1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz 5 * Copyright (c) 1980, 1989, 1993 The Regents of the University of California. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgment: 21 * This product includes software developed by the University of 22 * California, Berkeley and its contributors, as well as Christoph 23 * Herrmann and Thomas-Henning von Kamptz. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * $TSHeader: src/sbin/growfs/debug.c,v 1.3 2000/12/12 19:31:00 tomsoft Exp $ 41 * 42 */ 43 44 #ifndef lint 45 static const char rcsid[] = 46 "$FreeBSD$"; 47 #endif /* not lint */ 48 49 #include <sys/param.h> 50 51 #include <limits.h> 52 #include <stdio.h> 53 #include <string.h> 54 #include <ufs/ufs/dinode.h> 55 #include <ufs/ffs/fs.h> 56 57 #include "debug.h" 58 59 #ifdef FS_DEBUG 60 61 static FILE *dbg_log = NULL; 62 static unsigned int indent = 0; 63 64 /* 65 * prototypes not done here, as they come with debug.h 66 */ 67 68 /* 69 * Open the filehandle where all debug output has to go. 70 */ 71 void 72 dbg_open(const char *fn) 73 { 74 75 if (strcmp(fn, "-") == 0) 76 dbg_log = fopen("/dev/stdout", "a"); 77 else 78 dbg_log = fopen(fn, "a"); 79 80 return; 81 } 82 83 /* 84 * Close the filehandle where all debug output went to. 85 */ 86 void 87 dbg_close(void) 88 { 89 90 if (dbg_log) { 91 fclose(dbg_log); 92 dbg_log = NULL; 93 } 94 95 return; 96 } 97 98 /* 99 * Dump out a full file system block in hex. 100 */ 101 void 102 dbg_dump_hex(struct fs *sb, const char *comment, unsigned char *mem) 103 { 104 int i, j, k; 105 106 if (!dbg_log) 107 return; 108 109 fprintf(dbg_log, "===== START HEXDUMP =====\n"); 110 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)mem, comment); 111 indent++; 112 for (i = 0; i < sb->fs_bsize; i += 24) { 113 for (j = 0; j < 3; j++) { 114 for (k = 0; k < 8; k++) 115 fprintf(dbg_log, "%02x ", *mem++); 116 fprintf(dbg_log, " "); 117 } 118 fprintf(dbg_log, "\n"); 119 } 120 indent--; 121 fprintf(dbg_log, "===== END HEXDUMP =====\n"); 122 123 return; 124 } 125 126 /* 127 * Dump the superblock. 128 */ 129 void 130 dbg_dump_fs(struct fs *sb, const char *comment) 131 { 132 int j; 133 134 if (!dbg_log) 135 return; 136 137 fprintf(dbg_log, "===== START SUPERBLOCK =====\n"); 138 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)sb, comment); 139 indent++; 140 141 fprintf(dbg_log, "sblkno int32_t 0x%08x\n", 142 sb->fs_sblkno); 143 fprintf(dbg_log, "cblkno int32_t 0x%08x\n", 144 sb->fs_cblkno); 145 fprintf(dbg_log, "iblkno int32_t 0x%08x\n", 146 sb->fs_iblkno); 147 fprintf(dbg_log, "dblkno int32_t 0x%08x\n", 148 sb->fs_dblkno); 149 150 fprintf(dbg_log, "old_cgoffset int32_t 0x%08x\n", 151 sb->fs_old_cgoffset); 152 fprintf(dbg_log, "old_cgmask int32_t 0x%08x\n", 153 sb->fs_old_cgmask); 154 fprintf(dbg_log, "old_time int32_t %10u\n", 155 (unsigned int)sb->fs_old_time); 156 fprintf(dbg_log, "old_size int32_t 0x%08x\n", 157 sb->fs_old_size); 158 fprintf(dbg_log, "old_dsize int32_t 0x%08x\n", 159 sb->fs_old_dsize); 160 fprintf(dbg_log, "ncg int32_t 