xref: /freebsd/sbin/newfs/mkfs.c (revision 9088779e3c8b810afb701adb80be154a7b2e0523)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2002 Networks Associates Technology, Inc.
5  * All rights reserved.
6  *
7  * This software was developed for the FreeBSD Project by Marshall
8  * Kirk McKusick and Network Associates Laboratories, the Security
9  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11  * research program.
12  *
13  * Copyright (c) 1980, 1989, 1993
14  *	The Regents of the University of California.  All rights reserved.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  */
40 
41 #if 0
42 #ifndef lint
43 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
44 #endif /* not lint */
45 #endif
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #define _WANT_P_OSREL
50 #include <sys/param.h>
51 #include <sys/disklabel.h>
52 #include <sys/file.h>
53 #include <sys/ioctl.h>
54 #include <sys/mman.h>
55 #include <sys/resource.h>
56 #include <sys/stat.h>
57 #include <sys/wait.h>
58 #include <err.h>
59 #include <grp.h>
60 #include <limits.h>
61 #include <signal.h>
62 #include <stdlib.h>
63 #include <string.h>
64 #include <stdint.h>
65 #include <stdio.h>
66 #include <time.h>
67 #include <unistd.h>
68 #include <ufs/ufs/dinode.h>
69 #include <ufs/ufs/dir.h>
70 #include <ufs/ffs/fs.h>
71 #include "newfs.h"
72 
73 /*
74  * make file system for cylinder-group style file systems
75  */
76 #define UMASK		0755
77 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
78 
79 static struct	csum *fscs;
80 #define	sblock	disk.d_fs
81 #define	acg	disk.d_cg
82 
83 union dinode {
84 	struct ufs1_dinode dp1;
85 	struct ufs2_dinode dp2;
86 };
87 #define DIP(dp, field) \
88 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
89 	(dp)->dp1.field : (dp)->dp2.field)
90 
91 static caddr_t iobuf;
92 static long iobufsize;
93 static ufs2_daddr_t alloc(int size, int mode);
94 static int charsperline(void);
95 static void clrblock(struct fs *, unsigned char *, int);
96 static void fsinit(time_t);
97 static int ilog2(int);
98 static void initcg(int, time_t);
99 static int isblock(struct fs *, unsigned char *, int);
100 static void iput(union dinode *, ino_t);
101 static int makedir(struct direct *, int);
102 static void setblock(struct fs *, unsigned char *, int);
103 static void wtfs(ufs2_daddr_t, int, char *);
104 static u_int32_t newfs_random(void);
105 
106 void
107 mkfs(struct partition *pp, char *fsys)
108 {
109 	int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
110 	long i, j, csfrags;
111 	uint cg;
112 	time_t utime;
113 	quad_t sizepb;
114 	int width;
115 	ino_t maxinum;
116 	int minfragsperinode;	/* minimum ratio of frags to inodes */
117 	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
118 	struct fsrecovery *fsr;
119 	char *fsrbuf;
120 	union {
121 		struct fs fdummy;
122 		char cdummy[SBLOCKSIZE];
123 	} dummy;
124 #define fsdummy dummy.fdummy
125 #define chdummy dummy.cdummy
126 
127 	/*
128 	 * Our blocks == sector size, and the version of UFS we are using is
129 	 * specified by Oflag.
130 	 */
131 	disk.d_bsize = sectorsize;
132 	disk.d_ufs = Oflag;
133 	if (Rflag)
134 		utime = 1000000000;
135 	else
136 		time(&utime);
137 	if ((sblock.fs_si = malloc(sizeof(struct fs_summary_info))) == NULL) {
138 		printf("Superblock summary info allocation failed.\n");
139 		exit(18);
140 	}
141 	sblock.fs_old_flags = FS_FLAGS_UPDATED;
142 	sblock.fs_flags = 0;
143 	if (Uflag)
144 		sblock.fs_flags |= FS_DOSOFTDEP;
145 	if (Lflag)
146 		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
147 	if (Jflag)
148 		sblock.fs_flags |= FS_GJOURNAL;
149 	if (lflag)
150 		sblock.fs_flags |= FS_MULTILABEL;
151 	if (tflag)
152 		sblock.fs_flags |= FS_TRIM;
153 	/*
154 	 * Validate the given file system size.
155 	 * Verify that its last block can actually be accessed.
156 	 * Convert to file system fragment sized units.
