1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com) 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bhyve_snapshot.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/smp.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/pcpu.h> 40 #include <sys/proc.h> 41 #include <sys/reg.h> 42 #include <sys/smr.h> 43 #include <sys/sysctl.h> 44 45 #include <vm/vm.h> 46 #include <vm/pmap.h> 47 48 #include <machine/cpufunc.h> 49 #include <machine/psl.h> 50 #include <machine/md_var.h> 51 #include <machine/specialreg.h> 52 #include <machine/smp.h> 53 #include <machine/vmm.h> 54 #include <machine/vmm_dev.h> 55 #include <machine/vmm_instruction_emul.h> 56 #include <machine/vmm_snapshot.h> 57 58 #include "vmm_lapic.h" 59 #include "vmm_stat.h" 60 #include "vmm_ktr.h" 61 #include "vmm_ioport.h" 62 #include "vatpic.h" 63 #include "vlapic.h" 64 #include "vlapic_priv.h" 65 66 #include "x86.h" 67 #include "vmcb.h" 68 #include "svm.h" 69 #include "svm_softc.h" 70 #include "svm_msr.h" 71 #include "npt.h" 72 73 SYSCTL_DECL(_hw_vmm); 74 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 75 NULL); 76 77 /* 78 * SVM CPUID function 0x8000_000A, edx bit decoding. 79 */ 80 #define AMD_CPUID_SVM_NP BIT(0) /* Nested paging or RVI */ 81 #define AMD_CPUID_SVM_LBR BIT(1) /* Last branch virtualization */ 82 #define AMD_CPUID_SVM_SVML BIT(2) /* SVM lock */ 83 #define AMD_CPUID_SVM_NRIP_SAVE BIT(3) /* Next RIP is saved */ 84 #define AMD_CPUID_SVM_TSC_RATE BIT(4) /* TSC rate control. */ 85 #define AMD_CPUID_SVM_VMCB_CLEAN BIT(5) /* VMCB state caching */ 86 #define AMD_CPUID_SVM_FLUSH_BY_ASID BIT(6) /* Flush by ASID */ 87 #define AMD_CPUID_SVM_DECODE_ASSIST BIT(7) /* Decode assist */ 88 #define AMD_CPUID_SVM_PAUSE_INC BIT(10) /* Pause intercept filter. */ 89 #define AMD_CPUID_SVM_PAUSE_FTH BIT(12) /* Pause filter threshold */ 90 #define AMD_CPUID_SVM_AVIC BIT(13) /* AVIC present */ 91 92 #define VMCB_CACHE_DEFAULT (VMCB_CACHE_ASID | \ 93 VMCB_CACHE_IOPM | \ 94 VMCB_CACHE_I | \ 95 VMCB_CACHE_TPR | \ 96 VMCB_CACHE_CR2 | \ 97 VMCB_CACHE_CR | \ 98 VMCB_CACHE_DR | \ 99 VMCB_CACHE_DT | \ 100 VMCB_CACHE_SEG | \ 101 VMCB_CACHE_NP) 102 103 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT; 104 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean, 105 0, NULL); 106 107 static MALLOC_DEFINE(M_SVM, "svm", "svm"); 108 static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic"); 109 110 static uint32_t svm_feature = ~0U; /* AMD SVM features. */ 111 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0, 112 "SVM features advertised by CPUID.8000000AH:EDX"); 113 114 static int disable_npf_assist; 115 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN, 116 &disable_npf_assist, 0, NULL); 117 118 /* Maximum ASIDs supported by the processor */ 119 static uint32_t nasid; 120 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0, 121 "Number of ASIDs supported by this processor"); 122 123 /* Current ASID generation for each host cpu */ 124 static struct asid asid[MAXCPU]; 125 126 /* 127 * SVM host state saved area of size 4KB for each core. 128 */ 129 static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE); 130 131 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery"); 132 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry"); 133 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window"); 134 135 static int svm_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc); 136 static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val); 137 138 static __inline int 139 flush_by_asid(void) 140 { 141 142 return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID); 143 } 144 145 static __inline int 146 decode_assist(void) 147 { 148 149 return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST); 150 } 151 152 static void 153 svm_disable(void *arg __unused) 154 { 155 uint64_t efer; 156 157 efer = rdmsr(MSR_EFER); 158 efer &= ~EFER_SVM; 159 wrmsr(MSR_EFER, efer); 160 } 161 162 /* 163 * Disable SVM on all CPUs. 164 */ 165 static int 166 svm_modcleanup(void) 167 { 168 169 smp_rendezvous(NULL, svm_disable, NULL, NULL); 170 return (0); 171 } 172 173 /* 174 * Verify that all the features required by bhyve are available. 175 */ 176 static int 177 check_svm_features(void) 178 { 179 u_int regs[4]; 180 181 /* CPUID Fn8000_000A is for SVM */ 182 do_cpuid(0x8000000A, regs); 183 svm_feature &= regs[3]; 184 185 /* 186 * The number of ASIDs can be configured to be less than what is 187 * supported by the hardware but not more. 188 */ 189 if (nasid == 0 || nasid > regs[1]) 190 nasid = regs[1]; 191 KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid)); 192 193 /* bhyve requires the Nested Paging feature */ 194 if (!(svm_feature & AMD_CPUID_SVM_NP)) { 195 printf("SVM: Nested Paging feature not available.\n"); 196 return (ENXIO); 197 } 198 199 /* bhyve requires the NRIP Save feature */ 200 if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) { 201 printf("SVM: NRIP Save feature not available.\n"); 202 return (ENXIO); 203 } 204 205 return (0); 206 } 207 208 static void 209 svm_enable(void *arg __unused) 210 { 211 uint64_t efer; 212 213 efer = rdmsr(MSR_EFER); 214 efer |= EFER_SVM; 215 wrmsr(MSR_EFER, efer); 216 217 wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu])); 218 } 219 220 /* 221 * Return 1 if SVM is enabled on this processor and 0 otherwise. 222 */ 223 static int 224 svm_available(void) 225 { 226 uint64_t msr; 227 228 /* Section 15.4 Enabling SVM from APM2. */ 229 if ((amd_feature2 & AMDID2_SVM) == 0) { 230 printf("SVM: not available.\n"); 231 return (0); 232 } 233 234 msr = rdmsr(MSR_VM_CR); 235 if ((msr & VM_CR_SVMDIS) != 0) { 236 printf("SVM: disabled by BIOS.\n"); 237 return (0); 238 } 239 240 return (1); 241 } 242 243 static int 244 svm_modinit(int ipinum) 245 { 246 int error, cpu; 247 248 if (!svm_available()) 249 return (ENXIO); 250 251 error = check_svm_features(); 252 if (error) 253 return (error); 254 255 vmcb_clean &= VMCB_CACHE_DEFAULT; 256 257 for (cpu = 0; cpu < MAXCPU; cpu++) { 258 /* 259 * Initialize the host ASIDs to their "highest" valid values. 260 * 261 * The next ASID allocation will rollover both 'gen' and 'num' 262 * and start off the sequence at {1,1}. 263 */ 264 asid[cpu].gen = ~0UL; 265 asid[cpu].num = nasid - 1; 266 } 267 268 svm_msr_init(); 269 svm_npt_init(ipinum); 270 271 /* Enable SVM on all CPUs */ 272 smp_rendezvous(NULL, svm_enable, NULL, NULL); 273 274 return (0); 275 } 276 277 static void 278 svm_modresume(void) 279 { 280 281 svm_enable(NULL); 282 } 283 284 #ifdef BHYVE_SNAPSHOT 285 int 286 svm_set_tsc_offset(struct svm_softc *sc, int vcpu, uint64_t offset) 287 { 288 int error; 289 struct vmcb_ctrl *ctrl; 290 291 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 292 ctrl->tsc_offset = offset; 293 294 svm_set_dirty(sc, vcpu, VMCB_CACHE_I); 295 VCPU_CTR1(sc->vm, vcpu, "tsc offset changed to %#lx", offset); 296 297 error = vm_set_tsc_offset(sc->vm, vcpu, offset); 298 299 return (error); 300 } 301 #endif 302 303 /* Pentium compatible MSRs */ 304 #define MSR_PENTIUM_START 0 305 #define MSR_PENTIUM_END 0x1FFF 306 /* AMD 6th generation and Intel compatible MSRs */ 307 #define MSR_AMD6TH_START 0xC0000000UL 308 #define MSR_AMD6TH_END 0xC0001FFFUL 309 /* AMD 7th and 8th generation compatible MSRs */ 310 #define MSR_AMD7TH_START 0xC0010000UL 311 #define MSR_AMD7TH_END 0xC0011FFFUL 312 313 /* 314 * Get the index and bit position for a MSR in permission bitmap. 315 * Two bits are used for each MSR: lower bit for read and higher bit for write. 316 */ 317 static int 318 svm_msr_index(uint64_t msr, int *index, int *bit) 319 { 320 uint32_t base, off; 321 322 *index = -1; 323 *bit = (msr % 4) * 2; 324 base = 0; 325 326 if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) { 327 *index = msr / 4; 328 return (0); 329 } 330 331 base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1); 332 if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) { 333 off = (msr - MSR_AMD6TH_START); 334 *index = (off + base) / 4; 335 return (0); 336 } 337 338 base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1); 339 if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) { 340 off = (msr - MSR_AMD7TH_START); 341 *index = (off + base) / 4; 342 return (0); 343 } 344 345 return (EINVAL); 346 } 347 348 /* 349 * Allow vcpu to read or write the 'msr' without trapping into the hypervisor. 350 */ 351 static void 352 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write) 353 { 354 int index, bit, error; 355 356 error = svm_msr_index(msr, &index, &bit); 357 KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr)); 358 KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE, 359 ("%s: invalid index %d for msr %#lx", __func__, index, msr)); 360 KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d " 361 "msr %#lx", __func__, bit, msr)); 362 363 if (read) 364 perm_bitmap[index] &= ~(1UL << bit); 365 366 if (write) 367 perm_bitmap[index] &= ~(2UL << bit); 368 } 369 370 static void 371 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr) 372 { 373 374 svm_msr_perm(perm_bitmap, msr, true, true); 375 } 376 377 static void 378 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr) 379 { 380 381 svm_msr_perm(perm_bitmap, msr, true, false); 382 } 383 384 static __inline int 385 svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask) 386 { 387 struct vmcb_ctrl *ctrl; 388 389 KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx)); 390 391 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 392 return (ctrl->intercept[idx] & bitmask ? 