1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1990 The Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 2003 Peter Wemm 9 * All rights reserved. 10 * 11 * This code is derived from software contributed to Berkeley by 12 * William Jolitz. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 */ 42 43 #ifdef __i386__ 44 #include <i386/vmparam.h> 45 #else /* !__i386__ */ 46 47 #ifndef _MACHINE_VMPARAM_H_ 48 #define _MACHINE_VMPARAM_H_ 1 49 50 /* 51 * Machine dependent constants for AMD64. 52 */ 53 54 /* 55 * Virtual memory related constants, all in bytes 56 */ 57 #define MAXTSIZ (32768UL*1024*1024) /* max text size */ 58 #ifndef DFLDSIZ 59 #define DFLDSIZ (32768UL*1024*1024) /* initial data size limit */ 60 #endif 61 #ifndef MAXDSIZ 62 #define MAXDSIZ (32768UL*1024*1024) /* max data size */ 63 #endif 64 #ifndef DFLSSIZ 65 #define DFLSSIZ (8UL*1024*1024) /* initial stack size limit */ 66 #endif 67 #ifndef MAXSSIZ 68 #define MAXSSIZ (512UL*1024*1024) /* max stack size */ 69 #endif 70 #ifndef SGROWSIZ 71 #define SGROWSIZ (128UL*1024) /* amount to grow stack */ 72 #endif 73 74 /* 75 * We provide a machine specific single page allocator through the use 76 * of the direct mapped segment. This uses 2MB pages for reduced 77 * TLB pressure. 78 */ 79 #if !defined(KASAN) && !defined(KMSAN) 80 #define UMA_MD_SMALL_ALLOC 81 #endif 82 83 /* 84 * The physical address space is densely populated. 85 */ 86 #define VM_PHYSSEG_DENSE 87 88 /* 89 * The number of PHYSSEG entries must be one greater than the number 90 * of phys_avail entries because the phys_avail entry that spans the 91 * largest physical address that is accessible by ISA DMA is split 92 * into two PHYSSEG entries. 93 */ 94 #define VM_PHYSSEG_MAX 63 95 96 /* 97 * Create two free page pools: VM_FREEPOOL_DEFAULT is the default pool 98 * from which physical pages are allocated and VM_FREEPOOL_DIRECT is 99 * the pool from which physical pages for page tables and small UMA 100 * objects are allocated. 101 */ 102 #define VM_NFREEPOOL 2 103 #define VM_FREEPOOL_DEFAULT 0 104 #define VM_FREEPOOL_DIRECT 1 105 106 /* 107 * Create up to three free page lists: VM_FREELIST_DMA32 is for physical pages 108 * that have physical addresses below 4G but are not accessible by ISA DMA, 109 * and VM_FREELIST_ISADMA is for physical pages that are accessible by ISA 110 * DMA. 111 */ 112 #define VM_NFREELIST 3 113 #define VM_FREELIST_DEFAULT 0 114 #define VM_FREELIST_DMA32 1 115 #define VM_FREELIST_LOWMEM 2 116 117 #define VM_LOWMEM_BOUNDARY (16 << 20) /* 16MB ISA DMA limit */ 118 119 /* 120 * Create the DMA32 free list only if the number of physical pages above 121 * physical address 4G is at least 16M, which amounts to 64GB of physical 122 * memory. 123 */ 124 #define VM_DMA32_NPAGES_THRESHOLD 16777216 125 126 /* 127 * An allocation size of 16MB is supported in order to optimize the 128 * use of the direct map by UMA. Specifically, a cache line contains 129 * at most 8 PDEs, collectively mapping 16MB of physical memory. By 130 * reducing the number of distinct 16MB "pages" that are used by UMA, 131 * the physical memory allocator reduces the likelihood of both 2MB 132 * page TLB misses and cache misses caused by 2MB page TLB misses. 