xref: /freebsd/sys/amd64/include/cpufunc.h (revision db7df99ff1096622d0f64d4c0621362e6cc3a429)
1 /*-
2  * Copyright (c) 1993 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	$Id: cpufunc.h,v 1.63 1997/04/26 11:45:36 peter Exp $
34  */
35 
36 /*
37  * Functions to provide access to special i386 instructions.
38  */
39 
40 #ifndef _MACHINE_CPUFUNC_H_
41 #define	_MACHINE_CPUFUNC_H_
42 
43 #include <sys/cdefs.h>
44 #include <sys/types.h>
45 #include <machine/smp.h>
46 
47 #ifdef KERNEL
48 #include "opt_smp.h"
49 #include "opt_smp_invltlb.h"
50 #endif
51 
52 #ifdef	__GNUC__
53 
54 static __inline void
55 breakpoint(void)
56 {
57 	__asm __volatile("int $3");
58 }
59 
60 static __inline void
61 disable_intr(void)
62 {
63 	__asm __volatile("cli" : : : "memory");
64 }
65 
66 static __inline void
67 enable_intr(void)
68 {
69 	__asm __volatile("sti");
70 }
71 
72 #define	HAVE_INLINE_FFS
73 
74 static __inline int
75 ffs(int mask)
76 {
77 	int	result;
78 	/*
79 	 * bsfl turns out to be not all that slow on 486's.  It can beaten
80 	 * using a binary search to reduce to 4 bits and then a table lookup,
81 	 * but only if the code is inlined and in the cache, and the code
82 	 * is quite large so inlining it probably busts the cache.
83 	 *
84 	 * Note that gcc-2's builtin ffs would be used if we didn't declare
85 	 * this inline or turn off the builtin.  The builtin is faster but
86 	 * broken in gcc-2.4.5 and slower but working in gcc-2.5 and 2.6.
87 	 */
88 	__asm __volatile("testl %0,%0; je 1f; bsfl %0,%0; incl %0; 1:"
89 			 : "=r" (result) : "0" (mask));
90 	return (result);
91 }
92 
93 #define	HAVE_INLINE_FLS
94 
95 static __inline int
96 fls(int mask)
97 {
98 	int	result;
99 	__asm __volatile("testl %0,%0; je 1f; bsrl %0,%0; incl %0; 1:"
100 			 : "=r" (result) : "0" (mask));
101 	return (result);
102 }
103 
104 #if __GNUC__ < 2
105 
106 #define	inb(port)		inbv(port)
107 #define	outb(port, data)	outbv(port, data)
108 
109 #else /* __GNUC >= 2 */
110 
111 /*
112  * The following complications are to get around gcc not having a
113  * constraint letter for the range 0..255.  We still put "d" in the
114  * constraint because "i" isn't a valid constraint when the port
115  * isn't constant.  This only matters for -O0 because otherwise
116  * the non-working version gets optimized away.
117  *
118  * Use an expression-statement instead of a conditional expression
119  * because gcc-2.6.0 would promote the operands of the conditional
120  * and produce poor code for "if ((inb(var) & const1) == const2)".
121  *
122  * The unnecessary test `(port) < 0x10000' is to generate a warning if
123  * the `port' has type u_short or smaller.  Such types are pessimal.
124  * This actually only works for signed types.  The range check is
125  * careful to avoid generating warnings.
126  */
127 #define	inb(port) __extension__ ({					\
128 	u_char	_data;							\
129 	if (__builtin_constant_p(port) && ((port) & 0xffff) < 0x100	\
130 	    && (port) < 0x10000)					\
131 		_data = inbc(port);					\
132 	else								\
133 		_data = inbv(port);					\
134 	_data; })
135 
136 #define	outb(port, data) (						\
137 	__builtin_constant_p(port) && ((port) & 0xffff) < 0x100		\
138 	&& (port) < 0x10000						\
139 	? outbc(port, data) : outbv(port, data))
140 
141 static __inline u_char
142 inbc(u_int port)
143 {
144 	u_char	data;
145 
146 	__asm __volatile("inb %1,%0" : "=a" (data) : "id" ((u_short)(port)));
147 	return (data);
148 }
149 
150 static __inline void
151 outbc(u_int port, u_char data)
152 {
153 	__asm __volatile("outb %0,%1" : : "a" (data), "id" ((u_short)(port)));
154 }
155 
156 #endif /* __GNUC <= 2 */
157 
158 static __inline u_char
159 inbv(u_int port)
160 {
161 	u_char	data;
162 	/*
163 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
164 	 * %edx, while gcc generates inferior code (movw instead of movl)
165 	 * if we tell it to load (u_short) port.
