1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program. 10 * 11 * Copyright (c) 1980, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #if 0 40 #ifndef lint 41 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 42 #endif /* not lint */ 43 #endif 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include <sys/param.h> 48 #include <sys/disklabel.h> 49 #include <sys/file.h> 50 #include <sys/ioctl.h> 51 #include <sys/mman.h> 52 #include <sys/resource.h> 53 #include <sys/stat.h> 54 #include <sys/wait.h> 55 #include <err.h> 56 #include <grp.h> 57 #include <limits.h> 58 #include <signal.h> 59 #include <stdlib.h> 60 #include <string.h> 61 #include <stdint.h> 62 #include <stdio.h> 63 #include <time.h> 64 #include <unistd.h> 65 #include <ufs/ufs/dinode.h> 66 #include <ufs/ufs/dir.h> 67 #include <ufs/ffs/fs.h> 68 #include "newfs.h" 69 70 /* 71 * make file system for cylinder-group style file systems 72 */ 73 #define UMASK 0755 74 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 75 76 static struct csum *fscs; 77 #define sblock disk.d_fs 78 #define acg disk.d_cg 79 80 union dinode { 81 struct ufs1_dinode dp1; 82 struct ufs2_dinode dp2; 83 }; 84 #define DIP(dp, field) \ 85 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 86 (dp)->dp1.field : (dp)->dp2.field) 87 88 static caddr_t iobuf; 89 static long iobufsize; 90 static ufs2_daddr_t alloc(int size, int mode); 91 static int charsperline(void); 92 static void clrblock(struct fs *, unsigned char *, int); 93 static void fsinit(time_t); 94 static int ilog2(int); 95 static void initcg(int, time_t); 96 static int isblock(struct fs *, unsigned char *, int); 97 static void iput(union dinode *, ino_t); 98 static int makedir(struct direct *, int); 99 static void setblock(struct fs *, unsigned char *, int); 100 static void wtfs(ufs2_daddr_t, int, char *); 101 static u_int32_t newfs_random(void); 102 103 static int 104 do_sbwrite(struct uufsd *disk) 105 { 106 if (!disk->d_sblock) 107 disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize; 108 return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs + 109 disk->d_sblock) * disk->d_bsize))); 110 } 111 112 void 113 mkfs(struct partition *pp, char *fsys) 114 { 115 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 116 long i, j, csfrags; 117 uint cg; 118 time_t utime; 119 quad_t sizepb; 120 int width; 121 ino_t maxinum; 122 int minfragsperinode; /* minimum ratio of frags to inodes */ 123 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 124 union { 125 struct fs fdummy; 126 char cdummy[SBLOCKSIZE]; 127 } dummy; 128 #define fsdummy dummy.fdummy 129 #define chdummy dummy.cdummy 130 131 /* 132 * Our blocks == sector size, and the version of UFS we are using is 133 * specified by Oflag. 134 */ 135 disk.d_bsize = sectorsize; 136 disk.d_ufs = Oflag; 137 if (Rflag) { 138 utime = 1000000000; 139 } else { 140 time(&utime); 141 arc4random_stir(); 142 } 143 sblock.fs_old_flags = FS_FLAGS_UPDATED; 144 sblock.fs_flags = 0; 145 if (Uflag) 146 sblock.fs_flags |= FS_DOSOFTDEP; 147 if (Lflag) 148 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 149 if (Jflag) 150 sblock.fs_flags |= FS_GJOURNAL; 151 if (lflag) 152 sblock.fs_flags |= FS_MULTILABEL; 153 if (tflag) 154 sblock.fs_flags |= FS_TRIM; 155 /* 156 * Validate the given file system size. 157 * Verify that its last block can actually be accessed. 158 * Convert to file system fragment sized units. 159 */ 160 if (fssize <= 0) { 161 printf("preposterous size %jd\n", (intmax_t)fssize); 162 exit(13); 163 } 164 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 165 (char *)&sblock); 166 /* 167 * collect and verify the file system density info 168 */ 169 sblock.fs_avgfilesize = avgfilesize; 170 sblock.fs_avgfpdir = avgfilesperdir; 171 if (sblock.fs_avgfilesize <= 0) 172 printf("illegal expected average file size %d\n", 173 sblock.fs_avgfilesize), exit(14); 174 if (sblock.fs_avgfpdir <= 0) 175 printf("illegal expected number of files per directory %d\n", 176 sblock.fs_avgfpdir), exit(15); 177 178 restart: 179 /* 180 * collect and verify the block and fragment sizes 181 */ 182 sblock.fs_bsize = bsize; 183 sblock.fs_fsize = fsize; 184 if (!POWEROF2(sblock.fs_bsize)) { 185 printf("block size must be a power of 2, not %d\n", 186 sblock.fs_bsize); 187 exit(16); 188 } 189 if (!POWEROF2(sblock.fs_fsize)) { 190 printf("fragment size must be a power of 2, not %d\n", 191 sblock.fs_fsize); 192 exit(17); 193 } 194 if (sblock.fs_fsize < sectorsize) { 195 printf("increasing fragment size from %d to sector size (%d)\n", 196 sblock.fs_fsize, sectorsize); 197 sblock.fs_fsize = sectorsize; 198 } 199 if (sblock.fs_bsize > MAXBSIZE) { 200 printf("decreasing block size from %d to maximum (%d)\n", 201 sblock.fs_bsize, MAXBSIZE); 202 sblock.fs_bsize = MAXBSIZE; 203 } 204 if (sblock.fs_bsize < MINBSIZE) { 205 printf("increasing block size from %d to minimum (%d)\n", 206 sblock.fs_bsize, MINBSIZE); 207 sblock.fs_bsize = MINBSIZE; 208 } 209 if (sblock.fs_fsize > MAXBSIZE) { 210 printf("decreasing fragment size from %d to maximum (%d)\n", 211 sblock.fs_fsize, MAXBSIZE); 212 sblock.fs_fsize = MAXBSIZE; 213 } 214 if (sblock.fs_bsize < sblock.fs_fsize) { 215 printf("increasing block size from %d to fragment size (%d)\n", 216 sblock.fs_bsize, sblock.fs_fsize); 217 sblock.fs_bsize = sblock.fs_fsize; 218 } 219 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 220 printf( 221 "increasing fragment size from %d to block size / %d (%d)\n", 222 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 223 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 224 } 225 if (maxbsize == 0) 226 maxbsize = bsize; 227 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 228 sblock.fs_maxbsize = sblock.fs_bsize; 229 printf("Extent size set to %d\n", sblock.fs_maxbsize); 230 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 231 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 232 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 233 } else { 234 sblock.fs_maxbsize = maxbsize; 235 } 236 /* 237 * Maxcontig sets the default for the maximum number of blocks 238 * that may be allocated sequentially. With file system clustering 239 * it is possible to allocate contiguous blocks up to the maximum 240 * transfer size permitted by the controller or buffering. 241 */ 242 if (maxcontig == 0) 243 maxcontig = MAX(1, MAXPHYS / bsize); 244 sblock.fs_maxcontig = maxcontig; 245 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 246 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 247 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 248 } 249 if (sblock.fs_maxcontig > 1) 250 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 251 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 252 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 253 sblock.fs_qbmask = ~sblock.fs_bmask; 254 sblock.fs_qfmask = ~sblock.fs_fmask; 255 sblock.fs_bshift = ilog2(sblock.fs_bsize); 256 sblock.fs_fshift = ilog2(sblock.fs_fsize); 257 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 258 sblock.fs_fragshift = ilog2(sblock.fs_frag); 259 if (sblock.fs_frag > MAXFRAG) { 260 printf("fragment size %d is still too small (can't happen)\n", 261 sblock.fs_bsize / MAXFRAG); 262 exit(21); 263 } 264 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 265 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 266 267 /* 268 * Before the filesystem is finally initialized, mark it 269 * as incompletely initialized. 270 */ 271 sblock.fs_magic = FS_BAD_MAGIC; 272 273 if (Oflag == 1) { 274 sblock.fs_sblockloc = SBLOCK_UFS1; 275 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 276 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 277 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 278 sizeof(ufs1_daddr_t)); 279 sblock.fs_old_inodefmt = FS_44INODEFMT; 280 sblock.fs_old_cgoffset = 0; 281 sblock.fs_old_cgmask = 0xffffffff; 282 sblock.fs_old_size = sblock.fs_size; 283 sblock.fs_old_rotdelay = 0; 284 sblock.fs_old_rps = 60; 285 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 286 sblock.fs_old_cpg = 1; 287 sblock.fs_old_interleave = 1; 288 sblock.fs_old_trackskew = 0; 289 sblock.fs_old_cpc = 0; 290 sblock.fs_old_postblformat = 1; 291 sblock.fs_old_nrpos = 1; 292 } else { 293 sblock.fs_sblockloc = SBLOCK_UFS2; 294 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 295 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 296 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 297 sizeof(ufs2_daddr_t)); 298 } 299 sblock.fs_sblkno = 300 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 301 sblock.fs_frag); 302 sblock.fs_cblkno = sblock.fs_sblkno + 303 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 304 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 305 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 306 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 307 sizepb *= NINDIR(&sblock); 308 sblock.fs_maxfilesize += sizepb; 309 } 310 311 /* 312 * It's impossible to create a snapshot in case that fs_maxfilesize 313 * is smaller than the fssize. 