0x%08x\n", 161 sb->fs_ncg); 162 fprintf(dbg_log, "bsize int32_t 0x%08x\n", 163 sb->fs_bsize); 164 fprintf(dbg_log, "fsize int32_t 0x%08x\n", 165 sb->fs_fsize); 166 fprintf(dbg_log, "frag int32_t 0x%08x\n", 167 sb->fs_frag); 168 169 fprintf(dbg_log, "minfree int32_t 0x%08x\n", 170 sb->fs_minfree); 171 fprintf(dbg_log, "old_rotdelay int32_t 0x%08x\n", 172 sb->fs_old_rotdelay); 173 fprintf(dbg_log, "old_rps int32_t 0x%08x\n", 174 sb->fs_old_rps); 175 176 fprintf(dbg_log, "bmask int32_t 0x%08x\n", 177 sb->fs_bmask); 178 fprintf(dbg_log, "fmask int32_t 0x%08x\n", 179 sb->fs_fmask); 180 fprintf(dbg_log, "bshift int32_t 0x%08x\n", 181 sb->fs_bshift); 182 fprintf(dbg_log, "fshift int32_t 0x%08x\n", 183 sb->fs_fshift); 184 185 fprintf(dbg_log, "maxcontig int32_t 0x%08x\n", 186 sb->fs_maxcontig); 187 fprintf(dbg_log, "maxbpg int32_t 0x%08x\n", 188 sb->fs_maxbpg); 189 190 fprintf(dbg_log, "fragshift int32_t 0x%08x\n", 191 sb->fs_fragshift); 192 fprintf(dbg_log, "fsbtodb int32_t 0x%08x\n", 193 sb->fs_fsbtodb); 194 fprintf(dbg_log, "sbsize int32_t 0x%08x\n", 195 sb->fs_sbsize); 196 fprintf(dbg_log, "spare1 int32_t[2] 0x%08x 0x%08x\n", 197 sb->fs_spare1[0], sb->fs_spare1[1]); 198 fprintf(dbg_log, "nindir int32_t 0x%08x\n", 199 sb->fs_nindir); 200 fprintf(dbg_log, "inopb int32_t 0x%08x\n", 201 sb->fs_inopb); 202 fprintf(dbg_log, "old_nspf int32_t 0x%08x\n", 203 sb->fs_old_nspf); 204 205 fprintf(dbg_log, "optim int32_t 0x%08x\n", 206 sb->fs_optim); 207 208 fprintf(dbg_log, "old_npsect int32_t 0x%08x\n", 209 sb->fs_old_npsect); 210 fprintf(dbg_log, "old_interleave int32_t 0x%08x\n", 211 sb->fs_old_interleave); 212 fprintf(dbg_log, "old_trackskew int32_t 0x%08x\n", 213 sb->fs_old_trackskew); 214 215 fprintf(dbg_log, "id int32_t[2] 0x%08x 0x%08x\n", 216 sb->fs_id[0], sb->fs_id[1]); 217 218 fprintf(dbg_log, "old_csaddr int32_t 0x%08x\n", 219 sb->fs_old_csaddr); 220 fprintf(dbg_log, "cssize int32_t 0x%08x\n", 221 sb->fs_cssize); 222 fprintf(dbg_log, "cgsize int32_t 0x%08x\n", 223 sb->fs_cgsize); 224 225 fprintf(dbg_log, "spare2 int32_t 0x%08x\n", 226 sb->fs_spare2); 227 fprintf(dbg_log, "old_nsect int32_t 0x%08x\n", 228 sb->fs_old_nsect); 229 fprintf(dbg_log, "old_spc int32_t 0x%08x\n", 230 sb->fs_old_spc); 231 232 fprintf(dbg_log, "old_ncyl int32_t 0x%08x\n", 233 sb->fs_old_ncyl); 234 235 fprintf(dbg_log, "old_cpg int32_t 0x%08x\n", 236 sb->fs_old_cpg); 237 fprintf(dbg_log, "ipg int32_t 0x%08x\n", 238 sb->fs_ipg); 239 fprintf(dbg_log, "fpg int32_t 0x%08x\n", 240 sb->fs_fpg); 241 242 dbg_dump_csum("internal old_cstotal", &sb->fs_old_cstotal); 243 244 fprintf(dbg_log, "fmod int8_t 0x%02x\n", 245 sb->fs_fmod); 246 fprintf(dbg_log, "clean int8_t 0x%02x\n", 247 sb->fs_clean); 248 fprintf(dbg_log, "ronly int8_t 0x%02x\n", 249 sb->fs_ronly); 250 fprintf(dbg_log, "old_flags int8_t 0x%02x\n", 251 sb->fs_old_flags); 252 fprintf(dbg_log, "fsmnt u_char[MAXMNTLEN] \"%s\"\n", 253 sb->fs_fsmnt); 254 fprintf(dbg_log, "volname u_char[MAXVOLLEN] \"%s\"\n", 255 sb->fs_volname); 256 fprintf(dbg_log, "swuid u_int64_t 0x%08x%08x\n", 