1 : 0); 393 } 394 395 static __inline void 396 svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask, 397 int enabled) 398 { 399 struct vmcb_ctrl *ctrl; 400 uint32_t oldval; 401 402 KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx)); 403 404 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 405 oldval = ctrl->intercept[idx]; 406 407 if (enabled) 408 ctrl->intercept[idx] |= bitmask; 409 else 410 ctrl->intercept[idx] &= ~bitmask; 411 412 if (ctrl->intercept[idx] != oldval) { 413 svm_set_dirty(sc, vcpu, VMCB_CACHE_I); 414 VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified " 415 "from %#x to %#x", idx, oldval, ctrl->intercept[idx]); 416 } 417 } 418 419 static __inline void 420 svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask) 421 { 422 423 svm_set_intercept(sc, vcpu, off, bitmask, 0); 424 } 425 426 static __inline void 427 svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask) 428 { 429 430 svm_set_intercept(sc, vcpu, off, bitmask, 1); 431 } 432 433 static void 434 vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa, 435 uint64_t msrpm_base_pa, uint64_t np_pml4) 436 { 437 struct vmcb_ctrl *ctrl; 438 struct vmcb_state *state; 439 uint32_t mask; 440 int n; 441 442 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 443 state = svm_get_vmcb_state(sc, vcpu); 444 445 ctrl->iopm_base_pa = iopm_base_pa; 446 ctrl->msrpm_base_pa = msrpm_base_pa; 447 448 /* Enable nested paging */ 449 ctrl->np_enable = 1; 450 ctrl->n_cr3 = np_pml4; 451 452 /* 453 * Intercept accesses to the control registers that are not shadowed 454 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8. 455 */ 456 for (n = 0; n < 16; n++) { 457 mask = (BIT(n) << 16) | BIT(n); 458 if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8) 459 svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask); 460 else 461 svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask); 462 } 463 464 /* 465 * Intercept everything when tracing guest exceptions otherwise 466 * just intercept machine check exception. 467 */ 468 if (vcpu_trace_exceptions(sc->vm, vcpu)) { 469 for (n = 0; n < 32; n++) { 470 /* 471 * Skip unimplemented vectors in the exception bitmap. 472 */ 473 if (n == 2 || n == 9) { 474 continue; 475 } 476 svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n)); 477 } 478 } else { 479 svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC)); 480 } 481 482 /* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */ 483 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO); 484 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR); 485 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID); 486 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR); 487 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT); 488 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI); 489 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI); 490 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN); 491 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 492 VMCB_INTCPT_FERR_FREEZE); 493 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVD); 494 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVLPGA); 495 496 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR); 497 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT); 498 499 /* 500 * Intercept SVM instructions since AMD enables them in guests otherwise. 501 * Non-intercepted VMMCALL causes #UD, skip it. 502 */ 503 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMLOAD); 504 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMSAVE); 505 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_STGI); 506 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_CLGI); 507 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_SKINIT); 508 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_ICEBP); 509 510 /* 511 * From section "Canonicalization and Consistency Checks" in APMv2 512 * the VMRUN intercept bit must be set to pass the consistency check. 513 */ 514 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN); 515 516 /* 517 * The ASID will be set to a non-zero value just before VMRUN. 518 */ 519 ctrl->asid = 0; 520 521 /* 522 * Section 15.21.1, Interrupt Masking in EFLAGS 523 * Section 15.21.2, Virtualizing APIC.TPR 524 * 525 * This must be set for %rflag and %cr8 isolation of guest and host. 526 */ 527 ctrl->v_intr_masking = 1; 528 529 /* Enable Last Branch Record aka LBR for debugging */ 530 ctrl->lbr_virt_en = 1; 531 state->dbgctl = BIT(0); 532 533 /* EFER_SVM must always be set when the guest is executing */ 534 state->efer = EFER_SVM; 535 536 /* Set up the PAT to power-on state */ 537 state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK) | 538 PAT_VALUE(1, PAT_WRITE_THROUGH) | 539 PAT_VALUE(2, PAT_UNCACHED) | 540 PAT_VALUE(3, PAT_UNCACHEABLE) | 541 PAT_VALUE(4, PAT_WRITE_BACK) | 542 PAT_VALUE(5, PAT_WRITE_THROUGH) | 543 PAT_VALUE(6, PAT_UNCACHED) | 544 PAT_VALUE(7, PAT_UNCACHEABLE); 545 546 /* Set up DR6/7 to power-on state */ 547 state->dr6 = DBREG_DR6_RESERVED1; 548 state->dr7 = DBREG_DR7_RESERVED1; 549 } 550 551 /* 552 * Initialize a virtual machine. 553 */ 554 static void * 555 svm_init(struct vm *vm, pmap_t pmap) 556 { 557 struct svm_softc *svm_sc; 558 struct svm_vcpu *vcpu; 559 vm_paddr_t msrpm_pa, iopm_pa, pml4_pa; 560 int i; 561 uint16_t maxcpus; 562 563 svm_sc = malloc(sizeof (*svm_sc), M_SVM, M_WAITOK | M_ZERO); 564 if (((uintptr_t)svm_sc & PAGE_MASK) != 0) 565 panic("malloc of svm_softc not aligned on page boundary"); 566 567 svm_sc->msr_bitmap = contigmalloc(SVM_MSR_BITMAP_SIZE, M_SVM, 568 M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0); 569 if (svm_sc->msr_bitmap == NULL) 570 panic("contigmalloc of SVM MSR bitmap failed"); 571 svm_sc->iopm_bitmap = contigmalloc(SVM_IO_BITMAP_SIZE, M_SVM, 572 M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0); 573 if (svm_sc->iopm_bitmap == NULL) 574 panic("contigmalloc of SVM IO bitmap failed"); 575 576 svm_sc->vm = vm; 577 svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pmltop); 578 579 /* 580 * Intercept read and write accesses to all MSRs. 581 */ 582 memset(svm_sc->msr_bitmap, 0xFF, SVM_MSR_BITMAP_SIZE); 583 584 /* 585 * Access to the following MSRs is redirected to the VMCB when the 586 * guest is executing. Therefore it is safe to allow the guest to 587 * read/write these MSRs directly without hypervisor involvement. 588 */ 589 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE); 590 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE); 591 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE); 592 593 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR); 594 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR); 595 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR); 596 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK); 597 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR); 598 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR); 599 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR); 600 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT); 601 602 svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC); 603 604 /* 605 * Intercept writes to make sure that the EFER_SVM bit is not cleared. 606 */ 607 svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER); 608 609 /* Intercept access to all I/O ports. */ 610 memset(svm_sc->iopm_bitmap, 0xFF, SVM_IO_BITMAP_SIZE); 611 612 iopm_pa = vtophys(svm_sc->iopm_bitmap); 613 msrpm_pa = vtophys(svm_sc->msr_bitmap); 614 pml4_pa = svm_sc->nptp; 615 maxcpus = vm_get_maxcpus(svm_sc->vm); 616 for (i = 0; i < maxcpus; i++) { 617 vcpu = svm_get_vcpu(svm_sc, i); 618 vcpu->nextrip = ~0; 619 vcpu->lastcpu = NOCPU; 620 vcpu->vmcb_pa = vtophys(&vcpu->vmcb); 621 vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa); 622 svm_msr_guest_init(svm_sc, i); 623 } 624 return (svm_sc); 625 } 626 627 /* 628 * Collateral for a generic SVM VM-exit. 629 */ 630 static void 631 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2) 632 { 633 634 vme->exitcode = VM_EXITCODE_SVM; 635 vme->u.svm.exitcode = code; 636 vme->u.svm.exitinfo1 = info1; 637 vme->u.svm.exitinfo2 = info2; 638 } 639 640 static int 641 svm_cpl(struct vmcb_state *state) 642 { 643 644 /* 645 * From APMv2: 646 * "Retrieve the CPL from the CPL field in the VMCB, not 647 * from any segment DPL" 648 */ 649 return (state->cpl); 650 } 651 652 static enum vm_cpu_mode 653 svm_vcpu_mode(struct vmcb *vmcb) 654 { 655 struct vmcb_segment seg; 656 struct vmcb_state *state; 657 int error; 658 659 state = &vmcb->state; 660 661 if (state->efer & EFER_LMA) { 662 error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg); 663 KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__, 664 error)); 665 666 /* 667 * Section 4.8.1 for APM2, check if Code Segment has 668 * Long attribute set in descriptor. 669 */ 670 if (seg.attrib & VMCB_CS_ATTRIB_L) 671 return (CPU_MODE_64BIT); 672 else 673 return (CPU_MODE_COMPATIBILITY); 674 } else if (state->cr0 & CR0_PE) { 675 return (CPU_MODE_PROTECTED); 676 } else { 677 return (CPU_MODE_REAL); 678 } 679 } 680 681 static enum vm_paging_mode 682 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer) 683 { 684 685 if ((cr0 & CR0_PG) == 0) 686 return (PAGING_MODE_FLAT); 687 if ((cr4 & CR4_PAE) == 0) 688 return (PAGING_MODE_32); 689 if (efer & EFER_LME) 690 return (PAGING_MODE_64); 691 else 692 return (PAGING_MODE_PAE); 693 } 694 695 /* 696 * ins/outs utility routines 697 */ 698 static uint64_t 699 svm_inout_str_index(struct svm_regctx *regs, int in) 700 { 701 uint64_t val; 702 703 val = in ? regs->sctx_rdi : regs->sctx_rsi; 704 705 return (val); 706 } 707 708 static uint64_t 709 svm_inout_str_count(struct svm_regctx *regs, int rep) 710 { 711 uint64_t val; 712 713 val = rep ? regs->sctx_rcx : 1; 714 715 return (val); 716 } 717 718 static void 719 svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1, 720 int in, struct vm_inout_str *vis) 721 { 722 int error, s; 723 724 if (in) { 725 vis->seg_name = VM_REG_GUEST_ES; 726 } else { 727 /* The segment field has standard encoding */ 728 s = (info1 >> 10) & 0x7; 729 vis->seg_name = vm_segment_name(s); 730 } 731 732 error = svm_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc); 733 KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error)); 734 } 735 736 static int 737 svm_inout_str_addrsize(uint64_t info1) 738 { 739 uint32_t size; 740 741 size = (info1 >> 7) & 0x7; 742 switch (size) { 743 case 1: 744 return (2); /* 16 bit */ 745 case 2: 746 return (4); /* 32 bit */ 747 case 4: 748 return (8); /* 64 bit */ 749 default: 750 panic("%s: invalid size encoding %d", __func__, size); 751 } 752 } 753 754 static void 755 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging) 756 { 757 struct vmcb_state *state; 758 759 state = &vmcb->state; 760 paging->cr3 = state->cr3; 761 paging->cpl = svm_cpl(state); 762 paging->cpu_mode = svm_vcpu_mode(vmcb); 763 paging->paging_mode = svm_paging_mode(state->cr0, state->cr4, 764 state->efer); 765 } 766 767 #define UNHANDLED 0 768 769 /* 770 * Handle guest I/O intercept. 