xref: /freebsd/libexec/rtld-elf/rtld.c (revision 38efd4df23cff3e5722e7fc9094276fcdcff1824)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "rtld_paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 struct dlerror_save {
85 	int seen;
86 	char *msg;
87 };
88 
89 /*
90  * Function declarations.
91  */
92 static const char *basename(const char *);
93 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
94     const Elf_Dyn **, const Elf_Dyn **);
95 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
96     const Elf_Dyn *);
97 static bool digest_dynamic(Obj_Entry *, int);
98 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
99 static void distribute_static_tls(Objlist *, RtldLockState *);
100 static Obj_Entry *dlcheck(void *);
101 static int dlclose_locked(void *, RtldLockState *);
102 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
103     int lo_flags, int mode, RtldLockState *lockstate);
104 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
105 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
106 static bool donelist_check(DoneList *, const Obj_Entry *);
107 static void dump_auxv(Elf_Auxinfo **aux_info);
108 static void errmsg_restore(struct dlerror_save *);
109 static struct dlerror_save *errmsg_save(void);
110 static void *fill_search_info(const char *, size_t, void *);
111 static char *find_library(const char *, const Obj_Entry *, int *);
112 static const char *gethints(bool);
113 static void hold_object(Obj_Entry *);
114 static void unhold_object(Obj_Entry *);
115 static void init_dag(Obj_Entry *);
116 static void init_marker(Obj_Entry *);
117 static void init_pagesizes(Elf_Auxinfo **aux_info);
118 static void init_rtld(caddr_t, Elf_Auxinfo **);
119 static void initlist_add_neededs(Needed_Entry *, Objlist *);
120 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
121 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
122 static void linkmap_add(Obj_Entry *);
123 static void linkmap_delete(Obj_Entry *);
124 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
125 static void unload_filtees(Obj_Entry *, RtldLockState *);
126 static int load_needed_objects(Obj_Entry *, int);
127 static int load_preload_objects(const char *, bool);
128 static int load_kpreload(const void *addr);
129 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
130 static void map_stacks_exec(RtldLockState *);
131 static int obj_disable_relro(Obj_Entry *);
132 static int obj_enforce_relro(Obj_Entry *);
133 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
134 static void objlist_call_init(Objlist *, RtldLockState *);
135 static void objlist_clear(Objlist *);
136 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
137 static void objlist_init(Objlist *);
138 static void objlist_push_head(Objlist *, Obj_Entry *);
139 static void objlist_push_tail(Objlist *, Obj_Entry *);
140 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
141 static void objlist_remove(Objlist *, Obj_Entry *);
142 static int open_binary_fd(const char *argv0, bool search_in_path,
143     const char **binpath_res);
144 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
145     const char **argv0, bool *dir_ignore);
146 static int parse_integer(const char *);
147 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
148 static void print_usage(const char *argv0);
149 static void release_object(Obj_Entry *);
150 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
151     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
152 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
153     int flags, RtldLockState *lockstate);
154 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
155     RtldLockState *);
156 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
157 static int rtld_dirname(const char *, char *);
158 static int rtld_dirname_abs(const char *, char *);
159 static void *rtld_dlopen(const char *name, int fd, int mode);
160 static void rtld_exit(void);
161 static void rtld_nop_exit(void);
162 static char *search_library_path(const char *, const char *, const char *,
163     int *);
164 static char *search_library_pathfds(const char *, const char *, int *);
165 static const void **get_program_var_addr(const char *, RtldLockState *);
166 static void set_program_var(const char *, const void *);
167 static int symlook_default(SymLook *, const Obj_Entry *refobj);
168 static int symlook_global(SymLook *, DoneList *);
169 static void symlook_init_from_req(SymLook *, const SymLook *);
170 static int symlook_list(SymLook *, const Objlist *, DoneList *);
171 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
172 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
173 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
174 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
175 static void trace_loaded_objects(Obj_Entry *, bool);
176 static void unlink_object(Obj_Entry *);
177 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
178 static void unref_dag(Obj_Entry *);
179 static void ref_dag(Obj_Entry *);
180 static char *origin_subst_one(Obj_Entry *, char *, const char *,
181     const char *, bool);
182 static char *origin_subst(Obj_Entry *, const char *);
183 static bool obj_resolve_origin(Obj_Entry *obj);
184 static void preinit_main(void);
185 static int  rtld_verify_versions(const Objlist *);
186 static int  rtld_verify_object_versions(Obj_Entry *);
187 static void object_add_name(Obj_Entry *, const char *);
188 static int  object_match_name(const Obj_Entry *, const char *);
189 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
190 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
191     struct dl_phdr_info *phdr_info);
192 static uint32_t gnu_hash(const char *);
193 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
194     const unsigned long);
195 
196 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
197 void _r_debug_postinit(struct link_map *) __noinline __exported;
198 
199 int __sys_openat(int, const char *, int, ...);
200 
201 /*
202  * Data declarations.
203  */
204 struct r_debug r_debug __exported;	/* for GDB; */
205 static bool libmap_disable;	/* Disable libmap */
206 static bool ld_loadfltr;	/* Immediate filters processing */
207 static const char *libmap_override;/* Maps to use in addition to libmap.conf */
208 static bool trust;		/* False for setuid and setgid programs */
209 static bool dangerous_ld_env;	/* True if environment variables have been
210 				   used to affect the libraries loaded */
211 bool ld_bind_not;		/* Disable PLT update */
212 static const char *ld_bind_now;	/* Environment variable for immediate binding */
213 static const char *ld_debug;	/* Environment variable for debugging */
214 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
215 				       weak definition */
216 static const char *ld_library_path;/* Environment variable for search path */
217 static const char *ld_library_dirs;/* Environment variable for library descriptors */
218 static const char *ld_preload;	/* Environment variable for libraries to
219 				   load first */
220 static const char *ld_preload_fds;/* Environment variable for libraries represented by
221 				   descriptors */
222 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
223 static const char *ld_tracing;	/* Called from ldd to print libs */
224 static const char *ld_utrace;	/* Use utrace() to log events. */
225 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
226 static Obj_Entry *obj_main;	/* The main program shared object */
227 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
228 static unsigned int obj_count;	/* Number of objects in obj_list */
229 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
230 
231 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
232   STAILQ_HEAD_INITIALIZER(list_global);
233 static Objlist list_main =	/* Objects loaded at program startup */
234   STAILQ_HEAD_INITIALIZER(list_main);
235 static Objlist list_fini =	/* Objects needing fini() calls */
236   STAILQ_HEAD_INITIALIZER(list_fini);
237 
238 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
239 
240 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
241 
242 extern Elf_Dyn _DYNAMIC;
243 #pragma weak _DYNAMIC
244 
245 int dlclose(void *) __exported;
246 char *dlerror(void) __exported;
247 void *dlopen(const char *, int) __exported;
248 void *fdlopen(int, int) __exported;
249 void *dlsym(void *, const char *) __exported;
250 dlfunc_t dlfunc(void *, const char *) __exported;
251 void *dlvsym(void *, const char *, const char *) __exported;
252 int dladdr(const void *, Dl_info *) __exported;
253 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
254     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
255 int dlinfo(void *, int , void *) __exported;
256 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
257 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
258 int _rtld_get_stack_prot(void) __exported;
259 int _rtld_is_dlopened(void *) __exported;
260 void _rtld_error(const char *, ...) __exported;
261 
262 /* Only here to fix -Wmissing-prototypes warnings */
263 int __getosreldate(void);
264 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
265 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
266 
267 int npagesizes;
268 static int osreldate;
269 size_t *pagesizes;
270 size_t page_size;
271 
272 static int stack_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
273 static int max_stack_flags;
274 
275 /*
276  * Global declarations normally provided by crt1.  The dynamic linker is
277  * not built with crt1, so we have to provide them ourselves.
278  */
279 char *__progname;
280 char **environ;
281 
282 /*
283  * Used to pass argc, argv to init functions.
284  */
285 int main_argc;
286 char **main_argv;
287 
288 /*
289  * Globals to control TLS allocation.
290  */
291 size_t tls_last_offset;		/* Static TLS offset of last module */
292 size_t tls_last_size;		/* Static TLS size of last module */
293 size_t tls_static_space;	/* Static TLS space allocated */
294 static size_t tls_static_max_align;
295 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
296 int tls_max_index = 1;		/* Largest module index allocated */
297 
298 static bool ld_library_path_rpath = false;
299 bool ld_fast_sigblock = false;
300 
301 /*
302  * Globals for path names, and such
303  */
304 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
305 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
306 const char *ld_path_rtld = _PATH_RTLD;
307 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
308 const char *ld_env_prefix = LD_;
309 
310 static void (*rtld_exit_ptr)(void);
311 
312 /*
313  * Fill in a DoneList with an allocation large enough to hold all of
314  * the currently-loaded objects.  Keep this as a macro since it calls
315  * alloca and we want that to occur within the scope of the caller.
316  */
317 #define donelist_init(dlp)					\
318     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
319     assert((dlp)->objs != NULL),				\
320     (dlp)->num_alloc = obj_count,				\
321     (dlp)->num_used = 0)
322 
323 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
324 	if (ld_utrace != NULL)					\
325 		ld_utrace_log(e, h, mb, ms, r, n);		\
326 } while (0)
327 
328 static void
329 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
330     int refcnt, const char *name)
331 {
332 	struct utrace_rtld ut;
333 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
334 
335 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
336 	ut.event = event;
337 	ut.handle = handle;
338 	ut.mapbase = mapbase;
339 	ut.mapsize = mapsize;
340 	ut.refcnt = refcnt;
341 	bzero(ut.name, sizeof(ut.name));
342 	if (name)
343 		strlcpy(ut.name, name, sizeof(ut.name));
344 	utrace(&ut, sizeof(ut));
345 }
346 
347 enum {
348 	LD_BIND_NOW = 0,
349 	LD_PRELOAD,
350 	LD_LIBMAP,
351 	LD_LIBRARY_PATH,
352 	LD_LIBRARY_PATH_FDS,
353 	LD_LIBMAP_DISABLE,
354 	LD_BIND_NOT,
355 	LD_DEBUG,
356 	LD_ELF_HINTS_PATH,
357 	LD_LOADFLTR,
358 	LD_LIBRARY_PATH_RPATH,
359 	LD_PRELOAD_FDS,
360 	LD_DYNAMIC_WEAK,
361 	LD_TRACE_LOADED_OBJECTS,
362 	LD_UTRACE,
363 	LD_DUMP_REL_PRE,
364 	LD_DUMP_REL_POST,
365 	LD_TRACE_LOADED_OBJECTS_PROGNAME,
366 	LD_TRACE_LOADED_OBJECTS_FMT1,
367 	LD_TRACE_LOADED_OBJECTS_FMT2,
368 	LD_TRACE_LOADED_OBJECTS_ALL,
369 	LD_SHOW_AUXV,
370 };
371 
372 struct ld_env_var_desc {
373 	const char * const n;
374 	const char *val;
375 	const bool unsecure;
376 };
377 #define LD_ENV_DESC(var, unsec) \
378     [LD_##var] = { .n = #var, .unsecure = unsec }
379 
380 static struct ld_env_var_desc ld_env_vars[] = {
381 	LD_ENV_DESC(BIND_NOW, false),
382 	LD_ENV_DESC(PRELOAD, true),
383 	LD_ENV_DESC(LIBMAP, true),
384 	LD_ENV_DESC(LIBRARY_PATH, true),
385 	LD_ENV_DESC(LIBRARY_PATH_FDS, true),
386 	LD_ENV_DESC(LIBMAP_DISABLE, true),
387 	LD_ENV_DESC(BIND_NOT, true),
388 	LD_ENV_DESC(DEBUG, true),
389 	LD_ENV_DESC(ELF_HINTS_PATH, true),
390 	LD_ENV_DESC(LOADFLTR, true),
391 	LD_ENV_DESC(LIBRARY_PATH_RPATH, true),
392 	LD_ENV_DESC(PRELOAD_FDS, true),
393 	LD_ENV_DESC(DYNAMIC_WEAK, true),
394 	LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
395 	LD_ENV_DESC(UTRACE, false),
396 	LD_ENV_DESC(DUMP_REL_PRE, false),
397 	LD_ENV_DESC(DUMP_REL_POST, false),
398 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
399 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
400 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
401 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
402 	LD_ENV_DESC(SHOW_AUXV, false),
403 };
404 
405 static const char *
406 ld_get_env_var(int idx)
407 {
408 	return (ld_env_vars[idx].val);
409 }
410 
411 static const char *
412 rtld_get_env_val(char **env, const char *name, size_t name_len)
413 {
414 	char **m, *n, *v;
415 
416 	for (m = env; *m != NULL; m++) {
417 		n = *m;
418 		v = strchr(n, '=');
419 		if (v == NULL) {
420 			/* corrupt environment? */
421 			continue;
422 		}
423 		if (v - n == (ptrdiff_t)name_len &&
424 		    strncmp(name, n, name_len) == 0)
425 			return (v + 1);
426 	}
427 	return (NULL);
428 }
429 
430 static void
431 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
432 {
433 	struct ld_env_var_desc *lvd;
434 	size_t prefix_len, nlen;
435 	char **m, *n, *v;
436 	int i;
437 
438 	prefix_len = strlen(env_prefix);
439 	for (m = env; *m != NULL; m++) {
440 		n = *m;
441 		if (strncmp(env_prefix, n, prefix_len) != 0) {
442 			/* Not a rtld environment variable. */
443 			continue;
444 		}
445 		n += prefix_len;
446 		v = strchr(n, '=');
447 		if (v == NULL) {
448 			/* corrupt environment? */
449 			continue;
450 		}
451 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
452 			lvd = &ld_env_vars[i];
453 			if (lvd->val != NULL) {
454 				/* Saw higher-priority variable name already. */
455 				continue;
456 			}
457 			nlen = strlen(lvd->n);
458 			if (v - n == (ptrdiff_t)nlen &&
459 			    strncmp(lvd->n, n, nlen) == 0) {
460 				lvd->val = v + 1;
461 				break;
462 			}
463 		}
464 	}
465 }
466 
467 static void
468 rtld_init_env_vars(char **env)
469 {
470 	rtld_init_env_vars_for_prefix(env, ld_env_prefix);
471 }
472 
473 static void
474 set_ld_elf_hints_path(void)
475 {
476 	if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
477 		ld_elf_hints_path = ld_elf_hints_default;
478 }
479 
480 uintptr_t
481 rtld_round_page(uintptr_t x)
482 {
483 	return (roundup2(x, page_size));
484 }
485 
486 uintptr_t
487 rtld_trunc_page(uintptr_t x)
488 {
489 	return (rounddown2(x, page_size));
490 }
491 
492 /*
493  * Main entry point for dynamic linking.  The first argument is the
494  * stack pointer.  The stack is expected to be laid out as described
495  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
496  * Specifically, the stack pointer points to a word containing
497  * ARGC.  Following that in the stack is a null-terminated sequence
498  * of pointers to argument strings.  Then comes a null-terminated
499  * sequence of pointers to environment strings.  Finally, there is a
500  * sequence of "auxiliary vector" entries.
501  *
502  * The second argument points to a place to store the dynamic linker's
503  * exit procedure pointer and the third to a place to store the main
504  * program's object.