257 ((unsigned int *)&(sb->fs_swuid))[1], 258 ((unsigned int *)&(sb->fs_swuid))[0]); 259 260 fprintf(dbg_log, "pad int32_t 0x%08x\n", 261 sb->fs_pad); 262 263 fprintf(dbg_log, "cgrotor int32_t 0x%08x\n", 264 sb->fs_cgrotor); 265 /* 266 * struct csum[MAXCSBUFS] - is only maintained in memory 267 */ 268 /* fprintf(dbg_log, " int32_t\n", sb->*fs_maxcluster);*/ 269 fprintf(dbg_log, "old_cpc int32_t 0x%08x\n", 270 sb->fs_old_cpc); 271 /* 272 * int16_t fs_opostbl[16][8] - is dumped when used in dbg_dump_sptbl 273 */ 274 fprintf(dbg_log, "maxbsize int32_t 0x%08x\n", 275 sb->fs_maxbsize); 276 fprintf(dbg_log, "unrefs int64_t 0x%08jx\n", 277 sb->fs_unrefs); 278 fprintf(dbg_log, "sblockloc int64_t 0x%08x%08x\n", 279 ((unsigned int *)&(sb->fs_sblockloc))[1], 280 ((unsigned int *)&(sb->fs_sblockloc))[0]); 281 282 dbg_dump_csum_total("internal cstotal", &sb->fs_cstotal); 283 284 fprintf(dbg_log, "time ufs_time_t %10u\n", 285 (unsigned int)sb->fs_time); 286 287 fprintf(dbg_log, "size int64_t 0x%08x%08x\n", 288 ((unsigned int *)&(sb->fs_size))[1], 289 ((unsigned int *)&(sb->fs_size))[0]); 290 fprintf(dbg_log, "dsize int64_t 0x%08x%08x\n", 291 ((unsigned int *)&(sb->fs_dsize))[1], 292 ((unsigned int *)&(sb->fs_dsize))[0]); 293 fprintf(dbg_log, "csaddr ufs2_daddr_t 0x%08x%08x\n", 294 ((unsigned int *)&(sb->fs_csaddr))[1], 295 ((unsigned int *)&(sb->fs_csaddr))[0]); 296 fprintf(dbg_log, "pendingblocks int64_t 0x%08x%08x\n", 297 ((unsigned int *)&(sb->fs_pendingblocks))[1], 298 ((unsigned int *)&(sb->fs_pendingblocks))[0]); 299 fprintf(dbg_log, "pendinginodes int32_t 0x%08x\n", 300 sb->fs_pendinginodes); 301 302 for (j = 0; j < FSMAXSNAP; j++) { 303 fprintf(dbg_log, "snapinum int32_t[%2d] 0x%08x\n", 304 j, sb->fs_snapinum[j]); 305 if (!sb->fs_snapinum[j]) { /* list is dense */ 306 break; 307 } 308 } 309 fprintf(dbg_log, "avgfilesize int32_t 0x%08x\n", 310 sb->fs_avgfilesize); 311 fprintf(dbg_log, "avgfpdir int32_t 0x%08x\n", 312 sb->fs_avgfpdir); 313 fprintf(dbg_log, "save_cgsize int32_t 0x%08x\n", 314 sb->fs_save_cgsize); 315 fprintf(dbg_log, "flags int32_t 0x%08x\n", 316 sb->fs_flags); 317 fprintf(dbg_log, "contigsumsize int32_t 0x%08x\n", 318 sb->fs_contigsumsize); 319 fprintf(dbg_log, "maxsymlinklen int32_t 0x%08x\n", 320 sb->fs_maxsymlinklen); 321 fprintf(dbg_log, "old_inodefmt int32_t 0x%08x\n", 322 sb->fs_old_inodefmt); 323 fprintf(dbg_log, "maxfilesize u_int64_t 0x%08x%08x\n", 324 ((unsigned int *)&(sb->fs_maxfilesize))[1], 325 ((unsigned int *)&(sb->fs_maxfilesize))[0]); 326 fprintf(dbg_log, "qbmask int64_t 0x%08x%08x\n", 327 ((unsigned int *)&(sb->fs_qbmask))[1], 328 ((unsigned int *)&(sb->fs_qbmask))[0]); 329 fprintf(dbg_log, "qfmask int64_t 0x%08x%08x\n", 330 ((unsigned int *)&(sb->fs_qfmask))[1], 331 ((unsigned int *)&(sb->fs_qfmask))[0]); 332 fprintf(dbg_log, "state int32_t 0x%08x\n", 333 sb->fs_state); 334 fprintf(dbg_log, "old_postblformat int32_t 0x%08x\n", 335 sb->fs_old_postblformat); 336 fprintf(dbg_log, "old_nrpos int32_t 0x%08x\n", 337 sb->fs_old_nrpos); 338 fprintf(dbg_log, "spare5 int32_t[2] 0x%08x 0x%08x\n", 339 sb->fs_spare5[0], sb->fs_spare5[1]); 340 fprintf(dbg_log, "magic int32_t 0x%08x\n", 341 sb->fs_magic); 342 343 indent--; 344 fprintf(dbg_log, "===== END SUPERBLOCK =====\n"); 345 346 return; 347 } 348 349 /* 350 * Dump a cylinder group. 