133 */ 134 #define VM_NFREEORDER 13 135 136 /* 137 * Enable superpage reservations: 1 level. 138 */ 139 #ifndef VM_NRESERVLEVEL 140 #define VM_NRESERVLEVEL 1 141 #endif 142 143 /* 144 * Level 0 reservations consist of 512 pages. 145 */ 146 #ifndef VM_LEVEL_0_ORDER 147 #define VM_LEVEL_0_ORDER 9 148 #endif 149 150 #ifdef SMP 151 #define PA_LOCK_COUNT 256 152 #endif 153 154 /* 155 * Kernel physical load address for non-UEFI boot and for legacy UEFI loader. 156 * Newer UEFI loader loads kernel anywhere below 4G, with memory allocated 157 * by boot services. 158 * Needs to be aligned at 2MB superpage boundary. 159 */ 160 #ifndef KERNLOAD 161 #define KERNLOAD 0x200000 162 #endif 163 164 /* 165 * Virtual addresses of things. Derived from the page directory and 166 * page table indexes from pmap.h for precision. 167 * 168 * 0x0000000000000000 - 0x00007fffffffffff user map 169 * 0x0000800000000000 - 0xffff7fffffffffff does not exist (hole) 170 * 0xffff800000000000 - 0xffff804020100fff recursive page table (512GB slot) 171 * 0xffff804020100fff - 0xffff807fffffffff unused 172 * 0xffff808000000000 - 0xffff847fffffffff large map (can be tuned up) 173 * 0xffff848000000000 - 0xfffff77fffffffff unused (large map extends there) 174 * 0xfffff60000000000 - 0xfffff7ffffffffff 2TB KMSAN origin map, optional 175 * 0xfffff78000000000 - 0xfffff7bfffffffff 512GB KASAN shadow map, optional 176 * 0xfffff80000000000 - 0xfffffbffffffffff 4TB direct map 177 * 0xfffffc0000000000 - 0xfffffdffffffffff 2TB KMSAN shadow map, optional 178 * 0xfffffe0000000000 - 0xffffffffffffffff 2TB kernel map 179 * 180 * Within the kernel map: 181 * 182 * 0xfffffe0000000000 vm_page_array 183 * 0xffffffff80000000 KERNBASE 184 */ 185 186 #define VM_MIN_KERNEL_ADDRESS KV4ADDR(KPML4BASE, 0, 0, 0) 187 #define VM_MAX_KERNEL_ADDRESS KV4ADDR(KPML4BASE + NKPML4E - 1, \ 188 NPDPEPG-1, NPDEPG-1, NPTEPG-1) 189 190 #define DMAP_MIN_ADDRESS KV4ADDR(DMPML4I, 0, 0, 0) 191 #define DMAP_MAX_ADDRESS KV4ADDR(DMPML4I + NDMPML4E, 0, 0, 0) 192 193 #define KASAN_MIN_ADDRESS KV4ADDR(KASANPML4I, 0, 0, 0) 194 #define KASAN_MAX_ADDRESS KV4ADDR(KASANPML4I + NKASANPML4E, 0, 0, 0) 195 196 #define KMSAN_SHAD_MIN_ADDRESS KV4ADDR(KMSANSHADPML4I, 0, 0, 0) 197 #define KMSAN_SHAD_MAX_ADDRESS KV4ADDR(KMSANSHADPML4I + NKMSANSHADPML4E, \ 198 0, 0, 0) 199 200 #define KMSAN_ORIG_MIN_ADDRESS KV4ADDR(KMSANORIGPML4I, 0, 0, 0) 201 #define KMSAN_ORIG_MAX_ADDRESS KV4ADDR(KMSANORIGPML4I + NKMSANORIGPML4E, \ 202 0, 0, 0) 203 204 #define LARGEMAP_MIN_ADDRESS KV4ADDR(LMSPML4I, 0, 0, 0) 205 #define LARGEMAP_MAX_ADDRESS KV4ADDR(LMEPML4I + 1, 0, 0, 0) 206 207 /* 208 * Formally kernel mapping starts at KERNBASE, but kernel linker 209 * script leaves first PDE reserved. For legacy BIOS boot, kernel is 210 * loaded at KERNLOAD = 2M, and initial kernel page table maps 211 * physical memory from zero to KERNend starting at KERNBASE. 