1 /* 2 * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz 3 * Copyright (c) 1980, 1989, 1993 The Regents of the University of California. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgment: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors, as well as Christoph 21 * Herrmann and Thomas-Henning von Kamptz. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * $TSHeader: src/sbin/growfs/debug.c,v 1.3 2000/12/12 19:31:00 tomsoft Exp $ 39 * 40 */ 41 42 #ifndef lint 43 static const char rcsid[] = 44 "$FreeBSD$"; 45 #endif /* not lint */ 46 47 #include <sys/param.h> 48 49 #include <limits.h> 50 #include <stdio.h> 51 #include <string.h> 52 #include <ufs/ufs/dinode.h> 53 #include <ufs/ffs/fs.h> 54 55 #include "debug.h" 56 57 #ifdef FS_DEBUG 58 59 static FILE *dbg_log = NULL; 60 static unsigned int indent = 0; 61 62 /* 63 * prototypes not done here, as they come with debug.h 64 */ 65 66 /* 67 * Open the filehandle where all debug output has to go. 68 */ 69 void 70 dbg_open(const char *fn) 71 { 72 73 if (strcmp(fn, "-") == 0) 74 dbg_log = fopen("/dev/stdout", "a"); 75 else 76 dbg_log = fopen(fn, "a"); 77 78 return; 79 } 80 81 /* 82 * Close the filehandle where all debug output went to. 83 */ 84 void 85 dbg_close(void) 86 { 87 88 if (dbg_log) { 89 fclose(dbg_log); 90 dbg_log = NULL; 91 } 92 93 return; 94 } 95 96 /* 97 * Dump out a full file system block in hex. 98 */ 99 void 100 dbg_dump_hex(struct fs *sb, const char *comment, unsigned char *mem) 101 { 102 int i, j, k; 103 104 if (!dbg_log) 105 return; 106 107 fprintf(dbg_log, "===== START HEXDUMP =====\n"); 108 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)mem, comment); 109 indent++; 110 for (i = 0; i < sb->fs_bsize; i += 24) { 111 for (j = 0; j < 3; j++) { 112 for (k = 0; k < 8; k++) 113 fprintf(dbg_log, "%02x ", *mem++); 114 fprintf(dbg_log, " "); 115 } 116 fprintf(dbg_log, "\n"); 117 } 118 indent--; 119 fprintf(dbg_log, "===== END HEXDUMP =====\n"); 120 121 return; 122 } 123 124 /* 125 * Dump the superblock. 126 */ 127 void 128 dbg_dump_fs(struct fs *sb, const char *comment) 129 { 130 int j; 131 132 if (!dbg_log) 133 return; 134 135 fprintf(dbg_log, "===== START SUPERBLOCK =====\n"); 136 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)sb, comment); 137 indent++; 138 139 fprintf(dbg_log, "sblkno int32_t 0x%08x\n", 140 sb->fs_sblkno); 141 fprintf(dbg_log, "cblkno int32_t 0x%08x\n", 142 sb->fs_cblkno); 143 fprintf(dbg_log, "iblkno int32_t 0x%08x\n", 144 sb->fs_iblkno); 145 fprintf(dbg_log, "dblkno int32_t 0x%08x\n", 146 sb->fs_dblkno); 147 148 fprintf(dbg_log, "old_cgoffset int32_t 0x%08x\n", 149 sb->fs_old_cgoffset); 150 fprintf(dbg_log, "old_cgmask int32_t 0x%08x\n", 151 sb->fs_old_cgmask); 152 fprintf(dbg_log, "old_time int32_t %10u\n", 153 (unsigned int)sb->fs_old_time); 154 fprintf(dbg_log, "old_size int32_t 0x%08x\n", 155 sb->fs_old_size); 156 fprintf(dbg_log, "old_dsize int32_t 0x%08x\n", 157 sb->fs_old_dsize); 158 fprintf(dbg_log, "ncg int32_t 0x%08x\n", 159 sb->fs_ncg); 160 fprintf(dbg_log, "bsize