351 */ 352 void 353 dbg_dump_cg(const char *comment, struct cg *cgr) 354 { 355 int j; 356 357 if (!dbg_log) 358 return; 359 360 fprintf(dbg_log, "===== START CYLINDER GROUP =====\n"); 361 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cgr, comment); 362 indent++; 363 364 fprintf(dbg_log, "magic int32_t 0x%08x\n", cgr->cg_magic); 365 fprintf(dbg_log, "old_time int32_t 0x%08x\n", cgr->cg_old_time); 366 fprintf(dbg_log, "cgx int32_t 0x%08x\n", cgr->cg_cgx); 367 fprintf(dbg_log, "old_ncyl int16_t 0x%04x\n", cgr->cg_old_ncyl); 368 fprintf(dbg_log, "old_niblk int16_t 0x%04x\n", cgr->cg_old_niblk); 369 fprintf(dbg_log, "ndblk int32_t 0x%08x\n", cgr->cg_ndblk); 370 dbg_dump_csum("internal cs", &cgr->cg_cs); 371 fprintf(dbg_log, "rotor int32_t 0x%08x\n", cgr->cg_rotor); 372 fprintf(dbg_log, "frotor int32_t 0x%08x\n", cgr->cg_frotor); 373 fprintf(dbg_log, "irotor int32_t 0x%08x\n", cgr->cg_irotor); 374 for (j = 0; j < MAXFRAG; j++) { 375 fprintf(dbg_log, "frsum int32_t[%d] 0x%08x\n", j, 376 cgr->cg_frsum[j]); 377 } 378 fprintf(dbg_log, "old_btotoff int32_t 0x%08x\n", cgr->cg_old_btotoff); 379 fprintf(dbg_log, "old_boff int32_t 0x%08x\n", cgr->cg_old_boff); 380 fprintf(dbg_log, "iusedoff int32_t 0x%08x\n", cgr->cg_iusedoff); 381 fprintf(dbg_log, "freeoff int32_t 0x%08x\n", cgr->cg_freeoff); 382 fprintf(dbg_log, "nextfreeoff int32_t 0x%08x\n", 383 cgr->cg_nextfreeoff); 384 fprintf(dbg_log, "clustersumoff int32_t 0x%08x\n", 385 cgr->cg_clustersumoff); 386 fprintf(dbg_log, "clusteroff int32_t 0x%08x\n", 387 cgr->cg_clusteroff); 388 fprintf(dbg_log, "nclusterblks int32_t 0x%08x\n", 389 cgr->cg_nclusterblks); 390 fprintf(dbg_log, "niblk int32_t 0x%08x\n", cgr->cg_niblk); 391 fprintf(dbg_log, "initediblk int32_t 0x%08x\n", cgr->cg_initediblk); 392 fprintf(dbg_log, "unrefs int32_t 0x%08x\n", cgr->cg_unrefs); 393 fprintf(dbg_log, "time ufs_time_t %10u\n", 394 (unsigned int)cgr->cg_initediblk); 395 396 indent--; 397 fprintf(dbg_log, "===== END CYLINDER GROUP =====\n"); 398 399 return; 400 } 401 402 /* 403 * Dump a cylinder summary. 404 */ 405 void 406 dbg_dump_csum(const char *comment, struct csum *cs) 407 { 408 409 if (!dbg_log) 410 return; 411 412 fprintf(dbg_log, "===== START CYLINDER SUMMARY =====\n"); 413 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cs, comment); 414 indent++; 415 416 fprintf(dbg_log, "ndir int32_t 0x%08x\n", cs->cs_ndir); 417 fprintf(dbg_log, "nbfree int32_t 0x%08x\n", cs->cs_nbfree); 418 fprintf(dbg_log, "nifree int32_t 0x%08x\n", cs->cs_nifree); 419 fprintf(dbg_log, "nffree int32_t 0x%08x\n", cs->cs_nffree); 420 421 indent--; 422 fprintf(dbg_log, "===== END CYLINDER SUMMARY =====\n"); 423 424 return; 425 } 426 427 /* 428 * Dump a cylinder summary. 