return (CPU_MODE_64BIT); 674 else 675 return (CPU_MODE_COMPATIBILITY); 676 } else if (state->cr0 & CR0_PE) { 677 return (CPU_MODE_PROTECTED); 678 } else { 679 return (CPU_MODE_REAL); 680 } 681 } 682 683 static enum vm_paging_mode 684 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer) 685 { 686 687 if ((cr0 & CR0_PG) == 0) 688 return (PAGING_MODE_FLAT); 689 if ((cr4 & CR4_PAE) == 0) 690 return (PAGING_MODE_32); 691 if (efer & EFER_LME) 692 return (PAGING_MODE_64); 693 else 694 return (PAGING_MODE_PAE); 695 } 696 697 /* 698 * ins/outs utility routines 699 */ 700 static uint64_t 701 svm_inout_str_index(struct svm_regctx *regs, int in) 702 { 703 uint64_t val; 704 705 val = in ? regs->sctx_rdi : regs->sctx_rsi; 706 707 return (val); 708 } 709 710 static uint64_t 711 svm_inout_str_count(struct svm_regctx *regs, int rep) 712 { 713 uint64_t val; 714 715 val = rep ? regs->sctx_rcx : 1; 716 717 return (val); 718 } 719 720 static void 721 svm_inout_str_seginfo(struct svm_vcpu *vcpu, int64_t info1, int in, 722 struct vm_inout_str *vis) 723 { 724 int error __diagused, s; 725 726 if (in) { 727 vis->seg_name = VM_REG_GUEST_ES; 728 } else { 729 /* The segment field has standard encoding */ 730 s = (info1 >> 10) & 0x7; 731 vis->seg_name = vm_segment_name(s); 732 } 733 734 error = svm_getdesc(vcpu, vis->seg_name, &vis->seg_desc); 735 KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error)); 736 } 737 738 static int 739 svm_inout_str_addrsize(uint64_t info1) 740 { 741 uint32_t size; 742 743 size = (info1 >> 7) & 0x7; 744 switch (size) { 745 case 1: 746 return (2); /* 16 bit */ 747 case 2: 748 return (4); /* 32 bit */ 749 case 4: 750 return (8); /* 64 bit */ 751 default: 752 panic("%s: invalid size encoding %d", __func__, size); 753 } 754 } 755 756 static void 757 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging) 758 { 759 struct vmcb_state *state; 760 761 state = &vmcb->state; 762 paging->cr3 = state->cr3; 763 paging->cpl = svm_cpl(state); 764 paging->cpu_mode = svm_vcpu_mode(vmcb); 765 paging->paging_mode = svm_paging_mode(state->cr0, state->cr4, 766 state->efer); 767 } 768 769 #define UNHANDLED 0 770 771 /* 772 * Handle guest I/O intercept. 773 */ 774 static int 775 svm_handle_io(struct svm_vcpu *vcpu, struct vm_exit *vmexit) 776 { 777 struct vmcb_ctrl *ctrl; 778 struct vmcb_state *state; 779 struct svm_regctx *regs; 780 struct vm_inout_str *vis; 781 uint64_t info1; 782 int inout_string; 783 784 state = svm_get_vmcb_state(vcpu); 785 ctrl = svm_get_vmcb_ctrl(vcpu); 786 regs = svm_get_guest_regctx(vcpu); 787 788 info1 = ctrl->exitinfo1; 789 inout_string = info1 & BIT(2) ? 1 : 0; 790 791 /* 792 * The effective segment number in EXITINFO1[12:10] is populated 793 * only if the processor has the DecodeAssist capability. 794 * 795 * XXX this is not specified explicitly in APMv2 but can be verified 796 * empirically. 797 */ 798 if (inout_string && !decode_assist()) 799 return (UNHANDLED); 800 801 vmexit->exitcode = VM_EXITCODE_INOUT; 802 vmexit->u.inout.in = (info1 & BIT(0)) ? 1 : 0; 803 vmexit->u.inout.string = inout_string; 804 vmexit->u.inout.rep = (info1 & BIT(3)) ? 1 : 0; 805 vmexit->u.inout.bytes = (info1 >> 4) & 0x7; 806 vmexit->u.inout.port = (uint16_t)(info1 >> 16); 807 vmexit->u.inout.eax = (uint32_t)(state->rax); 808 809 if (inout_string) { 810 vmexit->exitcode = VM_EXITCODE_INOUT_STR; 811 vis = &vmexit->u.inout_str; 812 svm_paging_info(svm_get_vmcb(vcpu), &vis->paging); 813 vis->rflags = state->rflags; 814 vis->cr0 = state->cr0; 815 vis->index = svm_inout_str_index(regs, vmexit->u.inout.in); 816 vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep); 817 vis->addrsize = svm_inout_str_addrsize(info1); 818 svm_inout_str_seginfo(vcpu, info1, vmexit->u.inout.in, vis); 819 } 820 821 return (UNHANDLED); 822 } 823 824 static int 825 npf_fault_type(uint64_t exitinfo1) 826 { 827 828 if (exitinfo1 & VMCB_NPF_INFO1_W) 829 return (VM_PROT_WRITE); 830 else if (exitinfo1 & VMCB_NPF_INFO1_ID) 831 return (VM_PROT_EXECUTE); 832 else 833 return (VM_PROT_READ); 834 } 835 836 static bool 837 svm_npf_emul_fault(uint64_t exitinfo1) 838 { 839 840 if (exitinfo1 & VMCB_NPF_INFO1_ID) { 841 return (false); 842 } 843 844 if (exitinfo1 & VMCB_NPF_INFO1_GPT) { 845 return (false); 846 } 847 848 if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) { 849 return (false); 850 } 851 852 return (true); 853 } 854 855 static void 856 svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit) 857 { 858 struct vm_guest_paging *paging; 859 struct vmcb_segment seg; 860 struct vmcb_ctrl *ctrl; 861 char *inst_bytes; 862 int error __diagused, inst_len; 863 864 ctrl = &vmcb->ctrl; 865 paging = &vmexit->u.inst_emul.paging; 866 867 vmexit->exitcode = VM_EXITCODE_INST_EMUL; 868 vmexit->u.inst_emul.gpa = gpa; 869 vmexit->u.inst_emul.gla = VIE_INVALID_GLA; 870 svm_paging_info(vmcb, paging); 871 872 error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg); 873 KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error)); 874 875 switch(paging->cpu_mode) { 876 case CPU_MODE_REAL: 877 vmexit->u.inst_emul.cs_base = seg.base; 878 vmexit->u.inst_emul.cs_d = 0; 879 break; 880 case CPU_MODE_PROTECTED: 881 case CPU_MODE_COMPATIBILITY: 882 vmexit->u.inst_emul.cs_base = seg.base; 883 884 /* 885 * Section 4.8.1 of APM2, Default Operand Size or D bit. 886 */ 887 vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ? 888 1 : 0; 889 break; 890 default: 891 vmexit->u.inst_emul.cs_base = 0; 892 vmexit->u.inst_emul.cs_d = 0; 893 break; 894 } 895 896 /* 897 * Copy the instruction bytes into 'vie' if available. 898 */ 899 if (decode_assist() && !disable_npf_assist) { 900 inst_len = ctrl->inst_len; 901 inst_bytes = ctrl->inst_bytes; 902 } else { 903 inst_len = 0; 904 inst_bytes = NULL; 905 } 906 vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len); 907 } 908 909 #ifdef KTR 910 static const char * 911 intrtype_to_str(int intr_type) 912 { 913 switch (intr_type) { 914 case VMCB_EVENTINJ_TYPE_INTR: 915 return ("hwintr"); 916 case VMCB_EVENTINJ_TYPE_NMI: 917 return ("nmi"); 918 case VMCB_EVENTINJ_TYPE_INTn: 919 return ("swintr"); 920 case VMCB_EVENTINJ_TYPE_EXCEPTION: 921 return ("exception"); 922 default: 923 panic("%s: unknown intr_type %d", __func__, intr_type); 924 } 925 } 926 #endif 927 928 /* 929 * Inject an event to vcpu as described in section 15.20, "Event injection". 