int32_t 0x%08x\n", 161 sb->fs_bsize); 162 fprintf(dbg_log, "fsize int32_t 0x%08x\n", 163 sb->fs_fsize); 164 fprintf(dbg_log, "frag int32_t 0x%08x\n", 165 sb->fs_frag); 166 167 fprintf(dbg_log, "minfree int32_t 0x%08x\n", 168 sb->fs_minfree); 169 fprintf(dbg_log, "old_rotdelay int32_t 0x%08x\n", 170 sb->fs_old_rotdelay); 171 fprintf(dbg_log, "old_rps int32_t 0x%08x\n", 172 sb->fs_old_rps); 173 174 fprintf(dbg_log, "bmask int32_t 0x%08x\n", 175 sb->fs_bmask); 176 fprintf(dbg_log, "fmask int32_t 0x%08x\n", 177 sb->fs_fmask); 178 fprintf(dbg_log, "bshift int32_t 0x%08x\n", 179 sb->fs_bshift); 180 fprintf(dbg_log, "fshift int32_t 0x%08x\n", 181 sb->fs_fshift); 182 183 fprintf(dbg_log, "maxcontig int32_t 0x%08x\n", 184 sb->fs_maxcontig); 185 fprintf(dbg_log, "maxbpg int32_t 0x%08x\n", 186 sb->fs_maxbpg); 187 188 fprintf(dbg_log, "fragshift int32_t 0x%08x\n", 189 sb->fs_fragshift); 190 fprintf(dbg_log, "fsbtodb int32_t 0x%08x\n", 191 sb->fs_fsbtodb); 192 fprintf(dbg_log, "sbsize int32_t 0x%08x\n", 193 sb->fs_sbsize); 194 fprintf(dbg_log, "spare1 int32_t[2] 0x%08x 0x%08x\n", 195 sb->fs_spare1[0], sb->fs_spare1[1]); 196 fprintf(dbg_log, "nindir int32_t 0x%08x\n", 197 sb->fs_nindir); 198 fprintf(dbg_log, "inopb int32_t 0x%08x\n", 199 sb->fs_inopb); 200 fprintf(dbg_log, "old_nspf int32_t 0x%08x\n", 201 sb->fs_old_nspf); 202 203 fprintf(dbg_log, "optim int32_t 0x%08x\n", 204 sb->fs_optim); 205 206 fprintf(dbg_log, "old_npsect int32_t 0x%08x\n", 207 sb->fs_old_npsect); 208 fprintf(dbg_log, "old_interleave int32_t 0x%08x\n", 209 sb->fs_old_interleave); 210 fprintf(dbg_log, "old_trackskew int32_t 0x%08x\n", 211 sb->fs_old_trackskew); 212 213 fprintf(dbg_log, "id int32_t[2] 0x%08x 0x%08x\n", 214 sb->fs_id[0], sb->fs_id[1]); 215 216 fprintf(dbg_log, "old_csaddr int32_t 0x%08x\n", 217 sb->fs_old_csaddr); 218 fprintf(dbg_log, "cssize int32_t 0x%08x\n", 219 sb->fs_cssize); 220 fprintf(dbg_log, "cgsize int32_t 0x%08x\n", 221 sb->fs_cgsize); 222 223 fprintf(dbg_log, "spare2 int32_t 0x%08x\n", 224 sb->fs_spare2); 225 fprintf(dbg_log, "old_nsect int32_t 0x%08x\n", 226 sb->fs_old_nsect); 227 fprintf(dbg_log, "old_spc int32_t 0x%08x\n", 228 sb->fs_old_spc); 229 230 fprintf(dbg_log, "old_ncyl int32_t 0x%08x\n", 231 sb->fs_old_ncyl); 232 233 fprintf(dbg_log, "old_cpg int32_t 0x%08x\n", 234 sb->fs_old_cpg); 235 fprintf(dbg_log, "ipg int32_t 0x%08x\n", 236 sb->fs_ipg); 237 fprintf(dbg_log, "fpg int32_t 0x%08x\n", 238 sb->fs_fpg); 239 240 dbg_dump_csum("internal old_cstotal", &sb->fs_old_cstotal); 241 242 fprintf(dbg_log, "fmod int8_t 0x%02x\n", 243 sb->fs_fmod); 244 fprintf(dbg_log, "clean int8_t 0x%02x\n", 245 sb->fs_clean); 246 fprintf(dbg_log, "ronly int8_t 0x%02x\n", 247 sb->fs_ronly); 248 fprintf(dbg_log, "old_flags int8_t 0x%02x\n", 249 sb->fs_old_flags); 250 fprintf(dbg_log, "fsmnt u_char[MAXMNTLEN] \"%s\"\n", 251 sb->fs_fsmnt); 252 fprintf(dbg_log, "volname u_char[MAXVOLLEN] \"%s\"\n", 253 sb->fs_volname); 254 fprintf(dbg_log, "swuid u_int64_t 0x%08x%08x\n", 255 ((unsigned int *)&(sb->fs_swuid))[1], 