505  *
506  * The return value is the main program's entry point.
507  */
508 func_ptr_type
509 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
510 {
511     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
512     Objlist_Entry *entry;
513     Obj_Entry *last_interposer, *obj, *preload_tail;
514     const Elf_Phdr *phdr;
515     Objlist initlist;
516     RtldLockState lockstate;
517     struct stat st;
518     Elf_Addr *argcp;
519     char **argv, **env, **envp, *kexecpath;
520     const char *argv0, *binpath, *library_path_rpath;
521     struct ld_env_var_desc *lvd;
522     caddr_t imgentry;
523     char buf[MAXPATHLEN];
524     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
525     size_t sz;
526 #ifdef __powerpc__
527     int old_auxv_format = 1;
528 #endif
529     bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
530 
531     /*
532      * On entry, the dynamic linker itself has not been relocated yet.
533      * Be very careful not to reference any global data until after
534      * init_rtld has returned.  It is OK to reference file-scope statics
535      * and string constants, and to call static and global functions.
536      */
537 
538     /* Find the auxiliary vector on the stack. */
539     argcp = sp;
540     argc = *sp++;
541     argv = (char **) sp;
542     sp += argc + 1;	/* Skip over arguments and NULL terminator */
543     env = (char **) sp;
544     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
545 	;
546     aux = (Elf_Auxinfo *) sp;
547 
548     /* Digest the auxiliary vector. */
549     for (i = 0;  i < AT_COUNT;  i++)
550 	aux_info[i] = NULL;
551     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
552 	if (auxp->a_type < AT_COUNT)
553 	    aux_info[auxp->a_type] = auxp;
554 #ifdef __powerpc__
555 	if (auxp->a_type == 23) /* AT_STACKPROT */
556 	    old_auxv_format = 0;
557 #endif
558     }
559 
560 #ifdef __powerpc__
561     if (old_auxv_format) {
562 	/* Remap from old-style auxv numbers. */
563 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
564 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
565 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
566 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
567 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
568 	aux_info[13] = NULL;		/* AT_GID */
569 
570 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
571 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
572 	aux_info[16] = aux_info[14];	/* AT_CANARY */
573 	aux_info[14] = NULL;		/* AT_EGID */
574     }
575 #endif
576 
577     /* Initialize and relocate ourselves. */
578     assert(aux_info[AT_BASE] != NULL);
579     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
580 
581     dlerror_dflt_init();
582 
583     __progname = obj_rtld.path;
584     argv0 = argv[0] != NULL ? argv[0] : "(null)";
585     environ = env;
586     main_argc = argc;
587     main_argv = argv;
588 
589     if (aux_info[AT_BSDFLAGS] != NULL &&
590 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
591 	    ld_fast_sigblock = true;
592 
593     trust = !issetugid();
594     direct_exec = false;
595 
596     md_abi_variant_hook(aux_info);
597     rtld_init_env_vars(env);
598 
599     fd = -1;
600     if (aux_info[AT_EXECFD] != NULL) {
601 	fd = aux_info[AT_EXECFD]->a_un.a_val;
602     } else {
603 	assert(aux_info[AT_PHDR] != NULL);
604 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
605 	if (phdr == obj_rtld.phdr) {
606 	    if (!trust) {
607 		_rtld_error("Tainted process refusing to run binary %s",
608 		    argv0);
609 		rtld_die();
610 	    }
611 	    direct_exec = true;
612 
613 	    dbg("opening main program in direct exec mode");
614 	    if (argc >= 2) {
615 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd,
616 		  &argv0, &dir_ignore);
617 		explicit_fd = (fd != -1);
618 		binpath = NULL;
619 		if (!explicit_fd)
620 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
621 		if (fstat(fd, &st) == -1) {
622 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
623 		      explicit_fd ? "user-provided descriptor" : argv0,
624 		      rtld_strerror(errno));
625 		    rtld_die();
626 		}
627 
628 		/*
629 		 * Rough emulation of the permission checks done by
630 		 * execve(2), only Unix DACs are checked, ACLs are
631 		 * ignored.  Preserve the semantic of disabling owner
632 		 * to execute if owner x bit is cleared, even if
633 		 * others x bit is enabled.
634 		 * mmap(2) does not allow to mmap with PROT_EXEC if
635 		 * binary' file comes from noexec mount.  We cannot
636 		 * set a text reference on the binary.
637 		 */
638 		dir_enable = false;
639 		if (st.st_uid == geteuid()) {
640 		    if ((st.st_mode & S_IXUSR) != 0)
641 			dir_enable = true;
642 		} else if (st.st_gid == getegid()) {
643 		    if ((st.st_mode & S_IXGRP) != 0)
644 			dir_enable = true;
645 		} else if ((st.st_mode & S_IXOTH) != 0) {
646 		    dir_enable = true;
647 		}
648 		if (!dir_enable && !dir_ignore) {
649 		    _rtld_error("No execute permission for binary %s",
650 		        argv0);
651 		    rtld_die();
652 		}
653 
654 		/*
655 		 * For direct exec mode, argv[0] is the interpreter
656 		 * name, we must remove it and shift arguments left
657 		 * before invoking binary main.  Since stack layout
658 		 * places environment pointers and aux vectors right
659 		 * after the terminating NULL, we must shift
660 		 * environment and aux as well.
661 		 */
662 		main_argc = argc - rtld_argc;
663 		for (i = 0; i <= main_argc; i++)
664 		    argv[i] = argv[i + rtld_argc];
665 		*argcp -= rtld_argc;
666 		environ = env = envp = argv + main_argc + 1;
667 		dbg("move env from %p to %p", envp + rtld_argc, envp);
668 		do {
669 		    *envp = *(envp + rtld_argc);
670 		}  while (*envp++ != NULL);
671 		aux = auxp = (Elf_Auxinfo *)envp;
672 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
673 		dbg("move aux from %p to %p", auxpf, aux);
674 		/* XXXKIB insert place for AT_EXECPATH if not present */
675 		for (;; auxp++, auxpf++) {
676 		    *auxp = *auxpf;
677 		    if (auxp->a_type == AT_NULL)
678 			    break;
679 		}
680 		/* Since the auxiliary vector has moved, redigest it. */
681 		for (i = 0;  i < AT_COUNT;  i++)
682 		    aux_info[i] = NULL;
683 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
684 		    if (auxp->a_type < AT_COUNT)
685 			aux_info[auxp->a_type] = auxp;
686 		}
687 
688 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
689 		if (binpath == NULL) {
690 		    aux_info[AT_EXECPATH] = NULL;
691 		} else {
692 		    if (aux_info[AT_EXECPATH] == NULL) {
693 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
694 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
695 		    }
696 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
697 		      binpath);
698 		}
699 	    } else {
700 		_rtld_error("No binary");
701 		rtld_die();
702 	    }
703 	}
704     }
705 
706     ld_bind_now = ld_get_env_var(LD_BIND_NOW);
707 
708     /*
709      * If the process is tainted, then we un-set the dangerous environment
710      * variables.  The process will be marked as tainted until setuid(2)
711      * is called.  If any child process calls setuid(2) we do not want any
712      * future processes to honor the potentially un-safe variables.
713      */
714     if (!trust) {
715 	    for (i = 0; i < (int)nitems(ld_env_vars); i++) {
716 		    lvd = &ld_env_vars[i];
717 		    if (lvd->unsecure)
718 			    lvd->val = NULL;
719 	    }
720     }
721 
722     ld_debug = ld_get_env_var(LD_DEBUG);
723     if (ld_bind_now == NULL)
724 	    ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
725     ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
726     libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
727     libmap_override = ld_get_env_var(LD_LIBMAP);
728     ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
729     ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
730     ld_preload = ld_get_env_var(LD_PRELOAD);
731     ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
732     ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
733     ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
734     library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
735     if (library_path_rpath != NULL) {
736 	    if (library_path_rpath[0] == 'y' ||
737 		library_path_rpath[0] == 'Y' ||
738 		library_path_rpath[0] == '1')
739 		    ld_library_path_rpath = true;
740 	    else
741 		    ld_library_path_rpath = false;
742     }
743     dangerous_ld_env = libmap_disable || libmap_override != NULL ||
744 	ld_library_path != NULL || ld_preload != NULL ||
745 	ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak;
746     ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
747     ld_utrace = ld_get_env_var(LD_UTRACE);
748 
749     set_ld_elf_hints_path();
750     if (ld_debug != NULL && *ld_debug != '\0')
751 	debug = 1;
752     dbg("%s is initialized, base address = %p", __progname,
753 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
754     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
755     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
756 
757     dbg("initializing thread locks");
758     lockdflt_init();
759 
760     /*
761      * Load the main program, or process its program header if it is
762      * already loaded.
763      */
764     if (fd != -1) {	/* Load the main program. */
765 	dbg("loading main program");
766 	obj_main = map_object(fd, argv0, NULL);
767 	close(fd);
768 	if (obj_main == NULL)
769 	    rtld_die();
770 	max_stack_flags = obj_main->stack_flags;
771     } else {				/* Main program already loaded. */
772 	dbg("processing main program's program header");
773 	assert(aux_info[AT_PHDR] != NULL);
774 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
775 	assert(aux_info[AT_PHNUM] != NULL);
776 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
777 	assert(aux_info[AT_PHENT] != NULL);
778 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
779 	assert(aux_info[AT_ENTRY] != NULL);
780 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
781 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
782 	    rtld_die();
783     }
784 
785     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
786 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
787 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
788 	    if (kexecpath[0] == '/')
789 		    obj_main->path = kexecpath;
790 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
791 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
792 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
793 		    obj_main->path = xstrdup(argv0);
794 	    else
795 		    obj_main->path = xstrdup(buf);
796     } else {
797 	    dbg("No AT_EXECPATH or direct exec");
798 	    obj_main->path = xstrdup(argv0);
799     }
800     dbg("obj_main path %s", obj_main->path);
801     obj_main->mainprog = true;
802 
803     if (aux_info[AT_STACKPROT] != NULL &&
804       aux_info[AT_STACKPROT]->a_un.a_val != 0)
805 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
806 
807 #ifndef COMPAT_32BIT
808     /*
809      * Get the actual dynamic linker pathname from the executable if
810      * possible.  (It should always be possible.)  That ensures that
811      * gdb will find the right dynamic linker even if a non-standard
812      * one is being used.
813      */
814     if (obj_main->interp != NULL &&
815       strcmp(obj_main->interp, obj_rtld.path) != 0) {
816 	free(obj_rtld.path);
817 	obj_rtld.path = xstrdup(obj_main->interp);
818         __progname = obj_rtld.path;
819     }
820 #endif
821 
822     if (!digest_dynamic(obj_main, 0))
823 	rtld_die();
824     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
825 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
826 	obj_main->dynsymcount);
827 
828     linkmap_add(obj_main);
829     linkmap_add(&obj_rtld);
830 
831     /* Link the main program into the list of objects. */
832     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
833     obj_count++;
834     obj_loads++;
835 
836     /* Initialize a fake symbol for resolving undefined weak references. */
837     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
838     sym_zero.st_shndx = SHN_UNDEF;
839     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
840 
841     if (!libmap_disable)
842         libmap_disable = (bool)lm_init(libmap_override);
843 
844     if (aux_info[AT_KPRELOAD] != NULL &&
845       aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
846 	dbg("loading kernel vdso");
847 	if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
848 	    rtld_die();
849     }
850 
851     dbg("loading LD_PRELOAD_FDS libraries");
852     if (load_preload_objects(ld_preload_fds, true) == -1)
853 	rtld_die();
854 
855     dbg("loading LD_PRELOAD libraries");
856     if (load_preload_objects(ld_preload, false) == -1)
857 	rtld_die();
858     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
859 
860     dbg("loading needed objects");
861     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
862       0) == -1)
863 	rtld_die();
864 
865     /* Make a list of all objects loaded at startup. */
866     last_interposer = obj_main;
867     TAILQ_FOREACH(obj, &obj_list, next) {
868 	if (obj->marker)
869 	    continue;
870 	if (obj->z_interpose && obj != obj_main) {
871 	    objlist_put_after(&list_main, last_interposer, obj);
872 	    last_interposer = obj;
873 	} else {
874 	    objlist_push_tail(&list_main, obj);
875 	}
876     	obj->refcount++;
877     }
878 
879     dbg("checking for required versions");
880     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
881 	rtld_die();
882 
883     if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
884        dump_auxv(aux_info);
885 
886     if (ld_tracing) {		/* We're done */
887 	trace_loaded_objects(obj_main, true);
888 	exit(0);
889     }
890 
891     if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
892        dump_relocations(obj_main);
893        exit (0);
894     }
895 
896     /*
897      * Processing tls relocations requires having the tls offsets
898      * initialized.  Prepare offsets before starting initial
899      * relocation processing.
900      */
901     dbg("initializing initial thread local storage offsets");
902     STAILQ_FOREACH(entry, &list_main, link) {
903 	/*
904 	 * Allocate all the initial objects out of the static TLS
905 	 * block even if they didn't ask for it.
906 	 */
907 	allocate_tls_offset(entry->obj);
908     }
909 
910     if (relocate_objects(obj_main,
911       ld_bind_now != NULL && *ld_bind_now != '\0',
912       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
913 	rtld_die();
914 
915     dbg("doing copy relocations");
916     if (do_copy_relocations(obj_main) == -1)
917 	rtld_die();
918 
919     if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
920        dump_relocations(obj_main);
921        exit (0);
922     }
923 
924     ifunc_init(aux);
925 
926     /*
927      * Setup TLS for main thread.  This must be done after the
928      * relocations are processed, since tls initialization section
929      * might be the subject for relocations.
930      */
931     dbg("initializing initial thread local storage");
932     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
933 
934     dbg("initializing key program variables");
935     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
936     set_program_var("environ", env);
937     set_program_var("__elf_aux_vector", aux);
938 
939     /* Make a list of init functions to call. */
940     objlist_init(&initlist);
941     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
942       preload_tail, &initlist);
943 
944     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
945 
946     map_stacks_exec(NULL);
947 
948     if (!obj_main->crt_no_init) {
949 	/*
950 	 * Make sure we don't call the main program's init and fini
951 	 * functions for binaries linked with old crt1 which calls
952 	 * _init itself.
