xref: /freebsd/libexec/rtld-elf/rtld.c (revision b740c88bfb6453416926271c089262e7164dace3)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "rtld.h"
62 #include "libmap.h"
63 #include "rtld_tls.h"
64 #include "rtld_printf.h"
65 #include "notes.h"
66 
67 #ifndef COMPAT_32BIT
68 #define PATH_RTLD	"/libexec/ld-elf.so.1"
69 #else
70 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
71 #endif
72 
73 /* Types. */
74 typedef void (*func_ptr_type)();
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 /*
78  * Function declarations.
79  */
80 static const char *basename(const char *);
81 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
82     const Elf_Dyn **, const Elf_Dyn **);
83 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
84     const Elf_Dyn *);
85 static void digest_dynamic(Obj_Entry *, int);
86 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
87 static Obj_Entry *dlcheck(void *);
88 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
89     int lo_flags, int mode, RtldLockState *lockstate);
90 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
91 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
92 static bool donelist_check(DoneList *, const Obj_Entry *);
93 static void errmsg_restore(char *);
94 static char *errmsg_save(void);
95 static void *fill_search_info(const char *, size_t, void *);
96 static char *find_library(const char *, const Obj_Entry *, int *);
97 static const char *gethints(bool);
98 static void init_dag(Obj_Entry *);
99 static void init_pagesizes(Elf_Auxinfo **aux_info);
100 static void init_rtld(caddr_t, Elf_Auxinfo **);
101 static void initlist_add_neededs(Needed_Entry *, Objlist *);
102 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103 static void linkmap_add(Obj_Entry *);
104 static void linkmap_delete(Obj_Entry *);
105 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
106 static void unload_filtees(Obj_Entry *);
107 static int load_needed_objects(Obj_Entry *, int);
108 static int load_preload_objects(void);
109 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
110 static void map_stacks_exec(RtldLockState *);
111 static Obj_Entry *obj_from_addr(const void *);
112 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
113 static void objlist_call_init(Objlist *, RtldLockState *);
114 static void objlist_clear(Objlist *);
115 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
116 static void objlist_init(Objlist *);
117 static void objlist_push_head(Objlist *, Obj_Entry *);
118 static void objlist_push_tail(Objlist *, Obj_Entry *);
119 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
120 static void objlist_remove(Objlist *, Obj_Entry *);
121 static int parse_libdir(const char *);
122 static void *path_enumerate(const char *, path_enum_proc, void *);
123 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
124     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
125 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
126     int flags, RtldLockState *lockstate);
127 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
128     RtldLockState *);
129 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
130     int flags, RtldLockState *lockstate);
131 static int rtld_dirname(const char *, char *);
132 static int rtld_dirname_abs(const char *, char *);
133 static void *rtld_dlopen(const char *name, int fd, int mode);
134 static void rtld_exit(void);
135 static char *search_library_path(const char *, const char *);
136 static char *search_library_pathfds(const char *, const char *, int *);
137 static const void **get_program_var_addr(const char *, RtldLockState *);
138 static void set_program_var(const char *, const void *);
139 static int symlook_default(SymLook *, const Obj_Entry *refobj);
140 static int symlook_global(SymLook *, DoneList *);
141 static void symlook_init_from_req(SymLook *, const SymLook *);
142 static int symlook_list(SymLook *, const Objlist *, DoneList *);
143 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
144 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
145 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
146 static void trace_loaded_objects(Obj_Entry *);
147 static void unlink_object(Obj_Entry *);
148 static void unload_object(Obj_Entry *);
149 static void unref_dag(Obj_Entry *);
150 static void ref_dag(Obj_Entry *);
151 static char *origin_subst_one(Obj_Entry *, char *, const char *,
152     const char *, bool);
153 static char *origin_subst(Obj_Entry *, char *);
154 static bool obj_resolve_origin(Obj_Entry *obj);
155 static void preinit_main(void);
156 static int  rtld_verify_versions(const Objlist *);
157 static int  rtld_verify_object_versions(Obj_Entry *);
158 static void object_add_name(Obj_Entry *, const char *);
159 static int  object_match_name(const Obj_Entry *, const char *);
160 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
161 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
162     struct dl_phdr_info *phdr_info);
163 static uint32_t gnu_hash(const char *);
164 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
165     const unsigned long);
166 
167 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
168 void _r_debug_postinit(struct link_map *) __noinline __exported;
169 
170 int __sys_openat(int, const char *, int, ...);
171 
172 /*
173  * Data declarations.
174  */
175 static char *error_message;	/* Message for dlerror(), or NULL */
176 struct r_debug r_debug __exported;	/* for GDB; */
177 static bool libmap_disable;	/* Disable libmap */
178 static bool ld_loadfltr;	/* Immediate filters processing */
179 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
180 static bool trust;		/* False for setuid and setgid programs */
181 static bool dangerous_ld_env;	/* True if environment variables have been
182 				   used to affect the libraries loaded */
183 static char *ld_bind_now;	/* Environment variable for immediate binding */
184 static char *ld_debug;		/* Environment variable for debugging */
185 static char *ld_library_path;	/* Environment variable for search path */
186 static char *ld_library_dirs;	/* Environment variable for library descriptors */
187 static char *ld_preload;	/* Environment variable for libraries to
188 				   load first */
189 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
190 static char *ld_tracing;	/* Called from ldd to print libs */
191 static char *ld_utrace;		/* Use utrace() to log events. */
192 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
193 static Obj_Entry **obj_tail;	/* Link field of last object in list */
194 static Obj_Entry *obj_main;	/* The main program shared object */
195 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
196 static unsigned int obj_count;	/* Number of objects in obj_list */
197 static unsigned int obj_loads;	/* Number of objects in obj_list */
198 
199 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
200   STAILQ_HEAD_INITIALIZER(list_global);
201 static Objlist list_main =	/* Objects loaded at program startup */
202   STAILQ_HEAD_INITIALIZER(list_main);
203 static Objlist list_fini =	/* Objects needing fini() calls */
204   STAILQ_HEAD_INITIALIZER(list_fini);
205 
206 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
207 
208 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
209 
210 extern Elf_Dyn _DYNAMIC;
211 #pragma weak _DYNAMIC
212 #ifndef RTLD_IS_DYNAMIC
213 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
214 #endif
215 
216 int dlclose(void *) __exported;
217 char *dlerror(void) __exported;
218 void *dlopen(const char *, int) __exported;
219 void *fdlopen(int, int) __exported;
220 void *dlsym(void *, const char *) __exported;
221 dlfunc_t dlfunc(void *, const char *) __exported;
222 void *dlvsym(void *, const char *, const char *) __exported;
223 int dladdr(const void *, Dl_info *) __exported;
224 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
225     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
226 int dlinfo(void *, int , void *) __exported;
227 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
228 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
229 int _rtld_get_stack_prot(void) __exported;
230 int _rtld_is_dlopened(void *) __exported;
231 void _rtld_error(const char *, ...) __exported;
232 
233 int npagesizes, osreldate;
234 size_t *pagesizes;
235 
236 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
237 
238 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
239 static int max_stack_flags;
240 
241 /*
242  * Global declarations normally provided by crt1.  The dynamic linker is
243  * not built with crt1, so we have to provide them ourselves.
244  */
245 char *__progname;
246 char **environ;
247 
248 /*
249  * Used to pass argc, argv to init functions.
250  */
251 int main_argc;
252 char **main_argv;
253 
254 /*
255  * Globals to control TLS allocation.
256  */
257 size_t tls_last_offset;		/* Static TLS offset of last module */
258 size_t tls_last_size;		/* Static TLS size of last module */
259 size_t tls_static_space;	/* Static TLS space allocated */
260 size_t tls_static_max_align;
261 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
262 int tls_max_index = 1;		/* Largest module index allocated */
263 
264 bool ld_library_path_rpath = false;
265 
266 /*
267  * Fill in a DoneList with an allocation large enough to hold all of
268  * the currently-loaded objects.  Keep this as a macro since it calls
269  * alloca and we want that to occur within the scope of the caller.
270  */
271 #define donelist_init(dlp)					\
272     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
273     assert((dlp)->objs != NULL),				\
274     (dlp)->num_alloc = obj_count,				\
275     (dlp)->num_used = 0)
276 
277 #define	UTRACE_DLOPEN_START		1
278 #define	UTRACE_DLOPEN_STOP		2
279 #define	UTRACE_DLCLOSE_START		3
280 #define	UTRACE_DLCLOSE_STOP		4
281 #define	UTRACE_LOAD_OBJECT		5
282 #define	UTRACE_UNLOAD_OBJECT		6
283 #define	UTRACE_ADD_RUNDEP		7
284 #define	UTRACE_PRELOAD_FINISHED		8
285 #define	UTRACE_INIT_CALL		9
286 #define	UTRACE_FINI_CALL		10
287 #define	UTRACE_DLSYM_START		11
288 #define	UTRACE_DLSYM_STOP		12
289 
290 struct utrace_rtld {
291 	char sig[4];			/* 'RTLD' */
292 	int event;
293 	void *handle;
294 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
295 	size_t mapsize;
296 	int refcnt;			/* Used for 'mode' */
297 	char name[MAXPATHLEN];
298 };
299 
300 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
301 	if (ld_utrace != NULL)					\
302 		ld_utrace_log(e, h, mb, ms, r, n);		\
303 } while (0)
304 
305 static void
306 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
307     int refcnt, const char *name)
308 {
309 	struct utrace_rtld ut;
310 
311 	ut.sig[0] = 'R';
312 	ut.sig[1] = 'T';
313 	ut.sig[2] = 'L';
314 	ut.sig[3] = 'D';
315 	ut.event = event;
316 	ut.handle = handle;
317 	ut.mapbase = mapbase;
318 	ut.mapsize = mapsize;
319 	ut.refcnt = refcnt;
320 	bzero(ut.name, sizeof(ut.name));
321 	if (name)
322 		strlcpy(ut.name, name, sizeof(ut.name));
323 	utrace(&ut, sizeof(ut));
324 }
325 
326 /*
327  * Main entry point for dynamic linking.  The first argument is the
328  * stack pointer.  The stack is expected to be laid out as described
329  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
330  * Specifically, the stack pointer points to a word containing
331  * ARGC.  Following that in the stack is a null-terminated sequence
332  * of pointers to argument strings.  Then comes a null-terminated
333  * sequence of pointers to environment strings.  Finally, there is a
334  * sequence of "auxiliary vector" entries.
335  *
336  * The second argument points to a place to store the dynamic linker's
337  * exit procedure pointer and the third to a place to store the main
338  * program's object.
339  *
340  * The return value is the main program's entry point.
341  */
342 func_ptr_type
343 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
344 {
345     Elf_Auxinfo *aux_info[AT_COUNT];
346     int i;
347     int argc;
348     char **argv;
349     char **env;
350     Elf_Auxinfo *aux;
351     Elf_Auxinfo *auxp;
352     const char *argv0;
353     Objlist_Entry *entry;
354     Obj_Entry *obj;
355     Obj_Entry **preload_tail;
356     Obj_Entry *last_interposer;
357     Objlist initlist;
358     RtldLockState lockstate;
359     char *library_path_rpath;
360     int mib[2];
361     size_t len;
362 
363     /*
364      * On entry, the dynamic linker itself has not been relocated yet.
365      * Be very careful not to reference any global data until after
366      * init_rtld has returned.  It is OK to reference file-scope statics
367      * and string constants, and to call static and global functions.
368      */
369 
370     /* Find the auxiliary vector on the stack. */
371     argc = *sp++;
372     argv = (char **) sp;
373     sp += argc + 1;	/* Skip over arguments and NULL terminator */
374     env = (char **) sp;
375     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
376 	;
377     aux = (Elf_Auxinfo *) sp;
378 
379     /* Digest the auxiliary vector. */
380     for (i = 0;  i < AT_COUNT;  i++)
381 	aux_info[i] = NULL;
382     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
383 	if (auxp->a_type < AT_COUNT)
384 	    aux_info[auxp->a_type] = auxp;
385     }
386 
387     /* Initialize and relocate ourselves. */
388     assert(aux_info[AT_BASE] != NULL);
389     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
390 
391     __progname = obj_rtld.path;
392     argv0 = argv[0] != NULL ? argv[0] : "(null)";
393     environ = env;
394     main_argc = argc;
395     main_argv = argv;
396 
397     if (aux_info[AT_CANARY] != NULL &&
398 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
399 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
400 	    if (i > sizeof(__stack_chk_guard))
401 		    i = sizeof(__stack_chk_guard);
402 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
403     } else {
404 	mib[0] = CTL_KERN;
405 	mib[1] = KERN_ARND;
406 
407 	len = sizeof(__stack_chk_guard);
408 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
409 	    len != sizeof(__stack_chk_guard)) {
410 		/* If sysctl was unsuccessful, use the "terminator canary". */
411 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
412 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
413 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
414 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
415 	}
416     }
417 
418     trust = !issetugid();
419 
420     ld_bind_now = getenv(LD_ "BIND_NOW");
421     /*
422      * If the process is tainted, then we un-set the dangerous environment
423      * variables.  The process will be marked as tainted until setuid(2)
424      * is called.  If any child process calls setuid(2) we do not want any
425      * future processes to honor the potentially un-safe variables.
426      */
427     if (!trust) {
428         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
429 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBRARY_PATH_FDS") ||
430 	    unsetenv(LD_ "LIBMAP_DISABLE") ||
431 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
432 	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
433 		_rtld_error("environment corrupt; aborting");
434 		rtld_die();
435 	}
436     }
437     ld_debug = getenv(LD_ "DEBUG");
438     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
439     libmap_override = getenv(LD_ "LIBMAP");
440     ld_library_path = getenv(LD_ "LIBRARY_PATH");
441     ld_library_dirs = getenv(LD_ "LIBRARY_PATH_FDS");
442     ld_preload = getenv(LD_ "PRELOAD");
443     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
444     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
445     library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
446     if (library_path_rpath != NULL) {
447 	    if (library_path_rpath[0] == 'y' ||
448 		library_path_rpath[0] == 'Y' ||
449 		library_path_rpath[0] == '1')
450 		    ld_library_path_rpath = true;
451 	    else
452 		    ld_library_path_rpath = false;
453     }
454     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
455 	(ld_library_path != NULL) || (ld_preload != NULL) ||
456 	(ld_elf_hints_path != NULL) || ld_loadfltr;
457     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
458     ld_utrace = getenv(LD_ "UTRACE");
459 
460     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
461 	ld_elf_hints_path = _PATH_ELF_HINTS;
462 
463     if (ld_debug != NULL && *ld_debug != '\0')
464 	debug = 1;
465     dbg("%s is initialized, base address = %p", __progname,
466 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
467     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
468     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
469 
470     dbg("initializing thread locks");
471     lockdflt_init();
472 
473     /*
474      * Load the main program, or process its program header if it is
475      * already loaded.
476      */
477     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
478 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
479 	dbg("loading main program");
480 	obj_main = map_object(fd, argv0, NULL);
481 	close(fd);
482 	if (obj_main == NULL)
483 	    rtld_die();
484 	max_stack_flags = obj->stack_flags;
485     } else {				/* Main program already loaded. */
486 	const Elf_Phdr *phdr;
487 	int phnum;
488 	caddr_t entry;
489 
490 	dbg("processing main program's program header");
491 	assert(aux_info[AT_PHDR] != NULL);
492 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
493 	assert(aux_info[AT_PHNUM] != NULL);
494 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
495 	assert(aux_info[AT_PHENT] != NULL);
496 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
497 	assert(aux_info[AT_ENTRY] != NULL);
498 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
499 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
500 	    rtld_die();
501     }
502 
503     if (aux_info[AT_EXECPATH] != 0) {
504 	    char *kexecpath;
505 	    char buf[MAXPATHLEN];
506 
507 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
508 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
509 	    if (kexecpath[0] == '/')
510 		    obj_main->path = kexecpath;
511 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
512 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
513 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
514 		    obj_main->path = xstrdup(argv0);
515 	    else
516 		    obj_main->path = xstrdup(buf);
517     } else {
518 	    dbg("No AT_EXECPATH");
519 	    obj_main->path = xstrdup(argv0);
520     }
521     dbg("obj_main path %s", obj_main->path);
522     obj_main->mainprog = true;
523 
524     if (aux_info[AT_STACKPROT] != NULL &&
525       aux_info[AT_STACKPROT]->a_un.a_val != 0)
526 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
527 
528 #ifndef COMPAT_32BIT
529     /*
530      * Get the actual dynamic linker pathname from the executable if
531      * possible.  (It should always be possible.)  That ensures that
532      * gdb will find the right dynamic linker even if a non-standard
533      * one is being used.
534      */
535     if (obj_main->interp != NULL &&
536       strcmp(obj_main->interp, obj_rtld.path) != 0) {
537 	free(obj_rtld.path);
538 	obj_rtld.path = xstrdup(obj_main->interp);
539         __progname = obj_rtld.path;
540     }
541 #endif
542 
543     digest_dynamic(obj_main, 0);
544     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
545 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
546 	obj_main->dynsymcount);
547 
548     linkmap_add(obj_main);
549     linkmap_add(&obj_rtld);
550 
551     /* Link the main program into the list of objects. */
552     *obj_tail = obj_main;
553     obj_tail = &obj_main->next;
554     obj_count++;
555     obj_loads++;
556 
557     /* Initialize a fake symbol for resolving undefined weak references. */
558     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
559     sym_zero.st_shndx = SHN_UNDEF;
560     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
561 
562     if (!libmap_disable)
563         libmap_disable = (bool)lm_init(libmap_override);
564 
565     dbg("loading LD_PRELOAD libraries");
566     if (load_preload_objects() == -1)
567 	rtld_die();
568     preload_tail = obj_tail;
569 
570     dbg("loading needed objects");
571     if (load_needed_objects(obj_main, 0) == -1)
572 	rtld_die();
573 
574     /* Make a list of all objects loaded at startup. */
575     last_interposer = obj_main;
576     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
577 	if (obj->z_interpose && obj != obj_main) {
578 	    objlist_put_after(&list_main, last_interposer, obj);
579 	    last_interposer = obj;
580 	} else {
581 	    objlist_push_tail(&list_main, obj);
582 	}
583     	obj->refcount++;
584     }
585 
586     dbg("checking for required versions");
587     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
588 	rtld_die();
589 
590     if (ld_tracing) {		/* We're done */
591 	trace_loaded_objects(obj_main);
592 	exit(0);
593     }
594 
595     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
596        dump_relocations(obj_main);
597        exit (0);
598     }
599 
600     /*
601      * Processing tls relocations requires having the tls offsets
602      * initialized.  Prepare offsets before starting initial
603      * relocation processing.
604      */
605     dbg("initializing initial thread local storage offsets");
606     STAILQ_FOREACH(entry, &list_main, link) {
607 	/*
608 	 * Allocate all the initial objects out of the static TLS
609 	 * block even if they didn't ask for it.