157 	 */
158 	if (fssize <= 0) {
159 		printf("preposterous size %jd\n", (intmax_t)fssize);
160 		exit(13);
161 	}
162 	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
163 	    (char *)&sblock);
164 	/*
165 	 * collect and verify the file system density info
166 	 */
167 	sblock.fs_avgfilesize = avgfilesize;
168 	sblock.fs_avgfpdir = avgfilesperdir;
169 	if (sblock.fs_avgfilesize <= 0)
170 		printf("illegal expected average file size %d\n",
171 		    sblock.fs_avgfilesize), exit(14);
172 	if (sblock.fs_avgfpdir <= 0)
173 		printf("illegal expected number of files per directory %d\n",
174 		    sblock.fs_avgfpdir), exit(15);
175 
176 restart:
177 	/*
178 	 * collect and verify the block and fragment sizes
179 	 */
180 	sblock.fs_bsize = bsize;
181 	sblock.fs_fsize = fsize;
182 	if (!POWEROF2(sblock.fs_bsize)) {
183 		printf("block size must be a power of 2, not %d\n",
184 		    sblock.fs_bsize);
185 		exit(16);
186 	}
187 	if (!POWEROF2(sblock.fs_fsize)) {
188 		printf("fragment size must be a power of 2, not %d\n",
189 		    sblock.fs_fsize);
190 		exit(17);
191 	}
192 	if (sblock.fs_fsize < sectorsize) {
193 		printf("increasing fragment size from %d to sector size (%d)\n",
194 		    sblock.fs_fsize, sectorsize);
195 		sblock.fs_fsize = sectorsize;
196 	}
197 	if (sblock.fs_bsize > MAXBSIZE) {
198 		printf("decreasing block size from %d to maximum (%d)\n",
199 		    sblock.fs_bsize, MAXBSIZE);
200 		sblock.fs_bsize = MAXBSIZE;
201 	}
202 	if (sblock.fs_bsize < MINBSIZE) {
203 		printf("increasing block size from %d to minimum (%d)\n",
204 		    sblock.fs_bsize, MINBSIZE);
205 		sblock.fs_bsize = MINBSIZE;
206 	}
207 	if (sblock.fs_fsize > MAXBSIZE) {
208 		printf("decreasing fragment size from %d to maximum (%d)\n",
209 		    sblock.fs_fsize, MAXBSIZE);
210 		sblock.fs_fsize = MAXBSIZE;
211 	}
212 	if (sblock.fs_bsize < sblock.fs_fsize) {
213 		printf("increasing block size from %d to fragment size (%d)\n",
214 		    sblock.fs_bsize, sblock.fs_fsize);
215 		sblock.fs_bsize = sblock.fs_fsize;
216 	}
217 	if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
218 		printf(
219 		"increasing fragment size from %d to block size / %d (%d)\n",
220 		    sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
221 		sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
222 	}
223 	if (maxbsize == 0)
224 		maxbsize = bsize;
225 	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
226 		sblock.fs_maxbsize = sblock.fs_bsize;
227 		printf("Extent size set to %d\n", sblock.fs_maxbsize);
228 	} else if (maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
229 		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
230 		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
231 	} else {
232 		sblock.fs_maxbsize = maxbsize;
233 	}
234 	/*
235 	 * Maxcontig sets the default for the maximum number of blocks
236 	 * that may be allocated sequentially. With file system clustering
237 	 * it is possible to allocate contiguous blocks up to the maximum
238 	 * transfer size permitted by the controller or buffering.
239 	 */
240 	if (maxcontig == 0)
241 		maxcontig = MAX(1, MAXPHYS / bsize);
242 	sblock.fs_maxcontig = maxcontig;
243 	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
244 		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
245 		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
246 	}
247 	if (sblock.fs_maxcontig > 1)
248 		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
249 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
250 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
251 	sblock.fs_qbmask = ~sblock.fs_bmask;
252 	sblock.fs_qfmask = ~sblock.fs_fmask;
253 	sblock.fs_bshift = ilog2(sblock.fs_bsize);
254 	sblock.fs_fshift = ilog2(sblock.fs_fsize);
255 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
256 	sblock.fs_fragshift = ilog2(sblock.fs_frag);
257 	if (sblock.fs_frag > MAXFRAG) {
258 		printf("fragment size %d is still too small (can't happen)\n",
259 		    sblock.fs_bsize / MAXFRAG);
260 		exit(21);
261 	}
262 	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
263 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
264 	sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize);
265 
266 	/*
267 	 * Before the filesystem is finally initialized, mark it
268 	 * as incompletely initialized.
269 	 */
270 	sblock.fs_magic = FS_BAD_MAGIC;
271 
272 	if (Oflag == 1) {
273 		sblock.fs_sblockloc = SBLOCK_UFS1;
274 		sblock.fs_sblockactualloc = SBLOCK_UFS1;
275 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
276 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
277 		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
278 		    sizeof(ufs1_daddr_t));
279 		sblock.fs_old_inodefmt = FS_44INODEFMT;
280 		sblock.fs_old_cgoffset = 0;
281 		sblock.fs_old_cgmask = 0xffffffff;
282 		sblock.fs_old_size = sblock.fs_size;
283 		sblock.fs_old_rotdelay = 0;
284 		sblock.fs_old_rps = 60;
285 		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
286 		sblock.fs_old_cpg = 1;
287 		sblock.fs_old_interleave = 1;
288 		sblock.fs_old_trackskew = 0;
289 		sblock.fs_old_cpc = 0;
290 		sblock.fs_old_postblformat = 1;
291 		sblock.fs_old_nrpos = 1;
292 	} else {
293 		sblock.fs_sblockloc = SBLOCK_UFS2;
294 		sblock.fs_sblockactualloc = SBLOCK_UFS2;
295 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
296 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
297 		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
298 		    sizeof(ufs2_daddr_t));
299 	}
300 	sblock.fs_sblkno =
301 	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
302 		sblock.fs_frag);
303 	sblock.fs_cblkno = sblock.fs_sblkno +
304 	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
305 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
306 	sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1;
307 	for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) {
308 		sizepb *= NINDIR(&sblock);
309 		sblock.fs_maxfilesize += sizepb;
310 	}
311 
312 	/*
313 	 * It's impossible to create a snapshot in case that fs_maxfilesize
314 	 * is smaller than the fssize.