314 */ 315 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 316 warnx("WARNING: You will be unable to create snapshots on this " 317 "file system. Correct by using a larger blocksize."); 318 } 319 320 /* 321 * Calculate the number of blocks to put into each cylinder group. 322 * 323 * This algorithm selects the number of blocks per cylinder 324 * group. The first goal is to have at least enough data blocks 325 * in each cylinder group to meet the density requirement. Once 326 * this goal is achieved we try to expand to have at least 327 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 328 * pack as many blocks into each cylinder group map as will fit. 329 * 330 * We start by calculating the smallest number of blocks that we 331 * can put into each cylinder group. If this is too big, we reduce 332 * the density until it fits. 333 */ 334 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 335 minfragsperinode = 1 + fssize / maxinum; 336 if (density == 0) { 337 density = MAX(NFPI, minfragsperinode) * fsize; 338 } else if (density < minfragsperinode * fsize) { 339 origdensity = density; 340 density = minfragsperinode * fsize; 341 fprintf(stderr, "density increased from %d to %d\n", 342 origdensity, density); 343 } 344 origdensity = density; 345 for (;;) { 346 fragsperinode = MAX(numfrags(&sblock, density), 1); 347 if (fragsperinode < minfragsperinode) { 348 bsize <<= 1; 349 fsize <<= 1; 350 printf("Block size too small for a file system %s %d\n", 351 "of this size. Increasing blocksize to", bsize); 352 goto restart; 353 } 354 minfpg = fragsperinode * INOPB(&sblock); 355 if (minfpg > sblock.fs_size) 356 minfpg = sblock.fs_size; 357 sblock.fs_ipg = INOPB(&sblock); 358 sblock.fs_fpg = roundup(sblock.fs_iblkno + 359 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 360 if (sblock.fs_fpg < minfpg) 361 sblock.fs_fpg = minfpg; 362 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 363 INOPB(&sblock)); 364 sblock.fs_fpg = roundup(sblock.fs_iblkno + 365 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 366 if (sblock.fs_fpg < minfpg) 367 sblock.fs_fpg = minfpg; 368 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 369 INOPB(&sblock)); 370 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 371 break; 372 density -= sblock.fs_fsize; 373 } 374 if (density != origdensity) 375 printf("density reduced from %d to %d\n", origdensity, density); 376 /* 377 * Start packing more blocks into the cylinder group until 378 * it cannot grow any larger, the number of cylinder groups 379 * drops below MINCYLGRPS, or we reach the size requested. 380 * For UFS1 inodes per cylinder group are stored in an int16_t 381 * so fs_ipg is limited to 2^15 - 1. 382 */ 383 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 384 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 385 INOPB(&sblock)); 386 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) { 387 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 388 break; 389 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 390 continue; 391 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 392 break; 393 } 394 sblock.fs_fpg -= sblock.fs_frag; 395 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 396 INOPB(&sblock)); 397 break; 398 } 399 /* 400 * Check to be sure that the last cylinder group has enough blocks 401 * to be viable. If it is too small, reduce the number of blocks 402 * per cylinder group which will have the effect of moving more 403 * blocks into the last cylinder group. 