xref: /freebsd/libexec/rtld-elf/rtld.c (revision dd41de95a84d979615a2ef11df6850622bf6184e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 struct dlerror_save {
85 	int seen;
86 	char *msg;
87 };
88 
89 /*
90  * Function declarations.
91  */
92 static const char *basename(const char *);
93 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
94     const Elf_Dyn **, const Elf_Dyn **);
95 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
96     const Elf_Dyn *);
97 static bool digest_dynamic(Obj_Entry *, int);
98 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
99 static void distribute_static_tls(Objlist *, RtldLockState *);
100 static Obj_Entry *dlcheck(void *);
101 static int dlclose_locked(void *, RtldLockState *);
102 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
103     int lo_flags, int mode, RtldLockState *lockstate);
104 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
105 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
106 static bool donelist_check(DoneList *, const Obj_Entry *);
107 static void errmsg_restore(struct dlerror_save *);
108 static struct dlerror_save *errmsg_save(void);
109 static void *fill_search_info(const char *, size_t, void *);
110 static char *find_library(const char *, const Obj_Entry *, int *);
111 static const char *gethints(bool);
112 static void hold_object(Obj_Entry *);
113 static void unhold_object(Obj_Entry *);
114 static void init_dag(Obj_Entry *);
115 static void init_marker(Obj_Entry *);
116 static void init_pagesizes(Elf_Auxinfo **aux_info);
117 static void init_rtld(caddr_t, Elf_Auxinfo **);
118 static void initlist_add_neededs(Needed_Entry *, Objlist *);
119 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
120 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
121 static void linkmap_add(Obj_Entry *);
122 static void linkmap_delete(Obj_Entry *);
123 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
124 static void unload_filtees(Obj_Entry *, RtldLockState *);
125 static int load_needed_objects(Obj_Entry *, int);
126 static int load_preload_objects(char *, bool);
127 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
128 static void map_stacks_exec(RtldLockState *);
129 static int obj_disable_relro(Obj_Entry *);
130 static int obj_enforce_relro(Obj_Entry *);
131 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
132 static void objlist_call_init(Objlist *, RtldLockState *);
133 static void objlist_clear(Objlist *);
134 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
135 static void objlist_init(Objlist *);
136 static void objlist_push_head(Objlist *, Obj_Entry *);
137 static void objlist_push_tail(Objlist *, Obj_Entry *);
138 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
139 static void objlist_remove(Objlist *, Obj_Entry *);
140 static int open_binary_fd(const char *argv0, bool search_in_path,
141     const char **binpath_res);
142 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
143     const char **argv0);
144 static int parse_integer(const char *);
145 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
146 static void print_usage(const char *argv0);
147 static void release_object(Obj_Entry *);
148 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
149     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
150 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
151     int flags, RtldLockState *lockstate);
152 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
153     RtldLockState *);
154 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
155 static int rtld_dirname(const char *, char *);
156 static int rtld_dirname_abs(const char *, char *);
157 static void *rtld_dlopen(const char *name, int fd, int mode);
158 static void rtld_exit(void);
159 static void rtld_nop_exit(void);
160 static char *search_library_path(const char *, const char *, const char *,
161     int *);
162 static char *search_library_pathfds(const char *, const char *, int *);
163 static const void **get_program_var_addr(const char *, RtldLockState *);
164 static void set_program_var(const char *, const void *);
165 static int symlook_default(SymLook *, const Obj_Entry *refobj);
166 static int symlook_global(SymLook *, DoneList *);
167 static void symlook_init_from_req(SymLook *, const SymLook *);
168 static int symlook_list(SymLook *, const Objlist *, DoneList *);
169 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
170 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
171 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
172 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
173 static void trace_loaded_objects(Obj_Entry *);
174 static void unlink_object(Obj_Entry *);
175 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
176 static void unref_dag(Obj_Entry *);
177 static void ref_dag(Obj_Entry *);
178 static char *origin_subst_one(Obj_Entry *, char *, const char *,
179     const char *, bool);
180 static char *origin_subst(Obj_Entry *, const char *);
181 static bool obj_resolve_origin(Obj_Entry *obj);
182 static void preinit_main(void);
183 static int  rtld_verify_versions(const Objlist *);
184 static int  rtld_verify_object_versions(Obj_Entry *);
185 static void object_add_name(Obj_Entry *, const char *);
186 static int  object_match_name(const Obj_Entry *, const char *);
187 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
188 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
189     struct dl_phdr_info *phdr_info);
190 static uint32_t gnu_hash(const char *);
191 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
192     const unsigned long);
193 
194 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
195 void _r_debug_postinit(struct link_map *) __noinline __exported;
196 
197 int __sys_openat(int, const char *, int, ...);
198 
199 /*
200  * Data declarations.
201  */
202 struct r_debug r_debug __exported;	/* for GDB; */
203 static bool libmap_disable;	/* Disable libmap */
204 static bool ld_loadfltr;	/* Immediate filters processing */
205 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
206 static bool trust;		/* False for setuid and setgid programs */
207 static bool dangerous_ld_env;	/* True if environment variables have been
208 				   used to affect the libraries loaded */
209 bool ld_bind_not;		/* Disable PLT update */
210 static char *ld_bind_now;	/* Environment variable for immediate binding */
211 static char *ld_debug;		/* Environment variable for debugging */
212 static char *ld_library_path;	/* Environment variable for search path */
213 static char *ld_library_dirs;	/* Environment variable for library descriptors */
214 static char *ld_preload;	/* Environment variable for libraries to
215 				   load first */
216 static char *ld_preload_fds;	/* Environment variable for libraries represented by
217 				   descriptors */
218 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
219 static const char *ld_tracing;	/* Called from ldd to print libs */
220 static char *ld_utrace;		/* Use utrace() to log events. */
221 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
222 static Obj_Entry *obj_main;	/* The main program shared object */
223 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
224 static unsigned int obj_count;	/* Number of objects in obj_list */
225 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
226 
227 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
228   STAILQ_HEAD_INITIALIZER(list_global);
229 static Objlist list_main =	/* Objects loaded at program startup */
230   STAILQ_HEAD_INITIALIZER(list_main);
231 static Objlist list_fini =	/* Objects needing fini() calls */
232   STAILQ_HEAD_INITIALIZER(list_fini);
233 
234 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
235 
236 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
237 
238 extern Elf_Dyn _DYNAMIC;
239 #pragma weak _DYNAMIC
240 
241 int dlclose(void *) __exported;
242 char *dlerror(void) __exported;
243 void *dlopen(const char *, int) __exported;
244 void *fdlopen(int, int) __exported;
245 void *dlsym(void *, const char *) __exported;
246 dlfunc_t dlfunc(void *, const char *) __exported;
247 void *dlvsym(void *, const char *, const char *) __exported;
248 int dladdr(const void *, Dl_info *) __exported;
249 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
250     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
251 int dlinfo(void *, int , void *) __exported;
252 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
253 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
254 int _rtld_get_stack_prot(void) __exported;
255 int _rtld_is_dlopened(void *) __exported;
256 void _rtld_error(const char *, ...) __exported;
257 
258 /* Only here to fix -Wmissing-prototypes warnings */
259 int __getosreldate(void);
260 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
261 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
262 
263 
264 int npagesizes;
265 static int osreldate;
266 size_t *pagesizes;
267 
268 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
269 static int max_stack_flags;
270 
271 /*
272  * Global declarations normally provided by crt1.  The dynamic linker is
273  * not built with crt1, so we have to provide them ourselves.
274  */
275 char *__progname;
276 char **environ;
277 
278 /*
279  * Used to pass argc, argv to init functions.
280  */
281 int main_argc;
282 char **main_argv;
283 
284 /*
285  * Globals to control TLS allocation.
286  */
287 size_t tls_last_offset;		/* Static TLS offset of last module */
288 size_t tls_last_size;		/* Static TLS size of last module */
289 size_t tls_static_space;	/* Static TLS space allocated */
290 static size_t tls_static_max_align;
291 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
292 int tls_max_index = 1;		/* Largest module index allocated */
293 
294 static bool ld_library_path_rpath = false;
295 bool ld_fast_sigblock = false;
296 
297 /*
298  * Globals for path names, and such
299  */
300 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
301 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
302 const char *ld_path_rtld = _PATH_RTLD;
303 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
304 const char *ld_env_prefix = LD_;
305 
306 static void (*rtld_exit_ptr)(void);
307 
308 /*
309  * Fill in a DoneList with an allocation large enough to hold all of
310  * the currently-loaded objects.  Keep this as a macro since it calls
311  * alloca and we want that to occur within the scope of the caller.
312  */
313 #define donelist_init(dlp)					\
314     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
315     assert((dlp)->objs != NULL),				\
316     (dlp)->num_alloc = obj_count,				\
317     (dlp)->num_used = 0)
318 
319 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
320 	if (ld_utrace != NULL)					\
321 		ld_utrace_log(e, h, mb, ms, r, n);		\
322 } while (0)
323 
324 static void
325 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
326     int refcnt, const char *name)
327 {
328 	struct utrace_rtld ut;
329 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
330 
331 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
332 	ut.event = event;
333 	ut.handle = handle;
334 	ut.mapbase = mapbase;
335 	ut.mapsize = mapsize;
336 	ut.refcnt = refcnt;
337 	bzero(ut.name, sizeof(ut.name));
338 	if (name)
339 		strlcpy(ut.name, name, sizeof(ut.name));
340 	utrace(&ut, sizeof(ut));
341 }
342 
343 #ifdef RTLD_VARIANT_ENV_NAMES
344 /*
345  * construct the env variable based on the type of binary that's
346  * running.
347  */
348 static inline const char *
349 _LD(const char *var)
350 {
351 	static char buffer[128];
352 
353 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
354 	strlcat(buffer, var, sizeof(buffer));
355 	return (buffer);
356 }
357 #else
358 #define _LD(x)	LD_ x
359 #endif
360 
361 /*
362  * Main entry point for dynamic linking.  The first argument is the
363  * stack pointer.  The stack is expected to be laid out as described
364  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
365  * Specifically, the stack pointer points to a word containing
366  * ARGC.  Following that in the stack is a null-terminated sequence
367  * of pointers to argument strings.  Then comes a null-terminated
368  * sequence of pointers to environment strings.  Finally, there is a
369  * sequence of "auxiliary vector" entries.
370  *
371  * The second argument points to a place to store the dynamic linker's
372  * exit procedure pointer and the third to a place to store the main
373  * program's object.
374  *
375  * The return value is the main program's entry point.
376  */
377 func_ptr_type
378 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
379 {
380     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
381     Objlist_Entry *entry;
382     Obj_Entry *last_interposer, *obj, *preload_tail;
383     const Elf_Phdr *phdr;
384     Objlist initlist;
385     RtldLockState lockstate;
386     struct stat st;
387     Elf_Addr *argcp;
388     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
389     const char *argv0, *binpath;
390     caddr_t imgentry;
391     char buf[MAXPATHLEN];
392     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
393     size_t sz;
394 #ifdef __powerpc__
395     int old_auxv_format = 1;
396 #endif
397     bool dir_enable, direct_exec, explicit_fd, search_in_path;
398 
399     /*
400      * On entry, the dynamic linker itself has not been relocated yet.
401      * Be very careful not to reference any global data until after
402      * init_rtld has returned.  It is OK to reference file-scope statics
403      * and string constants, and to call static and global functions.
404      */
405 
406     /* Find the auxiliary vector on the stack. */
407     argcp = sp;
408     argc = *sp++;
409     argv = (char **) sp;
410     sp += argc + 1;	/* Skip over arguments and NULL terminator */
411     env = (char **) sp;
412     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
413 	;
414     aux = (Elf_Auxinfo *) sp;
415 
416     /* Digest the auxiliary vector. */
417     for (i = 0;  i < AT_COUNT;  i++)
418 	aux_info[i] = NULL;
419     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
420 	if (auxp->a_type < AT_COUNT)
421 	    aux_info[auxp->a_type] = auxp;
422 #ifdef __powerpc__
423 	if (auxp->a_type == 23) /* AT_STACKPROT */
424 	    old_auxv_format = 0;
425 #endif
426     }
427 
428 #ifdef __powerpc__
429     if (old_auxv_format) {
430 	/* Remap from old-style auxv numbers. */
431 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
432 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
433 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
434 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
435 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
436 	aux_info[13] = NULL;		/* AT_GID */
437 
438 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
439 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
440 	aux_info[16] = aux_info[14];	/* AT_CANARY */
441 	aux_info[14] = NULL;		/* AT_EGID */
442     }
443 #endif
444 
445     /* Initialize and relocate ourselves. */
446     assert(aux_info[AT_BASE] != NULL);
447     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
448 
449     dlerror_dflt_init();
450 
451     __progname = obj_rtld.path;
452     argv0 = argv[0] != NULL ? argv[0] : "(null)";
453     environ = env;
454     main_argc = argc;
455     main_argv = argv;
456 
457     if (aux_info[AT_BSDFLAGS] != NULL &&
458 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
459 	    ld_fast_sigblock = true;
460 
461     trust = !issetugid();
462     direct_exec = false;
463 
464     md_abi_variant_hook(aux_info);
465 
466     fd = -1;
467     if (aux_info[AT_EXECFD] != NULL) {
468 	fd = aux_info[AT_EXECFD]->a_un.a_val;
469     } else {
470 	assert(aux_info[AT_PHDR] != NULL);
471 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
472 	if (phdr == obj_rtld.phdr) {
473 	    if (!trust) {
474 		_rtld_error("Tainted process refusing to run binary %s",
475 		    argv0);
476 		rtld_die();
477 	    }
478 	    direct_exec = true;
479 
480 	    dbg("opening main program in direct exec mode");
481 	    if (argc >= 2) {
482 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd, &argv0);
483 		explicit_fd = (fd != -1);
484 		binpath = NULL;
485 		if (!explicit_fd)
486 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
487 		if (fstat(fd, &st) == -1) {
488 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
489 		      explicit_fd ? "user-provided descriptor" : argv0,
490 		      rtld_strerror(errno));
491 		    rtld_die();
492 		}
493 
494 		/*
495 		 * Rough emulation of the permission checks done by
496 		 * execve(2), only Unix DACs are checked, ACLs are
497 		 * ignored.  Preserve the semantic of disabling owner
498 		 * to execute if owner x bit is cleared, even if
499 		 * others x bit is enabled.
500 		 * mmap(2) does not allow to mmap with PROT_EXEC if
501 		 * binary' file comes from noexec mount.  We cannot
502 		 * set a text reference on the binary.
503 		 */
504 		dir_enable = false;
505 		if (st.st_uid == geteuid()) {
506 		    if ((st.st_mode & S_IXUSR) != 0)
507 			dir_enable = true;
508 		} else if (st.st_gid == getegid()) {
509 		    if ((st.st_mode & S_IXGRP) != 0)
510 			dir_enable = true;
511 		} else if ((st.st_mode & S_IXOTH) != 0) {
512 		    dir_enable = true;
513 		}
514 		if (!dir_enable) {
515 		    _rtld_error("No execute permission for binary %s",
516 		        argv0);
517 		    rtld_die();
518 		}
519 
520 		/*
521 		 * For direct exec mode, argv[0] is the interpreter
522 		 * name, we must remove it and shift arguments left
523 		 * before invoking binary main.  Since stack layout
524 		 * places environment pointers and aux vectors right
525 		 * after the terminating NULL, we must shift
526 		 * environment and aux as well.
527 		 */
528 		main_argc = argc - rtld_argc;
529 		for (i = 0; i <= main_argc; i++)
530 		    argv[i] = argv[i + rtld_argc];
531 		*argcp -= rtld_argc;
532 		environ = env = envp = argv + main_argc + 1;
533 		dbg("move env from %p to %p", envp + rtld_argc, envp);
534 		do {
535 		    *envp = *(envp + rtld_argc);
536 		}  while (*envp++ != NULL);
537 		aux = auxp = (Elf_Auxinfo *)envp;
538 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
539 		dbg("move aux from %p to %p", auxpf, aux);
540 		/* XXXKIB insert place for AT_EXECPATH if not present */
541 		for (;; auxp++, auxpf++) {
542 		    *auxp = *auxpf;
543 		    if (auxp->a_type == AT_NULL)
544 			    break;
545 		}
546 		/* Since the auxiliary vector has moved, redigest it. */
547 		for (i = 0;  i < AT_COUNT;  i++)
548 		    aux_info[i] = NULL;
549 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
550 		    if (auxp->a_type < AT_COUNT)
551 			aux_info[auxp->a_type] = auxp;
552 		}
553 
554 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
555 		if (binpath == NULL) {
556 		    aux_info[AT_EXECPATH] = NULL;
557 		} else {
558 		    if (aux_info[AT_EXECPATH] == NULL) {
559 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
560 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
561 		    }
562 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
563 		      binpath);
564 		}
565 	    } else {
566 		_rtld_error("No binary");
567 		rtld_die();
568 	    }
569 	}
570     }
571 
572     ld_bind_now = getenv(_LD("BIND_NOW"));
573 
574     /*
575      * If the process is tainted, then we un-set the dangerous environment
576      * variables.  The process will be marked as tainted until setuid(2)
577      * is called.  If any child process calls setuid(2) we do not want any
578      * future processes to honor the potentially un-safe variables.
579      */
580     if (!trust) {
581 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
582 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
583 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
584 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
585 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH")) ||
586 	    unsetenv(_LD("PRELOAD_FDS"))) {
587 		_rtld_error("environment corrupt; aborting");
588 		rtld_die();
589 	}
590     }
591     ld_debug = getenv(_LD("DEBUG"));
592     if (ld_bind_now == NULL)
593 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
594     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
595     libmap_override = getenv(_LD("LIBMAP"));
596     ld_library_path = getenv(_LD("LIBRARY_PATH"));
597     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
598     ld_preload = getenv(_LD("PRELOAD"));
599     ld_preload_fds = getenv(_LD("PRELOAD_FDS"));
600     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
601     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
602     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
603     if (library_path_rpath != NULL) {
604 	    if (library_path_rpath[0] == 'y' ||
605 		library_path_rpath[0] == 'Y' ||
606 		library_path_rpath[0] == '1')
607 		    ld_library_path_rpath = true;
608 	    else
609 		    ld_library_path_rpath = false;
610     }
611     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
612 	(ld_library_path != NULL) || (ld_preload != NULL) ||
613 	(ld_elf_hints_path != NULL) || ld_loadfltr;
614     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
615     ld_utrace = getenv(_LD("UTRACE"));
616 
617     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
618 	ld_elf_hints_path = ld_elf_hints_default;
619 
620     if (ld_debug != NULL && *ld_debug != '\0')
621 	debug = 1;
622     dbg("%s is initialized, base address = %p", __progname,
623 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
624     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
625     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
626 
627     dbg("initializing thread locks");
628     lockdflt_init();
629 
630     /*
631      * Load the main program, or process its program header if it is
632      * already loaded.
633      */
634     if (fd != -1) {	/* Load the main program. */
635 	dbg("loading main program");
636 	obj_main = map_object(fd, argv0, NULL);
637 	close(fd);
638 	if (obj_main == NULL)
639 	    rtld_die();
640 	max_stack_flags = obj_main->stack_flags;
641     } else {				/* Main program already loaded. */
642 	dbg("processing main program's program header");
643 	assert(aux_info[AT_PHDR] != NULL);
644 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
645 	assert(aux_info[AT_PHNUM] != NULL);
646 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
647 	assert(aux_info[AT_PHENT] != NULL);
648 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
649 	assert(aux_info[AT_ENTRY] != NULL);
650 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
651 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
652 	    rtld_die();
653     }
654 
655     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
656 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
657 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
658 	    if (kexecpath[0] == '/')
659 		    obj_main->path = kexecpath;
660 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
661 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
662 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
663 		    obj_main->path = xstrdup(argv0);
664 	    else
665 		    obj_main->path = xstrdup(buf);
666     } else {
667 	    dbg("No AT_EXECPATH or direct exec");
668 	    obj_main->path = xstrdup(argv0);
669     }
670     dbg("obj_main path %s", obj_main->path);
671     obj_main->mainprog = true;
672 
673     if (aux_info[AT_STACKPROT] != NULL &&
674       aux_info[AT_STACKPROT]->a_un.a_val != 0)
675 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
676 
677 #ifndef COMPAT_32BIT
678     /*
679      * Get the actual dynamic linker pathname from the executable if
680      * possible.  (It should always be possible.)  That ensures that
681      * gdb will find the right dynamic linker even if a non-standard
682      * one is being used.
683      */
684     if (obj_main->interp != NULL &&
685       strcmp(obj_main->interp, obj_rtld.path) != 0) {
686 	free(obj_rtld.path);
687 	obj_rtld.path = xstrdup(obj_main->interp);
688         __progname = obj_rtld.path;
689     }
690 #endif
691 
692     if (!digest_dynamic(obj_main, 0))
693 	rtld_die();
694     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
695 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
696 	obj_main->dynsymcount);
697 
698     linkmap_add(obj_main);
699     linkmap_add(&obj_rtld);
700 
701     /* Link the main program into the list of objects. */
702     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
703     obj_count++;
704     obj_loads++;
705 
706     /* Initialize a fake symbol for resolving undefined weak references. */
707     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
708     sym_zero.st_shndx = SHN_UNDEF;
709     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
710 
711     if (!libmap_disable)
712         libmap_disable = (bool)lm_init(libmap_override);
713 
714     dbg("loading LD_PRELOAD_FDS libraries");
715     if (load_preload_objects(ld_preload_fds, true) == -1)
716 	rtld_die();
717 
718     dbg("loading LD_PRELOAD libraries");
719     if (load_preload_objects(ld_preload, false) == -1)
720 	rtld_die();
721     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
722 
723     dbg("loading needed objects");
724     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
725       0) == -1)
726 	rtld_die();
727 
728     /* Make a list of all objects loaded at startup. */
729     last_interposer = obj_main;
730     TAILQ_FOREACH(obj, &obj_list, next) {
731 	if (obj->marker)
732 	    continue;
733 	if (obj->z_interpose && obj != obj_main) {
734 	    objlist_put_after(&list_main, last_interposer, obj);
735 	    last_interposer = obj;
736 	} else {
737 	    objlist_push_tail(&list_main, obj);
738 	}
739     	obj->refcount++;
740     }
741 
742     dbg("checking for required versions");
743     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
744 	rtld_die();
745 
746     if (ld_tracing) {		/* We're done */
747 	trace_loaded_objects(obj_main);
748 	exit(0);
749     }
750 
751     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
752        dump_relocations(obj_main);
753        exit (0);
754     }
755 
756     /*
757      * Processing tls relocations requires having the tls offsets
758      * initialized.  Prepare offsets before starting initial
759      * relocation processing.