429 */ 430 void 431 dbg_dump_csum_total(const char *comment, struct csum_total *cs) 432 { 433 434 if (!dbg_log) 435 return; 436 437 fprintf(dbg_log, "===== START CYLINDER SUMMARY TOTAL =====\n"); 438 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cs, comment); 439 indent++; 440 441 fprintf(dbg_log, "ndir int64_t 0x%08x%08x\n", 442 ((unsigned int *)&(cs->cs_ndir))[1], 443 ((unsigned int *)&(cs->cs_ndir))[0]); 444 fprintf(dbg_log, "nbfree int64_t 0x%08x%08x\n", 445 ((unsigned int *)&(cs->cs_nbfree))[1], 446 ((unsigned int *)&(cs->cs_nbfree))[0]); 447 fprintf(dbg_log, "nifree int64_t 0x%08x%08x\n", 448 ((unsigned int *)&(cs->cs_nifree))[1], 449 ((unsigned int *)&(cs->cs_nifree))[0]); 450 fprintf(dbg_log, "nffree int64_t 0x%08x%08x\n", 451 ((unsigned int *)&(cs->cs_nffree))[1], 452 ((unsigned int *)&(cs->cs_nffree))[0]); 453 fprintf(dbg_log, "numclusters int64_t 0x%08x%08x\n", 454 ((unsigned int *)&(cs->cs_numclusters))[1], 455 ((unsigned int *)&(cs->cs_numclusters))[0]); 456 457 indent--; 458 fprintf(dbg_log, "===== END CYLINDER SUMMARY TOTAL =====\n"); 459 460 return; 461 } 462 /* 463 * Dump the inode allocation map in one cylinder group. 464 */ 465 void 466 dbg_dump_inmap(struct fs *sb, const char *comment, struct cg *cgr) 467 { 468 int j,k,l,e; 469 unsigned char *cp; 470 471 if (!dbg_log) 472 return; 473 474 fprintf(dbg_log, "===== START INODE ALLOCATION MAP =====\n"); 475 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cgr, comment); 476 indent++; 477 478 cp = (unsigned char *)cg_inosused(cgr); 479 e = sb->fs_ipg / 8; 480 for (j = 0; j < e; j += 32) { 481 fprintf(dbg_log, "%08x: ", j); 482 for (k = 0; k < 32; k += 8) { 483 if (j + k + 8 < e) { 484 fprintf(dbg_log, 485 "%02x%02x%02x%02x%02x%02x%02x%02x ", 486 cp[0], cp[1], cp[2], cp[3], 487 cp[4], cp[5], cp[6], cp[7]); 488 } else { 489 for (l = 0; (l < 8) && (j + k + l < e); l++) { 490 fprintf(dbg_log, "%02x", cp[l]); 491 } 492 } 493 cp += 8; 494 } 495 fprintf(dbg_log, "\n"); 496 } 497 498 indent--; 499 fprintf(dbg_log, "===== END INODE ALLOCATION MAP =====\n"); 500 501 return; 502 } 503 504 505 /* 506 * Dump the fragment allocation map in one cylinder group. 507 */ 508 void 509 dbg_dump_frmap(struct fs *sb, const char *comment, struct cg *cgr) 510 { 511 int j,k,l,e; 512 unsigned char *cp; 513 514 if (!dbg_log) 515 return; 516 517 fprintf(dbg_log, "===== START FRAGMENT ALLOCATION MAP =====\n"); 518 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cgr, comment); 519 indent++; 520 521 cp = (unsigned char *)cg_blksfree(cgr); 522 if (sb->fs_old_nspf) 523 e = howmany(sb->fs_old_cpg * sb->fs_old_spc / sb->fs_old_nspf, 524 CHAR_BIT); 525 else 526 e = 0; 527 for (j = 0; j < e; j += 32) { 528 fprintf(dbg_log, "%08x: ", j); 529 for (k = 0; k < 32; k += 8) { 530 if (j + k + 8 <e) { 531 fprintf(dbg_log, 532 "%02x%02x%02x%02x%02x%02x%02x%02x ", 533 cp[0], cp[1], cp[2], cp[3], 534 cp[4], cp[5], cp[6], cp[7]); 535 } else { 536 for (l = 0; (l < 8) && (j + k + l < e); l++) { 537 fprintf(dbg_log, "%02x", cp[l]); 538 } 539 } 540 cp += 8; 541 } 542 fprintf(dbg_log, "\n"); 543 } 544 545 indent--; 546 fprintf(dbg_log, "===== END FRAGMENT ALLOCATION MAP =====\n"); 547 548 return; 549 } 550 551 /* 552 * Dump the cluster allocation map in one cylinder group. 