930 */ 931 static void 932 svm_eventinject(struct svm_vcpu *vcpu, int intr_type, int vector, 933 uint32_t error, bool ec_valid) 934 { 935 struct vmcb_ctrl *ctrl; 936 937 ctrl = svm_get_vmcb_ctrl(vcpu); 938 939 KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, 940 ("%s: event already pending %#lx", __func__, ctrl->eventinj)); 941 942 KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d", 943 __func__, vector)); 944 945 switch (intr_type) { 946 case VMCB_EVENTINJ_TYPE_INTR: 947 case VMCB_EVENTINJ_TYPE_NMI: 948 case VMCB_EVENTINJ_TYPE_INTn: 949 break; 950 case VMCB_EVENTINJ_TYPE_EXCEPTION: 951 if (vector >= 0 && vector <= 31 && vector != 2) 952 break; 953 /* FALLTHROUGH */ 954 default: 955 panic("%s: invalid intr_type/vector: %d/%d", __func__, 956 intr_type, vector); 957 } 958 ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID; 959 if (ec_valid) { 960 ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID; 961 ctrl->eventinj |= (uint64_t)error << 32; 962 SVM_CTR3(vcpu, "Injecting %s at vector %d errcode %#x", 963 intrtype_to_str(intr_type), vector, error); 964 } else { 965 SVM_CTR2(vcpu, "Injecting %s at vector %d", 966 intrtype_to_str(intr_type), vector); 967 } 968 } 969 970 static void 971 svm_update_virqinfo(struct svm_vcpu *vcpu) 972 { 973 struct vlapic *vlapic; 974 struct vmcb_ctrl *ctrl; 975 976 vlapic = vm_lapic(vcpu->vcpu); 977 ctrl = svm_get_vmcb_ctrl(vcpu); 978 979 /* Update %cr8 in the emulated vlapic */ 980 vlapic_set_cr8(vlapic, ctrl->v_tpr); 981 982 /* Virtual interrupt injection is not used. */ 983 KASSERT(ctrl->v_intr_vector == 0, ("%s: invalid " 984 "v_intr_vector %d", __func__, ctrl->v_intr_vector)); 985 } 986 987 static void 988 svm_save_intinfo(struct svm_softc *svm_sc, struct svm_vcpu *vcpu) 989 { 990 struct vmcb_ctrl *ctrl; 991 uint64_t intinfo; 992 993 ctrl = svm_get_vmcb_ctrl(vcpu); 994 intinfo = ctrl->exitintinfo; 995 if (!VMCB_EXITINTINFO_VALID(intinfo)) 996 return; 997 998 /* 999 * From APMv2, Section "Intercepts during IDT interrupt delivery" 1000 * 1001 * If a #VMEXIT happened during event delivery then record the event 1002 * that was being delivered. 1003 */ 1004 SVM_CTR2(vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n", intinfo, 1005 VMCB_EXITINTINFO_VECTOR(intinfo)); 1006 vmm_stat_incr(vcpu->vcpu, VCPU_EXITINTINFO, 1); 1007 vm_exit_intinfo(vcpu->vcpu, intinfo); 1008 } 1009 1010 #ifdef INVARIANTS 1011 static __inline int 1012 vintr_intercept_enabled(struct svm_vcpu *vcpu) 1013 { 1014 1015 return (svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR)); 1016 } 1017 #endif 1018 1019 static __inline void 1020 enable_intr_window_exiting(struct svm_vcpu *vcpu) 1021 { 1022 struct vmcb_ctrl *ctrl; 1023 1024 ctrl = svm_get_vmcb_ctrl(vcpu); 1025 1026 if (ctrl->v_irq && ctrl->v_intr_vector == 0) { 1027 KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__)); 1028 KASSERT(vintr_intercept_enabled(vcpu), 1029 ("%s: vintr intercept should be enabled", __func__)); 1030 return; 1031 } 1032 1033 SVM_CTR0(vcpu, "Enable intr window exiting"); 1034 ctrl->v_irq = 1; 1035 ctrl->v_ign_tpr = 1; 1036 ctrl->v_intr_vector = 0; 1037 svm_set_dirty(vcpu, VMCB_CACHE_TPR); 1038 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR); 1039 } 1040 1041 static __inline void 1042 disable_intr_window_exiting(struct svm_vcpu *vcpu) 1043 { 1044 struct vmcb_ctrl *ctrl; 1045 1046 ctrl = svm_get_vmcb_ctrl(vcpu); 1047 1048 if (!ctrl->v_irq && ctrl->v_intr_vector == 0) { 1049 KASSERT(!vintr_intercept_enabled(vcpu), 1050 ("%s: vintr intercept should be disabled", __func__)); 1051 return; 1052 } 1053 1054 SVM_CTR0(vcpu, "Disable intr window exiting"); 1055 ctrl->v_irq = 0; 1056 ctrl->v_intr_vector = 0; 1057 svm_set_dirty(vcpu, VMCB_CACHE_TPR); 1058 svm_disable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR); 1059 } 1060 1061 static int 1062 svm_modify_intr_shadow(struct svm_vcpu *vcpu, uint64_t val) 1063 { 1064 struct vmcb_ctrl *ctrl; 1065 int oldval, newval; 1066 1067 ctrl = svm_get_vmcb_ctrl(vcpu); 1068 oldval = ctrl->intr_shadow; 1069 newval = val ? 1 : 0; 1070 if (newval != oldval) { 1071 ctrl->intr_shadow = newval; 1072 SVM_CTR1(vcpu, "Setting intr_shadow to %d", newval); 1073 } 1074 return (0); 1075 } 1076 1077 static int 1078 svm_get_intr_shadow(struct svm_vcpu *vcpu, uint64_t *val) 1079 { 1080 struct vmcb_ctrl *ctrl; 1081 1082 ctrl = svm_get_vmcb_ctrl(vcpu); 1083 *val = ctrl->intr_shadow; 1084 return (0); 1085 } 1086 1087 /* 1088 * Once an NMI is injected it blocks delivery of further NMIs until the handler 1089 * executes an IRET. The IRET intercept is enabled when an NMI is injected to 1090 * to track when the vcpu is done handling the NMI. 1091 */ 1092 static int 1093 nmi_blocked(struct svm_vcpu *vcpu) 1094 { 1095 int blocked; 1096 1097 blocked = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET); 1098 return (blocked); 1099 } 1100 1101 static void 1102 enable_nmi_blocking(struct svm_vcpu *vcpu) 1103 { 1104 1105 KASSERT(!nmi_blocked(vcpu), ("vNMI already blocked")); 1106 SVM_CTR0(vcpu, "vNMI blocking enabled"); 1107 svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET); 1108 } 1109 1110 static void 1111 clear_nmi_blocking(struct svm_vcpu *vcpu) 1112 { 1113 int error __diagused; 1114 1115 KASSERT(nmi_blocked(vcpu), ("vNMI already unblocked")); 1116 SVM_CTR0(vcpu, "vNMI blocking cleared"); 1117 /* 1118 * When the IRET intercept is cleared the vcpu will attempt to execute 1119 * the "iret" when it runs next. However, it is possible to inject 1120 * another NMI into the vcpu before the "iret" has actually executed. 1121 * 1122 * For e.g. if the "iret" encounters a #NPF when accessing the stack 1123 * it will trap back into the hypervisor. If an NMI is pending for 1124 * the vcpu it will be injected into the guest. 1125 * 1126 * XXX this needs to be fixed 1127 */ 1128 svm_disable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET); 1129 1130 /* 1131 * Set 'intr_shadow' to prevent an NMI from being injected on the 1132 * immediate VMRUN. 1133 */ 1134 error = svm_modify_intr_shadow(vcpu, 1); 1135 KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error)); 1136 } 1137 1138 #define EFER_MBZ_BITS 0xFFFFFFFFFFFF0200UL 1139 1140 static int 1141 svm_write_efer(struct svm_softc *sc, struct svm_vcpu *vcpu, uint64_t newval, 1142 bool *retu) 1143 { 1144 struct vm_exit *vme; 1145 struct vmcb_state *state; 1146 uint64_t changed, lma, oldval; 1147 int error __diagused; 1148 1149 state = svm_get_vmcb_state(vcpu); 1150 1151 oldval = state->efer; 1152 SVM_CTR2(vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval); 1153 1154 newval &= ~0xFE; /* clear the Read-As-Zero (RAZ) bits */ 1155 changed = oldval ^ newval; 1156 1157 if (newval & EFER_MBZ_BITS) 1158 goto gpf; 1159 1160 /* APMv2 Table 14-5 "Long-Mode Consistency Checks" */ 1161 if (changed & EFER_LME) { 1162 if (state->cr0 & CR0_PG) 1163 goto gpf; 1164 } 1165 1166 /* EFER.LMA = EFER.LME & CR0.PG */ 1167 if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0) 1168 lma = EFER_LMA; 1169 else 1170 lma = 0; 1171 1172 if ((newval & EFER_LMA) != lma) 1173 goto gpf; 1174 1175 if (newval & EFER_NXE) { 1176 if (!vm_cpuid_capability(vcpu->vcpu, VCC_NO_EXECUTE)) 1177 goto gpf; 1178 } 1179 1180 /* 1181 * XXX bhyve does not enforce segment limits in 64-bit mode. Until 1182 * this is fixed flag guest attempt to set EFER_LMSLE as an error. 