760      */
761     dbg("initializing initial thread local storage offsets");
762     STAILQ_FOREACH(entry, &list_main, link) {
763 	/*
764 	 * Allocate all the initial objects out of the static TLS
765 	 * block even if they didn't ask for it.
766 	 */
767 	allocate_tls_offset(entry->obj);
768     }
769 
770     if (relocate_objects(obj_main,
771       ld_bind_now != NULL && *ld_bind_now != '\0',
772       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
773 	rtld_die();
774 
775     dbg("doing copy relocations");
776     if (do_copy_relocations(obj_main) == -1)
777 	rtld_die();
778 
779     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
780        dump_relocations(obj_main);
781        exit (0);
782     }
783 
784     ifunc_init(aux);
785 
786     /*
787      * Setup TLS for main thread.  This must be done after the
788      * relocations are processed, since tls initialization section
789      * might be the subject for relocations.
790      */
791     dbg("initializing initial thread local storage");
792     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
793 
794     dbg("initializing key program variables");
795     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
796     set_program_var("environ", env);
797     set_program_var("__elf_aux_vector", aux);
798 
799     /* Make a list of init functions to call. */
800     objlist_init(&initlist);
801     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
802       preload_tail, &initlist);
803 
804     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
805 
806     map_stacks_exec(NULL);
807 
808     if (!obj_main->crt_no_init) {
809 	/*
810 	 * Make sure we don't call the main program's init and fini
811 	 * functions for binaries linked with old crt1 which calls
812 	 * _init itself.
813 	 */
814 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
815 	obj_main->preinit_array = obj_main->init_array =
816 	    obj_main->fini_array = (Elf_Addr)NULL;
817     }
818 
819     if (direct_exec) {
820 	/* Set osrel for direct-execed binary */
821 	mib[0] = CTL_KERN;
822 	mib[1] = KERN_PROC;
823 	mib[2] = KERN_PROC_OSREL;
824 	mib[3] = getpid();
825 	osrel = obj_main->osrel;
826 	sz = sizeof(old_osrel);
827 	dbg("setting osrel to %d", osrel);
828 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
829     }
830 
831     wlock_acquire(rtld_bind_lock, &lockstate);
832 
833     dbg("resolving ifuncs");
834     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
835       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
836 	rtld_die();
837 
838     rtld_exit_ptr = rtld_exit;
839     if (obj_main->crt_no_init)
840 	preinit_main();
841     objlist_call_init(&initlist, &lockstate);
842     _r_debug_postinit(&obj_main->linkmap);
843     objlist_clear(&initlist);
844     dbg("loading filtees");
845     TAILQ_FOREACH(obj, &obj_list, next) {
846 	if (obj->marker)
847 	    continue;
848 	if (ld_loadfltr || obj->z_loadfltr)
849 	    load_filtees(obj, 0, &lockstate);
850     }
851 
852     dbg("enforcing main obj relro");
853     if (obj_enforce_relro(obj_main) == -1)
854 	rtld_die();
855 
856     lock_release(rtld_bind_lock, &lockstate);
857 
858     dbg("transferring control to program entry point = %p", obj_main->entry);
859 
860     /* Return the exit procedure and the program entry point. */
861     *exit_proc = rtld_exit_ptr;
862     *objp = obj_main;
863     return (func_ptr_type) obj_main->entry;
864 }
865 
866 void *
867 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
868 {
869 	void *ptr;
870 	Elf_Addr target;
871 
872 	ptr = (void *)make_function_pointer(def, obj);
873 	target = call_ifunc_resolver(ptr);
874 	return ((void *)target);
875 }
876 
877 /*
878  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
879  * Changes to this function should be applied there as well.
880  */
881 Elf_Addr
882 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
883 {
884     const Elf_Rel *rel;
885     const Elf_Sym *def;
886     const Obj_Entry *defobj;
887     Elf_Addr *where;
888     Elf_Addr target;
889     RtldLockState lockstate;
890 
891     rlock_acquire(rtld_bind_lock, &lockstate);
892     if (sigsetjmp(lockstate.env, 0) != 0)
893 	    lock_upgrade(rtld_bind_lock, &lockstate);
894     if (obj->pltrel)
895 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
896     else
897 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
898 
899     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
900     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
901 	NULL, &lockstate);
902     if (def == NULL)
903 	rtld_die();
904     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
905 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
906     else
907 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
908 
909     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
910       defobj->strtab + def->st_name,
911       obj->path == NULL ? NULL : basename(obj->path),
912       (void *)target,
913       defobj->path == NULL ? NULL : basename(defobj->path));
914 
915     /*
916      * Write the new contents for the jmpslot. Note that depending on
917      * architecture, the value which we need to return back to the
918      * lazy binding trampoline may or may not be the target
919      * address. The value returned from reloc_jmpslot() is the value
920      * that the trampoline needs.
921      */
922     target = reloc_jmpslot(where, target, defobj, obj, rel);
923     lock_release(rtld_bind_lock, &lockstate);
924     return target;
925 }
926 
927 /*
928  * Error reporting function.  Use it like printf.  If formats the message
929  * into a buffer, and sets things up so that the next call to dlerror()
930  * will return the message.
931  */
932 void
933 _rtld_error(const char *fmt, ...)
934 {
935 	va_list ap;
936 
937 	va_start(ap, fmt);
938 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz,
939 	    fmt, ap);
940 	va_end(ap);
941 	*lockinfo.dlerror_seen() = 0;
942 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
943 }
944 
945 /*
946  * Return a dynamically-allocated copy of the current error message, if any.
947  */
948 static struct dlerror_save *
949 errmsg_save(void)
950 {
951 	struct dlerror_save *res;
952 
953 	res = xmalloc(sizeof(*res));
954 	res->seen = *lockinfo.dlerror_seen();
955 	if (res->seen == 0)
956 		res->msg = xstrdup(lockinfo.dlerror_loc());
957 	return (res);
958 }
959 
960 /*
961  * Restore the current error message from a copy which was previously saved
962  * by errmsg_save().  The copy is freed.
963  */
964 static void
965 errmsg_restore(struct dlerror_save *saved_msg)
966 {
967 	if (saved_msg == NULL || saved_msg->seen == 1) {
968 		*lockinfo.dlerror_seen() = 1;
969 	} else {
970 		*lockinfo.dlerror_seen() = 0;
971 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
972 		    lockinfo.dlerror_loc_sz);
973 		free(saved_msg->msg);
974 	}
975 	free(saved_msg);
976 }
977 
978 static const char *
979 basename(const char *name)
980 {
981     const char *p = strrchr(name, '/');
982     return p != NULL ? p + 1 : name;
983 }
984 
985 static struct utsname uts;
986 
987 static char *
988 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
989     const char *subst, bool may_free)
990 {
991 	char *p, *p1, *res, *resp;
992 	int subst_len, kw_len, subst_count, old_len, new_len;
993 
994 	kw_len = strlen(kw);
995 
996 	/*
997 	 * First, count the number of the keyword occurrences, to
998 	 * preallocate the final string.
999 	 */
1000 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1001 		p1 = strstr(p, kw);
1002 		if (p1 == NULL)
1003 			break;
1004 	}
1005 
1006 	/*
1007 	 * If the keyword is not found, just return.
1008 	 *
1009 	 * Return non-substituted string if resolution failed.  We
1010 	 * cannot do anything more reasonable, the failure mode of the
1011 	 * caller is unresolved library anyway.
1012 	 */
1013 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1014 		return (may_free ? real : xstrdup(real));
1015 	if (obj != NULL)
1016 		subst = obj->origin_path;
1017 
1018 	/*
1019 	 * There is indeed something to substitute.  Calculate the
1020 	 * length of the resulting string, and allocate it.
1021 	 */
1022 	subst_len = strlen(subst);
1023 	old_len = strlen(real);
1024 	new_len = old_len + (subst_len - kw_len) * subst_count;
1025 	res = xmalloc(new_len + 1);
1026 
1027 	/*
1028 	 * Now, execute the substitution loop.
1029 	 */
1030 	for (p = real, resp = res, *resp = '\0';;) {
1031 		p1 = strstr(p, kw);
1032 		if (p1 != NULL) {
1033 			/* Copy the prefix before keyword. */
1034 			memcpy(resp, p, p1 - p);
1035 			resp += p1 - p;
1036 			/* Keyword replacement. */
1037 			memcpy(resp, subst, subst_len);
1038 			resp += subst_len;
1039 			*resp = '\0';
1040 			p = p1 + kw_len;
1041 		} else
1042 			break;
1043 	}
1044 
1045 	/* Copy to the end of string and finish. */
1046 	strcat(resp, p);
1047 	if (may_free)
1048 		free(real);
1049 	return (res);
1050 }
1051 
1052 static char *
1053 origin_subst(Obj_Entry *obj, const char *real)
1054 {
1055 	char *res1, *res2, *res3, *res4;
1056 
1057 	if (obj == NULL || !trust)
1058 		return (xstrdup(real));
1059 	if (uts.sysname[0] == '\0') {
1060 		if (uname(&uts) != 0) {
1061 			_rtld_error("utsname failed: %d", errno);
1062 			return (NULL);
1063 		}
1064 	}
1065 	/* __DECONST is safe here since without may_free real is unchanged */
1066 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
1067 	    false);
1068 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
1069 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
1070 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
1071 	return (res4);
1072 }
1073 
1074 void
1075 rtld_die(void)
1076 {
1077     const char *msg = dlerror();
1078 
1079     if (msg == NULL)
1080 	msg = "Fatal error";
1081     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1082     rtld_fdputstr(STDERR_FILENO, msg);
1083     rtld_fdputchar(STDERR_FILENO, '\n');
1084     _exit(1);
1085 }
1086 
1087 /*
1088  * Process a shared object's DYNAMIC section, and save the important
1089  * information in its Obj_Entry structure.
1090  */
1091 static void
1092 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1093     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1094 {
1095     const Elf_Dyn *dynp;
1096     Needed_Entry **needed_tail = &obj->needed;
1097     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1098     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1099     const Elf_Hashelt *hashtab;
1100     const Elf32_Word *hashval;
1101     Elf32_Word bkt, nmaskwords;
1102     int bloom_size32;
1103     int plttype = DT_REL;
1104 
1105     *dyn_rpath = NULL;
1106     *dyn_soname = NULL;
1107     *dyn_runpath = NULL;
1108 
1109     obj->bind_now = false;
1110     dynp = obj->dynamic;
1111     if (dynp == NULL)
1112 	return;
1113     for (;  dynp->d_tag != DT_NULL;  dynp++) {
1114 	switch (dynp->d_tag) {
1115 
1116 	case DT_REL:
1117 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1118 	    break;
1119 
1120 	case DT_RELSZ:
1121 	    obj->relsize = dynp->d_un.d_val;
1122 	    break;
1123 
1124 	case DT_RELENT:
1125 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1126 	    break;
1127 
1128 	case DT_JMPREL:
1129 	    obj->pltrel = (const Elf_Rel *)
1130 	      (obj->relocbase + dynp->d_un.d_ptr);
1131 	    break;
1132 
1133 	case DT_PLTRELSZ:
1134 	    obj->pltrelsize = dynp->d_un.d_val;
1135 	    break;
1136 
1137 	case DT_RELA:
1138 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1139 	    break;
1140 
1141 	case DT_RELASZ:
1142 	    obj->relasize = dynp->d_un.d_val;
1143 	    break;
1144 
1145 	case DT_RELAENT:
1146 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1147 	    break;
1148 
1149 	case DT_PLTREL:
1150 	    plttype = dynp->d_un.d_val;
1151 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1152 	    break;
1153 
1154 	case DT_SYMTAB:
1155 	    obj->symtab = (const Elf_Sym *)
1156 	      (obj->relocbase + dynp->d_un.d_ptr);
1157 	    break;
1158 
1159 	case DT_SYMENT:
1160 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1161 	    break;
1162 
1163 	case DT_STRTAB:
1164 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1165 	    break;
1166 
1167 	case DT_STRSZ:
1168 	    obj->strsize = dynp->d_un.d_val;
1169 	    break;
1170 
1171 	case DT_VERNEED:
1172 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1173 		dynp->d_un.d_val);
1174 	    break;
1175 
1176 	case DT_VERNEEDNUM:
1177 	    obj->verneednum = dynp->d_un.d_val;
1178 	    break;
1179 
1180 	case DT_VERDEF:
1181 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1182 		dynp->d_un.d_val);
1183 	    break;
1184 
1185 	case DT_VERDEFNUM:
1186 	    obj->verdefnum = dynp->d_un.d_val;
1187 	    break;
1188 
1189 	case DT_VERSYM:
1190 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1191 		dynp->d_un.d_val);
1192 	    break;
1193 
1194 	case DT_HASH:
1195 	    {
1196 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1197 		    dynp->d_un.d_ptr);
1198 		obj->nbuckets = hashtab[0];
1199 		obj->nchains = hashtab[1];
1200 		obj->buckets = hashtab + 2;
1201 		obj->chains = obj->buckets + obj->nbuckets;
1202 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1203 		  obj->buckets != NULL;
1204 	    }
1205 	    break;
1206 
1207 	case DT_GNU_HASH:
1208 	    {
1209 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1210 		    dynp->d_un.d_ptr);
1211 		obj->nbuckets_gnu = hashtab[0];
1212 		obj->symndx_gnu = hashtab[1];
1213 		nmaskwords = hashtab[2];
1214 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1215 		obj->maskwords_bm_gnu = nmaskwords - 1;
1216 		obj->shift2_gnu = hashtab[3];
1217 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1218 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1219 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1220 		  obj->symndx_gnu;
1221 		/* Number of bitmask words is required to be power of 2 */
1222 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1223 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1224 	    }
1225 	    break;
1226 
1227 	case DT_NEEDED:
1228 	    if (!obj->rtld) {
1229 		Needed_Entry *nep = NEW(Needed_Entry);
1230 		nep->name = dynp->d_un.d_val;
1231 		nep->obj = NULL;
1232 		nep->next = NULL;
1233 
1234 		*needed_tail = nep;
1235 		needed_tail = &nep->next;
1236 	    }
1237 	    break;
1238 
1239 	case DT_FILTER:
1240 	    if (!obj->rtld) {
1241 		Needed_Entry *nep = NEW(Needed_Entry);
1242 		nep->name = dynp->d_un.d_val;
1243 		nep->obj = NULL;
1244 		nep->next = NULL;
1245 
1246 		*needed_filtees_tail = nep;
1247 		needed_filtees_tail = &nep->next;
1248 
1249 		if (obj->linkmap.l_refname == NULL)
1250 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1251 	    }
1252 	    break;
1253 
1254 	case DT_AUXILIARY:
1255 	    if (!obj->rtld) {
1256 		Needed_Entry *nep = NEW(Needed_Entry);
1257 		nep->name = dynp->d_un.d_val;
1258 		nep->obj = NULL;
1259 		nep->next = NULL;
1260 
1261 		*needed_aux_filtees_tail = nep;
1262 		needed_aux_filtees_tail = &nep->next;
1263 	    }
1264 	    break;
1265 
1266 	case DT_PLTGOT:
1267 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1268 	    break;
1269 
1270 	case DT_TEXTREL:
1271 	    obj->textrel = true;
1272 	    break;
1273 
1274 	case DT_SYMBOLIC:
1275 	    obj->symbolic = true;
1276 	    break;
1277 
1278 	case DT_RPATH:
1279 	    /*
1280 	     * We have to wait until later to process this, because we
1281 	     * might not have gotten the address of the string table yet.
1282 	     */
1283 	    *dyn_rpath = dynp;
1284 	    break;
1285 
1286 	case DT_SONAME:
1287 	    *dyn_soname = dynp;
1288 	    break;
1289 
1290 	case DT_RUNPATH:
1291 	    *dyn_runpath = dynp;
1292 	    break;
1293 
1294 	case DT_INIT:
1295 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1296 	    break;
1297 
1298 	case DT_PREINIT_ARRAY:
1299 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1300 	    break;
1301 
1302 	case DT_PREINIT_ARRAYSZ:
1303 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1304 	    break;
1305 
1306 	case DT_INIT_ARRAY:
1307 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1308 	    break;
1309 
1310 	case DT_INIT_ARRAYSZ:
1311 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1312 	    break;
1313 
1314 	case DT_FINI:
1315 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1316 	    break;
1317 
1318 	case DT_FINI_ARRAY:
1319 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1320 	    break;
1321 
1322 	case DT_FINI_ARRAYSZ:
1323 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1324 	    break;
1325 
1326 	/*
1327 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1328 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1329 	 */
1330 
1331 #ifndef __mips__
1332 	case DT_DEBUG:
1333 	    if (!early)
1334 		dbg("Filling in DT_DEBUG entry");
1335 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1336 	    break;
1337 #endif
1338 
1339 	case DT_FLAGS:
1340 		if (dynp->d_un.d_val & DF_ORIGIN)
1341 		    obj->z_origin = true;
1342 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1343 		    obj->symbolic = true;
1344 		if (dynp->d_un.d_val & DF_TEXTREL)
1345 		    obj->textrel = true;
1346 		if (dynp->d_un.d_val & DF_BIND_NOW)
1347 		    obj->bind_now = true;
1348 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1349 		    obj->static_tls = true;
1350 	    break;
1351 #ifdef __mips__
1352 	case DT_MIPS_LOCAL_GOTNO:
1353 		obj->local_gotno = dynp->d_un.d_val;
1354 		break;
1355 
1356 	case DT_MIPS_SYMTABNO:
1357 		obj->symtabno = dynp->d_un.d_val;
1358 		break;
1359 
1360 	case DT_MIPS_GOTSYM:
1361 		obj->gotsym = dynp->d_un.d_val;
1362 		break;
1363 
1364 	case DT_MIPS_RLD_MAP:
1365 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1366 		break;
1367 
1368 	case DT_MIPS_RLD_MAP_REL:
1369 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1370 		// section relative to the address of the tag itself.
1371 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1372 		    (Elf_Addr) &r_debug;
1373 		break;
1374 
1375 	case DT_MIPS_PLTGOT:
1376 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1377 		    dynp->d_un.d_ptr);
1378 		break;
1379 
1380 #endif
1381 
1382 #ifdef __powerpc__
1383 #ifdef __powerpc64__
1384 	case DT_PPC64_GLINK:
1385 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1386 		break;
1387 #else
1388 	case DT_PPC_GOT:
1389 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1390 		break;
1391 #endif
1392 #endif
1393 
1394 	case DT_FLAGS_1:
1395 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1396 		    obj->z_noopen = true;
1397 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1398 		    obj->z_origin = true;
1399 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1400 		    obj->z_global = true;
1401 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1402 		    obj->bind_now = true;
1403 		if (dynp->d_un.d_val & DF_1_NODELETE)
1404 		    obj->z_nodelete = true;
1405 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1406 		    obj->z_loadfltr = true;
1407 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1408 		    obj->z_interpose = true;
1409 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1410 		    obj->z_nodeflib = true;
1411 		if (dynp->d_un.d_val & DF_1_PIE)
1412 		    obj->z_pie = true;
1413 	    break;
1414 
1415 	default:
1416 	    if (!early) {
1417 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1418 		    (long)dynp->d_tag);
1419 	    }
1420 	    break;
1421 	}
1422     }
1423 
1424     obj->traced = false;
1425 
1426     if (plttype == DT_RELA) {
1427 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1428 	obj->pltrel = NULL;
1429 	obj->pltrelasize = obj->pltrelsize;
1430 	obj->pltrelsize = 0;
1431     }
1432 
1433     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1434     if (obj->valid_hash_sysv)
1435 	obj->dynsymcount = obj->nchains;
1436     else if (obj->valid_hash_gnu) {
1437 	obj->dynsymcount = 0;
1438 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1439 	    if (obj->buckets_gnu[bkt] == 0)
1440 		continue;
1441 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1442 	    do
1443 		obj->dynsymcount++;
1444 	    while ((*hashval++ & 1u) == 0);
1445 	}
1446 	obj->dynsymcount += obj->symndx_gnu;
1447     }
1448 
1449     if (obj->linkmap.l_refname != NULL)
1450 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1451 	  linkmap.l_refname;
1452 }
1453 
1454 static bool
1455 obj_resolve_origin(Obj_Entry *obj)
1456 {
1457 
1458 	if (obj->origin_path != NULL)
1459 		return (true);
1460 	obj->origin_path = xmalloc(PATH_MAX);
1461 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1462 }
1463 
1464 static bool
1465 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1466     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1467 {
1468 
1469 	if (obj->z_origin && !obj_resolve_origin(obj))
1470 		return (false);
1471 
1472 	if (dyn_runpath != NULL) {
1473 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1474 		obj->runpath = origin_subst(obj, obj->runpath);
1475 	} else if (dyn_rpath != NULL) {
1476 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1477 		obj->rpath = origin_subst(obj, obj->rpath);
1478 	}
1479 	if (dyn_soname != NULL)
1480 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1481 	return (true);
1482 }
1483 
1484 static bool
1485 digest_dynamic(Obj_Entry *obj, int early)
1486 {
1487 	const Elf_Dyn *dyn_rpath;
1488 	const Elf_Dyn *dyn_soname;
1489 	const Elf_Dyn *dyn_runpath;
1490 
1491 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1492 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1493 }
1494 
1495 /*
1496  * Process a shared object's program header.  This is used only for the
1497  * main program, when the kernel has already loaded the main program
1498  * into memory before calling the dynamic linker.  It creates and
1499  * returns an Obj_Entry structure.