256 ((unsigned int *)&(sb->fs_swuid))[0]); 257 258 fprintf(dbg_log, "pad int32_t 0x%08x\n", 259 sb->fs_pad); 260 261 fprintf(dbg_log, "cgrotor int32_t 0x%08x\n", 262 sb->fs_cgrotor); 263 /* 264 * struct csum[MAXCSBUFS] - is only maintained in memory 265 */ 266 /* fprintf(dbg_log, " int32_t\n", sb->*fs_maxcluster);*/ 267 fprintf(dbg_log, "old_cpc int32_t 0x%08x\n", 268 sb->fs_old_cpc); 269 /* 270 * int16_t fs_opostbl[16][8] - is dumped when used in dbg_dump_sptbl 271 */ 272 fprintf(dbg_log, "maxbsize int32_t 0x%08x\n", 273 sb->fs_maxbsize); 274 fprintf(dbg_log, "unrefs int64_t 0x%08jx\n", 275 sb->fs_unrefs); 276 fprintf(dbg_log, "sblockloc int64_t 0x%08x%08x\n", 277 ((unsigned int *)&(sb->fs_sblockloc))[1], 278 ((unsigned int *)&(sb->fs_sblockloc))[0]); 279 280 dbg_dump_csum_total("internal cstotal", &sb->fs_cstotal); 281 282 fprintf(dbg_log, "time ufs_time_t %10u\n", 283 (unsigned int)sb->fs_time); 284 285 fprintf(dbg_log, "size int64_t 0x%08x%08x\n", 286 ((unsigned int *)&(sb->fs_size))[1], 287 ((unsigned int *)&(sb->fs_size))[0]); 288 fprintf(dbg_log, "dsize int64_t 0x%08x%08x\n", 289 ((unsigned int *)&(sb->fs_dsize))[1], 290 ((unsigned int *)&(sb->fs_dsize))[0]); 291 fprintf(dbg_log, "csaddr ufs2_daddr_t 0x%08x%08x\n", 292 ((unsigned int *)&(sb->fs_csaddr))[1], 293 ((unsigned int *)&(sb->fs_csaddr))[0]); 294 fprintf(dbg_log, "pendingblocks int64_t 0x%08x%08x\n", 295 ((unsigned int *)&(sb->fs_pendingblocks))[1], 296 ((unsigned int *)&(sb->fs_pendingblocks))[0]); 297 fprintf(dbg_log, "pendinginodes int32_t 0x%08x\n", 298 sb->fs_pendinginodes); 299 300 for (j = 0; j < FSMAXSNAP; j++) { 301 fprintf(dbg_log, "snapinum int32_t[%2d] 0x%08x\n", 302 j, sb->fs_snapinum[j]); 303 if (!sb->fs_snapinum[j]) { /* list is dense */ 304 break; 305 } 306 } 307 fprintf(dbg_log, "avgfilesize int32_t 0x%08x\n", 308 sb->fs_avgfilesize); 309 fprintf(dbg_log, "avgfpdir int32_t 0x%08x\n", 310 sb->fs_avgfpdir); 311 fprintf(dbg_log, "save_cgsize int32_t 0x%08x\n", 312 sb->fs_save_cgsize); 313 fprintf(dbg_log, "flags int32_t 0x%08x\n", 314 sb->fs_flags); 315 fprintf(dbg_log, "contigsumsize int32_t 0x%08x\n", 316 sb->fs_contigsumsize); 317 fprintf(dbg_log, "maxsymlinklen int32_t 0x%08x\n", 318 sb->fs_maxsymlinklen); 319 fprintf(dbg_log, "old_inodefmt int32_t 0x%08x\n", 320 sb->fs_old_inodefmt); 321 fprintf(dbg_log, "maxfilesize u_int64_t 0x%08x%08x\n", 322 ((unsigned int *)&(sb->fs_maxfilesize))[1], 323 ((unsigned int *)&(sb->fs_maxfilesize))[0]); 324 fprintf(dbg_log, "qbmask int64_t 0x%08x%08x\n", 325 ((unsigned int *)&(sb->fs_qbmask))[1], 326 ((unsigned int *)&(sb->fs_qbmask))[0]); 327 fprintf(dbg_log, "qfmask int64_t 0x%08x%08x\n", 328 ((unsigned int *)&(sb->fs_qfmask))[1], 329 ((unsigned int *)&(sb->fs_qfmask))[0]); 330 fprintf(dbg_log, "state int32_t 0x%08x\n", 331 sb->fs_state); 332 fprintf(dbg_log, "old_postblformat int32_t 0x%08x\n", 333 sb->fs_old_postblformat); 334 fprintf(dbg_log, "old_nrpos int32_t 0x%08x\n", 335 sb->fs_old_nrpos); 336 fprintf(dbg_log, "spare5 int32_t[2] 0x%08x 0x%08x\n", 337 sb->fs_spare5[0], sb->fs_spare5[1]); 338 fprintf(dbg_log, "magic int32_t 0x%08x\n", 339 sb->fs_magic); 340 341 indent--; 342 fprintf(dbg_log, "===== END SUPERBLOCK =====\n"); 343 344 return; 345 } 346 347 /* 348 * Dump a cylinder group. 