1183 */ 1184 if (newval & EFER_LMSLE) { 1185 vme = vm_exitinfo(vcpu->vcpu); 1186 vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0); 1187 *retu = true; 1188 return (0); 1189 } 1190 1191 if (newval & EFER_FFXSR) { 1192 if (!vm_cpuid_capability(vcpu->vcpu, VCC_FFXSR)) 1193 goto gpf; 1194 } 1195 1196 if (newval & EFER_TCE) { 1197 if (!vm_cpuid_capability(vcpu->vcpu, VCC_TCE)) 1198 goto gpf; 1199 } 1200 1201 error = svm_setreg(vcpu, VM_REG_GUEST_EFER, newval); 1202 KASSERT(error == 0, ("%s: error %d updating efer", __func__, error)); 1203 return (0); 1204 gpf: 1205 vm_inject_gp(vcpu->vcpu); 1206 return (0); 1207 } 1208 1209 static int 1210 emulate_wrmsr(struct svm_softc *sc, struct svm_vcpu *vcpu, u_int num, 1211 uint64_t val, bool *retu) 1212 { 1213 int error; 1214 1215 if (lapic_msr(num)) 1216 error = lapic_wrmsr(vcpu->vcpu, num, val, retu); 1217 else if (num == MSR_EFER) 1218 error = svm_write_efer(sc, vcpu, val, retu); 1219 else 1220 error = svm_wrmsr(vcpu, num, val, retu); 1221 1222 return (error); 1223 } 1224 1225 static int 1226 emulate_rdmsr(struct svm_vcpu *vcpu, u_int num, bool *retu) 1227 { 1228 struct vmcb_state *state; 1229 struct svm_regctx *ctx; 1230 uint64_t result; 1231 int error; 1232 1233 if (lapic_msr(num)) 1234 error = lapic_rdmsr(vcpu->vcpu, num, &result, retu); 1235 else 1236 error = svm_rdmsr(vcpu, num, &result, retu); 1237 1238 if (error == 0) { 1239 state = svm_get_vmcb_state(vcpu); 1240 ctx = svm_get_guest_regctx(vcpu); 1241 state->rax = result & 0xffffffff; 1242 ctx->sctx_rdx = result >> 32; 1243 } 1244 1245 return (error); 1246 } 1247 1248 #ifdef KTR 1249 static const char * 1250 exit_reason_to_str(uint64_t reason) 1251 { 1252 int i; 1253 static char reasonbuf[32]; 1254 static const struct { 1255 int reason; 1256 const char *str; 1257 } reasons[] = { 1258 { .reason = VMCB_EXIT_INVALID, .str = "invalvmcb" }, 1259 { .reason = VMCB_EXIT_SHUTDOWN, .str = "shutdown" }, 1260 { .reason = VMCB_EXIT_NPF, .str = "nptfault" }, 1261 { .reason = VMCB_EXIT_PAUSE, .str = "pause" }, 1262 { .reason = VMCB_EXIT_HLT, .str = "hlt" }, 1263 { .reason = VMCB_EXIT_CPUID, .str = "cpuid" }, 1264 { .reason = VMCB_EXIT_IO, .str = "inout" }, 1265 { .reason = VMCB_EXIT_MC, .str = "mchk" }, 1266 { .reason = VMCB_EXIT_INTR, .str = "extintr" }, 1267 { .reason = VMCB_EXIT_NMI, .str = "nmi" }, 1268 { .reason = VMCB_EXIT_VINTR, .str = "vintr" }, 1269 { .reason = VMCB_EXIT_MSR, .str = "msr" }, 1270 { .reason = VMCB_EXIT_IRET, .str = "iret" }, 1271 { .reason = VMCB_EXIT_MONITOR, .str = "monitor" }, 1272 { .reason = VMCB_EXIT_MWAIT, .str = "mwait" }, 1273 { .reason = VMCB_EXIT_VMRUN, .str = "vmrun" }, 1274 { .reason = VMCB_EXIT_VMMCALL, .str = "vmmcall" }, 1275 { .reason = VMCB_EXIT_VMLOAD, .str = "vmload" }, 1276 { .reason = VMCB_EXIT_VMSAVE, .str = "vmsave" }, 1277 { .reason = VMCB_EXIT_STGI, .str = "stgi" }, 1278 { .reason = VMCB_EXIT_CLGI, .str = "clgi" }, 1279 { .reason = VMCB_EXIT_SKINIT, .str = "skinit" }, 1280 { .reason = VMCB_EXIT_ICEBP, .str = "icebp" }, 1281 { .reason = VMCB_EXIT_INVD, .str = "invd" }, 1282 { .reason = VMCB_EXIT_INVLPGA, .str = "invlpga" }, 1283 }; 1284 1285 for (i = 0; i < nitems(reasons); i++) { 1286 if (reasons[i].reason == reason) 1287 return (reasons[i].str); 1288 } 1289 snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason); 1290 return (reasonbuf); 1291 } 1292 #endif /* KTR */ 1293 1294 /* 1295 * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs 1296 * that are due to instruction intercepts as well as MSR and IOIO intercepts 1297 * and exceptions caused by INT3, INTO and BOUND instructions. 1298 * 1299 * Return 1 if the nRIP is valid and 0 otherwise. 1300 */ 1301 static int 1302 nrip_valid(uint64_t exitcode) 1303 { 1304 switch (exitcode) { 1305 case 0x00 ... 0x0F: /* read of CR0 through CR15 */ 1306 case 0x10 ... 0x1F: /* write of CR0 through CR15 */ 1307 case 0x20 ... 0x2F: /* read of DR0 through DR15 */ 1308 case 0x30 ... 0x3F: /* write of DR0 through DR15 */ 1309 case 0x43: /* INT3 */ 1310 case 0x44: /* INTO */ 1311 case 0x45: /* BOUND */ 1312 case 0x65 ... 0x7C: /* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */ 1313 case 0x80 ... 0x8D: /* VMEXIT_VMRUN ... VMEXIT_XSETBV */ 1314 return (1); 1315 default: 1316 return (0); 1317 } 1318 } 1319 1320 static int 1321 svm_vmexit(struct svm_softc *svm_sc, struct svm_vcpu *vcpu, 1322 struct vm_exit *vmexit) 1323 { 1324 struct vmcb *vmcb; 1325 struct vmcb_state *state; 1326 struct vmcb_ctrl *ctrl; 1327 struct svm_regctx *ctx; 1328 uint64_t code, info1, info2, val; 1329 uint32_t eax, ecx, edx; 1330 int error __diagused, errcode_valid, handled, idtvec, reflect; 1331 bool retu; 1332 1333 ctx = svm_get_guest_regctx(vcpu); 1334 vmcb = svm_get_vmcb(vcpu); 1335 state = &vmcb->state; 1336 ctrl = &vmcb->ctrl; 1337 1338 handled = 0; 1339 code = ctrl->exitcode; 1340 info1 = ctrl->exitinfo1; 1341 info2 = ctrl->exitinfo2; 1342 1343 vmexit->exitcode = VM_EXITCODE_BOGUS; 1344 vmexit->rip = state->rip; 1345 vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0; 1346 1347 vmm_stat_incr(vcpu->vcpu, VMEXIT_COUNT, 1); 1348 1349 /* 1350 * #VMEXIT(INVALID) needs to be handled early because the VMCB is 1351 * in an inconsistent state and can trigger assertions that would 1352 * never happen otherwise. 1353 */ 1354 if (code == VMCB_EXIT_INVALID) { 1355 vm_exit_svm(vmexit, code, info1, info2); 1356 return (0); 1357 } 1358 1359 KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event " 1360 "injection valid bit is set %#lx", __func__, ctrl->eventinj)); 1361 1362 KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15, 1363 ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)", 1364 vmexit->inst_length, code, info1, info2)); 1365 1366 svm_update_virqinfo(vcpu); 1367 svm_save_intinfo(svm_sc, vcpu); 1368 1369 switch (code) { 1370 case VMCB_EXIT_IRET: 1371 /* 1372 * Restart execution at "iret" but with the intercept cleared. 1373 */ 1374 vmexit->inst_length = 0; 1375 clear_nmi_blocking(vcpu); 1376 handled = 1; 1377 break; 1378 case VMCB_EXIT_VINTR: /* interrupt window exiting */ 1379 vmm_stat_incr(vcpu->vcpu, VMEXIT_VINTR, 1); 1380 handled = 1; 1381 break; 1382 case VMCB_EXIT_INTR: /* external interrupt */ 1383 vmm_stat_incr(vcpu->vcpu, VMEXIT_EXTINT, 1); 1384 handled = 1; 1385 break; 1386 case VMCB_EXIT_NMI: /* external NMI */ 1387 handled = 1; 1388 break; 1389 case 0x40 ... 0x5F: 1390 vmm_stat_incr(vcpu->vcpu, VMEXIT_EXCEPTION, 1); 1391 reflect = 1; 1392 idtvec = code - 0x40; 1393 switch (idtvec) { 1394 case IDT_MC: 1395 /* 1396 * Call the machine check handler by hand. Also don't 1397 * reflect the machine check back into the guest. 1398 */ 1399 reflect = 0; 1400 SVM_CTR0(vcpu, "Vectoring to MCE handler"); 1401 __asm __volatile("int $18"); 1402 break; 1403 case IDT_PF: 1404 error = svm_setreg(vcpu, VM_REG_GUEST_CR2, info2); 1405 KASSERT(error == 0, ("%s: error %d updating cr2", 1406 __func__, error)); 1407 /* fallthru */ 1408 case IDT_NP: 1409 case IDT_SS: 1410 case IDT_GP: 1411 case IDT_AC: 1412 case IDT_TS: 1413 errcode_valid = 1; 1414 break; 1415 1416 case IDT_DF: 1417 errcode_valid = 1; 1418 info1 = 0; 1419 break; 1420 1421 case IDT_BP: 1422 case IDT_OF: 1423 case IDT_BR: 1424 /* 1425 * The 'nrip' field is populated for INT3, INTO and 1426 * BOUND exceptions and this also implies that 1427 * 'inst_length' is non-zero. 1428 * 1429 * Reset 'inst_length' to zero so the guest %rip at 1430 * event injection is identical to what it was when 1431 * the exception originally happened. 