1 /*- 2 * Copyright (c) 1998 Michael Smith <msmith@freebsd.org> 3 * Copyright (c) 2007 Semihalf, Rafal Jaworowski <raj@semihalf.com> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 #include <sys/param.h> 31 32 #include <stand.h> 33 #include <stdint.h> 34 35 #include "api_public.h" 36 #include "glue.h" 37 #include "libuboot.h" 38 39 /* 40 * MD primitives supporting placement of module data 41 */ 42 43 #ifdef __arm__ 44 #define KERN_ALIGN (2 * 1024 * 1024) 45 #else 46 #define KERN_ALIGN PAGE_SIZE 47 #endif 48 49 /* 50 * Avoid low memory, u-boot puts things like args and dtb blobs there. 51 */ 52 #define KERN_MINADDR max(KERN_ALIGN, (1024 * 1024)) 53 54 extern void _start(void); /* ubldr entry point address. */ 55 56 /* 57 * This is called for every object loaded (kernel, module, dtb file, etc). The 58 * expected return value is the next address at or after the given addr which is 59 * appropriate for loading the given object described by type and data. On each 60 * call the addr is the next address following the previously loaded object. 61 * 62 * The first call is for loading the kernel, and the addr argument will be zero, 63 * and we search for a big block of ram to load the kernel and modules. 64 * 65 * On subsequent calls the addr will be non-zero, and we just round it up so 66 * that each object begins on a page boundary. 67 */ 68 uint64_t 69 uboot_loadaddr(u_int type, void *data, uint64_t addr) 70 { 71 struct sys_info *si; 72 uint64_t sblock, eblock, subldr, eubldr; 73 uint64_t biggest_block, this_block; 74 uint64_t biggest_size, this_size; 75 int i; 76 char *envstr; 77 78 if (addr == 0) { 79 /* 80 * If the loader_kernaddr environment variable is set, blindly 81 * honor it. It had better be right. We force interpretation 82 * of the value in base-16 regardless of any leading 0x prefix, 83 * because that's the U-Boot convention. 84 */ 85 envstr = ub_env_get("loader_kernaddr"); 86 if (envstr != NULL) 87 return (strtoul(envstr, NULL, 16)); 88 89 /* 90 * Find addr/size of largest DRAM block. Carve our own address 91 * range out of the block, because loading the kernel over the 92 * top ourself is a poor memory-conservation strategy. Avoid 93 * memory at beginning of the first block of physical ram, 94 * since u-boot likes to pass args and data there. Assume that 95 * u-boot has moved itself to the very top of ram and 96 * optimistically assume that we won't run into it up there. 97 */ 98 if ((si = ub_get_sys_info()) == NULL) 99 panic("could not retrieve system info"); 100 101 biggest_block = 0; 102 biggest_size = 0; 103 subldr = rounddown2((uintptr_t)_start, KERN_ALIGN); 104 eubldr = roundup2((uint64_t)uboot_heap_end, KERN_ALIGN); 105 for (i = 0; i < si->mr_no; i++) { 106 if (si->mr[i].flags != MR_ATTR_DRAM) 107 continue; 108 sblock = roundup2((uint64_t)si->mr[i].start, 109 KERN_ALIGN); 110 eblock = rounddown2((uint64_t)si->mr[i].start + 111 si->mr[i].size, KERN_ALIGN); 112 if (biggest_size == 0) 113 sblock += KERN_MINADDR; 114 if (subldr >= sblock && subldr < eblock) { 115 if (subldr - sblock > eblock - eubldr) { 116 this_block = sblock; 117 this_size = subldr - sblock; 118 } else { 119 this_block = eubldr; 120 this_size = eblock - eubldr; 121 } 122 } else if (subldr < sblock && eubldr < eblock) { 123 /* Loader is below or engulfs the sblock */ 124 this_block = (eubldr < sblock) ? sblock : eubldr; 125 this_size = eblock - this_block; 126 } else { 127 this_block = 0; 128 this_size = 0; 129 } 130 if (biggest_size < this_size) { 131 biggest_block = this_block; 132 biggest_size = this_size; 133 } 134 } 135 if (biggest_size == 0) 136 panic("Not enough DRAM to load kernel"); 137 #if 0 138 printf("Loading kernel into region 0x%08jx-0x%08jx (%ju MiB)\n", 139 (uintmax_t)biggest_block, 140 (uintmax_t)biggest_block + biggest_size - 1, 141 (uintmax_t)biggest_size / 1024 / 1024); 142 #endif 143 return (biggest_block); 144 } 145 return roundup2(addr, PAGE_SIZE); 146 } 147 148 ssize_t 149 uboot_copyin(const void *src, vm_offset_t dest, const size_t len) 150 { 151 bcopy(src, (void *)dest, len); 152 return (len); 153 } 154 155 ssize_t 156 uboot_copyout(const vm_offset_t src, void *dest, const size_t len) 157 { 158 bcopy((void *)src, dest, len); 159 return (len); 160 } 161 162 ssize_t 163 uboot_readin(readin_handle_t fd, vm_offset_t dest, const size_t len) 164 { 165 return (VECTX_READ(fd, (void *)dest, len)); 166 } 167