610 	 */
611 	allocate_tls_offset(entry->obj);
612     }
613 
614     if (relocate_objects(obj_main,
615       ld_bind_now != NULL && *ld_bind_now != '\0',
616       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
617 	rtld_die();
618 
619     dbg("doing copy relocations");
620     if (do_copy_relocations(obj_main) == -1)
621 	rtld_die();
622 
623     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
624        dump_relocations(obj_main);
625        exit (0);
626     }
627 
628     /*
629      * Setup TLS for main thread.  This must be done after the
630      * relocations are processed, since tls initialization section
631      * might be the subject for relocations.
632      */
633     dbg("initializing initial thread local storage");
634     allocate_initial_tls(obj_list);
635 
636     dbg("initializing key program variables");
637     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
638     set_program_var("environ", env);
639     set_program_var("__elf_aux_vector", aux);
640 
641     /* Make a list of init functions to call. */
642     objlist_init(&initlist);
643     initlist_add_objects(obj_list, preload_tail, &initlist);
644 
645     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
646 
647     map_stacks_exec(NULL);
648 
649     dbg("resolving ifuncs");
650     if (resolve_objects_ifunc(obj_main,
651       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
652       NULL) == -1)
653 	rtld_die();
654 
655     if (!obj_main->crt_no_init) {
656 	/*
657 	 * Make sure we don't call the main program's init and fini
658 	 * functions for binaries linked with old crt1 which calls
659 	 * _init itself.
660 	 */
661 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
662 	obj_main->preinit_array = obj_main->init_array =
663 	    obj_main->fini_array = (Elf_Addr)NULL;
664     }
665 
666     wlock_acquire(rtld_bind_lock, &lockstate);
667     if (obj_main->crt_no_init)
668 	preinit_main();
669     objlist_call_init(&initlist, &lockstate);
670     _r_debug_postinit(&obj_main->linkmap);
671     objlist_clear(&initlist);
672     dbg("loading filtees");
673     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
674 	if (ld_loadfltr || obj->z_loadfltr)
675 	    load_filtees(obj, 0, &lockstate);
676     }
677     lock_release(rtld_bind_lock, &lockstate);
678 
679     dbg("transferring control to program entry point = %p", obj_main->entry);
680 
681     /* Return the exit procedure and the program entry point. */
682     *exit_proc = rtld_exit;
683     *objp = obj_main;
684     return (func_ptr_type) obj_main->entry;
685 }
686 
687 void *
688 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
689 {
690 	void *ptr;
691 	Elf_Addr target;
692 
693 	ptr = (void *)make_function_pointer(def, obj);
694 	target = ((Elf_Addr (*)(void))ptr)();
695 	return ((void *)target);
696 }
697 
698 Elf_Addr
699 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
700 {
701     const Elf_Rel *rel;
702     const Elf_Sym *def;
703     const Obj_Entry *defobj;
704     Elf_Addr *where;
705     Elf_Addr target;
706     RtldLockState lockstate;
707 
708     rlock_acquire(rtld_bind_lock, &lockstate);
709     if (sigsetjmp(lockstate.env, 0) != 0)
710 	    lock_upgrade(rtld_bind_lock, &lockstate);
711     if (obj->pltrel)
712 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
713     else
714 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
715 
716     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
717     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
718 	&lockstate);
719     if (def == NULL)
720 	rtld_die();
721     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
722 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
723     else
724 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
725 
726     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
727       defobj->strtab + def->st_name, basename(obj->path),
728       (void *)target, basename(defobj->path));
729 
730     /*
731      * Write the new contents for the jmpslot. Note that depending on
732      * architecture, the value which we need to return back to the
733      * lazy binding trampoline may or may not be the target
734      * address. The value returned from reloc_jmpslot() is the value
735      * that the trampoline needs.
736      */
737     target = reloc_jmpslot(where, target, defobj, obj, rel);
738     lock_release(rtld_bind_lock, &lockstate);
739     return target;
740 }
741 
742 /*
743  * Error reporting function.  Use it like printf.  If formats the message
744  * into a buffer, and sets things up so that the next call to dlerror()
745  * will return the message.
746  */
747 void
748 _rtld_error(const char *fmt, ...)
749 {
750     static char buf[512];
751     va_list ap;
752 
753     va_start(ap, fmt);
754     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
755     error_message = buf;
756     va_end(ap);
757 }
758 
759 /*
760  * Return a dynamically-allocated copy of the current error message, if any.
761  */
762 static char *
763 errmsg_save(void)
764 {
765     return error_message == NULL ? NULL : xstrdup(error_message);
766 }
767 
768 /*
769  * Restore the current error message from a copy which was previously saved
770  * by errmsg_save().  The copy is freed.
771  */
772 static void
773 errmsg_restore(char *saved_msg)
774 {
775     if (saved_msg == NULL)
776 	error_message = NULL;
777     else {
778 	_rtld_error("%s", saved_msg);
779 	free(saved_msg);
780     }
781 }
782 
783 static const char *
784 basename(const char *name)
785 {
786     const char *p = strrchr(name, '/');
787     return p != NULL ? p + 1 : name;
788 }
789 
790 static struct utsname uts;
791 
792 static char *
793 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
794     const char *subst, bool may_free)
795 {
796 	char *p, *p1, *res, *resp;
797 	int subst_len, kw_len, subst_count, old_len, new_len;
798 
799 	kw_len = strlen(kw);
800 
801 	/*
802 	 * First, count the number of the keyword occurences, to
803 	 * preallocate the final string.
804 	 */
805 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
806 		p1 = strstr(p, kw);
807 		if (p1 == NULL)
808 			break;
809 	}
810 
811 	/*
812 	 * If the keyword is not found, just return.
813 	 *
814 	 * Return non-substituted string if resolution failed.  We
815 	 * cannot do anything more reasonable, the failure mode of the
816 	 * caller is unresolved library anyway.
817 	 */
818 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
819 		return (may_free ? real : xstrdup(real));
820 	if (obj != NULL)
821 		subst = obj->origin_path;
822 
823 	/*
824 	 * There is indeed something to substitute.  Calculate the
825 	 * length of the resulting string, and allocate it.
826 	 */
827 	subst_len = strlen(subst);
828 	old_len = strlen(real);
829 	new_len = old_len + (subst_len - kw_len) * subst_count;
830 	res = xmalloc(new_len + 1);
831 
832 	/*
833 	 * Now, execute the substitution loop.
834 	 */
835 	for (p = real, resp = res, *resp = '\0';;) {
836 		p1 = strstr(p, kw);
837 		if (p1 != NULL) {
838 			/* Copy the prefix before keyword. */
839 			memcpy(resp, p, p1 - p);
840 			resp += p1 - p;
841 			/* Keyword replacement. */
842 			memcpy(resp, subst, subst_len);
843 			resp += subst_len;
844 			*resp = '\0';
845 			p = p1 + kw_len;
846 		} else
847 			break;
848 	}
849 
850 	/* Copy to the end of string and finish. */
851 	strcat(resp, p);
852 	if (may_free)
853 		free(real);
854 	return (res);
855 }
856 
857 static char *
858 origin_subst(Obj_Entry *obj, char *real)
859 {
860 	char *res1, *res2, *res3, *res4;
861 
862 	if (obj == NULL || !trust)
863 		return (xstrdup(real));
864 	if (uts.sysname[0] == '\0') {
865 		if (uname(&uts) != 0) {
866 			_rtld_error("utsname failed: %d", errno);
867 			return (NULL);
868 		}
869 	}
870 	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
871 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
872 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
873 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
874 	return (res4);
875 }
876 
877 void
878 rtld_die(void)
879 {
880     const char *msg = dlerror();
881 
882     if (msg == NULL)
883 	msg = "Fatal error";
884     rtld_fdputstr(STDERR_FILENO, msg);
885     rtld_fdputchar(STDERR_FILENO, '\n');
886     _exit(1);
887 }
888 
889 /*
890  * Process a shared object's DYNAMIC section, and save the important
891  * information in its Obj_Entry structure.
892  */
893 static void
894 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
895     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
896 {
897     const Elf_Dyn *dynp;
898     Needed_Entry **needed_tail = &obj->needed;
899     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
900     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
901     const Elf_Hashelt *hashtab;
902     const Elf32_Word *hashval;
903     Elf32_Word bkt, nmaskwords;
904     int bloom_size32;
905     int plttype = DT_REL;
906 
907     *dyn_rpath = NULL;
908     *dyn_soname = NULL;
909     *dyn_runpath = NULL;
910 
911     obj->bind_now = false;
912     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
913 	switch (dynp->d_tag) {
914 
915 	case DT_REL:
916 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
917 	    break;
918 
919 	case DT_RELSZ:
920 	    obj->relsize = dynp->d_un.d_val;
921 	    break;
922 
923 	case DT_RELENT:
924 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
925 	    break;
926 
927 	case DT_JMPREL:
928 	    obj->pltrel = (const Elf_Rel *)
929 	      (obj->relocbase + dynp->d_un.d_ptr);
930 	    break;
931 
932 	case DT_PLTRELSZ:
933 	    obj->pltrelsize = dynp->d_un.d_val;
934 	    break;
935 
936 	case DT_RELA:
937 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
938 	    break;
939 
940 	case DT_RELASZ:
941 	    obj->relasize = dynp->d_un.d_val;
942 	    break;
943 
944 	case DT_RELAENT:
945 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
946 	    break;
947 
948 	case DT_PLTREL:
949 	    plttype = dynp->d_un.d_val;
950 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
951 	    break;
952 
953 	case DT_SYMTAB:
954 	    obj->symtab = (const Elf_Sym *)
955 	      (obj->relocbase + dynp->d_un.d_ptr);
956 	    break;
957 
958 	case DT_SYMENT:
959 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
960 	    break;
961 
962 	case DT_STRTAB:
963 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
964 	    break;
965 
966 	case DT_STRSZ:
967 	    obj->strsize = dynp->d_un.d_val;
968 	    break;
969 
970 	case DT_VERNEED:
971 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
972 		dynp->d_un.d_val);
973 	    break;
974 
975 	case DT_VERNEEDNUM:
976 	    obj->verneednum = dynp->d_un.d_val;
977 	    break;
978 
979 	case DT_VERDEF:
980 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
981 		dynp->d_un.d_val);
982 	    break;
983 
984 	case DT_VERDEFNUM:
985 	    obj->verdefnum = dynp->d_un.d_val;
986 	    break;
987 
988 	case DT_VERSYM:
989 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
990 		dynp->d_un.d_val);
991 	    break;
992 
993 	case DT_HASH:
994 	    {
995 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
996 		    dynp->d_un.d_ptr);
997 		obj->nbuckets = hashtab[0];
998 		obj->nchains = hashtab[1];
999 		obj->buckets = hashtab + 2;
1000 		obj->chains = obj->buckets + obj->nbuckets;
1001 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1002 		  obj->buckets != NULL;
1003 	    }
1004 	    break;
1005 
1006 	case DT_GNU_HASH:
1007 	    {
1008 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1009 		    dynp->d_un.d_ptr);
1010 		obj->nbuckets_gnu = hashtab[0];
1011 		obj->symndx_gnu = hashtab[1];
1012 		nmaskwords = hashtab[2];
1013 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1014 		obj->maskwords_bm_gnu = nmaskwords - 1;
1015 		obj->shift2_gnu = hashtab[3];
1016 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1017 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1018 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1019 		  obj->symndx_gnu;
1020 		/* Number of bitmask words is required to be power of 2 */
1021 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1022 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1023 	    }
1024 	    break;
1025 
1026 	case DT_NEEDED:
1027 	    if (!obj->rtld) {
1028 		Needed_Entry *nep = NEW(Needed_Entry);
1029 		nep->name = dynp->d_un.d_val;
1030 		nep->obj = NULL;
1031 		nep->next = NULL;
1032 
1033 		*needed_tail = nep;
1034 		needed_tail = &nep->next;
1035 	    }
1036 	    break;
1037 
1038 	case DT_FILTER:
1039 	    if (!obj->rtld) {
1040 		Needed_Entry *nep = NEW(Needed_Entry);
1041 		nep->name = dynp->d_un.d_val;
1042 		nep->obj = NULL;
1043 		nep->next = NULL;
1044 
1045 		*needed_filtees_tail = nep;
1046 		needed_filtees_tail = &nep->next;
1047 	    }
1048 	    break;
1049 
1050 	case DT_AUXILIARY:
1051 	    if (!obj->rtld) {
1052 		Needed_Entry *nep = NEW(Needed_Entry);
1053 		nep->name = dynp->d_un.d_val;
1054 		nep->obj = NULL;
1055 		nep->next = NULL;
1056 
1057 		*needed_aux_filtees_tail = nep;
1058 		needed_aux_filtees_tail = &nep->next;
1059 	    }
1060 	    break;
1061 
1062 	case DT_PLTGOT:
1063 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1064 	    break;
1065 
1066 	case DT_TEXTREL:
1067 	    obj->textrel = true;
1068 	    break;
1069 
1070 	case DT_SYMBOLIC:
1071 	    obj->symbolic = true;
1072 	    break;
1073 
1074 	case DT_RPATH:
1075 	    /*
1076 	     * We have to wait until later to process this, because we
1077 	     * might not have gotten the address of the string table yet.
1078 	     */
1079 	    *dyn_rpath = dynp;
1080 	    break;
1081 
1082 	case DT_SONAME:
1083 	    *dyn_soname = dynp;
1084 	    break;
1085 
1086 	case DT_RUNPATH:
1087 	    *dyn_runpath = dynp;
1088 	    break;
1089 
1090 	case DT_INIT:
1091 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1092 	    break;
1093 
1094 	case DT_PREINIT_ARRAY:
1095 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1096 	    break;
1097 
1098 	case DT_PREINIT_ARRAYSZ:
1099 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1100 	    break;
1101 
1102 	case DT_INIT_ARRAY:
1103 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1104 	    break;
1105 
1106 	case DT_INIT_ARRAYSZ:
1107 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1108 	    break;
1109 
1110 	case DT_FINI:
1111 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1112 	    break;
1113 
1114 	case DT_FINI_ARRAY:
1115 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1116 	    break;
1117 
1118 	case DT_FINI_ARRAYSZ:
1119 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1120 	    break;
1121 
1122 	/*
1123 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1124 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1125 	 */
1126 
1127 #ifndef __mips__
1128 	case DT_DEBUG:
1129 	    /* XXX - not implemented yet */
1130 	    if (!early)
1131 		dbg("Filling in DT_DEBUG entry");
1132 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1133 	    break;
1134 #endif
1135 
1136 	case DT_FLAGS:
1137 		if (dynp->d_un.d_val & DF_ORIGIN)
1138 		    obj->z_origin = true;
1139 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1140 		    obj->symbolic = true;
1141 		if (dynp->d_un.d_val & DF_TEXTREL)
1142 		    obj->textrel = true;
1143 		if (dynp->d_un.d_val & DF_BIND_NOW)
1144 		    obj->bind_now = true;
1145 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1146 		    ;*/
1147 	    break;
1148 #ifdef __mips__
1149 	case DT_MIPS_LOCAL_GOTNO:
1150 		obj->local_gotno = dynp->d_un.d_val;
1151 	    break;
1152 
1153 	case DT_MIPS_SYMTABNO:
1154 		obj->symtabno = dynp->d_un.d_val;
1155 		break;
1156 
1157 	case DT_MIPS_GOTSYM:
1158 		obj->gotsym = dynp->d_un.d_val;
1159 		break;
1160 
1161 	case DT_MIPS_RLD_MAP:
1162 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1163 		break;
1164 #endif
1165 
1166 	case DT_FLAGS_1:
1167 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1168 		    obj->z_noopen = true;
1169 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1170 		    obj->z_origin = true;
1171 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1172 		    obj->z_global = true;
1173 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1174 		    obj->bind_now = true;
1175 		if (dynp->d_un.d_val & DF_1_NODELETE)
1176 		    obj->z_nodelete = true;
1177 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1178 		    obj->z_loadfltr = true;
1179 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1180 		    obj->z_interpose = true;
1181 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1182 		    obj->z_nodeflib = true;
1183 	    break;
1184 
1185 	default:
1186 	    if (!early) {
1187 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1188 		    (long)dynp->d_tag);
1189 	    }
1190 	    break;
1191 	}
1192     }
1193 
1194     obj->traced = false;
1195 
1196     if (plttype == DT_RELA) {
1197 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1198 	obj->pltrel = NULL;
1199 	obj->pltrelasize = obj->pltrelsize;
1200 	obj->pltrelsize = 0;
1201     }
1202 
1203     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1204     if (obj->valid_hash_sysv)
1205 	obj->dynsymcount = obj->nchains;
1206     else if (obj->valid_hash_gnu) {
1207 	obj->dynsymcount = 0;
1208 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1209 	    if (obj->buckets_gnu[bkt] == 0)
1210 		continue;
1211 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1212 	    do
1213 		obj->dynsymcount++;
1214 	    while ((*hashval++ & 1u) == 0);
1215 	}
1216 	obj->dynsymcount += obj->symndx_gnu;
1217     }
1218 }
1219 
1220 static bool
1221 obj_resolve_origin(Obj_Entry *obj)
1222 {
1223 
1224 	if (obj->origin_path != NULL)
1225 		return (true);
1226 	obj->origin_path = xmalloc(PATH_MAX);
1227 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1228 }
1229 
1230 static void
1231 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1232     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1233 {
1234 
1235 	if (obj->z_origin && !obj_resolve_origin(obj))
1236 		rtld_die();
1237 
1238 	if (dyn_runpath != NULL) {
1239 		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1240 		obj->runpath = origin_subst(obj, obj->runpath);
1241 	} else if (dyn_rpath != NULL) {
1242 		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1243 		obj->rpath = origin_subst(obj, obj->rpath);
1244 	}
1245 	if (dyn_soname != NULL)
1246 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1247 }
1248 
1249 static void
1250 digest_dynamic(Obj_Entry *obj, int early)
1251 {
1252 	const Elf_Dyn *dyn_rpath;
1253 	const Elf_Dyn *dyn_soname;
1254 	const Elf_Dyn *dyn_runpath;
1255 
1256 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1257 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1258 }
1259 
1260 /*
1261  * Process a shared object's program header.  This is used only for the
1262  * main program, when the kernel has already loaded the main program
1263  * into memory before calling the dynamic linker.  It creates and
1264  * returns an Obj_Entry structure.