1432 */ 1433 SVM_CTR2(vcpu, "Reset inst_length from %d " 1434 "to zero before injecting exception %d", 1435 vmexit->inst_length, idtvec); 1436 vmexit->inst_length = 0; 1437 /* fallthru */ 1438 default: 1439 errcode_valid = 0; 1440 info1 = 0; 1441 break; 1442 } 1443 KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) " 1444 "when reflecting exception %d into guest", 1445 vmexit->inst_length, idtvec)); 1446 1447 if (reflect) { 1448 /* Reflect the exception back into the guest */ 1449 SVM_CTR2(vcpu, "Reflecting exception " 1450 "%d/%#x into the guest", idtvec, (int)info1); 1451 error = vm_inject_exception(vcpu->vcpu, idtvec, 1452 errcode_valid, info1, 0); 1453 KASSERT(error == 0, ("%s: vm_inject_exception error %d", 1454 __func__, error)); 1455 } 1456 handled = 1; 1457 break; 1458 case VMCB_EXIT_MSR: /* MSR access. */ 1459 eax = state->rax; 1460 ecx = ctx->sctx_rcx; 1461 edx = ctx->sctx_rdx; 1462 retu = false; 1463 1464 if (info1) { 1465 vmm_stat_incr(vcpu->vcpu, VMEXIT_WRMSR, 1); 1466 val = (uint64_t)edx << 32 | eax; 1467 SVM_CTR2(vcpu, "wrmsr %#x val %#lx", ecx, val); 1468 if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) { 1469 vmexit->exitcode = VM_EXITCODE_WRMSR; 1470 vmexit->u.msr.code = ecx; 1471 vmexit->u.msr.wval = val; 1472 } else if (!retu) { 1473 handled = 1; 1474 } else { 1475 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 1476 ("emulate_wrmsr retu with bogus exitcode")); 1477 } 1478 } else { 1479 SVM_CTR1(vcpu, "rdmsr %#x", ecx); 1480 vmm_stat_incr(vcpu->vcpu, VMEXIT_RDMSR, 1); 1481 if (emulate_rdmsr(vcpu, ecx, &retu)) { 1482 vmexit->exitcode = VM_EXITCODE_RDMSR; 1483 vmexit->u.msr.code = ecx; 1484 } else if (!retu) { 1485 handled = 1; 1486 } else { 1487 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 1488 ("emulate_rdmsr retu with bogus exitcode")); 1489 } 1490 } 1491 break; 1492 case VMCB_EXIT_IO: 1493 handled = svm_handle_io(vcpu, vmexit); 1494 vmm_stat_incr(vcpu->vcpu, VMEXIT_INOUT, 1); 1495 break; 1496 case VMCB_EXIT_CPUID: 1497 vmm_stat_incr(vcpu->vcpu, VMEXIT_CPUID, 1); 1498 handled = x86_emulate_cpuid(vcpu->vcpu, 1499 &state->rax, &ctx->sctx_rbx, &ctx->sctx_rcx, 1500 &ctx->sctx_rdx); 1501 break; 1502 case VMCB_EXIT_HLT: 1503 vmm_stat_incr(vcpu->vcpu, VMEXIT_HLT, 1); 1504 vmexit->exitcode = VM_EXITCODE_HLT; 1505 vmexit->u.hlt.rflags = state->rflags; 1506 break; 1507 case VMCB_EXIT_PAUSE: 1508 vmexit->exitcode = VM_EXITCODE_PAUSE; 1509 vmm_stat_incr(vcpu->vcpu, VMEXIT_PAUSE, 1); 1510 break; 1511 case VMCB_EXIT_NPF: 1512 /* EXITINFO2 contains the faulting guest physical address */ 1513 if (info1 & VMCB_NPF_INFO1_RSV) { 1514 SVM_CTR2(vcpu, "nested page fault with " 1515 "reserved bits set: info1(%#lx) info2(%#lx)", 1516 info1, info2); 1517 } else if (vm_mem_allocated(vcpu->vcpu, info2)) { 1518 vmexit->exitcode = VM_EXITCODE_PAGING; 1519 vmexit->u.paging.gpa = info2; 1520 vmexit->u.paging.fault_type = npf_fault_type(info1); 1521 vmm_stat_incr(vcpu->vcpu, VMEXIT_NESTED_FAULT, 1); 1522 SVM_CTR3(vcpu, "nested page fault " 1523 "on gpa %#lx/%#lx at rip %#lx", 1524 info2, info1, state->rip); 1525 } else if (svm_npf_emul_fault(info1)) { 1526 svm_handle_inst_emul(vmcb, info2, vmexit); 1527 vmm_stat_incr(vcpu->vcpu, VMEXIT_INST_EMUL, 1); 1528 SVM_CTR3(vcpu, "inst_emul fault " 1529 "for gpa %#lx/%#lx at rip %#lx", 1530 info2, info1, state->rip); 1531 } 1532 break; 1533 case VMCB_EXIT_MONITOR: 1534 vmexit->exitcode = VM_EXITCODE_MONITOR; 1535 break; 1536 case VMCB_EXIT_MWAIT: 1537 vmexit->exitcode = VM_EXITCODE_MWAIT; 1538 break; 1539 case VMCB_EXIT_SHUTDOWN: 1540 case VMCB_EXIT_VMRUN: 1541 case VMCB_EXIT_VMMCALL: 1542 case VMCB_EXIT_VMLOAD: 1543 case VMCB_EXIT_VMSAVE: 1544 case VMCB_EXIT_STGI: 1545 case VMCB_EXIT_CLGI: 1546 case VMCB_EXIT_SKINIT: 1547 case VMCB_EXIT_ICEBP: 1548 case VMCB_EXIT_INVLPGA: 1549 vm_inject_ud(vcpu->vcpu); 1550 handled = 1; 1551 break; 1552 case VMCB_EXIT_INVD: 1553 case VMCB_EXIT_WBINVD: 1554 /* ignore exit */ 1555 handled = 1; 1556 break; 1557 default: 1558 vmm_stat_incr(vcpu->vcpu, VMEXIT_UNKNOWN, 1); 1559 break; 1560 } 1561 1562 SVM_CTR4(vcpu, "%s %s vmexit at %#lx/%d", 1563 handled ? "handled" : "unhandled", exit_reason_to_str(code), 1564 vmexit->rip, vmexit->inst_length); 1565 1566 if (handled) { 1567 vmexit->rip += vmexit->inst_length; 1568 vmexit->inst_length = 0; 1569 state->rip = vmexit->rip; 1570 } else { 1571 if (vmexit->exitcode == VM_EXITCODE_BOGUS) { 1572 /* 1573 * If this VM exit was not claimed by anybody then 1574 * treat it as a generic SVM exit. 1575 */ 1576 vm_exit_svm(vmexit, code, info1, info2); 1577 } else { 1578 /* 1579 * The exitcode and collateral have been populated. 1580 * The VM exit will be processed further in userland. 1581 */ 1582 } 1583 } 1584 return (handled); 1585 } 1586 1587 static void 1588 svm_inj_intinfo(struct svm_softc *svm_sc, struct svm_vcpu *vcpu) 1589 { 1590 uint64_t intinfo; 1591 1592 if (!vm_entry_intinfo(vcpu->vcpu, &intinfo)) 1593 return; 1594 1595 KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not " 1596 "valid: %#lx", __func__, intinfo)); 1597 1598 svm_eventinject(vcpu, VMCB_EXITINTINFO_TYPE(intinfo), 1599 VMCB_EXITINTINFO_VECTOR(intinfo), 1600 VMCB_EXITINTINFO_EC(intinfo), 1601 VMCB_EXITINTINFO_EC_VALID(intinfo)); 1602 vmm_stat_incr(vcpu->vcpu, VCPU_INTINFO_INJECTED, 1); 1603 SVM_CTR1(vcpu, "Injected entry intinfo: %#lx", intinfo); 1604 } 1605 1606 /* 1607 * Inject event to virtual cpu. 1608 */ 1609 static void 1610 svm_inj_interrupts(struct svm_softc *sc, struct svm_vcpu *vcpu, 1611 struct vlapic *vlapic) 1612 { 1613 struct vmcb_ctrl *ctrl; 1614 struct vmcb_state *state; 1615 uint8_t v_tpr; 1616 int vector, need_intr_window; 1617 int extint_pending; 1618 1619 state = svm_get_vmcb_state(vcpu); 1620 ctrl = svm_get_vmcb_ctrl(vcpu); 1621 1622 need_intr_window = 0; 1623 1624 if (vcpu->nextrip != state->rip) { 1625 ctrl->intr_shadow = 0; 1626 SVM_CTR2(vcpu, "Guest interrupt blocking " 1627 "cleared due to rip change: %#lx/%#lx", 1628 vcpu->nextrip, state->rip); 1629 } 1630 1631 /* 1632 * Inject pending events or exceptions for this vcpu. 1633 * 1634 * An event might be pending because the previous #VMEXIT happened 1635 * during event delivery (i.e. ctrl->exitintinfo). 1636 * 1637 * An event might also be pending because an exception was injected 1638 * by the hypervisor (e.g. #PF during instruction emulation). 1639 */ 1640 svm_inj_intinfo(sc, vcpu); 1641 1642 /* NMI event has priority over interrupts. */ 1643 if (vm_nmi_pending(vcpu->vcpu)) { 1644 if (nmi_blocked(vcpu)) { 1645 /* 1646 * Can't inject another NMI if the guest has not 1647 * yet executed an "iret" after the last NMI. 1648 */ 1649 SVM_CTR0(vcpu, "Cannot inject NMI due " 1650 "to NMI-blocking"); 1651 } else if (ctrl->intr_shadow) { 1652 /* 1653 * Can't inject an NMI if the vcpu is in an intr_shadow. 1654 */ 1655 SVM_CTR0(vcpu, "Cannot inject NMI due to " 1656 "interrupt shadow"); 1657 need_intr_window = 1; 1658 goto done; 1659 } else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) { 1660 /* 1661 * If there is already an exception/interrupt pending 1662 * then defer the NMI until after that. 1663 */ 1664 SVM_CTR1(vcpu, "Cannot inject NMI due to " 1665 "eventinj %#lx", ctrl->eventinj); 1666 1667 /* 1668 * Use self-IPI to trigger a VM-exit as soon as 1669 * possible after the event injection is completed. 1670 * 1671 * This works only if the external interrupt exiting 1672 * is at a lower priority than the event injection. 1673 * 1674 * Although not explicitly specified in APMv2 the 1675 * relative priorities were verified empirically. 