315 	 */
316 	if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
317 		warnx("WARNING: You will be unable to create snapshots on this "
318 		      "file system.  Correct by using a larger blocksize.");
319 	}
320 
321 	/*
322 	 * Calculate the number of blocks to put into each cylinder group.
323 	 *
324 	 * This algorithm selects the number of blocks per cylinder
325 	 * group. The first goal is to have at least enough data blocks
326 	 * in each cylinder group to meet the density requirement. Once
327 	 * this goal is achieved we try to expand to have at least
328 	 * MINCYLGRPS cylinder groups. Once this goal is achieved, we
329 	 * pack as many blocks into each cylinder group map as will fit.
330 	 *
331 	 * We start by calculating the smallest number of blocks that we
332 	 * can put into each cylinder group. If this is too big, we reduce
333 	 * the density until it fits.
334 	 */
335 	maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock);
336 	minfragsperinode = 1 + fssize / maxinum;
337 	if (density == 0) {
338 		density = MAX(NFPI, minfragsperinode) * fsize;
339 	} else if (density < minfragsperinode * fsize) {
340 		origdensity = density;
341 		density = minfragsperinode * fsize;
342 		fprintf(stderr, "density increased from %d to %d\n",
343 		    origdensity, density);
344 	}
345 	origdensity = density;
346 	for (;;) {
347 		fragsperinode = MAX(numfrags(&sblock, density), 1);
348 		if (fragsperinode < minfragsperinode) {
349 			bsize <<= 1;
350 			fsize <<= 1;
351 			printf("Block size too small for a file system %s %d\n",
352 			     "of this size. Increasing blocksize to", bsize);
353 			goto restart;
354 		}
355 		minfpg = fragsperinode * INOPB(&sblock);
356 		if (minfpg > sblock.fs_size)
357 			minfpg = sblock.fs_size;
358 		sblock.fs_ipg = INOPB(&sblock);
359 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
360 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
361 		if (sblock.fs_fpg < minfpg)
362 			sblock.fs_fpg = minfpg;
363 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
364 		    INOPB(&sblock));
365 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
366 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
367 		if (sblock.fs_fpg < minfpg)
368 			sblock.fs_fpg = minfpg;
369 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
370 		    INOPB(&sblock));
371 		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
372 			break;
373 		density -= sblock.fs_fsize;
374 	}
375 	if (density != origdensity)
376 		printf("density reduced from %d to %d\n", origdensity, density);
377 	/*
378 	 * Start packing more blocks into the cylinder group until
379 	 * it cannot grow any larger, the number of cylinder groups
380 	 * drops below MINCYLGRPS, or we reach the size requested.
381 	 * For UFS1 inodes per cylinder group are stored in an int16_t
382 	 * so fs_ipg is limited to 2^15 - 1.
383 	 */
384 	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
385 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
386 		    INOPB(&sblock));
387 		if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) {
388 			if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
389 				break;
390 			if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
391 				continue;
392 			if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
393 				break;
394 		}
395 		sblock.fs_fpg -= sblock.fs_frag;
396 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
397 		    INOPB(&sblock));
398 		break;
399 	}
400 	/*
401 	 * Check to be sure that the last cylinder group has enough blocks
402 	 * to be viable. If it is too small, reduce the number of blocks
403 	 * per cylinder group which will have the effect of moving more
404 	 * blocks into the last cylinder group.
405 	 */
406 	optimalfpg = sblock.fs_fpg;
407 	for (;;) {
408 		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
409 		lastminfpg = roundup(sblock.fs_iblkno +
410 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
411 		if (sblock.fs_size < lastminfpg) {
412 			printf("Filesystem size %jd < minimum size of %d\n",
413 			    (intmax_t)sblock.fs_size, lastminfpg);
414 			exit(28);
415 		}
416 		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
417 		    sblock.fs_size % sblock.fs_fpg == 0)
418 			break;
419 		sblock.fs_fpg -= sblock.fs_frag;
420 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
421 		    INOPB(&sblock));
422 	}
423 	if (optimalfpg != sblock.fs_fpg)
424 		printf("Reduced frags per cylinder group from %d to %d %s\n",
425 		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
426 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
427 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
428 	if (Oflag == 1) {
429 		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
430 		sblock.fs_old_nsect = sblock.fs_old_spc;
431 		sblock.fs_old_npsect = sblock.fs_old_spc;
432 		sblock.fs_old_ncyl = sblock.fs_ncg;
433 	}
434 	/*
435 	 * fill in remaining fields of the super block
436 	 */
437 	sblock.fs_csaddr = cgdmin(&sblock, 0);
438 	sblock.fs_cssize =
439 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
440 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
441 	if (fscs == NULL)
442 		errx(31, "calloc failed");
443 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
444 	if (sblock.fs_sbsize > SBLOCKSIZE)
445 		sblock.fs_sbsize = SBLOCKSIZE;
446 	if (sblock.fs_sbsize < realsectorsize)
447 		sblock.fs_sbsize = realsectorsize;
448 	sblock.fs_minfree = minfree;
449 	if (metaspace > 0 && metaspace < sblock.fs_fpg / 2)
450 		sblock.fs_metaspace = blknum(&sblock, metaspace);
451 	else if (metaspace != -1)
452 		/* reserve half of minfree for metadata blocks */
453 		sblock.fs_metaspace = blknum(&sblock,
454 		    (sblock.fs_fpg * minfree) / 200);
455 	if (maxbpg == 0)
456 		sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
457 	else
458 		sblock.fs_maxbpg = maxbpg;
459 	sblock.fs_optim = opt;
460 	sblock.fs_cgrotor = 0;
461 	sblock.fs_pendingblocks = 0;
462 	sblock.fs_pendinginodes = 0;
463 	sblock.fs_fmod = 0;
464 	sblock.fs_ronly = 0;
465 	sblock.fs_state = 0;
466 	sblock.fs_clean = 1;
467 	sblock.fs_id[0] = (long)utime;
468 	sblock.fs_id[1] = newfs_random();
469 	sblock.fs_fsmnt[0] = '\0';
470 	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
471 	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
472 	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
473 	sblock.fs_cstotal.cs_nbfree =
474 	    fragstoblks(&sblock, sblock.fs_dsize) -
475 	    howmany(csfrags, sblock.fs_frag);
476 	sblock.fs_cstotal.cs_nffree =
477 	    fragnum(&sblock, sblock.fs_size) +
478 	    (fragnum(&sblock, csfrags) > 0 ?
