Standard preamble:
========================================================================
..
.... Set up some character translations and predefined strings. \*(-- will
give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
double quote, and \*(R" will give a right double quote. \*(C+ will
give a nicer C++. Capital omega is used to do unbreakable dashes and
therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
nothing in troff, for use with C<>.
.tr \(*W- . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\}
Escape single quotes in literal strings from groff's Unicode transform.
If the F register is >0, we'll generate index entries on stderr for
titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
entries marked with X<> in POD. Of course, you'll have to process the
output yourself in some meaningful fashion.
Avoid warning from groff about undefined register 'F'.
.. .nr rF 0 . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] .\} . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents . \" corrections for vroff . \" for low resolution devices (crt and lpr) \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} ========================================================================
Title "BIO_F_MD 3ossl"
way too many mistakes in technical documents.
Any data written or read through a digest \s-1BIO\s0 using BIO_read_ex() and \fBBIO_write_ex() is digested.
\fBBIO_gets(), if its size parameter is large enough finishes the digest calculation and returns the digest value. BIO_puts() is not supported.
\fBBIO_reset() reinitialises a digest \s-1BIO.\s0
\fBBIO_set_md() sets the message digest of \s-1BIO\s0 b to md: this must be called to initialize a digest \s-1BIO\s0 before any data is passed through it. It is a BIO_ctrl() macro.
\fBBIO_get_md() places the a pointer to the digest BIOs digest method in mdp, it is a BIO_ctrl() macro.
\fBBIO_get_md_ctx() returns the digest BIOs context into mdcp.
The context returned by BIO_get_md_ctx() is an internal context structure. Changes made to this context will affect the digest \s-1BIO\s0 itself and the context pointer will become invalid when the digest \s-1BIO\s0 is freed.
After the digest has been retrieved from a digest \s-1BIO\s0 it must be reinitialized by calling BIO_reset(), or BIO_set_md() before any more data is passed through it.
If an application needs to call BIO_gets() or BIO_puts() through a chain containing digest BIOs then this can be done by prepending a buffering \s-1BIO.\s0
Calling BIO_get_md_ctx() will return the context and initialize the \s-1BIO\s0 state. This allows applications to initialize the context externally if the standard calls such as BIO_set_md() are not sufficiently flexible.
\fBBIO_set_md(), BIO_get_md() and BIO_md_ctx() return 1 for success and <=0 for failure.
.Vb 2 BIO *bio, *mdtmp; char message[] = "Hello World"; \& bio = BIO_new(BIO_s_null()); mdtmp = BIO_new(BIO_f_md()); BIO_set_md(mdtmp, EVP_sha1()); /* * For BIO_push() we want to append the sink BIO and keep a note of * the start of the chain. */ bio = BIO_push(mdtmp, bio); mdtmp = BIO_new(BIO_f_md()); BIO_set_md(mdtmp, EVP_md5()); bio = BIO_push(mdtmp, bio); /* Note: mdtmp can now be discarded */ BIO_write(bio, message, strlen(message)); .Ve
The next example digests data by reading through a chain instead:
.Vb 3 BIO *bio, *mdtmp; char buf[1024]; int rdlen; \& bio = BIO_new_file(file, "rb"); mdtmp = BIO_new(BIO_f_md()); BIO_set_md(mdtmp, EVP_sha1()); bio = BIO_push(mdtmp, bio); mdtmp = BIO_new(BIO_f_md()); BIO_set_md(mdtmp, EVP_md5()); bio = BIO_push(mdtmp, bio); do { rdlen = BIO_read(bio, buf, sizeof(buf)); /* Might want to do something with the data here */ } while (rdlen > 0); .Ve
This next example retrieves the message digests from a \s-1BIO\s0 chain and outputs them. This could be used with the examples above.
.Vb 4 BIO *mdtmp; unsigned char mdbuf[EVP_MAX_MD_SIZE]; int mdlen; int i; \& mdtmp = bio; /* Assume bio has previously been set up */ do { EVP_MD *md; \& mdtmp = BIO_find_type(mdtmp, BIO_TYPE_MD); if (!mdtmp) break; BIO_get_md(mdtmp, &md); printf("%s digest", OBJ_nid2sn(EVP_MD_get_type(md))); mdlen = BIO_gets(mdtmp, mdbuf, EVP_MAX_MD_SIZE); for (i = 0; i < mdlen; i++) printf(":%02X", mdbuf[i]); printf("\en"); mdtmp = BIO_next(mdtmp); } while (mdtmp); \& BIO_free_all(bio); .Ve
Licensed under the Apache License 2.0 (the \*(L"License\*(R"). You may not use this file except in compliance with the License. You can obtain a copy in the file \s-1LICENSE\s0 in the source distribution or at <https://www.openssl.org/source/license.html>.