1676 */ 1677 ipi_cpu(curcpu, IPI_AST); /* XXX vmm_ipinum? */ 1678 } else { 1679 vm_nmi_clear(vcpu->vcpu); 1680 1681 /* Inject NMI, vector number is not used */ 1682 svm_eventinject(vcpu, VMCB_EVENTINJ_TYPE_NMI, 1683 IDT_NMI, 0, false); 1684 1685 /* virtual NMI blocking is now in effect */ 1686 enable_nmi_blocking(vcpu); 1687 1688 SVM_CTR0(vcpu, "Injecting vNMI"); 1689 } 1690 } 1691 1692 extint_pending = vm_extint_pending(vcpu->vcpu); 1693 if (!extint_pending) { 1694 if (!vlapic_pending_intr(vlapic, &vector)) 1695 goto done; 1696 KASSERT(vector >= 16 && vector <= 255, 1697 ("invalid vector %d from local APIC", vector)); 1698 } else { 1699 /* Ask the legacy pic for a vector to inject */ 1700 vatpic_pending_intr(sc->vm, &vector); 1701 KASSERT(vector >= 0 && vector <= 255, 1702 ("invalid vector %d from INTR", vector)); 1703 } 1704 1705 /* 1706 * If the guest has disabled interrupts or is in an interrupt shadow 1707 * then we cannot inject the pending interrupt. 1708 */ 1709 if ((state->rflags & PSL_I) == 0) { 1710 SVM_CTR2(vcpu, "Cannot inject vector %d due to " 1711 "rflags %#lx", vector, state->rflags); 1712 need_intr_window = 1; 1713 goto done; 1714 } 1715 1716 if (ctrl->intr_shadow) { 1717 SVM_CTR1(vcpu, "Cannot inject vector %d due to " 1718 "interrupt shadow", vector); 1719 need_intr_window = 1; 1720 goto done; 1721 } 1722 1723 if (ctrl->eventinj & VMCB_EVENTINJ_VALID) { 1724 SVM_CTR2(vcpu, "Cannot inject vector %d due to " 1725 "eventinj %#lx", vector, ctrl->eventinj); 1726 need_intr_window = 1; 1727 goto done; 1728 } 1729 1730 svm_eventinject(vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false); 1731 1732 if (!extint_pending) { 1733 vlapic_intr_accepted(vlapic, vector); 1734 } else { 1735 vm_extint_clear(vcpu->vcpu); 1736 vatpic_intr_accepted(sc->vm, vector); 1737 } 1738 1739 /* 1740 * Force a VM-exit as soon as the vcpu is ready to accept another 1741 * interrupt. This is done because the PIC might have another vector 1742 * that it wants to inject. Also, if the APIC has a pending interrupt 1743 * that was preempted by the ExtInt then it allows us to inject the 1744 * APIC vector as soon as possible. 1745 */ 1746 need_intr_window = 1; 1747 done: 1748 /* 1749 * The guest can modify the TPR by writing to %CR8. In guest mode 1750 * the processor reflects this write to V_TPR without hypervisor 1751 * intervention. 1752 * 1753 * The guest can also modify the TPR by writing to it via the memory 1754 * mapped APIC page. In this case, the write will be emulated by the 1755 * hypervisor. For this reason V_TPR must be updated before every 1756 * VMRUN. 1757 */ 1758 v_tpr = vlapic_get_cr8(vlapic); 1759 KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr)); 1760 if (ctrl->v_tpr != v_tpr) { 1761 SVM_CTR2(vcpu, "VMCB V_TPR changed from %#x to %#x", 1762 ctrl->v_tpr, v_tpr); 1763 ctrl->v_tpr = v_tpr; 1764 svm_set_dirty(vcpu, VMCB_CACHE_TPR); 1765 } 1766 1767 if (need_intr_window) { 1768 /* 1769 * We use V_IRQ in conjunction with the VINTR intercept to 1770 * trap into the hypervisor as soon as a virtual interrupt 1771 * can be delivered. 1772 * 1773 * Since injected events are not subject to intercept checks 1774 * we need to ensure that the V_IRQ is not actually going to 1775 * be delivered on VM entry. The KASSERT below enforces this. 1776 */ 1777 KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 || 1778 (state->rflags & PSL_I) == 0 || ctrl->intr_shadow, 1779 ("Bogus intr_window_exiting: eventinj (%#lx), " 1780 "intr_shadow (%u), rflags (%#lx)", 1781 ctrl->eventinj, ctrl->intr_shadow, state->rflags)); 1782 enable_intr_window_exiting(vcpu); 1783 } else { 1784 disable_intr_window_exiting(vcpu); 1785 } 1786 } 1787 1788 static __inline void 1789 restore_host_tss(void) 1790 { 1791 struct system_segment_descriptor *tss_sd; 1792 1793 /* 1794 * The TSS descriptor was in use prior to launching the guest so it 1795 * has been marked busy. 1796 * 1797 * 'ltr' requires the descriptor to be marked available so change the 1798 * type to "64-bit available TSS". 1799 */ 1800 tss_sd = PCPU_GET(tss); 1801 tss_sd->sd_type = SDT_SYSTSS; 1802 ltr(GSEL(GPROC0_SEL, SEL_KPL)); 1803 } 1804 1805 static void 1806 svm_pmap_activate(struct svm_vcpu *vcpu, pmap_t pmap) 1807 { 1808 struct vmcb_ctrl *ctrl; 1809 long eptgen; 1810 int cpu; 1811 bool alloc_asid; 1812 1813 cpu = curcpu; 1814 CPU_SET_ATOMIC(cpu, &pmap->pm_active); 1815 smr_enter(pmap->pm_eptsmr); 1816 1817 ctrl = svm_get_vmcb_ctrl(vcpu); 1818 1819 /* 1820 * The TLB entries associated with the vcpu's ASID are not valid 1821 * if either of the following conditions is true: 1822 * 1823 * 1. The vcpu's ASID generation is different than the host cpu's 1824 * ASID generation. This happens when the vcpu migrates to a new 1825 * host cpu. It can also happen when the number of vcpus executing 1826 * on a host cpu is greater than the number of ASIDs available. 1827 * 1828 * 2. The pmap generation number is different than the value cached in 1829 * the 'vcpustate'. This happens when the host invalidates pages 1830 * belonging to the guest. 1831 * 1832 * asidgen eptgen Action 1833 * mismatch mismatch 1834 * 0 0 (a) 1835 * 0 1 (b1) or (b2) 1836 * 1 0 (c) 1837 * 1 1 (d) 1838 * 1839 * (a) There is no mismatch in eptgen or ASID generation and therefore 1840 * no further action is needed. 1841 * 1842 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is 1843 * retained and the TLB entries associated with this ASID 1844 * are flushed by VMRUN. 1845 * 1846 * (b2) If the cpu does not support FlushByAsid then a new ASID is 1847 * allocated. 1848 * 1849 * (c) A new ASID is allocated. 1850 * 1851 * (d) A new ASID is allocated. 1852 */ 1853 1854 alloc_asid = false; 1855 eptgen = atomic_load_long(&pmap->pm_eptgen); 1856 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING; 1857 1858 if (vcpu->asid.gen != asid[cpu].gen) { 1859 alloc_asid = true; /* (c) and (d) */ 1860 } else if (vcpu->eptgen != eptgen) { 1861 if (flush_by_asid()) 1862 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; /* (b1) */ 1863 else 1864 alloc_asid = true; /* (b2) */ 1865 } else { 1866 /* 1867 * This is the common case (a). 1868 */ 1869 KASSERT(!alloc_asid, ("ASID allocation not necessary")); 1870 KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING, 1871 ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl)); 1872 } 1873 1874 if (alloc_asid) { 1875 if (++asid[cpu].num >= nasid) { 1876 asid[cpu].num = 1; 1877 if (++asid[cpu].gen == 0) 1878 asid[cpu].gen = 1; 1879 /* 1880 * If this cpu does not support "flush-by-asid" 1881 * then flush the entire TLB on a generation 1882 * bump. Subsequent ASID allocation in this 1883 * generation can be done without a TLB flush. 1884 */ 1885 if (!flush_by_asid()) 1886 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL; 1887 } 1888 vcpu->asid.gen = asid[cpu].gen; 1889 vcpu->asid.num = asid[cpu].num; 1890 1891 ctrl->asid = vcpu->asid.num; 1892 svm_set_dirty(vcpu, VMCB_CACHE_ASID); 1893 /* 1894 * If this cpu supports "flush-by-asid" then the TLB 1895 * was not flushed after the generation bump. The TLB 1896 * is flushed selectively after every new ASID allocation. 