479 	     sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
480 	sblock.fs_cstotal.cs_nifree =
481 	    sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO;
482 	sblock.fs_cstotal.cs_ndir = 0;
483 	sblock.fs_dsize -= csfrags;
484 	sblock.fs_time = utime;
485 	if (Oflag == 1) {
486 		sblock.fs_old_time = utime;
487 		sblock.fs_old_dsize = sblock.fs_dsize;
488 		sblock.fs_old_csaddr = sblock.fs_csaddr;
489 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
490 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
491 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
492 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
493 	}
494 	/*
495 	 * Set flags for metadata that is being check-hashed.
496 	 *
497 	 * Metadata check hashes are not supported in the UFS version 1
498 	 * filesystem to keep it as small and simple as possible.
499 	 */
500 	if (Oflag > 1) {
501 		sblock.fs_flags |= FS_METACKHASH;
502 		if (getosreldate() >= P_OSREL_CK_CYLGRP)
503 			sblock.fs_metackhash |= CK_CYLGRP;
504 		if (getosreldate() >= P_OSREL_CK_SUPERBLOCK)
505 			sblock.fs_metackhash |= CK_SUPERBLOCK;
506 		if (getosreldate() >= P_OSREL_CK_INODE)
507 			sblock.fs_metackhash |= CK_INODE;
508 	}
509 
510 	/*
511 	 * Dump out summary information about file system.
512 	 */
513 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
514 	printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
515 	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
516 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
517 	    sblock.fs_fsize);
518 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
519 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
520 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
521 	if (sblock.fs_flags & FS_DOSOFTDEP)
522 		printf("\twith soft updates\n");
523 #	undef B2MBFACTOR
524 
525 	if (Eflag && !Nflag) {
526 		printf("Erasing sectors [%jd...%jd]\n",
527 		    sblock.fs_sblockloc / disk.d_bsize,
528 		    fsbtodb(&sblock, sblock.fs_size) - 1);
529 		berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
530 		    sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
531 	}
532 	/*
533 	 * Wipe out old UFS1 superblock(s) if necessary.
534 	 */
535 	if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) {
536 		i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy,
537 		    SBLOCKSIZE);
538 		if (i == -1)
539 			err(1, "can't read old UFS1 superblock: %s",
540 			    disk.d_error);
541 
542 		if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
543 			fsdummy.fs_magic = 0;
544 			bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize,
545 			    chdummy, SBLOCKSIZE);
546 			for (cg = 0; cg < fsdummy.fs_ncg; cg++) {
547 				if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) >
548 				    fssize)
549 					break;
550 				bwrite(&disk, part_ofs + fsbtodb(&fsdummy,
551 				  cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE);
552 			}
553 		}
554 	}
555 	/*
556 	 * Reference the summary information so it will also be written.
557 	 */
558 	sblock.fs_csp = fscs;
559 	if (!Nflag && sbwrite(&disk, 0) != 0)
560 		err(1, "sbwrite: %s", disk.d_error);
561 	if (Xflag == 1) {
562 		printf("** Exiting on Xflag 1\n");
563 		exit(0);
564 	}
565 	if (Xflag == 2)
566 		printf("** Leaving BAD MAGIC on Xflag 2\n");
567 	else
568 		sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;
569 
570 	/*
571 	 * Now build the cylinders group blocks and
572 	 * then print out indices of cylinder groups.
573 	 */
574 	printf("super-block backups (for fsck_ffs -b #) at:\n");
575 	i = 0;
576 	width = charsperline();
577 	/*
578 	 * Allocate space for two sets of inode blocks.
579 	 */
580 	iobufsize = 2 * sblock.fs_bsize;
581 	if ((iobuf = calloc(1, iobufsize)) == 0) {
582 		printf("Cannot allocate I/O buffer\n");
583 		exit(38);
584 	}
585 	/*
586 	 * Write out all the cylinder groups and backup superblocks.