771 */ 772 static int 773 svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit) 774 { 775 struct vmcb_ctrl *ctrl; 776 struct vmcb_state *state; 777 struct svm_regctx *regs; 778 struct vm_inout_str *vis; 779 uint64_t info1; 780 int inout_string; 781 782 state = svm_get_vmcb_state(svm_sc, vcpu); 783 ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); 784 regs = svm_get_guest_regctx(svm_sc, vcpu); 785 786 info1 = ctrl->exitinfo1; 787 inout_string = info1 & BIT(2) ? 1 : 0; 788 789 /* 790 * The effective segment number in EXITINFO1[12:10] is populated 791 * only if the processor has the DecodeAssist capability. 792 * 793 * XXX this is not specified explicitly in APMv2 but can be verified 794 * empirically. 795 */ 796 if (inout_string && !decode_assist()) 797 return (UNHANDLED); 798 799 vmexit->exitcode = VM_EXITCODE_INOUT; 800 vmexit->u.inout.in = (info1 & BIT(0)) ? 1 : 0; 801 vmexit->u.inout.string = inout_string; 802 vmexit->u.inout.rep = (info1 & BIT(3)) ? 1 : 0; 803 vmexit->u.inout.bytes = (info1 >> 4) & 0x7; 804 vmexit->u.inout.port = (uint16_t)(info1 >> 16); 805 vmexit->u.inout.eax = (uint32_t)(state->rax); 806 807 if (inout_string) { 808 vmexit->exitcode = VM_EXITCODE_INOUT_STR; 809 vis = &vmexit->u.inout_str; 810 svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging); 811 vis->rflags = state->rflags; 812 vis->cr0 = state->cr0; 813 vis->index = svm_inout_str_index(regs, vmexit->u.inout.in); 814 vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep); 815 vis->addrsize = svm_inout_str_addrsize(info1); 816 svm_inout_str_seginfo(svm_sc, vcpu, info1, 817 vmexit->u.inout.in, vis); 818 } 819 820 return (UNHANDLED); 821 } 822 823 static int 824 npf_fault_type(uint64_t exitinfo1) 825 { 826 827 if (exitinfo1 & VMCB_NPF_INFO1_W) 828 return (VM_PROT_WRITE); 829 else if (exitinfo1 & VMCB_NPF_INFO1_ID) 830 return (VM_PROT_EXECUTE); 831 else 832 return (VM_PROT_READ); 833 } 834 835 static bool 836 svm_npf_emul_fault(uint64_t exitinfo1) 837 { 838 839 if (exitinfo1 & VMCB_NPF_INFO1_ID) { 840 return (false); 841 } 842 843 if (exitinfo1 & VMCB_NPF_INFO1_GPT) { 844 return (false); 845 } 846 847 if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) { 848 return (false); 849 } 850 851 return (true); 852 } 853 854 static void 855 svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit) 856 { 857 struct vm_guest_paging *paging; 858 struct vmcb_segment seg; 859 struct vmcb_ctrl *ctrl; 860 char *inst_bytes; 861 int error, inst_len; 862 863 ctrl = &vmcb->ctrl; 864 paging = &vmexit->u.inst_emul.paging; 865 866 vmexit->exitcode = VM_EXITCODE_INST_EMUL; 867 vmexit->u.inst_emul.gpa = gpa; 868 vmexit->u.inst_emul.gla = VIE_INVALID_GLA; 869 svm_paging_info(vmcb, paging); 870 871 error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg); 872 KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error)); 873 874 switch(paging->cpu_mode) { 875 case CPU_MODE_REAL: 876 vmexit->u.inst_emul.cs_base = seg.base; 877 vmexit->u.inst_emul.cs_d = 0; 878 break; 879 case CPU_MODE_PROTECTED: 880 case CPU_MODE_COMPATIBILITY: 881 vmexit->u.inst_emul.cs_base = seg.base; 882 883 /* 884 * Section 4.8.1 of APM2, Default Operand Size or D bit. 885 */ 886 vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ? 887 1 : 0; 888 break; 889 default: 890 vmexit->u.inst_emul.cs_base = 0; 891 vmexit->u.inst_emul.cs_d = 0; 892 break; 893 } 894 895 /* 896 * Copy the instruction bytes into 'vie' if available. 897 */ 898 if (decode_assist() && !disable_npf_assist) { 899 inst_len = ctrl->inst_len; 900 inst_bytes = ctrl->inst_bytes; 901 } else { 902 inst_len = 0; 903 inst_bytes = NULL; 904 } 905 vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len); 906 } 907 908 #ifdef KTR 909 static const char * 910 intrtype_to_str(int intr_type) 911 { 912 switch (intr_type) { 913 case VMCB_EVENTINJ_TYPE_INTR: 914 return ("hwintr"); 915 case VMCB_EVENTINJ_TYPE_NMI: 916 return ("nmi"); 917 case VMCB_EVENTINJ_TYPE_INTn: 918 return ("swintr"); 919 case VMCB_EVENTINJ_TYPE_EXCEPTION: 920 return ("exception"); 921 default: 922 panic("%s: unknown intr_type %d", __func__, intr_type); 923 } 924 } 925 #endif 926 927 /* 928 * Inject an event to vcpu as described in section 15.20, "Event injection". 929 */ 930 static void 931 svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector, 932 uint32_t error, bool ec_valid) 933 { 934 struct vmcb_ctrl *ctrl; 935 936 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 937 938 KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, 939 ("%s: event already pending %#lx", __func__, ctrl->eventinj)); 940 941 KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d", 942 __func__, vector)); 943 944 switch (intr_type) { 945 case VMCB_EVENTINJ_TYPE_INTR: 946 case VMCB_EVENTINJ_TYPE_NMI: 947 case VMCB_EVENTINJ_TYPE_INTn: 948 break; 949 case VMCB_EVENTINJ_TYPE_EXCEPTION: 950 if (vector >= 0 && vector <= 31 && vector != 2) 951 break; 952 /* FALLTHROUGH */ 953 default: 954 panic("%s: invalid intr_type/vector: %d/%d", __func__, 955 intr_type, vector); 956 } 957 ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID; 958 if (ec_valid) { 959 ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID; 960 ctrl->eventinj |= (uint64_t)error << 32; 961 VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x", 962 intrtype_to_str(intr_type), vector, error); 963 } else { 964 VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d", 965 intrtype_to_str(intr_type), vector); 966 } 967 } 968 969 static void 970 svm_update_virqinfo(struct svm_softc *sc, int vcpu) 971 { 972 struct vm *vm; 973 struct vlapic *vlapic; 974 struct vmcb_ctrl *ctrl; 975 976 vm = sc->vm; 977 vlapic = vm_lapic(vm, vcpu); 978 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 979 980 /* Update %cr8 in the emulated vlapic */ 981 vlapic_set_cr8(vlapic, ctrl->v_tpr); 982 983 /* Virtual interrupt injection is not used. */ 984 KASSERT(ctrl->v_intr_vector == 0, ("%s: invalid " 985 "v_intr_vector %d", __func__, ctrl->v_intr_vector)); 986 } 987 988 static void 989 svm_save_intinfo(struct svm_softc *svm_sc, int vcpu) 990 { 991 struct vmcb_ctrl *ctrl; 992 uint64_t intinfo; 993 994 ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); 995 intinfo = ctrl->exitintinfo; 996 if (!VMCB_EXITINTINFO_VALID(intinfo)) 997 return; 998 999 /* 1000 * From APMv2, Section "Intercepts during IDT interrupt delivery" 1001 * 1002 * If a #VMEXIT happened during event delivery then record the event 1003 * that was being delivered. 1004 */ 1005 VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n", 1006 intinfo, VMCB_EXITINTINFO_VECTOR(intinfo)); 1007 vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1); 1008 vm_exit_intinfo(svm_sc->vm, vcpu, intinfo); 1009 } 1010 1011 #ifdef INVARIANTS 1012 static __inline int 1013 vintr_intercept_enabled(struct svm_softc *sc, int vcpu) 1014 { 1015 1016 return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 1017 VMCB_INTCPT_VINTR)); 1018 } 1019 #endif 1020 1021 static __inline void 1022 enable_intr_window_exiting(struct svm_softc *sc, int vcpu) 1023 { 1024 struct vmcb_ctrl *ctrl; 1025 1026 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1027 1028 if (ctrl->v_irq && ctrl->v_intr_vector == 0) { 1029 KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__)); 1030 KASSERT(vintr_intercept_enabled(sc, vcpu), 1031 ("%s: vintr intercept should be enabled", __func__)); 1032 return; 1033 } 1034 1035 VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting"); 1036 ctrl->v_irq = 1; 1037 ctrl->v_ign_tpr = 1; 1038 ctrl->v_intr_vector = 0; 1039 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 1040 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR); 1041 } 1042 1043 static __inline void 1044 disable_intr_window_exiting(struct svm_softc *sc, int vcpu) 1045 { 1046 struct vmcb_ctrl *ctrl; 1047 1048 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1049 1050 if (!ctrl->v_irq && ctrl->v_intr_vector == 0) { 1051 KASSERT(!vintr_intercept_enabled(sc, vcpu), 1052 ("%s: vintr intercept should be disabled", __func__)); 1053 return; 1054 } 1055 1056 VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting"); 1057 ctrl->v_irq = 0; 1058 ctrl->v_intr_vector = 0; 1059 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 1060 svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR); 1061 } 1062 1063 static int 1064 svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val) 1065 { 1066 struct vmcb_ctrl *ctrl; 1067 int oldval, newval; 1068 1069 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1070 oldval = ctrl->intr_shadow; 1071 newval = val ? 1 : 0; 1072 if (newval != oldval) { 1073 ctrl->intr_shadow = newval; 1074 VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval); 1075 } 1076 return (0); 1077 } 1078 1079 static int 1080 svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val) 1081 { 1082 struct vmcb_ctrl *ctrl; 1083 1084 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1085 *val = ctrl->intr_shadow; 1086 return (0); 1087 } 1088 1089 /* 1090 * Once an NMI is injected it blocks delivery of further NMIs until the handler 1091 * executes an IRET. The IRET intercept is enabled when an NMI is injected to 1092 * to track when the vcpu is done handling the NMI. 1093 */ 1094 static int 1095 nmi_blocked(struct svm_softc *sc, int vcpu) 1096 { 1097 int blocked; 1098 1099 blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 1100 VMCB_INTCPT_IRET); 1101 return (blocked); 1102 } 1103 1104 static void 1105 enable_nmi_blocking(struct svm_softc *sc, int vcpu) 1106 { 1107 1108 KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked")); 1109 VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled"); 1110 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET); 1111 } 1112 1113 static void 1114 clear_nmi_blocking(struct svm_softc *sc, int vcpu) 1115 { 1116 int error; 1117 1118 KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked")); 1119 VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared"); 1120 /* 1121 * When the IRET intercept is cleared the vcpu will attempt to execute 1122 * the "iret" when it runs next. However, it is possible to inject 1123 * another NMI into the vcpu before the "iret" has actually executed. 