404 */ 405 optimalfpg = sblock.fs_fpg; 406 for (;;) { 407 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 408 lastminfpg = roundup(sblock.fs_iblkno + 409 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 410 if (sblock.fs_size < lastminfpg) { 411 printf("Filesystem size %jd < minimum size of %d\n", 412 (intmax_t)sblock.fs_size, lastminfpg); 413 exit(28); 414 } 415 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 416 sblock.fs_size % sblock.fs_fpg == 0) 417 break; 418 sblock.fs_fpg -= sblock.fs_frag; 419 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 420 INOPB(&sblock)); 421 } 422 if (optimalfpg != sblock.fs_fpg) 423 printf("Reduced frags per cylinder group from %d to %d %s\n", 424 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 425 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 426 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 427 if (Oflag == 1) { 428 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 429 sblock.fs_old_nsect = sblock.fs_old_spc; 430 sblock.fs_old_npsect = sblock.fs_old_spc; 431 sblock.fs_old_ncyl = sblock.fs_ncg; 432 } 433 /* 434 * fill in remaining fields of the super block 435 */ 436 sblock.fs_csaddr = cgdmin(&sblock, 0); 437 sblock.fs_cssize = 438 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 439 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 440 if (fscs == NULL) 441 errx(31, "calloc failed"); 442 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 443 if (sblock.fs_sbsize > SBLOCKSIZE) 444 sblock.fs_sbsize = SBLOCKSIZE; 445 sblock.fs_minfree = minfree; 446 if (maxbpg == 0) 447 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 448 else 449 sblock.fs_maxbpg = maxbpg; 450 sblock.fs_optim = opt; 451 sblock.fs_cgrotor = 0; 452 sblock.fs_pendingblocks = 0; 453 sblock.fs_pendinginodes = 0; 454 sblock.fs_fmod = 0; 455 sblock.fs_ronly = 0; 456 sblock.fs_state = 0; 457 sblock.fs_clean = 1; 458 sblock.fs_id[0] = (long)utime; 459 sblock.fs_id[1] = newfs_random(); 460 sblock.fs_fsmnt[0] = '\0'; 461 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 462 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 463 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 464 sblock.fs_cstotal.cs_nbfree = 465 fragstoblks(&sblock, sblock.fs_dsize) - 466 howmany(csfrags, sblock.fs_frag); 467 sblock.fs_cstotal.cs_nffree = 468 fragnum(&sblock, sblock.fs_size) + 469 (fragnum(&sblock, csfrags) > 0 ? 470 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 471 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; 472 sblock.fs_cstotal.cs_ndir = 0; 473 sblock.fs_dsize -= csfrags; 474 sblock.fs_time = utime; 475 if (Oflag == 1) { 476 sblock.fs_old_time = utime; 477 sblock.fs_old_dsize = sblock.fs_dsize; 478 sblock.fs_old_csaddr = sblock.fs_csaddr; 479 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 480 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 481 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 482 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 483 } 484 485 /* 486 * Dump out summary information about file system. 487 */ 488 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 489 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 490 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 491 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 492 sblock.fs_fsize); 493 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 494 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 495 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 496 if (sblock.fs_flags & FS_DOSOFTDEP) 497 printf("\twith soft updates\n"); 498 # undef B2MBFACTOR 499 500 if (Eflag && !Nflag) { 501 printf("Erasing sectors [%jd...%jd]\n", 502 sblock.fs_sblockloc / disk.d_bsize, 503 fsbtodb(&sblock, sblock.fs_size) - 1); 504 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 505 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 506 } 507 /* 508 * Wipe out old UFS1 superblock(s) if necessary. 509 */ 510 if (!Nflag && Oflag != 1) { 511 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 512 if (i == -1) 513 err(1, "can't read old UFS1 superblock: %s", disk.d_error); 514 515 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 516 fsdummy.fs_magic = 0; 517 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 518 chdummy, SBLOCKSIZE); 519 for (cg = 0; cg < fsdummy.fs_ncg; cg++) 520 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 521 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); 522 } 523 } 524 if (!Nflag) 525 do_sbwrite(&disk); 526 if (Xflag == 1) { 527 printf("** Exiting on Xflag 1\n"); 528 exit(0); 529 } 530 if (Xflag == 2) 531 printf("** Leaving BAD MAGIC on Xflag 2\n"); 532 else 533 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 534 535 /* 536 * Now build the cylinders group blocks and 537 * then print out indices of cylinder groups. 