1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program. 10 * 11 * Copyright (c) 1980, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #if 0 40 #ifndef lint 41 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 42 #endif /* not lint */ 43 #endif 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include <sys/param.h> 48 #include <sys/disklabel.h> 49 #include <sys/file.h> 50 #include <sys/ioctl.h> 51 #include <sys/mman.h> 52 #include <sys/resource.h> 53 #include <sys/stat.h> 54 #include <sys/wait.h> 55 #include <err.h> 56 #include <grp.h> 57 #include <limits.h> 58 #include <signal.h> 59 #include <stdlib.h> 60 #include <string.h> 61 #include <stdint.h> 62 #include <stdio.h> 63 #include <time.h> 64 #include <unistd.h> 65 #include <ufs/ufs/dinode.h> 66 #include <ufs/ufs/dir.h> 67 #include <ufs/ffs/fs.h> 68 #include "newfs.h" 69 70 /* 71 * make file system for cylinder-group style file systems 72 */ 73 #define UMASK 0755 74 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 75 76 static struct csum *fscs; 77 #define sblock disk.d_fs 78 #define acg disk.d_cg 79 80 union dinode { 81 struct ufs1_dinode dp1; 82 struct ufs2_dinode dp2; 83 }; 84 #define DIP(dp, field) \ 85 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 86 (dp)->dp1.field : (dp)->dp2.field) 87 88 static caddr_t iobuf; 89 static long iobufsize; 90 static ufs2_daddr_t alloc(int size, int mode); 91 static int charsperline(void); 92 static void clrblock(struct fs *, unsigned char *, int); 93 static void fsinit(time_t); 94 static int ilog2(int); 95 static void initcg(int, time_t); 96 static int isblock(struct fs *, unsigned char *, int); 97 static void iput(union dinode *, ino_t); 98 static int makedir(struct direct *, int); 99 static void setblock(struct fs *, unsigned char *, int); 100 static void wtfs(ufs2_daddr_t, int, char *); 101 static u_int32_t newfs_random(void); 102 103 static int 104 do_sbwrite(struct uufsd *disk) 105 { 106 if (!disk->d_sblock) 107 disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize; 108 return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs + 109 disk->d_sblock) * disk->d_bsize))); 110 } 111 112 void 113 mkfs(struct partition *pp, char *fsys) 114 { 115 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 116 long i, j, csfrags; 117 uint cg; 118 time_t utime; 119 quad_t sizepb; 120 int width; 121 ino_t maxinum; 122 int minfragsperinode; /* minimum ratio of frags to inodes */ 123 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 124 union { 125 struct fs fdummy; 126 char cdummy[SBLOCKSIZE]; 127 } dummy; 128 #define fsdummy dummy.fdummy 129 #define chdummy dummy.cdummy 130 131 /* 132 * Our blocks == sector size, and the version of UFS we are using is 133 * specified by Oflag. 134 */ 135 disk.d_bsize = sectorsize; 136 disk.d_ufs = Oflag; 137 if (Rflag) 138 utime = 1000000000; 139 else 140 time(&utime); 141 sblock.fs_old_flags = FS_FLAGS_UPDATED; 142 sblock.fs_flags = 0; 143 if (Uflag) 144 sblock.fs_flags |= FS_DOSOFTDEP; 145 if (Lflag) 146 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 147 if (Jflag) 148 sblock.fs_flags |= FS_GJOURNAL; 149 if (lflag) 150 sblock.fs_flags |= FS_MULTILABEL; 151 if (tflag) 152 sblock.fs_flags |= FS_TRIM; 153 /* 154 * Validate the given file system size. 155 * Verify that its last block can actually be accessed. 156 * Convert to file system fragment sized units. 157 */ 158 if (fssize <= 0) { 159 printf("preposterous size %jd\n", (intmax_t)fssize); 160 exit(13); 161 } 162 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 163 (char *)&sblock); 164 /* 165 * collect and verify the file system density info 166 */ 167 sblock.fs_avgfilesize = avgfilesize; 168 sblock.fs_avgfpdir = avgfilesperdir; 169 if (sblock.fs_avgfilesize <= 0) 170 printf("illegal expected average file size %d\n", 171 sblock.fs_avgfilesize), exit(14); 172 if (sblock.fs_avgfpdir <= 0) 173 printf("illegal expected number of files per directory %d\n", 174 sblock.fs_avgfpdir), exit(15); 175 176 restart: 177 /* 178 * collect and verify the block and fragment sizes 179 */ 180 sblock.fs_bsize = bsize; 181 sblock.fs_fsize = fsize; 182 if (!POWEROF2(sblock.fs_bsize)) { 183 printf("block size must be a power of 2, not %d\n", 184 sblock.fs_bsize); 185 exit(16); 186 } 187 if (!POWEROF2(sblock.fs_fsize)) { 188 printf("fragment size must be a power of 2, not %d\n", 