xref: /freebsd/sys/amd64/include/cpufunc.h (revision 20233f27f47bc6545222bc06ad89735924aadb8f)
1 /*-
2  * Copyright (c) 1993 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	$Id: cpufunc.h,v 1.3 1997/09/05 20:20:31 smp Exp smp $
34  */
35 
36 /*
37  * Functions to provide access to special i386 instructions.
38  */
39 
40 #ifndef _MACHINE_CPUFUNC_H_
41 #define	_MACHINE_CPUFUNC_H_
42 
43 #include <sys/cdefs.h>
44 #include <sys/types.h>
45 
46 #include <machine/lock.h>
47 
48 
49 #ifdef	__GNUC__
50 
51 static __inline void
52 breakpoint(void)
53 {
54 	__asm __volatile("int $3");
55 }
56 
57 static __inline void
58 disable_intr(void)
59 {
60 	__asm __volatile("cli" : : : "memory");
61 	MPINTR_LOCK();
62 }
63 
64 static __inline void
65 enable_intr(void)
66 {
67 	MPINTR_UNLOCK();
68 	__asm __volatile("sti");
69 }
70 
71 #define	HAVE_INLINE_FFS
72 
73 static __inline int
74 ffs(int mask)
75 {
76 	int	result;
77 	/*
78 	 * bsfl turns out to be not all that slow on 486's.  It can beaten
79 	 * using a binary search to reduce to 4 bits and then a table lookup,
80 	 * but only if the code is inlined and in the cache, and the code
81 	 * is quite large so inlining it probably busts the cache.
82 	 *
83 	 * Note that gcc-2's builtin ffs would be used if we didn't declare
84 	 * this inline or turn off the builtin.  The builtin is faster but
85 	 * broken in gcc-2.4.5 and slower but working in gcc-2.5 and 2.6.
86 	 */
87 	__asm __volatile("testl %0,%0; je 1f; bsfl %0,%0; incl %0; 1:"
88 			 : "=r" (result) : "0" (mask));
89 	return (result);
90 }
91 
92 #define	HAVE_INLINE_FLS
93 
94 static __inline int
95 fls(int mask)
96 {
97 	int	result;
98 	__asm __volatile("testl %0,%0; je 1f; bsrl %0,%0; incl %0; 1:"
99 			 : "=r" (result) : "0" (mask));
100 	return (result);
101 }
102 
103 #if __GNUC__ < 2
104 
105 #define	inb(port)		inbv(port)
106 #define	outb(port, data)	outbv(port, data)
107 
108 #else /* __GNUC >= 2 */
109 
110 /*
111  * The following complications are to get around gcc not having a
112  * constraint letter for the range 0..255.  We still put "d" in the
113  * constraint because "i" isn't a valid constraint when the port
114  * isn't constant.  This only matters for -O0 because otherwise
115  * the non-working version gets optimized away.
116  *
117  * Use an expression-statement instead of a conditional expression
118  * because gcc-2.6.0 would promote the operands of the conditional
119  * and produce poor code for "if ((inb(var) & const1) == const2)".
120  *
121  * The unnecessary test `(port) < 0x10000' is to generate a warning if
122  * the `port' has type u_short or smaller.  Such types are pessimal.
123  * This actually only works for signed types.  The range check is
124  * careful to avoid generating warnings.
125  */
126 #define	inb(port) __extension__ ({					\
127 	u_char	_data;							\
128 	if (__builtin_constant_p(port) && ((port) & 0xffff) < 0x100	\
129 	    && (port) < 0x10000)					\
130 		_data = inbc(port);					\
131 	else								\
132 		_data = inbv(port);					\
133 	_data; })
134 
135 #define	outb(port, data) (						\
136 	__builtin_constant_p(port) && ((port) & 0xffff) < 0x100		\
137 	&& (port) < 0x10000						\
138 	? outbc(port, data) : outbv(port, data))
139 
140 static __inline u_char
141 inbc(u_int port)
142 {
143 	u_char	data;
144 
145 	__asm __volatile("inb %1,%0" : "=a" (data) : "id" ((u_short)(port)));
146 	return (data);
147 }
148 
149 static __inline void
150 outbc(u_int port, u_char data)
151 {
152 	__asm __volatile("outb %0,%1" : : "a" (data), "id" ((u_short)(port)));
153 }
154 
155 #endif /* __GNUC <= 2 */
156 
157 static __inline u_char
158 inbv(u_int port)
159 {
160 	u_char	data;
161 	/*
162 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
163 	 * %edx, while gcc generates inferior code (movw instead of movl)
164 	 * if we tell it to load (u_short) port.