1500  */
1501 static Obj_Entry *
1502 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1503 {
1504     Obj_Entry *obj;
1505     const Elf_Phdr *phlimit = phdr + phnum;
1506     const Elf_Phdr *ph;
1507     Elf_Addr note_start, note_end;
1508     int nsegs = 0;
1509 
1510     obj = obj_new();
1511     for (ph = phdr;  ph < phlimit;  ph++) {
1512 	if (ph->p_type != PT_PHDR)
1513 	    continue;
1514 
1515 	obj->phdr = phdr;
1516 	obj->phsize = ph->p_memsz;
1517 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1518 	break;
1519     }
1520 
1521     obj->stack_flags = PF_X | PF_R | PF_W;
1522 
1523     for (ph = phdr;  ph < phlimit;  ph++) {
1524 	switch (ph->p_type) {
1525 
1526 	case PT_INTERP:
1527 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1528 	    break;
1529 
1530 	case PT_LOAD:
1531 	    if (nsegs == 0) {	/* First load segment */
1532 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1533 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1534 	    } else {		/* Last load segment */
1535 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1536 		  obj->vaddrbase;
1537 	    }
1538 	    nsegs++;
1539 	    break;
1540 
1541 	case PT_DYNAMIC:
1542 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1543 	    break;
1544 
1545 	case PT_TLS:
1546 	    obj->tlsindex = 1;
1547 	    obj->tlssize = ph->p_memsz;
1548 	    obj->tlsalign = ph->p_align;
1549 	    obj->tlsinitsize = ph->p_filesz;
1550 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1551 	    obj->tlspoffset = ph->p_offset;
1552 	    break;
1553 
1554 	case PT_GNU_STACK:
1555 	    obj->stack_flags = ph->p_flags;
1556 	    break;
1557 
1558 	case PT_GNU_RELRO:
1559 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1560 	    obj->relro_size = round_page(ph->p_memsz);
1561 	    break;
1562 
1563 	case PT_NOTE:
1564 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1565 	    note_end = note_start + ph->p_filesz;
1566 	    digest_notes(obj, note_start, note_end);
1567 	    break;
1568 	}
1569     }
1570     if (nsegs < 1) {
1571 	_rtld_error("%s: too few PT_LOAD segments", path);
1572 	return NULL;
1573     }
1574 
1575     obj->entry = entry;
1576     return obj;
1577 }
1578 
1579 void
1580 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1581 {
1582 	const Elf_Note *note;
1583 	const char *note_name;
1584 	uintptr_t p;
1585 
1586 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1587 	    note = (const Elf_Note *)((const char *)(note + 1) +
1588 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1589 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1590 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1591 		    note->n_descsz != sizeof(int32_t))
1592 			continue;
1593 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1594 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1595 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1596 			continue;
1597 		note_name = (const char *)(note + 1);
1598 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1599 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1600 			continue;
1601 		switch (note->n_type) {
1602 		case NT_FREEBSD_ABI_TAG:
1603 			/* FreeBSD osrel note */
1604 			p = (uintptr_t)(note + 1);
1605 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1606 			obj->osrel = *(const int32_t *)(p);
1607 			dbg("note osrel %d", obj->osrel);
1608 			break;
1609 		case NT_FREEBSD_FEATURE_CTL:
1610 			/* FreeBSD ABI feature control note */
1611 			p = (uintptr_t)(note + 1);
1612 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1613 			obj->fctl0 = *(const uint32_t *)(p);
1614 			dbg("note fctl0 %#x", obj->fctl0);
1615 			break;
1616 		case NT_FREEBSD_NOINIT_TAG:
1617 			/* FreeBSD 'crt does not call init' note */
1618 			obj->crt_no_init = true;
1619 			dbg("note crt_no_init");
1620 			break;
1621 		}
1622 	}
1623 }
1624 
1625 static Obj_Entry *
1626 dlcheck(void *handle)
1627 {
1628     Obj_Entry *obj;
1629 
1630     TAILQ_FOREACH(obj, &obj_list, next) {
1631 	if (obj == (Obj_Entry *) handle)
1632 	    break;
1633     }
1634 
1635     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1636 	_rtld_error("Invalid shared object handle %p", handle);
1637 	return NULL;
1638     }
1639     return obj;
1640 }
1641 
1642 /*
1643  * If the given object is already in the donelist, return true.  Otherwise
1644  * add the object to the list and return false.
1645  */
1646 static bool
1647 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1648 {
1649     unsigned int i;
1650 
1651     for (i = 0;  i < dlp->num_used;  i++)
1652 	if (dlp->objs[i] == obj)
1653 	    return true;
1654     /*
1655      * Our donelist allocation should always be sufficient.  But if
1656      * our threads locking isn't working properly, more shared objects
1657      * could have been loaded since we allocated the list.  That should
1658      * never happen, but we'll handle it properly just in case it does.
1659      */
1660     if (dlp->num_used < dlp->num_alloc)
1661 	dlp->objs[dlp->num_used++] = obj;
1662     return false;
1663 }
1664 
1665 /*
1666  * Hash function for symbol table lookup.  Don't even think about changing
1667  * this.  It is specified by the System V ABI.
1668  */
1669 unsigned long
1670 elf_hash(const char *name)
1671 {
1672     const unsigned char *p = (const unsigned char *) name;
1673     unsigned long h = 0;
1674     unsigned long g;
1675 
1676     while (*p != '\0') {
1677 	h = (h << 4) + *p++;
1678 	if ((g = h & 0xf0000000) != 0)
1679 	    h ^= g >> 24;
1680 	h &= ~g;
1681     }
1682     return h;
1683 }
1684 
1685 /*
1686  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1687  * unsigned in case it's implemented with a wider type.
1688  */
1689 static uint32_t
1690 gnu_hash(const char *s)
1691 {
1692 	uint32_t h;
1693 	unsigned char c;
1694 
1695 	h = 5381;
1696 	for (c = *s; c != '\0'; c = *++s)
1697 		h = h * 33 + c;
1698 	return (h & 0xffffffff);
1699 }
1700 
1701 
1702 /*
1703  * Find the library with the given name, and return its full pathname.
1704  * The returned string is dynamically allocated.  Generates an error
1705  * message and returns NULL if the library cannot be found.
1706  *
1707  * If the second argument is non-NULL, then it refers to an already-
1708  * loaded shared object, whose library search path will be searched.
1709  *
1710  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1711  * descriptor (which is close-on-exec) will be passed out via the third
1712  * argument.
1713  *
1714  * The search order is:
1715  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1716  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1717  *   LD_LIBRARY_PATH
1718  *   DT_RUNPATH in the referencing file
1719  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1720  *	 from list)
1721  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1722  *
1723  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1724  */
1725 static char *
1726 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1727 {
1728 	char *pathname, *refobj_path;
1729 	const char *name;
1730 	bool nodeflib, objgiven;
1731 
1732 	objgiven = refobj != NULL;
1733 
1734 	if (libmap_disable || !objgiven ||
1735 	    (name = lm_find(refobj->path, xname)) == NULL)
1736 		name = xname;
1737 
1738 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1739 		if (name[0] != '/' && !trust) {
1740 			_rtld_error("Absolute pathname required "
1741 			    "for shared object \"%s\"", name);
1742 			return (NULL);
1743 		}
1744 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1745 		    __DECONST(char *, name)));
1746 	}
1747 
1748 	dbg(" Searching for \"%s\"", name);
1749 	refobj_path = objgiven ? refobj->path : NULL;
1750 
1751 	/*
1752 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1753 	 * back to pre-conforming behaviour if user requested so with
1754 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1755 	 * nodeflib.
1756 	 */
1757 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1758 		pathname = search_library_path(name, ld_library_path,
1759 		    refobj_path, fdp);
1760 		if (pathname != NULL)
1761 			return (pathname);
1762 		if (refobj != NULL) {
1763 			pathname = search_library_path(name, refobj->rpath,
1764 			    refobj_path, fdp);
1765 			if (pathname != NULL)
1766 				return (pathname);
1767 		}
1768 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1769 		if (pathname != NULL)
1770 			return (pathname);
1771 		pathname = search_library_path(name, gethints(false),
1772 		    refobj_path, fdp);
1773 		if (pathname != NULL)
1774 			return (pathname);
1775 		pathname = search_library_path(name, ld_standard_library_path,
1776 		    refobj_path, fdp);
1777 		if (pathname != NULL)
1778 			return (pathname);
1779 	} else {
1780 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1781 		if (objgiven) {
1782 			pathname = search_library_path(name, refobj->rpath,
1783 			    refobj->path, fdp);
1784 			if (pathname != NULL)
1785 				return (pathname);
1786 		}
1787 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1788 			pathname = search_library_path(name, obj_main->rpath,
1789 			    refobj_path, fdp);
1790 			if (pathname != NULL)
1791 				return (pathname);
1792 		}
1793 		pathname = search_library_path(name, ld_library_path,
1794 		    refobj_path, fdp);
1795 		if (pathname != NULL)
1796 			return (pathname);
1797 		if (objgiven) {
1798 			pathname = search_library_path(name, refobj->runpath,
1799 			    refobj_path, fdp);
1800 			if (pathname != NULL)
1801 				return (pathname);
1802 		}
1803 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1804 		if (pathname != NULL)
1805 			return (pathname);
1806 		pathname = search_library_path(name, gethints(nodeflib),
1807 		    refobj_path, fdp);
1808 		if (pathname != NULL)
1809 			return (pathname);
1810 		if (objgiven && !nodeflib) {
1811 			pathname = search_library_path(name,
1812 			    ld_standard_library_path, refobj_path, fdp);
1813 			if (pathname != NULL)
1814 				return (pathname);
1815 		}
1816 	}
1817 
1818 	if (objgiven && refobj->path != NULL) {
1819 		_rtld_error("Shared object \"%s\" not found, "
1820 		    "required by \"%s\"", name, basename(refobj->path));
1821 	} else {
1822 		_rtld_error("Shared object \"%s\" not found", name);
1823 	}
1824 	return (NULL);
1825 }
1826 
1827 /*
1828  * Given a symbol number in a referencing object, find the corresponding
1829  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1830  * no definition was found.  Returns a pointer to the Obj_Entry of the
1831  * defining object via the reference parameter DEFOBJ_OUT.
1832  */
1833 const Elf_Sym *
1834 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1835     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1836     RtldLockState *lockstate)
1837 {
1838     const Elf_Sym *ref;
1839     const Elf_Sym *def;
1840     const Obj_Entry *defobj;
1841     const Ver_Entry *ve;
1842     SymLook req;
1843     const char *name;
1844     int res;
1845 
1846     /*
1847      * If we have already found this symbol, get the information from
1848      * the cache.
1849      */
1850     if (symnum >= refobj->dynsymcount)
1851 	return NULL;	/* Bad object */
1852     if (cache != NULL && cache[symnum].sym != NULL) {
1853 	*defobj_out = cache[symnum].obj;
1854 	return cache[symnum].sym;
1855     }
1856 
1857     ref = refobj->symtab + symnum;
1858     name = refobj->strtab + ref->st_name;
1859     def = NULL;
1860     defobj = NULL;
1861     ve = NULL;
1862 
1863     /*
1864      * We don't have to do a full scale lookup if the symbol is local.
1865      * We know it will bind to the instance in this load module; to
1866      * which we already have a pointer (ie ref). By not doing a lookup,
1867      * we not only improve performance, but it also avoids unresolvable
1868      * symbols when local symbols are not in the hash table. This has
1869      * been seen with the ia64 toolchain.
1870      */
1871     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1872 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1873 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1874 		symnum);
1875 	}
1876 	symlook_init(&req, name);
1877 	req.flags = flags;
1878 	ve = req.ventry = fetch_ventry(refobj, symnum);
1879 	req.lockstate = lockstate;
1880 	res = symlook_default(&req, refobj);
1881 	if (res == 0) {
1882 	    def = req.sym_out;
1883 	    defobj = req.defobj_out;
1884 	}
1885     } else {
1886 	def = ref;
1887 	defobj = refobj;
1888     }
1889 
1890     /*
1891      * If we found no definition and the reference is weak, treat the
1892      * symbol as having the value zero.
1893      */
1894     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1895 	def = &sym_zero;
1896 	defobj = obj_main;
1897     }
1898 
1899     if (def != NULL) {
1900 	*defobj_out = defobj;
1901 	/* Record the information in the cache to avoid subsequent lookups. */
1902 	if (cache != NULL) {
1903 	    cache[symnum].sym = def;
1904 	    cache[symnum].obj = defobj;
1905 	}
1906     } else {
1907 	if (refobj != &obj_rtld)
1908 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1909 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1910     }
1911     return def;
1912 }
1913 
1914 /*
1915  * Return the search path from the ldconfig hints file, reading it if
1916  * necessary.  If nostdlib is true, then the default search paths are
1917  * not added to result.
1918  *
1919  * Returns NULL if there are problems with the hints file,
1920  * or if the search path there is empty.
1921  */
1922 static const char *
1923 gethints(bool nostdlib)
1924 {
1925 	static char *filtered_path;
1926 	static const char *hints;
1927 	static struct elfhints_hdr hdr;
1928 	struct fill_search_info_args sargs, hargs;
1929 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1930 	struct dl_serpath *SLPpath, *hintpath;
1931 	char *p;
1932 	struct stat hint_stat;
1933 	unsigned int SLPndx, hintndx, fndx, fcount;
1934 	int fd;
1935 	size_t flen;
1936 	uint32_t dl;
1937 	bool skip;
1938 
1939 	/* First call, read the hints file */
1940 	if (hints == NULL) {
1941 		/* Keep from trying again in case the hints file is bad. */
1942 		hints = "";
1943 
1944 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1945 			return (NULL);
1946 
1947 		/*
1948 		 * Check of hdr.dirlistlen value against type limit
1949 		 * intends to pacify static analyzers.  Further
1950 		 * paranoia leads to checks that dirlist is fully
1951 		 * contained in the file range.
1952 		 */
1953 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1954 		    hdr.magic != ELFHINTS_MAGIC ||
1955 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1956 		    fstat(fd, &hint_stat) == -1) {
1957 cleanup1:
1958 			close(fd);
1959 			hdr.dirlistlen = 0;
1960 			return (NULL);
1961 		}
1962 		dl = hdr.strtab;
1963 		if (dl + hdr.dirlist < dl)
1964 			goto cleanup1;
1965 		dl += hdr.dirlist;
1966 		if (dl + hdr.dirlistlen < dl)
1967 			goto cleanup1;
1968 		dl += hdr.dirlistlen;
1969 		if (dl > hint_stat.st_size)
1970 			goto cleanup1;
1971 		p = xmalloc(hdr.dirlistlen + 1);
1972 		if (pread(fd, p, hdr.dirlistlen + 1,
1973 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1974 		    p[hdr.dirlistlen] != '\0') {
1975 			free(p);
1976 			goto cleanup1;
1977 		}
1978 		hints = p;
1979 		close(fd);
1980 	}
1981 
1982 	/*
1983 	 * If caller agreed to receive list which includes the default
1984 	 * paths, we are done. Otherwise, if we still did not
1985 	 * calculated filtered result, do it now.
1986 	 */
1987 	if (!nostdlib)
1988 		return (hints[0] != '\0' ? hints : NULL);
1989 	if (filtered_path != NULL)
1990 		goto filt_ret;
1991 
1992 	/*
1993 	 * Obtain the list of all configured search paths, and the
1994 	 * list of the default paths.
1995 	 *
1996 	 * First estimate the size of the results.
1997 	 */
1998 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1999 	smeta.dls_cnt = 0;
2000 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2001 	hmeta.dls_cnt = 0;
2002 
2003 	sargs.request = RTLD_DI_SERINFOSIZE;
2004 	sargs.serinfo = &smeta;
2005 	hargs.request = RTLD_DI_SERINFOSIZE;
2006 	hargs.serinfo = &hmeta;
2007 
2008 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2009 	    &sargs);
2010 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2011 
2012 	SLPinfo = xmalloc(smeta.dls_size);
2013 	hintinfo = xmalloc(hmeta.dls_size);
2014 
2015 	/*
2016 	 * Next fetch both sets of paths.
2017 	 */
2018 	sargs.request = RTLD_DI_SERINFO;
2019 	sargs.serinfo = SLPinfo;
2020 	sargs.serpath = &SLPinfo->dls_serpath[0];
2021 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2022 
2023 	hargs.request = RTLD_DI_SERINFO;
2024 	hargs.serinfo = hintinfo;
2025 	hargs.serpath = &hintinfo->dls_serpath[0];
2026 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2027 
2028 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2029 	    &sargs);
2030 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2031 
2032 	/*
2033 	 * Now calculate the difference between two sets, by excluding
2034 	 * standard paths from the full set.
2035 	 */
2036 	fndx = 0;
2037 	fcount = 0;
2038 	filtered_path = xmalloc(hdr.dirlistlen + 1);
2039 	hintpath = &hintinfo->dls_serpath[0];
2040 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2041 		skip = false;
2042 		SLPpath = &SLPinfo->dls_serpath[0];
2043 		/*
2044 		 * Check each standard path against current.
2045 		 */
2046 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2047 			/* matched, skip the path */
2048 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2049 				skip = true;
2050 				break;
2051 			}
2052 		}
2053 		if (skip)
2054 			continue;
2055 		/*
2056 		 * Not matched against any standard path, add the path
2057 		 * to result. Separate consequtive paths with ':'.
2058 		 */
2059 		if (fcount > 0) {
2060 			filtered_path[fndx] = ':';
2061 			fndx++;
2062 		}
2063 		fcount++;
2064 		flen = strlen(hintpath->dls_name);
2065 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2066 		fndx += flen;
2067 	}
2068 	filtered_path[fndx] = '\0';
2069 
2070 	free(SLPinfo);
2071 	free(hintinfo);
2072 
2073 filt_ret:
2074 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2075 }
2076 
2077 static void
2078 init_dag(Obj_Entry *root)
2079 {
2080     const Needed_Entry *needed;
2081     const Objlist_Entry *elm;
2082     DoneList donelist;
2083 
2084     if (root->dag_inited)
2085 	return;
2086     donelist_init(&donelist);
2087 
2088     /* Root object belongs to own DAG. */
2089     objlist_push_tail(&root->dldags, root);
2090     objlist_push_tail(&root->dagmembers, root);
2091     donelist_check(&donelist, root);
2092 
2093     /*
2094      * Add dependencies of root object to DAG in breadth order
2095      * by exploiting the fact that each new object get added
2096      * to the tail of the dagmembers list.
2097      */
2098     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2099 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2100 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2101 		continue;
2102 	    objlist_push_tail(&needed->obj->dldags, root);
2103 	    objlist_push_tail(&root->dagmembers, needed->obj);
2104 	}
2105     }
2106     root->dag_inited = true;
2107 }
2108 
2109 static void
2110 init_marker(Obj_Entry *marker)
2111 {
2112 
2113 	bzero(marker, sizeof(*marker));
2114 	marker->marker = true;
2115 }
2116 
2117 Obj_Entry *
2118 globallist_curr(const Obj_Entry *obj)
2119 {
2120 
2121 	for (;;) {
2122 		if (obj == NULL)
2123 			return (NULL);
2124 		if (!obj->marker)
2125 			return (__DECONST(Obj_Entry *, obj));
2126 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2127 	}
2128 }
2129 
2130 Obj_Entry *
2131 globallist_next(const Obj_Entry *obj)
2132 {
2133 
2134 	for (;;) {
2135 		obj = TAILQ_NEXT(obj, next);
2136 		if (obj == NULL)
2137 			return (NULL);
2138 		if (!obj->marker)
2139 			return (__DECONST(Obj_Entry *, obj));
2140 	}
2141 }
2142 
2143 /* Prevent the object from being unmapped while the bind lock is dropped. */
2144 static void
2145 hold_object(Obj_Entry *obj)
2146 {
2147 
2148 	obj->holdcount++;
2149 }
2150 
2151 static void
2152 unhold_object(Obj_Entry *obj)
2153 {
2154 
2155 	assert(obj->holdcount > 0);
2156 	if (--obj->holdcount == 0 && obj->unholdfree)
2157 		release_object(obj);
2158 }
2159 
2160 static void
2161 process_z(Obj_Entry *root)
2162 {
2163 	const Objlist_Entry *elm;
2164 	Obj_Entry *obj;
2165 
2166 	/*
2167 	 * Walk over object DAG and process every dependent object
2168 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2169 	 * to grow their own DAG.
2170 	 *
2171 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2172 	 * symlook_global() to work.
2173 	 *
2174 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2175 	 */
2176 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2177 		obj = elm->obj;
2178 		if (obj == NULL)
2179 			continue;
2180 		if (obj->z_nodelete && !obj->ref_nodel) {
2181 			dbg("obj %s -z nodelete", obj->path);
2182 			init_dag(obj);
2183 			ref_dag(obj);
2184 			obj->ref_nodel = true;
2185 		}
2186 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2187 			dbg("obj %s -z global", obj->path);
2188 			objlist_push_tail(&list_global, obj);
2189 			init_dag(obj);
2190 		}
2191 	}
2192 }
2193 
2194 static void
2195 parse_rtld_phdr(Obj_Entry *obj)
2196 {
2197 	const Elf_Phdr *ph;
2198 	Elf_Addr note_start, note_end;
2199 
2200 	obj->stack_flags = PF_X | PF_R | PF_W;
2201 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
2202 	    obj->phsize; ph++) {
2203 		switch (ph->p_type) {
2204 		case PT_GNU_STACK:
2205 			obj->stack_flags = ph->p_flags;
2206 			break;
2207 		case PT_GNU_RELRO:
2208 			obj->relro_page = obj->relocbase +
2209 			    trunc_page(ph->p_vaddr);
2210 			obj->relro_size = round_page(ph->p_memsz);
2211 			break;
2212 		case PT_NOTE:
2213 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2214 			note_end = note_start + ph->p_filesz;
2215 			digest_notes(obj, note_start, note_end);
2216 			break;
2217 		}
2218 	}
2219 }
2220 
2221 /*
2222  * Initialize the dynamic linker.  The argument is the address at which
2223  * the dynamic linker has been mapped into memory.  The primary task of
2224  * this function is to relocate the dynamic linker.