349 */ 350 void 351 dbg_dump_cg(const char *comment, struct cg *cgr) 352 { 353 int j; 354 355 if (!dbg_log) 356 return; 357 358 fprintf(dbg_log, "===== START CYLINDER GROUP =====\n"); 359 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cgr, comment); 360 indent++; 361 362 fprintf(dbg_log, "magic int32_t 0x%08x\n", cgr->cg_magic); 363 fprintf(dbg_log, "old_time int32_t 0x%08x\n", cgr->cg_old_time); 364 fprintf(dbg_log, "cgx int32_t 0x%08x\n", cgr->cg_cgx); 365 fprintf(dbg_log, "old_ncyl int16_t 0x%04x\n", cgr->cg_old_ncyl); 366 fprintf(dbg_log, "old_niblk int16_t 0x%04x\n", cgr->cg_old_niblk); 367 fprintf(dbg_log, "ndblk int32_t 0x%08x\n", cgr->cg_ndblk); 368 dbg_dump_csum("internal cs", &cgr->cg_cs); 369 fprintf(dbg_log, "rotor int32_t 0x%08x\n", cgr->cg_rotor); 370 fprintf(dbg_log, "frotor int32_t 0x%08x\n", cgr->cg_frotor); 371 fprintf(dbg_log, "irotor int32_t 0x%08x\n", cgr->cg_irotor); 372 for (j = 0; j < MAXFRAG; j++) { 373 fprintf(dbg_log, "frsum int32_t[%d] 0x%08x\n", j, 374 cgr->cg_frsum[j]); 375 } 376 fprintf(dbg_log, "old_btotoff int32_t 0x%08x\n", cgr->cg_old_btotoff); 377 fprintf(dbg_log, "old_boff int32_t 0x%08x\n", cgr->cg_old_boff); 378 fprintf(dbg_log, "iusedoff int32_t 0x%08x\n", cgr->cg_iusedoff); 379 fprintf(dbg_log, "freeoff int32_t 0x%08x\n", cgr->cg_freeoff); 380 fprintf(dbg_log, "nextfreeoff int32_t 0x%08x\n", 381 cgr->cg_nextfreeoff); 382 fprintf(dbg_log, "clustersumoff int32_t 0x%08x\n", 383 cgr->cg_clustersumoff); 384 fprintf(dbg_log, "clusteroff int32_t 0x%08x\n", 385 cgr->cg_clusteroff); 386 fprintf(dbg_log, "nclusterblks int32_t 0x%08x\n", 387 cgr->cg_nclusterblks); 388 fprintf(dbg_log, "niblk int32_t 0x%08x\n", cgr->cg_niblk); 389 fprintf(dbg_log, "initediblk int32_t 0x%08x\n", cgr->cg_initediblk); 390 fprintf(dbg_log, "unrefs int32_t 0x%08x\n", cgr->cg_unrefs); 391 fprintf(dbg_log, "time ufs_time_t %10u\n", 392 (unsigned int)cgr->cg_initediblk); 393 394 indent--; 395 fprintf(dbg_log, "===== END CYLINDER GROUP =====\n"); 396 397 return; 398 } 399 400 /* 401 * Dump a cylinder summary. 402 */ 403 void 404 dbg_dump_csum(const char *comment, struct csum *cs) 405 { 406 407 if (!dbg_log) 408 return; 409 410 fprintf(dbg_log, "===== START CYLINDER SUMMARY =====\n"); 411 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cs, comment); 412 indent++; 413 414 fprintf(dbg_log, "ndir int32_t 0x%08x\n", cs->cs_ndir); 415 fprintf(dbg_log, "nbfree int32_t 0x%08x\n", cs->cs_nbfree); 416 fprintf(dbg_log, "nifree int32_t 0x%08x\n", cs->cs_nifree); 417 fprintf(dbg_log, "nffree int32_t 0x%08x\n", cs->cs_nffree); 418 419 indent--; 420 fprintf(dbg_log, "===== END CYLINDER SUMMARY =====\n"); 421 422 return; 423 } 424 425 /* 426 * Dump a cylinder summary. 