189 sblock.fs_fsize); 190 exit(17); 191 } 192 if (sblock.fs_fsize < sectorsize) { 193 printf("increasing fragment size from %d to sector size (%d)\n", 194 sblock.fs_fsize, sectorsize); 195 sblock.fs_fsize = sectorsize; 196 } 197 if (sblock.fs_bsize > MAXBSIZE) { 198 printf("decreasing block size from %d to maximum (%d)\n", 199 sblock.fs_bsize, MAXBSIZE); 200 sblock.fs_bsize = MAXBSIZE; 201 } 202 if (sblock.fs_bsize < MINBSIZE) { 203 printf("increasing block size from %d to minimum (%d)\n", 204 sblock.fs_bsize, MINBSIZE); 205 sblock.fs_bsize = MINBSIZE; 206 } 207 if (sblock.fs_fsize > MAXBSIZE) { 208 printf("decreasing fragment size from %d to maximum (%d)\n", 209 sblock.fs_fsize, MAXBSIZE); 210 sblock.fs_fsize = MAXBSIZE; 211 } 212 if (sblock.fs_bsize < sblock.fs_fsize) { 213 printf("increasing block size from %d to fragment size (%d)\n", 214 sblock.fs_bsize, sblock.fs_fsize); 215 sblock.fs_bsize = sblock.fs_fsize; 216 } 217 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 218 printf( 219 "increasing fragment size from %d to block size / %d (%d)\n", 220 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 221 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 222 } 223 if (maxbsize == 0) 224 maxbsize = bsize; 225 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 226 sblock.fs_maxbsize = sblock.fs_bsize; 227 printf("Extent size set to %d\n", sblock.fs_maxbsize); 228 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 229 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 230 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 231 } else { 232 sblock.fs_maxbsize = maxbsize; 233 } 234 /* 235 * Maxcontig sets the default for the maximum number of blocks 236 * that may be allocated sequentially. With file system clustering 237 * it is possible to allocate contiguous blocks up to the maximum 238 * transfer size permitted by the controller or buffering. 239 */ 240 if (maxcontig == 0) 241 maxcontig = MAX(1, MAXPHYS / bsize); 242 sblock.fs_maxcontig = maxcontig; 243 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 244 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 245 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 246 } 247 if (sblock.fs_maxcontig > 1) 248 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 249 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 250 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 251 sblock.fs_qbmask = ~sblock.fs_bmask; 252 sblock.fs_qfmask = ~sblock.fs_fmask; 253 sblock.fs_bshift = ilog2(sblock.fs_bsize); 254 sblock.fs_fshift = ilog2(sblock.fs_fsize); 255 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 256 sblock.fs_fragshift = ilog2(sblock.fs_frag); 257 if (sblock.fs_frag > MAXFRAG) { 258 printf("fragment size %d is still too small (can't happen)\n", 259 sblock.fs_bsize / MAXFRAG); 260 exit(21); 261 } 262 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 263 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 264 sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize); 265 266 /* 267 * Before the filesystem is finally initialized, mark it 268 * as incompletely initialized. 269 */ 270 sblock.fs_magic = FS_BAD_MAGIC; 271 272 if (Oflag == 1) { 273 sblock.fs_sblockloc = SBLOCK_UFS1; 274 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 275 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 276 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 277 sizeof(ufs1_daddr_t)); 278 sblock.fs_old_inodefmt = FS_44INODEFMT; 279 sblock.fs_old_cgoffset = 0; 280 sblock.fs_old_cgmask = 0xffffffff; 281 sblock.fs_old_size = sblock.fs_size; 282 sblock.fs_old_rotdelay = 0; 283 sblock.fs_old_rps = 60; 284 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 285 sblock.fs_old_cpg = 1; 286 sblock.fs_old_interleave = 1; 287 sblock.fs_old_trackskew = 0; 288 sblock.fs_old_cpc = 0; 289 sblock.fs_old_postblformat = 1; 290 sblock.fs_old_nrpos = 1; 291 } else { 292 sblock.fs_sblockloc = SBLOCK_UFS2; 293 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 294 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 295 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 296 sizeof(ufs2_daddr_t)); 297 } 298 sblock.fs_sblkno = 299 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 300 sblock.fs_frag); 301 sblock.fs_cblkno = sblock.fs_sblkno + 302 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 303 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 304 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1; 305 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) { 306 sizepb *= NINDIR(&sblock); 307 sblock.fs_maxfilesize += sizepb; 308 } 309 310 /* 311 * It's impossible to create a snapshot in case that fs_maxfilesize 312 * is smaller than the fssize. 