953 	 */
954 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
955 	obj_main->preinit_array = obj_main->init_array =
956 	    obj_main->fini_array = (Elf_Addr)NULL;
957     }
958 
959     if (direct_exec) {
960 	/* Set osrel for direct-execed binary */
961 	mib[0] = CTL_KERN;
962 	mib[1] = KERN_PROC;
963 	mib[2] = KERN_PROC_OSREL;
964 	mib[3] = getpid();
965 	osrel = obj_main->osrel;
966 	sz = sizeof(old_osrel);
967 	dbg("setting osrel to %d", osrel);
968 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
969     }
970 
971     wlock_acquire(rtld_bind_lock, &lockstate);
972 
973     dbg("resolving ifuncs");
974     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
975       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
976 	rtld_die();
977 
978     rtld_exit_ptr = rtld_exit;
979     if (obj_main->crt_no_init)
980 	preinit_main();
981     objlist_call_init(&initlist, &lockstate);
982     _r_debug_postinit(&obj_main->linkmap);
983     objlist_clear(&initlist);
984     dbg("loading filtees");
985     TAILQ_FOREACH(obj, &obj_list, next) {
986 	if (obj->marker)
987 	    continue;
988 	if (ld_loadfltr || obj->z_loadfltr)
989 	    load_filtees(obj, 0, &lockstate);
990     }
991 
992     dbg("enforcing main obj relro");
993     if (obj_enforce_relro(obj_main) == -1)
994 	rtld_die();
995 
996     lock_release(rtld_bind_lock, &lockstate);
997 
998     dbg("transferring control to program entry point = %p", obj_main->entry);
999 
1000     /* Return the exit procedure and the program entry point. */
1001     *exit_proc = rtld_exit_ptr;
1002     *objp = obj_main;
1003     return ((func_ptr_type)obj_main->entry);
1004 }
1005 
1006 void *
1007 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
1008 {
1009 	void *ptr;
1010 	Elf_Addr target;
1011 
1012 	ptr = (void *)make_function_pointer(def, obj);
1013 	target = call_ifunc_resolver(ptr);
1014 	return ((void *)target);
1015 }
1016 
1017 Elf_Addr
1018 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1019 {
1020     const Elf_Rel *rel;
1021     const Elf_Sym *def;
1022     const Obj_Entry *defobj;
1023     Elf_Addr *where;
1024     Elf_Addr target;
1025     RtldLockState lockstate;
1026 
1027     rlock_acquire(rtld_bind_lock, &lockstate);
1028     if (sigsetjmp(lockstate.env, 0) != 0)
1029 	    lock_upgrade(rtld_bind_lock, &lockstate);
1030     if (obj->pltrel)
1031 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1032     else
1033 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1034 
1035     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1036     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1037 	NULL, &lockstate);
1038     if (def == NULL)
1039 	rtld_die();
1040     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
1041 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1042     else
1043 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
1044 
1045     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
1046       defobj->strtab + def->st_name,
1047       obj->path == NULL ? NULL : basename(obj->path),
1048       (void *)target,
1049       defobj->path == NULL ? NULL : basename(defobj->path));
1050 
1051     /*
1052      * Write the new contents for the jmpslot. Note that depending on
1053      * architecture, the value which we need to return back to the
1054      * lazy binding trampoline may or may not be the target
1055      * address. The value returned from reloc_jmpslot() is the value
1056      * that the trampoline needs.
1057      */
1058     target = reloc_jmpslot(where, target, defobj, obj, rel);
1059     lock_release(rtld_bind_lock, &lockstate);
1060     return (target);
1061 }
1062 
1063 /*
1064  * Error reporting function.  Use it like printf.  If formats the message
1065  * into a buffer, and sets things up so that the next call to dlerror()
1066  * will return the message.
1067  */
1068 void
1069 _rtld_error(const char *fmt, ...)
1070 {
1071 	va_list ap;
1072 
1073 	va_start(ap, fmt);
1074 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz,
1075 	    fmt, ap);
1076 	va_end(ap);
1077 	*lockinfo.dlerror_seen() = 0;
1078 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1079 }
1080 
1081 /*
1082  * Return a dynamically-allocated copy of the current error message, if any.
1083  */
1084 static struct dlerror_save *
1085 errmsg_save(void)
1086 {
1087 	struct dlerror_save *res;
1088 
1089 	res = xmalloc(sizeof(*res));
1090 	res->seen = *lockinfo.dlerror_seen();
1091 	if (res->seen == 0)
1092 		res->msg = xstrdup(lockinfo.dlerror_loc());
1093 	return (res);
1094 }
1095 
1096 /*
1097  * Restore the current error message from a copy which was previously saved
1098  * by errmsg_save().  The copy is freed.
1099  */
1100 static void
1101 errmsg_restore(struct dlerror_save *saved_msg)
1102 {
1103 	if (saved_msg == NULL || saved_msg->seen == 1) {
1104 		*lockinfo.dlerror_seen() = 1;
1105 	} else {
1106 		*lockinfo.dlerror_seen() = 0;
1107 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1108 		    lockinfo.dlerror_loc_sz);
1109 		free(saved_msg->msg);
1110 	}
1111 	free(saved_msg);
1112 }
1113 
1114 static const char *
1115 basename(const char *name)
1116 {
1117 	const char *p;
1118 
1119 	p = strrchr(name, '/');
1120 	return (p != NULL ? p + 1 : name);
1121 }
1122 
1123 static struct utsname uts;
1124 
1125 static char *
1126 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
1127     const char *subst, bool may_free)
1128 {
1129 	char *p, *p1, *res, *resp;
1130 	int subst_len, kw_len, subst_count, old_len, new_len;
1131 
1132 	kw_len = strlen(kw);
1133 
1134 	/*
1135 	 * First, count the number of the keyword occurrences, to
1136 	 * preallocate the final string.
1137 	 */
1138 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1139 		p1 = strstr(p, kw);
1140 		if (p1 == NULL)
1141 			break;
1142 	}
1143 
1144 	/*
1145 	 * If the keyword is not found, just return.
1146 	 *
1147 	 * Return non-substituted string if resolution failed.  We
1148 	 * cannot do anything more reasonable, the failure mode of the
1149 	 * caller is unresolved library anyway.
1150 	 */
1151 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1152 		return (may_free ? real : xstrdup(real));
1153 	if (obj != NULL)
1154 		subst = obj->origin_path;
1155 
1156 	/*
1157 	 * There is indeed something to substitute.  Calculate the
1158 	 * length of the resulting string, and allocate it.
1159 	 */
1160 	subst_len = strlen(subst);
1161 	old_len = strlen(real);
1162 	new_len = old_len + (subst_len - kw_len) * subst_count;
1163 	res = xmalloc(new_len + 1);
1164 
1165 	/*
1166 	 * Now, execute the substitution loop.
1167 	 */
1168 	for (p = real, resp = res, *resp = '\0';;) {
1169 		p1 = strstr(p, kw);
1170 		if (p1 != NULL) {
1171 			/* Copy the prefix before keyword. */
1172 			memcpy(resp, p, p1 - p);
1173 			resp += p1 - p;
1174 			/* Keyword replacement. */
1175 			memcpy(resp, subst, subst_len);
1176 			resp += subst_len;
1177 			*resp = '\0';
1178 			p = p1 + kw_len;
1179 		} else
1180 			break;
1181 	}
1182 
1183 	/* Copy to the end of string and finish. */
1184 	strcat(resp, p);
1185 	if (may_free)
1186 		free(real);
1187 	return (res);
1188 }
1189 
1190 static const struct {
1191 	const char *kw;
1192 	bool pass_obj;
1193 	const char *subst;
1194 } tokens[] = {
1195 	{ .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1196 	{ .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1197 	{ .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1198 	{ .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1199 	{ .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1200 	{ .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1201 	{ .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1202 	{ .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1203 	{ .kw = "$LIB", .pass_obj = false, .subst = TOKEN_LIB },
1204 	{ .kw = "${LIB}", .pass_obj = false, .subst = TOKEN_LIB },
1205 };
1206 
1207 static char *
1208 origin_subst(Obj_Entry *obj, const char *real)
1209 {
1210 	char *res;
1211 	int i;
1212 
1213 	if (obj == NULL || !trust)
1214 		return (xstrdup(real));
1215 	if (uts.sysname[0] == '\0') {
1216 		if (uname(&uts) != 0) {
1217 			_rtld_error("utsname failed: %d", errno);
1218 			return (NULL);
1219 		}
1220 	}
1221 
1222 	/* __DECONST is safe here since without may_free real is unchanged */
1223 	res = __DECONST(char *, real);
1224 	for (i = 0; i < (int)nitems(tokens); i++) {
1225 		res = origin_subst_one(tokens[i].pass_obj ? obj : NULL,
1226 		    res, tokens[i].kw, tokens[i].subst, i != 0);
1227 	}
1228 	return (res);
1229 }
1230 
1231 void
1232 rtld_die(void)
1233 {
1234     const char *msg = dlerror();
1235 
1236     if (msg == NULL)
1237 	msg = "Fatal error";
1238     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1239     rtld_fdputstr(STDERR_FILENO, msg);
1240     rtld_fdputchar(STDERR_FILENO, '\n');
1241     _exit(1);
1242 }
1243 
1244 /*
1245  * Process a shared object's DYNAMIC section, and save the important
1246  * information in its Obj_Entry structure.
1247  */
1248 static void
1249 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1250     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1251 {
1252     const Elf_Dyn *dynp;
1253     Needed_Entry **needed_tail = &obj->needed;
1254     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1255     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1256     const Elf_Hashelt *hashtab;
1257     const Elf32_Word *hashval;
1258     Elf32_Word bkt, nmaskwords;
1259     int bloom_size32;
1260     int plttype = DT_REL;
1261 
1262     *dyn_rpath = NULL;
1263     *dyn_soname = NULL;
1264     *dyn_runpath = NULL;
1265 
1266     obj->bind_now = false;
1267     dynp = obj->dynamic;
1268     if (dynp == NULL)
1269 	return;
1270     for (;  dynp->d_tag != DT_NULL;  dynp++) {
1271 	switch (dynp->d_tag) {
1272 
1273 	case DT_REL:
1274 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1275 	    break;
1276 
1277 	case DT_RELSZ:
1278 	    obj->relsize = dynp->d_un.d_val;
1279 	    break;
1280 
1281 	case DT_RELENT:
1282 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1283 	    break;
1284 
1285 	case DT_JMPREL:
1286 	    obj->pltrel = (const Elf_Rel *)
1287 	      (obj->relocbase + dynp->d_un.d_ptr);
1288 	    break;
1289 
1290 	case DT_PLTRELSZ:
1291 	    obj->pltrelsize = dynp->d_un.d_val;
1292 	    break;
1293 
1294 	case DT_RELA:
1295 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1296 	    break;
1297 
1298 	case DT_RELASZ:
1299 	    obj->relasize = dynp->d_un.d_val;
1300 	    break;
1301 
1302 	case DT_RELAENT:
1303 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1304 	    break;
1305 
1306 	case DT_RELR:
1307 	    obj->relr = (const Elf_Relr *)(obj->relocbase + dynp->d_un.d_ptr);
1308 	    break;
1309 
1310 	case DT_RELRSZ:
1311 	    obj->relrsize = dynp->d_un.d_val;
1312 	    break;
1313 
1314 	case DT_RELRENT:
1315 	    assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1316 	    break;
1317 
1318 	case DT_PLTREL:
1319 	    plttype = dynp->d_un.d_val;
1320 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1321 	    break;
1322 
1323 	case DT_SYMTAB:
1324 	    obj->symtab = (const Elf_Sym *)
1325 	      (obj->relocbase + dynp->d_un.d_ptr);
1326 	    break;
1327 
1328 	case DT_SYMENT:
1329 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1330 	    break;
1331 
1332 	case DT_STRTAB:
1333 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1334 	    break;
1335 
1336 	case DT_STRSZ:
1337 	    obj->strsize = dynp->d_un.d_val;
1338 	    break;
1339 
1340 	case DT_VERNEED:
1341 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1342 		dynp->d_un.d_val);
1343 	    break;
1344 
1345 	case DT_VERNEEDNUM:
1346 	    obj->verneednum = dynp->d_un.d_val;
1347 	    break;
1348 
1349 	case DT_VERDEF:
1350 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1351 		dynp->d_un.d_val);
1352 	    break;
1353 
1354 	case DT_VERDEFNUM:
1355 	    obj->verdefnum = dynp->d_un.d_val;
1356 	    break;
1357 
1358 	case DT_VERSYM:
1359 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1360 		dynp->d_un.d_val);
1361 	    break;
1362 
1363 	case DT_HASH:
1364 	    {
1365 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1366 		    dynp->d_un.d_ptr);
1367 		obj->nbuckets = hashtab[0];
1368 		obj->nchains = hashtab[1];
1369 		obj->buckets = hashtab + 2;
1370 		obj->chains = obj->buckets + obj->nbuckets;
1371 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1372 		  obj->buckets != NULL;
1373 	    }
1374 	    break;
1375 
1376 	case DT_GNU_HASH:
1377 	    {
1378 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1379 		    dynp->d_un.d_ptr);
1380 		obj->nbuckets_gnu = hashtab[0];
1381 		obj->symndx_gnu = hashtab[1];
1382 		nmaskwords = hashtab[2];
1383 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1384 		obj->maskwords_bm_gnu = nmaskwords - 1;
1385 		obj->shift2_gnu = hashtab[3];
1386 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1387 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1388 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1389 		  obj->symndx_gnu;
1390 		/* Number of bitmask words is required to be power of 2 */
1391 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1392 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1393 	    }
1394 	    break;
1395 
1396 	case DT_NEEDED:
1397 	    if (!obj->rtld) {
1398 		Needed_Entry *nep = NEW(Needed_Entry);
1399 		nep->name = dynp->d_un.d_val;
1400 		nep->obj = NULL;
1401 		nep->next = NULL;
1402 
1403 		*needed_tail = nep;
1404 		needed_tail = &nep->next;
1405 	    }
1406 	    break;
1407 
1408 	case DT_FILTER:
1409 	    if (!obj->rtld) {
1410 		Needed_Entry *nep = NEW(Needed_Entry);
1411 		nep->name = dynp->d_un.d_val;
1412 		nep->obj = NULL;
1413 		nep->next = NULL;
1414 
1415 		*needed_filtees_tail = nep;
1416 		needed_filtees_tail = &nep->next;
1417 
1418 		if (obj->linkmap.l_refname == NULL)
1419 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1420 	    }
1421 	    break;
1422 
1423 	case DT_AUXILIARY:
1424 	    if (!obj->rtld) {
1425 		Needed_Entry *nep = NEW(Needed_Entry);
1426 		nep->name = dynp->d_un.d_val;
1427 		nep->obj = NULL;
1428 		nep->next = NULL;
1429 
1430 		*needed_aux_filtees_tail = nep;
1431 		needed_aux_filtees_tail = &nep->next;
1432 	    }
1433 	    break;
1434 
1435 	case DT_PLTGOT:
1436 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1437 	    break;
1438 
1439 	case DT_TEXTREL:
1440 	    obj->textrel = true;
1441 	    break;
1442 
1443 	case DT_SYMBOLIC:
1444 	    obj->symbolic = true;
1445 	    break;
1446 
1447 	case DT_RPATH:
1448 	    /*
1449 	     * We have to wait until later to process this, because we
1450 	     * might not have gotten the address of the string table yet.