1124 * 1125 * For e.g. if the "iret" encounters a #NPF when accessing the stack 1126 * it will trap back into the hypervisor. If an NMI is pending for 1127 * the vcpu it will be injected into the guest. 1128 * 1129 * XXX this needs to be fixed 1130 */ 1131 svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET); 1132 1133 /* 1134 * Set 'intr_shadow' to prevent an NMI from being injected on the 1135 * immediate VMRUN. 1136 */ 1137 error = svm_modify_intr_shadow(sc, vcpu, 1); 1138 KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error)); 1139 } 1140 1141 #define EFER_MBZ_BITS 0xFFFFFFFFFFFF0200UL 1142 1143 static int 1144 svm_write_efer(struct svm_softc *sc, int vcpu, uint64_t newval, bool *retu) 1145 { 1146 struct vm_exit *vme; 1147 struct vmcb_state *state; 1148 uint64_t changed, lma, oldval; 1149 int error; 1150 1151 state = svm_get_vmcb_state(sc, vcpu); 1152 1153 oldval = state->efer; 1154 VCPU_CTR2(sc->vm, vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval); 1155 1156 newval &= ~0xFE; /* clear the Read-As-Zero (RAZ) bits */ 1157 changed = oldval ^ newval; 1158 1159 if (newval & EFER_MBZ_BITS) 1160 goto gpf; 1161 1162 /* APMv2 Table 14-5 "Long-Mode Consistency Checks" */ 1163 if (changed & EFER_LME) { 1164 if (state->cr0 & CR0_PG) 1165 goto gpf; 1166 } 1167 1168 /* EFER.LMA = EFER.LME & CR0.PG */ 1169 if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0) 1170 lma = EFER_LMA; 1171 else 1172 lma = 0; 1173 1174 if ((newval & EFER_LMA) != lma) 1175 goto gpf; 1176 1177 if (newval & EFER_NXE) { 1178 if (!vm_cpuid_capability(sc->vm, vcpu, VCC_NO_EXECUTE)) 1179 goto gpf; 1180 } 1181 1182 /* 1183 * XXX bhyve does not enforce segment limits in 64-bit mode. Until 1184 * this is fixed flag guest attempt to set EFER_LMSLE as an error. 1185 */ 1186 if (newval & EFER_LMSLE) { 1187 vme = vm_exitinfo(sc->vm, vcpu); 1188 vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0); 1189 *retu = true; 1190 return (0); 1191 } 1192 1193 if (newval & EFER_FFXSR) { 1194 if (!vm_cpuid_capability(sc->vm, vcpu, VCC_FFXSR)) 1195 goto gpf; 1196 } 1197 1198 if (newval & EFER_TCE) { 1199 if (!vm_cpuid_capability(sc->vm, vcpu, VCC_TCE)) 1200 goto gpf; 1201 } 1202 1203 error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, newval); 1204 KASSERT(error == 0, ("%s: error %d updating efer", __func__, error)); 1205 return (0); 1206 gpf: 1207 vm_inject_gp(sc->vm, vcpu); 1208 return (0); 1209 } 1210 1211 static int 1212 emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val, 1213 bool *retu) 1214 { 1215 int error; 1216 1217 if (lapic_msr(num)) 1218 error = lapic_wrmsr(sc->vm, vcpu, num, val, retu); 1219 else if (num == MSR_EFER) 1220 error = svm_write_efer(sc, vcpu, val, retu); 1221 else 1222 error = svm_wrmsr(sc, vcpu, num, val, retu); 1223 1224 return (error); 1225 } 1226 1227 static int 1228 emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu) 1229 { 1230 struct vmcb_state *state; 1231 struct svm_regctx *ctx; 1232 uint64_t result; 1233 int error; 1234 1235 if (lapic_msr(num)) 1236 error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu); 1237 else 1238 error = svm_rdmsr(sc, vcpu, num, &result, retu); 1239 1240 if (error == 0) { 1241 state = svm_get_vmcb_state(sc, vcpu); 1242 ctx = svm_get_guest_regctx(sc, vcpu); 1243 state->rax = result & 0xffffffff; 1244 ctx->sctx_rdx = result >> 32; 1245 } 1246 1247 return (error); 1248 } 1249 1250 #ifdef KTR 1251 static const char * 1252 exit_reason_to_str(uint64_t reason) 1253 { 1254 int i; 1255 static char reasonbuf[32]; 1256 static const struct { 1257 int reason; 1258 const char *str; 1259 } reasons[] = { 1260 { .reason = VMCB_EXIT_INVALID, .str = "invalvmcb" }, 1261 { .reason = VMCB_EXIT_SHUTDOWN, .str = "shutdown" }, 1262 { .reason = VMCB_EXIT_NPF, .str = "nptfault" }, 1263 { .reason = VMCB_EXIT_PAUSE, .str = "pause" }, 1264 { .reason = VMCB_EXIT_HLT, .str = "hlt" }, 1265 { .reason = VMCB_EXIT_CPUID, .str = "cpuid" }, 1266 { .reason = VMCB_EXIT_IO, .str = "inout" }, 1267 { .reason = VMCB_EXIT_MC, .str = "mchk" }, 1268 { .reason = VMCB_EXIT_INTR, .str = "extintr" }, 1269 { .reason = VMCB_EXIT_NMI, .str = "nmi" }, 1270 { .reason = VMCB_EXIT_VINTR, .str = "vintr" }, 1271 { .reason = VMCB_EXIT_MSR, .str = "msr" }, 1272 { .reason = VMCB_EXIT_IRET, .str = "iret" }, 1273 { .reason = VMCB_EXIT_MONITOR, .str = "monitor" }, 1274 { .reason = VMCB_EXIT_MWAIT, .str = "mwait" }, 1275 { .reason = VMCB_EXIT_VMRUN, .str = "vmrun" }, 1276 { .reason = VMCB_EXIT_VMMCALL, .str = "vmmcall" }, 1277 { .reason = VMCB_EXIT_VMLOAD, .str = "vmload" }, 1278 { .reason = VMCB_EXIT_VMSAVE, .str = "vmsave" }, 1279 { .reason = VMCB_EXIT_STGI, .str = "stgi" }, 1280 { .reason = VMCB_EXIT_CLGI, .str = "clgi" }, 1281 { .reason = VMCB_EXIT_SKINIT, .str = "skinit" }, 1282 { .reason = VMCB_EXIT_ICEBP, .str = "icebp" }, 1283 { .reason = VMCB_EXIT_INVD, .str = "invd" }, 1284 { .reason = VMCB_EXIT_INVLPGA, .str = "invlpga" }, 1285 }; 1286 1287 for (i = 0; i < nitems(reasons); i++) { 1288 if (reasons[i].reason == reason) 1289 return (reasons[i].str); 1290 } 1291 snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason); 1292 return (reasonbuf); 1293 } 1294 #endif /* KTR */ 1295 1296 /* 1297 * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs 1298 * that are due to instruction intercepts as well as MSR and IOIO intercepts 1299 * and exceptions caused by INT3, INTO and BOUND instructions. 1300 * 1301 * Return 1 if the nRIP is valid and 0 otherwise. 1302 */ 1303 static int 1304 nrip_valid(uint64_t exitcode) 1305 { 1306 switch (exitcode) { 1307 case 0x00 ... 0x0F: /* read of CR0 through CR15 */ 1308 case 0x10 ... 0x1F: /* write of CR0 through CR15 */ 1309 case 0x20 ... 0x2F: /* read of DR0 through DR15 */ 1310 case 0x30 ... 0x3F: /* write of DR0 through DR15 */ 1311 case 0x43: /* INT3 */ 1312 case 0x44: /* INTO */ 1313 case 0x45: /* BOUND */ 1314 case 0x65 ... 0x7C: /* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */ 1315 case 0x80 ... 0x8D: /* VMEXIT_VMRUN ... VMEXIT_XSETBV */ 1316 return (1); 1317 default: 1318 return (0); 1319 } 1320 } 1321 1322 static int 1323 svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit) 1324 { 1325 struct vmcb *vmcb; 1326 struct vmcb_state *state; 1327 struct vmcb_ctrl *ctrl; 1328 struct svm_regctx *ctx; 1329 uint64_t code, info1, info2, val; 1330 uint32_t eax, ecx, edx; 1331 int error, errcode_valid, handled, idtvec, reflect; 1332 bool retu; 1333 1334 ctx = svm_get_guest_regctx(svm_sc, vcpu); 1335 vmcb = svm_get_vmcb(svm_sc, vcpu); 1336 state = &vmcb->state; 1337 ctrl = &vmcb->ctrl; 1338 1339 handled = 0; 1340 code = ctrl->exitcode; 1341 info1 = ctrl->exitinfo1; 1342 info2 = ctrl->exitinfo2; 1343 1344 vmexit->exitcode = VM_EXITCODE_BOGUS; 1345 vmexit->rip = state->rip; 1346 vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0; 1347 1348 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1); 1349 1350 /* 1351 * #VMEXIT(INVALID) needs to be handled early because the VMCB is 1352 * in an inconsistent state and can trigger assertions that would 1353 * never happen otherwise. 1354 */ 1355 if (code == VMCB_EXIT_INVALID) { 1356 vm_exit_svm(vmexit, code, info1, info2); 1357 return (0); 1358 } 1359 1360 KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event " 1361 "injection valid bit is set %#lx", __func__, ctrl->eventinj)); 1362 1363 KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15, 1364 ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)", 1365 vmexit->inst_length, code, info1, info2)); 1366 1367 svm_update_virqinfo(svm_sc, vcpu); 1368 svm_save_intinfo(svm_sc, vcpu); 1369 1370 switch (code) { 1371 case VMCB_EXIT_IRET: 1372 /* 1373 * Restart execution at "iret" but with the intercept cleared. 1374 */ 1375 vmexit->inst_length = 0; 1376 clear_nmi_blocking(svm_sc, vcpu); 1377 handled = 1; 1378 break; 1379 case VMCB_EXIT_VINTR: /* interrupt window exiting */ 1380 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1); 1381 handled = 1; 1382 break; 1383 case VMCB_EXIT_INTR: /* external interrupt */ 1384 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1); 1385 handled = 1; 1386 break; 1387 case VMCB_EXIT_NMI: /* external NMI */ 1388 handled = 1; 1389 break; 1390 case 0x40 ... 0x5F: 1391 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1); 1392 reflect = 1; 1393 idtvec = code - 0x40; 1394 switch (idtvec) { 1395 case IDT_MC: 1396 /* 1397 * Call the machine check handler by hand. Also don't 1398 * reflect the machine check back into the guest. 1399 */ 1400 reflect = 0; 1401 VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler"); 1402 __asm __volatile("int $18"); 1403 break; 1404 case IDT_PF: 1405 error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2, 1406 info2); 1407 KASSERT(error == 0, ("%s: error %d updating cr2", 1408 __func__, error)); 1409 /* fallthru */ 1410 case IDT_NP: 1411 case IDT_SS: 1412 case IDT_GP: 1413 case IDT_AC: 1414 case IDT_TS: 1415 errcode_valid = 1; 1416 break; 1417 1418 case IDT_DF: 1419 errcode_valid = 1; 1420 info1 = 0; 1421 break; 1422 1423 case IDT_BP: 1424 case IDT_OF: 1425 case IDT_BR: 1426 /* 1427 * The 'nrip' field is populated for INT3, INTO and 1428 * BOUND exceptions and this also implies that 1429 * 'inst_length' is non-zero. 1430 * 1431 * Reset 'inst_length' to zero so the guest %rip at 1432 * event injection is identical to what it was when 1433 * the exception originally happened. 