427 */ 428 void 429 dbg_dump_csum_total(const char *comment, struct csum_total *cs) 430 { 431 432 if (!dbg_log) 433 return; 434 435 fprintf(dbg_log, "===== START CYLINDER SUMMARY TOTAL =====\n"); 436 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cs, comment); 437 indent++; 438 439 fprintf(dbg_log, "ndir int64_t 0x%08x%08x\n", 440 ((unsigned int *)&(cs->cs_ndir))[1], 441 ((unsigned int *)&(cs->cs_ndir))[0]); 442 fprintf(dbg_log, "nbfree int64_t 0x%08x%08x\n", 443 ((unsigned int *)&(cs->cs_nbfree))[1], 444 ((unsigned int *)&(cs->cs_nbfree))[0]); 445 fprintf(dbg_log, "nifree int64_t 0x%08x%08x\n", 446 ((unsigned int *)&(cs->cs_nifree))[1], 447 ((unsigned int *)&(cs->cs_nifree))[0]); 448 fprintf(dbg_log, "nffree int64_t 0x%08x%08x\n", 449 ((unsigned int *)&(cs->cs_nffree))[1], 450 ((unsigned int *)&(cs->cs_nffree))[0]); 451 fprintf(dbg_log, "numclusters int64_t 0x%08x%08x\n", 452 ((unsigned int *)&(cs->cs_numclusters))[1], 453 ((unsigned int *)&(cs->cs_numclusters))[0]); 454 455 indent--; 456 fprintf(dbg_log, "===== END CYLINDER SUMMARY TOTAL =====\n"); 457 458 return; 459 } 460 /* 461 * Dump the inode allocation map in one cylinder group. 462 */ 463 void 464 dbg_dump_inmap(struct fs *sb, const char *comment, struct cg *cgr) 465 { 466 int j,k,l,e; 467 unsigned char *cp; 468 469 if (!dbg_log) 470 return; 471 472 fprintf(dbg_log, "===== START INODE ALLOCATION MAP =====\n"); 473 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cgr, comment); 474 indent++; 475 476 cp = (unsigned char *)cg_inosused(cgr); 477 e = sb->fs_ipg / 8; 478 for (j = 0; j < e; j += 32) { 479 fprintf(dbg_log, "%08x: ", j); 480 for (k = 0; k < 32; k += 8) { 481 if (j + k + 8 < e) { 482 fprintf(dbg_log, 483 "%02x%02x%02x%02x%02x%02x%02x%02x ", 484 cp[0], cp[1], cp[2], cp[3], 485 cp[4], cp[5], cp[6], cp[7]); 486 } else { 487 for (l = 0; (l < 8) && (j + k + l < e); l++) { 488 fprintf(dbg_log, "%02x", cp[l]); 489 } 490 } 491 cp += 8; 492 } 493 fprintf(dbg_log, "\n"); 494 } 495 496 indent--; 497 fprintf(dbg_log, "===== END INODE ALLOCATION MAP =====\n"); 498 499 return; 500 } 501 502 503 /* 504 * Dump the fragment allocation map in one cylinder group. 505 */ 506 void 507 dbg_dump_frmap(struct fs *sb, const char *comment, struct cg *cgr) 508 { 509 int j,k,l,e; 510 unsigned char *cp; 511 512 if (!dbg_log) 513 return; 514 515 fprintf(dbg_log, "===== START FRAGMENT ALLOCATION MAP =====\n"); 516 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cgr, comment); 517 indent++; 518 519 cp = (unsigned char *)cg_blksfree(cgr); 520 if (sb->fs_old_nspf) 521 e = howmany(sb->fs_old_cpg * sb->fs_old_spc / sb->fs_old_nspf, 522 CHAR_BIT); 523 else 524 e = 0; 525 for (j = 0; j < e; j += 32) { 526 fprintf(dbg_log, "%08x: ", j); 527 for (k = 0; k < 32; k += 8) { 528 if (j + k + 8 <e) { 529 fprintf(dbg_log, 530 "%02x%02x%02x%02x%02x%02x%02x%02x ", 531 cp[0], cp[1], cp[2], cp[3], 532 cp[4], cp[5], cp[6], cp[7]); 533 } else { 534 for (l = 0; (l < 8) && (j + k + l < e); l++) { 535 fprintf(dbg_log, "%02x", cp[l]); 536 } 537 } 538 cp += 8; 539 } 540 fprintf(dbg_log, "\n"); 541 } 542 543 indent--; 544 fprintf(dbg_log, "===== END FRAGMENT ALLOCATION MAP =====\n"); 545 546 return; 547 } 548 549 /* 550 * Dump the cluster allocation map in one cylinder group. 