1451 	     */
1452 	    *dyn_rpath = dynp;
1453 	    break;
1454 
1455 	case DT_SONAME:
1456 	    *dyn_soname = dynp;
1457 	    break;
1458 
1459 	case DT_RUNPATH:
1460 	    *dyn_runpath = dynp;
1461 	    break;
1462 
1463 	case DT_INIT:
1464 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1465 	    break;
1466 
1467 	case DT_PREINIT_ARRAY:
1468 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1469 	    break;
1470 
1471 	case DT_PREINIT_ARRAYSZ:
1472 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1473 	    break;
1474 
1475 	case DT_INIT_ARRAY:
1476 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1477 	    break;
1478 
1479 	case DT_INIT_ARRAYSZ:
1480 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1481 	    break;
1482 
1483 	case DT_FINI:
1484 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1485 	    break;
1486 
1487 	case DT_FINI_ARRAY:
1488 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1489 	    break;
1490 
1491 	case DT_FINI_ARRAYSZ:
1492 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1493 	    break;
1494 
1495 	case DT_DEBUG:
1496 	    if (!early)
1497 		dbg("Filling in DT_DEBUG entry");
1498 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1499 	    break;
1500 
1501 	case DT_FLAGS:
1502 		if (dynp->d_un.d_val & DF_ORIGIN)
1503 		    obj->z_origin = true;
1504 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1505 		    obj->symbolic = true;
1506 		if (dynp->d_un.d_val & DF_TEXTREL)
1507 		    obj->textrel = true;
1508 		if (dynp->d_un.d_val & DF_BIND_NOW)
1509 		    obj->bind_now = true;
1510 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1511 		    obj->static_tls = true;
1512 	    break;
1513 
1514 #ifdef __powerpc__
1515 #ifdef __powerpc64__
1516 	case DT_PPC64_GLINK:
1517 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1518 		break;
1519 #else
1520 	case DT_PPC_GOT:
1521 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1522 		break;
1523 #endif
1524 #endif
1525 
1526 	case DT_FLAGS_1:
1527 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1528 		    obj->z_noopen = true;
1529 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1530 		    obj->z_origin = true;
1531 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1532 		    obj->z_global = true;
1533 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1534 		    obj->bind_now = true;
1535 		if (dynp->d_un.d_val & DF_1_NODELETE)
1536 		    obj->z_nodelete = true;
1537 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1538 		    obj->z_loadfltr = true;
1539 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1540 		    obj->z_interpose = true;
1541 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1542 		    obj->z_nodeflib = true;
1543 		if (dynp->d_un.d_val & DF_1_PIE)
1544 		    obj->z_pie = true;
1545 	    break;
1546 
1547 	default:
1548 	    if (!early) {
1549 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1550 		    (long)dynp->d_tag);
1551 	    }
1552 	    break;
1553 	}
1554     }
1555 
1556     obj->traced = false;
1557 
1558     if (plttype == DT_RELA) {
1559 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1560 	obj->pltrel = NULL;
1561 	obj->pltrelasize = obj->pltrelsize;
1562 	obj->pltrelsize = 0;
1563     }
1564 
1565     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1566     if (obj->valid_hash_sysv)
1567 	obj->dynsymcount = obj->nchains;
1568     else if (obj->valid_hash_gnu) {
1569 	obj->dynsymcount = 0;
1570 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1571 	    if (obj->buckets_gnu[bkt] == 0)
1572 		continue;
1573 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1574 	    do
1575 		obj->dynsymcount++;
1576 	    while ((*hashval++ & 1u) == 0);
1577 	}
1578 	obj->dynsymcount += obj->symndx_gnu;
1579     }
1580 
1581     if (obj->linkmap.l_refname != NULL)
1582 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1583 	  linkmap.l_refname;
1584 }
1585 
1586 static bool
1587 obj_resolve_origin(Obj_Entry *obj)
1588 {
1589 
1590 	if (obj->origin_path != NULL)
1591 		return (true);
1592 	obj->origin_path = xmalloc(PATH_MAX);
1593 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1594 }
1595 
1596 static bool
1597 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1598     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1599 {
1600 
1601 	if (obj->z_origin && !obj_resolve_origin(obj))
1602 		return (false);
1603 
1604 	if (dyn_runpath != NULL) {
1605 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1606 		obj->runpath = origin_subst(obj, obj->runpath);
1607 	} else if (dyn_rpath != NULL) {
1608 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1609 		obj->rpath = origin_subst(obj, obj->rpath);
1610 	}
1611 	if (dyn_soname != NULL)
1612 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1613 	return (true);
1614 }
1615 
1616 static bool
1617 digest_dynamic(Obj_Entry *obj, int early)
1618 {
1619 	const Elf_Dyn *dyn_rpath;
1620 	const Elf_Dyn *dyn_soname;
1621 	const Elf_Dyn *dyn_runpath;
1622 
1623 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1624 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1625 }
1626 
1627 /*
1628  * Process a shared object's program header.  This is used only for the
1629  * main program, when the kernel has already loaded the main program
1630  * into memory before calling the dynamic linker.  It creates and
1631  * returns an Obj_Entry structure.
1632  */
1633 static Obj_Entry *
1634 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1635 {
1636     Obj_Entry *obj;
1637     const Elf_Phdr *phlimit = phdr + phnum;
1638     const Elf_Phdr *ph;
1639     Elf_Addr note_start, note_end;
1640     int nsegs = 0;
1641 
1642     obj = obj_new();
1643     for (ph = phdr;  ph < phlimit;  ph++) {
1644 	if (ph->p_type != PT_PHDR)
1645 	    continue;
1646 
1647 	obj->phdr = phdr;
1648 	obj->phsize = ph->p_memsz;
1649 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1650 	break;
1651     }
1652 
1653     obj->stack_flags = PF_X | PF_R | PF_W;
1654 
1655     for (ph = phdr;  ph < phlimit;  ph++) {
1656 	switch (ph->p_type) {
1657 
1658 	case PT_INTERP:
1659 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1660 	    break;
1661 
1662 	case PT_LOAD:
1663 	    if (nsegs == 0) {	/* First load segment */
1664 		obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
1665 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1666 	    } else {		/* Last load segment */
1667 		obj->mapsize = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
1668 		  obj->vaddrbase;
1669 	    }
1670 	    nsegs++;
1671 	    break;
1672 
1673 	case PT_DYNAMIC:
1674 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1675 	    break;
1676 
1677 	case PT_TLS:
1678 	    obj->tlsindex = 1;
1679 	    obj->tlssize = ph->p_memsz;
1680 	    obj->tlsalign = ph->p_align;
1681 	    obj->tlsinitsize = ph->p_filesz;
1682 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1683 	    obj->tlspoffset = ph->p_offset;
1684 	    break;
1685 
1686 	case PT_GNU_STACK:
1687 	    obj->stack_flags = ph->p_flags;
1688 	    break;
1689 
1690 	case PT_GNU_RELRO:
1691 	    obj->relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
1692 	    obj->relro_size = rtld_trunc_page(ph->p_vaddr + ph->p_memsz) -
1693 	      rtld_trunc_page(ph->p_vaddr);
1694 	    break;
1695 
1696 	case PT_NOTE:
1697 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1698 	    note_end = note_start + ph->p_filesz;
1699 	    digest_notes(obj, note_start, note_end);
1700 	    break;
1701 	}
1702     }
1703     if (nsegs < 1) {
1704 	_rtld_error("%s: too few PT_LOAD segments", path);
1705 	return (NULL);
1706     }
1707 
1708     obj->entry = entry;
1709     return (obj);
1710 }
1711 
1712 void
1713 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1714 {
1715 	const Elf_Note *note;
1716 	const char *note_name;
1717 	uintptr_t p;
1718 
1719 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1720 	    note = (const Elf_Note *)((const char *)(note + 1) +
1721 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1722 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1723 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1724 		    note->n_descsz != sizeof(int32_t))
1725 			continue;
1726 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1727 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1728 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1729 			continue;
1730 		note_name = (const char *)(note + 1);
1731 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1732 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1733 			continue;
1734 		switch (note->n_type) {
1735 		case NT_FREEBSD_ABI_TAG:
1736 			/* FreeBSD osrel note */
1737 			p = (uintptr_t)(note + 1);
1738 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1739 			obj->osrel = *(const int32_t *)(p);
1740 			dbg("note osrel %d", obj->osrel);
1741 			break;
1742 		case NT_FREEBSD_FEATURE_CTL:
1743 			/* FreeBSD ABI feature control note */
1744 			p = (uintptr_t)(note + 1);
1745 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1746 			obj->fctl0 = *(const uint32_t *)(p);
1747 			dbg("note fctl0 %#x", obj->fctl0);
1748 			break;
1749 		case NT_FREEBSD_NOINIT_TAG:
1750 			/* FreeBSD 'crt does not call init' note */
1751 			obj->crt_no_init = true;
1752 			dbg("note crt_no_init");
1753 			break;
1754 		}
1755 	}
1756 }
1757 
1758 static Obj_Entry *
1759 dlcheck(void *handle)
1760 {
1761     Obj_Entry *obj;
1762 
1763     TAILQ_FOREACH(obj, &obj_list, next) {
1764 	if (obj == (Obj_Entry *) handle)
1765 	    break;
1766     }
1767 
1768     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1769 	_rtld_error("Invalid shared object handle %p", handle);
1770 	return (NULL);
1771     }
1772     return (obj);
1773 }
1774 
1775 /*
1776  * If the given object is already in the donelist, return true.  Otherwise
1777  * add the object to the list and return false.
1778  */
1779 static bool
1780 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1781 {
1782     unsigned int i;
1783 
1784     for (i = 0;  i < dlp->num_used;  i++)
1785 	if (dlp->objs[i] == obj)
1786 	    return (true);
1787     /*
1788      * Our donelist allocation should always be sufficient.  But if
1789      * our threads locking isn't working properly, more shared objects
1790      * could have been loaded since we allocated the list.  That should
1791      * never happen, but we'll handle it properly just in case it does.
1792      */
1793     if (dlp->num_used < dlp->num_alloc)
1794 	dlp->objs[dlp->num_used++] = obj;
1795     return (false);
1796 }
1797 
1798 /*
1799  * SysV hash function for symbol table lookup.  It is a slightly optimized
1800  * version of the hash specified by the System V ABI.
1801  */
1802 Elf32_Word
1803 elf_hash(const char *name)
1804 {
1805 	const unsigned char *p = (const unsigned char *)name;
1806 	Elf32_Word h = 0;
1807 
1808 	while (*p != '\0') {
1809 		h = (h << 4) + *p++;
1810 		h ^= (h >> 24) & 0xf0;
1811 	}
1812 	return (h & 0x0fffffff);
1813 }
1814 
1815 /*
1816  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1817  * unsigned in case it's implemented with a wider type.
1818  */
1819 static uint32_t
1820 gnu_hash(const char *s)
1821 {
1822 	uint32_t h;
1823 	unsigned char c;
1824 
1825 	h = 5381;
1826 	for (c = *s; c != '\0'; c = *++s)
1827 		h = h * 33 + c;
1828 	return (h & 0xffffffff);
1829 }
1830 
1831 
1832 /*
1833  * Find the library with the given name, and return its full pathname.
1834  * The returned string is dynamically allocated.  Generates an error
1835  * message and returns NULL if the library cannot be found.
1836  *
1837  * If the second argument is non-NULL, then it refers to an already-
1838  * loaded shared object, whose library search path will be searched.
1839  *
1840  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1841  * descriptor (which is close-on-exec) will be passed out via the third
1842  * argument.
1843  *
1844  * The search order is:
1845  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1846  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1847  *   LD_LIBRARY_PATH
1848  *   DT_RUNPATH in the referencing file
1849  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1850  *	 from list)
1851  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1852  *
1853  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1854  */
1855 static char *
1856 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1857 {
1858 	char *pathname, *refobj_path;
1859 	const char *name;
1860 	bool nodeflib, objgiven;
1861 
1862 	objgiven = refobj != NULL;
1863 
1864 	if (libmap_disable || !objgiven ||
1865 	    (name = lm_find(refobj->path, xname)) == NULL)
1866 		name = xname;
1867 
1868 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1869 		if (name[0] != '/' && !trust) {
1870 			_rtld_error("Absolute pathname required "
1871 			    "for shared object \"%s\"", name);
1872 			return (NULL);
1873 		}
1874 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1875 		    __DECONST(char *, name)));
1876 	}
1877 
1878 	dbg(" Searching for \"%s\"", name);
1879 	refobj_path = objgiven ? refobj->path : NULL;
1880 
1881 	/*
1882 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1883 	 * back to pre-conforming behaviour if user requested so with
1884 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1885 	 * nodeflib.
1886 	 */
1887 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1888 		pathname = search_library_path(name, ld_library_path,
1889 		    refobj_path, fdp);
1890 		if (pathname != NULL)
1891 			return (pathname);
1892 		if (refobj != NULL) {
1893 			pathname = search_library_path(name, refobj->rpath,
1894 			    refobj_path, fdp);
1895 			if (pathname != NULL)
1896 				return (pathname);
1897 		}
1898 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1899 		if (pathname != NULL)
1900 			return (pathname);
1901 		pathname = search_library_path(name, gethints(false),
1902 		    refobj_path, fdp);
1903 		if (pathname != NULL)
1904 			return (pathname);
1905 		pathname = search_library_path(name, ld_standard_library_path,
1906 		    refobj_path, fdp);
1907 		if (pathname != NULL)
1908 			return (pathname);
1909 	} else {
1910 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1911 		if (objgiven) {
1912 			pathname = search_library_path(name, refobj->rpath,
1913 			    refobj->path, fdp);
1914 			if (pathname != NULL)
1915 				return (pathname);
1916 		}
1917 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1918 			pathname = search_library_path(name, obj_main->rpath,
1919 			    refobj_path, fdp);
1920 			if (pathname != NULL)
1921 				return (pathname);
1922 		}
1923 		pathname = search_library_path(name, ld_library_path,
1924 		    refobj_path, fdp);
1925 		if (pathname != NULL)
1926 			return (pathname);
1927 		if (objgiven) {
1928 			pathname = search_library_path(name, refobj->runpath,
1929 			    refobj_path, fdp);
1930 			if (pathname != NULL)
1931 				return (pathname);
1932 		}
1933 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1934 		if (pathname != NULL)
1935 			return (pathname);
1936 		pathname = search_library_path(name, gethints(nodeflib),
1937 		    refobj_path, fdp);
1938 		if (pathname != NULL)
1939 			return (pathname);
1940 		if (objgiven && !nodeflib) {
1941 			pathname = search_library_path(name,
1942 			    ld_standard_library_path, refobj_path, fdp);
1943 			if (pathname != NULL)
1944 				return (pathname);
1945 		}
1946 	}
1947 
1948 	if (objgiven && refobj->path != NULL) {
1949 		_rtld_error("Shared object \"%s\" not found, "
1950 		    "required by \"%s\"", name, basename(refobj->path));
1951 	} else {
1952 		_rtld_error("Shared object \"%s\" not found", name);
1953 	}
1954 	return (NULL);
1955 }
1956 
1957 /*
1958  * Given a symbol number in a referencing object, find the corresponding
1959  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1960  * no definition was found.  Returns a pointer to the Obj_Entry of the
1961  * defining object via the reference parameter DEFOBJ_OUT.
1962  */
1963 const Elf_Sym *
1964 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1965     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1966     RtldLockState *lockstate)
1967 {
1968     const Elf_Sym *ref;
1969     const Elf_Sym *def;
1970     const Obj_Entry *defobj;
1971     const Ver_Entry *ve;
1972     SymLook req;
1973     const char *name;
1974     int res;
1975 
1976     /*
1977      * If we have already found this symbol, get the information from
1978      * the cache.