313 */ 314 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 315 warnx("WARNING: You will be unable to create snapshots on this " 316 "file system. Correct by using a larger blocksize."); 317 } 318 319 /* 320 * Calculate the number of blocks to put into each cylinder group. 321 * 322 * This algorithm selects the number of blocks per cylinder 323 * group. The first goal is to have at least enough data blocks 324 * in each cylinder group to meet the density requirement. Once 325 * this goal is achieved we try to expand to have at least 326 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 327 * pack as many blocks into each cylinder group map as will fit. 328 * 329 * We start by calculating the smallest number of blocks that we 330 * can put into each cylinder group. If this is too big, we reduce 331 * the density until it fits. 332 */ 333 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 334 minfragsperinode = 1 + fssize / maxinum; 335 if (density == 0) { 336 density = MAX(NFPI, minfragsperinode) * fsize; 337 } else if (density < minfragsperinode * fsize) { 338 origdensity = density; 339 density = minfragsperinode * fsize; 340 fprintf(stderr, "density increased from %d to %d\n", 341 origdensity, density); 342 } 343 origdensity = density; 344 for (;;) { 345 fragsperinode = MAX(numfrags(&sblock, density), 1); 346 if (fragsperinode < minfragsperinode) { 347 bsize <<= 1; 348 fsize <<= 1; 349 printf("Block size too small for a file system %s %d\n", 350 "of this size. Increasing blocksize to", bsize); 351 goto restart; 352 } 353 minfpg = fragsperinode * INOPB(&sblock); 354 if (minfpg > sblock.fs_size) 355 minfpg = sblock.fs_size; 356 sblock.fs_ipg = INOPB(&sblock); 357 sblock.fs_fpg = roundup(sblock.fs_iblkno + 358 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 359 if (sblock.fs_fpg < minfpg) 360 sblock.fs_fpg = minfpg; 361 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 362 INOPB(&sblock)); 363 sblock.fs_fpg = roundup(sblock.fs_iblkno + 364 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 365 if (sblock.fs_fpg < minfpg) 366 sblock.fs_fpg = minfpg; 367 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 368 INOPB(&sblock)); 369 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 370 break; 371 density -= sblock.fs_fsize; 372 } 373 if (density != origdensity) 374 printf("density reduced from %d to %d\n", origdensity, density); 375 /* 376 * Start packing more blocks into the cylinder group until 377 * it cannot grow any larger, the number of cylinder groups 378 * drops below MINCYLGRPS, or we reach the size requested. 379 * For UFS1 inodes per cylinder group are stored in an int16_t 380 * so fs_ipg is limited to 2^15 - 1. 381 */ 382 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 383 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 384 INOPB(&sblock)); 385 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) { 386 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 387 break; 388 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 389 continue; 390 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 391 break; 392 } 393 sblock.fs_fpg -= sblock.fs_frag; 394 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 395 INOPB(&sblock)); 396 break; 397 } 398 /* 399 * Check to be sure that the last cylinder group has enough blocks 400 * to be viable. If it is too small, reduce the number of blocks 401 * per cylinder group which will have the effect of moving more 402 * blocks into the last cylinder group. 