2225  */
2226 static void
2227 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2228 {
2229     Obj_Entry objtmp;	/* Temporary rtld object */
2230     const Elf_Ehdr *ehdr;
2231     const Elf_Dyn *dyn_rpath;
2232     const Elf_Dyn *dyn_soname;
2233     const Elf_Dyn *dyn_runpath;
2234 
2235 #ifdef RTLD_INIT_PAGESIZES_EARLY
2236     /* The page size is required by the dynamic memory allocator. */
2237     init_pagesizes(aux_info);
2238 #endif
2239 
2240     /*
2241      * Conjure up an Obj_Entry structure for the dynamic linker.
2242      *
2243      * The "path" member can't be initialized yet because string constants
2244      * cannot yet be accessed. Below we will set it correctly.
2245      */
2246     memset(&objtmp, 0, sizeof(objtmp));
2247     objtmp.path = NULL;
2248     objtmp.rtld = true;
2249     objtmp.mapbase = mapbase;
2250 #ifdef PIC
2251     objtmp.relocbase = mapbase;
2252 #endif
2253 
2254     objtmp.dynamic = rtld_dynamic(&objtmp);
2255     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2256     assert(objtmp.needed == NULL);
2257 #if !defined(__mips__)
2258     /* MIPS has a bogus DT_TEXTREL. */
2259     assert(!objtmp.textrel);
2260 #endif
2261     /*
2262      * Temporarily put the dynamic linker entry into the object list, so
2263      * that symbols can be found.
2264      */
2265     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2266 
2267     ehdr = (Elf_Ehdr *)mapbase;
2268     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2269     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2270 
2271     /* Initialize the object list. */
2272     TAILQ_INIT(&obj_list);
2273 
2274     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2275     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2276 
2277 #ifndef RTLD_INIT_PAGESIZES_EARLY
2278     /* The page size is required by the dynamic memory allocator. */
2279     init_pagesizes(aux_info);
2280 #endif
2281 
2282     if (aux_info[AT_OSRELDATE] != NULL)
2283 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2284 
2285     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2286 
2287     /* Replace the path with a dynamically allocated copy. */
2288     obj_rtld.path = xstrdup(ld_path_rtld);
2289 
2290     parse_rtld_phdr(&obj_rtld);
2291     obj_enforce_relro(&obj_rtld);
2292 
2293     r_debug.r_version = R_DEBUG_VERSION;
2294     r_debug.r_brk = r_debug_state;
2295     r_debug.r_state = RT_CONSISTENT;
2296     r_debug.r_ldbase = obj_rtld.relocbase;
2297 }
2298 
2299 /*
2300  * Retrieve the array of supported page sizes.  The kernel provides the page
2301  * sizes in increasing order.
2302  */
2303 static void
2304 init_pagesizes(Elf_Auxinfo **aux_info)
2305 {
2306 	static size_t psa[MAXPAGESIZES];
2307 	int mib[2];
2308 	size_t len, size;
2309 
2310 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2311 	    NULL) {
2312 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2313 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2314 	} else {
2315 		len = 2;
2316 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2317 			size = sizeof(psa);
2318 		else {
2319 			/* As a fallback, retrieve the base page size. */
2320 			size = sizeof(psa[0]);
2321 			if (aux_info[AT_PAGESZ] != NULL) {
2322 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2323 				goto psa_filled;
2324 			} else {
2325 				mib[0] = CTL_HW;
2326 				mib[1] = HW_PAGESIZE;
2327 				len = 2;
2328 			}
2329 		}
2330 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2331 			_rtld_error("sysctl for hw.pagesize(s) failed");
2332 			rtld_die();
2333 		}
2334 psa_filled:
2335 		pagesizes = psa;
2336 	}
2337 	npagesizes = size / sizeof(pagesizes[0]);
2338 	/* Discard any invalid entries at the end of the array. */
2339 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2340 		npagesizes--;
2341 }
2342 
2343 /*
2344  * Add the init functions from a needed object list (and its recursive
2345  * needed objects) to "list".  This is not used directly; it is a helper
2346  * function for initlist_add_objects().  The write lock must be held
2347  * when this function is called.
2348  */
2349 static void
2350 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2351 {
2352     /* Recursively process the successor needed objects. */
2353     if (needed->next != NULL)
2354 	initlist_add_neededs(needed->next, list);
2355 
2356     /* Process the current needed object. */
2357     if (needed->obj != NULL)
2358 	initlist_add_objects(needed->obj, needed->obj, list);
2359 }
2360 
2361 /*
2362  * Scan all of the DAGs rooted in the range of objects from "obj" to
2363  * "tail" and add their init functions to "list".  This recurses over
2364  * the DAGs and ensure the proper init ordering such that each object's
2365  * needed libraries are initialized before the object itself.  At the
2366  * same time, this function adds the objects to the global finalization
2367  * list "list_fini" in the opposite order.  The write lock must be
2368  * held when this function is called.
2369  */
2370 static void
2371 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2372 {
2373     Obj_Entry *nobj;
2374 
2375     if (obj->init_scanned || obj->init_done)
2376 	return;
2377     obj->init_scanned = true;
2378 
2379     /* Recursively process the successor objects. */
2380     nobj = globallist_next(obj);
2381     if (nobj != NULL && obj != tail)
2382 	initlist_add_objects(nobj, tail, list);
2383 
2384     /* Recursively process the needed objects. */
2385     if (obj->needed != NULL)
2386 	initlist_add_neededs(obj->needed, list);
2387     if (obj->needed_filtees != NULL)
2388 	initlist_add_neededs(obj->needed_filtees, list);
2389     if (obj->needed_aux_filtees != NULL)
2390 	initlist_add_neededs(obj->needed_aux_filtees, list);
2391 
2392     /* Add the object to the init list. */
2393     objlist_push_tail(list, obj);
2394 
2395     /* Add the object to the global fini list in the reverse order. */
2396     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2397       && !obj->on_fini_list) {
2398 	objlist_push_head(&list_fini, obj);
2399 	obj->on_fini_list = true;
2400     }
2401 }
2402 
2403 #ifndef FPTR_TARGET
2404 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2405 #endif
2406 
2407 static void
2408 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2409 {
2410     Needed_Entry *needed, *needed1;
2411 
2412     for (needed = n; needed != NULL; needed = needed->next) {
2413 	if (needed->obj != NULL) {
2414 	    dlclose_locked(needed->obj, lockstate);
2415 	    needed->obj = NULL;
2416 	}
2417     }
2418     for (needed = n; needed != NULL; needed = needed1) {
2419 	needed1 = needed->next;
2420 	free(needed);
2421     }
2422 }
2423 
2424 static void
2425 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2426 {
2427 
2428 	free_needed_filtees(obj->needed_filtees, lockstate);
2429 	obj->needed_filtees = NULL;
2430 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2431 	obj->needed_aux_filtees = NULL;
2432 	obj->filtees_loaded = false;
2433 }
2434 
2435 static void
2436 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2437     RtldLockState *lockstate)
2438 {
2439 
2440     for (; needed != NULL; needed = needed->next) {
2441 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2442 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2443 	  RTLD_LOCAL, lockstate);
2444     }
2445 }
2446 
2447 static void
2448 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2449 {
2450 
2451     lock_restart_for_upgrade(lockstate);
2452     if (!obj->filtees_loaded) {
2453 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2454 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2455 	obj->filtees_loaded = true;
2456     }
2457 }
2458 
2459 static int
2460 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2461 {
2462     Obj_Entry *obj1;
2463 
2464     for (; needed != NULL; needed = needed->next) {
2465 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2466 	  flags & ~RTLD_LO_NOLOAD);
2467 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2468 	    return (-1);
2469     }
2470     return (0);
2471 }
2472 
2473 /*
2474  * Given a shared object, traverse its list of needed objects, and load
2475  * each of them.  Returns 0 on success.  Generates an error message and
2476  * returns -1 on failure.
2477  */
2478 static int
2479 load_needed_objects(Obj_Entry *first, int flags)
2480 {
2481     Obj_Entry *obj;
2482 
2483     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2484 	if (obj->marker)
2485 	    continue;
2486 	if (process_needed(obj, obj->needed, flags) == -1)
2487 	    return (-1);
2488     }
2489     return (0);
2490 }
2491 
2492 static int
2493 load_preload_objects(char *p, bool isfd)
2494 {
2495 	Obj_Entry *obj;
2496 	static const char delim[] = " \t:;";
2497 
2498 	if (p == NULL)
2499 		return (0);
2500 
2501 	p += strspn(p, delim);
2502 	while (*p != '\0') {
2503 		const char *name;
2504 		size_t len = strcspn(p, delim);
2505 		char savech;
2506 		int fd;
2507 
2508 		savech = p[len];
2509 		p[len] = '\0';
2510 		if (isfd) {
2511 			name = NULL;
2512 			fd = parse_integer(p);
2513 			if (fd == -1)
2514 				return (-1);
2515 		} else {
2516 			name = p;
2517 			fd = -1;
2518 		}
2519 
2520 		obj = load_object(name, fd, NULL, 0);
2521 		if (obj == NULL)
2522 			return (-1);	/* XXX - cleanup */
2523 		obj->z_interpose = true;
2524 		p[len] = savech;
2525 		p += len;
2526 		p += strspn(p, delim);
2527 	}
2528 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2529 
2530 	return (0);
2531 }
2532 
2533 static const char *
2534 printable_path(const char *path)
2535 {
2536 
2537 	return (path == NULL ? "<unknown>" : path);
2538 }
2539 
2540 /*
2541  * Load a shared object into memory, if it is not already loaded.  The
2542  * object may be specified by name or by user-supplied file descriptor
2543  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2544  * duplicate is.
2545  *
2546  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2547  * on failure.
2548  */
2549 static Obj_Entry *
2550 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2551 {
2552     Obj_Entry *obj;
2553     int fd;
2554     struct stat sb;
2555     char *path;
2556 
2557     fd = -1;
2558     if (name != NULL) {
2559 	TAILQ_FOREACH(obj, &obj_list, next) {
2560 	    if (obj->marker || obj->doomed)
2561 		continue;
2562 	    if (object_match_name(obj, name))
2563 		return (obj);
2564 	}
2565 
2566 	path = find_library(name, refobj, &fd);
2567 	if (path == NULL)
2568 	    return (NULL);
2569     } else
2570 	path = NULL;
2571 
2572     if (fd >= 0) {
2573 	/*
2574 	 * search_library_pathfds() opens a fresh file descriptor for the
2575 	 * library, so there is no need to dup().
2576 	 */
2577     } else if (fd_u == -1) {
2578 	/*
2579 	 * If we didn't find a match by pathname, or the name is not
2580 	 * supplied, open the file and check again by device and inode.
2581 	 * This avoids false mismatches caused by multiple links or ".."
2582 	 * in pathnames.
2583 	 *
2584 	 * To avoid a race, we open the file and use fstat() rather than
2585 	 * using stat().
2586 	 */
2587 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2588 	    _rtld_error("Cannot open \"%s\"", path);
2589 	    free(path);
2590 	    return (NULL);
2591 	}
2592     } else {
2593 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2594 	if (fd == -1) {
2595 	    _rtld_error("Cannot dup fd");
2596 	    free(path);
2597 	    return (NULL);
2598 	}
2599     }
2600     if (fstat(fd, &sb) == -1) {
2601 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2602 	close(fd);
2603 	free(path);
2604 	return NULL;
2605     }
2606     TAILQ_FOREACH(obj, &obj_list, next) {
2607 	if (obj->marker || obj->doomed)
2608 	    continue;
2609 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2610 	    break;
2611     }
2612     if (obj != NULL && name != NULL) {
2613 	object_add_name(obj, name);
2614 	free(path);
2615 	close(fd);
2616 	return obj;
2617     }
2618     if (flags & RTLD_LO_NOLOAD) {
2619 	free(path);
2620 	close(fd);
2621 	return (NULL);
2622     }
2623 
2624     /* First use of this object, so we must map it in */
2625     obj = do_load_object(fd, name, path, &sb, flags);
2626     if (obj == NULL)
2627 	free(path);
2628     close(fd);
2629 
2630     return obj;
2631 }
2632 
2633 static Obj_Entry *
2634 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2635   int flags)
2636 {
2637     Obj_Entry *obj;
2638     struct statfs fs;
2639 
2640     /*
2641      * but first, make sure that environment variables haven't been
2642      * used to circumvent the noexec flag on a filesystem.
2643      */
2644     if (dangerous_ld_env) {
2645 	if (fstatfs(fd, &fs) != 0) {
2646 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2647 	    return NULL;
2648 	}
2649 	if (fs.f_flags & MNT_NOEXEC) {
2650 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2651 	    return NULL;
2652 	}
2653     }
2654     dbg("loading \"%s\"", printable_path(path));
2655     obj = map_object(fd, printable_path(path), sbp);
2656     if (obj == NULL)
2657         return NULL;
2658 
2659     /*
2660      * If DT_SONAME is present in the object, digest_dynamic2 already
2661      * added it to the object names.
2662      */
2663     if (name != NULL)
2664 	object_add_name(obj, name);
2665     obj->path = path;
2666     if (!digest_dynamic(obj, 0))
2667 	goto errp;
2668     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2669 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2670     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2671 	dbg("refusing to load PIE executable \"%s\"", obj->path);
2672 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2673 	goto errp;
2674     }
2675     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2676       RTLD_LO_DLOPEN) {
2677 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2678 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2679 	goto errp;
2680     }
2681 
2682     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2683     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2684     obj_count++;
2685     obj_loads++;
2686     linkmap_add(obj);	/* for GDB & dlinfo() */
2687     max_stack_flags |= obj->stack_flags;
2688 
2689     dbg("  %p .. %p: %s", obj->mapbase,
2690          obj->mapbase + obj->mapsize - 1, obj->path);
2691     if (obj->textrel)
2692 	dbg("  WARNING: %s has impure text", obj->path);
2693     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2694 	obj->path);
2695 
2696     return (obj);
2697 
2698 errp:
2699     munmap(obj->mapbase, obj->mapsize);
2700     obj_free(obj);
2701     return (NULL);
2702 }
2703 
2704 Obj_Entry *
2705 obj_from_addr(const void *addr)
2706 {
2707     Obj_Entry *obj;
2708 
2709     TAILQ_FOREACH(obj, &obj_list, next) {
2710 	if (obj->marker)
2711 	    continue;
2712 	if (addr < (void *) obj->mapbase)
2713 	    continue;
2714 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2715 	    return obj;
2716     }
2717     return NULL;
2718 }
2719 
2720 static void
2721 preinit_main(void)
2722 {
2723     Elf_Addr *preinit_addr;
2724     int index;
2725 
2726     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2727     if (preinit_addr == NULL)
2728 	return;
2729 
2730     for (index = 0; index < obj_main->preinit_array_num; index++) {
2731 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2732 	    dbg("calling preinit function for %s at %p", obj_main->path,
2733 	      (void *)preinit_addr[index]);
2734 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2735 	      0, 0, obj_main->path);
2736 	    call_init_pointer(obj_main, preinit_addr[index]);
2737 	}
2738     }
2739 }
2740 
2741 /*
2742  * Call the finalization functions for each of the objects in "list"
2743  * belonging to the DAG of "root" and referenced once. If NULL "root"
2744  * is specified, every finalization function will be called regardless
2745  * of the reference count and the list elements won't be freed. All of
2746  * the objects are expected to have non-NULL fini functions.
2747  */
2748 static void
2749 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2750 {
2751     Objlist_Entry *elm;
2752     struct dlerror_save *saved_msg;
2753     Elf_Addr *fini_addr;
2754     int index;
2755 
2756     assert(root == NULL || root->refcount == 1);
2757 
2758     if (root != NULL)
2759 	root->doomed = true;
2760 
2761     /*
2762      * Preserve the current error message since a fini function might
2763      * call into the dynamic linker and overwrite it.
2764      */
2765     saved_msg = errmsg_save();
2766     do {
2767 	STAILQ_FOREACH(elm, list, link) {
2768 	    if (root != NULL && (elm->obj->refcount != 1 ||
2769 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2770 		continue;
2771 	    /* Remove object from fini list to prevent recursive invocation. */
2772 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2773 	    /* Ensure that new references cannot be acquired. */
2774 	    elm->obj->doomed = true;
2775 
2776 	    hold_object(elm->obj);
2777 	    lock_release(rtld_bind_lock, lockstate);
2778 	    /*
2779 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2780 	     * When this happens, DT_FINI_ARRAY is processed first.
2781 	     */
2782 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2783 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2784 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2785 		  index--) {
2786 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2787 			dbg("calling fini function for %s at %p",
2788 			    elm->obj->path, (void *)fini_addr[index]);
2789 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2790 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2791 			call_initfini_pointer(elm->obj, fini_addr[index]);
2792 		    }
2793 		}
2794 	    }
2795 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2796 		dbg("calling fini function for %s at %p", elm->obj->path,
2797 		    (void *)elm->obj->fini);
2798 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2799 		    0, 0, elm->obj->path);
2800 		call_initfini_pointer(elm->obj, elm->obj->fini);
2801 	    }
2802 	    wlock_acquire(rtld_bind_lock, lockstate);
2803 	    unhold_object(elm->obj);
2804 	    /* No need to free anything if process is going down. */
2805 	    if (root != NULL)
2806 	    	free(elm);
2807 	    /*
2808 	     * We must restart the list traversal after every fini call
2809 	     * because a dlclose() call from the fini function or from
2810 	     * another thread might have modified the reference counts.
2811 	     */
2812 	    break;
2813 	}
2814     } while (elm != NULL);
2815     errmsg_restore(saved_msg);
2816 }
2817 
2818 /*
2819  * Call the initialization functions for each of the objects in
2820  * "list".  All of the objects are expected to have non-NULL init
2821  * functions.
2822  */
2823 static void
2824 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2825 {
2826     Objlist_Entry *elm;
2827     Obj_Entry *obj;
2828     struct dlerror_save *saved_msg;
2829     Elf_Addr *init_addr;
2830     void (*reg)(void (*)(void));
2831     int index;
2832 
2833     /*
2834      * Clean init_scanned flag so that objects can be rechecked and
2835      * possibly initialized earlier if any of vectors called below
2836      * cause the change by using dlopen.
2837      */
2838     TAILQ_FOREACH(obj, &obj_list, next) {
2839 	if (obj->marker)
2840 	    continue;
2841 	obj->init_scanned = false;
2842     }
2843 
2844     /*
2845      * Preserve the current error message since an init function might
2846      * call into the dynamic linker and overwrite it.
2847      */
2848     saved_msg = errmsg_save();
2849     STAILQ_FOREACH(elm, list, link) {
2850 	if (elm->obj->init_done) /* Initialized early. */
2851 	    continue;
2852 	/*
2853 	 * Race: other thread might try to use this object before current
2854 	 * one completes the initialization. Not much can be done here
2855 	 * without better locking.
2856 	 */
2857 	elm->obj->init_done = true;
2858 	hold_object(elm->obj);
2859 	reg = NULL;
2860 	if (elm->obj == obj_main && obj_main->crt_no_init) {
2861 		reg = (void (*)(void (*)(void)))get_program_var_addr(
2862 		    "__libc_atexit", lockstate);
2863 	}
2864 	lock_release(rtld_bind_lock, lockstate);
2865 	if (reg != NULL) {
2866 		reg(rtld_exit);
2867 		rtld_exit_ptr = rtld_nop_exit;
2868 	}
2869 
2870         /*
2871          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2872          * When this happens, DT_INIT is processed first.
2873          */
2874 	if (elm->obj->init != (Elf_Addr)NULL) {
2875 	    dbg("calling init function for %s at %p", elm->obj->path,
2876 	        (void *)elm->obj->init);
2877 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2878 	        0, 0, elm->obj->path);
2879 	    call_init_pointer(elm->obj, elm->obj->init);
2880 	}
2881 	init_addr = (Elf_Addr *)elm->obj->init_array;
2882 	if (init_addr != NULL) {
2883 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2884 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2885 		    dbg("calling init function for %s at %p", elm->obj->path,
2886 			(void *)init_addr[index]);
2887 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2888 			(void *)init_addr[index], 0, 0, elm->obj->path);
2889 		    call_init_pointer(elm->obj, init_addr[index]);
2890 		}
2891 	    }
2892 	}
2893 	wlock_acquire(rtld_bind_lock, lockstate);
2894 	unhold_object(elm->obj);
2895     }
2896     errmsg_restore(saved_msg);
2897 }
2898 
2899 static void
2900 objlist_clear(Objlist *list)
2901 {
2902     Objlist_Entry *elm;
2903 
2904     while (!STAILQ_EMPTY(list)) {
2905 	elm = STAILQ_FIRST(list);
2906 	STAILQ_REMOVE_HEAD(list, link);
2907 	free(elm);
2908     }
2909 }
2910 
2911 static Objlist_Entry *
2912 objlist_find(Objlist *list, const Obj_Entry *obj)
2913 {
2914     Objlist_Entry *elm;
2915 
2916     STAILQ_FOREACH(elm, list, link)
2917 	if (elm->obj == obj)
2918 	    return elm;
2919     return NULL;
2920 }
2921 
2922 static void
2923 objlist_init(Objlist *list)
2924 {
2925     STAILQ_INIT(list);
2926 }
2927 
2928 static void
2929 objlist_push_head(Objlist *list, Obj_Entry *obj)
2930 {
2931     Objlist_Entry *elm;
2932 
2933     elm = NEW(Objlist_Entry);
2934     elm->obj = obj;
2935     STAILQ_INSERT_HEAD(list, elm, link);
2936 }
2937 
2938 static void
2939 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2940 {
2941     Objlist_Entry *elm;
2942 
2943     elm = NEW(Objlist_Entry);
2944     elm->obj = obj;
2945     STAILQ_INSERT_TAIL(list, elm, link);
2946 }
2947 
2948 static void
2949 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2950 {
2951 	Objlist_Entry *elm, *listelm;
2952 
2953 	STAILQ_FOREACH(listelm, list, link) {
2954 		if (listelm->obj == listobj)
2955 			break;
2956 	}
2957 	elm = NEW(Objlist_Entry);
2958 	elm->obj = obj;
2959 	if (listelm != NULL)
2960 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2961 	else
2962 		STAILQ_INSERT_TAIL(list, elm, link);
2963 }
2964 
2965 static void
2966 objlist_remove(Objlist *list, Obj_Entry *obj)
2967 {
2968     Objlist_Entry *elm;
2969 
2970     if ((elm = objlist_find(list, obj)) != NULL) {
2971 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2972 	free(elm);
2973     }
2974 }
2975 
2976 /*
2977  * Relocate dag rooted in the specified object.