1265  */
1266 static Obj_Entry *
1267 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1268 {
1269     Obj_Entry *obj;
1270     const Elf_Phdr *phlimit = phdr + phnum;
1271     const Elf_Phdr *ph;
1272     Elf_Addr note_start, note_end;
1273     int nsegs = 0;
1274 
1275     obj = obj_new();
1276     for (ph = phdr;  ph < phlimit;  ph++) {
1277 	if (ph->p_type != PT_PHDR)
1278 	    continue;
1279 
1280 	obj->phdr = phdr;
1281 	obj->phsize = ph->p_memsz;
1282 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1283 	break;
1284     }
1285 
1286     obj->stack_flags = PF_X | PF_R | PF_W;
1287 
1288     for (ph = phdr;  ph < phlimit;  ph++) {
1289 	switch (ph->p_type) {
1290 
1291 	case PT_INTERP:
1292 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1293 	    break;
1294 
1295 	case PT_LOAD:
1296 	    if (nsegs == 0) {	/* First load segment */
1297 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1298 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1299 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1300 		  obj->vaddrbase;
1301 	    } else {		/* Last load segment */
1302 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1303 		  obj->vaddrbase;
1304 	    }
1305 	    nsegs++;
1306 	    break;
1307 
1308 	case PT_DYNAMIC:
1309 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1310 	    break;
1311 
1312 	case PT_TLS:
1313 	    obj->tlsindex = 1;
1314 	    obj->tlssize = ph->p_memsz;
1315 	    obj->tlsalign = ph->p_align;
1316 	    obj->tlsinitsize = ph->p_filesz;
1317 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1318 	    break;
1319 
1320 	case PT_GNU_STACK:
1321 	    obj->stack_flags = ph->p_flags;
1322 	    break;
1323 
1324 	case PT_GNU_RELRO:
1325 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1326 	    obj->relro_size = round_page(ph->p_memsz);
1327 	    break;
1328 
1329 	case PT_NOTE:
1330 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1331 	    note_end = note_start + ph->p_filesz;
1332 	    digest_notes(obj, note_start, note_end);
1333 	    break;
1334 	}
1335     }
1336     if (nsegs < 1) {
1337 	_rtld_error("%s: too few PT_LOAD segments", path);
1338 	return NULL;
1339     }
1340 
1341     obj->entry = entry;
1342     return obj;
1343 }
1344 
1345 void
1346 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1347 {
1348 	const Elf_Note *note;
1349 	const char *note_name;
1350 	uintptr_t p;
1351 
1352 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1353 	    note = (const Elf_Note *)((const char *)(note + 1) +
1354 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1355 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1356 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1357 		    note->n_descsz != sizeof(int32_t))
1358 			continue;
1359 		if (note->n_type != ABI_NOTETYPE &&
1360 		    note->n_type != CRT_NOINIT_NOTETYPE)
1361 			continue;
1362 		note_name = (const char *)(note + 1);
1363 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1364 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1365 			continue;
1366 		switch (note->n_type) {
1367 		case ABI_NOTETYPE:
1368 			/* FreeBSD osrel note */
1369 			p = (uintptr_t)(note + 1);
1370 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1371 			obj->osrel = *(const int32_t *)(p);
1372 			dbg("note osrel %d", obj->osrel);
1373 			break;
1374 		case CRT_NOINIT_NOTETYPE:
1375 			/* FreeBSD 'crt does not call init' note */
1376 			obj->crt_no_init = true;
1377 			dbg("note crt_no_init");
1378 			break;
1379 		}
1380 	}
1381 }
1382 
1383 static Obj_Entry *
1384 dlcheck(void *handle)
1385 {
1386     Obj_Entry *obj;
1387 
1388     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1389 	if (obj == (Obj_Entry *) handle)
1390 	    break;
1391 
1392     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1393 	_rtld_error("Invalid shared object handle %p", handle);
1394 	return NULL;
1395     }
1396     return obj;
1397 }
1398 
1399 /*
1400  * If the given object is already in the donelist, return true.  Otherwise
1401  * add the object to the list and return false.
1402  */
1403 static bool
1404 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1405 {
1406     unsigned int i;
1407 
1408     for (i = 0;  i < dlp->num_used;  i++)
1409 	if (dlp->objs[i] == obj)
1410 	    return true;
1411     /*
1412      * Our donelist allocation should always be sufficient.  But if
1413      * our threads locking isn't working properly, more shared objects
1414      * could have been loaded since we allocated the list.  That should
1415      * never happen, but we'll handle it properly just in case it does.
1416      */
1417     if (dlp->num_used < dlp->num_alloc)
1418 	dlp->objs[dlp->num_used++] = obj;
1419     return false;
1420 }
1421 
1422 /*
1423  * Hash function for symbol table lookup.  Don't even think about changing
1424  * this.  It is specified by the System V ABI.
1425  */
1426 unsigned long
1427 elf_hash(const char *name)
1428 {
1429     const unsigned char *p = (const unsigned char *) name;
1430     unsigned long h = 0;
1431     unsigned long g;
1432 
1433     while (*p != '\0') {
1434 	h = (h << 4) + *p++;
1435 	if ((g = h & 0xf0000000) != 0)
1436 	    h ^= g >> 24;
1437 	h &= ~g;
1438     }
1439     return h;
1440 }
1441 
1442 /*
1443  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1444  * unsigned in case it's implemented with a wider type.
1445  */
1446 static uint32_t
1447 gnu_hash(const char *s)
1448 {
1449 	uint32_t h;
1450 	unsigned char c;
1451 
1452 	h = 5381;
1453 	for (c = *s; c != '\0'; c = *++s)
1454 		h = h * 33 + c;
1455 	return (h & 0xffffffff);
1456 }
1457 
1458 
1459 /*
1460  * Find the library with the given name, and return its full pathname.
1461  * The returned string is dynamically allocated.  Generates an error
1462  * message and returns NULL if the library cannot be found.
1463  *
1464  * If the second argument is non-NULL, then it refers to an already-
1465  * loaded shared object, whose library search path will be searched.
1466  *
1467  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1468  * descriptor (which is close-on-exec) will be passed out via the third
1469  * argument.
1470  *
1471  * The search order is:
1472  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1473  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1474  *   LD_LIBRARY_PATH
1475  *   DT_RUNPATH in the referencing file
1476  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1477  *	 from list)
1478  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1479  *
1480  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1481  */
1482 static char *
1483 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1484 {
1485     char *pathname;
1486     char *name;
1487     bool nodeflib, objgiven;
1488 
1489     objgiven = refobj != NULL;
1490     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1491 	if (xname[0] != '/' && !trust) {
1492 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1493 	      xname);
1494 	    return NULL;
1495 	}
1496 	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1497 	  __DECONST(char *, xname)));
1498     }
1499 
1500     if (libmap_disable || !objgiven ||
1501 	(name = lm_find(refobj->path, xname)) == NULL)
1502 	name = (char *)xname;
1503 
1504     dbg(" Searching for \"%s\"", name);
1505 
1506     /*
1507      * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1508      * back to pre-conforming behaviour if user requested so with
1509      * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1510      * nodeflib.
1511      */
1512     if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1513 	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1514 	  (refobj != NULL &&
1515 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1516 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1517           (pathname = search_library_path(name, gethints(false))) != NULL ||
1518 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1519 	    return (pathname);
1520     } else {
1521 	nodeflib = objgiven ? refobj->z_nodeflib : false;
1522 	if ((objgiven &&
1523 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1524 	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1525 	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1526 	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1527 	  (objgiven &&
1528 	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1529 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1530 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1531 	  (objgiven && !nodeflib &&
1532 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1533 	    return (pathname);
1534     }
1535 
1536     if (objgiven && refobj->path != NULL) {
1537 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1538 	  name, basename(refobj->path));
1539     } else {
1540 	_rtld_error("Shared object \"%s\" not found", name);
1541     }
1542     return NULL;
1543 }
1544 
1545 /*
1546  * Given a symbol number in a referencing object, find the corresponding
1547  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1548  * no definition was found.  Returns a pointer to the Obj_Entry of the
1549  * defining object via the reference parameter DEFOBJ_OUT.
1550  */
1551 const Elf_Sym *
1552 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1553     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1554     RtldLockState *lockstate)
1555 {
1556     const Elf_Sym *ref;
1557     const Elf_Sym *def;
1558     const Obj_Entry *defobj;
1559     SymLook req;
1560     const char *name;
1561     int res;
1562 
1563     /*
1564      * If we have already found this symbol, get the information from
1565      * the cache.
1566      */
1567     if (symnum >= refobj->dynsymcount)
1568 	return NULL;	/* Bad object */
1569     if (cache != NULL && cache[symnum].sym != NULL) {
1570 	*defobj_out = cache[symnum].obj;
1571 	return cache[symnum].sym;
1572     }
1573 
1574     ref = refobj->symtab + symnum;
1575     name = refobj->strtab + ref->st_name;
1576     def = NULL;
1577     defobj = NULL;
1578 
1579     /*
1580      * We don't have to do a full scale lookup if the symbol is local.
1581      * We know it will bind to the instance in this load module; to
1582      * which we already have a pointer (ie ref). By not doing a lookup,
1583      * we not only improve performance, but it also avoids unresolvable
1584      * symbols when local symbols are not in the hash table. This has
1585      * been seen with the ia64 toolchain.
1586      */
1587     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1588 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1589 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1590 		symnum);
1591 	}
1592 	symlook_init(&req, name);
1593 	req.flags = flags;
1594 	req.ventry = fetch_ventry(refobj, symnum);
1595 	req.lockstate = lockstate;
1596 	res = symlook_default(&req, refobj);
1597 	if (res == 0) {
1598 	    def = req.sym_out;
1599 	    defobj = req.defobj_out;
1600 	}
1601     } else {
1602 	def = ref;
1603 	defobj = refobj;
1604     }
1605 
1606     /*
1607      * If we found no definition and the reference is weak, treat the
1608      * symbol as having the value zero.
1609      */
1610     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1611 	def = &sym_zero;
1612 	defobj = obj_main;
1613     }
1614 
1615     if (def != NULL) {
1616 	*defobj_out = defobj;
1617 	/* Record the information in the cache to avoid subsequent lookups. */
1618 	if (cache != NULL) {
1619 	    cache[symnum].sym = def;
1620 	    cache[symnum].obj = defobj;
1621 	}
1622     } else {
1623 	if (refobj != &obj_rtld)
1624 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1625     }
1626     return def;
1627 }
1628 
1629 /*
1630  * Return the search path from the ldconfig hints file, reading it if
1631  * necessary.  If nostdlib is true, then the default search paths are
1632  * not added to result.
1633  *
1634  * Returns NULL if there are problems with the hints file,
1635  * or if the search path there is empty.
1636  */
1637 static const char *
1638 gethints(bool nostdlib)
1639 {
1640 	static char *hints, *filtered_path;
1641 	struct elfhints_hdr hdr;
1642 	struct fill_search_info_args sargs, hargs;
1643 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1644 	struct dl_serpath *SLPpath, *hintpath;
1645 	char *p;
1646 	unsigned int SLPndx, hintndx, fndx, fcount;
1647 	int fd;
1648 	size_t flen;
1649 	bool skip;
1650 
1651 	/* First call, read the hints file */
1652 	if (hints == NULL) {
1653 		/* Keep from trying again in case the hints file is bad. */
1654 		hints = "";
1655 
1656 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1657 			return (NULL);
1658 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1659 		    hdr.magic != ELFHINTS_MAGIC ||
1660 		    hdr.version != 1) {
1661 			close(fd);
1662 			return (NULL);
1663 		}
1664 		p = xmalloc(hdr.dirlistlen + 1);
1665 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1666 		    read(fd, p, hdr.dirlistlen + 1) !=
1667 		    (ssize_t)hdr.dirlistlen + 1) {
1668 			free(p);
1669 			close(fd);
1670 			return (NULL);
1671 		}
1672 		hints = p;
1673 		close(fd);
1674 	}
1675 
1676 	/*
1677 	 * If caller agreed to receive list which includes the default
1678 	 * paths, we are done. Otherwise, if we still did not
1679 	 * calculated filtered result, do it now.
1680 	 */
1681 	if (!nostdlib)
1682 		return (hints[0] != '\0' ? hints : NULL);
1683 	if (filtered_path != NULL)
1684 		goto filt_ret;
1685 
1686 	/*
1687 	 * Obtain the list of all configured search paths, and the
1688 	 * list of the default paths.
1689 	 *
1690 	 * First estimate the size of the results.
1691 	 */
1692 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1693 	smeta.dls_cnt = 0;
1694 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1695 	hmeta.dls_cnt = 0;
1696 
1697 	sargs.request = RTLD_DI_SERINFOSIZE;
1698 	sargs.serinfo = &smeta;
1699 	hargs.request = RTLD_DI_SERINFOSIZE;
1700 	hargs.serinfo = &hmeta;
1701 
1702 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1703 	path_enumerate(p, fill_search_info, &hargs);
1704 
1705 	SLPinfo = xmalloc(smeta.dls_size);
1706 	hintinfo = xmalloc(hmeta.dls_size);
1707 
1708 	/*
1709 	 * Next fetch both sets of paths.
1710 	 */
1711 	sargs.request = RTLD_DI_SERINFO;
1712 	sargs.serinfo = SLPinfo;
1713 	sargs.serpath = &SLPinfo->dls_serpath[0];
1714 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1715 
1716 	hargs.request = RTLD_DI_SERINFO;
1717 	hargs.serinfo = hintinfo;
1718 	hargs.serpath = &hintinfo->dls_serpath[0];
1719 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1720 
1721 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1722 	path_enumerate(p, fill_search_info, &hargs);
1723 
1724 	/*
1725 	 * Now calculate the difference between two sets, by excluding
1726 	 * standard paths from the full set.
1727 	 */
1728 	fndx = 0;
1729 	fcount = 0;
1730 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1731 	hintpath = &hintinfo->dls_serpath[0];
1732 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1733 		skip = false;
1734 		SLPpath = &SLPinfo->dls_serpath[0];
1735 		/*
1736 		 * Check each standard path against current.
1737 		 */
1738 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1739 			/* matched, skip the path */
1740 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1741 				skip = true;
1742 				break;
1743 			}
1744 		}
1745 		if (skip)
1746 			continue;
1747 		/*
1748 		 * Not matched against any standard path, add the path
1749 		 * to result. Separate consequtive paths with ':'.
1750 		 */
1751 		if (fcount > 0) {
1752 			filtered_path[fndx] = ':';
1753 			fndx++;
1754 		}
1755 		fcount++;
1756 		flen = strlen(hintpath->dls_name);
1757 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1758 		fndx += flen;
1759 	}
1760 	filtered_path[fndx] = '\0';
1761 
1762 	free(SLPinfo);
1763 	free(hintinfo);
1764 
1765 filt_ret:
1766 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1767 }
1768 
1769 static void
1770 init_dag(Obj_Entry *root)
1771 {
1772     const Needed_Entry *needed;
1773     const Objlist_Entry *elm;
1774     DoneList donelist;
1775 
1776     if (root->dag_inited)
1777 	return;
1778     donelist_init(&donelist);
1779 
1780     /* Root object belongs to own DAG. */
1781     objlist_push_tail(&root->dldags, root);
1782     objlist_push_tail(&root->dagmembers, root);
1783     donelist_check(&donelist, root);
1784 
1785     /*
1786      * Add dependencies of root object to DAG in breadth order
1787      * by exploiting the fact that each new object get added
1788      * to the tail of the dagmembers list.
1789      */
1790     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1791 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1792 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1793 		continue;
1794 	    objlist_push_tail(&needed->obj->dldags, root);
1795 	    objlist_push_tail(&root->dagmembers, needed->obj);
1796 	}
1797     }
1798     root->dag_inited = true;
1799 }
1800 
1801 static void
1802 process_z(Obj_Entry *root)
1803 {
1804 	const Objlist_Entry *elm;
1805 	Obj_Entry *obj;
1806 
1807 	/*
1808 	 * Walk over object DAG and process every dependent object
1809 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1810 	 * to grow their own DAG.
1811 	 *
1812 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1813 	 * symlook_global() to work.
1814 	 *
1815 	 * For DF_1_NODELETE, the DAG should have its reference upped.
1816 	 */
1817 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1818 		obj = elm->obj;
1819 		if (obj == NULL)
1820 			continue;
1821 		if (obj->z_nodelete && !obj->ref_nodel) {
1822 			dbg("obj %s -z nodelete", obj->path);
1823 			init_dag(obj);
1824 			ref_dag(obj);
1825 			obj->ref_nodel = true;
1826 		}
1827 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1828 			dbg("obj %s -z global", obj->path);
1829 			objlist_push_tail(&list_global, obj);
1830 			init_dag(obj);
1831 		}
1832 	}
1833 }
1834 /*
1835  * Initialize the dynamic linker.  The argument is the address at which
1836  * the dynamic linker has been mapped into memory.  The primary task of
1837  * this function is to relocate the dynamic linker.
1838  */
1839 static void
1840 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1841 {
1842     Obj_Entry objtmp;	/* Temporary rtld object */
1843     const Elf_Dyn *dyn_rpath;
1844     const Elf_Dyn *dyn_soname;
1845     const Elf_Dyn *dyn_runpath;
1846 
1847 #ifdef RTLD_INIT_PAGESIZES_EARLY
1848     /* The page size is required by the dynamic memory allocator. */
1849     init_pagesizes(aux_info);
1850 #endif
1851 
1852     /*
1853      * Conjure up an Obj_Entry structure for the dynamic linker.
1854      *
1855      * The "path" member can't be initialized yet because string constants
1856      * cannot yet be accessed. Below we will set it correctly.
1857      */
1858     memset(&objtmp, 0, sizeof(objtmp));
1859     objtmp.path = NULL;
1860     objtmp.rtld = true;
1861     objtmp.mapbase = mapbase;
1862 #ifdef PIC
1863     objtmp.relocbase = mapbase;
1864 #endif
1865     if (RTLD_IS_DYNAMIC()) {
1866 	objtmp.dynamic = rtld_dynamic(&objtmp);
1867 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1868 	assert(objtmp.needed == NULL);
1869 #if !defined(__mips__)
1870 	/* MIPS has a bogus DT_TEXTREL. */
1871 	assert(!objtmp.textrel);
1872 #endif
1873 
1874 	/*
1875 	 * Temporarily put the dynamic linker entry into the object list, so
1876 	 * that symbols can be found.
1877 	 */
1878 
1879 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1880     }
1881 
1882     /* Initialize the object list. */
1883     obj_tail = &obj_list;
1884 
1885     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1886     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1887 
1888 #ifndef RTLD_INIT_PAGESIZES_EARLY
1889     /* The page size is required by the dynamic memory allocator. */
1890     init_pagesizes(aux_info);
1891 #endif
1892 
1893     if (aux_info[AT_OSRELDATE] != NULL)
1894 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1895 
1896     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1897 
1898     /* Replace the path with a dynamically allocated copy. */
1899     obj_rtld.path = xstrdup(PATH_RTLD);
1900 
1901     r_debug.r_brk = r_debug_state;
1902     r_debug.r_state = RT_CONSISTENT;
1903 }
1904 
1905 /*
1906  * Retrieve the array of supported page sizes.  The kernel provides the page
1907  * sizes in increasing order.