166 	 */
167 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
168 	return (data);
169 }
170 
171 static __inline u_long
172 inl(u_int port)
173 {
174 	u_long	data;
175 
176 	__asm __volatile("inl %%dx,%0" : "=a" (data) : "d" (port));
177 	return (data);
178 }
179 
180 static __inline void
181 insb(u_int port, void *addr, size_t cnt)
182 {
183 	__asm __volatile("cld; rep; insb"
184 			 : : "d" (port), "D" (addr), "c" (cnt)
185 			 : "di", "cx", "memory");
186 }
187 
188 static __inline void
189 insw(u_int port, void *addr, size_t cnt)
190 {
191 	__asm __volatile("cld; rep; insw"
192 			 : : "d" (port), "D" (addr), "c" (cnt)
193 			 : "di", "cx", "memory");
194 }
195 
196 static __inline void
197 insl(u_int port, void *addr, size_t cnt)
198 {
199 	__asm __volatile("cld; rep; insl"
200 			 : : "d" (port), "D" (addr), "c" (cnt)
201 			 : "di", "cx", "memory");
202 }
203 
204 static __inline void
205 invd(void)
206 {
207 	__asm __volatile("invd");
208 }
209 
210 #if defined(SMP) && defined(SMP_INVLTLB) && defined(KERNEL)
211 
212 /*
213  * When using APIC IPI's, the inlining cost is prohibitive..
214  */
215 void	invlpg		__P((u_int addr));
216 void	invltlb		__P((void));
217 
218 #else
219 
220 static __inline void
221 invlpg(u_int addr)
222 {
223 	__asm __volatile("invlpg (%0)" : : "r" (addr) : "memory");
224 }
225 
226 static __inline void
227 invltlb(void)
228 {
229 	u_long	temp;
230 	/*
231 	 * This should be implemented as load_cr3(rcr3()) when load_cr3()
232 	 * is inlined.
233 	 */
234 	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3" : "=r" (temp)
235 			 : : "memory");
236 }
237 #endif	/* SMP && SMP_INVLTLB && KERNEL */
238 
239 static __inline u_short
240 inw(u_int port)
241 {
242 	u_short	data;
243 
244 	__asm __volatile("inw %%dx,%0" : "=a" (data) : "d" (port));
245 	return (data);
246 }
247 
248 static __inline u_int
249 loadandclear(u_int *addr)
250 {
251 	u_int	result;
252 
253 	__asm __volatile("xorl %0,%0; xchgl %1,%0"
254 			 : "=&r" (result) : "m" (*addr));
255 	return (result);
256 }
257 
258 static __inline void
259 outbv(u_int port, u_char data)
260 {
261 	u_char	al;
262 	/*
263 	 * Use an unnecessary assignment to help gcc's register allocator.
264 	 * This make a large difference for gcc-1.40 and a tiny difference
265 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
266 	 * best results.  gcc-2.6.0 can't handle this.
267 	 */
268 	al = data;
269 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
270 }
271 
272 static __inline void
273 outl(u_int port, u_long data)
274 {
275 	/*
276 	 * outl() and outw() aren't used much so we haven't looked at
277 	 * possible micro-optimizations such as the unnecessary
278 	 * assignment for them.