403 */ 404 optimalfpg = sblock.fs_fpg; 405 for (;;) { 406 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 407 lastminfpg = roundup(sblock.fs_iblkno + 408 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 409 if (sblock.fs_size < lastminfpg) { 410 printf("Filesystem size %jd < minimum size of %d\n", 411 (intmax_t)sblock.fs_size, lastminfpg); 412 exit(28); 413 } 414 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 415 sblock.fs_size % sblock.fs_fpg == 0) 416 break; 417 sblock.fs_fpg -= sblock.fs_frag; 418 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 419 INOPB(&sblock)); 420 } 421 if (optimalfpg != sblock.fs_fpg) 422 printf("Reduced frags per cylinder group from %d to %d %s\n", 423 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 424 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 425 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 426 if (Oflag == 1) { 427 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 428 sblock.fs_old_nsect = sblock.fs_old_spc; 429 sblock.fs_old_npsect = sblock.fs_old_spc; 430 sblock.fs_old_ncyl = sblock.fs_ncg; 431 } 432 /* 433 * fill in remaining fields of the super block 434 */ 435 sblock.fs_csaddr = cgdmin(&sblock, 0); 436 sblock.fs_cssize = 437 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 438 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 439 if (fscs == NULL) 440 errx(31, "calloc failed"); 441 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 442 if (sblock.fs_sbsize > SBLOCKSIZE) 443 sblock.fs_sbsize = SBLOCKSIZE; 444 sblock.fs_minfree = minfree; 445 if (metaspace > 0 && metaspace < sblock.fs_fpg / 2) 446 sblock.fs_metaspace = blknum(&sblock, metaspace); 447 else if (metaspace != -1) 448 /* reserve half of minfree for metadata blocks */ 449 sblock.fs_metaspace = blknum(&sblock, 450 (sblock.fs_fpg * minfree) / 200); 451 if (maxbpg == 0) 452 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 453 else 454 sblock.fs_maxbpg = maxbpg; 455 sblock.fs_optim = opt; 456 sblock.fs_cgrotor = 0; 457 sblock.fs_pendingblocks = 0; 458 sblock.fs_pendinginodes = 0; 459 sblock.fs_fmod = 0; 460 sblock.fs_ronly = 0; 461 sblock.fs_state = 0; 462 sblock.fs_clean = 1; 463 sblock.fs_id[0] = (long)utime; 464 sblock.fs_id[1] = newfs_random(); 465 sblock.fs_fsmnt[0] = '\0'; 466 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 467 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 468 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 469 sblock.fs_cstotal.cs_nbfree = 470 fragstoblks(&sblock, sblock.fs_dsize) - 471 howmany(csfrags, sblock.fs_frag); 472 sblock.fs_cstotal.cs_nffree = 473 fragnum(&sblock, sblock.fs_size) + 474 (fragnum(&sblock, csfrags) > 0 ? 475 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 476 sblock.fs_cstotal.cs_nifree = 477 sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO; 478 sblock.fs_cstotal.cs_ndir = 0; 479 sblock.fs_dsize -= csfrags; 480 sblock.fs_time = utime; 481 if (Oflag == 1) { 482 sblock.fs_old_time = utime; 483 sblock.fs_old_dsize = sblock.fs_dsize; 484 sblock.fs_old_csaddr = sblock.fs_csaddr; 485 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 486 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 487 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 488 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 489 } 490 491 /* 492 * Dump out summary information about file system. 493 */ 494 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 495 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 496 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 497 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 498 sblock.fs_fsize); 499 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 500 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 501 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 502 if (sblock.fs_flags & FS_DOSOFTDEP) 503 printf("\twith soft updates\n"); 504 # undef B2MBFACTOR 505 506 if (Eflag && !Nflag) { 507 printf("Erasing sectors [%jd...%jd]\n", 508 sblock.fs_sblockloc / disk.d_bsize, 509 fsbtodb(&sblock, sblock.fs_size) - 1); 510 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 511 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 512 } 513 /* 514 * Wipe out old UFS1 superblock(s) if necessary. 515 */ 516 if (!Nflag && Oflag != 1) { 517 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 518 if (i == -1) 519 err(1, "can't read old UFS1 superblock: %s", disk.d_error); 520 521 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 522 fsdummy.fs_magic = 0; 523 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 524 chdummy, SBLOCKSIZE); 525 for (cg = 0; cg < fsdummy.fs_ncg; cg++) { 526 if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize) 527 break; 528 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 529 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); 530 } 531 } 532 } 533 if (!Nflag) 534 do_sbwrite(&disk); 535 if (Xflag == 1) { 536 printf("** Exiting on Xflag 1\n"); 537 exit(0); 538 } 539 if (Xflag == 2) 540 printf("** Leaving BAD MAGIC on Xflag 2\n"); 541 else 542 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 543 544 /* 545 * Now build the cylinders group blocks and 546 * then print out indices of cylinder groups. 