1908  */
1909 static void
1910 init_pagesizes(Elf_Auxinfo **aux_info)
1911 {
1912 	static size_t psa[MAXPAGESIZES];
1913 	int mib[2];
1914 	size_t len, size;
1915 
1916 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1917 	    NULL) {
1918 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1919 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1920 	} else {
1921 		len = 2;
1922 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1923 			size = sizeof(psa);
1924 		else {
1925 			/* As a fallback, retrieve the base page size. */
1926 			size = sizeof(psa[0]);
1927 			if (aux_info[AT_PAGESZ] != NULL) {
1928 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1929 				goto psa_filled;
1930 			} else {
1931 				mib[0] = CTL_HW;
1932 				mib[1] = HW_PAGESIZE;
1933 				len = 2;
1934 			}
1935 		}
1936 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1937 			_rtld_error("sysctl for hw.pagesize(s) failed");
1938 			rtld_die();
1939 		}
1940 psa_filled:
1941 		pagesizes = psa;
1942 	}
1943 	npagesizes = size / sizeof(pagesizes[0]);
1944 	/* Discard any invalid entries at the end of the array. */
1945 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1946 		npagesizes--;
1947 }
1948 
1949 /*
1950  * Add the init functions from a needed object list (and its recursive
1951  * needed objects) to "list".  This is not used directly; it is a helper
1952  * function for initlist_add_objects().  The write lock must be held
1953  * when this function is called.
1954  */
1955 static void
1956 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1957 {
1958     /* Recursively process the successor needed objects. */
1959     if (needed->next != NULL)
1960 	initlist_add_neededs(needed->next, list);
1961 
1962     /* Process the current needed object. */
1963     if (needed->obj != NULL)
1964 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1965 }
1966 
1967 /*
1968  * Scan all of the DAGs rooted in the range of objects from "obj" to
1969  * "tail" and add their init functions to "list".  This recurses over
1970  * the DAGs and ensure the proper init ordering such that each object's
1971  * needed libraries are initialized before the object itself.  At the
1972  * same time, this function adds the objects to the global finalization
1973  * list "list_fini" in the opposite order.  The write lock must be
1974  * held when this function is called.
1975  */
1976 static void
1977 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1978 {
1979 
1980     if (obj->init_scanned || obj->init_done)
1981 	return;
1982     obj->init_scanned = true;
1983 
1984     /* Recursively process the successor objects. */
1985     if (&obj->next != tail)
1986 	initlist_add_objects(obj->next, tail, list);
1987 
1988     /* Recursively process the needed objects. */
1989     if (obj->needed != NULL)
1990 	initlist_add_neededs(obj->needed, list);
1991     if (obj->needed_filtees != NULL)
1992 	initlist_add_neededs(obj->needed_filtees, list);
1993     if (obj->needed_aux_filtees != NULL)
1994 	initlist_add_neededs(obj->needed_aux_filtees, list);
1995 
1996     /* Add the object to the init list. */
1997     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1998       obj->init_array != (Elf_Addr)NULL)
1999 	objlist_push_tail(list, obj);
2000 
2001     /* Add the object to the global fini list in the reverse order. */
2002     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2003       && !obj->on_fini_list) {
2004 	objlist_push_head(&list_fini, obj);
2005 	obj->on_fini_list = true;
2006     }
2007 }
2008 
2009 #ifndef FPTR_TARGET
2010 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2011 #endif
2012 
2013 static void
2014 free_needed_filtees(Needed_Entry *n)
2015 {
2016     Needed_Entry *needed, *needed1;
2017 
2018     for (needed = n; needed != NULL; needed = needed->next) {
2019 	if (needed->obj != NULL) {
2020 	    dlclose(needed->obj);
2021 	    needed->obj = NULL;
2022 	}
2023     }
2024     for (needed = n; needed != NULL; needed = needed1) {
2025 	needed1 = needed->next;
2026 	free(needed);
2027     }
2028 }
2029 
2030 static void
2031 unload_filtees(Obj_Entry *obj)
2032 {
2033 
2034     free_needed_filtees(obj->needed_filtees);
2035     obj->needed_filtees = NULL;
2036     free_needed_filtees(obj->needed_aux_filtees);
2037     obj->needed_aux_filtees = NULL;
2038     obj->filtees_loaded = false;
2039 }
2040 
2041 static void
2042 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2043     RtldLockState *lockstate)
2044 {
2045 
2046     for (; needed != NULL; needed = needed->next) {
2047 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2048 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2049 	  RTLD_LOCAL, lockstate);
2050     }
2051 }
2052 
2053 static void
2054 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2055 {
2056 
2057     lock_restart_for_upgrade(lockstate);
2058     if (!obj->filtees_loaded) {
2059 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2060 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2061 	obj->filtees_loaded = true;
2062     }
2063 }
2064 
2065 static int
2066 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2067 {
2068     Obj_Entry *obj1;
2069 
2070     for (; needed != NULL; needed = needed->next) {
2071 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2072 	  flags & ~RTLD_LO_NOLOAD);
2073 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2074 	    return (-1);
2075     }
2076     return (0);
2077 }
2078 
2079 /*
2080  * Given a shared object, traverse its list of needed objects, and load
2081  * each of them.  Returns 0 on success.  Generates an error message and
2082  * returns -1 on failure.
2083  */
2084 static int
2085 load_needed_objects(Obj_Entry *first, int flags)
2086 {
2087     Obj_Entry *obj;
2088 
2089     for (obj = first;  obj != NULL;  obj = obj->next) {
2090 	if (process_needed(obj, obj->needed, flags) == -1)
2091 	    return (-1);
2092     }
2093     return (0);
2094 }
2095 
2096 static int
2097 load_preload_objects(void)
2098 {
2099     char *p = ld_preload;
2100     Obj_Entry *obj;
2101     static const char delim[] = " \t:;";
2102 
2103     if (p == NULL)
2104 	return 0;
2105 
2106     p += strspn(p, delim);
2107     while (*p != '\0') {
2108 	size_t len = strcspn(p, delim);
2109 	char savech;
2110 
2111 	savech = p[len];
2112 	p[len] = '\0';
2113 	obj = load_object(p, -1, NULL, 0);
2114 	if (obj == NULL)
2115 	    return -1;	/* XXX - cleanup */
2116 	obj->z_interpose = true;
2117 	p[len] = savech;
2118 	p += len;
2119 	p += strspn(p, delim);
2120     }
2121     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2122     return 0;
2123 }
2124 
2125 static const char *
2126 printable_path(const char *path)
2127 {
2128 
2129 	return (path == NULL ? "<unknown>" : path);
2130 }
2131 
2132 /*
2133  * Load a shared object into memory, if it is not already loaded.  The
2134  * object may be specified by name or by user-supplied file descriptor
2135  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2136  * duplicate is.
2137  *
2138  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2139  * on failure.
2140  */
2141 static Obj_Entry *
2142 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2143 {
2144     Obj_Entry *obj;
2145     int fd;
2146     struct stat sb;
2147     char *path;
2148 
2149     fd = -1;
2150     if (name != NULL) {
2151 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2152 	    if (object_match_name(obj, name))
2153 		return (obj);
2154 	}
2155 
2156 	path = find_library(name, refobj, &fd);
2157 	if (path == NULL)
2158 	    return (NULL);
2159     } else
2160 	path = NULL;
2161 
2162     if (fd >= 0) {
2163 	/*
2164 	 * search_library_pathfds() opens a fresh file descriptor for the
2165 	 * library, so there is no need to dup().
2166 	 */
2167     } else if (fd_u == -1) {
2168 	/*
2169 	 * If we didn't find a match by pathname, or the name is not
2170 	 * supplied, open the file and check again by device and inode.
2171 	 * This avoids false mismatches caused by multiple links or ".."
2172 	 * in pathnames.
2173 	 *
2174 	 * To avoid a race, we open the file and use fstat() rather than
2175 	 * using stat().
2176 	 */
2177 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2178 	    _rtld_error("Cannot open \"%s\"", path);
2179 	    free(path);
2180 	    return (NULL);
2181 	}
2182     } else {
2183 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2184 	if (fd == -1) {
2185 	    _rtld_error("Cannot dup fd");
2186 	    free(path);
2187 	    return (NULL);
2188 	}
2189     }
2190     if (fstat(fd, &sb) == -1) {
2191 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2192 	close(fd);
2193 	free(path);
2194 	return NULL;
2195     }
2196     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2197 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2198 	    break;
2199     if (obj != NULL && name != NULL) {
2200 	object_add_name(obj, name);
2201 	free(path);
2202 	close(fd);
2203 	return obj;
2204     }
2205     if (flags & RTLD_LO_NOLOAD) {
2206 	free(path);
2207 	close(fd);
2208 	return (NULL);
2209     }
2210 
2211     /* First use of this object, so we must map it in */
2212     obj = do_load_object(fd, name, path, &sb, flags);
2213     if (obj == NULL)
2214 	free(path);
2215     close(fd);
2216 
2217     return obj;
2218 }
2219 
2220 static Obj_Entry *
2221 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2222   int flags)
2223 {
2224     Obj_Entry *obj;
2225     struct statfs fs;
2226 
2227     /*
2228      * but first, make sure that environment variables haven't been
2229      * used to circumvent the noexec flag on a filesystem.
2230      */
2231     if (dangerous_ld_env) {
2232 	if (fstatfs(fd, &fs) != 0) {
2233 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2234 	    return NULL;
2235 	}
2236 	if (fs.f_flags & MNT_NOEXEC) {
2237 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2238 	    return NULL;
2239 	}
2240     }
2241     dbg("loading \"%s\"", printable_path(path));
2242     obj = map_object(fd, printable_path(path), sbp);
2243     if (obj == NULL)
2244         return NULL;
2245 
2246     /*
2247      * If DT_SONAME is present in the object, digest_dynamic2 already
2248      * added it to the object names.
2249      */
2250     if (name != NULL)
2251 	object_add_name(obj, name);
2252     obj->path = path;
2253     digest_dynamic(obj, 0);
2254     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2255 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2256     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2257       RTLD_LO_DLOPEN) {
2258 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2259 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2260 	munmap(obj->mapbase, obj->mapsize);
2261 	obj_free(obj);
2262 	return (NULL);
2263     }
2264 
2265     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2266     *obj_tail = obj;
2267     obj_tail = &obj->next;
2268     obj_count++;
2269     obj_loads++;
2270     linkmap_add(obj);	/* for GDB & dlinfo() */
2271     max_stack_flags |= obj->stack_flags;
2272 
2273     dbg("  %p .. %p: %s", obj->mapbase,
2274          obj->mapbase + obj->mapsize - 1, obj->path);
2275     if (obj->textrel)
2276 	dbg("  WARNING: %s has impure text", obj->path);
2277     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2278 	obj->path);
2279 
2280     return obj;
2281 }
2282 
2283 static Obj_Entry *
2284 obj_from_addr(const void *addr)
2285 {
2286     Obj_Entry *obj;
2287 
2288     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2289 	if (addr < (void *) obj->mapbase)
2290 	    continue;
2291 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2292 	    return obj;
2293     }
2294     return NULL;
2295 }
2296 
2297 static void
2298 preinit_main(void)
2299 {
2300     Elf_Addr *preinit_addr;
2301     int index;
2302 
2303     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2304     if (preinit_addr == NULL)
2305 	return;
2306 
2307     for (index = 0; index < obj_main->preinit_array_num; index++) {
2308 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2309 	    dbg("calling preinit function for %s at %p", obj_main->path,
2310 	      (void *)preinit_addr[index]);
2311 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2312 	      0, 0, obj_main->path);
2313 	    call_init_pointer(obj_main, preinit_addr[index]);
2314 	}
2315     }
2316 }
2317 
2318 /*
2319  * Call the finalization functions for each of the objects in "list"
2320  * belonging to the DAG of "root" and referenced once. If NULL "root"
2321  * is specified, every finalization function will be called regardless
2322  * of the reference count and the list elements won't be freed. All of
2323  * the objects are expected to have non-NULL fini functions.
2324  */
2325 static void
2326 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2327 {
2328     Objlist_Entry *elm;
2329     char *saved_msg;
2330     Elf_Addr *fini_addr;
2331     int index;
2332 
2333     assert(root == NULL || root->refcount == 1);
2334 
2335     /*
2336      * Preserve the current error message since a fini function might
2337      * call into the dynamic linker and overwrite it.
2338      */
2339     saved_msg = errmsg_save();
2340     do {
2341 	STAILQ_FOREACH(elm, list, link) {
2342 	    if (root != NULL && (elm->obj->refcount != 1 ||
2343 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2344 		continue;
2345 	    /* Remove object from fini list to prevent recursive invocation. */
2346 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2347 	    /*
2348 	     * XXX: If a dlopen() call references an object while the
2349 	     * fini function is in progress, we might end up trying to
2350 	     * unload the referenced object in dlclose() or the object
2351 	     * won't be unloaded although its fini function has been
2352 	     * called.
2353 	     */
2354 	    lock_release(rtld_bind_lock, lockstate);
2355 
2356 	    /*
2357 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2358 	     * When this happens, DT_FINI_ARRAY is processed first.
2359 	     */
2360 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2361 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2362 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2363 		  index--) {
2364 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2365 			dbg("calling fini function for %s at %p",
2366 			    elm->obj->path, (void *)fini_addr[index]);
2367 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2368 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2369 			call_initfini_pointer(elm->obj, fini_addr[index]);
2370 		    }
2371 		}
2372 	    }
2373 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2374 		dbg("calling fini function for %s at %p", elm->obj->path,
2375 		    (void *)elm->obj->fini);
2376 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2377 		    0, 0, elm->obj->path);
2378 		call_initfini_pointer(elm->obj, elm->obj->fini);
2379 	    }
2380 	    wlock_acquire(rtld_bind_lock, lockstate);
2381 	    /* No need to free anything if process is going down. */
2382 	    if (root != NULL)
2383 	    	free(elm);
2384 	    /*
2385 	     * We must restart the list traversal after every fini call
2386 	     * because a dlclose() call from the fini function or from
2387 	     * another thread might have modified the reference counts.
2388 	     */
2389 	    break;
2390 	}
2391     } while (elm != NULL);
2392     errmsg_restore(saved_msg);
2393 }
2394 
2395 /*
2396  * Call the initialization functions for each of the objects in
2397  * "list".  All of the objects are expected to have non-NULL init
2398  * functions.
2399  */
2400 static void
2401 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2402 {
2403     Objlist_Entry *elm;
2404     Obj_Entry *obj;
2405     char *saved_msg;
2406     Elf_Addr *init_addr;
2407     int index;
2408 
2409     /*
2410      * Clean init_scanned flag so that objects can be rechecked and
2411      * possibly initialized earlier if any of vectors called below
2412      * cause the change by using dlopen.
2413      */
2414     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2415 	obj->init_scanned = false;
2416 
2417     /*
2418      * Preserve the current error message since an init function might
2419      * call into the dynamic linker and overwrite it.
2420      */
2421     saved_msg = errmsg_save();
2422     STAILQ_FOREACH(elm, list, link) {
2423 	if (elm->obj->init_done) /* Initialized early. */
2424 	    continue;
2425 	/*
2426 	 * Race: other thread might try to use this object before current
2427 	 * one completes the initilization. Not much can be done here
2428 	 * without better locking.
2429 	 */
2430 	elm->obj->init_done = true;
2431 	lock_release(rtld_bind_lock, lockstate);
2432 
2433         /*
2434          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2435          * When this happens, DT_INIT is processed first.
2436          */
2437 	if (elm->obj->init != (Elf_Addr)NULL) {
2438 	    dbg("calling init function for %s at %p", elm->obj->path,
2439 	        (void *)elm->obj->init);
2440 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2441 	        0, 0, elm->obj->path);
2442 	    call_initfini_pointer(elm->obj, elm->obj->init);
2443 	}
2444 	init_addr = (Elf_Addr *)elm->obj->init_array;
2445 	if (init_addr != NULL) {
2446 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2447 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2448 		    dbg("calling init function for %s at %p", elm->obj->path,
2449 			(void *)init_addr[index]);
2450 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2451 			(void *)init_addr[index], 0, 0, elm->obj->path);
2452 		    call_init_pointer(elm->obj, init_addr[index]);
2453 		}
2454 	    }
2455 	}
2456 	wlock_acquire(rtld_bind_lock, lockstate);
2457     }
2458     errmsg_restore(saved_msg);
2459 }
2460 
2461 static void
2462 objlist_clear(Objlist *list)
2463 {
2464     Objlist_Entry *elm;
2465 
2466     while (!STAILQ_EMPTY(list)) {
2467 	elm = STAILQ_FIRST(list);
2468 	STAILQ_REMOVE_HEAD(list, link);
2469 	free(elm);
2470     }
2471 }
2472 
2473 static Objlist_Entry *
2474 objlist_find(Objlist *list, const Obj_Entry *obj)
2475 {
2476     Objlist_Entry *elm;
2477 
2478     STAILQ_FOREACH(elm, list, link)
2479 	if (elm->obj == obj)
2480 	    return elm;
2481     return NULL;
2482 }
2483 
2484 static void
2485 objlist_init(Objlist *list)
2486 {
2487     STAILQ_INIT(list);
2488 }
2489 
2490 static void
2491 objlist_push_head(Objlist *list, Obj_Entry *obj)
2492 {
2493     Objlist_Entry *elm;
2494 
2495     elm = NEW(Objlist_Entry);
2496     elm->obj = obj;
2497     STAILQ_INSERT_HEAD(list, elm, link);
2498 }
2499 
2500 static void
2501 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2502 {
2503     Objlist_Entry *elm;
2504 
2505     elm = NEW(Objlist_Entry);
2506     elm->obj = obj;
2507     STAILQ_INSERT_TAIL(list, elm, link);
2508 }
2509 
2510 static void
2511 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2512 {
2513 	Objlist_Entry *elm, *listelm;
2514 
2515 	STAILQ_FOREACH(listelm, list, link) {
2516 		if (listelm->obj == listobj)
2517 			break;
2518 	}
2519 	elm = NEW(Objlist_Entry);
2520 	elm->obj = obj;
2521 	if (listelm != NULL)
2522 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2523 	else
2524 		STAILQ_INSERT_TAIL(list, elm, link);
2525 }
2526 
2527 static void
2528 objlist_remove(Objlist *list, Obj_Entry *obj)
2529 {
2530     Objlist_Entry *elm;
2531 
2532     if ((elm = objlist_find(list, obj)) != NULL) {
2533 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2534 	free(elm);
2535     }
2536 }
2537 
2538 /*
2539  * Relocate dag rooted in the specified object.
2540  * Returns 0 on success, or -1 on failure.
2541  */
2542 
2543 static int
2544 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2545     int flags, RtldLockState *lockstate)
2546 {
2547 	Objlist_Entry *elm;
2548 	int error;
2549 
2550 	error = 0;
2551 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2552 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2553 		    lockstate);
2554 		if (error == -1)
2555 			break;
2556 	}
2557 	return (error);
2558 }
2559 
2560 /*
2561  * Relocate single object.