1979      */
1980     if (symnum >= refobj->dynsymcount)
1981 	return (NULL);	/* Bad object */
1982     if (cache != NULL && cache[symnum].sym != NULL) {
1983 	*defobj_out = cache[symnum].obj;
1984 	return (cache[symnum].sym);
1985     }
1986 
1987     ref = refobj->symtab + symnum;
1988     name = refobj->strtab + ref->st_name;
1989     def = NULL;
1990     defobj = NULL;
1991     ve = NULL;
1992 
1993     /*
1994      * We don't have to do a full scale lookup if the symbol is local.
1995      * We know it will bind to the instance in this load module; to
1996      * which we already have a pointer (ie ref). By not doing a lookup,
1997      * we not only improve performance, but it also avoids unresolvable
1998      * symbols when local symbols are not in the hash table. This has
1999      * been seen with the ia64 toolchain.
2000      */
2001     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
2002 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
2003 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
2004 		symnum);
2005 	}
2006 	symlook_init(&req, name);
2007 	req.flags = flags;
2008 	ve = req.ventry = fetch_ventry(refobj, symnum);
2009 	req.lockstate = lockstate;
2010 	res = symlook_default(&req, refobj);
2011 	if (res == 0) {
2012 	    def = req.sym_out;
2013 	    defobj = req.defobj_out;
2014 	}
2015     } else {
2016 	def = ref;
2017 	defobj = refobj;
2018     }
2019 
2020     /*
2021      * If we found no definition and the reference is weak, treat the
2022      * symbol as having the value zero.
2023      */
2024     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2025 	def = &sym_zero;
2026 	defobj = obj_main;
2027     }
2028 
2029     if (def != NULL) {
2030 	*defobj_out = defobj;
2031 	/* Record the information in the cache to avoid subsequent lookups. */
2032 	if (cache != NULL) {
2033 	    cache[symnum].sym = def;
2034 	    cache[symnum].obj = defobj;
2035 	}
2036     } else {
2037 	if (refobj != &obj_rtld)
2038 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
2039 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
2040     }
2041     return (def);
2042 }
2043 
2044 /*
2045  * Return the search path from the ldconfig hints file, reading it if
2046  * necessary.  If nostdlib is true, then the default search paths are
2047  * not added to result.
2048  *
2049  * Returns NULL if there are problems with the hints file,
2050  * or if the search path there is empty.
2051  */
2052 static const char *
2053 gethints(bool nostdlib)
2054 {
2055 	static char *filtered_path;
2056 	static const char *hints;
2057 	static struct elfhints_hdr hdr;
2058 	struct fill_search_info_args sargs, hargs;
2059 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2060 	struct dl_serpath *SLPpath, *hintpath;
2061 	char *p;
2062 	struct stat hint_stat;
2063 	unsigned int SLPndx, hintndx, fndx, fcount;
2064 	int fd;
2065 	size_t flen;
2066 	uint32_t dl;
2067 	bool skip;
2068 
2069 	/* First call, read the hints file */
2070 	if (hints == NULL) {
2071 		/* Keep from trying again in case the hints file is bad. */
2072 		hints = "";
2073 
2074 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
2075 			return (NULL);
2076 
2077 		/*
2078 		 * Check of hdr.dirlistlen value against type limit
2079 		 * intends to pacify static analyzers.  Further
2080 		 * paranoia leads to checks that dirlist is fully
2081 		 * contained in the file range.
2082 		 */
2083 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
2084 		    hdr.magic != ELFHINTS_MAGIC ||
2085 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
2086 		    fstat(fd, &hint_stat) == -1) {
2087 cleanup1:
2088 			close(fd);
2089 			hdr.dirlistlen = 0;
2090 			return (NULL);
2091 		}
2092 		dl = hdr.strtab;
2093 		if (dl + hdr.dirlist < dl)
2094 			goto cleanup1;
2095 		dl += hdr.dirlist;
2096 		if (dl + hdr.dirlistlen < dl)
2097 			goto cleanup1;
2098 		dl += hdr.dirlistlen;
2099 		if (dl > hint_stat.st_size)
2100 			goto cleanup1;
2101 		p = xmalloc(hdr.dirlistlen + 1);
2102 		if (pread(fd, p, hdr.dirlistlen + 1,
2103 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
2104 		    p[hdr.dirlistlen] != '\0') {
2105 			free(p);
2106 			goto cleanup1;
2107 		}
2108 		hints = p;
2109 		close(fd);
2110 	}
2111 
2112 	/*
2113 	 * If caller agreed to receive list which includes the default
2114 	 * paths, we are done. Otherwise, if we still did not
2115 	 * calculated filtered result, do it now.
2116 	 */
2117 	if (!nostdlib)
2118 		return (hints[0] != '\0' ? hints : NULL);
2119 	if (filtered_path != NULL)
2120 		goto filt_ret;
2121 
2122 	/*
2123 	 * Obtain the list of all configured search paths, and the
2124 	 * list of the default paths.
2125 	 *
2126 	 * First estimate the size of the results.
2127 	 */
2128 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2129 	smeta.dls_cnt = 0;
2130 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2131 	hmeta.dls_cnt = 0;
2132 
2133 	sargs.request = RTLD_DI_SERINFOSIZE;
2134 	sargs.serinfo = &smeta;
2135 	hargs.request = RTLD_DI_SERINFOSIZE;
2136 	hargs.serinfo = &hmeta;
2137 
2138 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2139 	    &sargs);
2140 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2141 
2142 	SLPinfo = xmalloc(smeta.dls_size);
2143 	hintinfo = xmalloc(hmeta.dls_size);
2144 
2145 	/*
2146 	 * Next fetch both sets of paths.
2147 	 */
2148 	sargs.request = RTLD_DI_SERINFO;
2149 	sargs.serinfo = SLPinfo;
2150 	sargs.serpath = &SLPinfo->dls_serpath[0];
2151 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2152 
2153 	hargs.request = RTLD_DI_SERINFO;
2154 	hargs.serinfo = hintinfo;
2155 	hargs.serpath = &hintinfo->dls_serpath[0];
2156 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2157 
2158 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2159 	    &sargs);
2160 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2161 
2162 	/*
2163 	 * Now calculate the difference between two sets, by excluding
2164 	 * standard paths from the full set.
2165 	 */
2166 	fndx = 0;
2167 	fcount = 0;
2168 	filtered_path = xmalloc(hdr.dirlistlen + 1);
2169 	hintpath = &hintinfo->dls_serpath[0];
2170 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2171 		skip = false;
2172 		SLPpath = &SLPinfo->dls_serpath[0];
2173 		/*
2174 		 * Check each standard path against current.
2175 		 */
2176 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2177 			/* matched, skip the path */
2178 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2179 				skip = true;
2180 				break;
2181 			}
2182 		}
2183 		if (skip)
2184 			continue;
2185 		/*
2186 		 * Not matched against any standard path, add the path
2187 		 * to result. Separate consequtive paths with ':'.
2188 		 */
2189 		if (fcount > 0) {
2190 			filtered_path[fndx] = ':';
2191 			fndx++;
2192 		}
2193 		fcount++;
2194 		flen = strlen(hintpath->dls_name);
2195 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2196 		fndx += flen;
2197 	}
2198 	filtered_path[fndx] = '\0';
2199 
2200 	free(SLPinfo);
2201 	free(hintinfo);
2202 
2203 filt_ret:
2204 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2205 }
2206 
2207 static void
2208 init_dag(Obj_Entry *root)
2209 {
2210     const Needed_Entry *needed;
2211     const Objlist_Entry *elm;
2212     DoneList donelist;
2213 
2214     if (root->dag_inited)
2215 	return;
2216     donelist_init(&donelist);
2217 
2218     /* Root object belongs to own DAG. */
2219     objlist_push_tail(&root->dldags, root);
2220     objlist_push_tail(&root->dagmembers, root);
2221     donelist_check(&donelist, root);
2222 
2223     /*
2224      * Add dependencies of root object to DAG in breadth order
2225      * by exploiting the fact that each new object get added
2226      * to the tail of the dagmembers list.
2227      */
2228     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2229 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2230 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2231 		continue;
2232 	    objlist_push_tail(&needed->obj->dldags, root);
2233 	    objlist_push_tail(&root->dagmembers, needed->obj);
2234 	}
2235     }
2236     root->dag_inited = true;
2237 }
2238 
2239 static void
2240 init_marker(Obj_Entry *marker)
2241 {
2242 
2243 	bzero(marker, sizeof(*marker));
2244 	marker->marker = true;
2245 }
2246 
2247 Obj_Entry *
2248 globallist_curr(const Obj_Entry *obj)
2249 {
2250 
2251 	for (;;) {
2252 		if (obj == NULL)
2253 			return (NULL);
2254 		if (!obj->marker)
2255 			return (__DECONST(Obj_Entry *, obj));
2256 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2257 	}
2258 }
2259 
2260 Obj_Entry *
2261 globallist_next(const Obj_Entry *obj)
2262 {
2263 
2264 	for (;;) {
2265 		obj = TAILQ_NEXT(obj, next);
2266 		if (obj == NULL)
2267 			return (NULL);
2268 		if (!obj->marker)
2269 			return (__DECONST(Obj_Entry *, obj));
2270 	}
2271 }
2272 
2273 /* Prevent the object from being unmapped while the bind lock is dropped. */
2274 static void
2275 hold_object(Obj_Entry *obj)
2276 {
2277 
2278 	obj->holdcount++;
2279 }
2280 
2281 static void
2282 unhold_object(Obj_Entry *obj)
2283 {
2284 
2285 	assert(obj->holdcount > 0);
2286 	if (--obj->holdcount == 0 && obj->unholdfree)
2287 		release_object(obj);
2288 }
2289 
2290 static void
2291 process_z(Obj_Entry *root)
2292 {
2293 	const Objlist_Entry *elm;
2294 	Obj_Entry *obj;
2295 
2296 	/*
2297 	 * Walk over object DAG and process every dependent object
2298 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2299 	 * to grow their own DAG.
2300 	 *
2301 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2302 	 * symlook_global() to work.
2303 	 *
2304 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2305 	 */
2306 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2307 		obj = elm->obj;
2308 		if (obj == NULL)
2309 			continue;
2310 		if (obj->z_nodelete && !obj->ref_nodel) {
2311 			dbg("obj %s -z nodelete", obj->path);
2312 			init_dag(obj);
2313 			ref_dag(obj);
2314 			obj->ref_nodel = true;
2315 		}
2316 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2317 			dbg("obj %s -z global", obj->path);
2318 			objlist_push_tail(&list_global, obj);
2319 			init_dag(obj);
2320 		}
2321 	}
2322 }
2323 
2324 static void
2325 parse_rtld_phdr(Obj_Entry *obj)
2326 {
2327 	const Elf_Phdr *ph;
2328 	Elf_Addr note_start, note_end;
2329 
2330 	obj->stack_flags = PF_X | PF_R | PF_W;
2331 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
2332 	    obj->phsize; ph++) {
2333 		switch (ph->p_type) {
2334 		case PT_GNU_STACK:
2335 			obj->stack_flags = ph->p_flags;
2336 			break;
2337 		case PT_GNU_RELRO:
2338 			obj->relro_page = obj->relocbase +
2339 			    rtld_trunc_page(ph->p_vaddr);
2340 			obj->relro_size = rtld_round_page(ph->p_memsz);
2341 			break;
2342 		case PT_NOTE:
2343 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2344 			note_end = note_start + ph->p_filesz;
2345 			digest_notes(obj, note_start, note_end);
2346 			break;
2347 		}
2348 	}
2349 }
2350 
2351 /*
2352  * Initialize the dynamic linker.  The argument is the address at which
2353  * the dynamic linker has been mapped into memory.  The primary task of
2354  * this function is to relocate the dynamic linker.
2355  */
2356 static void
2357 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2358 {
2359     Obj_Entry objtmp;	/* Temporary rtld object */
2360     const Elf_Ehdr *ehdr;
2361     const Elf_Dyn *dyn_rpath;
2362     const Elf_Dyn *dyn_soname;
2363     const Elf_Dyn *dyn_runpath;
2364 
2365 #ifdef RTLD_INIT_PAGESIZES_EARLY
2366     /* The page size is required by the dynamic memory allocator. */
2367     init_pagesizes(aux_info);
2368 #endif
2369 
2370     /*
2371      * Conjure up an Obj_Entry structure for the dynamic linker.
2372      *
2373      * The "path" member can't be initialized yet because string constants
2374      * cannot yet be accessed. Below we will set it correctly.
2375      */
2376     memset(&objtmp, 0, sizeof(objtmp));
2377     objtmp.path = NULL;
2378     objtmp.rtld = true;
2379     objtmp.mapbase = mapbase;
2380 #ifdef PIC
2381     objtmp.relocbase = mapbase;
2382 #endif
2383 
2384     objtmp.dynamic = rtld_dynamic(&objtmp);
2385     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2386     assert(objtmp.needed == NULL);
2387     assert(!objtmp.textrel);
2388     /*
2389      * Temporarily put the dynamic linker entry into the object list, so
2390      * that symbols can be found.
2391      */
2392     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2393 
2394     ehdr = (Elf_Ehdr *)mapbase;
2395     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2396     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2397 
2398     /* Initialize the object list. */
2399     TAILQ_INIT(&obj_list);
2400 
2401     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2402     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2403 
2404 #ifndef RTLD_INIT_PAGESIZES_EARLY
2405     /* The page size is required by the dynamic memory allocator. */
2406     init_pagesizes(aux_info);
2407 #endif
2408 
2409     if (aux_info[AT_OSRELDATE] != NULL)
2410 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2411 
2412     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2413 
2414     /* Replace the path with a dynamically allocated copy. */
2415     obj_rtld.path = xstrdup(ld_path_rtld);
2416 
2417     parse_rtld_phdr(&obj_rtld);
2418     if (obj_enforce_relro(&obj_rtld) == -1)
2419 	rtld_die();
2420 
2421     r_debug.r_version = R_DEBUG_VERSION;
2422     r_debug.r_brk = r_debug_state;
2423     r_debug.r_state = RT_CONSISTENT;
2424     r_debug.r_ldbase = obj_rtld.relocbase;
2425 }
2426 
2427 /*
2428  * Retrieve the array of supported page sizes.  The kernel provides the page
2429  * sizes in increasing order.
2430  */
2431 static void
2432 init_pagesizes(Elf_Auxinfo **aux_info)
2433 {
2434 	static size_t psa[MAXPAGESIZES];
2435 	int mib[2];
2436 	size_t len, size;
2437 
2438 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2439 	    NULL) {
2440 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2441 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2442 	} else {
2443 		len = 2;
2444 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2445 			size = sizeof(psa);
2446 		else {
2447 			/* As a fallback, retrieve the base page size. */
2448 			size = sizeof(psa[0]);
2449 			if (aux_info[AT_PAGESZ] != NULL) {
2450 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2451 				goto psa_filled;
2452 			} else {
2453 				mib[0] = CTL_HW;
2454 				mib[1] = HW_PAGESIZE;
2455 				len = 2;
2456 			}
2457 		}
2458 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2459 			_rtld_error("sysctl for hw.pagesize(s) failed");
2460 			rtld_die();
2461 		}
2462 psa_filled:
2463 		pagesizes = psa;
2464 	}
2465 	npagesizes = size / sizeof(pagesizes[0]);
2466 	/* Discard any invalid entries at the end of the array. */
2467 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2468 		npagesizes--;
2469 
2470 	page_size = pagesizes[0];
2471 }
2472 
2473 /*
2474  * Add the init functions from a needed object list (and its recursive
2475  * needed objects) to "list".  This is not used directly; it is a helper
2476  * function for initlist_add_objects().  The write lock must be held
2477  * when this function is called.