2978  * Returns 0 on success, or -1 on failure.
2979  */
2980 
2981 static int
2982 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2983     int flags, RtldLockState *lockstate)
2984 {
2985 	Objlist_Entry *elm;
2986 	int error;
2987 
2988 	error = 0;
2989 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2990 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2991 		    lockstate);
2992 		if (error == -1)
2993 			break;
2994 	}
2995 	return (error);
2996 }
2997 
2998 /*
2999  * Prepare for, or clean after, relocating an object marked with
3000  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3001  * segments are remapped read-write.  After relocations are done, the
3002  * segment's permissions are returned back to the modes specified in
3003  * the phdrs.  If any relocation happened, or always for wired
3004  * program, COW is triggered.
3005  */
3006 static int
3007 reloc_textrel_prot(Obj_Entry *obj, bool before)
3008 {
3009 	const Elf_Phdr *ph;
3010 	void *base;
3011 	size_t l, sz;
3012 	int prot;
3013 
3014 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
3015 	    l--, ph++) {
3016 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3017 			continue;
3018 		base = obj->relocbase + trunc_page(ph->p_vaddr);
3019 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
3020 		    trunc_page(ph->p_vaddr);
3021 		prot = before ? (PROT_READ | PROT_WRITE) :
3022 		    convert_prot(ph->p_flags);
3023 		if (mprotect(base, sz, prot) == -1) {
3024 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3025 			    obj->path, before ? "en" : "dis",
3026 			    rtld_strerror(errno));
3027 			return (-1);
3028 		}
3029 	}
3030 	return (0);
3031 }
3032 
3033 /*
3034  * Relocate single object.
3035  * Returns 0 on success, or -1 on failure.
3036  */
3037 static int
3038 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3039     int flags, RtldLockState *lockstate)
3040 {
3041 
3042 	if (obj->relocated)
3043 		return (0);
3044 	obj->relocated = true;
3045 	if (obj != rtldobj)
3046 		dbg("relocating \"%s\"", obj->path);
3047 
3048 	if (obj->symtab == NULL || obj->strtab == NULL ||
3049 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3050 		dbg("object %s has no run-time symbol table", obj->path);
3051 
3052 	/* There are relocations to the write-protected text segment. */
3053 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3054 		return (-1);
3055 
3056 	/* Process the non-PLT non-IFUNC relocations. */
3057 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3058 		return (-1);
3059 
3060 	/* Re-protected the text segment. */
3061 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3062 		return (-1);
3063 
3064 	/* Set the special PLT or GOT entries. */
3065 	init_pltgot(obj);
3066 
3067 	/* Process the PLT relocations. */
3068 	if (reloc_plt(obj, flags, lockstate) == -1)
3069 		return (-1);
3070 	/* Relocate the jump slots if we are doing immediate binding. */
3071 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3072 	    lockstate) == -1)
3073 		return (-1);
3074 
3075 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3076 		return (-1);
3077 
3078 	/*
3079 	 * Set up the magic number and version in the Obj_Entry.  These
3080 	 * were checked in the crt1.o from the original ElfKit, so we
3081 	 * set them for backward compatibility.
3082 	 */
3083 	obj->magic = RTLD_MAGIC;
3084 	obj->version = RTLD_VERSION;
3085 
3086 	return (0);
3087 }
3088 
3089 /*
3090  * Relocate newly-loaded shared objects.  The argument is a pointer to
3091  * the Obj_Entry for the first such object.  All objects from the first
3092  * to the end of the list of objects are relocated.  Returns 0 on success,
3093  * or -1 on failure.
3094  */
3095 static int
3096 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3097     int flags, RtldLockState *lockstate)
3098 {
3099 	Obj_Entry *obj;
3100 	int error;
3101 
3102 	for (error = 0, obj = first;  obj != NULL;
3103 	    obj = TAILQ_NEXT(obj, next)) {
3104 		if (obj->marker)
3105 			continue;
3106 		error = relocate_object(obj, bind_now, rtldobj, flags,
3107 		    lockstate);
3108 		if (error == -1)
3109 			break;
3110 	}
3111 	return (error);
3112 }
3113 
3114 /*
3115  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3116  * referencing STT_GNU_IFUNC symbols is postponed till the other
3117  * relocations are done.  The indirect functions specified as
3118  * ifunc are allowed to call other symbols, so we need to have
3119  * objects relocated before asking for resolution from indirects.
3120  *
3121  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3122  * instead of the usual lazy handling of PLT slots.  It is
3123  * consistent with how GNU does it.
3124  */
3125 static int
3126 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3127     RtldLockState *lockstate)
3128 {
3129 
3130 	if (obj->ifuncs_resolved)
3131 		return (0);
3132 	obj->ifuncs_resolved = true;
3133 	if (!obj->irelative && !obj->irelative_nonplt &&
3134 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3135 	    !obj->non_plt_gnu_ifunc)
3136 		return (0);
3137 	if (obj_disable_relro(obj) == -1 ||
3138 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3139 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3140 	    lockstate) == -1) ||
3141 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3142 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3143 	    (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3144 	    flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3145 	    obj_enforce_relro(obj) == -1)
3146 		return (-1);
3147 	return (0);
3148 }
3149 
3150 static int
3151 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3152     RtldLockState *lockstate)
3153 {
3154 	Objlist_Entry *elm;
3155 	Obj_Entry *obj;
3156 
3157 	STAILQ_FOREACH(elm, list, link) {
3158 		obj = elm->obj;
3159 		if (obj->marker)
3160 			continue;
3161 		if (resolve_object_ifunc(obj, bind_now, flags,
3162 		    lockstate) == -1)
3163 			return (-1);
3164 	}
3165 	return (0);
3166 }
3167 
3168 /*
3169  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3170  * before the process exits.
3171  */
3172 static void
3173 rtld_exit(void)
3174 {
3175     RtldLockState lockstate;
3176 
3177     wlock_acquire(rtld_bind_lock, &lockstate);
3178     dbg("rtld_exit()");
3179     objlist_call_fini(&list_fini, NULL, &lockstate);
3180     /* No need to remove the items from the list, since we are exiting. */
3181     if (!libmap_disable)
3182         lm_fini();
3183     lock_release(rtld_bind_lock, &lockstate);
3184 }
3185 
3186 static void
3187 rtld_nop_exit(void)
3188 {
3189 }
3190 
3191 /*
3192  * Iterate over a search path, translate each element, and invoke the
3193  * callback on the result.
3194  */
3195 static void *
3196 path_enumerate(const char *path, path_enum_proc callback,
3197     const char *refobj_path, void *arg)
3198 {
3199     const char *trans;
3200     if (path == NULL)
3201 	return (NULL);
3202 
3203     path += strspn(path, ":;");
3204     while (*path != '\0') {
3205 	size_t len;
3206 	char  *res;
3207 
3208 	len = strcspn(path, ":;");
3209 	trans = lm_findn(refobj_path, path, len);
3210 	if (trans)
3211 	    res = callback(trans, strlen(trans), arg);
3212 	else
3213 	    res = callback(path, len, arg);
3214 
3215 	if (res != NULL)
3216 	    return (res);
3217 
3218 	path += len;
3219 	path += strspn(path, ":;");
3220     }
3221 
3222     return (NULL);
3223 }
3224 
3225 struct try_library_args {
3226     const char	*name;
3227     size_t	 namelen;
3228     char	*buffer;
3229     size_t	 buflen;
3230     int		 fd;
3231 };
3232 
3233 static void *
3234 try_library_path(const char *dir, size_t dirlen, void *param)
3235 {
3236     struct try_library_args *arg;
3237     int fd;
3238 
3239     arg = param;
3240     if (*dir == '/' || trust) {
3241 	char *pathname;
3242 
3243 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3244 		return (NULL);
3245 
3246 	pathname = arg->buffer;
3247 	strncpy(pathname, dir, dirlen);
3248 	pathname[dirlen] = '/';
3249 	strcpy(pathname + dirlen + 1, arg->name);
3250 
3251 	dbg("  Trying \"%s\"", pathname);
3252 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3253 	if (fd >= 0) {
3254 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3255 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3256 	    strcpy(pathname, arg->buffer);
3257 	    arg->fd = fd;
3258 	    return (pathname);
3259 	} else {
3260 	    dbg("  Failed to open \"%s\": %s",
3261 		pathname, rtld_strerror(errno));
3262 	}
3263     }
3264     return (NULL);
3265 }
3266 
3267 static char *
3268 search_library_path(const char *name, const char *path,
3269     const char *refobj_path, int *fdp)
3270 {
3271     char *p;
3272     struct try_library_args arg;
3273 
3274     if (path == NULL)
3275 	return NULL;
3276 
3277     arg.name = name;
3278     arg.namelen = strlen(name);
3279     arg.buffer = xmalloc(PATH_MAX);
3280     arg.buflen = PATH_MAX;
3281     arg.fd = -1;
3282 
3283     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3284     *fdp = arg.fd;
3285 
3286     free(arg.buffer);
3287 
3288     return (p);
3289 }
3290 
3291 
3292 /*
3293  * Finds the library with the given name using the directory descriptors
3294  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3295  *
3296  * Returns a freshly-opened close-on-exec file descriptor for the library,
3297  * or -1 if the library cannot be found.
3298  */
3299 static char *
3300 search_library_pathfds(const char *name, const char *path, int *fdp)
3301 {
3302 	char *envcopy, *fdstr, *found, *last_token;
3303 	size_t len;
3304 	int dirfd, fd;
3305 
3306 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3307 
3308 	/* Don't load from user-specified libdirs into setuid binaries. */
3309 	if (!trust)
3310 		return (NULL);
3311 
3312 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3313 	if (path == NULL)
3314 		return (NULL);
3315 
3316 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3317 	if (name[0] == '/') {
3318 		dbg("Absolute path (%s) passed to %s", name, __func__);
3319 		return (NULL);
3320 	}
3321 
3322 	/*
3323 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3324 	 * copy of the path, as strtok_r rewrites separator tokens
3325 	 * with '\0'.
3326 	 */
3327 	found = NULL;
3328 	envcopy = xstrdup(path);
3329 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3330 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3331 		dirfd = parse_integer(fdstr);
3332 		if (dirfd < 0) {
3333 			_rtld_error("failed to parse directory FD: '%s'",
3334 				fdstr);
3335 			break;
3336 		}
3337 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3338 		if (fd >= 0) {
3339 			*fdp = fd;
3340 			len = strlen(fdstr) + strlen(name) + 3;
3341 			found = xmalloc(len);
3342 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3343 				_rtld_error("error generating '%d/%s'",
3344 				    dirfd, name);
3345 				rtld_die();
3346 			}
3347 			dbg("open('%s') => %d", found, fd);
3348 			break;
3349 		}
3350 	}
3351 	free(envcopy);
3352 
3353 	return (found);
3354 }
3355 
3356 
3357 int
3358 dlclose(void *handle)
3359 {
3360 	RtldLockState lockstate;
3361 	int error;
3362 
3363 	wlock_acquire(rtld_bind_lock, &lockstate);
3364 	error = dlclose_locked(handle, &lockstate);
3365 	lock_release(rtld_bind_lock, &lockstate);
3366 	return (error);
3367 }
3368 
3369 static int
3370 dlclose_locked(void *handle, RtldLockState *lockstate)
3371 {
3372     Obj_Entry *root;
3373 
3374     root = dlcheck(handle);
3375     if (root == NULL)
3376 	return -1;
3377     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3378 	root->path);
3379 
3380     /* Unreference the object and its dependencies. */
3381     root->dl_refcount--;
3382 
3383     if (root->refcount == 1) {
3384 	/*
3385 	 * The object will be no longer referenced, so we must unload it.
3386 	 * First, call the fini functions.
3387 	 */
3388 	objlist_call_fini(&list_fini, root, lockstate);
3389 
3390 	unref_dag(root);
3391 
3392 	/* Finish cleaning up the newly-unreferenced objects. */
3393 	GDB_STATE(RT_DELETE,&root->linkmap);
3394 	unload_object(root, lockstate);
3395 	GDB_STATE(RT_CONSISTENT,NULL);
3396     } else
3397 	unref_dag(root);
3398 
3399     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3400     return 0;
3401 }
3402 
3403 char *
3404 dlerror(void)
3405 {
3406 	if (*(lockinfo.dlerror_seen()) != 0)
3407 		return (NULL);
3408 	*lockinfo.dlerror_seen() = 1;
3409 	return (lockinfo.dlerror_loc());
3410 }
3411 
3412 /*
3413  * This function is deprecated and has no effect.
3414  */
3415 void
3416 dllockinit(void *context,
3417     void *(*_lock_create)(void *context) __unused,
3418     void (*_rlock_acquire)(void *lock) __unused,
3419     void (*_wlock_acquire)(void *lock)  __unused,
3420     void (*_lock_release)(void *lock) __unused,
3421     void (*_lock_destroy)(void *lock) __unused,
3422     void (*context_destroy)(void *context))
3423 {
3424     static void *cur_context;
3425     static void (*cur_context_destroy)(void *);
3426 
3427     /* Just destroy the context from the previous call, if necessary. */
3428     if (cur_context_destroy != NULL)
3429 	cur_context_destroy(cur_context);
3430     cur_context = context;
3431     cur_context_destroy = context_destroy;
3432 }
3433 
3434 void *
3435 dlopen(const char *name, int mode)
3436 {
3437 
3438 	return (rtld_dlopen(name, -1, mode));
3439 }
3440 
3441 void *
3442 fdlopen(int fd, int mode)
3443 {
3444 
3445 	return (rtld_dlopen(NULL, fd, mode));
3446 }
3447 
3448 static void *
3449 rtld_dlopen(const char *name, int fd, int mode)
3450 {
3451     RtldLockState lockstate;
3452     int lo_flags;
3453 
3454     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3455     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3456     if (ld_tracing != NULL) {
3457 	rlock_acquire(rtld_bind_lock, &lockstate);
3458 	if (sigsetjmp(lockstate.env, 0) != 0)
3459 	    lock_upgrade(rtld_bind_lock, &lockstate);
3460 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3461 	lock_release(rtld_bind_lock, &lockstate);
3462     }
3463     lo_flags = RTLD_LO_DLOPEN;
3464     if (mode & RTLD_NODELETE)
3465 	    lo_flags |= RTLD_LO_NODELETE;
3466     if (mode & RTLD_NOLOAD)
3467 	    lo_flags |= RTLD_LO_NOLOAD;
3468     if (mode & RTLD_DEEPBIND)
3469 	    lo_flags |= RTLD_LO_DEEPBIND;
3470     if (ld_tracing != NULL)
3471 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3472 
3473     return (dlopen_object(name, fd, obj_main, lo_flags,
3474       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3475 }
3476 
3477 static void
3478 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3479 {
3480 
3481 	obj->dl_refcount--;
3482 	unref_dag(obj);
3483 	if (obj->refcount == 0)
3484 		unload_object(obj, lockstate);
3485 }
3486 
3487 static Obj_Entry *
3488 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3489     int mode, RtldLockState *lockstate)
3490 {
3491     Obj_Entry *old_obj_tail;
3492     Obj_Entry *obj;
3493     Objlist initlist;
3494     RtldLockState mlockstate;
3495     int result;
3496 
3497     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3498       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3499       refobj->path, lo_flags, mode);
3500     objlist_init(&initlist);
3501 
3502     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3503 	wlock_acquire(rtld_bind_lock, &mlockstate);
3504 	lockstate = &mlockstate;
3505     }
3506     GDB_STATE(RT_ADD,NULL);
3507 
3508     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3509     obj = NULL;
3510     if (name == NULL && fd == -1) {
3511 	obj = obj_main;
3512 	obj->refcount++;
3513     } else {
3514 	obj = load_object(name, fd, refobj, lo_flags);
3515     }
3516 
3517     if (obj) {
3518 	obj->dl_refcount++;
3519 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3520 	    objlist_push_tail(&list_global, obj);
3521 	if (globallist_next(old_obj_tail) != NULL) {
3522 	    /* We loaded something new. */
3523 	    assert(globallist_next(old_obj_tail) == obj);
3524 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3525 		obj->symbolic = true;
3526 	    result = 0;
3527 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3528 	      obj->static_tls && !allocate_tls_offset(obj)) {
3529 		_rtld_error("%s: No space available "
3530 		  "for static Thread Local Storage", obj->path);
3531 		result = -1;
3532 	    }
3533 	    if (result != -1)
3534 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3535 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3536 	    init_dag(obj);
3537 	    ref_dag(obj);
3538 	    if (result != -1)
3539 		result = rtld_verify_versions(&obj->dagmembers);
3540 	    if (result != -1 && ld_tracing)
3541 		goto trace;
3542 	    if (result == -1 || relocate_object_dag(obj,
3543 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3544 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3545 	      lockstate) == -1) {
3546 		dlopen_cleanup(obj, lockstate);
3547 		obj = NULL;
3548 	    } else if (lo_flags & RTLD_LO_EARLY) {
3549 		/*
3550 		 * Do not call the init functions for early loaded
3551 		 * filtees.  The image is still not initialized enough
3552 		 * for them to work.
3553 		 *
3554 		 * Our object is found by the global object list and
3555 		 * will be ordered among all init calls done right
3556 		 * before transferring control to main.
3557 		 */
3558 	    } else {
3559 		/* Make list of init functions to call. */
3560 		initlist_add_objects(obj, obj, &initlist);
3561 	    }
3562 	    /*
3563 	     * Process all no_delete or global objects here, given
3564 	     * them own DAGs to prevent their dependencies from being
3565 	     * unloaded.  This has to be done after we have loaded all
3566 	     * of the dependencies, so that we do not miss any.
3567 	     */
3568 	    if (obj != NULL)
3569 		process_z(obj);
3570 	} else {
3571 	    /*
3572 	     * Bump the reference counts for objects on this DAG.  If
3573 	     * this is the first dlopen() call for the object that was
3574 	     * already loaded as a dependency, initialize the dag
3575 	     * starting at it.
3576 	     */
3577 	    init_dag(obj);
3578 	    ref_dag(obj);
3579 
3580 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3581 		goto trace;
3582 	}
3583 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3584 	  obj->z_nodelete) && !obj->ref_nodel) {
3585 	    dbg("obj %s nodelete", obj->path);
3586 	    ref_dag(obj);
3587 	    obj->z_nodelete = obj->ref_nodel = true;
3588 	}
3589     }
3590 
3591     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3592 	name);
3593     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3594 
3595     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3596 	map_stacks_exec(lockstate);
3597 	if (obj != NULL)
3598 	    distribute_static_tls(&initlist, lockstate);
3599     }
3600 
3601     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3602       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3603       lockstate) == -1) {
3604 	objlist_clear(&initlist);
3605 	dlopen_cleanup(obj, lockstate);
3606 	if (lockstate == &mlockstate)
3607 	    lock_release(rtld_bind_lock, lockstate);
3608 	return (NULL);
3609     }
3610 
3611     if (!(lo_flags & RTLD_LO_EARLY)) {
3612 	/* Call the init functions. */
3613 	objlist_call_init(&initlist, lockstate);
3614     }
3615     objlist_clear(&initlist);
3616     if (lockstate == &mlockstate)
3617 	lock_release(rtld_bind_lock, lockstate);
3618     return obj;
3619 trace:
3620     trace_loaded_objects(obj);
3621     if (lockstate == &mlockstate)
3622 	lock_release(rtld_bind_lock, lockstate);
3623     exit(0);
3624 }
3625 
3626 static void *
3627 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3628     int flags)
3629 {
3630     DoneList donelist;
3631     const Obj_Entry *obj, *defobj;
3632     const Elf_Sym *def;
3633     SymLook req;
3634     RtldLockState lockstate;
3635     tls_index ti;
3636     void *sym;
3637     int res;
3638 
3639     def = NULL;
3640     defobj = NULL;
3641     symlook_init(&req, name);
3642     req.ventry = ve;
3643     req.flags = flags | SYMLOOK_IN_PLT;
3644     req.lockstate = &lockstate;
3645 
3646     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3647     rlock_acquire(rtld_bind_lock, &lockstate);
3648     if (sigsetjmp(lockstate.env, 0) != 0)
3649 	    lock_upgrade(rtld_bind_lock, &lockstate);
3650     if (handle == NULL || handle == RTLD_NEXT ||
3651 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3652 
3653 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3654 	    _rtld_error("Cannot determine caller's shared object");
3655 	    lock_release(rtld_bind_lock, &lockstate);
3656 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3657 	    return NULL;
3658 	}
3659 	if (handle == NULL) {	/* Just the caller's shared object. */
3660 	    res = symlook_obj(&req, obj);
3661 	    if (res == 0) {
3662 		def = req.sym_out;
3663 		defobj = req.defobj_out;
3664 	    }
3665 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3666 		   handle == RTLD_SELF) { /* ... caller included */
3667 	    if (handle == RTLD_NEXT)
3668 		obj = globallist_next(obj);
3669 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3670 		if (obj->marker)
3671 		    continue;
3672 		res = symlook_obj(&req, obj);
3673 		if (res == 0) {
3674 		    if (def == NULL ||
3675 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3676 			def = req.sym_out;
3677 			defobj = req.defobj_out;
3678 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3679 			    break;
3680 		    }
3681 		}
3682 	    }
3683 	    /*
3684 	     * Search the dynamic linker itself, and possibly resolve the
3685 	     * symbol from there.  This is how the application links to
3686 	     * dynamic linker services such as dlopen.
3687 	     */
3688 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3689 		res = symlook_obj(&req, &obj_rtld);
3690 		if (res == 0) {
3691 		    def = req.sym_out;
3692 		    defobj = req.defobj_out;
3693 		}
3694 	    }
3695 	} else {
3696 	    assert(handle == RTLD_DEFAULT);
3697 	    res = symlook_default(&req, obj);
3698 	    if (res == 0) {
3699 		defobj = req.defobj_out;
3700 		def = req.sym_out;
3701 	    }
3702 	}
3703     } else {
3704 	if ((obj = dlcheck(handle)) == NULL) {
3705 	    lock_release(rtld_bind_lock, &lockstate);
3706 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3707 	    return NULL;
3708 	}
3709 
3710 	donelist_init(&donelist);
3711 	if (obj->mainprog) {
3712             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3713 	    res = symlook_global(&req, &donelist);
3714 	    if (res == 0) {
3715 		def = req.sym_out;
3716 		defobj = req.defobj_out;
3717 	    }
3718 	    /*
3719 	     * Search the dynamic linker itself, and possibly resolve the
3720 	     * symbol from there.  This is how the application links to
3721 	     * dynamic linker services such as dlopen.