2562  * Returns 0 on success, or -1 on failure.
2563  */
2564 static int
2565 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2566     int flags, RtldLockState *lockstate)
2567 {
2568 
2569 	if (obj->relocated)
2570 		return (0);
2571 	obj->relocated = true;
2572 	if (obj != rtldobj)
2573 		dbg("relocating \"%s\"", obj->path);
2574 
2575 	if (obj->symtab == NULL || obj->strtab == NULL ||
2576 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2577 		_rtld_error("%s: Shared object has no run-time symbol table",
2578 			    obj->path);
2579 		return (-1);
2580 	}
2581 
2582 	if (obj->textrel) {
2583 		/* There are relocations to the write-protected text segment. */
2584 		if (mprotect(obj->mapbase, obj->textsize,
2585 		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2586 			_rtld_error("%s: Cannot write-enable text segment: %s",
2587 			    obj->path, rtld_strerror(errno));
2588 			return (-1);
2589 		}
2590 	}
2591 
2592 	/* Process the non-PLT non-IFUNC relocations. */
2593 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2594 		return (-1);
2595 
2596 	if (obj->textrel) {	/* Re-protected the text segment. */
2597 		if (mprotect(obj->mapbase, obj->textsize,
2598 		    PROT_READ|PROT_EXEC) == -1) {
2599 			_rtld_error("%s: Cannot write-protect text segment: %s",
2600 			    obj->path, rtld_strerror(errno));
2601 			return (-1);
2602 		}
2603 	}
2604 
2605 	/* Set the special PLT or GOT entries. */
2606 	init_pltgot(obj);
2607 
2608 	/* Process the PLT relocations. */
2609 	if (reloc_plt(obj) == -1)
2610 		return (-1);
2611 	/* Relocate the jump slots if we are doing immediate binding. */
2612 	if (obj->bind_now || bind_now)
2613 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2614 			return (-1);
2615 
2616 	/*
2617 	 * Process the non-PLT IFUNC relocations.  The relocations are
2618 	 * processed in two phases, because IFUNC resolvers may
2619 	 * reference other symbols, which must be readily processed
2620 	 * before resolvers are called.
2621 	 */
2622 	if (obj->non_plt_gnu_ifunc &&
2623 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2624 		return (-1);
2625 
2626 	if (obj->relro_size > 0) {
2627 		if (mprotect(obj->relro_page, obj->relro_size,
2628 		    PROT_READ) == -1) {
2629 			_rtld_error("%s: Cannot enforce relro protection: %s",
2630 			    obj->path, rtld_strerror(errno));
2631 			return (-1);
2632 		}
2633 	}
2634 
2635 	/*
2636 	 * Set up the magic number and version in the Obj_Entry.  These
2637 	 * were checked in the crt1.o from the original ElfKit, so we
2638 	 * set them for backward compatibility.
2639 	 */
2640 	obj->magic = RTLD_MAGIC;
2641 	obj->version = RTLD_VERSION;
2642 
2643 	return (0);
2644 }
2645 
2646 /*
2647  * Relocate newly-loaded shared objects.  The argument is a pointer to
2648  * the Obj_Entry for the first such object.  All objects from the first
2649  * to the end of the list of objects are relocated.  Returns 0 on success,
2650  * or -1 on failure.
2651  */
2652 static int
2653 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2654     int flags, RtldLockState *lockstate)
2655 {
2656 	Obj_Entry *obj;
2657 	int error;
2658 
2659 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2660 		error = relocate_object(obj, bind_now, rtldobj, flags,
2661 		    lockstate);
2662 		if (error == -1)
2663 			break;
2664 	}
2665 	return (error);
2666 }
2667 
2668 /*
2669  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2670  * referencing STT_GNU_IFUNC symbols is postponed till the other
2671  * relocations are done.  The indirect functions specified as
2672  * ifunc are allowed to call other symbols, so we need to have
2673  * objects relocated before asking for resolution from indirects.
2674  *
2675  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2676  * instead of the usual lazy handling of PLT slots.  It is
2677  * consistent with how GNU does it.
2678  */
2679 static int
2680 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2681     RtldLockState *lockstate)
2682 {
2683 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2684 		return (-1);
2685 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2686 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2687 		return (-1);
2688 	return (0);
2689 }
2690 
2691 static int
2692 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2693     RtldLockState *lockstate)
2694 {
2695 	Obj_Entry *obj;
2696 
2697 	for (obj = first;  obj != NULL;  obj = obj->next) {
2698 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2699 			return (-1);
2700 	}
2701 	return (0);
2702 }
2703 
2704 static int
2705 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2706     RtldLockState *lockstate)
2707 {
2708 	Objlist_Entry *elm;
2709 
2710 	STAILQ_FOREACH(elm, list, link) {
2711 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2712 		    lockstate) == -1)
2713 			return (-1);
2714 	}
2715 	return (0);
2716 }
2717 
2718 /*
2719  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2720  * before the process exits.
2721  */
2722 static void
2723 rtld_exit(void)
2724 {
2725     RtldLockState lockstate;
2726 
2727     wlock_acquire(rtld_bind_lock, &lockstate);
2728     dbg("rtld_exit()");
2729     objlist_call_fini(&list_fini, NULL, &lockstate);
2730     /* No need to remove the items from the list, since we are exiting. */
2731     if (!libmap_disable)
2732         lm_fini();
2733     lock_release(rtld_bind_lock, &lockstate);
2734 }
2735 
2736 /*
2737  * Iterate over a search path, translate each element, and invoke the
2738  * callback on the result.
2739  */
2740 static void *
2741 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2742 {
2743     const char *trans;
2744     if (path == NULL)
2745 	return (NULL);
2746 
2747     path += strspn(path, ":;");
2748     while (*path != '\0') {
2749 	size_t len;
2750 	char  *res;
2751 
2752 	len = strcspn(path, ":;");
2753 	trans = lm_findn(NULL, path, len);
2754 	if (trans)
2755 	    res = callback(trans, strlen(trans), arg);
2756 	else
2757 	    res = callback(path, len, arg);
2758 
2759 	if (res != NULL)
2760 	    return (res);
2761 
2762 	path += len;
2763 	path += strspn(path, ":;");
2764     }
2765 
2766     return (NULL);
2767 }
2768 
2769 struct try_library_args {
2770     const char	*name;
2771     size_t	 namelen;
2772     char	*buffer;
2773     size_t	 buflen;
2774 };
2775 
2776 static void *
2777 try_library_path(const char *dir, size_t dirlen, void *param)
2778 {
2779     struct try_library_args *arg;
2780 
2781     arg = param;
2782     if (*dir == '/' || trust) {
2783 	char *pathname;
2784 
2785 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2786 		return (NULL);
2787 
2788 	pathname = arg->buffer;
2789 	strncpy(pathname, dir, dirlen);
2790 	pathname[dirlen] = '/';
2791 	strcpy(pathname + dirlen + 1, arg->name);
2792 
2793 	dbg("  Trying \"%s\"", pathname);
2794 	if (access(pathname, F_OK) == 0) {		/* We found it */
2795 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2796 	    strcpy(pathname, arg->buffer);
2797 	    return (pathname);
2798 	}
2799     }
2800     return (NULL);
2801 }
2802 
2803 static char *
2804 search_library_path(const char *name, const char *path)
2805 {
2806     char *p;
2807     struct try_library_args arg;
2808 
2809     if (path == NULL)
2810 	return NULL;
2811 
2812     arg.name = name;
2813     arg.namelen = strlen(name);
2814     arg.buffer = xmalloc(PATH_MAX);
2815     arg.buflen = PATH_MAX;
2816 
2817     p = path_enumerate(path, try_library_path, &arg);
2818 
2819     free(arg.buffer);
2820 
2821     return (p);
2822 }
2823 
2824 
2825 /*
2826  * Finds the library with the given name using the directory descriptors
2827  * listed in the LD_LIBRARY_PATH_FDS environment variable.
2828  *
2829  * Returns a freshly-opened close-on-exec file descriptor for the library,
2830  * or -1 if the library cannot be found.
2831  */
2832 static char *
2833 search_library_pathfds(const char *name, const char *path, int *fdp)
2834 {
2835 	char *envcopy, *fdstr, *found, *last_token;
2836 	size_t len;
2837 	int dirfd, fd;
2838 
2839 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
2840 
2841 	/* Don't load from user-specified libdirs into setuid binaries. */
2842 	if (!trust)
2843 		return (NULL);
2844 
2845 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
2846 	if (path == NULL)
2847 		return (NULL);
2848 
2849 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
2850 	if (name[0] == '/') {
2851 		dbg("Absolute path (%s) passed to %s", name, __func__);
2852 		return (NULL);
2853 	}
2854 
2855 	/*
2856 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
2857 	 * copy of the path, as strtok_r rewrites separator tokens
2858 	 * with '\0'.
2859 	 */
2860 	found = NULL;
2861 	envcopy = xstrdup(path);
2862 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
2863 	    fdstr = strtok_r(NULL, ":", &last_token)) {
2864 		dirfd = parse_libdir(fdstr);
2865 		if (dirfd < 0)
2866 			break;
2867 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
2868 		if (fd >= 0) {
2869 			*fdp = fd;
2870 			len = strlen(fdstr) + strlen(name) + 3;
2871 			found = xmalloc(len);
2872 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
2873 				_rtld_error("error generating '%d/%s'",
2874 				    dirfd, name);
2875 				rtld_die();
2876 			}
2877 			dbg("open('%s') => %d", found, fd);
2878 			break;
2879 		}
2880 	}
2881 	free(envcopy);
2882 
2883 	return (found);
2884 }
2885 
2886 
2887 int
2888 dlclose(void *handle)
2889 {
2890     Obj_Entry *root;
2891     RtldLockState lockstate;
2892 
2893     wlock_acquire(rtld_bind_lock, &lockstate);
2894     root = dlcheck(handle);
2895     if (root == NULL) {
2896 	lock_release(rtld_bind_lock, &lockstate);
2897 	return -1;
2898     }
2899     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2900 	root->path);
2901 
2902     /* Unreference the object and its dependencies. */
2903     root->dl_refcount--;
2904 
2905     if (root->refcount == 1) {
2906 	/*
2907 	 * The object will be no longer referenced, so we must unload it.
2908 	 * First, call the fini functions.
2909 	 */
2910 	objlist_call_fini(&list_fini, root, &lockstate);
2911 
2912 	unref_dag(root);
2913 
2914 	/* Finish cleaning up the newly-unreferenced objects. */
2915 	GDB_STATE(RT_DELETE,&root->linkmap);
2916 	unload_object(root);
2917 	GDB_STATE(RT_CONSISTENT,NULL);
2918     } else
2919 	unref_dag(root);
2920 
2921     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2922     lock_release(rtld_bind_lock, &lockstate);
2923     return 0;
2924 }
2925 
2926 char *
2927 dlerror(void)
2928 {
2929     char *msg = error_message;
2930     error_message = NULL;
2931     return msg;
2932 }
2933 
2934 /*
2935  * This function is deprecated and has no effect.
2936  */
2937 void
2938 dllockinit(void *context,
2939 	   void *(*lock_create)(void *context),
2940            void (*rlock_acquire)(void *lock),
2941            void (*wlock_acquire)(void *lock),
2942            void (*lock_release)(void *lock),
2943            void (*lock_destroy)(void *lock),
2944 	   void (*context_destroy)(void *context))
2945 {
2946     static void *cur_context;
2947     static void (*cur_context_destroy)(void *);
2948 
2949     /* Just destroy the context from the previous call, if necessary. */
2950     if (cur_context_destroy != NULL)
2951 	cur_context_destroy(cur_context);
2952     cur_context = context;
2953     cur_context_destroy = context_destroy;
2954 }
2955 
2956 void *
2957 dlopen(const char *name, int mode)
2958 {
2959 
2960 	return (rtld_dlopen(name, -1, mode));
2961 }
2962 
2963 void *
2964 fdlopen(int fd, int mode)
2965 {
2966 
2967 	return (rtld_dlopen(NULL, fd, mode));
2968 }
2969 
2970 static void *
2971 rtld_dlopen(const char *name, int fd, int mode)
2972 {
2973     RtldLockState lockstate;
2974     int lo_flags;
2975 
2976     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2977     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2978     if (ld_tracing != NULL) {
2979 	rlock_acquire(rtld_bind_lock, &lockstate);
2980 	if (sigsetjmp(lockstate.env, 0) != 0)
2981 	    lock_upgrade(rtld_bind_lock, &lockstate);
2982 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2983 	lock_release(rtld_bind_lock, &lockstate);
2984     }
2985     lo_flags = RTLD_LO_DLOPEN;
2986     if (mode & RTLD_NODELETE)
2987 	    lo_flags |= RTLD_LO_NODELETE;
2988     if (mode & RTLD_NOLOAD)
2989 	    lo_flags |= RTLD_LO_NOLOAD;
2990     if (ld_tracing != NULL)
2991 	    lo_flags |= RTLD_LO_TRACE;
2992 
2993     return (dlopen_object(name, fd, obj_main, lo_flags,
2994       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2995 }
2996 
2997 static void
2998 dlopen_cleanup(Obj_Entry *obj)
2999 {
3000 
3001 	obj->dl_refcount--;
3002 	unref_dag(obj);
3003 	if (obj->refcount == 0)
3004 		unload_object(obj);
3005 }
3006 
3007 static Obj_Entry *
3008 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3009     int mode, RtldLockState *lockstate)
3010 {
3011     Obj_Entry **old_obj_tail;
3012     Obj_Entry *obj;
3013     Objlist initlist;
3014     RtldLockState mlockstate;
3015     int result;
3016 
3017     objlist_init(&initlist);
3018 
3019     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3020 	wlock_acquire(rtld_bind_lock, &mlockstate);
3021 	lockstate = &mlockstate;
3022     }
3023     GDB_STATE(RT_ADD,NULL);
3024 
3025     old_obj_tail = obj_tail;
3026     obj = NULL;
3027     if (name == NULL && fd == -1) {
3028 	obj = obj_main;
3029 	obj->refcount++;
3030     } else {
3031 	obj = load_object(name, fd, refobj, lo_flags);
3032     }
3033 
3034     if (obj) {
3035 	obj->dl_refcount++;
3036 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3037 	    objlist_push_tail(&list_global, obj);
3038 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
3039 	    assert(*old_obj_tail == obj);
3040 	    result = load_needed_objects(obj,
3041 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3042 	    init_dag(obj);
3043 	    ref_dag(obj);
3044 	    if (result != -1)
3045 		result = rtld_verify_versions(&obj->dagmembers);
3046 	    if (result != -1 && ld_tracing)
3047 		goto trace;
3048 	    if (result == -1 || relocate_object_dag(obj,
3049 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3050 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3051 	      lockstate) == -1) {
3052 		dlopen_cleanup(obj);
3053 		obj = NULL;
3054 	    } else if (lo_flags & RTLD_LO_EARLY) {
3055 		/*
3056 		 * Do not call the init functions for early loaded
3057 		 * filtees.  The image is still not initialized enough
3058 		 * for them to work.
3059 		 *
3060 		 * Our object is found by the global object list and
3061 		 * will be ordered among all init calls done right
3062 		 * before transferring control to main.
3063 		 */
3064 	    } else {
3065 		/* Make list of init functions to call. */
3066 		initlist_add_objects(obj, &obj->next, &initlist);
3067 	    }
3068 	    /*
3069 	     * Process all no_delete or global objects here, given
3070 	     * them own DAGs to prevent their dependencies from being
3071 	     * unloaded.  This has to be done after we have loaded all
3072 	     * of the dependencies, so that we do not miss any.
3073 	     */
3074 	    if (obj != NULL)
3075 		process_z(obj);
3076 	} else {
3077 	    /*
3078 	     * Bump the reference counts for objects on this DAG.  If
3079 	     * this is the first dlopen() call for the object that was
3080 	     * already loaded as a dependency, initialize the dag
3081 	     * starting at it.
3082 	     */
3083 	    init_dag(obj);
3084 	    ref_dag(obj);
3085 
3086 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3087 		goto trace;
3088 	}
3089 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3090 	  obj->z_nodelete) && !obj->ref_nodel) {
3091 	    dbg("obj %s nodelete", obj->path);
3092 	    ref_dag(obj);
3093 	    obj->z_nodelete = obj->ref_nodel = true;
3094 	}
3095     }
3096 
3097     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3098 	name);
3099     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3100 
3101     if (!(lo_flags & RTLD_LO_EARLY)) {
3102 	map_stacks_exec(lockstate);
3103     }
3104 
3105     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3106       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3107       lockstate) == -1) {
3108 	objlist_clear(&initlist);
3109 	dlopen_cleanup(obj);
3110 	if (lockstate == &mlockstate)
3111 	    lock_release(rtld_bind_lock, lockstate);
3112 	return (NULL);
3113     }
3114 
3115     if (!(lo_flags & RTLD_LO_EARLY)) {
3116 	/* Call the init functions. */
3117 	objlist_call_init(&initlist, lockstate);
3118     }
3119     objlist_clear(&initlist);
3120     if (lockstate == &mlockstate)
3121 	lock_release(rtld_bind_lock, lockstate);
3122     return obj;
3123 trace:
3124     trace_loaded_objects(obj);
3125     if (lockstate == &mlockstate)
3126 	lock_release(rtld_bind_lock, lockstate);
3127     exit(0);
3128 }
3129 
3130 static void *
3131 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3132     int flags)
3133 {
3134     DoneList donelist;
3135     const Obj_Entry *obj, *defobj;
3136     const Elf_Sym *def;
3137     SymLook req;
3138     RtldLockState lockstate;
3139     tls_index ti;
3140     void *sym;
3141     int res;
3142 
3143     def = NULL;
3144     defobj = NULL;
3145     symlook_init(&req, name);
3146     req.ventry = ve;
3147     req.flags = flags | SYMLOOK_IN_PLT;
3148     req.lockstate = &lockstate;
3149 
3150     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3151     rlock_acquire(rtld_bind_lock, &lockstate);
3152     if (sigsetjmp(lockstate.env, 0) != 0)
3153 	    lock_upgrade(rtld_bind_lock, &lockstate);
3154     if (handle == NULL || handle == RTLD_NEXT ||
3155 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3156 
3157 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3158 	    _rtld_error("Cannot determine caller's shared object");
3159 	    lock_release(rtld_bind_lock, &lockstate);
3160 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3161 	    return NULL;
3162 	}
3163 	if (handle == NULL) {	/* Just the caller's shared object. */
3164 	    res = symlook_obj(&req, obj);
3165 	    if (res == 0) {
3166 		def = req.sym_out;
3167 		defobj = req.defobj_out;
3168 	    }
3169 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3170 		   handle == RTLD_SELF) { /* ... caller included */
3171 	    if (handle == RTLD_NEXT)
3172 		obj = obj->next;
3173 	    for (; obj != NULL; obj = obj->next) {
3174 		res = symlook_obj(&req, obj);
3175 		if (res == 0) {
3176 		    if (def == NULL ||
3177 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3178 			def = req.sym_out;
3179 			defobj = req.defobj_out;
3180 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3181 			    break;
3182 		    }
3183 		}
3184 	    }
3185 	    /*
3186 	     * Search the dynamic linker itself, and possibly resolve the
3187 	     * symbol from there.  This is how the application links to
3188 	     * dynamic linker services such as dlopen.