1897 */ 1898 if (flush_by_asid()) 1899 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; 1900 } 1901 vcpu->eptgen = eptgen; 1902 1903 KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero")); 1904 KASSERT(ctrl->asid == vcpu->asid.num, 1905 ("ASID mismatch: %u/%u", ctrl->asid, vcpu->asid.num)); 1906 } 1907 1908 static void 1909 svm_pmap_deactivate(pmap_t pmap) 1910 { 1911 smr_exit(pmap->pm_eptsmr); 1912 CPU_CLR_ATOMIC(curcpu, &pmap->pm_active); 1913 } 1914 1915 static __inline void 1916 disable_gintr(void) 1917 { 1918 1919 __asm __volatile("clgi"); 1920 } 1921 1922 static __inline void 1923 enable_gintr(void) 1924 { 1925 1926 __asm __volatile("stgi"); 1927 } 1928 1929 static __inline void 1930 svm_dr_enter_guest(struct svm_regctx *gctx) 1931 { 1932 1933 /* Save host control debug registers. */ 1934 gctx->host_dr7 = rdr7(); 1935 gctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR); 1936 1937 /* 1938 * Disable debugging in DR7 and DEBUGCTL to avoid triggering 1939 * exceptions in the host based on the guest DRx values. The 1940 * guest DR6, DR7, and DEBUGCTL are saved/restored in the 1941 * VMCB. 1942 */ 1943 load_dr7(0); 1944 wrmsr(MSR_DEBUGCTLMSR, 0); 1945 1946 /* Save host debug registers. */ 1947 gctx->host_dr0 = rdr0(); 1948 gctx->host_dr1 = rdr1(); 1949 gctx->host_dr2 = rdr2(); 1950 gctx->host_dr3 = rdr3(); 1951 gctx->host_dr6 = rdr6(); 1952 1953 /* Restore guest debug registers. */ 1954 load_dr0(gctx->sctx_dr0); 1955 load_dr1(gctx->sctx_dr1); 1956 load_dr2(gctx->sctx_dr2); 1957 load_dr3(gctx->sctx_dr3); 1958 } 1959 1960 static __inline void 1961 svm_dr_leave_guest(struct svm_regctx *gctx) 1962 { 1963 1964 /* Save guest debug registers. */ 1965 gctx->sctx_dr0 = rdr0(); 1966 gctx->sctx_dr1 = rdr1(); 1967 gctx->sctx_dr2 = rdr2(); 1968 gctx->sctx_dr3 = rdr3(); 1969 1970 /* 1971 * Restore host debug registers. Restore DR7 and DEBUGCTL 1972 * last. 1973 */ 1974 load_dr0(gctx->host_dr0); 1975 load_dr1(gctx->host_dr1); 1976 load_dr2(gctx->host_dr2); 1977 load_dr3(gctx->host_dr3); 1978 load_dr6(gctx->host_dr6); 1979 wrmsr(MSR_DEBUGCTLMSR, gctx->host_debugctl); 1980 load_dr7(gctx->host_dr7); 1981 } 1982 1983 /* 1984 * Start vcpu with specified RIP. 1985 */ 1986 static int 1987 svm_run(void *vcpui, register_t rip, pmap_t pmap, struct vm_eventinfo *evinfo) 1988 { 1989 struct svm_regctx *gctx; 1990 struct svm_softc *svm_sc; 1991 struct svm_vcpu *vcpu; 1992 struct vmcb_state *state; 1993 struct vmcb_ctrl *ctrl; 1994 struct vm_exit *vmexit; 1995 struct vlapic *vlapic; 1996 uint64_t vmcb_pa; 1997 int handled; 1998 uint16_t ldt_sel; 1999 2000 vcpu = vcpui; 2001 svm_sc = vcpu->sc; 2002 state = svm_get_vmcb_state(vcpu); 2003 ctrl = svm_get_vmcb_ctrl(vcpu); 2004 vmexit = vm_exitinfo(vcpu->vcpu); 2005 vlapic = vm_lapic(vcpu->vcpu); 2006 2007 gctx = svm_get_guest_regctx(vcpu); 2008 vmcb_pa = vcpu->vmcb_pa; 2009 2010 if (vcpu->lastcpu != curcpu) { 2011 /* 2012 * Force new ASID allocation by invalidating the generation. 2013 */ 2014 vcpu->asid.gen = 0; 2015 2016 /* 2017 * Invalidate the VMCB state cache by marking all fields dirty. 2018 */ 2019 svm_set_dirty(vcpu, 0xffffffff); 2020 2021 /* 2022 * XXX 2023 * Setting 'vcpu->lastcpu' here is bit premature because 2024 * we may return from this function without actually executing 2025 * the VMRUN instruction. This could happen if a rendezvous 2026 * or an AST is pending on the first time through the loop. 2027 * 2028 * This works for now but any new side-effects of vcpu 2029 * migration should take this case into account. 2030 */ 2031 vcpu->lastcpu = curcpu; 2032 vmm_stat_incr(vcpu->vcpu, VCPU_MIGRATIONS, 1); 2033 } 2034 2035 svm_msr_guest_enter(vcpu); 2036 2037 /* Update Guest RIP */ 2038 state->rip = rip; 2039 2040 do { 2041 /* 2042 * Disable global interrupts to guarantee atomicity during 2043 * loading of guest state. This includes not only the state 2044 * loaded by the "vmrun" instruction but also software state 2045 * maintained by the hypervisor: suspended and rendezvous 2046 * state, NPT generation number, vlapic interrupts etc. 2047 */ 2048 disable_gintr(); 2049 2050 if (vcpu_suspended(evinfo)) { 2051 enable_gintr(); 2052 vm_exit_suspended(vcpu->vcpu, state->rip); 2053 break; 2054 } 2055 2056 if (vcpu_rendezvous_pending(vcpu->vcpu, evinfo)) { 2057 enable_gintr(); 2058 vm_exit_rendezvous(vcpu->vcpu, state->rip); 2059 break; 2060 } 2061 2062 if (vcpu_reqidle(evinfo)) { 2063 enable_gintr(); 2064 vm_exit_reqidle(vcpu->vcpu, state->rip); 2065 break; 2066 } 2067 2068 /* We are asked to give the cpu by scheduler. */ 2069 if (vcpu_should_yield(vcpu->vcpu)) { 2070 enable_gintr(); 2071 vm_exit_astpending(vcpu->vcpu, state->rip); 2072 break; 2073 } 2074 2075 if (vcpu_debugged(vcpu->vcpu)) { 2076 enable_gintr(); 2077 vm_exit_debug(vcpu->vcpu, state->rip); 2078 break; 2079 } 2080 2081 /* 2082 * #VMEXIT resumes the host with the guest LDTR, so 2083 * save the current LDT selector so it can be restored 2084 * after an exit. The userspace hypervisor probably 2085 * doesn't use a LDT, but save and restore it to be 2086 * safe. 2087 */ 2088 ldt_sel = sldt(); 2089 2090 svm_inj_interrupts(svm_sc, vcpu, vlapic); 2091 2092 /* 2093 * Check the pmap generation and the ASID generation to 2094 * ensure that the vcpu does not use stale TLB mappings. 2095 */ 2096 svm_pmap_activate(vcpu, pmap); 2097 2098 ctrl->vmcb_clean = vmcb_clean & ~vcpu->dirty; 2099 vcpu->dirty = 0; 2100 SVM_CTR1(vcpu, "vmcb clean %#x", ctrl->vmcb_clean); 2101 2102 /* Launch Virtual Machine. */ 2103 SVM_CTR1(vcpu, "Resume execution at %#lx", state->rip); 2104 svm_dr_enter_guest(gctx); 2105 svm_launch(vmcb_pa, gctx, get_pcpu()); 2106 svm_dr_leave_guest(gctx); 2107 2108 svm_pmap_deactivate(pmap); 2109 2110 /* 2111 * The host GDTR and IDTR is saved by VMRUN and restored 2112 * automatically on #VMEXIT. However, the host TSS needs 2113 * to be restored explicitly. 2114 */ 2115 restore_host_tss(); 2116 2117 /* Restore host LDTR. */ 2118 lldt(ldt_sel); 2119 2120 /* #VMEXIT disables interrupts so re-enable them here. */ 2121 enable_gintr(); 2122 2123 /* Update 'nextrip' */ 2124 vcpu->nextrip = state->rip; 2125 2126 /* Handle #VMEXIT and if required return to user space. */ 2127 handled = svm_vmexit(svm_sc, vcpu, vmexit); 2128 } while (handled); 2129 2130 svm_msr_guest_exit(vcpu); 2131 2132 return (0); 2133 } 2134 2135 static void 2136 svm_vcpu_cleanup(void *vcpui) 2137 { 2138 struct svm_vcpu *vcpu = vcpui; 2139 2140 free(vcpu->vmcb, M_SVM); 2141 free(vcpu, M_SVM); 2142 } 2143 2144 static void 2145 svm_cleanup(void *vmi) 2146 { 2147 struct svm_softc *sc = vmi; 2148 2149 contigfree(sc->iopm_bitmap, SVM_IO_BITMAP_SIZE, M_SVM); 2150 contigfree(sc->msr_bitmap, SVM_MSR_BITMAP_SIZE, M_SVM); 2151 free(sc, M_SVM); 2152 } 2153 2154 static register_t * 2155 swctx_regptr(struct svm_regctx *regctx, int reg) 2156 { 2157 2158 switch (reg) { 2159 case VM_REG_GUEST_RBX: 2160 return (®ctx->sctx_rbx); 2161 case VM_REG_GUEST_RCX: 2162 return (®ctx->sctx_rcx); 2163 case VM_REG_GUEST_RDX: 2164 return (®ctx->sctx_rdx); 2165 case VM_REG_GUEST_RDI: 2166 return (®ctx->sctx_rdi); 2167 case VM_REG_GUEST_RSI: 2168 return (®ctx->sctx_rsi); 2169 case VM_REG_GUEST_RBP: 2170 return (®ctx->sctx_rbp); 2171 case VM_REG_GUEST_R8: 2172 return (®ctx->sctx_r8); 2173 case VM_REG_GUEST_R9: 2174 return (®ctx->sctx_r9); 2175 case VM_REG_GUEST_R10: 2176 return (®ctx->sctx_r10); 2177 case VM_REG_GUEST_R11: 2178 return (®ctx->sctx_r11); 2179 case VM_REG_GUEST_R12: 2180 return (®ctx->sctx_r12); 2181 case VM_REG_GUEST_R13: 2182 return (®ctx->sctx_r13); 2183 case