2478  */
2479 static void
2480 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2481 {
2482     /* Recursively process the successor needed objects. */
2483     if (needed->next != NULL)
2484 	initlist_add_neededs(needed->next, list);
2485 
2486     /* Process the current needed object. */
2487     if (needed->obj != NULL)
2488 	initlist_add_objects(needed->obj, needed->obj, list);
2489 }
2490 
2491 /*
2492  * Scan all of the DAGs rooted in the range of objects from "obj" to
2493  * "tail" and add their init functions to "list".  This recurses over
2494  * the DAGs and ensure the proper init ordering such that each object's
2495  * needed libraries are initialized before the object itself.  At the
2496  * same time, this function adds the objects to the global finalization
2497  * list "list_fini" in the opposite order.  The write lock must be
2498  * held when this function is called.
2499  */
2500 static void
2501 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2502 {
2503     Obj_Entry *nobj;
2504 
2505     if (obj->init_scanned || obj->init_done)
2506 	return;
2507     obj->init_scanned = true;
2508 
2509     /* Recursively process the successor objects. */
2510     nobj = globallist_next(obj);
2511     if (nobj != NULL && obj != tail)
2512 	initlist_add_objects(nobj, tail, list);
2513 
2514     /* Recursively process the needed objects. */
2515     if (obj->needed != NULL)
2516 	initlist_add_neededs(obj->needed, list);
2517     if (obj->needed_filtees != NULL)
2518 	initlist_add_neededs(obj->needed_filtees, list);
2519     if (obj->needed_aux_filtees != NULL)
2520 	initlist_add_neededs(obj->needed_aux_filtees, list);
2521 
2522     /* Add the object to the init list. */
2523     objlist_push_tail(list, obj);
2524 
2525     /* Add the object to the global fini list in the reverse order. */
2526     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2527       && !obj->on_fini_list) {
2528 	objlist_push_head(&list_fini, obj);
2529 	obj->on_fini_list = true;
2530     }
2531 }
2532 
2533 static void
2534 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2535 {
2536     Needed_Entry *needed, *needed1;
2537 
2538     for (needed = n; needed != NULL; needed = needed->next) {
2539 	if (needed->obj != NULL) {
2540 	    dlclose_locked(needed->obj, lockstate);
2541 	    needed->obj = NULL;
2542 	}
2543     }
2544     for (needed = n; needed != NULL; needed = needed1) {
2545 	needed1 = needed->next;
2546 	free(needed);
2547     }
2548 }
2549 
2550 static void
2551 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2552 {
2553 
2554 	free_needed_filtees(obj->needed_filtees, lockstate);
2555 	obj->needed_filtees = NULL;
2556 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2557 	obj->needed_aux_filtees = NULL;
2558 	obj->filtees_loaded = false;
2559 }
2560 
2561 static void
2562 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2563     RtldLockState *lockstate)
2564 {
2565 
2566     for (; needed != NULL; needed = needed->next) {
2567 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2568 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2569 	  RTLD_LOCAL, lockstate);
2570     }
2571 }
2572 
2573 static void
2574 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2575 {
2576 
2577     lock_restart_for_upgrade(lockstate);
2578     if (!obj->filtees_loaded) {
2579 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2580 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2581 	obj->filtees_loaded = true;
2582     }
2583 }
2584 
2585 static int
2586 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2587 {
2588     Obj_Entry *obj1;
2589 
2590     for (; needed != NULL; needed = needed->next) {
2591 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2592 	  flags & ~RTLD_LO_NOLOAD);
2593 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2594 	    return (-1);
2595     }
2596     return (0);
2597 }
2598 
2599 /*
2600  * Given a shared object, traverse its list of needed objects, and load
2601  * each of them.  Returns 0 on success.  Generates an error message and
2602  * returns -1 on failure.
2603  */
2604 static int
2605 load_needed_objects(Obj_Entry *first, int flags)
2606 {
2607     Obj_Entry *obj;
2608 
2609     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2610 	if (obj->marker)
2611 	    continue;
2612 	if (process_needed(obj, obj->needed, flags) == -1)
2613 	    return (-1);
2614     }
2615     return (0);
2616 }
2617 
2618 static int
2619 load_preload_objects(const char *penv, bool isfd)
2620 {
2621 	Obj_Entry *obj;
2622 	const char *name;
2623 	size_t len;
2624 	char savech, *p, *psave;
2625 	int fd;
2626 	static const char delim[] = " \t:;";
2627 
2628 	if (penv == NULL)
2629 		return (0);
2630 
2631 	p = psave = xstrdup(penv);
2632 	p += strspn(p, delim);
2633 	while (*p != '\0') {
2634 		len = strcspn(p, delim);
2635 
2636 		savech = p[len];
2637 		p[len] = '\0';
2638 		if (isfd) {
2639 			name = NULL;
2640 			fd = parse_integer(p);
2641 			if (fd == -1) {
2642 				free(psave);
2643 				return (-1);
2644 			}
2645 		} else {
2646 			name = p;
2647 			fd = -1;
2648 		}
2649 
2650 		obj = load_object(name, fd, NULL, 0);
2651 		if (obj == NULL) {
2652 			free(psave);
2653 			return (-1);	/* XXX - cleanup */
2654 		}
2655 		obj->z_interpose = true;
2656 		p[len] = savech;
2657 		p += len;
2658 		p += strspn(p, delim);
2659 	}
2660 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2661 
2662 	free(psave);
2663 	return (0);
2664 }
2665 
2666 static const char *
2667 printable_path(const char *path)
2668 {
2669 
2670 	return (path == NULL ? "<unknown>" : path);
2671 }
2672 
2673 /*
2674  * Load a shared object into memory, if it is not already loaded.  The
2675  * object may be specified by name or by user-supplied file descriptor
2676  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2677  * duplicate is.
2678  *
2679  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2680  * on failure.
2681  */
2682 static Obj_Entry *
2683 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2684 {
2685     Obj_Entry *obj;
2686     int fd;
2687     struct stat sb;
2688     char *path;
2689 
2690     fd = -1;
2691     if (name != NULL) {
2692 	TAILQ_FOREACH(obj, &obj_list, next) {
2693 	    if (obj->marker || obj->doomed)
2694 		continue;
2695 	    if (object_match_name(obj, name))
2696 		return (obj);
2697 	}
2698 
2699 	path = find_library(name, refobj, &fd);
2700 	if (path == NULL)
2701 	    return (NULL);
2702     } else
2703 	path = NULL;
2704 
2705     if (fd >= 0) {
2706 	/*
2707 	 * search_library_pathfds() opens a fresh file descriptor for the
2708 	 * library, so there is no need to dup().
2709 	 */
2710     } else if (fd_u == -1) {
2711 	/*
2712 	 * If we didn't find a match by pathname, or the name is not
2713 	 * supplied, open the file and check again by device and inode.
2714 	 * This avoids false mismatches caused by multiple links or ".."
2715 	 * in pathnames.
2716 	 *
2717 	 * To avoid a race, we open the file and use fstat() rather than
2718 	 * using stat().
2719 	 */
2720 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2721 	    _rtld_error("Cannot open \"%s\"", path);
2722 	    free(path);
2723 	    return (NULL);
2724 	}
2725     } else {
2726 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2727 	if (fd == -1) {
2728 	    _rtld_error("Cannot dup fd");
2729 	    free(path);
2730 	    return (NULL);
2731 	}
2732     }
2733     if (fstat(fd, &sb) == -1) {
2734 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2735 	close(fd);
2736 	free(path);
2737 	return (NULL);
2738     }
2739     TAILQ_FOREACH(obj, &obj_list, next) {
2740 	if (obj->marker || obj->doomed)
2741 	    continue;
2742 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2743 	    break;
2744     }
2745     if (obj != NULL && name != NULL) {
2746 	object_add_name(obj, name);
2747 	free(path);
2748 	close(fd);
2749 	return (obj);
2750     }
2751     if (flags & RTLD_LO_NOLOAD) {
2752 	free(path);
2753 	close(fd);
2754 	return (NULL);
2755     }
2756 
2757     /* First use of this object, so we must map it in */
2758     obj = do_load_object(fd, name, path, &sb, flags);
2759     if (obj == NULL)
2760 	free(path);
2761     close(fd);
2762 
2763     return (obj);
2764 }
2765 
2766 static Obj_Entry *
2767 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2768   int flags)
2769 {
2770     Obj_Entry *obj;
2771     struct statfs fs;
2772 
2773     /*
2774      * First, make sure that environment variables haven't been
2775      * used to circumvent the noexec flag on a filesystem.
2776      * We ignore fstatfs(2) failures, since fd might reference
2777      * not a file, e.g. shmfd.
2778      */
2779     if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2780 	(fs.f_flags & MNT_NOEXEC) != 0) {
2781 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2782 	    return (NULL);
2783     }
2784 
2785     dbg("loading \"%s\"", printable_path(path));
2786     obj = map_object(fd, printable_path(path), sbp);
2787     if (obj == NULL)
2788         return (NULL);
2789 
2790     /*
2791      * If DT_SONAME is present in the object, digest_dynamic2 already
2792      * added it to the object names.
2793      */
2794     if (name != NULL)
2795 	object_add_name(obj, name);
2796     obj->path = path;
2797     if (!digest_dynamic(obj, 0))
2798 	goto errp;
2799     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2800 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2801     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2802 	dbg("refusing to load PIE executable \"%s\"", obj->path);
2803 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2804 	goto errp;
2805     }
2806     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2807       RTLD_LO_DLOPEN) {
2808 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2809 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2810 	goto errp;
2811     }
2812 
2813     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2814     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2815     obj_count++;
2816     obj_loads++;
2817     linkmap_add(obj);	/* for GDB & dlinfo() */
2818     max_stack_flags |= obj->stack_flags;
2819 
2820     dbg("  %p .. %p: %s", obj->mapbase,
2821          obj->mapbase + obj->mapsize - 1, obj->path);
2822     if (obj->textrel)
2823 	dbg("  WARNING: %s has impure text", obj->path);
2824     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2825 	obj->path);
2826 
2827     return (obj);
2828 
2829 errp:
2830     munmap(obj->mapbase, obj->mapsize);
2831     obj_free(obj);
2832     return (NULL);
2833 }
2834 
2835 static int
2836 load_kpreload(const void *addr)
2837 {
2838 	Obj_Entry *obj;
2839 	const Elf_Ehdr *ehdr;
2840 	const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2841 	static const char kname[] = "[vdso]";
2842 
2843 	ehdr = addr;
2844 	if (!check_elf_headers(ehdr, "kpreload"))
2845 		return (-1);
2846 	obj = obj_new();
2847 	phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
2848 	obj->phdr = phdr;
2849 	obj->phsize = ehdr->e_phnum * sizeof(*phdr);
2850 	phlimit = phdr + ehdr->e_phnum;
2851 	seg0 = segn = NULL;
2852 
2853 	for (; phdr < phlimit; phdr++) {
2854 		switch (phdr->p_type) {
2855 		case PT_DYNAMIC:
2856 			phdyn = phdr;
2857 			break;
2858 		case PT_GNU_STACK:
2859 			/* Absense of PT_GNU_STACK implies stack_flags == 0. */
2860 			obj->stack_flags = phdr->p_flags;
2861 			break;
2862 		case PT_LOAD:
2863 			if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
2864 				seg0 = phdr;
2865 			if (segn == NULL || segn->p_vaddr + segn->p_memsz <
2866 			    phdr->p_vaddr + phdr->p_memsz)
2867 				segn = phdr;
2868 			break;
2869 		}
2870 	}
2871 
2872 	obj->mapbase = __DECONST(caddr_t, addr);
2873 	obj->mapsize = segn->p_vaddr + segn->p_memsz - (Elf_Addr)addr;
2874 	obj->vaddrbase = 0;
2875 	obj->relocbase = obj->mapbase;
2876 
2877 	object_add_name(obj, kname);
2878 	obj->path = xstrdup(kname);
2879 	obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
2880 
2881 	if (!digest_dynamic(obj, 0)) {
2882 		obj_free(obj);
2883 		return (-1);
2884 	}
2885 
2886 	/*
2887 	 * We assume that kernel-preloaded object does not need
2888 	 * relocation.  It is currently written into read-only page,
2889 	 * handling relocations would mean we need to allocate at
2890 	 * least one additional page per AS.
2891 	 */
2892 	dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
2893 	    obj->path, obj->mapbase, obj->phdr, seg0,
2894 	    obj->relocbase + seg0->p_vaddr, obj->dynamic);
2895 
2896 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
2897 	obj_count++;
2898 	obj_loads++;
2899 	linkmap_add(obj);	/* for GDB & dlinfo() */
2900 	max_stack_flags |= obj->stack_flags;
2901 
2902 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, 0, 0, obj->path);
2903 	return (0);
2904 }
2905 
2906 Obj_Entry *
2907 obj_from_addr(const void *addr)
2908 {
2909     Obj_Entry *obj;
2910 
2911     TAILQ_FOREACH(obj, &obj_list, next) {
2912 	if (obj->marker)
2913 	    continue;
2914 	if (addr < (void *) obj->mapbase)
2915 	    continue;
2916 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2917 	    return obj;
2918     }
2919     return (NULL);
2920 }
2921 
2922 static void
2923 preinit_main(void)
2924 {
2925     Elf_Addr *preinit_addr;
2926     int index;
2927 
2928     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2929     if (preinit_addr == NULL)
2930 	return;
2931 
2932     for (index = 0; index < obj_main->preinit_array_num; index++) {
2933 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2934 	    dbg("calling preinit function for %s at %p", obj_main->path,
2935 	      (void *)preinit_addr[index]);
2936 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2937 	      0, 0, obj_main->path);
2938 	    call_init_pointer(obj_main, preinit_addr[index]);
2939 	}
2940     }
2941 }
2942 
2943 /*
2944  * Call the finalization functions for each of the objects in "list"
2945  * belonging to the DAG of "root" and referenced once. If NULL "root"
2946  * is specified, every finalization function will be called regardless
2947  * of the reference count and the list elements won't be freed. All of
2948  * the objects are expected to have non-NULL fini functions.
2949  */
2950 static void
2951 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2952 {
2953     Objlist_Entry *elm;
2954     struct dlerror_save *saved_msg;
2955     Elf_Addr *fini_addr;
2956     int index;
2957 
2958     assert(root == NULL || root->refcount == 1);
2959 
2960     if (root != NULL)
2961 	root->doomed = true;
2962 
2963     /*
2964      * Preserve the current error message since a fini function might
2965      * call into the dynamic linker and overwrite it.