3189 	     */
3190 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3191 		res = symlook_obj(&req, &obj_rtld);
3192 		if (res == 0) {
3193 		    def = req.sym_out;
3194 		    defobj = req.defobj_out;
3195 		}
3196 	    }
3197 	} else {
3198 	    assert(handle == RTLD_DEFAULT);
3199 	    res = symlook_default(&req, obj);
3200 	    if (res == 0) {
3201 		defobj = req.defobj_out;
3202 		def = req.sym_out;
3203 	    }
3204 	}
3205     } else {
3206 	if ((obj = dlcheck(handle)) == NULL) {
3207 	    lock_release(rtld_bind_lock, &lockstate);
3208 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3209 	    return NULL;
3210 	}
3211 
3212 	donelist_init(&donelist);
3213 	if (obj->mainprog) {
3214             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3215 	    res = symlook_global(&req, &donelist);
3216 	    if (res == 0) {
3217 		def = req.sym_out;
3218 		defobj = req.defobj_out;
3219 	    }
3220 	    /*
3221 	     * Search the dynamic linker itself, and possibly resolve the
3222 	     * symbol from there.  This is how the application links to
3223 	     * dynamic linker services such as dlopen.
3224 	     */
3225 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3226 		res = symlook_obj(&req, &obj_rtld);
3227 		if (res == 0) {
3228 		    def = req.sym_out;
3229 		    defobj = req.defobj_out;
3230 		}
3231 	    }
3232 	}
3233 	else {
3234 	    /* Search the whole DAG rooted at the given object. */
3235 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3236 	    if (res == 0) {
3237 		def = req.sym_out;
3238 		defobj = req.defobj_out;
3239 	    }
3240 	}
3241     }
3242 
3243     if (def != NULL) {
3244 	lock_release(rtld_bind_lock, &lockstate);
3245 
3246 	/*
3247 	 * The value required by the caller is derived from the value
3248 	 * of the symbol. this is simply the relocated value of the
3249 	 * symbol.
3250 	 */
3251 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3252 	    sym = make_function_pointer(def, defobj);
3253 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3254 	    sym = rtld_resolve_ifunc(defobj, def);
3255 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3256 	    ti.ti_module = defobj->tlsindex;
3257 	    ti.ti_offset = def->st_value;
3258 	    sym = __tls_get_addr(&ti);
3259 	} else
3260 	    sym = defobj->relocbase + def->st_value;
3261 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3262 	return (sym);
3263     }
3264 
3265     _rtld_error("Undefined symbol \"%s\"", name);
3266     lock_release(rtld_bind_lock, &lockstate);
3267     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3268     return NULL;
3269 }
3270 
3271 void *
3272 dlsym(void *handle, const char *name)
3273 {
3274 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3275 	    SYMLOOK_DLSYM);
3276 }
3277 
3278 dlfunc_t
3279 dlfunc(void *handle, const char *name)
3280 {
3281 	union {
3282 		void *d;
3283 		dlfunc_t f;
3284 	} rv;
3285 
3286 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3287 	    SYMLOOK_DLSYM);
3288 	return (rv.f);
3289 }
3290 
3291 void *
3292 dlvsym(void *handle, const char *name, const char *version)
3293 {
3294 	Ver_Entry ventry;
3295 
3296 	ventry.name = version;
3297 	ventry.file = NULL;
3298 	ventry.hash = elf_hash(version);
3299 	ventry.flags= 0;
3300 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3301 	    SYMLOOK_DLSYM);
3302 }
3303 
3304 int
3305 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3306 {
3307     const Obj_Entry *obj;
3308     RtldLockState lockstate;
3309 
3310     rlock_acquire(rtld_bind_lock, &lockstate);
3311     obj = obj_from_addr(addr);
3312     if (obj == NULL) {
3313         _rtld_error("No shared object contains address");
3314 	lock_release(rtld_bind_lock, &lockstate);
3315         return (0);
3316     }
3317     rtld_fill_dl_phdr_info(obj, phdr_info);
3318     lock_release(rtld_bind_lock, &lockstate);
3319     return (1);
3320 }
3321 
3322 int
3323 dladdr(const void *addr, Dl_info *info)
3324 {
3325     const Obj_Entry *obj;
3326     const Elf_Sym *def;
3327     void *symbol_addr;
3328     unsigned long symoffset;
3329     RtldLockState lockstate;
3330 
3331     rlock_acquire(rtld_bind_lock, &lockstate);
3332     obj = obj_from_addr(addr);
3333     if (obj == NULL) {
3334         _rtld_error("No shared object contains address");
3335 	lock_release(rtld_bind_lock, &lockstate);
3336         return 0;
3337     }
3338     info->dli_fname = obj->path;
3339     info->dli_fbase = obj->mapbase;
3340     info->dli_saddr = (void *)0;
3341     info->dli_sname = NULL;
3342 
3343     /*
3344      * Walk the symbol list looking for the symbol whose address is
3345      * closest to the address sent in.
3346      */
3347     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3348         def = obj->symtab + symoffset;
3349 
3350         /*
3351          * For skip the symbol if st_shndx is either SHN_UNDEF or
3352          * SHN_COMMON.
3353          */
3354         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3355             continue;
3356 
3357         /*
3358          * If the symbol is greater than the specified address, or if it
3359          * is further away from addr than the current nearest symbol,
3360          * then reject it.
3361          */
3362         symbol_addr = obj->relocbase + def->st_value;
3363         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3364             continue;
3365 
3366         /* Update our idea of the nearest symbol. */
3367         info->dli_sname = obj->strtab + def->st_name;
3368         info->dli_saddr = symbol_addr;
3369 
3370         /* Exact match? */
3371         if (info->dli_saddr == addr)
3372             break;
3373     }
3374     lock_release(rtld_bind_lock, &lockstate);
3375     return 1;
3376 }
3377 
3378 int
3379 dlinfo(void *handle, int request, void *p)
3380 {
3381     const Obj_Entry *obj;
3382     RtldLockState lockstate;
3383     int error;
3384 
3385     rlock_acquire(rtld_bind_lock, &lockstate);
3386 
3387     if (handle == NULL || handle == RTLD_SELF) {
3388 	void *retaddr;
3389 
3390 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3391 	if ((obj = obj_from_addr(retaddr)) == NULL)
3392 	    _rtld_error("Cannot determine caller's shared object");
3393     } else
3394 	obj = dlcheck(handle);
3395 
3396     if (obj == NULL) {
3397 	lock_release(rtld_bind_lock, &lockstate);
3398 	return (-1);
3399     }
3400 
3401     error = 0;
3402     switch (request) {
3403     case RTLD_DI_LINKMAP:
3404 	*((struct link_map const **)p) = &obj->linkmap;
3405 	break;
3406     case RTLD_DI_ORIGIN:
3407 	error = rtld_dirname(obj->path, p);
3408 	break;
3409 
3410     case RTLD_DI_SERINFOSIZE:
3411     case RTLD_DI_SERINFO:
3412 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3413 	break;
3414 
3415     default:
3416 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3417 	error = -1;
3418     }
3419 
3420     lock_release(rtld_bind_lock, &lockstate);
3421 
3422     return (error);
3423 }
3424 
3425 static void
3426 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3427 {
3428 
3429 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3430 	phdr_info->dlpi_name = obj->path;
3431 	phdr_info->dlpi_phdr = obj->phdr;
3432 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3433 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3434 	phdr_info->dlpi_tls_data = obj->tlsinit;
3435 	phdr_info->dlpi_adds = obj_loads;
3436 	phdr_info->dlpi_subs = obj_loads - obj_count;
3437 }
3438 
3439 int
3440 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3441 {
3442     struct dl_phdr_info phdr_info;
3443     const Obj_Entry *obj;
3444     RtldLockState bind_lockstate, phdr_lockstate;
3445     int error;
3446 
3447     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3448     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3449 
3450     error = 0;
3451 
3452     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3453 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3454 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3455 		break;
3456 
3457     }
3458     if (error == 0) {
3459 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3460 	error = callback(&phdr_info, sizeof(phdr_info), param);
3461     }
3462 
3463     lock_release(rtld_bind_lock, &bind_lockstate);
3464     lock_release(rtld_phdr_lock, &phdr_lockstate);
3465 
3466     return (error);
3467 }
3468 
3469 static void *
3470 fill_search_info(const char *dir, size_t dirlen, void *param)
3471 {
3472     struct fill_search_info_args *arg;
3473 
3474     arg = param;
3475 
3476     if (arg->request == RTLD_DI_SERINFOSIZE) {
3477 	arg->serinfo->dls_cnt ++;
3478 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3479     } else {
3480 	struct dl_serpath *s_entry;
3481 
3482 	s_entry = arg->serpath;
3483 	s_entry->dls_name  = arg->strspace;
3484 	s_entry->dls_flags = arg->flags;
3485 
3486 	strncpy(arg->strspace, dir, dirlen);
3487 	arg->strspace[dirlen] = '\0';
3488 
3489 	arg->strspace += dirlen + 1;
3490 	arg->serpath++;
3491     }
3492 
3493     return (NULL);
3494 }
3495 
3496 static int
3497 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3498 {
3499     struct dl_serinfo _info;
3500     struct fill_search_info_args args;
3501 
3502     args.request = RTLD_DI_SERINFOSIZE;
3503     args.serinfo = &_info;
3504 
3505     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3506     _info.dls_cnt  = 0;
3507 
3508     path_enumerate(obj->rpath, fill_search_info, &args);
3509     path_enumerate(ld_library_path, fill_search_info, &args);
3510     path_enumerate(obj->runpath, fill_search_info, &args);
3511     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3512     if (!obj->z_nodeflib)
3513       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3514 
3515 
3516     if (request == RTLD_DI_SERINFOSIZE) {
3517 	info->dls_size = _info.dls_size;
3518 	info->dls_cnt = _info.dls_cnt;
3519 	return (0);
3520     }
3521 
3522     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3523 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3524 	return (-1);
3525     }
3526 
3527     args.request  = RTLD_DI_SERINFO;
3528     args.serinfo  = info;
3529     args.serpath  = &info->dls_serpath[0];
3530     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3531 
3532     args.flags = LA_SER_RUNPATH;
3533     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3534 	return (-1);
3535 
3536     args.flags = LA_SER_LIBPATH;
3537     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3538 	return (-1);
3539 
3540     args.flags = LA_SER_RUNPATH;
3541     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3542 	return (-1);
3543 
3544     args.flags = LA_SER_CONFIG;
3545     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3546       != NULL)
3547 	return (-1);
3548 
3549     args.flags = LA_SER_DEFAULT;
3550     if (!obj->z_nodeflib &&
3551       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3552 	return (-1);
3553     return (0);
3554 }
3555 
3556 static int
3557 rtld_dirname(const char *path, char *bname)
3558 {
3559     const char *endp;
3560 
3561     /* Empty or NULL string gets treated as "." */
3562     if (path == NULL || *path == '\0') {
3563 	bname[0] = '.';
3564 	bname[1] = '\0';
3565 	return (0);
3566     }
3567 
3568     /* Strip trailing slashes */
3569     endp = path + strlen(path) - 1;
3570     while (endp > path && *endp == '/')
3571 	endp--;
3572 
3573     /* Find the start of the dir */
3574     while (endp > path && *endp != '/')
3575 	endp--;
3576 
3577     /* Either the dir is "/" or there are no slashes */
3578     if (endp == path) {
3579 	bname[0] = *endp == '/' ? '/' : '.';
3580 	bname[1] = '\0';
3581 	return (0);
3582     } else {
3583 	do {
3584 	    endp--;
3585 	} while (endp > path && *endp == '/');
3586     }
3587 
3588     if (endp - path + 2 > PATH_MAX)
3589     {
3590 	_rtld_error("Filename is too long: %s", path);
3591 	return(-1);
3592     }
3593 
3594     strncpy(bname, path, endp - path + 1);
3595     bname[endp - path + 1] = '\0';
3596     return (0);
3597 }
3598 
3599 static int
3600 rtld_dirname_abs(const char *path, char *base)
3601 {
3602 	char *last;
3603 
3604 	if (realpath(path, base) == NULL)
3605 		return (-1);
3606 	dbg("%s -> %s", path, base);
3607 	last = strrchr(base, '/');
3608 	if (last == NULL)
3609 		return (-1);
3610 	if (last != base)
3611 		*last = '\0';
3612 	return (0);
3613 }
3614 
3615 static void
3616 linkmap_add(Obj_Entry *obj)
3617 {
3618     struct link_map *l = &obj->linkmap;
3619     struct link_map *prev;
3620 
3621     obj->linkmap.l_name = obj->path;
3622     obj->linkmap.l_addr = obj->mapbase;
3623     obj->linkmap.l_ld = obj->dynamic;
3624 #ifdef __mips__
3625     /* GDB needs load offset on MIPS to use the symbols */
3626     obj->linkmap.l_offs = obj->relocbase;
3627 #endif
3628 
3629     if (r_debug.r_map == NULL) {
3630 	r_debug.r_map = l;
3631 	return;
3632     }
3633 
3634     /*
3635      * Scan to the end of the list, but not past the entry for the
3636      * dynamic linker, which we want to keep at the very end.
3637      */
3638     for (prev = r_debug.r_map;
3639       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3640       prev = prev->l_next)
3641 	;
3642 
3643     /* Link in the new entry. */
3644     l->l_prev = prev;
3645     l->l_next = prev->l_next;
3646     if (l->l_next != NULL)
3647 	l->l_next->l_prev = l;
3648     prev->l_next = l;
3649 }
3650 
3651 static void
3652 linkmap_delete(Obj_Entry *obj)
3653 {
3654     struct link_map *l = &obj->linkmap;
3655 
3656     if (l->l_prev == NULL) {
3657 	if ((r_debug.r_map = l->l_next) != NULL)
3658 	    l->l_next->l_prev = NULL;
3659 	return;
3660     }
3661 
3662     if ((l->l_prev->l_next = l->l_next) != NULL)
3663 	l->l_next->l_prev = l->l_prev;
3664 }
3665 
3666 /*
3667  * Function for the debugger to set a breakpoint on to gain control.
3668  *
3669  * The two parameters allow the debugger to easily find and determine
3670  * what the runtime loader is doing and to whom it is doing it.
3671  *
3672  * When the loadhook trap is hit (r_debug_state, set at program
3673  * initialization), the arguments can be found on the stack:
3674  *
3675  *  +8   struct link_map *m
3676  *  +4   struct r_debug  *rd
3677  *  +0   RetAddr
3678  */
3679 void
3680 r_debug_state(struct r_debug* rd, struct link_map *m)
3681 {
3682     /*
3683      * The following is a hack to force the compiler to emit calls to
3684      * this function, even when optimizing.  If the function is empty,
3685      * the compiler is not obliged to emit any code for calls to it,
3686      * even when marked __noinline.  However, gdb depends on those
3687      * calls being made.
3688      */
3689     __compiler_membar();
3690 }
3691 
3692 /*
3693  * A function called after init routines have completed. This can be used to
3694  * break before a program's entry routine is called, and can be used when
3695  * main is not available in the symbol table.
3696  */
3697 void
3698 _r_debug_postinit(struct link_map *m)
3699 {
3700 
3701 	/* See r_debug_state(). */
3702 	__compiler_membar();
3703 }
3704 
3705 /*
3706  * Get address of the pointer variable in the main program.
3707  * Prefer non-weak symbol over the weak one.
3708  */
3709 static const void **
3710 get_program_var_addr(const char *name, RtldLockState *lockstate)
3711 {
3712     SymLook req;
3713     DoneList donelist;
3714 
3715     symlook_init(&req, name);
3716     req.lockstate = lockstate;
3717     donelist_init(&donelist);
3718     if (symlook_global(&req, &donelist) != 0)
3719 	return (NULL);
3720     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3721 	return ((const void **)make_function_pointer(req.sym_out,
3722 	  req.defobj_out));
3723     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3724 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3725     else
3726 	return ((const void **)(req.defobj_out->relocbase +
3727 	  req.sym_out->st_value));
3728 }
3729 
3730 /*
3731  * Set a pointer variable in the main program to the given value.  This
3732  * is used to set key variables such as "environ" before any of the
3733  * init functions are called.
3734  */
3735 static void
3736 set_program_var(const char *name, const void *value)
3737 {
3738     const void **addr;
3739 
3740     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3741 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3742 	*addr = value;
3743     }
3744 }
3745 
3746 /*
3747  * Search the global objects, including dependencies and main object,
3748  * for the given symbol.
3749  */
3750 static int
3751 symlook_global(SymLook *req, DoneList *donelist)
3752 {
3753     SymLook req1;
3754     const Objlist_Entry *elm;
3755     int res;
3756 
3757     symlook_init_from_req(&req1, req);
3758 
3759     /* Search all objects loaded at program start up. */
3760     if (req->defobj_out == NULL ||
3761       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3762 	res = symlook_list(&req1, &list_main, donelist);
3763 	if (res == 0 && (req->defobj_out == NULL ||
3764 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3765 	    req->sym_out = req1.sym_out;
3766 	    req->defobj_out = req1.defobj_out;
3767 	    assert(req->defobj_out != NULL);
3768 	}
3769     }
3770 
3771     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3772     STAILQ_FOREACH(elm, &list_global, link) {
3773 	if (req->defobj_out != NULL &&
3774 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3775 	    break;
3776 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3777 	if (res == 0 && (req->defobj_out == NULL ||
3778 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3779 	    req->sym_out = req1.sym_out;
3780 	    req->defobj_out = req1.defobj_out;
3781 	    assert(req->defobj_out != NULL);
3782 	}
3783     }
3784 
3785     return (req->sym_out != NULL ? 0 : ESRCH);
3786 }
3787 
3788 /*
3789  * Given a symbol name in a referencing object, find the corresponding
3790  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3791  * no definition was found.  Returns a pointer to the Obj_Entry of the
3792  * defining object via the reference parameter DEFOBJ_OUT.