VM_REG_GUEST_R14: 2184 return (®ctx->sctx_r14); 2185 case VM_REG_GUEST_R15: 2186 return (®ctx->sctx_r15); 2187 case VM_REG_GUEST_DR0: 2188 return (®ctx->sctx_dr0); 2189 case VM_REG_GUEST_DR1: 2190 return (®ctx->sctx_dr1); 2191 case VM_REG_GUEST_DR2: 2192 return (®ctx->sctx_dr2); 2193 case VM_REG_GUEST_DR3: 2194 return (®ctx->sctx_dr3); 2195 default: 2196 return (NULL); 2197 } 2198 } 2199 2200 static int 2201 svm_getreg(void *vcpui, int ident, uint64_t *val) 2202 { 2203 struct svm_vcpu *vcpu; 2204 register_t *reg; 2205 2206 vcpu = vcpui; 2207 2208 if (ident == VM_REG_GUEST_INTR_SHADOW) { 2209 return (svm_get_intr_shadow(vcpu, val)); 2210 } 2211 2212 if (vmcb_read(vcpu, ident, val) == 0) { 2213 return (0); 2214 } 2215 2216 reg = swctx_regptr(svm_get_guest_regctx(vcpu), ident); 2217 2218 if (reg != NULL) { 2219 *val = *reg; 2220 return (0); 2221 } 2222 2223 SVM_CTR1(vcpu, "svm_getreg: unknown register %#x", ident); 2224 return (EINVAL); 2225 } 2226 2227 static int 2228 svm_setreg(void *vcpui, int ident, uint64_t val) 2229 { 2230 struct svm_vcpu *vcpu; 2231 register_t *reg; 2232 2233 vcpu = vcpui; 2234 2235 if (ident == VM_REG_GUEST_INTR_SHADOW) { 2236 return (svm_modify_intr_shadow(vcpu, val)); 2237 } 2238 2239 /* Do not permit user write access to VMCB fields by offset. */ 2240 if (!VMCB_ACCESS_OK(ident)) { 2241 if (vmcb_write(vcpu, ident, val) == 0) { 2242 return (0); 2243 } 2244 } 2245 2246 reg = swctx_regptr(svm_get_guest_regctx(vcpu), ident); 2247 2248 if (reg != NULL) { 2249 *reg = val; 2250 return (0); 2251 } 2252 2253 if (ident == VM_REG_GUEST_ENTRY_INST_LENGTH) { 2254 /* Ignore. */ 2255 return (0); 2256 } 2257 2258 /* 2259 * XXX deal with CR3 and invalidate TLB entries tagged with the 2260 * vcpu's ASID. This needs to be treated differently depending on 2261 * whether 'running' is true/false. 2262 */ 2263 2264 SVM_CTR1(vcpu, "svm_setreg: unknown register %#x", ident); 2265 return (EINVAL); 2266 } 2267 2268 static int 2269 svm_getdesc(void *vcpui, int reg, struct seg_desc *desc) 2270 { 2271 return (vmcb_getdesc(vcpui, reg, desc)); 2272 } 2273 2274 static int 2275 svm_setdesc(void *vcpui, int reg, struct seg_desc *desc) 2276 { 2277 return (vmcb_setdesc(vcpui, reg, desc)); 2278 } 2279 2280 #ifdef BHYVE_SNAPSHOT 2281 static int 2282 svm_snapshot_reg(void *vcpui, int ident, struct vm_snapshot_meta *meta) 2283 { 2284 int ret; 2285 uint64_t val; 2286 2287 if (meta->op == VM_SNAPSHOT_SAVE) { 2288 ret = svm_getreg(vcpui, ident, &val); 2289 if (ret != 0) 2290 goto done; 2291 2292 SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done); 2293 } else if (meta->op == VM_SNAPSHOT_RESTORE) { 2294 SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done); 2295 2296 ret = svm_setreg(vcpui, ident, val); 2297 if (ret != 0) 2298 goto done; 2299 } else { 2300 ret = EINVAL; 2301 goto done; 2302 } 2303 2304 done: 2305 return (ret); 2306 } 2307 #endif 2308 2309 static int 2310 svm_setcap(void *vcpui, int type, int val) 2311 { 2312 struct svm_vcpu *vcpu; 2313 struct vlapic *vlapic; 2314 int error; 2315 2316 vcpu = vcpui; 2317 error = 0; 2318 2319 switch (type) { 2320 case VM_CAP_HALT_EXIT: 2321 svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT, 2322 VMCB_INTCPT_HLT, val); 2323 break; 2324 case VM_CAP_PAUSE_EXIT: 2325 svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT, 2326 VMCB_INTCPT_PAUSE, val); 2327 break; 2328 case VM_CAP_UNRESTRICTED_GUEST: 2329 /* Unrestricted guest execution cannot be disabled in SVM */ 2330 if (val == 0) 2331 error = EINVAL; 2332 break; 2333 case VM_CAP_IPI_EXIT: 2334 vlapic = vm_lapic(vcpu->vcpu); 2335 vlapic->ipi_exit = val; 2336 break; 2337 default: 2338 error = ENOENT; 2339 break; 2340 } 2341 return (error); 2342 } 2343 2344 static int 2345 svm_getcap(void *vcpui, int type, int *retval) 2346 { 2347 struct svm_vcpu *vcpu; 2348 struct vlapic *vlapic; 2349 int error; 2350 2351 vcpu = vcpui; 2352 error = 0; 2353 2354 switch (type) { 2355 case VM_CAP_HALT_EXIT: 2356 *retval = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT, 2357 VMCB_INTCPT_HLT); 2358 break; 2359 case VM_CAP_PAUSE_EXIT: 2360 *retval = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT, 2361 VMCB_INTCPT_PAUSE); 2362 break; 2363 case VM_CAP_UNRESTRICTED_GUEST: 2364 *retval = 1; /* unrestricted guest is always enabled */ 2365 break; 2366 case VM_CAP_IPI_EXIT: 2367 vlapic = vm_lapic(vcpu->vcpu); 2368 *retval = vlapic->ipi_exit; 2369 break; 2370 default: 2371 error = ENOENT; 2372 break; 2373 } 2374 return (error); 2375 } 2376 2377 static struct vmspace * 2378 svm_vmspace_alloc(vm_offset_t min, vm_offset_t max) 2379 { 2380 return (svm_npt_alloc(min, max)); 2381 } 2382 2383 static void 2384 svm_vmspace_free(struct vmspace *vmspace) 2385 { 2386 svm_npt_free(vmspace); 2387 } 2388 2389 static struct vlapic * 2390 svm_vlapic_init(void *vcpui) 2391 { 2392 struct svm_vcpu *vcpu; 2393 struct vlapic *vlapic; 2394 2395 vcpu = vcpui; 2396 vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO); 2397 vlapic->vm = vcpu->sc->vm; 2398 vlapic->vcpu = vcpu->vcpu; 2399 vlapic->vcpuid = vcpu->vcpuid; 2400 vlapic->apic_page = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_SVM_VLAPIC, 2401 M_WAITOK | M_ZERO); 2402 2403 vlapic_init(vlapic); 2404 2405 return (vlapic); 2406 } 2407 2408 static void 2409 svm_vlapic_cleanup(struct vlapic *vlapic) 2410 { 2411 2412 vlapic_cleanup(vlapic); 2413 free(vlapic->apic_page, M_SVM_VLAPIC); 2414 free(vlapic, M_SVM_VLAPIC); 2415 } 2416 2417 #ifdef BHYVE_SNAPSHOT 2418 static int 2419 svm_vcpu_snapshot(void *vcpui, struct vm_snapshot_meta *meta) 2420 { 2421 struct svm_vcpu *vcpu; 2422 int err, running, hostcpu; 2423 2424 vcpu = vcpui; 2425 err = 0; 2426 2427 running = vcpu_is_running(vcpu->vcpu, &hostcpu); 2428 if (running && hostcpu != curcpu) { 2429 printf("%s: %s%d is running", __func__, vm_name(vcpu->sc->vm), 2430 vcpu->vcpuid); 2431 return (EINVAL); 2432 } 2433 2434 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR0, meta); 2435 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR2, meta); 2436 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR3, meta); 2437 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR4, meta); 2438 2439 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DR6, meta); 2440 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DR7, meta); 2441 2442 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RAX, meta); 2443 2444 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RSP, meta); 2445 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RIP, meta); 2446 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RFLAGS, meta); 2447 2448 /* Guest segments */ 2449 /* ES */ 2450 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_ES, meta); 2451 err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_ES, meta); 2452 2453 /* CS */ 2454 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CS, meta); 2455 err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_CS, meta); 2456 2457 /* SS */ 2458 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_SS, meta); 2459 err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_SS, meta); 2460 2461 /* DS */ 2462 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DS, meta); 2463 err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_DS, meta); 