1434 */ 1435 VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d " 1436 "to zero before injecting exception %d", 1437 vmexit->inst_length, idtvec); 1438 vmexit->inst_length = 0; 1439 /* fallthru */ 1440 default: 1441 errcode_valid = 0; 1442 info1 = 0; 1443 break; 1444 } 1445 KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) " 1446 "when reflecting exception %d into guest", 1447 vmexit->inst_length, idtvec)); 1448 1449 if (reflect) { 1450 /* Reflect the exception back into the guest */ 1451 VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception " 1452 "%d/%#x into the guest", idtvec, (int)info1); 1453 error = vm_inject_exception(svm_sc->vm, vcpu, idtvec, 1454 errcode_valid, info1, 0); 1455 KASSERT(error == 0, ("%s: vm_inject_exception error %d", 1456 __func__, error)); 1457 } 1458 handled = 1; 1459 break; 1460 case VMCB_EXIT_MSR: /* MSR access. */ 1461 eax = state->rax; 1462 ecx = ctx->sctx_rcx; 1463 edx = ctx->sctx_rdx; 1464 retu = false; 1465 1466 if (info1) { 1467 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1); 1468 val = (uint64_t)edx << 32 | eax; 1469 VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx", 1470 ecx, val); 1471 if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) { 1472 vmexit->exitcode = VM_EXITCODE_WRMSR; 1473 vmexit->u.msr.code = ecx; 1474 vmexit->u.msr.wval = val; 1475 } else if (!retu) { 1476 handled = 1; 1477 } else { 1478 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 1479 ("emulate_wrmsr retu with bogus exitcode")); 1480 } 1481 } else { 1482 VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx); 1483 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1); 1484 if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) { 1485 vmexit->exitcode = VM_EXITCODE_RDMSR; 1486 vmexit->u.msr.code = ecx; 1487 } else if (!retu) { 1488 handled = 1; 1489 } else { 1490 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 1491 ("emulate_rdmsr retu with bogus exitcode")); 1492 } 1493 } 1494 break; 1495 case VMCB_EXIT_IO: 1496 handled = svm_handle_io(svm_sc, vcpu, vmexit); 1497 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1); 1498 break; 1499 case VMCB_EXIT_CPUID: 1500 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1); 1501 handled = x86_emulate_cpuid(svm_sc->vm, vcpu, &state->rax, 1502 &ctx->sctx_rbx, &ctx->sctx_rcx, &ctx->sctx_rdx); 1503 break; 1504 case VMCB_EXIT_HLT: 1505 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1); 1506 vmexit->exitcode = VM_EXITCODE_HLT; 1507 vmexit->u.hlt.rflags = state->rflags; 1508 break; 1509 case VMCB_EXIT_PAUSE: 1510 vmexit->exitcode = VM_EXITCODE_PAUSE; 1511 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1); 1512 break; 1513 case VMCB_EXIT_NPF: 1514 /* EXITINFO2 contains the faulting guest physical address */ 1515 if (info1 & VMCB_NPF_INFO1_RSV) { 1516 VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with " 1517 "reserved bits set: info1(%#lx) info2(%#lx)", 1518 info1, info2); 1519 } else if (vm_mem_allocated(svm_sc->vm, vcpu, info2)) { 1520 vmexit->exitcode = VM_EXITCODE_PAGING; 1521 vmexit->u.paging.gpa = info2; 1522 vmexit->u.paging.fault_type = npf_fault_type(info1); 1523 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1); 1524 VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault " 1525 "on gpa %#lx/%#lx at rip %#lx", 1526 info2, info1, state->rip); 1527 } else if (svm_npf_emul_fault(info1)) { 1528 svm_handle_inst_emul(vmcb, info2, vmexit); 1529 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1); 1530 VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault " 1531 "for gpa %#lx/%#lx at rip %#lx", 1532 info2, info1, state->rip); 1533 } 1534 break; 1535 case VMCB_EXIT_MONITOR: 1536 vmexit->exitcode = VM_EXITCODE_MONITOR; 1537 break; 1538 case VMCB_EXIT_MWAIT: 1539 vmexit->exitcode = VM_EXITCODE_MWAIT; 1540 break; 1541 case VMCB_EXIT_SHUTDOWN: 1542 case VMCB_EXIT_VMRUN: 1543 case VMCB_EXIT_VMMCALL: 1544 case VMCB_EXIT_VMLOAD: 1545 case VMCB_EXIT_VMSAVE: 1546 case VMCB_EXIT_STGI: 1547 case VMCB_EXIT_CLGI: 1548 case VMCB_EXIT_SKINIT: 1549 case VMCB_EXIT_ICEBP: 1550 case VMCB_EXIT_INVD: 1551 case VMCB_EXIT_INVLPGA: 1552 vm_inject_ud(svm_sc->vm, vcpu); 1553 handled = 1; 1554 break; 1555 default: 1556 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1); 1557 break; 1558 } 1559 1560 VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d", 1561 handled ? "handled" : "unhandled", exit_reason_to_str(code), 1562 vmexit->rip, vmexit->inst_length); 1563 1564 if (handled) { 1565 vmexit->rip += vmexit->inst_length; 1566 vmexit->inst_length = 0; 1567 state->rip = vmexit->rip; 1568 } else { 1569 if (vmexit->exitcode == VM_EXITCODE_BOGUS) { 1570 /* 1571 * If this VM exit was not claimed by anybody then 1572 * treat it as a generic SVM exit. 1573 */ 1574 vm_exit_svm(vmexit, code, info1, info2); 1575 } else { 1576 /* 1577 * The exitcode and collateral have been populated. 1578 * The VM exit will be processed further in userland. 1579 */ 1580 } 1581 } 1582 return (handled); 1583 } 1584 1585 static void 1586 svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu) 1587 { 1588 uint64_t intinfo; 1589 1590 if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo)) 1591 return; 1592 1593 KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not " 1594 "valid: %#lx", __func__, intinfo)); 1595 1596 svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo), 1597 VMCB_EXITINTINFO_VECTOR(intinfo), 1598 VMCB_EXITINTINFO_EC(intinfo), 1599 VMCB_EXITINTINFO_EC_VALID(intinfo)); 1600 vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1); 1601 VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo); 1602 } 1603 1604 /* 1605 * Inject event to virtual cpu. 1606 */ 1607 static void 1608 svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic) 1609 { 1610 struct vmcb_ctrl *ctrl; 1611 struct vmcb_state *state; 1612 struct svm_vcpu *vcpustate; 1613 uint8_t v_tpr; 1614 int vector, need_intr_window; 1615 int extint_pending; 1616 1617 state = svm_get_vmcb_state(sc, vcpu); 1618 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1619 vcpustate = svm_get_vcpu(sc, vcpu); 1620 1621 need_intr_window = 0; 1622 1623 if (vcpustate->nextrip != state->rip) { 1624 ctrl->intr_shadow = 0; 1625 VCPU_CTR2(sc->vm, vcpu, "Guest interrupt blocking " 1626 "cleared due to rip change: %#lx/%#lx", 1627 vcpustate->nextrip, state->rip); 1628 } 1629 1630 /* 1631 * Inject pending events or exceptions for this vcpu. 1632 * 1633 * An event might be pending because the previous #VMEXIT happened 1634 * during event delivery (i.e. ctrl->exitintinfo). 1635 * 1636 * An event might also be pending because an exception was injected 1637 * by the hypervisor (e.g. #PF during instruction emulation). 1638 */ 1639 svm_inj_intinfo(sc, vcpu); 1640 1641 /* NMI event has priority over interrupts. */ 1642 if (vm_nmi_pending(sc->vm, vcpu)) { 1643 if (nmi_blocked(sc, vcpu)) { 1644 /* 1645 * Can't inject another NMI if the guest has not 1646 * yet executed an "iret" after the last NMI. 1647 */ 1648 VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due " 1649 "to NMI-blocking"); 1650 } else if (ctrl->intr_shadow) { 1651 /* 1652 * Can't inject an NMI if the vcpu is in an intr_shadow. 1653 */ 1654 VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to " 1655 "interrupt shadow"); 1656 need_intr_window = 1; 1657 goto done; 1658 } else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) { 1659 /* 1660 * If there is already an exception/interrupt pending 1661 * then defer the NMI until after that. 1662 */ 1663 VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to " 1664 "eventinj %#lx", ctrl->eventinj); 1665 1666 /* 1667 * Use self-IPI to trigger a VM-exit as soon as 1668 * possible after the event injection is completed. 1669 * 1670 * This works only if the external interrupt exiting 1671 * is at a lower priority than the event injection. 1672 * 1673 * Although not explicitly specified in APMv2 the 1674 * relative priorities were verified empirically. 1675 */ 1676 ipi_cpu(curcpu, IPI_AST); /* XXX vmm_ipinum? */ 1677 } else { 1678 vm_nmi_clear(sc->vm, vcpu); 1679 1680 /* Inject NMI, vector number is not used */ 1681 svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI, 1682 IDT_NMI, 0, false); 1683 1684 /* virtual NMI blocking is now in effect */ 1685 enable_nmi_blocking(sc, vcpu); 1686 1687 VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI"); 1688 } 1689 } 1690 1691 extint_pending = vm_extint_pending(sc->vm, vcpu); 1692 if (!extint_pending) { 1693 if (!vlapic_pending_intr(vlapic, &vector)) 1694 goto done; 1695 KASSERT(vector >= 16 && vector <= 255, 1696 ("invalid vector %d from local APIC", vector)); 1697 } else { 1698 /* Ask the legacy pic for a vector to inject */ 1699 vatpic_pending_intr(sc->vm, &vector); 1700 KASSERT(vector >= 0 && vector <= 255, 1701 ("invalid vector %d from INTR", vector)); 1702 } 1703 1704 /* 1705 * If the guest has disabled interrupts or is in an interrupt shadow 1706 * then we cannot inject the pending interrupt. 1707 */ 1708 if ((state->rflags & PSL_I) == 0) { 1709 VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to " 1710 "rflags %#lx", vector, state->rflags); 1711 need_intr_window = 1; 1712 goto done; 1713 } 1714 1715 if (ctrl->intr_shadow) { 1716 VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to " 1717 "interrupt shadow", vector); 1718 need_intr_window = 1; 1719 goto done; 1720 } 1721 1722 if (ctrl->eventinj & VMCB_EVENTINJ_VALID) { 1723 VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to " 1724 "eventinj %#lx", vector, ctrl->eventinj); 1725 need_intr_window = 1; 1726 goto done; 1727 } 1728 1729 svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false); 1730 1731 if (!extint_pending) { 1732 vlapic_intr_accepted(vlapic, vector); 1733 } else { 1734 vm_extint_clear(sc->vm, vcpu); 1735 vatpic_intr_accepted(sc->vm, vector); 1736 } 1737 1738 /* 1739 * Force a VM-exit as soon as the vcpu is ready to accept another 1740 * interrupt. This is done because the PIC might have another vector 1741 * that it wants to inject. Also, if the APIC has a pending interrupt 1742 * that was preempted by the ExtInt then it allows us to inject the 1743 * APIC vector as soon as possible. 1744 */ 1745 need_intr_window = 1; 1746 done: 1747 /* 1748 * The guest can modify the TPR by writing to %CR8. In guest mode 1749 * the processor reflects this write to V_TPR without hypervisor 1750 * intervention. 1751 * 1752 * The guest can also modify the TPR by writing to it via the memory 1753 * mapped APIC page. In this case, the write will be emulated by the 1754 * hypervisor. For this reason V_TPR must be updated before every 1755 * VMRUN. 1756 */ 1757 v_tpr = vlapic_get_cr8(vlapic); 1758 KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr)); 1759 if (ctrl->v_tpr != v_tpr) { 1760 VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x", 1761 ctrl->v_tpr, v_tpr); 1762 ctrl->v_tpr = v_tpr; 1763 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 1764 } 1765 1766 if (need_intr_window) { 1767 /* 1768 * We use V_IRQ in conjunction with the VINTR intercept to 1769 * trap into the hypervisor as soon as a virtual interrupt 1770 * can be delivered. 