3793  */
3794 static int
3795 symlook_default(SymLook *req, const Obj_Entry *refobj)
3796 {
3797     DoneList donelist;
3798     const Objlist_Entry *elm;
3799     SymLook req1;
3800     int res;
3801 
3802     donelist_init(&donelist);
3803     symlook_init_from_req(&req1, req);
3804 
3805     /* Look first in the referencing object if linked symbolically. */
3806     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3807 	res = symlook_obj(&req1, refobj);
3808 	if (res == 0) {
3809 	    req->sym_out = req1.sym_out;
3810 	    req->defobj_out = req1.defobj_out;
3811 	    assert(req->defobj_out != NULL);
3812 	}
3813     }
3814 
3815     symlook_global(req, &donelist);
3816 
3817     /* Search all dlopened DAGs containing the referencing object. */
3818     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3819 	if (req->sym_out != NULL &&
3820 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3821 	    break;
3822 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3823 	if (res == 0 && (req->sym_out == NULL ||
3824 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3825 	    req->sym_out = req1.sym_out;
3826 	    req->defobj_out = req1.defobj_out;
3827 	    assert(req->defobj_out != NULL);
3828 	}
3829     }
3830 
3831     /*
3832      * Search the dynamic linker itself, and possibly resolve the
3833      * symbol from there.  This is how the application links to
3834      * dynamic linker services such as dlopen.
3835      */
3836     if (req->sym_out == NULL ||
3837       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3838 	res = symlook_obj(&req1, &obj_rtld);
3839 	if (res == 0) {
3840 	    req->sym_out = req1.sym_out;
3841 	    req->defobj_out = req1.defobj_out;
3842 	    assert(req->defobj_out != NULL);
3843 	}
3844     }
3845 
3846     return (req->sym_out != NULL ? 0 : ESRCH);
3847 }
3848 
3849 static int
3850 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3851 {
3852     const Elf_Sym *def;
3853     const Obj_Entry *defobj;
3854     const Objlist_Entry *elm;
3855     SymLook req1;
3856     int res;
3857 
3858     def = NULL;
3859     defobj = NULL;
3860     STAILQ_FOREACH(elm, objlist, link) {
3861 	if (donelist_check(dlp, elm->obj))
3862 	    continue;
3863 	symlook_init_from_req(&req1, req);
3864 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3865 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3866 		def = req1.sym_out;
3867 		defobj = req1.defobj_out;
3868 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3869 		    break;
3870 	    }
3871 	}
3872     }
3873     if (def != NULL) {
3874 	req->sym_out = def;
3875 	req->defobj_out = defobj;
3876 	return (0);
3877     }
3878     return (ESRCH);
3879 }
3880 
3881 /*
3882  * Search the chain of DAGS cointed to by the given Needed_Entry
3883  * for a symbol of the given name.  Each DAG is scanned completely
3884  * before advancing to the next one.  Returns a pointer to the symbol,
3885  * or NULL if no definition was found.
3886  */
3887 static int
3888 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3889 {
3890     const Elf_Sym *def;
3891     const Needed_Entry *n;
3892     const Obj_Entry *defobj;
3893     SymLook req1;
3894     int res;
3895 
3896     def = NULL;
3897     defobj = NULL;
3898     symlook_init_from_req(&req1, req);
3899     for (n = needed; n != NULL; n = n->next) {
3900 	if (n->obj == NULL ||
3901 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3902 	    continue;
3903 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3904 	    def = req1.sym_out;
3905 	    defobj = req1.defobj_out;
3906 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3907 		break;
3908 	}
3909     }
3910     if (def != NULL) {
3911 	req->sym_out = def;
3912 	req->defobj_out = defobj;
3913 	return (0);
3914     }
3915     return (ESRCH);
3916 }
3917 
3918 /*
3919  * Search the symbol table of a single shared object for a symbol of
3920  * the given name and version, if requested.  Returns a pointer to the
3921  * symbol, or NULL if no definition was found.  If the object is
3922  * filter, return filtered symbol from filtee.
3923  *
3924  * The symbol's hash value is passed in for efficiency reasons; that
3925  * eliminates many recomputations of the hash value.
3926  */
3927 int
3928 symlook_obj(SymLook *req, const Obj_Entry *obj)
3929 {
3930     DoneList donelist;
3931     SymLook req1;
3932     int flags, res, mres;
3933 
3934     /*
3935      * If there is at least one valid hash at this point, we prefer to
3936      * use the faster GNU version if available.
3937      */
3938     if (obj->valid_hash_gnu)
3939 	mres = symlook_obj1_gnu(req, obj);
3940     else if (obj->valid_hash_sysv)
3941 	mres = symlook_obj1_sysv(req, obj);
3942     else
3943 	return (EINVAL);
3944 
3945     if (mres == 0) {
3946 	if (obj->needed_filtees != NULL) {
3947 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3948 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3949 	    donelist_init(&donelist);
3950 	    symlook_init_from_req(&req1, req);
3951 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3952 	    if (res == 0) {
3953 		req->sym_out = req1.sym_out;
3954 		req->defobj_out = req1.defobj_out;
3955 	    }
3956 	    return (res);
3957 	}
3958 	if (obj->needed_aux_filtees != NULL) {
3959 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3960 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3961 	    donelist_init(&donelist);
3962 	    symlook_init_from_req(&req1, req);
3963 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3964 	    if (res == 0) {
3965 		req->sym_out = req1.sym_out;
3966 		req->defobj_out = req1.defobj_out;
3967 		return (res);
3968 	    }
3969 	}
3970     }
3971     return (mres);
3972 }
3973 
3974 /* Symbol match routine common to both hash functions */
3975 static bool
3976 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3977     const unsigned long symnum)
3978 {
3979 	Elf_Versym verndx;
3980 	const Elf_Sym *symp;
3981 	const char *strp;
3982 
3983 	symp = obj->symtab + symnum;
3984 	strp = obj->strtab + symp->st_name;
3985 
3986 	switch (ELF_ST_TYPE(symp->st_info)) {
3987 	case STT_FUNC:
3988 	case STT_NOTYPE:
3989 	case STT_OBJECT:
3990 	case STT_COMMON:
3991 	case STT_GNU_IFUNC:
3992 		if (symp->st_value == 0)
3993 			return (false);
3994 		/* fallthrough */
3995 	case STT_TLS:
3996 		if (symp->st_shndx != SHN_UNDEF)
3997 			break;
3998 #ifndef __mips__
3999 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4000 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4001 			break;
4002 		/* fallthrough */
4003 #endif
4004 	default:
4005 		return (false);
4006 	}
4007 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4008 		return (false);
4009 
4010 	if (req->ventry == NULL) {
4011 		if (obj->versyms != NULL) {
4012 			verndx = VER_NDX(obj->versyms[symnum]);
4013 			if (verndx > obj->vernum) {
4014 				_rtld_error(
4015 				    "%s: symbol %s references wrong version %d",
4016 				    obj->path, obj->strtab + symnum, verndx);
4017 				return (false);
4018 			}
4019 			/*
4020 			 * If we are not called from dlsym (i.e. this
4021 			 * is a normal relocation from unversioned
4022 			 * binary), accept the symbol immediately if
4023 			 * it happens to have first version after this
4024 			 * shared object became versioned.  Otherwise,
4025 			 * if symbol is versioned and not hidden,
4026 			 * remember it. If it is the only symbol with
4027 			 * this name exported by the shared object, it
4028 			 * will be returned as a match by the calling
4029 			 * function. If symbol is global (verndx < 2)
4030 			 * accept it unconditionally.
4031 			 */
4032 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4033 			    verndx == VER_NDX_GIVEN) {
4034 				result->sym_out = symp;
4035 				return (true);
4036 			}
4037 			else if (verndx >= VER_NDX_GIVEN) {
4038 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4039 				    == 0) {
4040 					if (result->vsymp == NULL)
4041 						result->vsymp = symp;
4042 					result->vcount++;
4043 				}
4044 				return (false);
4045 			}
4046 		}
4047 		result->sym_out = symp;
4048 		return (true);
4049 	}
4050 	if (obj->versyms == NULL) {
4051 		if (object_match_name(obj, req->ventry->name)) {
4052 			_rtld_error("%s: object %s should provide version %s "
4053 			    "for symbol %s", obj_rtld.path, obj->path,
4054 			    req->ventry->name, obj->strtab + symnum);
4055 			return (false);
4056 		}
4057 	} else {
4058 		verndx = VER_NDX(obj->versyms[symnum]);
4059 		if (verndx > obj->vernum) {
4060 			_rtld_error("%s: symbol %s references wrong version %d",
4061 			    obj->path, obj->strtab + symnum, verndx);
4062 			return (false);
4063 		}
4064 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4065 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4066 			/*
4067 			 * Version does not match. Look if this is a
4068 			 * global symbol and if it is not hidden. If
4069 			 * global symbol (verndx < 2) is available,
4070 			 * use it. Do not return symbol if we are
4071 			 * called by dlvsym, because dlvsym looks for
4072 			 * a specific version and default one is not
4073 			 * what dlvsym wants.
4074 			 */
4075 			if ((req->flags & SYMLOOK_DLSYM) ||
4076 			    (verndx >= VER_NDX_GIVEN) ||
4077 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4078 				return (false);
4079 		}
4080 	}
4081 	result->sym_out = symp;
4082 	return (true);
4083 }
4084 
4085 /*
4086  * Search for symbol using SysV hash function.
4087  * obj->buckets is known not to be NULL at this point; the test for this was
4088  * performed with the obj->valid_hash_sysv assignment.
4089  */
4090 static int
4091 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4092 {
4093 	unsigned long symnum;
4094 	Sym_Match_Result matchres;
4095 
4096 	matchres.sym_out = NULL;
4097 	matchres.vsymp = NULL;
4098 	matchres.vcount = 0;
4099 
4100 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4101 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4102 		if (symnum >= obj->nchains)
4103 			return (ESRCH);	/* Bad object */
4104 
4105 		if (matched_symbol(req, obj, &matchres, symnum)) {
4106 			req->sym_out = matchres.sym_out;
4107 			req->defobj_out = obj;
4108 			return (0);
4109 		}
4110 	}
4111 	if (matchres.vcount == 1) {
4112 		req->sym_out = matchres.vsymp;
4113 		req->defobj_out = obj;
4114 		return (0);
4115 	}
4116 	return (ESRCH);
4117 }
4118 
4119 /* Search for symbol using GNU hash function */
4120 static int
4121 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4122 {
4123 	Elf_Addr bloom_word;
4124 	const Elf32_Word *hashval;
4125 	Elf32_Word bucket;
4126 	Sym_Match_Result matchres;
4127 	unsigned int h1, h2;
4128 	unsigned long symnum;
4129 
4130 	matchres.sym_out = NULL;
4131 	matchres.vsymp = NULL;
4132 	matchres.vcount = 0;
4133 
4134 	/* Pick right bitmask word from Bloom filter array */
4135 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4136 	    obj->maskwords_bm_gnu];
4137 
4138 	/* Calculate modulus word size of gnu hash and its derivative */
4139 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4140 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4141 
4142 	/* Filter out the "definitely not in set" queries */
4143 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4144 		return (ESRCH);
4145 
4146 	/* Locate hash chain and corresponding value element*/
4147 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4148 	if (bucket == 0)
4149 		return (ESRCH);
4150 	hashval = &obj->chain_zero_gnu[bucket];
4151 	do {
4152 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4153 			symnum = hashval - obj->chain_zero_gnu;
4154 			if (matched_symbol(req, obj, &matchres, symnum)) {
4155 				req->sym_out = matchres.sym_out;
4156 				req->defobj_out = obj;
4157 				return (0);
4158 			}
4159 		}
4160 	} while ((*hashval++ & 1) == 0);
4161 	if (matchres.vcount == 1) {
4162 		req->sym_out = matchres.vsymp;
4163 		req->defobj_out = obj;
4164 		return (0);
4165 	}
4166 	return (ESRCH);
4167 }
4168 
4169 static void
4170 trace_loaded_objects(Obj_Entry *obj)
4171 {
4172     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4173     int		c;
4174 
4175     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4176 	main_local = "";
4177 
4178     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4179 	fmt1 = "\t%o => %p (%x)\n";
4180 
4181     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4182 	fmt2 = "\t%o (%x)\n";
4183 
4184     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4185 
4186     for (; obj; obj = obj->next) {
4187 	Needed_Entry		*needed;
4188 	char			*name, *path;
4189 	bool			is_lib;
4190 
4191 	if (list_containers && obj->needed != NULL)
4192 	    rtld_printf("%s:\n", obj->path);
4193 	for (needed = obj->needed; needed; needed = needed->next) {
4194 	    if (needed->obj != NULL) {
4195 		if (needed->obj->traced && !list_containers)
4196 		    continue;
4197 		needed->obj->traced = true;
4198 		path = needed->obj->path;
4199 	    } else
4200 		path = "not found";
4201 
4202 	    name = (char *)obj->strtab + needed->name;
4203 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4204 
4205 	    fmt = is_lib ? fmt1 : fmt2;
4206 	    while ((c = *fmt++) != '\0') {
4207 		switch (c) {
4208 		default:
4209 		    rtld_putchar(c);
4210 		    continue;
4211 		case '\\':
4212 		    switch (c = *fmt) {
4213 		    case '\0':
4214 			continue;
4215 		    case 'n':
4216 			rtld_putchar('\n');
4217 			break;
4218 		    case 't':
4219 			rtld_putchar('\t');
4220 			break;
4221 		    }
4222 		    break;
4223 		case '%':
4224 		    switch (c = *fmt) {
4225 		    case '\0':
4226 			continue;
4227 		    case '%':
4228 		    default:
4229 			rtld_putchar(c);
4230 			break;
4231 		    case 'A':
4232 			rtld_putstr(main_local);
4233 			break;
4234 		    case 'a':
4235 			rtld_putstr(obj_main->path);
4236 			break;
4237 		    case 'o':
4238 			rtld_putstr(name);
4239 			break;
4240 #if 0
4241 		    case 'm':
4242 			rtld_printf("%d", sodp->sod_major);
4243 			break;
4244 		    case 'n':
4245 			rtld_printf("%d", sodp->sod_minor);
4246 			break;
4247 #endif
4248 		    case 'p':
4249 			rtld_putstr(path);
4250 			break;
4251 		    case 'x':
4252 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4253 			  0);
4254 			break;
4255 		    }
4256 		    break;
4257 		}
4258 		++fmt;
4259 	    }
4260 	}
4261     }
4262 }
4263 
4264 /*
4265  * Unload a dlopened object and its dependencies from memory and from
4266  * our data structures.  It is assumed that the DAG rooted in the
4267  * object has already been unreferenced, and that the object has a
4268  * reference count of 0.
4269  */
4270 static void
4271 unload_object(Obj_Entry *root)
4272 {
4273     Obj_Entry *obj;
4274     Obj_Entry **linkp;
4275 
4276     assert(root->refcount == 0);
4277 
4278     /*
4279      * Pass over the DAG removing unreferenced objects from
4280      * appropriate lists.
4281      */
4282     unlink_object(root);
4283 
4284     /* Unmap all objects that are no longer referenced. */
4285     linkp = &obj_list->next;
4286     while ((obj = *linkp) != NULL) {
4287 	if (obj->refcount == 0) {
4288 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4289 		obj->path);
4290 	    dbg("unloading \"%s\"", obj->path);
4291 	    unload_filtees(root);
4292 	    munmap(obj->mapbase, obj->mapsize);
4293 	    linkmap_delete(obj);
4294 	    *linkp = obj->next;
4295 	    obj_count--;
4296 	    obj_free(obj);
4297 	} else
4298 	    linkp = &obj->next;
4299     }
4300     obj_tail = linkp;
4301 }
4302 
4303 static void
4304 unlink_object(Obj_Entry *root)
4305 {
4306     Objlist_Entry *elm;
4307 
4308     if (root->refcount == 0) {
4309 	/* Remove the object from the RTLD_GLOBAL list. */
4310 	objlist_remove(&list_global, root);
4311 
4312     	/* Remove the object from all objects' DAG lists. */
4313     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4314 	    objlist_remove(&elm->obj->dldags, root);
4315 	    if (elm->obj != root)
4316 		unlink_object(elm->obj);
4317 	}
4318     }
4319 }
4320 
4321 static void
4322 ref_dag(Obj_Entry *root)
4323 {
4324     Objlist_Entry *elm;
4325 
4326     assert(root->dag_inited);
4327     STAILQ_FOREACH(elm, &root->dagmembers, link)
4328 	elm->obj->refcount++;
4329 }
4330 
4331 static void
4332 unref_dag(Obj_Entry *root)
4333 {
4334     Objlist_Entry *elm;
4335 
4336     assert(root->dag_inited);
4337     STAILQ_FOREACH(elm, &root->dagmembers, link)
4338 	elm->obj->refcount--;
4339 }
4340 
4341 /*
4342  * Common code for MD __tls_get_addr().
4343  */
4344 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4345 static void *
4346 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4347 {
4348     Elf_Addr *newdtv, *dtv;
4349     RtldLockState lockstate;
4350     int to_copy;
4351 
4352     dtv = *dtvp;
4353     /* Check dtv generation in case new modules have arrived */
4354     if (dtv[0] != tls_dtv_generation) {
4355 	wlock_acquire(rtld_bind_lock, &lockstate);
4356 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4357 	to_copy = dtv[1];
4358 	if (to_copy > tls_max_index)
4359 	    to_copy = tls_max_index;
4360 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4361 	newdtv[0] = tls_dtv_generation;
4362 	newdtv[1] = tls_max_index;
4363 	free(dtv);
4364 	lock_release(rtld_bind_lock, &lockstate);
4365 	dtv = *dtvp = newdtv;
4366     }
4367 
4368     /* Dynamically allocate module TLS if necessary */
4369     if (dtv[index + 1] == 0) {
4370 	/* Signal safe, wlock will block out signals. */
4371 	wlock_acquire(rtld_bind_lock, &lockstate);
4372 	if (!dtv[index + 1])
4373 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4374 	lock_release(rtld_bind_lock, &lockstate);
4375     }
4376     return ((void *)(dtv[index + 1] + offset));
4377 }
4378 
4379 void *
4380 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4381 {
4382 	Elf_Addr *dtv;
4383 
4384 	dtv = *dtvp;
4385 	/* Check dtv generation in case new modules have arrived */
4386 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4387 	    dtv[index + 1] != 0))
4388 		return ((void *)(dtv[index + 1] + offset));
4389 	return (tls_get_addr_slow(dtvp, index, offset));
4390 }
4391 
4392 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4393     defined(__powerpc__)
4394 
4395 /*
4396  * Allocate Static TLS using the Variant I method.