553 */ 554 void 555 dbg_dump_clmap(struct fs *sb, const char *comment, struct cg *cgr) 556 { 557 int j,k,l,e; 558 unsigned char *cp; 559 560 if (!dbg_log) 561 return; 562 563 fprintf(dbg_log, "===== START CLUSTER ALLOCATION MAP =====\n"); 564 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cgr, comment); 565 indent++; 566 567 cp = (unsigned char *)cg_clustersfree(cgr); 568 if (sb->fs_old_nspf) 569 e = howmany(sb->fs_old_cpg * sb->fs_old_spc / (sb->fs_old_nspf << sb->fs_fragshift), CHAR_BIT); 570 else 571 e = 0; 572 for (j = 0; j < e; j += 32) { 573 fprintf(dbg_log, "%08x: ", j); 574 for (k = 0; k < 32; k += 8) { 575 if (j + k + 8 < e) { 576 fprintf(dbg_log, 577 "%02x%02x%02x%02x%02x%02x%02x%02x ", 578 cp[0], cp[1], cp[2], cp[3], 579 cp[4], cp[5], cp[6], cp[7]); 580 } else { 581 for (l = 0; (l < 8) && (j + k + l <e); l++) { 582 fprintf(dbg_log, "%02x", cp[l]); 583 } 584 } 585 cp += 8; 586 } 587 fprintf(dbg_log, "\n"); 588 } 589 590 indent--; 591 fprintf(dbg_log, "===== END CLUSTER ALLOCATION MAP =====\n"); 592 593 return; 594 } 595 596 /* 597 * Dump the cluster availability summary of one cylinder group. 598 */ 599 void 600 dbg_dump_clsum(struct fs *sb, const char *comment, struct cg *cgr) 601 { 602 int j; 603 int *ip; 604 605 if (!dbg_log) 606 return; 607 608 fprintf(dbg_log, "===== START CLUSTER SUMMARY =====\n"); 609 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cgr, comment); 610 indent++; 611 612 ip = (int *)cg_clustersum(cgr); 613 for (j = 0; j <= sb->fs_contigsumsize; j++) { 614 fprintf(dbg_log, "%02d: %8d\n", j, *ip++); 615 } 616 617 indent--; 618 fprintf(dbg_log, "===== END CLUSTER SUMMARY =====\n"); 619 620 return; 621 } 622 623 #ifdef NOT_CURRENTLY 624 /* 625 * This code dates from before the UFS2 integration, and doesn't compile 626 * post-UFS2 due to the use of cg_blks(). I'm not sure how best to update 627 * this for UFS2, where the rotational bits of UFS no longer apply, so 628 * will leave it disabled for now; it should probably be re-enabled 629 * specifically for UFS1. 630 */ 631 /* 632 * Dump the block summary, and the rotational layout table. 633 */ 634 void 635 dbg_dump_sptbl(struct fs *sb, const char *comment, struct cg *cgr) 636 { 637 int j,k; 638 int *ip; 639 640 if (!dbg_log) 641 return; 642 643 fprintf(dbg_log, 644 "===== START BLOCK SUMMARY AND POSITION TABLE =====\n"); 645 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cgr, comment); 646 indent++; 647 648 ip = (int *)cg_blktot(cgr); 649 for (j = 0; j < sb->fs_old_cpg; j++) { 650 fprintf(dbg_log, "%2d: %5d = ", j, *ip++); 651 for (k = 0; k < sb->fs_old_nrpos; k++) { 652 fprintf(dbg_log, "%4d", cg_blks(sb, cgr, j)[k]); 653 if (k < sb->fs_old_nrpos - 1) 654 fprintf(dbg_log, " + "); 655 } 656 fprintf(dbg_log, "\n"); 657 } 658 659 indent--; 660 fprintf(dbg_log, "===== END BLOCK SUMMARY AND POSITION TABLE =====\n"); 661 662 return; 663 } 664 #endif 665 666 /* 667 * Dump a UFS1 inode structure. 