3722 	     */
3723 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3724 		res = symlook_obj(&req, &obj_rtld);
3725 		if (res == 0) {
3726 		    def = req.sym_out;
3727 		    defobj = req.defobj_out;
3728 		}
3729 	    }
3730 	}
3731 	else {
3732 	    /* Search the whole DAG rooted at the given object. */
3733 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3734 	    if (res == 0) {
3735 		def = req.sym_out;
3736 		defobj = req.defobj_out;
3737 	    }
3738 	}
3739     }
3740 
3741     if (def != NULL) {
3742 	lock_release(rtld_bind_lock, &lockstate);
3743 
3744 	/*
3745 	 * The value required by the caller is derived from the value
3746 	 * of the symbol. this is simply the relocated value of the
3747 	 * symbol.
3748 	 */
3749 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3750 	    sym = make_function_pointer(def, defobj);
3751 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3752 	    sym = rtld_resolve_ifunc(defobj, def);
3753 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3754 	    ti.ti_module = defobj->tlsindex;
3755 	    ti.ti_offset = def->st_value;
3756 	    sym = __tls_get_addr(&ti);
3757 	} else
3758 	    sym = defobj->relocbase + def->st_value;
3759 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3760 	return (sym);
3761     }
3762 
3763     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3764       ve != NULL ? ve->name : "");
3765     lock_release(rtld_bind_lock, &lockstate);
3766     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3767     return NULL;
3768 }
3769 
3770 void *
3771 dlsym(void *handle, const char *name)
3772 {
3773 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3774 	    SYMLOOK_DLSYM);
3775 }
3776 
3777 dlfunc_t
3778 dlfunc(void *handle, const char *name)
3779 {
3780 	union {
3781 		void *d;
3782 		dlfunc_t f;
3783 	} rv;
3784 
3785 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3786 	    SYMLOOK_DLSYM);
3787 	return (rv.f);
3788 }
3789 
3790 void *
3791 dlvsym(void *handle, const char *name, const char *version)
3792 {
3793 	Ver_Entry ventry;
3794 
3795 	ventry.name = version;
3796 	ventry.file = NULL;
3797 	ventry.hash = elf_hash(version);
3798 	ventry.flags= 0;
3799 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3800 	    SYMLOOK_DLSYM);
3801 }
3802 
3803 int
3804 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3805 {
3806     const Obj_Entry *obj;
3807     RtldLockState lockstate;
3808 
3809     rlock_acquire(rtld_bind_lock, &lockstate);
3810     obj = obj_from_addr(addr);
3811     if (obj == NULL) {
3812         _rtld_error("No shared object contains address");
3813 	lock_release(rtld_bind_lock, &lockstate);
3814         return (0);
3815     }
3816     rtld_fill_dl_phdr_info(obj, phdr_info);
3817     lock_release(rtld_bind_lock, &lockstate);
3818     return (1);
3819 }
3820 
3821 int
3822 dladdr(const void *addr, Dl_info *info)
3823 {
3824     const Obj_Entry *obj;
3825     const Elf_Sym *def;
3826     void *symbol_addr;
3827     unsigned long symoffset;
3828     RtldLockState lockstate;
3829 
3830     rlock_acquire(rtld_bind_lock, &lockstate);
3831     obj = obj_from_addr(addr);
3832     if (obj == NULL) {
3833         _rtld_error("No shared object contains address");
3834 	lock_release(rtld_bind_lock, &lockstate);
3835         return 0;
3836     }
3837     info->dli_fname = obj->path;
3838     info->dli_fbase = obj->mapbase;
3839     info->dli_saddr = (void *)0;
3840     info->dli_sname = NULL;
3841 
3842     /*
3843      * Walk the symbol list looking for the symbol whose address is
3844      * closest to the address sent in.
3845      */
3846     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3847         def = obj->symtab + symoffset;
3848 
3849         /*
3850          * For skip the symbol if st_shndx is either SHN_UNDEF or
3851          * SHN_COMMON.
3852          */
3853         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3854             continue;
3855 
3856         /*
3857          * If the symbol is greater than the specified address, or if it
3858          * is further away from addr than the current nearest symbol,
3859          * then reject it.
3860          */
3861         symbol_addr = obj->relocbase + def->st_value;
3862         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3863             continue;
3864 
3865         /* Update our idea of the nearest symbol. */
3866         info->dli_sname = obj->strtab + def->st_name;
3867         info->dli_saddr = symbol_addr;
3868 
3869         /* Exact match? */
3870         if (info->dli_saddr == addr)
3871             break;
3872     }
3873     lock_release(rtld_bind_lock, &lockstate);
3874     return 1;
3875 }
3876 
3877 int
3878 dlinfo(void *handle, int request, void *p)
3879 {
3880     const Obj_Entry *obj;
3881     RtldLockState lockstate;
3882     int error;
3883 
3884     rlock_acquire(rtld_bind_lock, &lockstate);
3885 
3886     if (handle == NULL || handle == RTLD_SELF) {
3887 	void *retaddr;
3888 
3889 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3890 	if ((obj = obj_from_addr(retaddr)) == NULL)
3891 	    _rtld_error("Cannot determine caller's shared object");
3892     } else
3893 	obj = dlcheck(handle);
3894 
3895     if (obj == NULL) {
3896 	lock_release(rtld_bind_lock, &lockstate);
3897 	return (-1);
3898     }
3899 
3900     error = 0;
3901     switch (request) {
3902     case RTLD_DI_LINKMAP:
3903 	*((struct link_map const **)p) = &obj->linkmap;
3904 	break;
3905     case RTLD_DI_ORIGIN:
3906 	error = rtld_dirname(obj->path, p);
3907 	break;
3908 
3909     case RTLD_DI_SERINFOSIZE:
3910     case RTLD_DI_SERINFO:
3911 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3912 	break;
3913 
3914     default:
3915 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3916 	error = -1;
3917     }
3918 
3919     lock_release(rtld_bind_lock, &lockstate);
3920 
3921     return (error);
3922 }
3923 
3924 static void
3925 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3926 {
3927 	Elf_Addr **dtvp;
3928 
3929 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3930 	phdr_info->dlpi_name = obj->path;
3931 	phdr_info->dlpi_phdr = obj->phdr;
3932 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3933 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3934 	dtvp = _get_tp();
3935 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
3936 	    obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
3937 	phdr_info->dlpi_adds = obj_loads;
3938 	phdr_info->dlpi_subs = obj_loads - obj_count;
3939 }
3940 
3941 int
3942 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3943 {
3944 	struct dl_phdr_info phdr_info;
3945 	Obj_Entry *obj, marker;
3946 	RtldLockState bind_lockstate, phdr_lockstate;
3947 	int error;
3948 
3949 	init_marker(&marker);
3950 	error = 0;
3951 
3952 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3953 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3954 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3955 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3956 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3957 		hold_object(obj);
3958 		lock_release(rtld_bind_lock, &bind_lockstate);
3959 
3960 		error = callback(&phdr_info, sizeof phdr_info, param);
3961 
3962 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3963 		unhold_object(obj);
3964 		obj = globallist_next(&marker);
3965 		TAILQ_REMOVE(&obj_list, &marker, next);
3966 		if (error != 0) {
3967 			lock_release(rtld_bind_lock, &bind_lockstate);
3968 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3969 			return (error);
3970 		}
3971 	}
3972 
3973 	if (error == 0) {
3974 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3975 		lock_release(rtld_bind_lock, &bind_lockstate);
3976 		error = callback(&phdr_info, sizeof(phdr_info), param);
3977 	}
3978 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3979 	return (error);
3980 }
3981 
3982 static void *
3983 fill_search_info(const char *dir, size_t dirlen, void *param)
3984 {
3985     struct fill_search_info_args *arg;
3986 
3987     arg = param;
3988 
3989     if (arg->request == RTLD_DI_SERINFOSIZE) {
3990 	arg->serinfo->dls_cnt ++;
3991 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3992     } else {
3993 	struct dl_serpath *s_entry;
3994 
3995 	s_entry = arg->serpath;
3996 	s_entry->dls_name  = arg->strspace;
3997 	s_entry->dls_flags = arg->flags;
3998 
3999 	strncpy(arg->strspace, dir, dirlen);
4000 	arg->strspace[dirlen] = '\0';
4001 
4002 	arg->strspace += dirlen + 1;
4003 	arg->serpath++;
4004     }
4005 
4006     return (NULL);
4007 }
4008 
4009 static int
4010 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4011 {
4012     struct dl_serinfo _info;
4013     struct fill_search_info_args args;
4014 
4015     args.request = RTLD_DI_SERINFOSIZE;
4016     args.serinfo = &_info;
4017 
4018     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4019     _info.dls_cnt  = 0;
4020 
4021     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4022     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4023     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4024     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
4025     if (!obj->z_nodeflib)
4026       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
4027 
4028 
4029     if (request == RTLD_DI_SERINFOSIZE) {
4030 	info->dls_size = _info.dls_size;
4031 	info->dls_cnt = _info.dls_cnt;
4032 	return (0);
4033     }
4034 
4035     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
4036 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
4037 	return (-1);
4038     }
4039 
4040     args.request  = RTLD_DI_SERINFO;
4041     args.serinfo  = info;
4042     args.serpath  = &info->dls_serpath[0];
4043     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4044 
4045     args.flags = LA_SER_RUNPATH;
4046     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4047 	return (-1);
4048 
4049     args.flags = LA_SER_LIBPATH;
4050     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4051 	return (-1);
4052 
4053     args.flags = LA_SER_RUNPATH;
4054     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4055 	return (-1);
4056 
4057     args.flags = LA_SER_CONFIG;
4058     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4059       != NULL)
4060 	return (-1);
4061 
4062     args.flags = LA_SER_DEFAULT;
4063     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4064       fill_search_info, NULL, &args) != NULL)
4065 	return (-1);
4066     return (0);
4067 }
4068 
4069 static int
4070 rtld_dirname(const char *path, char *bname)
4071 {
4072     const char *endp;
4073 
4074     /* Empty or NULL string gets treated as "." */
4075     if (path == NULL || *path == '\0') {
4076 	bname[0] = '.';
4077 	bname[1] = '\0';
4078 	return (0);
4079     }
4080 
4081     /* Strip trailing slashes */
4082     endp = path + strlen(path) - 1;
4083     while (endp > path && *endp == '/')
4084 	endp--;
4085 
4086     /* Find the start of the dir */
4087     while (endp > path && *endp != '/')
4088 	endp--;
4089 
4090     /* Either the dir is "/" or there are no slashes */
4091     if (endp == path) {
4092 	bname[0] = *endp == '/' ? '/' : '.';
4093 	bname[1] = '\0';
4094 	return (0);
4095     } else {
4096 	do {
4097 	    endp--;
4098 	} while (endp > path && *endp == '/');
4099     }
4100 
4101     if (endp - path + 2 > PATH_MAX)
4102     {
4103 	_rtld_error("Filename is too long: %s", path);
4104 	return(-1);
4105     }
4106 
4107     strncpy(bname, path, endp - path + 1);
4108     bname[endp - path + 1] = '\0';
4109     return (0);
4110 }
4111 
4112 static int
4113 rtld_dirname_abs(const char *path, char *base)
4114 {
4115 	char *last;
4116 
4117 	if (realpath(path, base) == NULL) {
4118 		_rtld_error("realpath \"%s\" failed (%s)", path,
4119 		    rtld_strerror(errno));
4120 		return (-1);
4121 	}
4122 	dbg("%s -> %s", path, base);
4123 	last = strrchr(base, '/');
4124 	if (last == NULL) {
4125 		_rtld_error("non-abs result from realpath \"%s\"", path);
4126 		return (-1);
4127 	}
4128 	if (last != base)
4129 		*last = '\0';
4130 	return (0);
4131 }
4132 
4133 static void
4134 linkmap_add(Obj_Entry *obj)
4135 {
4136 	struct link_map *l, *prev;
4137 
4138 	l = &obj->linkmap;
4139 	l->l_name = obj->path;
4140 	l->l_base = obj->mapbase;
4141 	l->l_ld = obj->dynamic;
4142 	l->l_addr = obj->relocbase;
4143 
4144 	if (r_debug.r_map == NULL) {
4145 		r_debug.r_map = l;
4146 		return;
4147 	}
4148 
4149 	/*
4150 	 * Scan to the end of the list, but not past the entry for the
4151 	 * dynamic linker, which we want to keep at the very end.
4152 	 */
4153 	for (prev = r_debug.r_map;
4154 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4155 	     prev = prev->l_next)
4156 		;
4157 
4158 	/* Link in the new entry. */
4159 	l->l_prev = prev;
4160 	l->l_next = prev->l_next;
4161 	if (l->l_next != NULL)
4162 		l->l_next->l_prev = l;
4163 	prev->l_next = l;
4164 }
4165 
4166 static void
4167 linkmap_delete(Obj_Entry *obj)
4168 {
4169 	struct link_map *l;
4170 
4171 	l = &obj->linkmap;
4172 	if (l->l_prev == NULL) {
4173 		if ((r_debug.r_map = l->l_next) != NULL)
4174 			l->l_next->l_prev = NULL;
4175 		return;
4176 	}
4177 
4178 	if ((l->l_prev->l_next = l->l_next) != NULL)
4179 		l->l_next->l_prev = l->l_prev;
4180 }
4181 
4182 /*
4183  * Function for the debugger to set a breakpoint on to gain control.
4184  *
4185  * The two parameters allow the debugger to easily find and determine
4186  * what the runtime loader is doing and to whom it is doing it.
4187  *
4188  * When the loadhook trap is hit (r_debug_state, set at program
4189  * initialization), the arguments can be found on the stack:
4190  *
4191  *  +8   struct link_map *m
4192  *  +4   struct r_debug  *rd
4193  *  +0   RetAddr
4194  */
4195 void
4196 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4197 {
4198     /*
4199      * The following is a hack to force the compiler to emit calls to
4200      * this function, even when optimizing.  If the function is empty,
4201      * the compiler is not obliged to emit any code for calls to it,
4202      * even when marked __noinline.  However, gdb depends on those
4203      * calls being made.
4204      */
4205     __compiler_membar();
4206 }
4207 
4208 /*
4209  * A function called after init routines have completed. This can be used to
4210  * break before a program's entry routine is called, and can be used when
4211  * main is not available in the symbol table.
4212  */
4213 void
4214 _r_debug_postinit(struct link_map *m __unused)
4215 {
4216 
4217 	/* See r_debug_state(). */
4218 	__compiler_membar();
4219 }
4220 
4221 static void
4222 release_object(Obj_Entry *obj)
4223 {
4224 
4225 	if (obj->holdcount > 0) {
4226 		obj->unholdfree = true;
4227 		return;
4228 	}
4229 	munmap(obj->mapbase, obj->mapsize);
4230 	linkmap_delete(obj);
4231 	obj_free(obj);
4232 }
4233 
4234 /*
4235  * Get address of the pointer variable in the main program.
4236  * Prefer non-weak symbol over the weak one.
4237  */
4238 static const void **
4239 get_program_var_addr(const char *name, RtldLockState *lockstate)
4240 {
4241     SymLook req;
4242     DoneList donelist;
4243 
4244     symlook_init(&req, name);
4245     req.lockstate = lockstate;
4246     donelist_init(&donelist);
4247     if (symlook_global(&req, &donelist) != 0)
4248 	return (NULL);
4249     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4250 	return ((const void **)make_function_pointer(req.sym_out,
4251 	  req.defobj_out));
4252     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4253 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4254     else
4255 	return ((const void **)(req.defobj_out->relocbase +
4256 	  req.sym_out->st_value));
4257 }
4258 
4259 /*
4260  * Set a pointer variable in the main program to the given value.  This
4261  * is used to set key variables such as "environ" before any of the
4262  * init functions are called.
4263  */
4264 static void
4265 set_program_var(const char *name, const void *value)
4266 {
4267     const void **addr;
4268 
4269     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4270 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4271 	*addr = value;
4272     }
4273 }
4274 
4275 /*
4276  * Search the global objects, including dependencies and main object,
4277  * for the given symbol.
4278  */
4279 static int
4280 symlook_global(SymLook *req, DoneList *donelist)
4281 {
4282     SymLook req1;
4283     const Objlist_Entry *elm;
4284     int res;
4285 
4286     symlook_init_from_req(&req1, req);
4287 
4288     /* Search all objects loaded at program start up. */
4289     if (req->defobj_out == NULL ||
4290       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4291 	res = symlook_list(&req1, &list_main, donelist);
4292 	if (res == 0 && (req->defobj_out == NULL ||
4293 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4294 	    req->sym_out = req1.sym_out;
4295 	    req->defobj_out = req1.defobj_out;
4296 	    assert(req->defobj_out != NULL);
4297 	}
4298     }
4299 
4300     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4301     STAILQ_FOREACH(elm, &list_global, link) {
4302 	if (req->defobj_out != NULL &&
4303 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4304 	    break;
4305 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4306 	if (res == 0 && (req->defobj_out == NULL ||
4307 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4308 	    req->sym_out = req1.sym_out;
4309 	    req->defobj_out = req1.defobj_out;
4310 	    assert(req->defobj_out != NULL);
4311 	}
4312     }
4313 
4314     return (req->sym_out != NULL ? 0 : ESRCH);
4315 }
4316 
4317 /*
4318  * Given a symbol name in a referencing object, find the corresponding
4319  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4320  * no definition was found.  Returns a pointer to the Obj_Entry of the
4321  * defining object via the reference parameter DEFOBJ_OUT.
4322  */
4323 static int
4324 symlook_default(SymLook *req, const Obj_Entry *refobj)
4325 {
4326     DoneList donelist;
4327     const Objlist_Entry *elm;
4328     SymLook req1;
4329     int res;
4330 
4331     donelist_init(&donelist);
4332     symlook_init_from_req(&req1, req);
4333 
4334     /*
4335      * Look first in the referencing object if linked symbolically,
4336      * and similarly handle protected symbols.
4337      */
4338     res = symlook_obj(&req1, refobj);
4339     if (res == 0 && (refobj->symbolic ||
4340       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4341 	req->sym_out = req1.sym_out;
4342 	req->defobj_out = req1.defobj_out;
4343 	assert(req->defobj_out != NULL);
4344     }
4345     if (refobj->symbolic || req->defobj_out != NULL)
4346 	donelist_check(&donelist, refobj);
4347 
4348     symlook_global(req, &donelist);
4349 
4350     /* Search all dlopened DAGs containing the referencing object. */
4351     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4352 	if (req->sym_out != NULL &&
4353 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4354 	    break;
4355 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4356 	if (res == 0 && (req->sym_out == NULL ||
4357 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4358 	    req->sym_out = req1.sym_out;
4359 	    req->defobj_out = req1.defobj_out;
4360 	    assert(req->defobj_out != NULL);
4361 	}
4362     }
4363 
4364     /*
4365      * Search the dynamic linker itself, and possibly resolve the
4366      * symbol from there.  This is how the application links to
4367      * dynamic linker services such as dlopen.
4368      */
4369     if (req->sym_out == NULL ||
4370       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4371 	res = symlook_obj(&req1, &obj_rtld);
4372 	if (res == 0) {
4373 	    req->sym_out = req1.sym_out;
4374 	    req->defobj_out = req1.defobj_out;
4375 	    assert(req->defobj_out != NULL);
4376 	}
4377     }
4378 
4379     return (req->sym_out != NULL ? 0 : ESRCH);
4380 }
4381 
4382 static int
4383 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4384 {
4385     const Elf_Sym *def;
4386     const Obj_Entry *defobj;
4387     const Objlist_Entry *elm;
4388     SymLook req1;
4389     int res;
4390 
4391     def = NULL;
4392     defobj = NULL;
4393     STAILQ_FOREACH(elm, objlist, link) {
4394 	if (donelist_check(dlp, elm->obj))
4395 	    continue;
4396 	symlook_init_from_req(&req1, req);
4397 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4398 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4399 		def = req1.sym_out;
4400 		defobj = req1.defobj_out;
4401 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4402 		    break;
4403 	    }
4404 	}
4405     }
4406     if (def != NULL) {
4407 	req->sym_out = def;
4408 	req->defobj_out = defobj;
4409 	return (0);
4410     }
4411     return (ESRCH);
4412 }
4413 
4414 /*
4415  * Search the chain of DAGS cointed to by the given Needed_Entry
4416  * for a symbol of the given name.  Each DAG is scanned completely
4417  * before advancing to the next one.  Returns a pointer to the symbol,
4418  * or NULL if no definition was found.
4419  */
4420 static int
4421 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4422 {
4423     const Elf_Sym *def;
4424     const Needed_Entry *n;
4425     const Obj_Entry *defobj;
4426     SymLook req1;
4427     int res;
4428 
4429     def = NULL;
4430     defobj = NULL;
4431     symlook_init_from_req(&req1, req);
4432     for (n = needed; n != NULL; n = n->next) {
4433 	if (n->obj == NULL ||
4434 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4435 	    continue;
4436 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4437 	    def = req1.sym_out;
4438 	    defobj = req1.defobj_out;
4439 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4440 		break;
4441 	}
4442     }
4443     if (def != NULL) {
4444 	req->sym_out = def;
4445 	req->defobj_out = defobj;
4446 	return (0);
4447     }
4448     return (ESRCH);
4449 }
4450 
4451 /*
4452  * Search the symbol table of a single shared object for a symbol of
4453  * the given name and version, if requested.  Returns a pointer to the
4454  * symbol, or NULL if no definition was found.  If the object is
4455  * filter, return filtered symbol from filtee.
4456  *
4457  * The symbol's hash value is passed in for efficiency reasons; that
4458  * eliminates many recomputations of the hash value.