4397  */
4398 void *
4399 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4400 {
4401     Obj_Entry *obj;
4402     char *tcb;
4403     Elf_Addr **tls;
4404     Elf_Addr *dtv;
4405     Elf_Addr addr;
4406     int i;
4407 
4408     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4409 	return (oldtcb);
4410 
4411     assert(tcbsize >= TLS_TCB_SIZE);
4412     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4413     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4414 
4415     if (oldtcb != NULL) {
4416 	memcpy(tls, oldtcb, tls_static_space);
4417 	free(oldtcb);
4418 
4419 	/* Adjust the DTV. */
4420 	dtv = tls[0];
4421 	for (i = 0; i < dtv[1]; i++) {
4422 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4423 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4424 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4425 	    }
4426 	}
4427     } else {
4428 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4429 	tls[0] = dtv;
4430 	dtv[0] = tls_dtv_generation;
4431 	dtv[1] = tls_max_index;
4432 
4433 	for (obj = objs; obj; obj = obj->next) {
4434 	    if (obj->tlsoffset > 0) {
4435 		addr = (Elf_Addr)tls + obj->tlsoffset;
4436 		if (obj->tlsinitsize > 0)
4437 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4438 		if (obj->tlssize > obj->tlsinitsize)
4439 		    memset((void*) (addr + obj->tlsinitsize), 0,
4440 			   obj->tlssize - obj->tlsinitsize);
4441 		dtv[obj->tlsindex + 1] = addr;
4442 	    }
4443 	}
4444     }
4445 
4446     return (tcb);
4447 }
4448 
4449 void
4450 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4451 {
4452     Elf_Addr *dtv;
4453     Elf_Addr tlsstart, tlsend;
4454     int dtvsize, i;
4455 
4456     assert(tcbsize >= TLS_TCB_SIZE);
4457 
4458     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4459     tlsend = tlsstart + tls_static_space;
4460 
4461     dtv = *(Elf_Addr **)tlsstart;
4462     dtvsize = dtv[1];
4463     for (i = 0; i < dtvsize; i++) {
4464 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4465 	    free((void*)dtv[i+2]);
4466 	}
4467     }
4468     free(dtv);
4469     free(tcb);
4470 }
4471 
4472 #endif
4473 
4474 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4475 
4476 /*
4477  * Allocate Static TLS using the Variant II method.
4478  */
4479 void *
4480 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4481 {
4482     Obj_Entry *obj;
4483     size_t size, ralign;
4484     char *tls;
4485     Elf_Addr *dtv, *olddtv;
4486     Elf_Addr segbase, oldsegbase, addr;
4487     int i;
4488 
4489     ralign = tcbalign;
4490     if (tls_static_max_align > ralign)
4491 	    ralign = tls_static_max_align;
4492     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4493 
4494     assert(tcbsize >= 2*sizeof(Elf_Addr));
4495     tls = malloc_aligned(size, ralign);
4496     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4497 
4498     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4499     ((Elf_Addr*)segbase)[0] = segbase;
4500     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4501 
4502     dtv[0] = tls_dtv_generation;
4503     dtv[1] = tls_max_index;
4504 
4505     if (oldtls) {
4506 	/*
4507 	 * Copy the static TLS block over whole.
4508 	 */
4509 	oldsegbase = (Elf_Addr) oldtls;
4510 	memcpy((void *)(segbase - tls_static_space),
4511 	       (const void *)(oldsegbase - tls_static_space),
4512 	       tls_static_space);
4513 
4514 	/*
4515 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4516 	 * move them over.
4517 	 */
4518 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4519 	for (i = 0; i < olddtv[1]; i++) {
4520 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4521 		dtv[i+2] = olddtv[i+2];
4522 		olddtv[i+2] = 0;
4523 	    }
4524 	}
4525 
4526 	/*
4527 	 * We assume that this block was the one we created with
4528 	 * allocate_initial_tls().
4529 	 */
4530 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4531     } else {
4532 	for (obj = objs; obj; obj = obj->next) {
4533 	    if (obj->tlsoffset) {
4534 		addr = segbase - obj->tlsoffset;
4535 		memset((void*) (addr + obj->tlsinitsize),
4536 		       0, obj->tlssize - obj->tlsinitsize);
4537 		if (obj->tlsinit)
4538 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4539 		dtv[obj->tlsindex + 1] = addr;
4540 	    }
4541 	}
4542     }
4543 
4544     return (void*) segbase;
4545 }
4546 
4547 void
4548 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4549 {
4550     Elf_Addr* dtv;
4551     size_t size, ralign;
4552     int dtvsize, i;
4553     Elf_Addr tlsstart, tlsend;
4554 
4555     /*
4556      * Figure out the size of the initial TLS block so that we can
4557      * find stuff which ___tls_get_addr() allocated dynamically.
4558      */
4559     ralign = tcbalign;
4560     if (tls_static_max_align > ralign)
4561 	    ralign = tls_static_max_align;
4562     size = round(tls_static_space, ralign);
4563 
4564     dtv = ((Elf_Addr**)tls)[1];
4565     dtvsize = dtv[1];
4566     tlsend = (Elf_Addr) tls;
4567     tlsstart = tlsend - size;
4568     for (i = 0; i < dtvsize; i++) {
4569 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4570 		free_aligned((void *)dtv[i + 2]);
4571 	}
4572     }
4573 
4574     free_aligned((void *)tlsstart);
4575     free((void*) dtv);
4576 }
4577 
4578 #endif
4579 
4580 /*
4581  * Allocate TLS block for module with given index.
4582  */
4583 void *
4584 allocate_module_tls(int index)
4585 {
4586     Obj_Entry* obj;
4587     char* p;
4588 
4589     for (obj = obj_list; obj; obj = obj->next) {
4590 	if (obj->tlsindex == index)
4591 	    break;
4592     }
4593     if (!obj) {
4594 	_rtld_error("Can't find module with TLS index %d", index);
4595 	rtld_die();
4596     }
4597 
4598     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4599     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4600     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4601 
4602     return p;
4603 }
4604 
4605 bool
4606 allocate_tls_offset(Obj_Entry *obj)
4607 {
4608     size_t off;
4609 
4610     if (obj->tls_done)
4611 	return true;
4612 
4613     if (obj->tlssize == 0) {
4614 	obj->tls_done = true;
4615 	return true;
4616     }
4617 
4618     if (obj->tlsindex == 1)
4619 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4620     else
4621 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4622 				   obj->tlssize, obj->tlsalign);
4623 
4624     /*
4625      * If we have already fixed the size of the static TLS block, we
4626      * must stay within that size. When allocating the static TLS, we
4627      * leave a small amount of space spare to be used for dynamically
4628      * loading modules which use static TLS.
4629      */
4630     if (tls_static_space != 0) {
4631 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4632 	    return false;
4633     } else if (obj->tlsalign > tls_static_max_align) {
4634 	    tls_static_max_align = obj->tlsalign;
4635     }
4636 
4637     tls_last_offset = obj->tlsoffset = off;
4638     tls_last_size = obj->tlssize;
4639     obj->tls_done = true;
4640 
4641     return true;
4642 }
4643 
4644 void
4645 free_tls_offset(Obj_Entry *obj)
4646 {
4647 
4648     /*
4649      * If we were the last thing to allocate out of the static TLS
4650      * block, we give our space back to the 'allocator'. This is a
4651      * simplistic workaround to allow libGL.so.1 to be loaded and
4652      * unloaded multiple times.
4653      */
4654     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4655 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4656 	tls_last_offset -= obj->tlssize;
4657 	tls_last_size = 0;
4658     }
4659 }
4660 
4661 void *
4662 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4663 {
4664     void *ret;
4665     RtldLockState lockstate;
4666 
4667     wlock_acquire(rtld_bind_lock, &lockstate);
4668     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4669     lock_release(rtld_bind_lock, &lockstate);
4670     return (ret);
4671 }
4672 
4673 void
4674 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4675 {
4676     RtldLockState lockstate;
4677 
4678     wlock_acquire(rtld_bind_lock, &lockstate);
4679     free_tls(tcb, tcbsize, tcbalign);
4680     lock_release(rtld_bind_lock, &lockstate);
4681 }
4682 
4683 static void
4684 object_add_name(Obj_Entry *obj, const char *name)
4685 {
4686     Name_Entry *entry;
4687     size_t len;
4688 
4689     len = strlen(name);
4690     entry = malloc(sizeof(Name_Entry) + len);
4691 
4692     if (entry != NULL) {
4693 	strcpy(entry->name, name);
4694 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4695     }
4696 }
4697 
4698 static int
4699 object_match_name(const Obj_Entry *obj, const char *name)
4700 {
4701     Name_Entry *entry;
4702 
4703     STAILQ_FOREACH(entry, &obj->names, link) {
4704 	if (strcmp(name, entry->name) == 0)
4705 	    return (1);
4706     }
4707     return (0);
4708 }
4709 
4710 static Obj_Entry *
4711 locate_dependency(const Obj_Entry *obj, const char *name)
4712 {
4713     const Objlist_Entry *entry;
4714     const Needed_Entry *needed;
4715 
4716     STAILQ_FOREACH(entry, &list_main, link) {
4717 	if (object_match_name(entry->obj, name))
4718 	    return entry->obj;
4719     }
4720 
4721     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4722 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4723 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4724 	    /*
4725 	     * If there is DT_NEEDED for the name we are looking for,
4726 	     * we are all set.  Note that object might not be found if
4727 	     * dependency was not loaded yet, so the function can
4728 	     * return NULL here.  This is expected and handled
4729 	     * properly by the caller.
4730 	     */
4731 	    return (needed->obj);
4732 	}
4733     }
4734     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4735 	obj->path, name);
4736     rtld_die();
4737 }
4738 
4739 static int
4740 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4741     const Elf_Vernaux *vna)
4742 {
4743     const Elf_Verdef *vd;
4744     const char *vername;
4745 
4746     vername = refobj->strtab + vna->vna_name;
4747     vd = depobj->verdef;
4748     if (vd == NULL) {
4749 	_rtld_error("%s: version %s required by %s not defined",
4750 	    depobj->path, vername, refobj->path);
4751 	return (-1);
4752     }
4753     for (;;) {
4754 	if (vd->vd_version != VER_DEF_CURRENT) {
4755 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4756 		depobj->path, vd->vd_version);
4757 	    return (-1);
4758 	}
4759 	if (vna->vna_hash == vd->vd_hash) {
4760 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4761 		((char *)vd + vd->vd_aux);
4762 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4763 		return (0);
4764 	}
4765 	if (vd->vd_next == 0)
4766 	    break;
4767 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4768     }
4769     if (vna->vna_flags & VER_FLG_WEAK)
4770 	return (0);
4771     _rtld_error("%s: version %s required by %s not found",
4772 	depobj->path, vername, refobj->path);
4773     return (-1);
4774 }
4775 
4776 static int
4777 rtld_verify_object_versions(Obj_Entry *obj)
4778 {
4779     const Elf_Verneed *vn;
4780     const Elf_Verdef  *vd;
4781     const Elf_Verdaux *vda;
4782     const Elf_Vernaux *vna;
4783     const Obj_Entry *depobj;
4784     int maxvernum, vernum;
4785 
4786     if (obj->ver_checked)
4787 	return (0);
4788     obj->ver_checked = true;
4789 
4790     maxvernum = 0;
4791     /*
4792      * Walk over defined and required version records and figure out
4793      * max index used by any of them. Do very basic sanity checking
4794      * while there.
4795      */
4796     vn = obj->verneed;
4797     while (vn != NULL) {
4798 	if (vn->vn_version != VER_NEED_CURRENT) {
4799 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4800 		obj->path, vn->vn_version);
4801 	    return (-1);
4802 	}
4803 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4804 	for (;;) {
4805 	    vernum = VER_NEED_IDX(vna->vna_other);
4806 	    if (vernum > maxvernum)
4807 		maxvernum = vernum;
4808 	    if (vna->vna_next == 0)
4809 		 break;
4810 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4811 	}
4812 	if (vn->vn_next == 0)
4813 	    break;
4814 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4815     }
4816 
4817     vd = obj->verdef;
4818     while (vd != NULL) {
4819 	if (vd->vd_version != VER_DEF_CURRENT) {
4820 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4821 		obj->path, vd->vd_version);
4822 	    return (-1);
4823 	}
4824 	vernum = VER_DEF_IDX(vd->vd_ndx);
4825 	if (vernum > maxvernum)
4826 		maxvernum = vernum;
4827 	if (vd->vd_next == 0)
4828 	    break;
4829 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4830     }
4831 
4832     if (maxvernum == 0)
4833 	return (0);
4834 
4835     /*
4836      * Store version information in array indexable by version index.
4837      * Verify that object version requirements are satisfied along the
4838      * way.
4839      */
4840     obj->vernum = maxvernum + 1;
4841     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4842 
4843     vd = obj->verdef;
4844     while (vd != NULL) {
4845 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4846 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4847 	    assert(vernum <= maxvernum);
4848 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4849 	    obj->vertab[vernum].hash = vd->vd_hash;
4850 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4851 	    obj->vertab[vernum].file = NULL;
4852 	    obj->vertab[vernum].flags = 0;
4853 	}
4854 	if (vd->vd_next == 0)
4855 	    break;
4856 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4857     }
4858 
4859     vn = obj->verneed;
4860     while (vn != NULL) {
4861 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4862 	if (depobj == NULL)
4863 	    return (-1);
4864 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4865 	for (;;) {
4866 	    if (check_object_provided_version(obj, depobj, vna))
4867 		return (-1);
4868 	    vernum = VER_NEED_IDX(vna->vna_other);
4869 	    assert(vernum <= maxvernum);
4870 	    obj->vertab[vernum].hash = vna->vna_hash;
4871 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4872 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4873 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4874 		VER_INFO_HIDDEN : 0;
4875 	    if (vna->vna_next == 0)
4876 		 break;
4877 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4878 	}
4879 	if (vn->vn_next == 0)
4880 	    break;
4881 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4882     }
4883     return 0;
4884 }
4885 
4886 static int
4887 rtld_verify_versions(const Objlist *objlist)
4888 {
4889     Objlist_Entry *entry;
4890     int rc;
4891 
4892     rc = 0;
4893     STAILQ_FOREACH(entry, objlist, link) {
4894 	/*
4895 	 * Skip dummy objects or objects that have their version requirements
4896 	 * already checked.
4897 	 */
4898 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4899 	    continue;
4900 	if (rtld_verify_object_versions(entry->obj) == -1) {
4901 	    rc = -1;
4902 	    if (ld_tracing == NULL)
4903 		break;
4904 	}
4905     }
4906     if (rc == 0 || ld_tracing != NULL)
4907     	rc = rtld_verify_object_versions(&obj_rtld);
4908     return rc;
4909 }
4910 
4911 const Ver_Entry *
4912 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4913 {
4914     Elf_Versym vernum;
4915 
4916     if (obj->vertab) {
4917 	vernum = VER_NDX(obj->versyms[symnum]);
4918 	if (vernum >= obj->vernum) {
4919 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4920 		obj->path, obj->strtab + symnum, vernum);
4921 	} else if (obj->vertab[vernum].hash != 0) {
4922 	    return &obj->vertab[vernum];
4923 	}
4924     }
4925     return NULL;
4926 }
4927 
4928 int
4929 _rtld_get_stack_prot(void)
4930 {
4931 
4932 	return (stack_prot);
4933 }
4934 
4935 int
4936 _rtld_is_dlopened(void *arg)
4937 {
4938 	Obj_Entry *obj;
4939 	RtldLockState lockstate;
4940 	int res;
4941 
4942 	rlock_acquire(rtld_bind_lock, &lockstate);
4943 	obj = dlcheck(arg);
4944 	if (obj == NULL)
4945 		obj = obj_from_addr(arg);
4946 	if (obj == NULL) {
4947 		_rtld_error("No shared object contains address");
4948 		lock_release(rtld_bind_lock, &lockstate);
4949 		return (-1);
4950 	}
4951 	res = obj->dlopened ? 1 : 0;
4952 	lock_release(rtld_bind_lock, &lockstate);
4953 	return (res);
4954 }
4955 
4956 static void
4957 map_stacks_exec(RtldLockState *lockstate)
4958 {
4959 	void (*thr_map_stacks_exec)(void);
4960 
4961 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4962 		return;
4963 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4964 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4965 	if (thr_map_stacks_exec != NULL) {
4966 		stack_prot |= PROT_EXEC;
4967 		thr_map_stacks_exec();
4968 	}
4969 }
4970 
4971 void
4972 symlook_init(SymLook *dst, const char *name)
4973 {
4974 
4975 	bzero(dst, sizeof(*dst));
4976 	dst->name = name;
4977 	dst->hash = elf_hash(name);
4978 	dst->hash_gnu = gnu_hash(name);
4979 }
4980 
4981 static void
4982 symlook_init_from_req(SymLook *dst, const SymLook *src)
4983 {
4984 
4985 	dst->name = src->name;
4986 	dst->hash = src->hash;
4987 	dst->hash_gnu = src->hash_gnu;
4988 	dst->ventry = src->ventry;
4989 	dst->flags = src->flags;
4990 	dst->defobj_out = NULL;
4991 	dst->sym_out = NULL;
4992 	dst->lockstate = src->lockstate;
4993 }
4994 
4995 
4996 /*
4997  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
4998  */
4999 static int
5000 parse_libdir(const char *str)
5001 {
5002 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5003 	const char *orig;
5004 	int fd;
5005 	char c;
5006 
5007 	orig = str;
5008 	fd = 0;
5009 	for (c = *str; c != '\0'; c = *++str) {
5010 		if (c < '0' || c > '9')
5011 			return (-1);
5012 
5013 		fd *= RADIX;
5014 		fd += c - '0';
5015 	}
5016 
5017 	/* Make sure we actually parsed something. */
5018 	if (str == orig) {
5019 		_rtld_error("failed to parse directory FD from '%s'", str);
5020 		return (-1);
5021 	}
5022 	return (fd);
5023 }
5024 
5025 /*
5026  * Overrides for libc_pic-provided functions.
5027  */
5028 
5029 int
5030 __getosreldate(void)
5031 {
5032 	size_t len;
5033 	int oid[2];
5034 	int error, osrel;
5035 
5036 	if (osreldate != 0)
5037 		return (osreldate);
5038 
5039 	oid[0] = CTL_KERN;
5040 	oid[1] = KERN_OSRELDATE;
5041 	osrel = 0;
5042 	len = sizeof(osrel);
5043 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5044 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5045 		osreldate = osrel;
5046 	return (osreldate);
5047 }
5048 
5049 void
5050 exit(int status)
5051 {
5052 
5053 	_exit(status);
5054 }
5055 
5056 void (*__cleanup)(void);
5057 int __isthreaded = 0;
5058 int _thread_autoinit_dummy_decl = 1;
5059 
5060 /*
5061  * No unresolved symbols for rtld.
5062  */
5063 void
5064 __pthread_cxa_finalize(struct dl_phdr_info *a)
5065 {
5066 }
5067 
5068 void
5069 __stack_chk_fail(void)
5070 {
5071 
5072 	_rtld_error("stack overflow detected; terminated");
5073 	rtld_die();
5074 }
5075 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5076 
5077 void
5078 __chk_fail(void)
5079 {
5080 
5081 	_rtld_error("buffer overflow detected; terminated");
5082 	rtld_die();
5083 }
5084 
5085 const char *
5086 rtld_strerror(int errnum)
5087 {
5088 
5089 	if (errnum < 0 || errnum >= sys_nerr)
5090 		return ("Unknown error");
5091 	return (sys_errlist[errnum]);
5092 }
5093