538 */ 539 printf("super-block backups (for fsck -b #) at:\n"); 540 i = 0; 541 width = charsperline(); 542 /* 543 * allocate space for superblock, cylinder group map, and 544 * two sets of inode blocks. 545 */ 546 if (sblock.fs_bsize < SBLOCKSIZE) 547 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 548 else 549 iobufsize = 4 * sblock.fs_bsize; 550 if ((iobuf = calloc(1, iobufsize)) == 0) { 551 printf("Cannot allocate I/O buffer\n"); 552 exit(38); 553 } 554 /* 555 * Make a copy of the superblock into the buffer that we will be 556 * writing out in each cylinder group. 557 */ 558 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 559 for (cg = 0; cg < sblock.fs_ncg; cg++) { 560 initcg(cg, utime); 561 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 562 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), 563 cg < (sblock.fs_ncg-1) ? "," : ""); 564 if (j < 0) 565 tmpbuf[j = 0] = '\0'; 566 if (i + j >= width) { 567 printf("\n"); 568 i = 0; 569 } 570 i += j; 571 printf("%s", tmpbuf); 572 fflush(stdout); 573 } 574 printf("\n"); 575 if (Nflag) 576 exit(0); 577 /* 578 * Now construct the initial file system, 579 * then write out the super-block. 580 */ 581 fsinit(utime); 582 if (Oflag == 1) { 583 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 584 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 585 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 586 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 587 } 588 if (Xflag == 3) { 589 printf("** Exiting on Xflag 3\n"); 590 exit(0); 591 } 592 if (!Nflag) { 593 do_sbwrite(&disk); 594 /* 595 * For UFS1 filesystems with a blocksize of 64K, the first 596 * alternate superblock resides at the location used for 597 * the default UFS2 superblock. As there is a valid 598 * superblock at this location, the boot code will use 599 * it as its first choice. Thus we have to ensure that 600 * all of its statistcs on usage are correct. 601 */ 602 if (Oflag == 1 && sblock.fs_bsize == 65536) 603 wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)), 604 sblock.fs_bsize, (char *)&sblock); 605 } 606 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 607 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 608 sblock.fs_cssize - i < sblock.fs_bsize ? 609 sblock.fs_cssize - i : sblock.fs_bsize, 610 ((char *)fscs) + i); 611 /* 612 * Update information about this partition in pack 613 * label, to that it may be updated on disk. 614 */ 615 if (pp != NULL) { 616 pp->p_fstype = FS_BSDFFS; 617 pp->p_fsize = sblock.fs_fsize; 618 pp->p_frag = sblock.fs_frag; 619 pp->p_cpg = sblock.fs_fpg; 620 } 621 } 622 623 /* 624 * Initialize a cylinder group. 625 */ 626 void 627 initcg(int cylno, time_t utime) 628 { 629 long blkno, start; 630 uint i, j, d, dlower, dupper; 631 ufs2_daddr_t cbase, dmax; 632 struct ufs1_dinode *dp1; 633 struct ufs2_dinode *dp2; 634 struct csum *cs; 635 636 /* 637 * Determine block bounds for cylinder group. 638 * Allow space for super block summary information in first 639 * cylinder group. 640 */ 641 cbase = cgbase(&sblock, cylno); 642 dmax = cbase + sblock.fs_fpg; 643 if (dmax > sblock.fs_size) 644 dmax = sblock.fs_size; 645 dlower = cgsblock(&sblock, cylno) - cbase; 646 dupper = cgdmin(&sblock, cylno) - cbase; 647 if (cylno == 0) 648 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 649 cs = &fscs[cylno]; 650 memset(&acg, 0, sblock.fs_cgsize); 651 acg.cg_time = utime; 652 acg.cg_magic = CG_MAGIC; 653 acg.cg_cgx = cylno; 654 acg.cg_niblk = sblock.fs_ipg; 655 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? 