547 */ 548 printf("super-block backups (for fsck_ffs -b #) at:\n"); 549 i = 0; 550 width = charsperline(); 551 /* 552 * allocate space for superblock, cylinder group map, and 553 * two sets of inode blocks. 554 */ 555 if (sblock.fs_bsize < SBLOCKSIZE) 556 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 557 else 558 iobufsize = 4 * sblock.fs_bsize; 559 if ((iobuf = calloc(1, iobufsize)) == 0) { 560 printf("Cannot allocate I/O buffer\n"); 561 exit(38); 562 } 563 /* 564 * Make a copy of the superblock into the buffer that we will be 565 * writing out in each cylinder group. 566 */ 567 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 568 for (cg = 0; cg < sblock.fs_ncg; cg++) { 569 initcg(cg, utime); 570 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 571 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), 572 cg < (sblock.fs_ncg-1) ? "," : ""); 573 if (j < 0) 574 tmpbuf[j = 0] = '\0'; 575 if (i + j >= width) { 576 printf("\n"); 577 i = 0; 578 } 579 i += j; 580 printf("%s", tmpbuf); 581 fflush(stdout); 582 } 583 printf("\n"); 584 if (Nflag) 585 exit(0); 586 /* 587 * Now construct the initial file system, 588 * then write out the super-block. 589 */ 590 fsinit(utime); 591 if (Oflag == 1) { 592 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 593 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 594 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 595 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 596 } 597 if (Xflag == 3) { 598 printf("** Exiting on Xflag 3\n"); 599 exit(0); 600 } 601 if (!Nflag) { 602 do_sbwrite(&disk); 603 /* 604 * For UFS1 filesystems with a blocksize of 64K, the first 605 * alternate superblock resides at the location used for 606 * the default UFS2 superblock. As there is a valid 607 * superblock at this location, the boot code will use 608 * it as its first choice. Thus we have to ensure that 609 * all of its statistcs on usage are correct. 610 */ 611 if (Oflag == 1 && sblock.fs_bsize == 65536) 612 wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)), 613 sblock.fs_bsize, (char *)&sblock); 614 } 615 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 616 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 617 MIN(sblock.fs_cssize - i, sblock.fs_bsize), 618 ((char *)fscs) + i); 619 /* 620 * Update information about this partition in pack 621 * label, to that it may be updated on disk. 622 */ 623 if (pp != NULL) { 624 pp->p_fstype = FS_BSDFFS; 625 pp->p_fsize = sblock.fs_fsize; 626 pp->p_frag = sblock.fs_frag; 627 pp->p_cpg = sblock.fs_fpg; 628 } 629 } 630 631 /* 632 * Initialize a cylinder group. 633 */ 634 void 635 initcg(int cylno, time_t utime) 636 { 637 long blkno, start; 638 uint i, j, d, dlower, dupper; 639 ufs2_daddr_t cbase, dmax; 640 struct ufs1_dinode *dp1; 641 struct ufs2_dinode *dp2; 642 struct csum *cs; 643 644 /* 645 * Determine block bounds for cylinder group. 646 * Allow space for super block summary information in first 647 * cylinder group. 648 */ 649 cbase = cgbase(&sblock, cylno); 650 dmax = cbase + sblock.fs_fpg; 651 if (dmax > sblock.fs_size) 652 dmax = sblock.fs_size; 653 dlower = cgsblock(&sblock, cylno) - cbase; 654 dupper = cgdmin(&sblock, cylno) - cbase; 655 if (cylno == 0) 656 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 657 cs = &fscs[cylno]; 658 memset(&acg, 0, sblock.fs_cgsize); 659 acg.cg_time = utime; 660 acg.cg_magic = CG_MAGIC; 661 acg.cg_cgx = cylno; 662 acg.cg_niblk = sblock.fs_ipg; 663 acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); 664 acg.cg_ndblk = dmax - cbase; 665 if (sblock.fs_contigsumsize > 0) 666 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 667 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 668 if (Oflag == 2) { 669 acg.cg_iusedoff = start; 670 } else { 671 acg.cg_old_ncyl = sblock.fs_old_cpg; 672 acg.cg_old_time = acg.cg_time; 673 acg.cg_time = 0; 674 acg.cg_old_niblk = acg.cg_niblk; 675 acg.cg_niblk = 0; 676 acg.cg_initediblk = 0; 677 