551 */ 552 void 553 dbg_dump_clmap(struct fs *sb, const char *comment, struct cg *cgr) 554 { 555 int j,k,l,e; 556 unsigned char *cp; 557 558 if (!dbg_log) 559 return; 560 561 fprintf(dbg_log, "===== START CLUSTER ALLOCATION MAP =====\n"); 562 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cgr, comment); 563 indent++; 564 565 cp = (unsigned char *)cg_clustersfree(cgr); 566 if (sb->fs_old_nspf) 567 e = howmany(sb->fs_old_cpg * sb->fs_old_spc / (sb->fs_old_nspf << sb->fs_fragshift), CHAR_BIT); 568 else 569 e = 0; 570 for (j = 0; j < e; j += 32) { 571 fprintf(dbg_log, "%08x: ", j); 572 for (k = 0; k < 32; k += 8) { 573 if (j + k + 8 < e) { 574 fprintf(dbg_log, 575 "%02x%02x%02x%02x%02x%02x%02x%02x ", 576 cp[0], cp[1], cp[2], cp[3], 577 cp[4], cp[5], cp[6], cp[7]); 578 } else { 579 for (l = 0; (l < 8) && (j + k + l <e); l++) { 580 fprintf(dbg_log, "%02x", cp[l]); 581 } 582 } 583 cp += 8; 584 } 585 fprintf(dbg_log, "\n"); 586 } 587 588 indent--; 589 fprintf(dbg_log, "===== END CLUSTER ALLOCATION MAP =====\n"); 590 591 return; 592 } 593 594 /* 595 * Dump the cluster availability summary of one cylinder group. 596 */ 597 void 598 dbg_dump_clsum(struct fs *sb, const char *comment, struct cg *cgr) 599 { 600 int j; 601 int *ip; 602 603 if (!dbg_log) 604 return; 605 606 fprintf(dbg_log, "===== START CLUSTER SUMMARY =====\n"); 607 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cgr, comment); 608 indent++; 609 610 ip = (int *)cg_clustersum(cgr); 611 for (j = 0; j <= sb->fs_contigsumsize; j++) { 612 fprintf(dbg_log, "%02d: %8d\n", j, *ip++); 613 } 614 615 indent--; 616 fprintf(dbg_log, "===== END CLUSTER SUMMARY =====\n"); 617 618 return; 619 } 620 621 #ifdef NOT_CURRENTLY 622 /* 623 * This code dates from before the UFS2 integration, and doesn't compile 624 * post-UFS2 due to the use of cg_blks(). I'm not sure how best to update 625 * this for UFS2, where the rotational bits of UFS no longer apply, so 626 * will leave it disabled for now; it should probably be re-enabled 627 * specifically for UFS1. 628 */ 629 /* 630 * Dump the block summary, and the rotational layout table. 631 */ 632 void 633 dbg_dump_sptbl(struct fs *sb, const char *comment, struct cg *cgr) 634 { 635 int j,k; 636 int *ip; 637 638 if (!dbg_log) 639 return; 640 641 fprintf(dbg_log, 642 "===== START BLOCK SUMMARY AND POSITION TABLE =====\n"); 643 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)cgr, comment); 644 indent++; 645 646 ip = (int *)cg_blktot(cgr); 647 for (j = 0; j < sb->fs_old_cpg; j++) { 648 fprintf(dbg_log, "%2d: %5d = ", j, *ip++); 649 for (k = 0; k < sb->fs_old_nrpos; k++) { 650 fprintf(dbg_log, "%4d", cg_blks(sb, cgr, j)[k]); 651 if (k < sb->fs_old_nrpos - 1) 652 fprintf(dbg_log, " + "); 653 } 654 fprintf(dbg_log, "\n"); 655 } 656 657 indent--; 658 fprintf(dbg_log, "===== END BLOCK SUMMARY AND POSITION TABLE =====\n"); 659 660 return; 661 } 662 #endif 663 664 /* 665 * Dump a UFS1 inode structure. 