587 	 */
588 	for (cg = 0; cg < sblock.fs_ncg; cg++) {
589 		if (!Nflag)
590 			initcg(cg, utime);
591 		j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
592 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)),
593 		    cg < (sblock.fs_ncg-1) ? "," : "");
594 		if (j < 0)
595 			tmpbuf[j = 0] = '\0';
596 		if (i + j >= width) {
597 			printf("\n");
598 			i = 0;
599 		}
600 		i += j;
601 		printf("%s", tmpbuf);
602 		fflush(stdout);
603 	}
604 	printf("\n");
605 	if (Nflag)
606 		exit(0);
607 	/*
608 	 * Now construct the initial file system,
609 	 * then write out the super-block.
610 	 */
611 	fsinit(utime);
612 	if (Oflag == 1) {
613 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
614 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
615 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
616 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
617 	}
618 	if (Xflag == 3) {
619 		printf("** Exiting on Xflag 3\n");
620 		exit(0);
621 	}
622 	if (sbwrite(&disk, 0) != 0)
623 		err(1, "sbwrite: %s", disk.d_error);
624 	/*
625 	 * For UFS1 filesystems with a blocksize of 64K, the first
626 	 * alternate superblock resides at the location used for
627 	 * the default UFS2 superblock. As there is a valid
628 	 * superblock at this location, the boot code will use
629 	 * it as its first choice. Thus we have to ensure that
630 	 * all of its statistcs on usage are correct.
631 	 */
632 	if (Oflag == 1 && sblock.fs_bsize == 65536)
633 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)),
634 		    sblock.fs_bsize, (char *)&sblock);
635 	/*
636 	 * Read the last sector of the boot block, replace the last
637 	 * 20 bytes with the recovery information, then write it back.
638 	 * The recovery information only works for UFS2 filesystems.
639 	 * For UFS1, zero out the area to ensure that an old UFS2
640 	 * recovery block is not accidentally found.
641 	 */
642 	if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk,
643 	    part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize,
644 	    fsrbuf, realsectorsize) == -1)
645 		err(1, "can't read recovery area: %s", disk.d_error);
646 	fsr = (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr];
647 	if (sblock.fs_magic != FS_UFS2_MAGIC) {
648 		memset(fsr, 0, sizeof *fsr);
649 	} else {
650 		fsr->fsr_magic = sblock.fs_magic;
651 		fsr->fsr_fpg = sblock.fs_fpg;
652 		fsr->fsr_fsbtodb = sblock.fs_fsbtodb;
653 		fsr->fsr_sblkno = sblock.fs_sblkno;
654 		fsr->fsr_ncg = sblock.fs_ncg;
655 	}
656 	wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize,
657 	    realsectorsize, fsrbuf);
658 	free(fsrbuf);
659 	/*
660 	 * Update information about this partition in pack
661 	 * label, to that it may be updated on disk.
662 	 */
663 	if (pp != NULL) {
664 		pp->p_fstype = FS_BSDFFS;
665 		pp->p_fsize = sblock.fs_fsize;
666 		pp->p_frag = sblock.fs_frag;
667 		pp->p_cpg = sblock.fs_fpg;
668 	}
669 }
670 
671 /*
672  * Initialize a cylinder group.
673  */
674 void
675 initcg(int cylno, time_t utime)
676 {
677 	long blkno, start;
678 	off_t savedactualloc;
679 	uint i, j, d, dlower, dupper;
680 	ufs2_daddr_t cbase, dmax;
681 	struct ufs1_dinode *dp1;
682 	struct ufs2_dinode *dp2;
683 	struct csum *cs;
684 
685 	/*
686 	 * Determine block bounds for cylinder group.
687 	 * Allow space for super block summary information in first
688 	 * cylinder group.
689 	 */
690 	cbase = cgbase(&sblock, cylno);
691 	dmax = cbase + sblock.fs_fpg;
692 	if (dmax > sblock.fs_size)
693 		dmax = sblock.fs_size;
694 	dlower = cgsblock(&sblock, cylno) - cbase;
695 	dupper = cgdmin(&sblock, cylno) - cbase;
696 	if (cylno == 0)
697 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
698 	cs = &fscs[cylno];
699 	memset(&acg, 0, sblock.fs_cgsize);
700 	acg.cg_time = utime;
701 	acg.cg_magic = CG_MAGIC;
702 	acg.cg_cgx = cylno;
703 	acg.cg_niblk = sblock.fs_ipg;
704 	acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock));
705 	acg.cg_ndblk = dmax - cbase;
706 	if (sblock.fs_contigsumsize > 0)
707 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
708 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
709 	if (Oflag == 2) {
710 		acg.cg_iusedoff = start;
711 	} else {
712 		acg.cg_old_ncyl = sblock.fs_old_cpg;
713 		acg.cg_old_time = acg.cg_time;
714 		acg.cg_time = 0;
715 		acg.cg_old_niblk = acg.cg_niblk;
716 		acg.cg_niblk = 0;
717 		acg.cg_initediblk = 0;
718 		acg.cg_old_btotoff = start;
719 		acg.cg_old_boff = acg.cg_old_btotoff +
720 		    sblock.fs_old_cpg * sizeof(int32_t);
721 		acg.cg_iusedoff = acg.cg_old_boff +
722 		    sblock.fs_old_cpg * sizeof(u_int16_t);
723 	}
724 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
725 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
726 	if (sblock.fs_contigsumsize > 0) {
727 		acg.cg_clustersumoff =
728 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
729 		acg.cg_clustersumoff -= sizeof(u_int32_t);
730 		acg.cg_clusteroff = acg.cg_clustersumoff +
731 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
732 		acg.cg_nextfreeoff = acg.cg_clusteroff +
733 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
734 	}
735 	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
736 		printf("Panic: cylinder group too big\n");
737 		exit(37);
738 	}
739 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
740 	if (cylno == 0)
741 		for (i = 0; i < (long)UFS_ROOTINO; i++) {
742 			setbit(cg_inosused(&acg), i);
743 			acg.cg_cs.cs_nifree--;
744 		}
745 	if (cylno > 0) {
746 		/*
747 		 * In cylno 0, beginning space is reserved
748 		 * for boot and super blocks.