acg.cg_old_btotoff = start; 678 acg.cg_old_boff = acg.cg_old_btotoff + 679 sblock.fs_old_cpg * sizeof(int32_t); 680 acg.cg_iusedoff = acg.cg_old_boff + 681 sblock.fs_old_cpg * sizeof(u_int16_t); 682 } 683 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 684 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 685 if (sblock.fs_contigsumsize > 0) { 686 acg.cg_clustersumoff = 687 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 688 acg.cg_clustersumoff -= sizeof(u_int32_t); 689 acg.cg_clusteroff = acg.cg_clustersumoff + 690 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 691 acg.cg_nextfreeoff = acg.cg_clusteroff + 692 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 693 } 694 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 695 printf("Panic: cylinder group too big\n"); 696 exit(37); 697 } 698 acg.cg_cs.cs_nifree += sblock.fs_ipg; 699 if (cylno == 0) 700 for (i = 0; i < (long)UFS_ROOTINO; i++) { 701 setbit(cg_inosused(&acg), i); 702 acg.cg_cs.cs_nifree--; 703 } 704 if (cylno > 0) { 705 /* 706 * In cylno 0, beginning space is reserved 707 * for boot and super blocks. 708 */ 709 for (d = 0; d < dlower; d += sblock.fs_frag) { 710 blkno = d / sblock.fs_frag; 711 setblock(&sblock, cg_blksfree(&acg), blkno); 712 if (sblock.fs_contigsumsize > 0) 713 setbit(cg_clustersfree(&acg), blkno); 714 acg.cg_cs.cs_nbfree++; 715 } 716 } 717 if ((i = dupper % sblock.fs_frag)) { 718 acg.cg_frsum[sblock.fs_frag - i]++; 719 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 720 setbit(cg_blksfree(&acg), dupper); 721 acg.cg_cs.cs_nffree++; 722 } 723 } 724 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 725 d += sblock.fs_frag) { 726 blkno = d / sblock.fs_frag; 727 setblock(&sblock, cg_blksfree(&acg), blkno); 728 if (sblock.fs_contigsumsize > 0) 729 setbit(cg_clustersfree(&acg), blkno); 730 acg.cg_cs.cs_nbfree++; 731 } 732 if (d < acg.cg_ndblk) { 733 acg.cg_frsum[acg.cg_ndblk - d]++; 734 for (; d < acg.cg_ndblk; d++) { 735 setbit(cg_blksfree(&acg), d); 736 acg.cg_cs.cs_nffree++; 737 } 738 } 739 if (sblock.fs_contigsumsize > 0) { 740 int32_t *sump = cg_clustersum(&acg); 741 u_char *mapp = cg_clustersfree(&acg); 742 int map = *mapp++; 743 int bit = 1; 744 int run = 0; 745 746 for (i = 0; i < acg.cg_nclusterblks; i++) { 747 if ((map & bit) != 0) 748 run++; 749 else if (run != 0) { 750 if (run > sblock.fs_contigsumsize) 751 run = sblock.fs_contigsumsize; 752 sump[run]++; 753 run = 0; 754 } 755 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 756 bit <<= 1; 757 else { 758 map = *mapp++; 759 bit = 1; 760 } 761 } 762 if (run != 0) { 763 if (run > sblock.fs_contigsumsize) 764 run = sblock.fs_contigsumsize; 765 sump[run]++; 766 } 767 } 768 *cs = acg.cg_cs; 769 /* 770 * Write out the duplicate super block, the cylinder group map 771 * and two blocks worth of inodes in a single write. 772 */ 773 start = MAX(sblock.fs_bsize, SBLOCKSIZE); 774 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 775 start += sblock.fs_bsize; 776 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 777 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 778 for (i = 0; i < acg.cg_initediblk; i++) { 779 if (sblock.fs_magic == FS_UFS1_MAGIC) { 780 dp1->di_gen = newfs_random(); 781 dp1++; 782 } else { 783 dp2->di_gen = newfs_random(); 784 dp2++; 785 } 786 } 787 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 788 /* 789 * For the old file system, we have to initialize all the inodes. 790 */ 791 if (Oflag == 1) { 792 for (i = 2 * sblock.fs_frag; 793 i < sblock.fs_ipg / INOPF(&sblock); 794 i += sblock.fs_frag) { 795 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 796 for (j = 0; j < INOPB(&sblock); j++) { 797 dp1->di_gen = newfs_random(); 798 dp1++; 799 } 800 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 801 sblock.fs_bsize, &iobuf[start]); 802 } 803 } 804 } 805 806 /* 807 * initialize the file system 808 */ 809 #define ROOTLINKCNT 3 810 811 static struct direct root_dir[] = { 812 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 813 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 814 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 815 }; 816 817 #define SNAPLINKCNT 2 818 819 static struct direct snap_dir[] = { 820 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 821 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 822 }; 823 824 void 825 fsinit(time_t