666 */ 667 void 668 dbg_dump_ufs1_ino(struct fs *sb, const char *comment, struct ufs1_dinode *ino) 669 { 670 int ictr; 671 int remaining_blocks; 672 673 if (!dbg_log) 674 return; 675 676 fprintf(dbg_log, "===== START UFS1 INODE DUMP =====\n"); 677 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)ino, comment); 678 indent++; 679 680 fprintf(dbg_log, "mode u_int16_t 0%o\n", ino->di_mode); 681 fprintf(dbg_log, "nlink int16_t 0x%04x\n", ino->di_nlink); 682 fprintf(dbg_log, "size u_int64_t 0x%08x%08x\n", 683 ((unsigned int *)&(ino->di_size))[1], 684 ((unsigned int *)&(ino->di_size))[0]); 685 fprintf(dbg_log, "atime int32_t 0x%08x\n", ino->di_atime); 686 fprintf(dbg_log, "atimensec int32_t 0x%08x\n", 687 ino->di_atimensec); 688 fprintf(dbg_log, "mtime int32_t 0x%08x\n", 689 ino->di_mtime); 690 fprintf(dbg_log, "mtimensec int32_t 0x%08x\n", 691 ino->di_mtimensec); 692 fprintf(dbg_log, "ctime int32_t 0x%08x\n", ino->di_ctime); 693 fprintf(dbg_log, "ctimensec int32_t 0x%08x\n", 694 ino->di_ctimensec); 695 696 remaining_blocks = howmany(ino->di_size, sb->fs_bsize); /* XXX ts - +1? */ 697 for (ictr = 0; ictr < MIN(UFS_NDADDR, remaining_blocks); ictr++) { 698 fprintf(dbg_log, "db ufs_daddr_t[%x] 0x%08x\n", ictr, 699 ino->di_db[ictr]); 700 } 701 remaining_blocks -= UFS_NDADDR; 702 if (remaining_blocks > 0) { 703 fprintf(dbg_log, "ib ufs_daddr_t[0] 0x%08x\n", 704 ino->di_ib[0]); 705 } 706 remaining_blocks -= howmany(sb->fs_bsize, sizeof(ufs1_daddr_t)); 707 if (remaining_blocks > 0) { 708 fprintf(dbg_log, "ib ufs_daddr_t[1] 0x%08x\n", 709 ino->di_ib[1]); 710 } 711 #define SQUARE(a) ((a) * (a)) 712 remaining_blocks -= SQUARE(howmany(sb->fs_bsize, sizeof(ufs1_daddr_t))); 713 #undef SQUARE 714 if (remaining_blocks > 0) { 715 fprintf(dbg_log, "ib ufs_daddr_t[2] 0x%08x\n", 716 ino->di_ib[2]); 717 } 718 719 fprintf(dbg_log, "flags u_int32_t 0x%08x\n", ino->di_flags); 720 fprintf(dbg_log, "blocks int32_t 0x%08x\n", ino->di_blocks); 721 fprintf(dbg_log, "gen int32_t 0x%08x\n", ino->di_gen); 722 fprintf(dbg_log, "uid u_int32_t 0x%08x\n", ino->di_uid); 723 fprintf(dbg_log, "gid u_int32_t 0x%08x\n", ino->di_gid); 724 725 indent--; 726 fprintf(dbg_log, "===== END UFS1 INODE DUMP =====\n"); 727 728 return; 729 } 730 731 /* 732 * Dump a UFS2 inode structure. 733 */ 734 void 735 dbg_dump_ufs2_ino(struct fs *sb, const char *comment, struct ufs2_dinode *ino) 736 { 737 int ictr; 738 int remaining_blocks; 739 740 if (!dbg_log) 741 return; 742 743 fprintf(dbg_log, "===== START UFS2 INODE DUMP =====\n"); 744 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)ino, comment); 745 indent++; 746 747 fprintf(dbg_log, "mode u_int16_t 0%o\n", ino->di_mode); 748 fprintf(dbg_log, "nlink int16_t 0x%04x\n", ino->di_nlink); 749 fprintf(dbg_log, "uid u_int32_t 0x%08x\n", ino->di_uid); 750 fprintf(dbg_log, "gid u_int32_t 0x%08x\n", ino->di_gid); 751 fprintf(dbg_log, "blksize u_int32_t 0x%08x\n", ino->di_blksize); 752 fprintf(dbg_log, "size u_int64_t 