749 		 */
750 		for (d = 0; d < dlower; d += sblock.fs_frag) {
751 			blkno = d / sblock.fs_frag;
752 			setblock(&sblock, cg_blksfree(&acg), blkno);
753 			if (sblock.fs_contigsumsize > 0)
754 				setbit(cg_clustersfree(&acg), blkno);
755 			acg.cg_cs.cs_nbfree++;
756 		}
757 	}
758 	if ((i = dupper % sblock.fs_frag)) {
759 		acg.cg_frsum[sblock.fs_frag - i]++;
760 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
761 			setbit(cg_blksfree(&acg), dupper);
762 			acg.cg_cs.cs_nffree++;
763 		}
764 	}
765 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
766 	     d += sblock.fs_frag) {
767 		blkno = d / sblock.fs_frag;
768 		setblock(&sblock, cg_blksfree(&acg), blkno);
769 		if (sblock.fs_contigsumsize > 0)
770 			setbit(cg_clustersfree(&acg), blkno);
771 		acg.cg_cs.cs_nbfree++;
772 	}
773 	if (d < acg.cg_ndblk) {
774 		acg.cg_frsum[acg.cg_ndblk - d]++;
775 		for (; d < acg.cg_ndblk; d++) {
776 			setbit(cg_blksfree(&acg), d);
777 			acg.cg_cs.cs_nffree++;
778 		}
779 	}
780 	if (sblock.fs_contigsumsize > 0) {
781 		int32_t *sump = cg_clustersum(&acg);
782 		u_char *mapp = cg_clustersfree(&acg);
783 		int map = *mapp++;
784 		int bit = 1;
785 		int run = 0;
786 
787 		for (i = 0; i < acg.cg_nclusterblks; i++) {
788 			if ((map & bit) != 0)
789 				run++;
790 			else if (run != 0) {
791 				if (run > sblock.fs_contigsumsize)
792 					run = sblock.fs_contigsumsize;
793 				sump[run]++;
794 				run = 0;
795 			}
796 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
797 				bit <<= 1;
798 			else {
799 				map = *mapp++;
800 				bit = 1;
801 			}
802 		}
803 		if (run != 0) {
804 			if (run > sblock.fs_contigsumsize)
805 				run = sblock.fs_contigsumsize;
806 			sump[run]++;
807 		}
808 	}
809 	*cs = acg.cg_cs;
810 	/*
811 	 * Write out the duplicate super block. Then write the cylinder
812 	 * group map and two blocks worth of inodes in a single write.
813 	 */
814 	savedactualloc = sblock.fs_sblockactualloc;
815 	sblock.fs_sblockactualloc =
816 	    dbtob(fsbtodb(&sblock, cgsblock(&sblock, cylno)));
817 	if (sbwrite(&disk, 0) != 0)
818 		err(1, "sbwrite: %s", disk.d_error);
819 	sblock.fs_sblockactualloc = savedactualloc;
820 	if (cgwrite(&disk) != 0)
821 		err(1, "initcg: cgwrite: %s", disk.d_error);
822 	start = 0;
823 	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
824 	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
825 	for (i = 0; i < acg.cg_initediblk; i++) {
826 		if (sblock.fs_magic == FS_UFS1_MAGIC) {
827 			dp1->di_gen = newfs_random();
828 			dp1++;
829 		} else {
830 			dp2->di_gen = newfs_random();
831 			dp2++;
832 		}
833 	}
834 	wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno)), iobufsize, iobuf);
835 	/*
836 	 * For the old file system, we have to initialize all the inodes.