1771 * 1772 * Since injected events are not subject to intercept checks 1773 * we need to ensure that the V_IRQ is not actually going to 1774 * be delivered on VM entry. The KASSERT below enforces this. 1775 */ 1776 KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 || 1777 (state->rflags & PSL_I) == 0 || ctrl->intr_shadow, 1778 ("Bogus intr_window_exiting: eventinj (%#lx), " 1779 "intr_shadow (%u), rflags (%#lx)", 1780 ctrl->eventinj, ctrl->intr_shadow, state->rflags)); 1781 enable_intr_window_exiting(sc, vcpu); 1782 } else { 1783 disable_intr_window_exiting(sc, vcpu); 1784 } 1785 } 1786 1787 static __inline void 1788 restore_host_tss(void) 1789 { 1790 struct system_segment_descriptor *tss_sd; 1791 1792 /* 1793 * The TSS descriptor was in use prior to launching the guest so it 1794 * has been marked busy. 1795 * 1796 * 'ltr' requires the descriptor to be marked available so change the 1797 * type to "64-bit available TSS". 1798 */ 1799 tss_sd = PCPU_GET(tss); 1800 tss_sd->sd_type = SDT_SYSTSS; 1801 ltr(GSEL(GPROC0_SEL, SEL_KPL)); 1802 } 1803 1804 static void 1805 svm_pmap_activate(struct svm_softc *sc, int vcpuid, pmap_t pmap) 1806 { 1807 struct svm_vcpu *vcpustate; 1808 struct vmcb_ctrl *ctrl; 1809 long eptgen; 1810 int cpu; 1811 bool alloc_asid; 1812 1813 cpu = curcpu; 1814 CPU_SET_ATOMIC(cpu, &pmap->pm_active); 1815 smr_enter(pmap->pm_eptsmr); 1816 1817 vcpustate = svm_get_vcpu(sc, vcpuid); 1818 ctrl = svm_get_vmcb_ctrl(sc, vcpuid); 1819 1820 /* 1821 * The TLB entries associated with the vcpu's ASID are not valid 1822 * if either of the following conditions is true: 1823 * 1824 * 1. The vcpu's ASID generation is different than the host cpu's 1825 * ASID generation. This happens when the vcpu migrates to a new 1826 * host cpu. It can also happen when the number of vcpus executing 1827 * on a host cpu is greater than the number of ASIDs available. 1828 * 1829 * 2. The pmap generation number is different than the value cached in 1830 * the 'vcpustate'. This happens when the host invalidates pages 1831 * belonging to the guest. 1832 * 1833 * asidgen eptgen Action 1834 * mismatch mismatch 1835 * 0 0 (a) 1836 * 0 1 (b1) or (b2) 1837 * 1 0 (c) 1838 * 1 1 (d) 1839 * 1840 * (a) There is no mismatch in eptgen or ASID generation and therefore 1841 * no further action is needed. 1842 * 1843 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is 1844 * retained and the TLB entries associated with this ASID 1845 * are flushed by VMRUN. 1846 * 1847 * (b2) If the cpu does not support FlushByAsid then a new ASID is 1848 * allocated. 1849 * 1850 * (c) A new ASID is allocated. 1851 * 1852 * (d) A new ASID is allocated. 1853 */ 1854 1855 alloc_asid = false; 1856 eptgen = atomic_load_long(&pmap->pm_eptgen); 1857 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING; 1858 1859 if (vcpustate->asid.gen != asid[cpu].gen) { 1860 alloc_asid = true; /* (c) and (d) */ 1861 } else if (vcpustate->eptgen != eptgen) { 1862 if (flush_by_asid()) 1863 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; /* (b1) */ 1864 else 1865 alloc_asid = true; /* (b2) */ 1866 } else { 1867 /* 1868 * This is the common case (a). 1869 */ 1870 KASSERT(!alloc_asid, ("ASID allocation not necessary")); 1871 KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING, 1872 ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl)); 1873 } 1874 1875 if (alloc_asid) { 1876 if (++asid[cpu].num >= nasid) { 1877 asid[cpu].num = 1; 1878 if (++asid[cpu].gen == 0) 1879 asid[cpu].gen = 1; 1880 /* 1881 * If this cpu does not support "flush-by-asid" 1882 * then flush the entire TLB on a generation 1883 * bump. Subsequent ASID allocation in this 1884 * generation can be done without a TLB flush. 1885 */ 1886 if (!flush_by_asid()) 1887 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL; 1888 } 1889 vcpustate->asid.gen = asid[cpu].gen; 1890 vcpustate->asid.num = asid[cpu].num; 1891 1892 ctrl->asid = vcpustate->asid.num; 1893 svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID); 1894 /* 1895 * If this cpu supports "flush-by-asid" then the TLB 1896 * was not flushed after the generation bump. The TLB 1897 * is flushed selectively after every new ASID allocation. 1898 */ 1899 if (flush_by_asid()) 1900 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; 1901 } 1902 vcpustate->eptgen = eptgen; 1903 1904 KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero")); 1905 KASSERT(ctrl->asid == vcpustate->asid.num, 1906 ("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num)); 1907 } 1908 1909 static void 1910 svm_pmap_deactivate(pmap_t pmap) 1911 { 1912 smr_exit(pmap->pm_eptsmr); 1913 CPU_CLR_ATOMIC(curcpu, &pmap->pm_active); 1914 } 1915 1916 static __inline void 1917 disable_gintr(void) 1918 { 1919 1920 __asm __volatile("clgi"); 1921 } 1922 1923 static __inline void 1924 enable_gintr(void) 1925 { 1926 1927 __asm __volatile("stgi"); 1928 } 1929 1930 static __inline void 1931 svm_dr_enter_guest(struct svm_regctx *gctx) 1932 { 1933 1934 /* Save host control debug registers. */ 1935 gctx->host_dr7 = rdr7(); 1936 gctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR); 1937 1938 /* 1939 * Disable debugging in DR7 and DEBUGCTL to avoid triggering 1940 * exceptions in the host based on the guest DRx values. The 1941 * guest DR6, DR7, and DEBUGCTL are saved/restored in the 1942 * VMCB. 1943 */ 1944 load_dr7(0); 1945 wrmsr(MSR_DEBUGCTLMSR, 0); 1946 1947 /* Save host debug registers. */ 1948 gctx->host_dr0 = rdr0(); 1949 gctx->host_dr1 = rdr1(); 1950 gctx->host_dr2 = rdr2(); 1951 gctx->host_dr3 = rdr3(); 1952 gctx->host_dr6 = rdr6(); 1953 1954 /* Restore guest debug registers. */ 1955 load_dr0(gctx->sctx_dr0); 1956 load_dr1(gctx->sctx_dr1); 1957 load_dr2(gctx->sctx_dr2); 1958 load_dr3(gctx->sctx_dr3); 1959 } 1960 1961 static __inline void 1962 svm_dr_leave_guest(struct svm_regctx *gctx) 1963 { 1964 1965 /* Save guest debug registers. */ 1966 gctx->sctx_dr0 = rdr0(); 1967 gctx->sctx_dr1 = rdr1(); 1968 gctx->sctx_dr2 = rdr2(); 1969 gctx->sctx_dr3 = rdr3(); 1970 1971 /* 1972 * Restore host debug registers. Restore DR7 and DEBUGCTL 1973 * last. 1974 */ 1975 load_dr0(gctx->host_dr0); 1976 load_dr1(gctx->host_dr1); 1977 load_dr2(gctx->host_dr2); 1978 load_dr3(gctx->host_dr3); 1979 load_dr6(gctx->host_dr6); 1980 wrmsr(MSR_DEBUGCTLMSR, gctx->host_debugctl); 1981 load_dr7(gctx->host_dr7); 1982 } 1983 1984 /* 1985 * Start vcpu with specified RIP. 1986 */ 1987 static int 1988 svm_run(void *arg, int vcpu, register_t rip, pmap_t pmap, 1989 struct vm_eventinfo *evinfo) 1990 { 1991 struct svm_regctx *gctx; 1992 struct svm_softc *svm_sc; 1993 struct svm_vcpu *vcpustate; 1994 struct vmcb_state *state; 1995 struct vmcb_ctrl *ctrl; 1996 struct vm_exit *vmexit; 1997 struct vlapic *vlapic; 1998 struct vm *vm; 1999 uint64_t vmcb_pa; 2000 int handled; 2001 uint16_t ldt_sel; 2002 2003 svm_sc = arg; 2004 vm = svm_sc->vm; 2005 2006 vcpustate = svm_get_vcpu(svm_sc, vcpu); 2007 state = svm_get_vmcb_state(svm_sc, vcpu); 2008 ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); 2009 vmexit = vm_exitinfo(vm, vcpu); 2010 vlapic = vm_lapic(vm, vcpu); 2011 2012 gctx = svm_get_guest_regctx(svm_sc, vcpu); 2013 vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa; 2014 2015 if (vcpustate->lastcpu != curcpu) { 2016 /* 2017 * Force new ASID allocation by invalidating the generation. 2018 */ 2019 vcpustate->asid.gen = 0; 2020 2021 /* 2022 * Invalidate the VMCB state cache by marking all fields dirty. 2023 */ 2024 svm_set_dirty(svm_sc, vcpu, 0xffffffff); 2025 2026 /* 2027 * XXX 2028 * Setting 'vcpustate->lastcpu' here is bit premature because 2029 * we may return from this function without actually executing 2030 * the VMRUN instruction. This could happen if a rendezvous 2031 * or an AST is pending on the first time through the loop. 2032 * 2033 * This works for now but any new side-effects of vcpu 2034 * migration should take this case into account. 2035 */ 2036 vcpustate->lastcpu = curcpu; 2037 vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1); 2038 } 2039 2040 svm_msr_guest_enter(svm_sc, vcpu); 2041 2042 /* Update Guest RIP */ 2043 state->rip = rip; 2044 2045 do { 2046 /* 2047 * Disable global interrupts to guarantee atomicity during 2048 * loading of guest state. This includes not only the state 2049 * loaded by the "vmrun" instruction but also software state 2050 * maintained by the hypervisor: suspended and rendezvous 2051 * state, NPT generation number, vlapic interrupts etc. 2052 */ 2053 disable_gintr(); 2054 2055 if (vcpu_suspended(evinfo)) { 2056 enable_gintr(); 2057 vm_exit_suspended(vm, vcpu, state->rip); 2058 break; 2059 } 2060 2061 if (vcpu_rendezvous_pending(evinfo)) { 2062 enable_gintr(); 2063 vm_exit_rendezvous(vm, vcpu, state->rip); 2064 break; 2065 } 2066 2067 if (vcpu_reqidle(evinfo)) { 2068 enable_gintr(); 2069 vm_exit_reqidle(vm, vcpu, state->rip); 2070 break; 2071 } 2072 2073 /* We are asked to give the cpu by scheduler. */ 2074 if (vcpu_should_yield(vm, vcpu)) { 2075 enable_gintr(); 2076 vm_exit_astpending(vm, vcpu, state->rip); 2077 break; 2078 } 2079 2080 if (vcpu_debugged(vm, vcpu)) { 2081 enable_gintr(); 2082 vm_exit_debug(vm, vcpu, state->rip); 2083 break; 2084 } 2085 2086 /* 2087 * #VMEXIT resumes the host with the guest LDTR, so 2088 * save the current LDT selector so it can be restored 2089 * after an exit. The userspace hypervisor probably 2090 * doesn't use a LDT, but save and restore it to be 2091 * safe. 2092 */ 2093 ldt_sel = sldt(); 2094 2095 svm_inj_interrupts(svm_sc, vcpu, vlapic); 2096 2097 /* 2098 * Check the pmap generation and the ASID generation to 2099 * ensure that the vcpu does not use stale TLB mappings. 2100 */ 2101 svm_pmap_activate(svm_sc, vcpu, pmap); 2102 2103 ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty; 2104 vcpustate->dirty = 0; 2105 VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean); 2106 2107 /* Launch Virtual Machine. */ 2108 VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip); 2109 svm_dr_enter_guest(gctx); 2110 svm_launch(vmcb_pa, gctx, get_pcpu()); 2111 svm_dr_leave_guest(gctx); 2112 2113 svm_pmap_deactivate(pmap); 2114 2115 /* 2116 * The host GDTR and IDTR is saved by VMRUN and restored 2117 * automatically on #VMEXIT. However, the host TSS needs 2118 * to be restored explicitly. 