2966      */
2967     saved_msg = errmsg_save();
2968     do {
2969 	STAILQ_FOREACH(elm, list, link) {
2970 	    if (root != NULL && (elm->obj->refcount != 1 ||
2971 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2972 		continue;
2973 	    /* Remove object from fini list to prevent recursive invocation. */
2974 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2975 	    /* Ensure that new references cannot be acquired. */
2976 	    elm->obj->doomed = true;
2977 
2978 	    hold_object(elm->obj);
2979 	    lock_release(rtld_bind_lock, lockstate);
2980 	    /*
2981 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2982 	     * When this happens, DT_FINI_ARRAY is processed first.
2983 	     */
2984 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2985 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2986 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2987 		  index--) {
2988 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2989 			dbg("calling fini function for %s at %p",
2990 			    elm->obj->path, (void *)fini_addr[index]);
2991 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2992 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2993 			call_initfini_pointer(elm->obj, fini_addr[index]);
2994 		    }
2995 		}
2996 	    }
2997 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2998 		dbg("calling fini function for %s at %p", elm->obj->path,
2999 		    (void *)elm->obj->fini);
3000 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
3001 		    0, 0, elm->obj->path);
3002 		call_initfini_pointer(elm->obj, elm->obj->fini);
3003 	    }
3004 	    wlock_acquire(rtld_bind_lock, lockstate);
3005 	    unhold_object(elm->obj);
3006 	    /* No need to free anything if process is going down. */
3007 	    if (root != NULL)
3008 	    	free(elm);
3009 	    /*
3010 	     * We must restart the list traversal after every fini call
3011 	     * because a dlclose() call from the fini function or from
3012 	     * another thread might have modified the reference counts.
3013 	     */
3014 	    break;
3015 	}
3016     } while (elm != NULL);
3017     errmsg_restore(saved_msg);
3018 }
3019 
3020 /*
3021  * Call the initialization functions for each of the objects in
3022  * "list".  All of the objects are expected to have non-NULL init
3023  * functions.
3024  */
3025 static void
3026 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3027 {
3028     Objlist_Entry *elm;
3029     Obj_Entry *obj;
3030     struct dlerror_save *saved_msg;
3031     Elf_Addr *init_addr;
3032     void (*reg)(void (*)(void));
3033     int index;
3034 
3035     /*
3036      * Clean init_scanned flag so that objects can be rechecked and
3037      * possibly initialized earlier if any of vectors called below
3038      * cause the change by using dlopen.
3039      */
3040     TAILQ_FOREACH(obj, &obj_list, next) {
3041 	if (obj->marker)
3042 	    continue;
3043 	obj->init_scanned = false;
3044     }
3045 
3046     /*
3047      * Preserve the current error message since an init function might
3048      * call into the dynamic linker and overwrite it.
3049      */
3050     saved_msg = errmsg_save();
3051     STAILQ_FOREACH(elm, list, link) {
3052 	if (elm->obj->init_done) /* Initialized early. */
3053 	    continue;
3054 	/*
3055 	 * Race: other thread might try to use this object before current
3056 	 * one completes the initialization. Not much can be done here
3057 	 * without better locking.
3058 	 */
3059 	elm->obj->init_done = true;
3060 	hold_object(elm->obj);
3061 	reg = NULL;
3062 	if (elm->obj == obj_main && obj_main->crt_no_init) {
3063 		reg = (void (*)(void (*)(void)))get_program_var_addr(
3064 		    "__libc_atexit", lockstate);
3065 	}
3066 	lock_release(rtld_bind_lock, lockstate);
3067 	if (reg != NULL) {
3068 		reg(rtld_exit);
3069 		rtld_exit_ptr = rtld_nop_exit;
3070 	}
3071 
3072         /*
3073          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3074          * When this happens, DT_INIT is processed first.
3075          */
3076 	if (elm->obj->init != (Elf_Addr)NULL) {
3077 	    dbg("calling init function for %s at %p", elm->obj->path,
3078 	        (void *)elm->obj->init);
3079 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
3080 	        0, 0, elm->obj->path);
3081 	    call_init_pointer(elm->obj, elm->obj->init);
3082 	}
3083 	init_addr = (Elf_Addr *)elm->obj->init_array;
3084 	if (init_addr != NULL) {
3085 	    for (index = 0; index < elm->obj->init_array_num; index++) {
3086 		if (init_addr[index] != 0 && init_addr[index] != 1) {
3087 		    dbg("calling init function for %s at %p", elm->obj->path,
3088 			(void *)init_addr[index]);
3089 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3090 			(void *)init_addr[index], 0, 0, elm->obj->path);
3091 		    call_init_pointer(elm->obj, init_addr[index]);
3092 		}
3093 	    }
3094 	}
3095 	wlock_acquire(rtld_bind_lock, lockstate);
3096 	unhold_object(elm->obj);
3097     }
3098     errmsg_restore(saved_msg);
3099 }
3100 
3101 static void
3102 objlist_clear(Objlist *list)
3103 {
3104     Objlist_Entry *elm;
3105 
3106     while (!STAILQ_EMPTY(list)) {
3107 	elm = STAILQ_FIRST(list);
3108 	STAILQ_REMOVE_HEAD(list, link);
3109 	free(elm);
3110     }
3111 }
3112 
3113 static Objlist_Entry *
3114 objlist_find(Objlist *list, const Obj_Entry *obj)
3115 {
3116     Objlist_Entry *elm;
3117 
3118     STAILQ_FOREACH(elm, list, link)
3119 	if (elm->obj == obj)
3120 	    return elm;
3121     return (NULL);
3122 }
3123 
3124 static void
3125 objlist_init(Objlist *list)
3126 {
3127     STAILQ_INIT(list);
3128 }
3129 
3130 static void
3131 objlist_push_head(Objlist *list, Obj_Entry *obj)
3132 {
3133     Objlist_Entry *elm;
3134 
3135     elm = NEW(Objlist_Entry);
3136     elm->obj = obj;
3137     STAILQ_INSERT_HEAD(list, elm, link);
3138 }
3139 
3140 static void
3141 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3142 {
3143     Objlist_Entry *elm;
3144 
3145     elm = NEW(Objlist_Entry);
3146     elm->obj = obj;
3147     STAILQ_INSERT_TAIL(list, elm, link);
3148 }
3149 
3150 static void
3151 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3152 {
3153 	Objlist_Entry *elm, *listelm;
3154 
3155 	STAILQ_FOREACH(listelm, list, link) {
3156 		if (listelm->obj == listobj)
3157 			break;
3158 	}
3159 	elm = NEW(Objlist_Entry);
3160 	elm->obj = obj;
3161 	if (listelm != NULL)
3162 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
3163 	else
3164 		STAILQ_INSERT_TAIL(list, elm, link);
3165 }
3166 
3167 static void
3168 objlist_remove(Objlist *list, Obj_Entry *obj)
3169 {
3170     Objlist_Entry *elm;
3171 
3172     if ((elm = objlist_find(list, obj)) != NULL) {
3173 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3174 	free(elm);
3175     }
3176 }
3177 
3178 /*
3179  * Relocate dag rooted in the specified object.
3180  * Returns 0 on success, or -1 on failure.
3181  */
3182 
3183 static int
3184 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3185     int flags, RtldLockState *lockstate)
3186 {
3187 	Objlist_Entry *elm;
3188 	int error;
3189 
3190 	error = 0;
3191 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3192 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3193 		    lockstate);
3194 		if (error == -1)
3195 			break;
3196 	}
3197 	return (error);
3198 }
3199 
3200 /*
3201  * Prepare for, or clean after, relocating an object marked with
3202  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3203  * segments are remapped read-write.  After relocations are done, the
3204  * segment's permissions are returned back to the modes specified in
3205  * the phdrs.  If any relocation happened, or always for wired
3206  * program, COW is triggered.
3207  */
3208 static int
3209 reloc_textrel_prot(Obj_Entry *obj, bool before)
3210 {
3211 	const Elf_Phdr *ph;
3212 	void *base;
3213 	size_t l, sz;
3214 	int prot;
3215 
3216 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
3217 	    l--, ph++) {
3218 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3219 			continue;
3220 		base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
3221 		sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
3222 		    rtld_trunc_page(ph->p_vaddr);
3223 		prot = before ? (PROT_READ | PROT_WRITE) :
3224 		    convert_prot(ph->p_flags);
3225 		if (mprotect(base, sz, prot) == -1) {
3226 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3227 			    obj->path, before ? "en" : "dis",
3228 			    rtld_strerror(errno));
3229 			return (-1);
3230 		}
3231 	}
3232 	return (0);
3233 }
3234 
3235 /* Process RELR relative relocations. */
3236 static void
3237 reloc_relr(Obj_Entry *obj)
3238 {
3239 	const Elf_Relr *relr, *relrlim;
3240 	Elf_Addr *where;
3241 
3242 	relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3243 	for (relr = obj->relr; relr < relrlim; relr++) {
3244 	    Elf_Relr entry = *relr;
3245 
3246 	    if ((entry & 1) == 0) {
3247 		where = (Elf_Addr *)(obj->relocbase + entry);
3248 		*where++ += (Elf_Addr)obj->relocbase;
3249 	    } else {
3250 		for (long i = 0; (entry >>= 1) != 0; i++)
3251 		    if ((entry & 1) != 0)
3252 			where[i] += (Elf_Addr)obj->relocbase;
3253 		where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3254 	    }
3255 	}
3256 }
3257 
3258 /*
3259  * Relocate single object.
3260  * Returns 0 on success, or -1 on failure.
3261  */
3262 static int
3263 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3264     int flags, RtldLockState *lockstate)
3265 {
3266 
3267 	if (obj->relocated)
3268 		return (0);
3269 	obj->relocated = true;
3270 	if (obj != rtldobj)
3271 		dbg("relocating \"%s\"", obj->path);
3272 
3273 	if (obj->symtab == NULL || obj->strtab == NULL ||
3274 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3275 		dbg("object %s has no run-time symbol table", obj->path);
3276 
3277 	/* There are relocations to the write-protected text segment. */
3278 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3279 		return (-1);
3280 
3281 	/* Process the non-PLT non-IFUNC relocations. */
3282 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3283 		return (-1);
3284 	reloc_relr(obj);
3285 
3286 	/* Re-protected the text segment. */
3287 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3288 		return (-1);
3289 
3290 	/* Set the special PLT or GOT entries. */
3291 	init_pltgot(obj);
3292 
3293 	/* Process the PLT relocations. */
3294 	if (reloc_plt(obj, flags, lockstate) == -1)
3295 		return (-1);
3296 	/* Relocate the jump slots if we are doing immediate binding. */
3297 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3298 	    lockstate) == -1)
3299 		return (-1);
3300 
3301 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3302 		return (-1);
3303 
3304 	/*
3305 	 * Set up the magic number and version in the Obj_Entry.  These
3306 	 * were checked in the crt1.o from the original ElfKit, so we
3307 	 * set them for backward compatibility.
3308 	 */
3309 	obj->magic = RTLD_MAGIC;
3310 	obj->version = RTLD_VERSION;
3311 
3312 	return (0);
3313 }
3314 
3315 /*
3316  * Relocate newly-loaded shared objects.  The argument is a pointer to
3317  * the Obj_Entry for the first such object.  All objects from the first
3318  * to the end of the list of objects are relocated.  Returns 0 on success,
3319  * or -1 on failure.
3320  */
3321 static int
3322 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3323     int flags, RtldLockState *lockstate)
3324 {
3325 	Obj_Entry *obj;
3326 	int error;
3327 
3328 	for (error = 0, obj = first;  obj != NULL;
3329 	    obj = TAILQ_NEXT(obj, next)) {
3330 		if (obj->marker)
3331 			continue;
3332 		error = relocate_object(obj, bind_now, rtldobj, flags,
3333 		    lockstate);
3334 		if (error == -1)
3335 			break;
3336 	}
3337 	return (error);
3338 }
3339 
3340 /*
3341  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3342  * referencing STT_GNU_IFUNC symbols is postponed till the other
3343  * relocations are done.  The indirect functions specified as
3344  * ifunc are allowed to call other symbols, so we need to have
3345  * objects relocated before asking for resolution from indirects.
3346  *
3347  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3348  * instead of the usual lazy handling of PLT slots.  It is
3349  * consistent with how GNU does it.
3350  */
3351 static int
3352 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3353     RtldLockState *lockstate)
3354 {
3355 
3356 	if (obj->ifuncs_resolved)
3357 		return (0);
3358 	obj->ifuncs_resolved = true;
3359 	if (!obj->irelative && !obj->irelative_nonplt &&
3360 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3361 	    !obj->non_plt_gnu_ifunc)
3362 		return (0);
3363 	if (obj_disable_relro(obj) == -1 ||
3364 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3365 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3366 	    lockstate) == -1) ||
3367 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3368 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3369 	    (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3370 	    flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3371 	    obj_enforce_relro(obj) == -1)
3372 		return (-1);
3373 	return (0);
3374 }
3375 
3376 static int
3377 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3378     RtldLockState *lockstate)
3379 {
3380 	Objlist_Entry *elm;
3381 	Obj_Entry *obj;
3382 
3383 	STAILQ_FOREACH(elm, list, link) {
3384 		obj = elm->obj;
3385 		if (obj->marker)
3386 			continue;
3387 		if (resolve_object_ifunc(obj, bind_now, flags,
3388 		    lockstate) == -1)
3389 			return (-1);
3390 	}
3391 	return (0);
3392 }
3393 
3394 /*
3395  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3396  * before the process exits.
3397  */
3398 static void
3399 rtld_exit(void)
3400 {
3401     RtldLockState lockstate;
3402 
3403     wlock_acquire(rtld_bind_lock, &lockstate);
3404     dbg("rtld_exit()");
3405     objlist_call_fini(&list_fini, NULL, &lockstate);
3406     /* No need to remove the items from the list, since we are exiting. */
3407     if (!libmap_disable)
3408         lm_fini();
3409     lock_release(rtld_bind_lock, &lockstate);
3410 }
3411 
3412 static void
3413 rtld_nop_exit(void)
3414 {
3415 }
3416 
3417 /*
3418  * Iterate over a search path, translate each element, and invoke the
3419  * callback on the result.