668 */ 669 void 670 dbg_dump_ufs1_ino(struct fs *sb, const char *comment, struct ufs1_dinode *ino) 671 { 672 int ictr; 673 int remaining_blocks; 674 675 if (!dbg_log) 676 return; 677 678 fprintf(dbg_log, "===== START UFS1 INODE DUMP =====\n"); 679 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)ino, comment); 680 indent++; 681 682 fprintf(dbg_log, "mode u_int16_t 0%o\n", ino->di_mode); 683 fprintf(dbg_log, "nlink int16_t 0x%04x\n", ino->di_nlink); 684 fprintf(dbg_log, "size u_int64_t 0x%08x%08x\n", 685 ((unsigned int *)&(ino->di_size))[1], 686 ((unsigned int *)&(ino->di_size))[0]); 687 fprintf(dbg_log, "atime int32_t 0x%08x\n", ino->di_atime); 688 fprintf(dbg_log, "atimensec int32_t 0x%08x\n", 689 ino->di_atimensec); 690 fprintf(dbg_log, "mtime int32_t 0x%08x\n", 691 ino->di_mtime); 692 fprintf(dbg_log, "mtimensec int32_t 0x%08x\n", 693 ino->di_mtimensec); 694 fprintf(dbg_log, "ctime int32_t 0x%08x\n", ino->di_ctime); 695 fprintf(dbg_log, "ctimensec int32_t 0x%08x\n", 696 ino->di_ctimensec); 697 698 remaining_blocks = howmany(ino->di_size, sb->fs_bsize); /* XXX ts - +1? */ 699 for (ictr = 0; ictr < MIN(UFS_NDADDR, remaining_blocks); ictr++) { 700 fprintf(dbg_log, "db ufs_daddr_t[%x] 0x%08x\n", ictr, 701 ino->di_db[ictr]); 702 } 703 remaining_blocks -= UFS_NDADDR; 704 if (remaining_blocks > 0) { 705 fprintf(dbg_log, "ib ufs_daddr_t[0] 0x%08x\n", 706 ino->di_ib[0]); 707 } 708 remaining_blocks -= howmany(sb->fs_bsize, sizeof(ufs1_daddr_t)); 709 if (remaining_blocks > 0) { 710 fprintf(dbg_log, "ib ufs_daddr_t[1] 0x%08x\n", 711 ino->di_ib[1]); 712 } 713 #define SQUARE(a) ((a) * (a)) 714 remaining_blocks -= SQUARE(howmany(sb->fs_bsize, sizeof(ufs1_daddr_t))); 715 #undef SQUARE 716 if (remaining_blocks > 0) { 717 fprintf(dbg_log, "ib ufs_daddr_t[2] 0x%08x\n", 718 ino->di_ib[2]); 719 } 720 721 fprintf(dbg_log, "flags u_int32_t 0x%08x\n", ino->di_flags); 722 fprintf(dbg_log, "blocks int32_t 0x%08x\n", ino->di_blocks); 723 fprintf(dbg_log, "gen int32_t 0x%08x\n", ino->di_gen); 724 fprintf(dbg_log, "uid u_int32_t 0x%08x\n", ino->di_uid); 725 fprintf(dbg_log, "gid u_int32_t 0x%08x\n", ino->di_gid); 726 727 indent--; 728 fprintf(dbg_log, "===== END UFS1 INODE DUMP =====\n"); 729 730 return; 731 } 732 733 /* 734 * Dump a UFS2 inode structure. 735 */ 736 void 737 dbg_dump_ufs2_ino(struct fs *sb, const char *comment, struct ufs2_dinode *ino) 738 { 739 int ictr; 740 int remaining_blocks; 741 742 if (!dbg_log) 743 return; 744 745 fprintf(dbg_log, "===== START UFS2 INODE DUMP =====\n"); 746 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)ino, comment); 747 indent++; 748 749 fprintf(dbg_log, "mode u_int16_t 0%o\n", ino->di_mode); 750 fprintf(dbg_log, "nlink int16_t 0x%04x\n", ino->di_nlink); 751 fprintf(dbg_log, "uid u_int32_t 0x%08x\n", ino->di_uid); 752 fprintf(dbg_log, "gid u_int32_t 0x%08x\n", ino->di_gid); 753 fprintf(dbg_log, "blksize u_int32_t 0x%08x\n", ino->di_blksize); 754 fprintf(dbg_log, "size