0x%08x%08x\n", 753 ((unsigned int *)&(ino->di_size))[1], 754 ((unsigned int *)&(ino->di_size))[0]); 755 fprintf(dbg_log, "blocks u_int64_t 0x%08x%08x\n", 756 ((unsigned int *)&(ino->di_blocks))[1], 757 ((unsigned int *)&(ino->di_blocks))[0]); 758 fprintf(dbg_log, "atime ufs_time_t %10jd\n", ino->di_atime); 759 fprintf(dbg_log, "mtime ufs_time_t %10jd\n", ino->di_mtime); 760 fprintf(dbg_log, "ctime ufs_time_t %10jd\n", ino->di_ctime); 761 fprintf(dbg_log, "birthtime ufs_time_t %10jd\n", ino->di_birthtime); 762 fprintf(dbg_log, "mtimensec int32_t 0x%08x\n", ino->di_mtimensec); 763 fprintf(dbg_log, "atimensec int32_t 0x%08x\n", ino->di_atimensec); 764 fprintf(dbg_log, "ctimensec int32_t 0x%08x\n", ino->di_ctimensec); 765 fprintf(dbg_log, "birthnsec int32_t 0x%08x\n", ino->di_birthnsec); 766 fprintf(dbg_log, "gen int32_t 0x%08x\n", ino->di_gen); 767 fprintf(dbg_log, "kernflags u_int32_t 0x%08x\n", ino->di_kernflags); 768 fprintf(dbg_log, "flags u_int32_t 0x%08x\n", ino->di_flags); 769 fprintf(dbg_log, "extsize u_int32_t 0x%08x\n", ino->di_extsize); 770 771 /* XXX: What do we do with di_extb[UFS_NXADDR]? */ 772 773 remaining_blocks = howmany(ino->di_size, sb->fs_bsize); /* XXX ts - +1? */ 774 for (ictr = 0; ictr < MIN(UFS_NDADDR, remaining_blocks); ictr++) { 775 fprintf(dbg_log, "db ufs2_daddr_t[%x] 0x%16jx\n", ictr, 776 ino->di_db[ictr]); 777 } 778 remaining_blocks -= UFS_NDADDR; 779 if (remaining_blocks > 0) { 780 fprintf(dbg_log, "ib ufs2_daddr_t[0] 0x%16jx\n", 781 ino->di_ib[0]); 782 } 783 remaining_blocks -= howmany(sb->fs_bsize, sizeof(ufs2_daddr_t)); 784 if (remaining_blocks > 0) { 785 fprintf(dbg_log, "ib ufs2_daddr_t[1] 0x%16jx\n", 786 ino->di_ib[1]); 787 } 788 #define SQUARE(a) ((a) * (a)) 789 remaining_blocks -= SQUARE(howmany(sb->fs_bsize, sizeof(ufs2_daddr_t))); 790 #undef SQUARE 791 if (remaining_blocks > 0) { 792 fprintf(dbg_log, "ib ufs2_daddr_t[2] 0x%16jx\n", 793 ino->di_ib[2]); 794 } 795 796 indent--; 797 fprintf(dbg_log, "===== END UFS2 INODE DUMP =====\n"); 798 799 return; 800 } 801 802 /* 803 * Dump an indirect block. The iteration to dump a full file has to be 804 * written around. 805 */ 806 void 807 dbg_dump_iblk(struct fs *sb, const char *comment, char *block, size_t length) 808 { 809 unsigned int *mem, i, j, size; 810 811 if (!dbg_log) 812 return; 813 814 fprintf(dbg_log, "===== START INDIRECT BLOCK DUMP =====\n"); 815 fprintf(dbg_log, "# %d@%lx: %s\n", indent, (unsigned long)block, 816 comment); 817 indent++; 818 819 if (sb->fs_magic == FS_UFS1_MAGIC) 820 size = sizeof(ufs1_daddr_t); 821 else 822 size = sizeof(ufs2_daddr_t); 823 824 mem = (unsigned int *)block; 825 for (i = 0; (size_t)i < MIN(howmany(sb->fs_bsize, size), length); 826 i += 8) { 827 fprintf(dbg_log, "%04x: ", i); 828 for (j = 0; j < 8; j++) { 829 if ((size_t)(i + j) < length) 830 fprintf(dbg_log, "%08X ", *mem++); 831 } 832 fprintf(dbg_log, "\n"); 833 } 834 835 indent--; 836 fprintf(dbg_log, "===== END INDIRECT BLOCK DUMP =====\n"); 837 838 return; 839 } 840 841 #endif /* FS_DEBUG */ 842 843