utime) 826 { 827 union dinode node; 828 struct group *grp; 829 gid_t gid; 830 int entries; 831 832 memset(&node, 0, sizeof node); 833 if ((grp = getgrnam("operator")) != NULL) { 834 gid = grp->gr_gid; 835 } else { 836 warnx("Cannot retrieve operator gid, using gid 0."); 837 gid = 0; 838 } 839 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 840 if (sblock.fs_magic == FS_UFS1_MAGIC) { 841 /* 842 * initialize the node 843 */ 844 node.dp1.di_atime = utime; 845 node.dp1.di_mtime = utime; 846 node.dp1.di_ctime = utime; 847 /* 848 * create the root directory 849 */ 850 node.dp1.di_mode = IFDIR | UMASK; 851 node.dp1.di_nlink = entries; 852 node.dp1.di_size = makedir(root_dir, entries); 853 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 854 node.dp1.di_blocks = 855 btodb(fragroundup(&sblock, node.dp1.di_size)); 856 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 857 iobuf); 858 iput(&node, UFS_ROOTINO); 859 if (!nflag) { 860 /* 861 * create the .snap directory 862 */ 863 node.dp1.di_mode |= 020; 864 node.dp1.di_gid = gid; 865 node.dp1.di_nlink = SNAPLINKCNT; 866 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 867 node.dp1.di_db[0] = 868 alloc(sblock.fs_fsize, node.dp1.di_mode); 869 node.dp1.di_blocks = 870 btodb(fragroundup(&sblock, node.dp1.di_size)); 871 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 872 sblock.fs_fsize, iobuf); 873 iput(&node, UFS_ROOTINO + 1); 874 } 875 } else { 876 /* 877 * initialize the node 878 */ 879 node.dp2.di_atime = utime; 880 node.dp2.di_mtime = utime; 881 node.dp2.di_ctime = utime; 882 node.dp2.di_birthtime = utime; 883 /* 884 * create the root directory 885 */ 886 node.dp2.di_mode = IFDIR | UMASK; 887 node.dp2.di_nlink = entries; 888 node.dp2.di_size = makedir(root_dir, entries); 889 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 890 node.dp2.di_blocks = 891 btodb(fragroundup(&sblock, node.dp2.di_size)); 892 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 893 iobuf); 894 iput(&node, UFS_ROOTINO); 895 if (!nflag) { 896 /* 897 * create the .snap directory 898 */ 899 node.dp2.di_mode |= 020; 900 node.dp2.di_gid = gid; 901 node.dp2.di_nlink = SNAPLINKCNT; 902 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 903 node.dp2.di_db[0] = 904 alloc(sblock.fs_fsize, node.dp2.di_mode); 905 node.dp2.di_blocks = 906 btodb(fragroundup(&sblock, node.dp2.di_size)); 907 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 908 sblock.fs_fsize, iobuf); 909 iput(&node, UFS_ROOTINO + 1); 910 } 911 } 912 } 913 914 /* 915 * construct a set of directory entries in "iobuf". 916 * return size of directory. 917 */ 918 int 919 makedir(struct direct *protodir, int entries) 920 { 921 char *cp; 922 int i, spcleft; 923 924 spcleft = DIRBLKSIZ; 925 memset(iobuf, 0, DIRBLKSIZ); 926 for (cp = iobuf, i = 0; i < entries - 1; i++) { 927 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 928 memmove(cp, &protodir[i], protodir[i].d_reclen); 929 cp += protodir[i].d_reclen; 930 spcleft -= protodir[i].d_reclen; 931 } 932 protodir[i].d_reclen = spcleft; 933 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 934 return (DIRBLKSIZ); 935 } 936 937 /* 938 * allocate a block or frag 939 */ 940 ufs2_daddr_t 941 alloc(int size, int mode) 942 { 943 int i, blkno, frag; 944 uint d; 945 946 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 947 sblock.fs_cgsize); 948 if (acg.cg_magic != CG_MAGIC) { 949 printf("cg 0: bad magic number\n"); 950 exit(38); 951 } 952 if (acg.cg_cs.cs_nbfree == 0) { 953 printf("first cylinder group ran out of space\n"); 954 exit(39); 955 } 956 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 957 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 958 goto goth; 959 printf("internal error: can't find block in cyl 0\n"); 960 exit(40); 961 goth: 962 blkno = fragstoblks(&sblock, d); 963 clrblock(&sblock, cg_blksfree(&acg), blkno); 964 if (sblock.fs_contigsumsize > 0) 965 clrbit(cg_clustersfree(&acg), blkno); 966 acg.cg_cs.cs_nbfree--; 967 sblock.fs_cstotal.cs_nbfree--; 968 fscs[0].cs_nbfree--; 969 if (mode & IFDIR) { 970 acg.cg_cs.cs_ndir++; 971 sblock.fs_cstotal.cs_ndir++; 972 fscs[0].cs_ndir++; 973 } 974 if (size != sblock.fs_bsize) { 975 frag = howmany(size, sblock.fs_fsize); 976 fscs[0].cs_nffree += sblock.fs_frag - frag; 977 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 978 