u_int64_t 0x%08x%08x\n", 755 ((unsigned int *)&(ino->di_size))[1], 756 ((unsigned int *)&(ino->di_size))[0]); 757 fprintf(dbg_log, "blocks u_int64_t 0x%08x%08x\n", 758 ((unsigned int *)&(ino->di_blocks))[1], 759 ((unsigned int *)&(ino->di_blocks))[0]); 760 fprintf(dbg_log, "atime ufs_time_t %10jd\n", ino->di_atime); 761 fprintf(dbg_log, "mtime ufs_time_t %10jd\n", ino->di_mtime); 762 fprintf(dbg_log, "ctime ufs_time_t %10jd\n", ino->di_ctime); 763 fprintf(dbg_log, "birthtime ufs_time_t %10jd\n", ino->di_birthtime); 764 fprintf(dbg_log, "mtimensec int32_t 0x%08x\n", ino->di_mtimensec); 765 fprintf(dbg_log, "atimensec int32_t 0x%08x\n", ino->di_atimensec); 766 fprintf(dbg_log, "ctimensec int32_t 0x%08x\n", ino->di_ctimensec); 767 fprintf(dbg_log, "birthnsec int32_t 0x%08x\n", ino->di_birthnsec); 768 fprintf(dbg_log, "gen int32_t 0x%08x\n", ino->di_gen); 769 fprintf(dbg_log, "kernflags u_int32_t 0x%08x\n", ino->di_kernflags); 770 fprintf(dbg_log, "flags u_int32_t 0x%08x\n", ino->di_flags); 771 fprintf(dbg_log, "extsize u_int32_t 0x%08x\n", ino->di_extsize); 772 773 /* XXX: What do we do with di_extb[UFS_NXADDR]? */ 774 775 remaining_blocks = howmany(ino->di_size, sb->fs_bsize); /* XXX ts - +1? */ 776 for (ictr = 0; ictr < MIN(UFS_NDADDR, remaining_blocks); ictr++) { 777 fprintf(dbg_log, "db ufs2_daddr_t[%x] 0x%16jx\n", ictr, 778 ino->di_db[ictr]); 779 } 780 remaining_blocks -= UFS_NDADDR; 781 if (remaining_blocks > 0) { 782 fprintf(dbg_log, "ib ufs2_daddr_t[0] 0x%16jx\n", 783 ino->di_ib[0]); 784 } 785 remaining_blocks -= howmany(sb->fs_bsize, sizeof(ufs2_daddr_t)); 786 if (remaining_blocks > 0) { 787 fprintf(dbg_log, "ib ufs2_daddr_t[1] 0x%16jx\n", 788 ino->di_ib[1]); 789 } 790 #define SQUARE(a) ((a) * (a)) 791 remaining_blocks -= SQUARE(howmany(sb->fs_bsize, sizeof(ufs2_daddr_t))); 792 #undef SQUARE 793 if (remaining_blocks > 0) { 794 fprintf(dbg_log, "ib ufs2_daddr_t[2] 0x%16jx\n", 795 ino->di_ib[2]); 796 } 797 798 indent--; 799 fprintf(dbg_log, "===== END UFS2 INODE DUMP =====\n"); 800 801 return; 802 } 803 804 /* 805 * Dump an indirect block. The iteration to dump a full file has to be 806 * written around. 807 */ 808 void 809 dbg_dump_iblk(struct fs *sb, const char *comment, char *block, size_t length) 810 { 811 unsigned int *mem, i, j, size; 812 813 if (!dbg_log) 814 return; 815 816 fprintf(dbg_log, "===== START INDIRECT BLOCK DUMP =====\n"); 817 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)block, 818 comment); 819 indent++; 820 821 if (sb->fs_magic == FS_UFS1_MAGIC) 822 size = sizeof(ufs1_daddr_t); 823 else 824 size = sizeof(ufs2_daddr_t); 825 826 mem = (unsigned int *)block; 827 for (i = 0; (size_t)i < MIN(howmany(sb->fs_bsize, size), length); 828 i += 8) { 829 fprintf(dbg_log, "%04x: ", i); 830 for (j = 0; j < 8; j++) { 831 if ((size_t)(i + j) < length) 832 fprintf(dbg_log, "%08X ", *mem++); 833 } 834 fprintf(dbg_log, "\n"); 835 } 836 837 indent--; 838 fprintf(dbg_log, "===== END INDIRECT BLOCK DUMP =====\n"); 839 840 return; 841 } 842 843 #endif /* FS_DEBUG */ 844 845