165 	 */
166 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
167 	return (data);
168 }
169 
170 static __inline u_long
171 inl(u_int port)
172 {
173 	u_long	data;
174 
175 	__asm __volatile("inl %%dx,%0" : "=a" (data) : "d" (port));
176 	return (data);
177 }
178 
179 static __inline void
180 insb(u_int port, void *addr, size_t cnt)
181 {
182 	__asm __volatile("cld; rep; insb"
183 			 : : "d" (port), "D" (addr), "c" (cnt)
184 			 : "di", "cx", "memory");
185 }
186 
187 static __inline void
188 insw(u_int port, void *addr, size_t cnt)
189 {
190 	__asm __volatile("cld; rep; insw"
191 			 : : "d" (port), "D" (addr), "c" (cnt)
192 			 : "di", "cx", "memory");
193 }
194 
195 static __inline void
196 insl(u_int port, void *addr, size_t cnt)
197 {
198 	__asm __volatile("cld; rep; insl"
199 			 : : "d" (port), "D" (addr), "c" (cnt)
200 			 : "di", "cx", "memory");
201 }
202 
203 static __inline void
204 invd(void)
205 {
206 	__asm __volatile("invd");
207 }
208 
209 #ifdef KERNEL
210 #ifdef SMP
211 
212 /*
213  * When using APIC IPI's, the inlining cost is prohibitive since the call
214  * executes into the IPI transmission system.
215  */
216 void	invlpg		__P((u_int addr));
217 void	invltlb		__P((void));
218 
219 #else  /* !SMP */
220 
221 static __inline void
222 invlpg(u_int addr)
223 {
224 	__asm __volatile("invlpg (%0)" : : "r" (addr) : "memory");
225 }
226 
227 static __inline void
228 invltlb(void)
229 {
230 	u_long	temp;
231 	/*
232 	 * This should be implemented as load_cr3(rcr3()) when load_cr3()
233 	 * is inlined.
234 	 */
235 	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3" : "=r" (temp)
236 			 : : "memory");
237 }
238 
239 #endif	/* SMP */
240 #endif  /* KERNEL */
241 
242 static __inline u_short
243 inw(u_int port)
244 {
245 	u_short	data;
246 
247 	__asm __volatile("inw %%dx,%0" : "=a" (data) : "d" (port));
248 	return (data);
249 }
250 
251 static __inline u_int
252 loadandclear(u_int *addr)
253 {
254 	u_int	result;
255 
256 	__asm __volatile("xorl %0,%0; xchgl %1,%0"
257 			 : "=&r" (result) : "m" (*addr));
258 	return (result);
259 }
260 
261 static __inline void
262 outbv(u_int port, u_char data)
263 {
264 	u_char	al;
265 	/*
266 	 * Use an unnecessary assignment to help gcc's register allocator.
267 	 * This make a large difference for gcc-1.40 and a tiny difference
268 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
269 	 * best results.  gcc-2.6.0 can't handle this.
270 	 */
271 	al = data;
272 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
273 }
274 
275 static __inline void
276 outl(u_int port, u_long data)
277 {
278 	/*
279 	 * outl() and outw() aren't used much so we haven't looked at
280 	 * possible micro-optimizations such as the unnecessary
281 	 * assignment for them.