837 	 */
838 	if (Oflag == 1) {
839 		for (i = 2 * sblock.fs_frag;
840 		     i < sblock.fs_ipg / INOPF(&sblock);
841 		     i += sblock.fs_frag) {
842 			dp1 = (struct ufs1_dinode *)(&iobuf[start]);
843 			for (j = 0; j < INOPB(&sblock); j++) {
844 				dp1->di_gen = newfs_random();
845 				dp1++;
846 			}
847 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
848 			    sblock.fs_bsize, &iobuf[start]);
849 		}
850 	}
851 }
852 
853 /*
854  * initialize the file system
855  */
856 #define ROOTLINKCNT 3
857 
858 static struct direct root_dir[] = {
859 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
860 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
861 	{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
862 };
863 
864 #define SNAPLINKCNT 2
865 
866 static struct direct snap_dir[] = {
867 	{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
868 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
869 };
870 
871 void
872 fsinit(time_t utime)
873 {
874 	union dinode node;
875 	struct group *grp;
876 	gid_t gid;
877 	int entries;
878 
879 	memset(&node, 0, sizeof node);
880 	if ((grp = getgrnam("operator")) != NULL) {
881 		gid = grp->gr_gid;
882 	} else {
883 		warnx("Cannot retrieve operator gid, using gid 0.");
884 		gid = 0;
885 	}
886 	entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT;
887 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
888 		/*
889 		 * initialize the node
890 		 */
891 		node.dp1.di_atime = utime;
892 		node.dp1.di_mtime = utime;
893 		node.dp1.di_ctime = utime;
894 		/*
895 		 * create the root directory
896 		 */
897 		node.dp1.di_mode = IFDIR | UMASK;
898 		node.dp1.di_nlink = entries;
899 		node.dp1.di_size = makedir(root_dir, entries);
900 		node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
901 		node.dp1.di_blocks =
902 		    btodb(fragroundup(&sblock, node.dp1.di_size));
903 		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
904 		    iobuf);
905 		iput(&node, UFS_ROOTINO);
906 		if (!nflag) {
907 			/*
908 			 * create the .snap directory
909 			 */
910 			node.dp1.di_mode |= 020;
911 			node.dp1.di_gid = gid;
912 			node.dp1.di_nlink = SNAPLINKCNT;
913 			node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
914 				node.dp1.di_db[0] =
915 				    alloc(sblock.fs_fsize, node.dp1.di_mode);
916 			node.dp1.di_blocks =
917 			    btodb(fragroundup(&sblock, node.dp1.di_size));
918 			node.dp1.di_dirdepth = 1;
919 			wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
920 			    sblock.fs_fsize, iobuf);
921 			iput(&node, UFS_ROOTINO + 1);
922 		}
923 	} else {
924 		/*
925 		 * initialize the node
926 		 */
927 		node.dp2.di_atime = utime;
928 		node.dp2.di_mtime = utime;
929 		node.dp2.di_ctime = utime;
930 		node.dp2.di_birthtime = utime;
931 		/*
932 		 * create the root directory
933 		 */
934 		node.dp2.di_mode = IFDIR | UMASK;
935 		node.dp2.di_nlink = entries;
936 		node.dp2.di_size = makedir(root_dir, entries);
937 		node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
938 		node.dp2.di_blocks =
939 		    btodb(fragroundup(&sblock, node.dp2.di_size));
940 		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
941 		    iobuf);
942 		iput(&node, UFS_ROOTINO);
943 		if (!nflag) {
944 			/*
945 			 * create the .snap directory
946 			 */
947 			node.dp2.di_mode |= 020;
948 			node.dp2.di_gid = gid;
949 			node.dp2.di_nlink = SNAPLINKCNT;
950 			node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
951 				node.dp2.di_db[0] =
952 				    alloc(sblock.fs_fsize, node.dp2.di_mode);
953 			node.dp2.di_blocks =
954 			    btodb(fragroundup(&sblock, node.dp2.di_size));
955 			node.dp2.di_dirdepth = 1;
956 			wtfs(fsbtodb(&sblock, node.dp2.di_db[0]),
957 			    sblock.fs_fsize, iobuf);
958 			iput(&node, UFS_ROOTINO + 1);
959 		}
960 	}
961 }
962 
963 /*
964  * construct a set of directory entries in "iobuf".
965  * return size of directory.
966  */
967 int
968 makedir(struct direct *protodir, int entries)
969 {
970 	char *cp;
971 	int i, spcleft;
972 
973 	spcleft = DIRBLKSIZ;
974 	memset(iobuf, 0, DIRBLKSIZ);
975 	for (cp = iobuf, i = 0; i < entries - 1; i++) {
976 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
977 		memmove(cp, &protodir[i], protodir[i].d_reclen);
978 		cp += protodir[i].d_reclen;
979 		spcleft -= protodir[i].d_reclen;
980 	}
981 	protodir[i].d_reclen = spcleft;
982 	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
983 	return (DIRBLKSIZ);
984 }
985 
986 /*
987  * allocate a block or frag
988  */
989 ufs2_daddr_t
990 alloc(int size, int mode)
991 {
992 	int i, blkno, frag;
993 	uint d;
994 
995 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
996 	    sblock.fs_cgsize);
997 	if (acg.cg_magic != CG_MAGIC) {
998 		printf("cg 0: bad magic number\n");
999 		exit(38);
1000 	}
1001 	if (acg.cg_cs.cs_nbfree == 0) {
1002 		printf("first cylinder group ran out of space\n");
1003 		exit(39);
1004 	}
1005 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