656 sblock.fs_ipg : 2 * INOPB(&sblock); 657 acg.cg_ndblk = dmax - cbase; 658 if (sblock.fs_contigsumsize > 0) 659 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 660 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 661 if (Oflag == 2) { 662 acg.cg_iusedoff = start; 663 } else { 664 acg.cg_old_ncyl = sblock.fs_old_cpg; 665 acg.cg_old_time = acg.cg_time; 666 acg.cg_time = 0; 667 acg.cg_old_niblk = acg.cg_niblk; 668 acg.cg_niblk = 0; 669 acg.cg_initediblk = 0; 670 acg.cg_old_btotoff = start; 671 acg.cg_old_boff = acg.cg_old_btotoff + 672 sblock.fs_old_cpg * sizeof(int32_t); 673 acg.cg_iusedoff = acg.cg_old_boff + 674 sblock.fs_old_cpg * sizeof(u_int16_t); 675 } 676 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 677 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 678 if (sblock.fs_contigsumsize > 0) { 679 acg.cg_clustersumoff = 680 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 681 acg.cg_clustersumoff -= sizeof(u_int32_t); 682 acg.cg_clusteroff = acg.cg_clustersumoff + 683 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 684 acg.cg_nextfreeoff = acg.cg_clusteroff + 685 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 686 } 687 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 688 printf("Panic: cylinder group too big\n"); 689 exit(37); 690 } 691 acg.cg_cs.cs_nifree += sblock.fs_ipg; 692 if (cylno == 0) 693 for (i = 0; i < (long)ROOTINO; i++) { 694 setbit(cg_inosused(&acg), i); 695 acg.cg_cs.cs_nifree--; 696 } 697 if (cylno > 0) { 698 /* 699 * In cylno 0, beginning space is reserved 700 * for boot and super blocks. 701 */ 702 for (d = 0; d < dlower; d += sblock.fs_frag) { 703 blkno = d / sblock.fs_frag; 704 setblock(&sblock, cg_blksfree(&acg), blkno); 705 if (sblock.fs_contigsumsize > 0) 706 setbit(cg_clustersfree(&acg), blkno); 707 acg.cg_cs.cs_nbfree++; 708 } 709 } 710 if ((i = dupper % sblock.fs_frag)) { 711 acg.cg_frsum[sblock.fs_frag - i]++; 712 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 713 setbit(cg_blksfree(&acg), dupper); 714 acg.cg_cs.cs_nffree++; 715 } 716 } 717 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 718 d += sblock.fs_frag) { 719 blkno = d / sblock.fs_frag; 720 setblock(&sblock, cg_blksfree(&acg), blkno); 721 if (sblock.fs_contigsumsize > 0) 722 setbit(cg_clustersfree(&acg), blkno); 723 acg.cg_cs.cs_nbfree++; 724 } 725 if (d < acg.cg_ndblk) { 726 acg.cg_frsum[acg.cg_ndblk - d]++; 727 for (; d < acg.cg_ndblk; d++) { 728 setbit(cg_blksfree(&acg), d); 729 acg.cg_cs.cs_nffree++; 730 } 731 } 732 if (sblock.fs_contigsumsize > 0) { 733 int32_t *sump = cg_clustersum(&acg); 734 u_char *mapp = cg_clustersfree(&acg); 735 int map = *mapp++; 736 int bit = 1; 737 int run = 0; 738 739 for (i = 0; i < acg.cg_nclusterblks; i++) { 740 if ((map & bit) != 0) 741 run++; 742 else if (run != 0) { 743 if (run > sblock.fs_contigsumsize) 744 run = sblock.fs_contigsumsize; 745 sump[run]++; 746 run = 0; 747 } 748 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 749 bit <<= 1; 750 else { 751 map = *mapp++; 752 bit = 1; 753 } 754 } 755 if (run != 0) { 756 if (run > sblock.fs_contigsumsize) 757 run = sblock.fs_contigsumsize; 758 sump[run]++; 759 } 760 } 761 *cs = acg.cg_cs; 762 /* 763 * Write out the duplicate super block, the cylinder group map 764 * and two blocks worth of inodes in a single write. 765 */ 766 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; 767 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 768 start += sblock.fs_bsize; 769 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 770 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 771 for (i = 0; i < acg.cg_initediblk; i++) { 772 if (sblock.fs_magic == FS_UFS1_MAGIC) { 773 dp1->di_gen = newfs_random(); 774 dp1++; 775 } else { 776 dp2->di_gen = newfs_random(); 777 dp2++; 778 } 779 } 780 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 781 /* 782 * For the old file system, we have to initialize all the inodes. 783 */ 784 if (Oflag == 1) { 785 for (i = 2 * sblock.fs_frag; 786 i < sblock.fs_ipg / INOPF(&sblock); 787 i += sblock.fs_frag) { 788 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 789 for (j = 0; j < INOPB(&sblock); j++) { 790 dp1->di_gen = newfs_random(); 791 dp1++; 792 } 793 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 794 sblock.fs_bsize, &iobuf[start]); 795 } 796 } 797 } 798 799 /* 800 * initialize the file system 801 */ 802 #define ROOTLINKCNT 3 803 804 struct direct root_dir[] = { 805 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 806 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 807 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 808 }; 809 810 #define SNAPLINKCNT 2 811 812 struct direct snap_dir[] = { 813 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 814 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 815 }; 816 817 void 818 fsinit(time_t utime) 819 { 820 union dinode node; 821 struct group *grp; 822 gid_t gid; 823 int entries; 