282 	 */
283 	__asm __volatile("outl %0,%%dx" : : "a" (data), "d" (port));
284 }
285 
286 static __inline void
287 outsb(u_int port, void *addr, size_t cnt)
288 {
289 	__asm __volatile("cld; rep; outsb"
290 			 : : "d" (port), "S" (addr), "c" (cnt)
291 			 : "si", "cx");
292 }
293 
294 static __inline void
295 outsw(u_int port, void *addr, size_t cnt)
296 {
297 	__asm __volatile("cld; rep; outsw"
298 			 : : "d" (port), "S" (addr), "c" (cnt)
299 			 : "si", "cx");
300 }
301 
302 static __inline void
303 outsl(u_int port, void *addr, size_t cnt)
304 {
305 	__asm __volatile("cld; rep; outsl"
306 			 : : "d" (port), "S" (addr), "c" (cnt)
307 			 : "si", "cx");
308 }
309 
310 static __inline void
311 outw(u_int port, u_short data)
312 {
313 	__asm __volatile("outw %0,%%dx" : : "a" (data), "d" (port));
314 }
315 
316 static __inline u_long
317 rcr2(void)
318 {
319 	u_long	data;
320 
321 	__asm __volatile("movl %%cr2,%0" : "=r" (data));
322 	return (data);
323 }
324 
325 static __inline u_long
326 read_eflags(void)
327 {
328 	u_long	ef;
329 
330 	__asm __volatile("pushfl; popl %0" : "=r" (ef));
331 	return (ef);
332 }
333 
334 static __inline quad_t
335 rdmsr(u_int msr)
336 {
337 	quad_t rv;
338 
339 	__asm __volatile(".byte 0x0f, 0x32" : "=A" (rv) : "c" (msr));
340 	return (rv);
341 }
342 
343 static __inline quad_t
344 rdpmc(u_int pmc)
345 {
346 	quad_t rv;
347 
348 	__asm __volatile(".byte 0x0f, 0x33" : "=A" (rv) : "c" (pmc));
349 	return (rv);
350 }
351 
352 static __inline quad_t
353 rdtsc(void)
354 {
355 	quad_t rv;
356 
357 	__asm __volatile(".byte 0x0f, 0x31" : "=A" (rv));
358 	return (rv);
359 }
360 
361 static __inline void
362 setbits(volatile unsigned *addr, u_int bits)
363 {
364 	__asm __volatile(
365 #ifdef SMP
366 			 "lock; "
367 #endif
368 			 "orl %1,%0" : "=m" (*addr) : "ir" (bits));
369 }
370 
371 static __inline void
372 wbinvd(void)
373 {
374 	__asm __volatile("wbinvd");
375 }
376 
377 static __inline void
378 write_eflags(u_long ef)
379 {
380 	__asm __volatile("pushl %0; popfl" : : "r" (ef));
381 }
382 
383 static __inline void
384 wrmsr(u_int msr, quad_t newval)
385 {
386 	__asm __volatile(".byte 0x0f, 0x30" : : "A" (newval), "c" (msr));
387 }
388 
389 #else /* !__GNUC__ */
390 
391 int	breakpoint	__P((void));
392 void	disable_intr	__P((void));
393 void	enable_intr	__P((void));
394 u_char	inb		__P((u_int port));
395 u_long	inl		__P((u_int port));
396 void	insb		__P((u_int port, void *addr, size_t cnt));
397 void	insl		__P((u_int port, void *addr, size_t cnt));
398 void	insw		__P((u_int port, void *addr, size_t cnt));
399 void	invd		__P((void));
400 void	invlpg		__P((u_int addr));
401 void	invltlb		__P((void));
402 u_short	inw		__P((u_int port));
403 u_int	loadandclear	__P((u_int *addr));
404 void	outb		__P((u_int port, u_char data));
405 void	outl		__P((u_int port, u_long data));
406 void	outsb		__P((u_int port, void *addr, size_t cnt));
407 void	outsl		__P((u_int port, void *addr, size_t cnt));
408 void	outsw		__P((u_int port, void *addr, size_t cnt));
409 void	outw		__P((u_int port, u_short data));
410 u_long	rcr2		__P((void));
411 quad_t	rdmsr		__P((u_int msr));
412 quad_t	rdpmc		__P((u_int pmc));
413 quad_t	rdtsc		__P((void));
414 u_long	read_eflags	__P((void));
415 void	setbits		__P((volatile unsigned *addr, u_int bits));
416 void	wbinvd		__P((void));
417 void	write_eflags	__P((u_long ef));
418 void	wrmsr		__P((u_int msr, quad_t newval));
419 
420 #endif	/* __GNUC__ */
421 
422 void	load_cr0	__P((u_long cr0));
423 void	load_cr3	__P((u_long cr3));
424 void	load_cr4	__P((u_long cr4));
425 void	ltr		__P((u_short sel));
426 u_int	rcr0		__P((void));
427 u_long	rcr3		__P((void));
428 u_long	rcr4		__P((void));
429 
430 #endif /* !_MACHINE_CPUFUNC_H_ */
431