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 979 acg.cg_frsum[sblock.fs_frag - frag]++; 980 for (i = frag; i < sblock.fs_frag; i++) 981 setbit(cg_blksfree(&acg), d + i); 982 } 983 /* XXX cgwrite(&disk, 0)??? */ 984 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 985 (char *)&acg); 986 return ((ufs2_daddr_t)d); 987 } 988 989 /* 990 * Allocate an inode on the disk 991 */ 992 void 993 iput(union dinode *ip, ino_t ino) 994 { 995 ufs2_daddr_t d; 996 997 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 998 sblock.fs_cgsize); 999 if (acg.cg_magic != CG_MAGIC) { 1000 printf("cg 0: bad magic number\n"); 1001 exit(31); 1002 } 1003 acg.cg_cs.cs_nifree--; 1004 setbit(cg_inosused(&acg), ino); 1005 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1006 (char *)&acg); 1007 sblock.fs_cstotal.cs_nifree--; 1008 fscs[0].cs_nifree--; 1009 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 1010 printf("fsinit: inode value out of range (%ju).\n", 1011 (uintmax_t)ino); 1012 exit(32); 1013 } 1014 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 1015 bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize); 1016 if (sblock.fs_magic == FS_UFS1_MAGIC) 1017 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1018 ip->dp1; 1019 else 1020 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1021 ip->dp2; 1022 wtfs(d, sblock.fs_bsize, (char *)iobuf); 1023 } 1024 1025 /* 1026 * possibly write to disk 1027 */ 1028 static void 1029 wtfs(ufs2_daddr_t bno, int size, char *bf) 1030 { 1031 if (Nflag) 1032 return; 1033 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 1034 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 1035 } 1036 1037 /* 1038 * check if a block is available 1039 */ 1040 static int 1041 isblock(struct fs *fs, unsigned char *cp, int h) 1042 { 1043 unsigned char mask; 1044 1045 switch (fs->fs_frag) { 1046 case 8: 1047 return (cp[h] == 0xff); 1048 case 4: 1049 mask = 0x0f << ((h & 0x1) << 2); 1050 return ((cp[h >> 1] & mask) == mask); 1051 case 2: 1052 mask = 0x03 << ((h & 0x3) << 1); 1053 return ((cp[h >> 2] & mask) == mask); 1054 case 1: 1055 mask = 0x01 << (h & 0x7); 1056 return ((cp[h >> 3] & mask) == mask); 1057 default: 1058 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1059 return (0); 1060 } 1061 } 1062 1063 /* 1064 * take a block out of the map 1065 */ 1066 static void 1067 clrblock(struct fs *fs, unsigned char *cp, int h) 1068 { 1069 switch ((fs)->fs_frag) { 1070 case 8: 1071 cp[h] = 0; 1072 return; 1073 case 4: 1074 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1075 return; 1076 case 2: 1077 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1078 return; 1079 case 1: 1080 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1081 return; 1082 default: 1083 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1084 return; 1085 } 1086 } 1087 1088 /* 1089 * put a block into the map 1090 */ 1091 static void 1092 setblock(struct fs *fs, unsigned char *cp, int h) 1093 { 1094 switch (fs->fs_frag) { 1095 case 8: 1096 cp[h] = 0xff; 1097 return; 1098 case 4: 1099 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1100 return; 1101 case 2: 1102 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1103 return; 1104 case 1: 1105 cp[h >> 3] |= (0x01 << (h & 0x7)); 1106 return; 1107 default: 1108 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1109 return; 1110 } 1111 } 1112 1113 /* 1114 * Determine the number of characters in a 1115 * single line. 1116 */ 1117 1118 static int 1119 charsperline(void) 1120 { 1121 int columns; 1122 char *cp; 1123 struct winsize ws; 1124 1125 columns = 0; 1126 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1127 columns = ws.ws_col; 1128 if (columns == 0 && (cp = getenv("COLUMNS"))) 1129 columns = atoi(cp); 1130 if (columns == 0) 1131 columns = 80; /* last resort */ 1132 return (columns); 1133 } 1134 1135 static int 1136 ilog2(int val) 1137 { 1138 u_int n; 1139 1140 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1141 if (1 << n == val) 1142 return (n); 1143 errx(1, "ilog2: %d is not a power of 2\n", val); 1144 } 1145 1146 /* 1147 * For the regression test, return predictable random values. 1148 * Otherwise use a true random number generator. 1149 */ 1150 static u_int32_t 1151 newfs_random(void) 1152 { 1153 static int nextnum = 1; 1154 1155 if (Rflag) 1156 return (nextnum++); 1157 return (arc4random()); 1158 } 1159