2119 */ 2120 restore_host_tss(); 2121 2122 /* Restore host LDTR. */ 2123 lldt(ldt_sel); 2124 2125 /* #VMEXIT disables interrupts so re-enable them here. */ 2126 enable_gintr(); 2127 2128 /* Update 'nextrip' */ 2129 vcpustate->nextrip = state->rip; 2130 2131 /* Handle #VMEXIT and if required return to user space. */ 2132 handled = svm_vmexit(svm_sc, vcpu, vmexit); 2133 } while (handled); 2134 2135 svm_msr_guest_exit(svm_sc, vcpu); 2136 2137 return (0); 2138 } 2139 2140 static void 2141 svm_cleanup(void *arg) 2142 { 2143 struct svm_softc *sc = arg; 2144 2145 contigfree(sc->iopm_bitmap, SVM_IO_BITMAP_SIZE, M_SVM); 2146 contigfree(sc->msr_bitmap, SVM_MSR_BITMAP_SIZE, M_SVM); 2147 free(sc, M_SVM); 2148 } 2149 2150 static register_t * 2151 swctx_regptr(struct svm_regctx *regctx, int reg) 2152 { 2153 2154 switch (reg) { 2155 case VM_REG_GUEST_RBX: 2156 return (®ctx->sctx_rbx); 2157 case VM_REG_GUEST_RCX: 2158 return (®ctx->sctx_rcx); 2159 case VM_REG_GUEST_RDX: 2160 return (®ctx->sctx_rdx); 2161 case VM_REG_GUEST_RDI: 2162 return (®ctx->sctx_rdi); 2163 case VM_REG_GUEST_RSI: 2164 return (®ctx->sctx_rsi); 2165 case VM_REG_GUEST_RBP: 2166 return (®ctx->sctx_rbp); 2167 case VM_REG_GUEST_R8: 2168 return (®ctx->sctx_r8); 2169 case VM_REG_GUEST_R9: 2170 return (®ctx->sctx_r9); 2171 case VM_REG_GUEST_R10: 2172 return (®ctx->sctx_r10); 2173 case VM_REG_GUEST_R11: 2174 return (®ctx->sctx_r11); 2175 case VM_REG_GUEST_R12: 2176 return (®ctx->sctx_r12); 2177 case VM_REG_GUEST_R13: 2178 return (®ctx->sctx_r13); 2179 case VM_REG_GUEST_R14: 2180 return (®ctx->sctx_r14); 2181 case VM_REG_GUEST_R15: 2182 return (®ctx->sctx_r15); 2183 case VM_REG_GUEST_DR0: 2184 return (®ctx->sctx_dr0); 2185 case VM_REG_GUEST_DR1: 2186 return (®ctx->sctx_dr1); 2187 case VM_REG_GUEST_DR2: 2188 return (®ctx->sctx_dr2); 2189 case VM_REG_GUEST_DR3: 2190 return (®ctx->sctx_dr3); 2191 default: 2192 return (NULL); 2193 } 2194 } 2195 2196 static int 2197 svm_getreg(void *arg, int vcpu, int ident, uint64_t *val) 2198 { 2199 struct svm_softc *svm_sc; 2200 register_t *reg; 2201 2202 svm_sc = arg; 2203 2204 if (ident == VM_REG_GUEST_INTR_SHADOW) { 2205 return (svm_get_intr_shadow(svm_sc, vcpu, val)); 2206 } 2207 2208 if (vmcb_read(svm_sc, vcpu, ident, val) == 0) { 2209 return (0); 2210 } 2211 2212 reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident); 2213 2214 if (reg != NULL) { 2215 *val = *reg; 2216 return (0); 2217 } 2218 2219 VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident); 2220 return (EINVAL); 2221 } 2222 2223 static int 2224 svm_setreg(void *arg, int vcpu, int ident, uint64_t val) 2225 { 2226 struct svm_softc *svm_sc; 2227 register_t *reg; 2228 2229 svm_sc = arg; 2230 2231 if (ident == VM_REG_GUEST_INTR_SHADOW) { 2232 return (svm_modify_intr_shadow(svm_sc, vcpu, val)); 2233 } 2234 2235 /* Do not permit user write access to VMCB fields by offset. */ 2236 if (!VMCB_ACCESS_OK(ident)) { 2237 if (vmcb_write(svm_sc, vcpu, ident, val) == 0) { 2238 return (0); 2239 } 2240 } 2241 2242 reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident); 2243 2244 if (reg != NULL) { 2245 *reg = val; 2246 return (0); 2247 } 2248 2249 if (ident == VM_REG_GUEST_ENTRY_INST_LENGTH) { 2250 /* Ignore. */ 2251 return (0); 2252 } 2253 2254 /* 2255 * XXX deal with CR3 and invalidate TLB entries tagged with the 2256 * vcpu's ASID. This needs to be treated differently depending on 2257 * whether 'running' is true/false. 2258 */ 2259 2260 VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident); 2261 return (EINVAL); 2262 } 2263 2264 static int 2265 svm_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) 2266 { 2267 return (vmcb_getdesc(arg, vcpu, reg, desc)); 2268 } 2269 2270 static int 2271 svm_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) 2272 { 2273 return (vmcb_setdesc(arg, vcpu, reg, desc)); 2274 } 2275 2276 #ifdef BHYVE_SNAPSHOT 2277 static int 2278 svm_snapshot_reg(void *arg, int vcpu, int ident, 2279 struct vm_snapshot_meta *meta) 2280 { 2281 int ret; 2282 uint64_t val; 2283 2284 if (meta->op == VM_SNAPSHOT_SAVE) { 2285 ret = svm_getreg(arg, vcpu, ident, &val); 2286 if (ret != 0) 2287 goto done; 2288 2289 SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done); 2290 } else if (meta->op == VM_SNAPSHOT_RESTORE) { 2291 SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done); 2292 2293 ret = svm_setreg(arg, vcpu, ident, val); 2294 if (ret != 0) 2295 goto done; 2296 } else { 2297 ret = EINVAL; 2298 goto done; 2299 } 2300 2301 done: 2302 return (ret); 2303 } 2304 #endif 2305 2306 static int 2307 svm_setcap(void *arg, int vcpu, int type, int val) 2308 { 2309 struct svm_softc *sc; 2310 int error; 2311 2312 sc = arg; 2313 error = 0; 2314 switch (type) { 2315 case VM_CAP_HALT_EXIT: 2316 svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2317 VMCB_INTCPT_HLT, val); 2318 break; 2319 case VM_CAP_PAUSE_EXIT: 2320 svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2321 VMCB_INTCPT_PAUSE, val); 2322 break; 2323 case VM_CAP_UNRESTRICTED_GUEST: 2324 /* Unrestricted guest execution cannot be disabled in SVM */ 2325 if (val == 0) 2326 error = EINVAL; 2327 break; 2328 default: 2329 error = ENOENT; 2330 break; 2331 } 2332 return (error); 2333 } 2334 2335 static int 2336 svm_getcap(void *arg, int vcpu, int type, int *retval) 2337 { 2338 struct svm_softc *sc; 2339 int error; 2340 2341 sc = arg; 2342 error = 0; 2343 2344 switch (type) { 2345 case VM_CAP_HALT_EXIT: 2346 *retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2347 VMCB_INTCPT_HLT); 2348 break; 2349 case VM_CAP_PAUSE_EXIT: 2350 *retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2351 VMCB_INTCPT_PAUSE); 2352 break; 2353 case VM_CAP_UNRESTRICTED_GUEST: 2354 *retval = 1; /* unrestricted guest is always enabled */ 2355 break; 2356 default: 2357 error = ENOENT; 2358 break; 2359 } 2360 return (error); 2361 } 2362 2363 static struct vmspace * 2364 svm_vmspace_alloc(vm_offset_t min, vm_offset_t max) 2365 { 2366 return (svm_npt_alloc(min, max)); 2367 } 2368 2369 static void 2370 svm_vmspace_free(struct vmspace *vmspace) 2371 { 2372 svm_npt_free(vmspace); 2373 } 2374 2375 static struct vlapic * 2376 svm_vlapic_init(void *arg, int vcpuid) 2377 { 2378 struct svm_softc *svm_sc; 2379 struct vlapic *vlapic; 2380 2381 svm_sc = arg; 2382 vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO); 2383 vlapic->vm = svm_sc->vm; 2384 vlapic->vcpuid = vcpuid; 2385 vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid]; 2386 2387 vlapic_init(vlapic); 2388 2389 return (vlapic); 2390 } 2391 2392 static void 2393 svm_vlapic_cleanup(void *arg, struct vlapic *vlapic) 2394 { 2395 2396 vlapic_cleanup(vlapic); 2397 free(vlapic, M_SVM_VLAPIC); 2398 } 2399 2400 #ifdef BHYVE_SNAPSHOT 2401 static int 2402 svm_snapshot(void *arg, struct vm_snapshot_meta *meta) 2403 { 2404 /* struct svm_softc is AMD's representation for SVM softc */ 2405 struct svm_softc *sc; 2406 struct svm_vcpu *vcpu; 2407 struct vmcb *vmcb; 2408 uint64_t val; 2409 int i; 2410 int ret; 2411 2412 sc = arg; 2413 2414 KASSERT(sc != NULL, ("%s: arg was NULL", __func__)); 2415 2416 SNAPSHOT_VAR_OR_LEAVE(sc->nptp, meta, ret, done); 2417 2418 for (i = 0; i < VM_MAXCPU; i++) { 2419 vcpu = &sc->vcpu[i]; 2420 vmcb = &vcpu->vmcb; 2421 2422 /* VMCB fields for virtual cpu i */ 2423 SNAPSHOT_VAR_OR_LEAVE(vmcb->ctrl.v_tpr, meta, ret, done); 2424 val = vmcb->ctrl.v_tpr; 2425 SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done); 2426 vmcb->ctrl.v_tpr = val; 2427 2428 SNAPSHOT_VAR_OR_LEAVE(vmcb->ctrl.asid, meta, ret, done); 2429 val = vmcb->ctrl.np_enable; 2430 SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done); 2431 vmcb->ctrl.np_enable = val; 2432 2433 val = vmcb->ctrl.intr_shadow; 2434 SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done); 2435 vmcb->ctrl.intr_shadow = val; 2436 SNAPSHOT_VAR_OR_LEAVE(vmcb->ctrl.tlb_ctrl, meta, ret, done); 2437 2438 SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad1, 2439 sizeof(vmcb->state.pad1), 2440 meta, ret, done); 2441 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.cpl, meta, ret, done); 2442 SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad2, 2443 sizeof(vmcb->state.pad2), 2444 meta, ret, done); 2445 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.efer, meta, ret, done); 2446 SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad3, 2447 sizeof(vmcb->state.pad3), 2448 meta, ret, done); 2449 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.cr4, meta, ret, done); 2450 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.cr3, meta, ret, done); 2451 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.cr0, meta, ret, done); 2452 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.dr7, meta, ret, done); 2453 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.dr6, meta, ret, done); 2454 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.rflags, meta, ret, done); 2455 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.rip, meta, ret, done); 2456 SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad4, 2457 sizeof(vmcb->state.pad4), 2458 meta, ret, done); 2459 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.rsp, meta, ret, done); 2460 SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad5, 2461 sizeof(vmcb->state.pad5), 2462 meta, ret, done); 2463 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.rax, meta, ret, done); 2464 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.star, meta, ret, done); 2465 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.lstar, meta, ret, done); 2466 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.cstar, meta, ret, done); 2467 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.sfmask, meta, ret, done); 2468 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.kernelgsbase, 2469 meta, ret, done); 2470 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.sysenter_cs, meta, ret, done); 2471 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.sysenter_esp, 