4459  */
4460 int
4461 symlook_obj(SymLook *req, const Obj_Entry *obj)
4462 {
4463     DoneList donelist;
4464     SymLook req1;
4465     int flags, res, mres;
4466 
4467     /*
4468      * If there is at least one valid hash at this point, we prefer to
4469      * use the faster GNU version if available.
4470      */
4471     if (obj->valid_hash_gnu)
4472 	mres = symlook_obj1_gnu(req, obj);
4473     else if (obj->valid_hash_sysv)
4474 	mres = symlook_obj1_sysv(req, obj);
4475     else
4476 	return (EINVAL);
4477 
4478     if (mres == 0) {
4479 	if (obj->needed_filtees != NULL) {
4480 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4481 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4482 	    donelist_init(&donelist);
4483 	    symlook_init_from_req(&req1, req);
4484 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4485 	    if (res == 0) {
4486 		req->sym_out = req1.sym_out;
4487 		req->defobj_out = req1.defobj_out;
4488 	    }
4489 	    return (res);
4490 	}
4491 	if (obj->needed_aux_filtees != NULL) {
4492 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4493 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4494 	    donelist_init(&donelist);
4495 	    symlook_init_from_req(&req1, req);
4496 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4497 	    if (res == 0) {
4498 		req->sym_out = req1.sym_out;
4499 		req->defobj_out = req1.defobj_out;
4500 		return (res);
4501 	    }
4502 	}
4503     }
4504     return (mres);
4505 }
4506 
4507 /* Symbol match routine common to both hash functions */
4508 static bool
4509 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4510     const unsigned long symnum)
4511 {
4512 	Elf_Versym verndx;
4513 	const Elf_Sym *symp;
4514 	const char *strp;
4515 
4516 	symp = obj->symtab + symnum;
4517 	strp = obj->strtab + symp->st_name;
4518 
4519 	switch (ELF_ST_TYPE(symp->st_info)) {
4520 	case STT_FUNC:
4521 	case STT_NOTYPE:
4522 	case STT_OBJECT:
4523 	case STT_COMMON:
4524 	case STT_GNU_IFUNC:
4525 		if (symp->st_value == 0)
4526 			return (false);
4527 		/* fallthrough */
4528 	case STT_TLS:
4529 		if (symp->st_shndx != SHN_UNDEF)
4530 			break;
4531 #ifndef __mips__
4532 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4533 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4534 			break;
4535 #endif
4536 		/* fallthrough */
4537 	default:
4538 		return (false);
4539 	}
4540 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4541 		return (false);
4542 
4543 	if (req->ventry == NULL) {
4544 		if (obj->versyms != NULL) {
4545 			verndx = VER_NDX(obj->versyms[symnum]);
4546 			if (verndx > obj->vernum) {
4547 				_rtld_error(
4548 				    "%s: symbol %s references wrong version %d",
4549 				    obj->path, obj->strtab + symnum, verndx);
4550 				return (false);
4551 			}
4552 			/*
4553 			 * If we are not called from dlsym (i.e. this
4554 			 * is a normal relocation from unversioned
4555 			 * binary), accept the symbol immediately if
4556 			 * it happens to have first version after this
4557 			 * shared object became versioned.  Otherwise,
4558 			 * if symbol is versioned and not hidden,
4559 			 * remember it. If it is the only symbol with
4560 			 * this name exported by the shared object, it
4561 			 * will be returned as a match by the calling
4562 			 * function. If symbol is global (verndx < 2)
4563 			 * accept it unconditionally.
4564 			 */
4565 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4566 			    verndx == VER_NDX_GIVEN) {
4567 				result->sym_out = symp;
4568 				return (true);
4569 			}
4570 			else if (verndx >= VER_NDX_GIVEN) {
4571 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4572 				    == 0) {
4573 					if (result->vsymp == NULL)
4574 						result->vsymp = symp;
4575 					result->vcount++;
4576 				}
4577 				return (false);
4578 			}
4579 		}
4580 		result->sym_out = symp;
4581 		return (true);
4582 	}
4583 	if (obj->versyms == NULL) {
4584 		if (object_match_name(obj, req->ventry->name)) {
4585 			_rtld_error("%s: object %s should provide version %s "
4586 			    "for symbol %s", obj_rtld.path, obj->path,
4587 			    req->ventry->name, obj->strtab + symnum);
4588 			return (false);
4589 		}
4590 	} else {
4591 		verndx = VER_NDX(obj->versyms[symnum]);
4592 		if (verndx > obj->vernum) {
4593 			_rtld_error("%s: symbol %s references wrong version %d",
4594 			    obj->path, obj->strtab + symnum, verndx);
4595 			return (false);
4596 		}
4597 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4598 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4599 			/*
4600 			 * Version does not match. Look if this is a
4601 			 * global symbol and if it is not hidden. If
4602 			 * global symbol (verndx < 2) is available,
4603 			 * use it. Do not return symbol if we are
4604 			 * called by dlvsym, because dlvsym looks for
4605 			 * a specific version and default one is not
4606 			 * what dlvsym wants.
4607 			 */
4608 			if ((req->flags & SYMLOOK_DLSYM) ||
4609 			    (verndx >= VER_NDX_GIVEN) ||
4610 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4611 				return (false);
4612 		}
4613 	}
4614 	result->sym_out = symp;
4615 	return (true);
4616 }
4617 
4618 /*
4619  * Search for symbol using SysV hash function.
4620  * obj->buckets is known not to be NULL at this point; the test for this was
4621  * performed with the obj->valid_hash_sysv assignment.
4622  */
4623 static int
4624 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4625 {
4626 	unsigned long symnum;
4627 	Sym_Match_Result matchres;
4628 
4629 	matchres.sym_out = NULL;
4630 	matchres.vsymp = NULL;
4631 	matchres.vcount = 0;
4632 
4633 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4634 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4635 		if (symnum >= obj->nchains)
4636 			return (ESRCH);	/* Bad object */
4637 
4638 		if (matched_symbol(req, obj, &matchres, symnum)) {
4639 			req->sym_out = matchres.sym_out;
4640 			req->defobj_out = obj;
4641 			return (0);
4642 		}
4643 	}
4644 	if (matchres.vcount == 1) {
4645 		req->sym_out = matchres.vsymp;
4646 		req->defobj_out = obj;
4647 		return (0);
4648 	}
4649 	return (ESRCH);
4650 }
4651 
4652 /* Search for symbol using GNU hash function */
4653 static int
4654 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4655 {
4656 	Elf_Addr bloom_word;
4657 	const Elf32_Word *hashval;
4658 	Elf32_Word bucket;
4659 	Sym_Match_Result matchres;
4660 	unsigned int h1, h2;
4661 	unsigned long symnum;
4662 
4663 	matchres.sym_out = NULL;
4664 	matchres.vsymp = NULL;
4665 	matchres.vcount = 0;
4666 
4667 	/* Pick right bitmask word from Bloom filter array */
4668 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4669 	    obj->maskwords_bm_gnu];
4670 
4671 	/* Calculate modulus word size of gnu hash and its derivative */
4672 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4673 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4674 
4675 	/* Filter out the "definitely not in set" queries */
4676 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4677 		return (ESRCH);
4678 
4679 	/* Locate hash chain and corresponding value element*/
4680 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4681 	if (bucket == 0)
4682 		return (ESRCH);
4683 	hashval = &obj->chain_zero_gnu[bucket];
4684 	do {
4685 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4686 			symnum = hashval - obj->chain_zero_gnu;
4687 			if (matched_symbol(req, obj, &matchres, symnum)) {
4688 				req->sym_out = matchres.sym_out;
4689 				req->defobj_out = obj;
4690 				return (0);
4691 			}
4692 		}
4693 	} while ((*hashval++ & 1) == 0);
4694 	if (matchres.vcount == 1) {
4695 		req->sym_out = matchres.vsymp;
4696 		req->defobj_out = obj;
4697 		return (0);
4698 	}
4699 	return (ESRCH);
4700 }
4701 
4702 static void
4703 trace_loaded_objects(Obj_Entry *obj)
4704 {
4705     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4706     int c;
4707 
4708     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4709 	main_local = "";
4710 
4711     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4712 	fmt1 = "\t%o => %p (%x)\n";
4713 
4714     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4715 	fmt2 = "\t%o (%x)\n";
4716 
4717     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4718 
4719     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4720 	Needed_Entry *needed;
4721 	const char *name, *path;
4722 	bool is_lib;
4723 
4724 	if (obj->marker)
4725 	    continue;
4726 	if (list_containers && obj->needed != NULL)
4727 	    rtld_printf("%s:\n", obj->path);
4728 	for (needed = obj->needed; needed; needed = needed->next) {
4729 	    if (needed->obj != NULL) {
4730 		if (needed->obj->traced && !list_containers)
4731 		    continue;
4732 		needed->obj->traced = true;
4733 		path = needed->obj->path;
4734 	    } else
4735 		path = "not found";
4736 
4737 	    name = obj->strtab + needed->name;
4738 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4739 
4740 	    fmt = is_lib ? fmt1 : fmt2;
4741 	    while ((c = *fmt++) != '\0') {
4742 		switch (c) {
4743 		default:
4744 		    rtld_putchar(c);
4745 		    continue;
4746 		case '\\':
4747 		    switch (c = *fmt) {
4748 		    case '\0':
4749 			continue;
4750 		    case 'n':
4751 			rtld_putchar('\n');
4752 			break;
4753 		    case 't':
4754 			rtld_putchar('\t');
4755 			break;
4756 		    }
4757 		    break;
4758 		case '%':
4759 		    switch (c = *fmt) {
4760 		    case '\0':
4761 			continue;
4762 		    case '%':
4763 		    default:
4764 			rtld_putchar(c);
4765 			break;
4766 		    case 'A':
4767 			rtld_putstr(main_local);
4768 			break;
4769 		    case 'a':
4770 			rtld_putstr(obj_main->path);
4771 			break;
4772 		    case 'o':
4773 			rtld_putstr(name);
4774 			break;
4775 #if 0
4776 		    case 'm':
4777 			rtld_printf("%d", sodp->sod_major);
4778 			break;
4779 		    case 'n':
4780 			rtld_printf("%d", sodp->sod_minor);
4781 			break;
4782 #endif
4783 		    case 'p':
4784 			rtld_putstr(path);
4785 			break;
4786 		    case 'x':
4787 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4788 			  0);
4789 			break;
4790 		    }
4791 		    break;
4792 		}
4793 		++fmt;
4794 	    }
4795 	}
4796     }
4797 }
4798 
4799 /*
4800  * Unload a dlopened object and its dependencies from memory and from
4801  * our data structures.  It is assumed that the DAG rooted in the
4802  * object has already been unreferenced, and that the object has a
4803  * reference count of 0.
4804  */
4805 static void
4806 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4807 {
4808 	Obj_Entry marker, *obj, *next;
4809 
4810 	assert(root->refcount == 0);
4811 
4812 	/*
4813 	 * Pass over the DAG removing unreferenced objects from
4814 	 * appropriate lists.
4815 	 */
4816 	unlink_object(root);
4817 
4818 	/* Unmap all objects that are no longer referenced. */
4819 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4820 		next = TAILQ_NEXT(obj, next);
4821 		if (obj->marker || obj->refcount != 0)
4822 			continue;
4823 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4824 		    obj->mapsize, 0, obj->path);
4825 		dbg("unloading \"%s\"", obj->path);
4826 		/*
4827 		 * Unlink the object now to prevent new references from
4828 		 * being acquired while the bind lock is dropped in
4829 		 * recursive dlclose() invocations.
4830 		 */
4831 		TAILQ_REMOVE(&obj_list, obj, next);
4832 		obj_count--;
4833 
4834 		if (obj->filtees_loaded) {
4835 			if (next != NULL) {
4836 				init_marker(&marker);
4837 				TAILQ_INSERT_BEFORE(next, &marker, next);
4838 				unload_filtees(obj, lockstate);
4839 				next = TAILQ_NEXT(&marker, next);
4840 				TAILQ_REMOVE(&obj_list, &marker, next);
4841 			} else
4842 				unload_filtees(obj, lockstate);
4843 		}
4844 		release_object(obj);
4845 	}
4846 }
4847 
4848 static void
4849 unlink_object(Obj_Entry *root)
4850 {
4851     Objlist_Entry *elm;
4852 
4853     if (root->refcount == 0) {
4854 	/* Remove the object from the RTLD_GLOBAL list. */
4855 	objlist_remove(&list_global, root);
4856 
4857     	/* Remove the object from all objects' DAG lists. */
4858     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4859 	    objlist_remove(&elm->obj->dldags, root);
4860 	    if (elm->obj != root)
4861 		unlink_object(elm->obj);
4862 	}
4863     }
4864 }
4865 
4866 static void
4867 ref_dag(Obj_Entry *root)
4868 {
4869     Objlist_Entry *elm;
4870 
4871     assert(root->dag_inited);
4872     STAILQ_FOREACH(elm, &root->dagmembers, link)
4873 	elm->obj->refcount++;
4874 }
4875 
4876 static void
4877 unref_dag(Obj_Entry *root)
4878 {
4879     Objlist_Entry *elm;
4880 
4881     assert(root->dag_inited);
4882     STAILQ_FOREACH(elm, &root->dagmembers, link)
4883 	elm->obj->refcount--;
4884 }
4885 
4886 /*
4887  * Common code for MD __tls_get_addr().
4888  */
4889 static void *
4890 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
4891 {
4892 	Elf_Addr *newdtv, *dtv;
4893 	RtldLockState lockstate;
4894 	int to_copy;
4895 
4896 	dtv = *dtvp;
4897 	/* Check dtv generation in case new modules have arrived */
4898 	if (dtv[0] != tls_dtv_generation) {
4899 		if (!locked)
4900 			wlock_acquire(rtld_bind_lock, &lockstate);
4901 		newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4902 		to_copy = dtv[1];
4903 		if (to_copy > tls_max_index)
4904 			to_copy = tls_max_index;
4905 		memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4906 		newdtv[0] = tls_dtv_generation;
4907 		newdtv[1] = tls_max_index;
4908 		free(dtv);
4909 		if (!locked)
4910 			lock_release(rtld_bind_lock, &lockstate);
4911 		dtv = *dtvp = newdtv;
4912 	}
4913 
4914 	/* Dynamically allocate module TLS if necessary */
4915 	if (dtv[index + 1] == 0) {
4916 		/* Signal safe, wlock will block out signals. */
4917 		if (!locked)
4918 			wlock_acquire(rtld_bind_lock, &lockstate);
4919 		if (!dtv[index + 1])
4920 			dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4921 		if (!locked)
4922 			lock_release(rtld_bind_lock, &lockstate);
4923 	}
4924 	return ((void *)(dtv[index + 1] + offset));
4925 }
4926 
4927 void *
4928 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4929 {
4930 	Elf_Addr *dtv;
4931 
4932 	dtv = *dtvp;
4933 	/* Check dtv generation in case new modules have arrived */
4934 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4935 	    dtv[index + 1] != 0))
4936 		return ((void *)(dtv[index + 1] + offset));
4937 	return (tls_get_addr_slow(dtvp, index, offset, false));
4938 }
4939 
4940 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4941     defined(__powerpc__) || defined(__riscv)
4942 
4943 /*
4944  * Return pointer to allocated TLS block
4945  */
4946 static void *
4947 get_tls_block_ptr(void *tcb, size_t tcbsize)
4948 {
4949     size_t extra_size, post_size, pre_size, tls_block_size;
4950     size_t tls_init_align;
4951 
4952     tls_init_align = MAX(obj_main->tlsalign, 1);
4953 
4954     /* Compute fragments sizes. */
4955     extra_size = tcbsize - TLS_TCB_SIZE;
4956     post_size = calculate_tls_post_size(tls_init_align);
4957     tls_block_size = tcbsize + post_size;
4958     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4959 
4960     return ((char *)tcb - pre_size - extra_size);
4961 }
4962 
4963 /*
4964  * Allocate Static TLS using the Variant I method.
4965  *
4966  * For details on the layout, see lib/libc/gen/tls.c.
4967  *
4968  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4969  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4970  *     offsets, whereas libc's tls_static_space is just the executable's static
4971  *     TLS segment.
4972  */
4973 void *
4974 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4975 {
4976     Obj_Entry *obj;
4977     char *tls_block;
4978     Elf_Addr *dtv, **tcb;
4979     Elf_Addr addr;
4980     Elf_Addr i;
4981     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4982     size_t tls_init_align, tls_init_offset;
4983 
4984     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4985 	return (oldtcb);
4986 
4987     assert(tcbsize >= TLS_TCB_SIZE);
4988     maxalign = MAX(tcbalign, tls_static_max_align);
4989     tls_init_align = MAX(obj_main->tlsalign, 1);
4990 
4991     /* Compute fragmets sizes. */
4992     extra_size = tcbsize - TLS_TCB_SIZE;
4993     post_size = calculate_tls_post_size(tls_init_align);
4994     tls_block_size = tcbsize + post_size;
4995     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4996     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4997 
4998     /* Allocate whole TLS block */
4999     tls_block = malloc_aligned(tls_block_size, maxalign, 0);
5000     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
5001 
5002     if (oldtcb != NULL) {
5003 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5004 	    tls_static_space);
5005 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
5006 
5007 	/* Adjust the DTV. */
5008 	dtv = tcb[0];
5009 	for (i = 0; i < dtv[1]; i++) {
5010 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
5011 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
5012 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
5013 	    }
5014 	}
5015     } else {
5016 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5017 	tcb[0] = dtv;
5018 	dtv[0] = tls_dtv_generation;
5019 	dtv[1] = tls_max_index;
5020 
5021 	for (obj = globallist_curr(objs); obj != NULL;
5022 	  obj = globallist_next(obj)) {
5023 	    if (obj->tlsoffset == 0)
5024 		continue;
5025 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5026 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
5027 	    if (tls_init_offset > 0)
5028 		memset((void *)addr, 0, tls_init_offset);
5029 	    if (obj->tlsinitsize > 0) {
5030 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
5031 		    obj->tlsinitsize);
5032 	    }
5033 	    if (obj->tlssize > obj->tlsinitsize) {
5034 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
5035 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
5036 	    }
5037 	    dtv[obj->tlsindex + 1] = addr;
5038 	}
5039     }
5040 
5041     return (tcb);
5042 }
5043 
5044 void
5045 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5046 {
5047     Elf_Addr *dtv;
5048     Elf_Addr tlsstart, tlsend;
5049     size_t post_size;
5050     size_t dtvsize, i, tls_init_align;
5051 
5052     assert(tcbsize >= TLS_TCB_SIZE);
5053     tls_init_align = MAX(obj_main->tlsalign, 1);
5054 
5055     /* Compute fragments sizes. */
5056     post_size = calculate_tls_post_size(tls_init_align);
5057 
5058     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5059     tlsend = (Elf_Addr)tcb + tls_static_space;
5060 
5061     dtv = *(Elf_Addr **)tcb;
5062     dtvsize = dtv[1];
5063     for (i = 0; i < dtvsize; i++) {
5064 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5065 	    free((void*)dtv[i+2]);
5066 	}
5067     }
5068     free(dtv);
5069     free_aligned(get_tls_block_ptr(tcb, tcbsize));
5070 }
5071 
5072 #endif
5073 
5074 #if defined(__i386__) || defined(__amd64__)
5075 
5076 /*
5077  * Allocate Static TLS using the Variant II method.
5078  */
5079 void *
5080 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5081 {
5082     Obj_Entry *obj;
5083     size_t size, ralign;
5084     char *tls;
5085     Elf_Addr *dtv, *olddtv;
5086     Elf_Addr segbase, oldsegbase, addr;
5087     size_t i;
5088 
5089     ralign = tcbalign;
5090     if (tls_static_max_align > ralign)
5091 	    ralign = tls_static_max_align;
5092     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5093 
5094     assert(tcbsize >= 2*sizeof(Elf_Addr));
5095     tls = malloc_aligned(size, ralign, 0 /* XXX */);
5096     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5097 
5098     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5099     ((Elf_Addr*)segbase)[0] = segbase;
5100     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
5101 
5102     dtv[0] = tls_dtv_generation;
5103     dtv[1] = tls_max_index;
5104 
5105     if (oldtls) {
5106 	/*
5107 	 * Copy the static TLS block over whole.
5108 	 */
5109 	oldsegbase = (Elf_Addr) oldtls;
5110 	memcpy((void *)(segbase - tls_static_space),
5111 	       (const void *)(oldsegbase - tls_static_space),
5112 	       tls_static_space);
5113 
5114 	/*
5115 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5116 	 * move them over.
5117 	 */
5118 	olddtv = ((Elf_Addr**)oldsegbase)[1];
5119 	for (i = 0; i < olddtv[1]; i++) {
5120 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
5121 		dtv[i+2] = olddtv[i+2];
5122 		olddtv[i+2] = 0;
5123 	    }
5124 	}
5125 
5126 	/*
5127 	 * We assume that this block was the one we created with
5128 	 * allocate_initial_tls().
5129 	 */
5130 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
5131     } else {
5132 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5133 		if (obj->marker || obj->tlsoffset == 0)
5134 			continue;
5135 		addr = segbase - obj->tlsoffset;
5136 		memset((void*)(addr + obj->tlsinitsize),
5137 		       0, obj->tlssize - obj->tlsinitsize);
5138 		if (obj->tlsinit) {
5139 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
5140 		    obj->static_tls_copied = true;
5141 		}
5142 		dtv[obj->tlsindex + 1] = addr;
5143 	}
5144     }
5145 
5146     return (void*) segbase;
5147 }
5148 
5149 void
5150 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5151 {
5152     Elf_Addr* dtv;
5153     size_t size, ralign;
5154     int dtvsize, i;
5155     Elf_Addr tlsstart, tlsend;
5156 
5157     /*
5158      * Figure out the size of the initial TLS block so that we can
5159      * find stuff which ___tls_get_addr() allocated dynamically.