824 825 memset(&node, 0, sizeof node); 826 if ((grp = getgrnam("operator")) != NULL) { 827 gid = grp->gr_gid; 828 } else { 829 warnx("Cannot retrieve operator gid, using gid 0."); 830 gid = 0; 831 } 832 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 833 if (sblock.fs_magic == FS_UFS1_MAGIC) { 834 /* 835 * initialize the node 836 */ 837 node.dp1.di_atime = utime; 838 node.dp1.di_mtime = utime; 839 node.dp1.di_ctime = utime; 840 /* 841 * create the root directory 842 */ 843 node.dp1.di_mode = IFDIR | UMASK; 844 node.dp1.di_nlink = entries; 845 node.dp1.di_size = makedir(root_dir, entries); 846 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 847 node.dp1.di_blocks = 848 btodb(fragroundup(&sblock, node.dp1.di_size)); 849 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 850 iobuf); 851 iput(&node, ROOTINO); 852 if (!nflag) { 853 /* 854 * create the .snap directory 855 */ 856 node.dp1.di_mode |= 020; 857 node.dp1.di_gid = gid; 858 node.dp1.di_nlink = SNAPLINKCNT; 859 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 860 node.dp1.di_db[0] = 861 alloc(sblock.fs_fsize, node.dp1.di_mode); 862 node.dp1.di_blocks = 863 btodb(fragroundup(&sblock, node.dp1.di_size)); 864 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 865 sblock.fs_fsize, iobuf); 866 iput(&node, ROOTINO + 1); 867 } 868 } else { 869 /* 870 * initialize the node 871 */ 872 node.dp2.di_atime = utime; 873 node.dp2.di_mtime = utime; 874 node.dp2.di_ctime = utime; 875 node.dp2.di_birthtime = utime; 876 /* 877 * create the root directory 878 */ 879 node.dp2.di_mode = IFDIR | UMASK; 880 node.dp2.di_nlink = entries; 881 node.dp2.di_size = makedir(root_dir, entries); 882 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 883 node.dp2.di_blocks = 884 btodb(fragroundup(&sblock, node.dp2.di_size)); 885 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 886 iobuf); 887 iput(&node, ROOTINO); 888 if (!nflag) { 889 /* 890 * create the .snap directory 891 */ 892 node.dp2.di_mode |= 020; 893 node.dp2.di_gid = gid; 894 node.dp2.di_nlink = SNAPLINKCNT; 895 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 896 node.dp2.di_db[0] = 897 alloc(sblock.fs_fsize, node.dp2.di_mode); 898 node.dp2.di_blocks = 899 btodb(fragroundup(&sblock, node.dp2.di_size)); 900 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 901 sblock.fs_fsize, iobuf); 902 iput(&node, ROOTINO + 1); 903 } 904 } 905 } 906 907 /* 908 * construct a set of directory entries in "iobuf". 909 * return size of directory. 910 */ 911 int 912 makedir(struct direct *protodir, int entries) 913 { 914 char *cp; 915 int i, spcleft; 916 917 spcleft = DIRBLKSIZ; 918 memset(iobuf, 0, DIRBLKSIZ); 919 for (cp = iobuf, i = 0; i < entries - 1; i++) { 920 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 921 memmove(cp, &protodir[i], protodir[i].d_reclen); 922 cp += protodir[i].d_reclen; 923 spcleft -= protodir[i].d_reclen; 924 } 925 protodir[i].d_reclen = spcleft; 926 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 927 return (DIRBLKSIZ); 928 } 929 930 /* 931 * allocate a block or frag 932 */ 933 ufs2_daddr_t 934 alloc(int size, int mode) 935 { 936 int i, blkno, frag; 937 uint d; 938 939 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 940 sblock.fs_cgsize); 941 if (acg.cg_magic != CG_MAGIC) { 942 printf("cg 0: bad magic number\n"); 943 exit(38); 944 } 945 if (acg.cg_cs.cs_nbfree == 0) { 946 printf("first cylinder group ran out of space\n"); 947 exit(39); 948 } 949 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 950 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 951 goto goth; 952 printf("internal error: can't find block in cyl 0\n"); 953 exit(40); 954 goth: 955 blkno = fragstoblks(&sblock, d); 956 clrblock(&sblock, cg_blksfree(&acg), blkno); 957 if (sblock.fs_contigsumsize > 0) 958 clrbit(cg_clustersfree(&acg), blkno); 959 acg.cg_cs.cs_nbfree--; 960 sblock.fs_cstotal.cs_nbfree--; 961 fscs[0].cs_nbfree--; 962 if (mode & IFDIR) { 963 acg.cg_cs.cs_ndir++; 964 sblock.fs_cstotal.cs_ndir++; 965 fscs[0].cs_ndir++; 966 } 967 if (size != sblock.fs_bsize) { 968 frag = howmany(size, sblock.fs_fsize); 969 fscs[0].cs_nffree += sblock.fs_frag - frag; 970 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 971 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 972 acg.cg_frsum[sblock.fs_frag - frag]++; 973 for (i = frag; i < sblock.fs_frag; i++) 974 setbit(cg_blksfree(&acg), d + i); 975 } 976 /* XXX cgwrite(&disk, 0)??? */ 977 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 978 (char *)&acg); 979 return ((ufs2_daddr_t)d); 980 } 981 982 /* 983 * Allocate an inode on the disk 984 */ 985 void 986 iput(union dinode *ip, ino_t ino) 987 { 988 ufs2_daddr_t d; 989 int c; 990 991 c = ino_to_cg(&sblock, ino); 992 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 993 sblock.fs_cgsize); 994 if (acg.cg_magic != CG_MAGIC) { 995 printf("cg 0: bad magic number\n"); 996 exit(31); 997 } 998 acg.cg_cs.cs_nifree--; 999 setbit(cg_inosused(&acg), ino); 1000 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1001 (char *)&acg); 1002 sblock.fs_cstotal.cs_nifree--; 1003 fscs[0].cs_nifree--; 1004 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 1005 printf("fsinit: inode value out of range (%d).\n", ino); 1006 exit(32); 1007 } 1008 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 1009 bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize); 1010 if (sblock.fs_magic == FS_UFS1_MAGIC) 1011 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1012 ip->dp1; 1013 else 1014 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1015 ip->dp2; 1016 wtfs(d, sblock.fs_bsize, (char *)iobuf); 1017 } 1018 1019 /* 1020 * possibly write to disk 1021 */ 1022 static void 1023 wtfs(ufs2_daddr_t bno, int size, char *bf) 1024 { 1025 if (Nflag) 1026 return; 1027 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 1028 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 1029 } 1030 1031 /* 1032 * check if a block is available 1033 */ 1034 static int 1035 isblock(struct fs *fs, unsigned char *cp, int h) 1036 { 1037 unsigned char mask; 1038 1039 switch (fs->fs_frag) { 1040 case 8: 1041 return (cp[h] == 0xff); 1042 case 4: 1043 mask = 0x0f << ((h & 0x1) << 2); 1044 return ((cp[h >> 1] & mask) == mask); 1045 case 2: 1046 mask = 0x03 << ((h & 0x3) << 1); 1047 return ((cp[h >> 2] & mask) == mask); 1048 case 1: 1049 mask = 0x01 << (h & 0x7); 1050 return ((cp[h >> 3] & mask) == mask); 1051 default: 1052 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1053 return (0); 1054 } 1055 } 1056 1057 /* 1058 * take a block out of the map 1059 */ 1060 static void 1061 clrblock(struct fs *fs, unsigned char *cp, int h) 1062 { 1063 switch ((fs)->fs_frag) { 1064 case 8: 1065 cp[h] = 0; 1066 return; 1067 case 4: 1068 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1069 return; 1070 case 2: 1071 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1072 return; 1073 case 1: 1074 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1075 return; 1076 default: 1077 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1078 return; 1079 } 1080 } 1081 1082 /* 1083 * put a block into the map 1084 */ 1085 static void 1086 setblock(struct fs *fs, unsigned char *cp, int h) 1087 { 1088 switch (fs->fs_frag) { 1089 case 8: 1090 cp[h] = 0xff; 1091 return; 1092 case 4: 1093 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1094 return; 1095 case 2: 1096 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1097 return; 1098 case 1: 1099 cp[h >> 3] |= (0x01 << (h & 0x7)); 1100 return; 1101 default: 1102 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1103 return; 1104 } 1105 } 1106 1107 /* 1108 * Determine the number of characters in a 1109 * single line. 1110 */ 1111 1112 static int 1113 charsperline(void) 1114 { 1115 int columns; 1116 char *cp; 1117 struct winsize ws; 1118 1119 columns = 0; 1120 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1121 columns = ws.ws_col; 1122 if (columns == 0 && (cp = getenv("COLUMNS"))) 1123 columns = atoi(cp); 1124 if (columns == 0) 1125 columns = 80; /* last resort */ 1126 return (columns); 1127 } 1128 1129 static int 1130 ilog2(int val) 1131 { 1132 u_int n; 1133 1134 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1135 if (1 << n == val) 1136 return (n); 1137 errx(1, "ilog2: %d is not a power of 2\n", val); 1138 } 1139 1140 /* 1141 * For the regression test, return predictable random values. 1142 * Otherwise use a true random number generator. 1143 */ 1144 static u_int32_t 1145 newfs_random(void) 1146 { 1147 static int nextnum = 1; 1148 1149 if (Rflag) 1150 return (nextnum++); 1151 return (arc4random()); 1152 } 1153