1006 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
1007 			goto goth;
1008 	printf("internal error: can't find block in cyl 0\n");
1009 	exit(40);
1010 goth:
1011 	blkno = fragstoblks(&sblock, d);
1012 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1013 	if (sblock.fs_contigsumsize > 0)
1014 		clrbit(cg_clustersfree(&acg), blkno);
1015 	acg.cg_cs.cs_nbfree--;
1016 	sblock.fs_cstotal.cs_nbfree--;
1017 	fscs[0].cs_nbfree--;
1018 	if (mode & IFDIR) {
1019 		acg.cg_cs.cs_ndir++;
1020 		sblock.fs_cstotal.cs_ndir++;
1021 		fscs[0].cs_ndir++;
1022 	}
1023 	if (size != sblock.fs_bsize) {
1024 		frag = howmany(size, sblock.fs_fsize);
1025 		fscs[0].cs_nffree += sblock.fs_frag - frag;
1026 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1027 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1028 		acg.cg_frsum[sblock.fs_frag - frag]++;
1029 		for (i = frag; i < sblock.fs_frag; i++)
1030 			setbit(cg_blksfree(&acg), d + i);
1031 	}
1032 	if (cgwrite(&disk) != 0)
1033 		err(1, "alloc: cgwrite: %s", disk.d_error);
1034 	return ((ufs2_daddr_t)d);
1035 }
1036 
1037 /*
1038  * Allocate an inode on the disk
1039  */
1040 void
1041 iput(union dinode *ip, ino_t ino)
1042 {
1043 	union dinodep dp;
1044 
1045 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
1046 	    sblock.fs_cgsize);
1047 	if (acg.cg_magic != CG_MAGIC) {
1048 		printf("cg 0: bad magic number\n");
1049 		exit(31);
1050 	}
1051 	acg.cg_cs.cs_nifree--;
1052 	setbit(cg_inosused(&acg), ino);
1053 	if (cgwrite(&disk) != 0)
1054 		err(1, "iput: cgwrite: %s", disk.d_error);
1055 	sblock.fs_cstotal.cs_nifree--;
1056 	fscs[0].cs_nifree--;
1057 	if (getinode(&disk, &dp, ino) == -1) {
1058 		printf("iput: %s\n", disk.d_error);
1059 		exit(32);
1060 	}
1061 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1062 		*dp.dp1 = ip->dp1;
1063 	else
1064 		*dp.dp2 = ip->dp2;
1065 	putinode(&disk);
1066 }
1067 
1068 /*
1069  * possibly write to disk
1070  */
1071 static void
1072 wtfs(ufs2_daddr_t bno, int size, char *bf)
1073 {
1074 	if (Nflag)
1075 		return;
1076 	if (bwrite(&disk, part_ofs + bno, bf, size) < 0)
1077 		err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
1078 }
1079 
1080 /*
1081  * check if a block is available
1082  */
1083 static int
1084 isblock(struct fs *fs, unsigned char *cp, int h)
1085 {
1086 	unsigned char mask;
1087 
1088 	switch (fs->fs_frag) {
1089 	case 8:
1090 		return (cp[h] == 0xff);
1091 	case 4:
1092 		mask = 0x0f << ((h & 0x1) << 2);
1093 		return ((cp[h >> 1] & mask) == mask);
1094 	case 2:
1095 		mask = 0x03 << ((h & 0x3) << 1);
1096 		return ((cp[h >> 2] & mask) == mask);
1097 	case 1:
1098 		mask = 0x01 << (h & 0x7);
1099 		return ((cp[h >> 3] & mask) == mask);
1100 	default:
1101 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1102 		return (0);
1103 	}
1104 }
1105 
1106 /*
1107  * take a block out of the map
1108  */
1109 static void
1110 clrblock(struct fs *fs, unsigned char *cp, int h)
1111 {
1112 	switch ((fs)->fs_frag) {
1113 	case 8:
1114 		cp[h] = 0;
1115 		return;
1116 	case 4:
1117 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1118 		return;
1119 	case 2:
1120 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1121 		return;
1122 	case 1:
1123 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1124 		return;
1125 	default:
1126 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1127 		return;
1128 	}
1129 }
1130 
1131 /*
1132  * put a block into the map
1133  */
1134 static void
1135 setblock(struct fs *fs, unsigned char *cp, int h)
1136 {
1137 	switch (fs->fs_frag) {
1138 	case 8:
1139 		cp[h] = 0xff;
1140 		return;
1141 	case 4:
1142 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1143 		return;
1144 	case 2:
1145 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1146 		return;
1147 	case 1:
1148 		cp[h >> 3] |= (0x01 << (h & 0x7));
1149 		return;
1150 	default:
1151 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1152 		return;
1153 	}
1154 }
1155 
1156 /*
1157  * Determine the number of characters in a
1158  * single line.
1159  */
1160 
1161 static int
1162 charsperline(void)
1163 {
1164 	int columns;
1165 	char *cp;
1166 	struct winsize ws;
1167 
1168 	columns = 0;
1169 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1170 		columns = ws.ws_col;
1171 	if (columns == 0 && (cp = getenv("COLUMNS")))
1172 		columns = atoi(cp);
1173 	if (columns == 0)
1174 		columns = 80;	/* last resort */
1175 	return (columns);
1176 }
1177 
1178 static int
1179 ilog2(int val)
1180 {
1181 	u_int n;
1182 
1183 	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1184 		if (1 << n == val)
1185 			return (n);
1186 	errx(1, "ilog2: %d is not a power of 2\n", val);
1187 }
1188 
1189 /*
1190  * For the regression test, return predictable random values.
1191  * Otherwise use a true random number generator.
1192  */
1193 static u_int32_t
1194 newfs_random(void)
1195 {
1196 	static int nextnum = 1;
1197 
1198 	if (Rflag)
1199 		return (nextnum++);
1200 	return (arc4random());
1201 }
1202