2472 meta, ret, done); 2473 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.sysenter_eip, 2474 meta, ret, done); 2475 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.cr2, meta, ret, done); 2476 SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad6, 2477 sizeof(vmcb->state.pad6), 2478 meta, ret, done); 2479 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.g_pat, meta, ret, done); 2480 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.dbgctl, meta, ret, done); 2481 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.br_from, meta, ret, done); 2482 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.br_to, meta, ret, done); 2483 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.int_from, meta, ret, done); 2484 SNAPSHOT_VAR_OR_LEAVE(vmcb->state.int_to, meta, ret, done); 2485 SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad7, 2486 sizeof(vmcb->state.pad7), 2487 meta, ret, done); 2488 2489 /* Snapshot swctx for virtual cpu i */ 2490 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbp, meta, ret, done); 2491 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbx, meta, ret, done); 2492 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rcx, meta, ret, done); 2493 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdx, meta, ret, done); 2494 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdi, meta, ret, done); 2495 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rsi, meta, ret, done); 2496 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r8, meta, ret, done); 2497 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r9, meta, ret, done); 2498 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r10, meta, ret, done); 2499 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r11, meta, ret, done); 2500 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r12, meta, ret, done); 2501 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r13, meta, ret, done); 2502 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r14, meta, ret, done); 2503 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r15, meta, ret, done); 2504 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr0, meta, ret, done); 2505 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr1, meta, ret, done); 2506 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr2, meta, ret, done); 2507 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr3, meta, ret, done); 2508 2509 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_dr0, meta, ret, done); 2510 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_dr1, meta, ret, done); 2511 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_dr2, meta, ret, done); 2512 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_dr3, meta, ret, done); 2513 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_dr6, meta, ret, done); 2514 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_dr7, meta, ret, done); 2515 SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_debugctl, meta, ret, 2516 done); 2517 2518 /* Restore other svm_vcpu struct fields */ 2519 2520 /* Restore NEXTRIP field */ 2521 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); 2522 2523 /* Restore lastcpu field */ 2524 SNAPSHOT_VAR_OR_LEAVE(vcpu->lastcpu, meta, ret, done); 2525 SNAPSHOT_VAR_OR_LEAVE(vcpu->dirty, meta, ret, done); 2526 2527 /* Restore EPTGEN field - EPT is Extended Page Tabel */ 2528 SNAPSHOT_VAR_OR_LEAVE(vcpu->eptgen, meta, ret, done); 2529 2530 SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.gen, meta, ret, done); 2531 SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.num, meta, ret, done); 2532 2533 /* Set all caches dirty */ 2534 if (meta->op == VM_SNAPSHOT_RESTORE) { 2535 svm_set_dirty(sc, i, VMCB_CACHE_ASID); 2536 svm_set_dirty(sc, i, VMCB_CACHE_IOPM); 2537 svm_set_dirty(sc, i, VMCB_CACHE_I); 2538 svm_set_dirty(sc, i, VMCB_CACHE_TPR); 2539 svm_set_dirty(sc, i, VMCB_CACHE_CR2); 2540 svm_set_dirty(sc, i, VMCB_CACHE_CR); 2541 svm_set_dirty(sc, i, VMCB_CACHE_DT); 2542 svm_set_dirty(sc, i, VMCB_CACHE_SEG); 2543 svm_set_dirty(sc, i, VMCB_CACHE_NP); 2544 } 2545 } 2546 2547 if (meta->op == VM_SNAPSHOT_RESTORE) 2548 flush_by_asid(); 2549 2550 done: 2551 return (ret); 2552 } 2553 2554 static int 2555 svm_vmcx_snapshot(void *arg, struct vm_snapshot_meta *meta, int vcpu) 2556 { 2557 struct vmcb *vmcb; 2558 struct svm_softc *sc; 2559 int err, running, hostcpu; 2560 2561 sc = (struct svm_softc *)arg; 2562 err = 0; 2563 2564 KASSERT(arg != NULL, ("%s: arg was NULL", __func__)); 2565 vmcb = svm_get_vmcb(sc, vcpu); 2566 2567 running = vcpu_is_running(sc->vm, vcpu, &hostcpu); 2568 if (running && hostcpu !=curcpu) { 2569 printf("%s: %s%d is running", __func__, vm_name(sc->vm), vcpu); 2570 return (EINVAL); 2571 } 2572 2573 err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_CR0, meta); 2574 err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_CR2, meta); 2575 err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_CR3, meta); 2576 err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_CR4, meta); 2577 2578 err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_DR7, meta); 2579 2580 err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_RAX, meta); 2581 2582 err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_RSP, meta); 2583 err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_RIP, meta); 2584 err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_RFLAGS, meta); 2585 2586 /* Guest segments */ 2587 /* ES */ 2588 err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_ES, meta); 2589 err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_ES, meta); 2590 2591 /* CS */ 2592 err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_CS, meta); 2593 err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_CS, meta); 2594 2595 /* SS */ 2596 err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_SS, meta); 2597 err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_SS, meta); 2598 2599 /* DS */ 2600 err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_DS, meta); 2601 err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_DS, meta); 2602 2603 /* FS */ 2604 err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_FS, meta); 2605 err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_FS, meta); 2606 2607 /* GS */ 2608 err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_GS, meta); 2609 err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_GS, meta); 2610 2611 /* TR */ 2612 err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_TR, meta); 2613 err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_TR, meta); 2614 2615 /* LDTR */ 2616 err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_LDTR, meta); 2617 err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_LDTR, meta); 2618 2619 /* EFER */ 2620 err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_EFER, meta); 2621 2622 /* IDTR and GDTR */ 2623 err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_IDTR, meta); 2624 err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_GDTR, meta); 2625 2626 /* Specific AMD registers */ 2627 err += vmcb_snapshot_any(sc, vcpu, 2628 VMCB_ACCESS(VMCB_OFF_SYSENTER_CS, 8), meta); 2629 err += vmcb_snapshot_any(sc, vcpu, 2630 VMCB_ACCESS(VMCB_OFF_SYSENTER_ESP, 8), meta); 2631 err += vmcb_snapshot_any(sc, vcpu, 2632 VMCB_ACCESS(VMCB_OFF_SYSENTER_EIP, 8), meta); 2633 2634 err += vmcb_snapshot_any(sc, vcpu, 2635 VMCB_ACCESS(VMCB_OFF_NPT_BASE, 8), meta); 2636 2637 err += vmcb_snapshot_any(sc, vcpu, 2638 VMCB_ACCESS(VMCB_OFF_CR_INTERCEPT, 4), meta); 2639 err += vmcb_snapshot_any(sc, vcpu, 2640 VMCB_ACCESS(VMCB_OFF_DR_INTERCEPT, 4), meta); 2641 err += vmcb_snapshot_any(sc, vcpu, 2642 VMCB_ACCESS(VMCB_OFF_EXC_INTERCEPT, 4), meta); 2643 err += vmcb_snapshot_any(sc, vcpu, 2644 VMCB_ACCESS(VMCB_OFF_INST1_INTERCEPT, 4), meta); 2645 err += vmcb_snapshot_any(sc, vcpu, 2646 VMCB_ACCESS(VMCB_OFF_INST2_INTERCEPT, 4), meta); 2647 2648 err += vmcb_snapshot_any(sc, vcpu, 2649 VMCB_ACCESS(VMCB_OFF_TLB_CTRL, 4), meta); 2650 2651 err += vmcb_snapshot_any(sc, vcpu, 2652 VMCB_ACCESS(VMCB_OFF_EXITINFO1, 8), meta); 2653 err += vmcb_snapshot_any(sc, vcpu, 2654 VMCB_ACCESS(VMCB_OFF_EXITINFO2, 8), meta); 2655 err += vmcb_snapshot_any(sc, vcpu, 2656 VMCB_ACCESS(VMCB_OFF_EXITINTINFO, 8), meta); 2657 2658 err += vmcb_snapshot_any(sc, vcpu, 2659 VMCB_ACCESS(VMCB_OFF_VIRQ, 8), meta); 2660 2661 err += vmcb_snapshot_any(sc, vcpu, 2662 VMCB_ACCESS(VMCB_OFF_GUEST_PAT, 8), meta); 2663 2664 err += vmcb_snapshot_any(sc, vcpu, 2665 VMCB_ACCESS(VMCB_OFF_AVIC_BAR, 8), meta); 2666 err += vmcb_snapshot_any(sc, vcpu, 2667 VMCB_ACCESS(VMCB_OFF_AVIC_PAGE, 8), meta); 2668 err += vmcb_snapshot_any(sc, vcpu, 2669 VMCB_ACCESS(VMCB_OFF_AVIC_LT, 8), meta); 2670 err += vmcb_snapshot_any(sc, vcpu, 2671 VMCB_ACCESS(VMCB_OFF_AVIC_PT, 8), meta); 2672 2673 err += vmcb_snapshot_any(sc, vcpu, 2674 VMCB_ACCESS(VMCB_OFF_IO_PERM, 8), meta); 2675 err += vmcb_snapshot_any(sc, vcpu, 2676 VMCB_ACCESS(VMCB_OFF_MSR_PERM, 8), meta); 2677 2678 err += vmcb_snapshot_any(sc, vcpu, 2679 VMCB_ACCESS(VMCB_OFF_ASID, 4), meta); 2680 2681 err += vmcb_snapshot_any(sc, vcpu, 2682 VMCB_ACCESS(VMCB_OFF_EXIT_REASON, 8), meta); 2683 2684 err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_INTR_SHADOW, meta); 2685 2686 return (err); 2687 } 2688 2689 static int 2690 svm_restore_tsc(void *arg, int vcpu, uint64_t offset) 2691 { 2692 int err; 2693 2694 err = svm_set_tsc_offset(arg, vcpu, offset); 2695 2696 return (err); 2697 } 2698 #endif 2699 2700 const struct vmm_ops vmm_ops_amd = { 2701 .modinit = svm_modinit, 2702 .modcleanup = svm_modcleanup, 2703 .modresume = svm_modresume, 2704 .init = svm_init, 2705 .run = svm_run, 2706 .cleanup = svm_cleanup, 2707 .getreg = svm_getreg, 2708 .setreg = svm_setreg, 2709 .getdesc = svm_getdesc, 2710 .setdesc = svm_setdesc, 2711 .getcap = svm_getcap, 2712 .setcap = svm_setcap, 2713 .vmspace_alloc = svm_vmspace_alloc, 2714 .vmspace_free = svm_vmspace_free, 2715 .vlapic_init = svm_vlapic_init, 2716 .vlapic_cleanup = svm_vlapic_cleanup, 2717 #ifdef BHYVE_SNAPSHOT 2718 .snapshot = svm_snapshot, 2719 .vmcx_snapshot = svm_vmcx_snapshot, 2720 .restore_tsc = svm_restore_tsc, 2721 #endif 2722 }; 2723