2464 2465 /* FS */ 2466 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_FS, meta); 2467 err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_FS, meta); 2468 2469 /* GS */ 2470 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_GS, meta); 2471 err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_GS, meta); 2472 2473 /* TR */ 2474 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_TR, meta); 2475 err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_TR, meta); 2476 2477 /* LDTR */ 2478 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_LDTR, meta); 2479 err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_LDTR, meta); 2480 2481 /* EFER */ 2482 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_EFER, meta); 2483 2484 /* IDTR and GDTR */ 2485 err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_IDTR, meta); 2486 err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_GDTR, meta); 2487 2488 /* Specific AMD registers */ 2489 err += svm_snapshot_reg(vcpu, VM_REG_GUEST_INTR_SHADOW, meta); 2490 2491 err += vmcb_snapshot_any(vcpu, 2492 VMCB_ACCESS(VMCB_OFF_CR_INTERCEPT, 4), meta); 2493 err += vmcb_snapshot_any(vcpu, 2494 VMCB_ACCESS(VMCB_OFF_DR_INTERCEPT, 4), meta); 2495 err += vmcb_snapshot_any(vcpu, 2496 VMCB_ACCESS(VMCB_OFF_EXC_INTERCEPT, 4), meta); 2497 err += vmcb_snapshot_any(vcpu, 2498 VMCB_ACCESS(VMCB_OFF_INST1_INTERCEPT, 4), meta); 2499 err += vmcb_snapshot_any(vcpu, 2500 VMCB_ACCESS(VMCB_OFF_INST2_INTERCEPT, 4), meta); 2501 2502 err += vmcb_snapshot_any(vcpu, 2503 VMCB_ACCESS(VMCB_OFF_PAUSE_FILTHRESH, 2), meta); 2504 err += vmcb_snapshot_any(vcpu, 2505 VMCB_ACCESS(VMCB_OFF_PAUSE_FILCNT, 2), meta); 2506 2507 err += vmcb_snapshot_any(vcpu, 2508 VMCB_ACCESS(VMCB_OFF_ASID, 4), meta); 2509 2510 err += vmcb_snapshot_any(vcpu, 2511 VMCB_ACCESS(VMCB_OFF_TLB_CTRL, 4), meta); 2512 2513 err += vmcb_snapshot_any(vcpu, 2514 VMCB_ACCESS(VMCB_OFF_VIRQ, 8), meta); 2515 2516 err += vmcb_snapshot_any(vcpu, 2517 VMCB_ACCESS(VMCB_OFF_EXIT_REASON, 8), meta); 2518 err += vmcb_snapshot_any(vcpu, 2519 VMCB_ACCESS(VMCB_OFF_EXITINFO1, 8), meta); 2520 err += vmcb_snapshot_any(vcpu, 2521 VMCB_ACCESS(VMCB_OFF_EXITINFO2, 8), meta); 2522 err += vmcb_snapshot_any(vcpu, 2523 VMCB_ACCESS(VMCB_OFF_EXITINTINFO, 8), meta); 2524 2525 err += vmcb_snapshot_any(vcpu, 2526 VMCB_ACCESS(VMCB_OFF_NP_ENABLE, 1), meta); 2527 2528 err += vmcb_snapshot_any(vcpu, 2529 VMCB_ACCESS(VMCB_OFF_AVIC_BAR, 8), meta); 2530 err += vmcb_snapshot_any(vcpu, 2531 VMCB_ACCESS(VMCB_OFF_AVIC_PAGE, 8), meta); 2532 err += vmcb_snapshot_any(vcpu, 2533 VMCB_ACCESS(VMCB_OFF_AVIC_LT, 8), meta); 2534 err += vmcb_snapshot_any(vcpu, 2535 VMCB_ACCESS(VMCB_OFF_AVIC_PT, 8), meta); 2536 2537 err += vmcb_snapshot_any(vcpu, 2538 VMCB_ACCESS(VMCB_OFF_CPL, 1), meta); 2539 2540 err += vmcb_snapshot_any(vcpu, 2541 VMCB_ACCESS(VMCB_OFF_STAR, 8), meta); 2542 err += vmcb_snapshot_any(vcpu, 2543 VMCB_ACCESS(VMCB_OFF_LSTAR, 8), meta); 2544 err += vmcb_snapshot_any(vcpu, 2545 VMCB_ACCESS(VMCB_OFF_CSTAR, 8), meta); 2546 2547 err += vmcb_snapshot_any(vcpu, 2548 VMCB_ACCESS(VMCB_OFF_SFMASK, 8), meta); 2549 2550 err += vmcb_snapshot_any(vcpu, 2551 VMCB_ACCESS(VMCB_OFF_KERNELGBASE, 8), meta); 2552 2553 err += vmcb_snapshot_any(vcpu, 2554 VMCB_ACCESS(VMCB_OFF_SYSENTER_CS, 8), meta); 2555 err += vmcb_snapshot_any(vcpu, 2556 VMCB_ACCESS(VMCB_OFF_SYSENTER_ESP, 8), meta); 2557 err += vmcb_snapshot_any(vcpu, 2558 VMCB_ACCESS(VMCB_OFF_SYSENTER_EIP, 8), meta); 2559 2560 err += vmcb_snapshot_any(vcpu, 2561 VMCB_ACCESS(VMCB_OFF_GUEST_PAT, 8), meta); 2562 2563 err += vmcb_snapshot_any(vcpu, 2564 VMCB_ACCESS(VMCB_OFF_DBGCTL, 8), meta); 2565 err += vmcb_snapshot_any(vcpu, 2566 VMCB_ACCESS(VMCB_OFF_BR_FROM, 8), meta); 2567 err += vmcb_snapshot_any(vcpu, 2568 VMCB_ACCESS(VMCB_OFF_BR_TO, 8), meta); 2569 err += vmcb_snapshot_any(vcpu, 2570 VMCB_ACCESS(VMCB_OFF_INT_FROM, 8), meta); 2571 err += vmcb_snapshot_any(vcpu, 2572 VMCB_ACCESS(VMCB_OFF_INT_TO, 8), meta); 2573 if (err != 0) 2574 goto done; 2575 2576 /* Snapshot swctx for virtual cpu */ 2577 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbp, meta, err, done); 2578 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbx, meta, err, done); 2579 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rcx, meta, err, done); 2580 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdx, meta, err, done); 2581 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdi, meta, err, done); 2582 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rsi, meta, err, done); 2583 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r8, meta, err, done); 2584 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r9, meta, err, done); 2585 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r10, meta, err, done); 2586 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r11, meta, err, done); 2587 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r12, meta, err, done); 2588 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r13, meta, err, done); 2589 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r14, meta, err, done); 2590 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r15, meta, err, done); 2591 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr0, meta, err, done); 2592 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr1, meta, err, done); 2593 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr2, meta, err, done); 2594 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr3, meta, err, done); 2595 2596 /* Restore other svm_vcpu struct fields */ 2597 2598 /* Restore NEXTRIP field */ 2599 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, err, done); 2600 2601 /* Restore lastcpu field */ 2602 SNAPSHOT_VAR_OR_LEAVE(vcpu->lastcpu, meta, err, done); 2603 SNAPSHOT_VAR_OR_LEAVE(vcpu->dirty, meta, err, done); 2604 2605 /* Restore EPTGEN field - EPT is Extended Page Table */ 2606 SNAPSHOT_VAR_OR_LEAVE(vcpu->eptgen, meta, err, done); 2607 2608 SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.gen, meta, err, done); 2609 SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.num, meta, err, done); 2610 2611 /* Set all caches dirty */ 2612 if (meta->op == VM_SNAPSHOT_RESTORE) 2613 svm_set_dirty(vcpu, 0xffffffff); 2614 2615 done: 2616 return (err); 2617 } 2618 2619 static int 2620 svm_restore_tsc(void *vcpui, uint64_t offset) 2621 { 2622 struct svm_vcpu *vcpu = vcpui; 2623 2624 svm_set_tsc_offset(vcpu, offset); 2625 2626 return (0); 2627 } 2628 #endif 2629 2630 const struct vmm_ops vmm_ops_amd = { 2631 .modinit = svm_modinit, 2632 .modcleanup = svm_modcleanup, 2633 .modresume = svm_modresume, 2634 .init = svm_init, 2635 .run = svm_run, 2636 .cleanup = svm_cleanup, 2637 .vcpu_init = svm_vcpu_init, 2638 .vcpu_cleanup = svm_vcpu_cleanup, 2639 .getreg = svm_getreg, 2640 .setreg = svm_setreg, 2641 .getdesc = svm_getdesc, 2642 .setdesc = svm_setdesc, 2643 .getcap = svm_getcap, 2644 .setcap = svm_setcap, 2645 .vmspace_alloc = svm_vmspace_alloc, 2646 .vmspace_free = svm_vmspace_free, 2647 .vlapic_init = svm_vlapic_init, 2648 .vlapic_cleanup = svm_vlapic_cleanup, 2649 #ifdef BHYVE_SNAPSHOT 2650 .vcpu_snapshot = svm_vcpu_snapshot, 2651 .restore_tsc = svm_restore_tsc, 2652 #endif 2653 }; 2654