5160      */
5161     ralign = tcbalign;
5162     if (tls_static_max_align > ralign)
5163 	    ralign = tls_static_max_align;
5164     size = roundup(tls_static_space, ralign);
5165 
5166     dtv = ((Elf_Addr**)tls)[1];
5167     dtvsize = dtv[1];
5168     tlsend = (Elf_Addr) tls;
5169     tlsstart = tlsend - size;
5170     for (i = 0; i < dtvsize; i++) {
5171 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
5172 		free_aligned((void *)dtv[i + 2]);
5173 	}
5174     }
5175 
5176     free_aligned((void *)tlsstart);
5177     free((void*) dtv);
5178 }
5179 
5180 #endif
5181 
5182 /*
5183  * Allocate TLS block for module with given index.
5184  */
5185 void *
5186 allocate_module_tls(int index)
5187 {
5188 	Obj_Entry *obj;
5189 	char *p;
5190 
5191 	TAILQ_FOREACH(obj, &obj_list, next) {
5192 		if (obj->marker)
5193 			continue;
5194 		if (obj->tlsindex == index)
5195 			break;
5196 	}
5197 	if (obj == NULL) {
5198 		_rtld_error("Can't find module with TLS index %d", index);
5199 		rtld_die();
5200 	}
5201 
5202 	p = malloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5203 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5204 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5205 	return (p);
5206 }
5207 
5208 bool
5209 allocate_tls_offset(Obj_Entry *obj)
5210 {
5211     size_t off;
5212 
5213     if (obj->tls_done)
5214 	return true;
5215 
5216     if (obj->tlssize == 0) {
5217 	obj->tls_done = true;
5218 	return true;
5219     }
5220 
5221     if (tls_last_offset == 0)
5222 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5223 	  obj->tlspoffset);
5224     else
5225 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5226 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5227 
5228     /*
5229      * If we have already fixed the size of the static TLS block, we
5230      * must stay within that size. When allocating the static TLS, we
5231      * leave a small amount of space spare to be used for dynamically
5232      * loading modules which use static TLS.
5233      */
5234     if (tls_static_space != 0) {
5235 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5236 	    return false;
5237     } else if (obj->tlsalign > tls_static_max_align) {
5238 	    tls_static_max_align = obj->tlsalign;
5239     }
5240 
5241     tls_last_offset = obj->tlsoffset = off;
5242     tls_last_size = obj->tlssize;
5243     obj->tls_done = true;
5244 
5245     return true;
5246 }
5247 
5248 void
5249 free_tls_offset(Obj_Entry *obj)
5250 {
5251 
5252     /*
5253      * If we were the last thing to allocate out of the static TLS
5254      * block, we give our space back to the 'allocator'. This is a
5255      * simplistic workaround to allow libGL.so.1 to be loaded and
5256      * unloaded multiple times.
5257      */
5258     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5259 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5260 	tls_last_offset -= obj->tlssize;
5261 	tls_last_size = 0;
5262     }
5263 }
5264 
5265 void *
5266 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5267 {
5268     void *ret;
5269     RtldLockState lockstate;
5270 
5271     wlock_acquire(rtld_bind_lock, &lockstate);
5272     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5273       tcbsize, tcbalign);
5274     lock_release(rtld_bind_lock, &lockstate);
5275     return (ret);
5276 }
5277 
5278 void
5279 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5280 {
5281     RtldLockState lockstate;
5282 
5283     wlock_acquire(rtld_bind_lock, &lockstate);
5284     free_tls(tcb, tcbsize, tcbalign);
5285     lock_release(rtld_bind_lock, &lockstate);
5286 }
5287 
5288 static void
5289 object_add_name(Obj_Entry *obj, const char *name)
5290 {
5291     Name_Entry *entry;
5292     size_t len;
5293 
5294     len = strlen(name);
5295     entry = malloc(sizeof(Name_Entry) + len);
5296 
5297     if (entry != NULL) {
5298 	strcpy(entry->name, name);
5299 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5300     }
5301 }
5302 
5303 static int
5304 object_match_name(const Obj_Entry *obj, const char *name)
5305 {
5306     Name_Entry *entry;
5307 
5308     STAILQ_FOREACH(entry, &obj->names, link) {
5309 	if (strcmp(name, entry->name) == 0)
5310 	    return (1);
5311     }
5312     return (0);
5313 }
5314 
5315 static Obj_Entry *
5316 locate_dependency(const Obj_Entry *obj, const char *name)
5317 {
5318     const Objlist_Entry *entry;
5319     const Needed_Entry *needed;
5320 
5321     STAILQ_FOREACH(entry, &list_main, link) {
5322 	if (object_match_name(entry->obj, name))
5323 	    return entry->obj;
5324     }
5325 
5326     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5327 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5328 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5329 	    /*
5330 	     * If there is DT_NEEDED for the name we are looking for,
5331 	     * we are all set.  Note that object might not be found if
5332 	     * dependency was not loaded yet, so the function can
5333 	     * return NULL here.  This is expected and handled
5334 	     * properly by the caller.
5335 	     */
5336 	    return (needed->obj);
5337 	}
5338     }
5339     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5340 	obj->path, name);
5341     rtld_die();
5342 }
5343 
5344 static int
5345 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5346     const Elf_Vernaux *vna)
5347 {
5348     const Elf_Verdef *vd;
5349     const char *vername;
5350 
5351     vername = refobj->strtab + vna->vna_name;
5352     vd = depobj->verdef;
5353     if (vd == NULL) {
5354 	_rtld_error("%s: version %s required by %s not defined",
5355 	    depobj->path, vername, refobj->path);
5356 	return (-1);
5357     }
5358     for (;;) {
5359 	if (vd->vd_version != VER_DEF_CURRENT) {
5360 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5361 		depobj->path, vd->vd_version);
5362 	    return (-1);
5363 	}
5364 	if (vna->vna_hash == vd->vd_hash) {
5365 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5366 		((const char *)vd + vd->vd_aux);
5367 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5368 		return (0);
5369 	}
5370 	if (vd->vd_next == 0)
5371 	    break;
5372 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5373     }
5374     if (vna->vna_flags & VER_FLG_WEAK)
5375 	return (0);
5376     _rtld_error("%s: version %s required by %s not found",
5377 	depobj->path, vername, refobj->path);
5378     return (-1);
5379 }
5380 
5381 static int
5382 rtld_verify_object_versions(Obj_Entry *obj)
5383 {
5384     const Elf_Verneed *vn;
5385     const Elf_Verdef  *vd;
5386     const Elf_Verdaux *vda;
5387     const Elf_Vernaux *vna;
5388     const Obj_Entry *depobj;
5389     int maxvernum, vernum;
5390 
5391     if (obj->ver_checked)
5392 	return (0);
5393     obj->ver_checked = true;
5394 
5395     maxvernum = 0;
5396     /*
5397      * Walk over defined and required version records and figure out
5398      * max index used by any of them. Do very basic sanity checking
5399      * while there.
5400      */
5401     vn = obj->verneed;
5402     while (vn != NULL) {
5403 	if (vn->vn_version != VER_NEED_CURRENT) {
5404 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5405 		obj->path, vn->vn_version);
5406 	    return (-1);
5407 	}
5408 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5409 	for (;;) {
5410 	    vernum = VER_NEED_IDX(vna->vna_other);
5411 	    if (vernum > maxvernum)
5412 		maxvernum = vernum;
5413 	    if (vna->vna_next == 0)
5414 		 break;
5415 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5416 	}
5417 	if (vn->vn_next == 0)
5418 	    break;
5419 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5420     }
5421 
5422     vd = obj->verdef;
5423     while (vd != NULL) {
5424 	if (vd->vd_version != VER_DEF_CURRENT) {
5425 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5426 		obj->path, vd->vd_version);
5427 	    return (-1);
5428 	}
5429 	vernum = VER_DEF_IDX(vd->vd_ndx);
5430 	if (vernum > maxvernum)
5431 		maxvernum = vernum;
5432 	if (vd->vd_next == 0)
5433 	    break;
5434 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5435     }
5436 
5437     if (maxvernum == 0)
5438 	return (0);
5439 
5440     /*
5441      * Store version information in array indexable by version index.
5442      * Verify that object version requirements are satisfied along the
5443      * way.
5444      */
5445     obj->vernum = maxvernum + 1;
5446     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5447 
5448     vd = obj->verdef;
5449     while (vd != NULL) {
5450 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5451 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5452 	    assert(vernum <= maxvernum);
5453 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5454 	    obj->vertab[vernum].hash = vd->vd_hash;
5455 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5456 	    obj->vertab[vernum].file = NULL;
5457 	    obj->vertab[vernum].flags = 0;
5458 	}
5459 	if (vd->vd_next == 0)
5460 	    break;
5461 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5462     }
5463 
5464     vn = obj->verneed;
5465     while (vn != NULL) {
5466 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5467 	if (depobj == NULL)
5468 	    return (-1);
5469 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5470 	for (;;) {
5471 	    if (check_object_provided_version(obj, depobj, vna))
5472 		return (-1);
5473 	    vernum = VER_NEED_IDX(vna->vna_other);
5474 	    assert(vernum <= maxvernum);
5475 	    obj->vertab[vernum].hash = vna->vna_hash;
5476 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5477 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5478 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5479 		VER_INFO_HIDDEN : 0;
5480 	    if (vna->vna_next == 0)
5481 		 break;
5482 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5483 	}
5484 	if (vn->vn_next == 0)
5485 	    break;
5486 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5487     }
5488     return 0;
5489 }
5490 
5491 static int
5492 rtld_verify_versions(const Objlist *objlist)
5493 {
5494     Objlist_Entry *entry;
5495     int rc;
5496 
5497     rc = 0;
5498     STAILQ_FOREACH(entry, objlist, link) {
5499 	/*
5500 	 * Skip dummy objects or objects that have their version requirements
5501 	 * already checked.
5502 	 */
5503 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5504 	    continue;
5505 	if (rtld_verify_object_versions(entry->obj) == -1) {
5506 	    rc = -1;
5507 	    if (ld_tracing == NULL)
5508 		break;
5509 	}
5510     }
5511     if (rc == 0 || ld_tracing != NULL)
5512     	rc = rtld_verify_object_versions(&obj_rtld);
5513     return rc;
5514 }
5515 
5516 const Ver_Entry *
5517 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5518 {
5519     Elf_Versym vernum;
5520 
5521     if (obj->vertab) {
5522 	vernum = VER_NDX(obj->versyms[symnum]);
5523 	if (vernum >= obj->vernum) {
5524 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5525 		obj->path, obj->strtab + symnum, vernum);
5526 	} else if (obj->vertab[vernum].hash != 0) {
5527 	    return &obj->vertab[vernum];
5528 	}
5529     }
5530     return NULL;
5531 }
5532 
5533 int
5534 _rtld_get_stack_prot(void)
5535 {
5536 
5537 	return (stack_prot);
5538 }
5539 
5540 int
5541 _rtld_is_dlopened(void *arg)
5542 {
5543 	Obj_Entry *obj;
5544 	RtldLockState lockstate;
5545 	int res;
5546 
5547 	rlock_acquire(rtld_bind_lock, &lockstate);
5548 	obj = dlcheck(arg);
5549 	if (obj == NULL)
5550 		obj = obj_from_addr(arg);
5551 	if (obj == NULL) {
5552 		_rtld_error("No shared object contains address");
5553 		lock_release(rtld_bind_lock, &lockstate);
5554 		return (-1);
5555 	}
5556 	res = obj->dlopened ? 1 : 0;
5557 	lock_release(rtld_bind_lock, &lockstate);
5558 	return (res);
5559 }
5560 
5561 static int
5562 obj_remap_relro(Obj_Entry *obj, int prot)
5563 {
5564 
5565 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5566 	    prot) == -1) {
5567 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5568 		    obj->path, prot, rtld_strerror(errno));
5569 		return (-1);
5570 	}
5571 	return (0);
5572 }
5573 
5574 static int
5575 obj_disable_relro(Obj_Entry *obj)
5576 {
5577 
5578 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5579 }
5580 
5581 static int
5582 obj_enforce_relro(Obj_Entry *obj)
5583 {
5584 
5585 	return (obj_remap_relro(obj, PROT_READ));
5586 }
5587 
5588 static void
5589 map_stacks_exec(RtldLockState *lockstate)
5590 {
5591 	void (*thr_map_stacks_exec)(void);
5592 
5593 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5594 		return;
5595 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5596 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5597 	if (thr_map_stacks_exec != NULL) {
5598 		stack_prot |= PROT_EXEC;
5599 		thr_map_stacks_exec();
5600 	}
5601 }
5602 
5603 static void
5604 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5605 {
5606 	Objlist_Entry *elm;
5607 	Obj_Entry *obj;
5608 	void (*distrib)(size_t, void *, size_t, size_t);
5609 
5610 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5611 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5612 	if (distrib == NULL)
5613 		return;
5614 	STAILQ_FOREACH(elm, list, link) {
5615 		obj = elm->obj;
5616 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5617 			continue;
5618 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5619 		    obj->tlssize);
5620 		obj->static_tls_copied = true;
5621 	}
5622 }
5623 
5624 void
5625 symlook_init(SymLook *dst, const char *name)
5626 {
5627 
5628 	bzero(dst, sizeof(*dst));
5629 	dst->name = name;
5630 	dst->hash = elf_hash(name);
5631 	dst->hash_gnu = gnu_hash(name);
5632 }
5633 
5634 static void
5635 symlook_init_from_req(SymLook *dst, const SymLook *src)
5636 {
5637 
5638 	dst->name = src->name;
5639 	dst->hash = src->hash;
5640 	dst->hash_gnu = src->hash_gnu;
5641 	dst->ventry = src->ventry;
5642 	dst->flags = src->flags;
5643 	dst->defobj_out = NULL;
5644 	dst->sym_out = NULL;
5645 	dst->lockstate = src->lockstate;
5646 }
5647 
5648 static int
5649 open_binary_fd(const char *argv0, bool search_in_path,
5650     const char **binpath_res)
5651 {
5652 	char *binpath, *pathenv, *pe, *res1;
5653 	const char *res;
5654 	int fd;
5655 
5656 	binpath = NULL;
5657 	res = NULL;
5658 	if (search_in_path && strchr(argv0, '/') == NULL) {
5659 		binpath = xmalloc(PATH_MAX);
5660 		pathenv = getenv("PATH");
5661 		if (pathenv == NULL) {
5662 			_rtld_error("-p and no PATH environment variable");
5663 			rtld_die();
5664 		}
5665 		pathenv = strdup(pathenv);
5666 		if (pathenv == NULL) {
5667 			_rtld_error("Cannot allocate memory");
5668 			rtld_die();
5669 		}
5670 		fd = -1;
5671 		errno = ENOENT;
5672 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5673 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5674 				continue;
5675 			if (binpath[0] != '\0' &&
5676 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
5677 				continue;
5678 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
5679 				continue;
5680 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5681 			if (fd != -1 || errno != ENOENT) {
5682 				res = binpath;
5683 				break;
5684 			}
5685 		}
5686 		free(pathenv);
5687 	} else {
5688 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5689 		res = argv0;
5690 	}
5691 
5692 	if (fd == -1) {
5693 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5694 		rtld_die();
5695 	}
5696 	if (res != NULL && res[0] != '/') {
5697 		res1 = xmalloc(PATH_MAX);
5698 		if (realpath(res, res1) != NULL) {
5699 			if (res != argv0)
5700 				free(__DECONST(char *, res));
5701 			res = res1;
5702 		} else {
5703 			free(res1);
5704 		}
5705 	}
5706 	*binpath_res = res;
5707 	return (fd);
5708 }
5709 
5710 /*
5711  * Parse a set of command-line arguments.
5712  */
5713 static int
5714 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
5715     const char **argv0)
5716 {
5717 	const char *arg;
5718 	char machine[64];
5719 	size_t sz;
5720 	int arglen, fd, i, j, mib[2];
5721 	char opt;
5722 	bool seen_b, seen_f;
5723 
5724 	dbg("Parsing command-line arguments");
5725 	*use_pathp = false;
5726 	*fdp = -1;
5727 	seen_b = seen_f = false;
5728 
5729 	for (i = 1; i < argc; i++ ) {
5730 		arg = argv[i];
5731 		dbg("argv[%d]: '%s'", i, arg);
5732 
5733 		/*
5734 		 * rtld arguments end with an explicit "--" or with the first
5735 		 * non-prefixed argument.
5736 		 */
5737 		if (strcmp(arg, "--") == 0) {
5738 			i++;
5739 			break;
5740 		}
5741 		if (arg[0] != '-')
5742 			break;
5743 
5744 		/*
5745 		 * All other arguments are single-character options that can
5746 		 * be combined, so we need to search through `arg` for them.
5747 		 */
5748 		arglen = strlen(arg);
5749 		for (j = 1; j < arglen; j++) {
5750 			opt = arg[j];
5751 			if (opt == 'h') {
5752 				print_usage(argv[0]);
5753 				_exit(0);
5754 			} else if (opt == 'b') {
5755 				if (seen_f) {
5756 					_rtld_error("Both -b and -f specified");
5757 					rtld_die();
5758 				}
5759 				i++;
5760 				*argv0 = argv[i];
5761 				seen_b = true;
5762 				break;
5763 			} else if (opt == 'f') {
5764 				if (seen_b) {
5765 					_rtld_error("Both -b and -f specified");
5766 					rtld_die();
5767 				}
5768 
5769 				/*
5770 				 * -f XX can be used to specify a
5771 				 * descriptor for the binary named at
5772 				 * the command line (i.e., the later
5773 				 * argument will specify the process
5774 				 * name but the descriptor is what
5775 				 * will actually be executed).
5776 				 *
5777 				 * -f must be the last option in, e.g., -abcf.
5778 				 */
5779 				if (j != arglen - 1) {
5780 					_rtld_error("Invalid options: %s", arg);
5781 					rtld_die();
5782 				}
5783 				i++;
5784 				fd = parse_integer(argv[i]);
5785 				if (fd == -1) {
5786 					_rtld_error(
5787 					    "Invalid file descriptor: '%s'",
5788 					    argv[i]);
5789 					rtld_die();
5790 				}
5791 				*fdp = fd;
5792 				seen_f = true;
5793 				break;
5794 			} else if (opt == 'p') {
5795 				*use_pathp = true;
5796 			} else if (opt == 'u') {
5797 				trust = false;
5798 			} else if (opt == 'v') {
5799 				machine[0] = '\0';
5800 				mib[0] = CTL_HW;
5801 				mib[1] = HW_MACHINE;
5802 				sz = sizeof(machine);
5803 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
5804 				rtld_printf(
5805 				    "FreeBSD ld-elf.so.1 %s\n"
5806 				    "FreeBSD_version %d\n"
5807 				    "Default lib path %s\n"
5808 				    "Env prefix %s\n"
5809 				    "Hint file %s\n"
5810 				    "libmap file %s\n",
5811 				    machine,
5812 				    __FreeBSD_version, ld_standard_library_path,
5813 				    ld_env_prefix, ld_elf_hints_default,
5814 				    ld_path_libmap_conf);
5815 				_exit(0);
5816 			} else {
5817 				_rtld_error("Invalid argument: '%s'", arg);
5818 				print_usage(argv[0]);
5819 				rtld_die();
5820 			}
5821 		}
5822 	}
5823 
5824 	if (!seen_b)
5825 		*argv0 = argv[i];
5826 	return (i);
5827 }
5828 
5829 /*
5830  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5831  */
5832 static int
5833 parse_integer(const char *str)
5834 {
5835 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5836 	const char *orig;
5837 	int n;
5838 	char c;
5839 
5840 	orig = str;
5841 	n = 0;
5842 	for (c = *str; c != '\0'; c = *++str) {
5843 		if (c < '0' || c > '9')
5844 			return (-1);
5845 
5846 		n *= RADIX;
5847 		n += c - '0';
5848 	}
5849 
5850 	/* Make sure we actually parsed something. */
5851 	if (str == orig)
5852 		return (-1);
5853 	return (n);
5854 }
5855 
5856 static void
5857 print_usage(const char *argv0)
5858 {
5859 
5860 	rtld_printf(
5861 	    "Usage: %s [-h] [-b <exe>] [-f <FD>] [-p] [--] <binary> [<args>]\n"
5862 	    "\n"
5863 	    "Options:\n"
5864 	    "  -h        Display this help message\n"
5865 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
5866 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5867 	    "  -p        Search in PATH for named binary\n"
5868 	    "  -u        Ignore LD_ environment variables\n"
5869 	    "  -v        Display identification information\n"
5870 	    "  --        End of RTLD options\n"
5871 	    "  <binary>  Name of process to execute\n"
5872 	    "  <args>    Arguments to the executed process\n", argv0);
5873 }
5874 
5875 /*
5876  * Overrides for libc_pic-provided functions.
5877  */
5878 
5879 int
5880 __getosreldate(void)
5881 {
5882 	size_t len;
5883 	int oid[2];
5884 	int error, osrel;
5885 
5886 	if (osreldate != 0)
5887 		return (osreldate);
5888 
5889 	oid[0] = CTL_KERN;
5890 	oid[1] = KERN_OSRELDATE;
5891 	osrel = 0;
5892 	len = sizeof(osrel);
5893 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5894 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5895 		osreldate = osrel;
5896 	return (osreldate);
5897 }
5898 const char *
5899 rtld_strerror(int errnum)
5900 {
5901 
5902 	if (errnum < 0 || errnum >= sys_nerr)
5903 		return ("Unknown error");
5904 	return (sys_errlist[errnum]);
5905 }
5906 
5907 /* malloc */
5908 void *
5909 malloc(size_t nbytes)
5910 {
5911 
5912 	return (__crt_malloc(nbytes));
5913 }
5914 
5915 void *
5916 calloc(size_t num, size_t size)
5917 {
5918 
5919 	return (__crt_calloc(num, size));
5920 }
5921 
5922 void
5923 free(void *cp)
5924 {
5925 
5926 	__crt_free(cp);
5927 }
5928 
5929 void *
5930 realloc(void *cp, size_t nbytes)
5931 {
5932 
5933 	return (__crt_realloc(cp, nbytes));
5934 }
5935 
5936 extern int _rtld_version__FreeBSD_version __exported;
5937 int _rtld_version__FreeBSD_version = __FreeBSD_version;
5938 
5939 extern char _rtld_version_laddr_offset __exported;
5940 char _rtld_version_laddr_offset;
5941 
5942 extern char _rtld_version_dlpi_tls_data __exported;
5943 char _rtld_version_dlpi_tls_data;
5944