212 * 213 * KERNSTART is where the first actual kernel page is mapped, after 214 * the compatibility mapping. 215 */ 216 #define KERNBASE KV4ADDR(KPML4I, KPDPI, 0, 0) 217 #define KERNSTART (KERNBASE + NBPDR) 218 219 #define UPT_MAX_ADDRESS KV4ADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I) 220 #define UPT_MIN_ADDRESS KV4ADDR(PML4PML4I, 0, 0, 0) 221 222 #define VM_MAXUSER_ADDRESS_LA57 UVADDR(NUPML5E, 0, 0, 0, 0) 223 #define VM_MAXUSER_ADDRESS_LA48 UVADDR(0, NUP4ML4E, 0, 0, 0) 224 #define VM_MAXUSER_ADDRESS VM_MAXUSER_ADDRESS_LA57 225 226 #define SHAREDPAGE_LA57 (VM_MAXUSER_ADDRESS_LA57 - PAGE_SIZE) 227 #define SHAREDPAGE_LA48 (VM_MAXUSER_ADDRESS_LA48 - PAGE_SIZE) 228 #define USRSTACK_LA57 SHAREDPAGE_LA57 229 #define USRSTACK_LA48 SHAREDPAGE_LA48 230 #define USRSTACK USRSTACK_LA48 231 #define PS_STRINGS_LA57 (USRSTACK_LA57 - sizeof(struct ps_strings)) 232 #define PS_STRINGS_LA48 (USRSTACK_LA48 - sizeof(struct ps_strings)) 233 234 #define VM_MAX_ADDRESS UPT_MAX_ADDRESS 235 #define VM_MIN_ADDRESS (0) 236 237 /* 238 * XXX Allowing dmaplimit == 0 is a temporary workaround for vt(4) efifb's 239 * early use of PHYS_TO_DMAP before the mapping is actually setup. This works 240 * because the result is not actually accessed until later, but the early 241 * vt fb startup needs to be reworked. 242 */ 243 #define PHYS_IN_DMAP(pa) (dmaplimit == 0 || (pa) < dmaplimit) 244 #define VIRT_IN_DMAP(va) ((va) >= DMAP_MIN_ADDRESS && \ 245 (va) < (DMAP_MIN_ADDRESS + dmaplimit)) 246 247 #define PMAP_HAS_DMAP 1 248 #define PHYS_TO_DMAP(x) ({ \ 249 KASSERT(PHYS_IN_DMAP(x), \ 250 ("physical address %#jx not covered by the DMAP", \ 251 (uintmax_t)x)); \ 252 (x) | DMAP_MIN_ADDRESS; }) 253 254 #define DMAP_TO_PHYS(x) ({ \ 255 KASSERT(VIRT_IN_DMAP(x), \ 256 ("virtual address %#jx not covered by the DMAP", \ 257 (uintmax_t)x)); \ 258 (x) & ~DMAP_MIN_ADDRESS; }) 259 260 /* 261 * amd64 maps the page array into KVA so that it can be more easily 262 * allocated on the correct memory domains. 263 */ 264 #define PMAP_HAS_PAGE_ARRAY 1 265 266 /* 267 * How many physical pages per kmem arena virtual page. 268 */ 269 #ifndef VM_KMEM_SIZE_SCALE 270 #define VM_KMEM_SIZE_SCALE (1) 271 #endif 272 273 /* 274 * Optional ceiling (in bytes) on the size of the kmem arena: 60% of the 275 * kernel map. 276 */ 277 #ifndef VM_KMEM_SIZE_MAX 278 #define VM_KMEM_SIZE_MAX ((VM_MAX_KERNEL_ADDRESS - \ 279 VM_MIN_KERNEL_ADDRESS + 1) * 3 / 5) 280 #endif 281 282 /* initial pagein size of beginning of executable file */ 283 #ifndef VM_INITIAL_PAGEIN 284 #define VM_INITIAL_PAGEIN 16 285 #endif 286 287 #define ZERO_REGION_SIZE (2 * 1024 * 1024) /* 2MB */ 288 289 /* 290 * The pmap can create non-transparent large page mappings. 291 */ 292 #define PMAP_HAS_LARGEPAGES 1 293 294 /* 295 * Need a page dump array for minidump. 296 */ 297 #define MINIDUMP_PAGE_TRACKING 1 298 299 #endif /* _MACHINE_VMPARAM_H_ */ 300 301 #endif /* __i386__ */ 302