279 	 */
280 	__asm __volatile("outl %0,%%dx" : : "a" (data), "d" (port));
281 }
282 
283 static __inline void
284 outsb(u_int port, void *addr, size_t cnt)
285 {
286 	__asm __volatile("cld; rep; outsb"
287 			 : : "d" (port), "S" (addr), "c" (cnt)
288 			 : "si", "cx");
289 }
290 
291 static __inline void
292 outsw(u_int port, void *addr, size_t cnt)
293 {
294 	__asm __volatile("cld; rep; outsw"
295 			 : : "d" (port), "S" (addr), "c" (cnt)
296 			 : "si", "cx");
297 }
298 
299 static __inline void
300 outsl(u_int port, void *addr, size_t cnt)
301 {
302 	__asm __volatile("cld; rep; outsl"
303 			 : : "d" (port), "S" (addr), "c" (cnt)
304 			 : "si", "cx");
305 }
306 
307 static __inline void
308 outw(u_int port, u_short data)
309 {
310 	__asm __volatile("outw %0,%%dx" : : "a" (data), "d" (port));
311 }
312 
313 static __inline u_long
314 rcr2(void)
315 {
316 	u_long	data;
317 
318 	__asm __volatile("movl %%cr2,%0" : "=r" (data));
319 	return (data);
320 }
321 
322 static __inline u_long
323 read_eflags(void)
324 {
325 	u_long	ef;
326 
327 	__asm __volatile("pushfl; popl %0" : "=r" (ef));
328 	return (ef);
329 }
330 
331 static __inline quad_t
332 rdmsr(u_int msr)
333 {
334 	quad_t rv;
335 
336 	__asm __volatile(".byte 0x0f, 0x32" : "=A" (rv) : "c" (msr));
337 	return (rv);
338 }
339 
340 static __inline quad_t
341 rdpmc(u_int pmc)
342 {
343 	quad_t rv;
344 
345 	__asm __volatile(".byte 0x0f, 0x33" : "=A" (rv) : "c" (pmc));
346 	return (rv);
347 }
348 
349 static __inline quad_t
350 rdtsc(void)
351 {
352 	quad_t rv;
353 
354 	__asm __volatile(".byte 0x0f, 0x31" : "=A" (rv));
355 	return (rv);
356 }
357 
358 static __inline void
359 setbits(volatile unsigned *addr, u_int bits)
360 {
361 	__asm __volatile("orl %1,%0" : "=m" (*addr) : "ir" (bits));
362 }
363 
364 static __inline void
365 wbinvd(void)
366 {
367 	__asm __volatile("wbinvd");
368 }
369 
370 static __inline void
371 write_eflags(u_long ef)
372 {
373 	__asm __volatile("pushl %0; popfl" : : "r" (ef));
374 }
375 
376 static __inline void
377 wrmsr(u_int msr, quad_t newval)
378 {
379 	__asm __volatile(".byte 0x0f, 0x30" : : "A" (newval), "c" (msr));
380 }
381 
382 #else /* !__GNUC__ */
383 
384 int	breakpoint	__P((void));
385 void	disable_intr	__P((void));
386 void	enable_intr	__P((void));
387 u_char	inb		__P((u_int port));
388 u_long	inl		__P((u_int port));
389 void	insb		__P((u_int port, void *addr, size_t cnt));
390 void	insl		__P((u_int port, void *addr, size_t cnt));
391 void	insw		__P((u_int port, void *addr, size_t cnt));
392 void	invd		__P((void));
393 void	invlpg		__P((u_int addr));
394 void	invltlb		__P((void));
395 u_short	inw		__P((u_int port));
396 u_int	loadandclear	__P((u_int *addr));
397 void	outb		__P((u_int port, u_char data));
398 void	outl		__P((u_int port, u_long data));
399 void	outsb		__P((u_int port, void *addr, size_t cnt));
400 void	outsl		__P((u_int port, void *addr, size_t cnt));
401 void	outsw		__P((u_int port, void *addr, size_t cnt));
402 void	outw		__P((u_int port, u_short data));
403 u_long	rcr2		__P((void));
404 quad_t	rdmsr		__P((u_int msr));
405 quad_t	rdpmc		__P((u_int pmc));
406 quad_t	rdtsc		__P((void));
407 u_long	read_eflags	__P((void));
408 void	setbits		__P((volatile unsigned *addr, u_int bits));
409 void	wbinvd		__P((void));
410 void	write_eflags	__P((u_long ef));
411 void	wrmsr		__P((u_int msr, quad_t newval));
412 
413 #endif	/* __GNUC__ */
414 
415 void	load_cr0	__P((u_long cr0));
416 void	load_cr3	__P((u_long cr3));
417 void	ltr		__P((u_short sel));
418 u_int	rcr0		__P((void));
419 u_long	rcr3		__P((void));
420 
421 #include <machine/spl.h>	/* XXX belongs elsewhere */
422 
423 #endif /* !_MACHINE_CPUFUNC_H_ */
424