3420  */
3421 static void *
3422 path_enumerate(const char *path, path_enum_proc callback,
3423     const char *refobj_path, void *arg)
3424 {
3425     const char *trans;
3426     if (path == NULL)
3427 	return (NULL);
3428 
3429     path += strspn(path, ":;");
3430     while (*path != '\0') {
3431 	size_t len;
3432 	char  *res;
3433 
3434 	len = strcspn(path, ":;");
3435 	trans = lm_findn(refobj_path, path, len);
3436 	if (trans)
3437 	    res = callback(trans, strlen(trans), arg);
3438 	else
3439 	    res = callback(path, len, arg);
3440 
3441 	if (res != NULL)
3442 	    return (res);
3443 
3444 	path += len;
3445 	path += strspn(path, ":;");
3446     }
3447 
3448     return (NULL);
3449 }
3450 
3451 struct try_library_args {
3452     const char	*name;
3453     size_t	 namelen;
3454     char	*buffer;
3455     size_t	 buflen;
3456     int		 fd;
3457 };
3458 
3459 static void *
3460 try_library_path(const char *dir, size_t dirlen, void *param)
3461 {
3462     struct try_library_args *arg;
3463     int fd;
3464 
3465     arg = param;
3466     if (*dir == '/' || trust) {
3467 	char *pathname;
3468 
3469 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3470 		return (NULL);
3471 
3472 	pathname = arg->buffer;
3473 	strncpy(pathname, dir, dirlen);
3474 	pathname[dirlen] = '/';
3475 	strcpy(pathname + dirlen + 1, arg->name);
3476 
3477 	dbg("  Trying \"%s\"", pathname);
3478 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3479 	if (fd >= 0) {
3480 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3481 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3482 	    strcpy(pathname, arg->buffer);
3483 	    arg->fd = fd;
3484 	    return (pathname);
3485 	} else {
3486 	    dbg("  Failed to open \"%s\": %s",
3487 		pathname, rtld_strerror(errno));
3488 	}
3489     }
3490     return (NULL);
3491 }
3492 
3493 static char *
3494 search_library_path(const char *name, const char *path,
3495     const char *refobj_path, int *fdp)
3496 {
3497     char *p;
3498     struct try_library_args arg;
3499 
3500     if (path == NULL)
3501 	return (NULL);
3502 
3503     arg.name = name;
3504     arg.namelen = strlen(name);
3505     arg.buffer = xmalloc(PATH_MAX);
3506     arg.buflen = PATH_MAX;
3507     arg.fd = -1;
3508 
3509     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3510     *fdp = arg.fd;
3511 
3512     free(arg.buffer);
3513 
3514     return (p);
3515 }
3516 
3517 
3518 /*
3519  * Finds the library with the given name using the directory descriptors
3520  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3521  *
3522  * Returns a freshly-opened close-on-exec file descriptor for the library,
3523  * or -1 if the library cannot be found.
3524  */
3525 static char *
3526 search_library_pathfds(const char *name, const char *path, int *fdp)
3527 {
3528 	char *envcopy, *fdstr, *found, *last_token;
3529 	size_t len;
3530 	int dirfd, fd;
3531 
3532 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3533 
3534 	/* Don't load from user-specified libdirs into setuid binaries. */
3535 	if (!trust)
3536 		return (NULL);
3537 
3538 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3539 	if (path == NULL)
3540 		return (NULL);
3541 
3542 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3543 	if (name[0] == '/') {
3544 		dbg("Absolute path (%s) passed to %s", name, __func__);
3545 		return (NULL);
3546 	}
3547 
3548 	/*
3549 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3550 	 * copy of the path, as strtok_r rewrites separator tokens
3551 	 * with '\0'.
3552 	 */
3553 	found = NULL;
3554 	envcopy = xstrdup(path);
3555 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3556 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3557 		dirfd = parse_integer(fdstr);
3558 		if (dirfd < 0) {
3559 			_rtld_error("failed to parse directory FD: '%s'",
3560 				fdstr);
3561 			break;
3562 		}
3563 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3564 		if (fd >= 0) {
3565 			*fdp = fd;
3566 			len = strlen(fdstr) + strlen(name) + 3;
3567 			found = xmalloc(len);
3568 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3569 				_rtld_error("error generating '%d/%s'",
3570 				    dirfd, name);
3571 				rtld_die();
3572 			}
3573 			dbg("open('%s') => %d", found, fd);
3574 			break;
3575 		}
3576 	}
3577 	free(envcopy);
3578 
3579 	return (found);
3580 }
3581 
3582 
3583 int
3584 dlclose(void *handle)
3585 {
3586 	RtldLockState lockstate;
3587 	int error;
3588 
3589 	wlock_acquire(rtld_bind_lock, &lockstate);
3590 	error = dlclose_locked(handle, &lockstate);
3591 	lock_release(rtld_bind_lock, &lockstate);
3592 	return (error);
3593 }
3594 
3595 static int
3596 dlclose_locked(void *handle, RtldLockState *lockstate)
3597 {
3598     Obj_Entry *root;
3599 
3600     root = dlcheck(handle);
3601     if (root == NULL)
3602 	return (-1);
3603     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3604 	root->path);
3605 
3606     /* Unreference the object and its dependencies. */
3607     root->dl_refcount--;
3608 
3609     if (root->refcount == 1) {
3610 	/*
3611 	 * The object will be no longer referenced, so we must unload it.
3612 	 * First, call the fini functions.
3613 	 */
3614 	objlist_call_fini(&list_fini, root, lockstate);
3615 
3616 	unref_dag(root);
3617 
3618 	/* Finish cleaning up the newly-unreferenced objects. */
3619 	GDB_STATE(RT_DELETE,&root->linkmap);
3620 	unload_object(root, lockstate);
3621 	GDB_STATE(RT_CONSISTENT,NULL);
3622     } else
3623 	unref_dag(root);
3624 
3625     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3626     return (0);
3627 }
3628 
3629 char *
3630 dlerror(void)
3631 {
3632 	if (*(lockinfo.dlerror_seen()) != 0)
3633 		return (NULL);
3634 	*lockinfo.dlerror_seen() = 1;
3635 	return (lockinfo.dlerror_loc());
3636 }
3637 
3638 /*
3639  * This function is deprecated and has no effect.
3640  */
3641 void
3642 dllockinit(void *context,
3643     void *(*_lock_create)(void *context) __unused,
3644     void (*_rlock_acquire)(void *lock) __unused,
3645     void (*_wlock_acquire)(void *lock)  __unused,
3646     void (*_lock_release)(void *lock) __unused,
3647     void (*_lock_destroy)(void *lock) __unused,
3648     void (*context_destroy)(void *context))
3649 {
3650     static void *cur_context;
3651     static void (*cur_context_destroy)(void *);
3652 
3653     /* Just destroy the context from the previous call, if necessary. */
3654     if (cur_context_destroy != NULL)
3655 	cur_context_destroy(cur_context);
3656     cur_context = context;
3657     cur_context_destroy = context_destroy;
3658 }
3659 
3660 void *
3661 dlopen(const char *name, int mode)
3662 {
3663 
3664 	return (rtld_dlopen(name, -1, mode));
3665 }
3666 
3667 void *
3668 fdlopen(int fd, int mode)
3669 {
3670 
3671 	return (rtld_dlopen(NULL, fd, mode));
3672 }
3673 
3674 static void *
3675 rtld_dlopen(const char *name, int fd, int mode)
3676 {
3677     RtldLockState lockstate;
3678     int lo_flags;
3679 
3680     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3681     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3682     if (ld_tracing != NULL) {
3683 	rlock_acquire(rtld_bind_lock, &lockstate);
3684 	if (sigsetjmp(lockstate.env, 0) != 0)
3685 	    lock_upgrade(rtld_bind_lock, &lockstate);
3686 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3687 	lock_release(rtld_bind_lock, &lockstate);
3688     }
3689     lo_flags = RTLD_LO_DLOPEN;
3690     if (mode & RTLD_NODELETE)
3691 	    lo_flags |= RTLD_LO_NODELETE;
3692     if (mode & RTLD_NOLOAD)
3693 	    lo_flags |= RTLD_LO_NOLOAD;
3694     if (mode & RTLD_DEEPBIND)
3695 	    lo_flags |= RTLD_LO_DEEPBIND;
3696     if (ld_tracing != NULL)
3697 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3698 
3699     return (dlopen_object(name, fd, obj_main, lo_flags,
3700       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3701 }
3702 
3703 static void
3704 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3705 {
3706 
3707 	obj->dl_refcount--;
3708 	unref_dag(obj);
3709 	if (obj->refcount == 0)
3710 		unload_object(obj, lockstate);
3711 }
3712 
3713 static Obj_Entry *
3714 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3715     int mode, RtldLockState *lockstate)
3716 {
3717     Obj_Entry *old_obj_tail;
3718     Obj_Entry *obj;
3719     Objlist initlist;
3720     RtldLockState mlockstate;
3721     int result;
3722 
3723     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3724       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3725       refobj->path, lo_flags, mode);
3726     objlist_init(&initlist);
3727 
3728     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3729 	wlock_acquire(rtld_bind_lock, &mlockstate);
3730 	lockstate = &mlockstate;
3731     }
3732     GDB_STATE(RT_ADD,NULL);
3733 
3734     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3735     obj = NULL;
3736     if (name == NULL && fd == -1) {
3737 	obj = obj_main;
3738 	obj->refcount++;
3739     } else {
3740 	obj = load_object(name, fd, refobj, lo_flags);
3741     }
3742 
3743     if (obj) {
3744 	obj->dl_refcount++;
3745 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3746 	    objlist_push_tail(&list_global, obj);
3747 	if (globallist_next(old_obj_tail) != NULL) {
3748 	    /* We loaded something new. */
3749 	    assert(globallist_next(old_obj_tail) == obj);
3750 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3751 		obj->symbolic = true;
3752 	    result = 0;
3753 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3754 	      obj->static_tls && !allocate_tls_offset(obj)) {
3755 		_rtld_error("%s: No space available "
3756 		  "for static Thread Local Storage", obj->path);
3757 		result = -1;
3758 	    }
3759 	    if (result != -1)
3760 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3761 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3762 	    init_dag(obj);
3763 	    ref_dag(obj);
3764 	    if (result != -1)
3765 		result = rtld_verify_versions(&obj->dagmembers);
3766 	    if (result != -1 && ld_tracing)
3767 		goto trace;
3768 	    if (result == -1 || relocate_object_dag(obj,
3769 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3770 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3771 	      lockstate) == -1) {
3772 		dlopen_cleanup(obj, lockstate);
3773 		obj = NULL;
3774 	    } else if (lo_flags & RTLD_LO_EARLY) {
3775 		/*
3776 		 * Do not call the init functions for early loaded
3777 		 * filtees.  The image is still not initialized enough
3778 		 * for them to work.
3779 		 *
3780 		 * Our object is found by the global object list and
3781 		 * will be ordered among all init calls done right
3782 		 * before transferring control to main.
3783 		 */
3784 	    } else {
3785 		/* Make list of init functions to call. */
3786 		initlist_add_objects(obj, obj, &initlist);
3787 	    }
3788 	    /*
3789 	     * Process all no_delete or global objects here, given
3790 	     * them own DAGs to prevent their dependencies from being
3791 	     * unloaded.  This has to be done after we have loaded all
3792 	     * of the dependencies, so that we do not miss any.
3793 	     */
3794 	    if (obj != NULL)
3795 		process_z(obj);
3796 	} else {
3797 	    /*
3798 	     * Bump the reference counts for objects on this DAG.  If
3799 	     * this is the first dlopen() call for the object that was
3800 	     * already loaded as a dependency, initialize the dag
3801 	     * starting at it.
3802 	     */
3803 	    init_dag(obj);
3804 	    ref_dag(obj);
3805 
3806 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3807 		goto trace;
3808 	}
3809 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3810 	  obj->z_nodelete) && !obj->ref_nodel) {
3811 	    dbg("obj %s nodelete", obj->path);
3812 	    ref_dag(obj);
3813 	    obj->z_nodelete = obj->ref_nodel = true;
3814 	}
3815     }
3816 
3817     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3818 	name);
3819     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3820 
3821     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3822 	map_stacks_exec(lockstate);
3823 	if (obj != NULL)
3824 	    distribute_static_tls(&initlist, lockstate);
3825     }
3826 
3827     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3828       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3829       lockstate) == -1) {
3830 	objlist_clear(&initlist);
3831 	dlopen_cleanup(obj, lockstate);
3832 	if (lockstate == &mlockstate)
3833 	    lock_release(rtld_bind_lock, lockstate);
3834 	return (NULL);
3835     }
3836 
3837     if (!(lo_flags & RTLD_LO_EARLY)) {
3838 	/* Call the init functions. */
3839 	objlist_call_init(&initlist, lockstate);
3840     }
3841     objlist_clear(&initlist);
3842     if (lockstate == &mlockstate)
3843 	lock_release(rtld_bind_lock, lockstate);
3844     return (obj);
3845 trace:
3846     trace_loaded_objects(obj, false);
3847     if (lockstate == &mlockstate)
3848 	lock_release(rtld_bind_lock, lockstate);
3849     exit(0);
3850 }
3851 
3852 static void *
3853 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3854     int flags)
3855 {
3856     DoneList donelist;
3857     const Obj_Entry *obj, *defobj;
3858     const Elf_Sym *def;
3859     SymLook req;
3860     RtldLockState lockstate;
3861     tls_index ti;
3862     void *sym;
3863     int res;
3864 
3865     def = NULL;
3866     defobj = NULL;
3867     symlook_init(&req, name);
3868     req.ventry = ve;
3869     req.flags = flags | SYMLOOK_IN_PLT;
3870     req.lockstate = &lockstate;
3871 
3872     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3873     rlock_acquire(rtld_bind_lock, &lockstate);
3874     if (sigsetjmp(lockstate.env, 0) != 0)
3875 	    lock_upgrade(rtld_bind_lock, &lockstate);
3876     if (handle == NULL || handle == RTLD_NEXT ||
3877 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3878 
3879 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3880 	    _rtld_error("Cannot determine caller's shared object");
3881 	    lock_release(rtld_bind_lock, &lockstate);
3882 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3883 	    return (NULL);
3884 	}
3885 	if (handle == NULL) {	/* Just the caller's shared object. */
3886 	    res = symlook_obj(&req, obj);
3887 	    if (res == 0) {
3888 		def = req.sym_out;
3889 		defobj = req.defobj_out;
3890 	    }
3891 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3892 		   handle == RTLD_SELF) { /* ... caller included */
3893 	    if (handle == RTLD_NEXT)
3894 		obj = globallist_next(obj);
3895 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3896 		if (obj->marker)
3897 		    continue;
3898 		res = symlook_obj(&req, obj);
3899 		if (res == 0) {
3900 		    if (def == NULL || (ld_dynamic_weak &&
3901                       ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK)) {
3902 			def = req.sym_out;
3903 			defobj = req.defobj_out;
3904 			if (!ld_dynamic_weak ||
3905 			  ELF_ST_BIND(def->st_info) != STB_WEAK)
3906 			    break;
3907 		    }
3908 		}
3909 	    }
3910 	    /*
3911 	     * Search the dynamic linker itself, and possibly resolve the
3912 	     * symbol from there.  This is how the application links to
3913 	     * dynamic linker services such as dlopen.
3914 	     * Note that we ignore ld_dynamic_weak == false case,
3915 	     * always overriding weak symbols by rtld definitions.
3916 	     */
3917 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3918 		res = symlook_obj(&req, &obj_rtld);
3919 		if (res == 0) {
3920 		    def = req.sym_out;
3921 		    defobj = req.defobj_out;
3922 		}
3923 	    }
3924 	} else {
3925 	    assert(handle == RTLD_DEFAULT);
3926 	    res = symlook_default(&req, obj);
3927 	    if (res == 0) {
3928 		defobj = req.defobj_out;
3929 		def = req.sym_out;
3930 	    }
3931 	}
3932     } else {
3933 	if ((obj = dlcheck(handle)) == NULL) {
3934 	    lock_release(rtld_bind_lock, &lockstate);
3935 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3936 	    return (NULL);
3937 	}
3938 
3939 	donelist_init(&donelist);
3940 	if (obj->mainprog) {
3941             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3942 	    res = symlook_global(&req, &donelist);
3943 	    if (res == 0) {
3944 		def = req.sym_out;
3945 		defobj = req.defobj_out;
3946 	    }
3947 	    /*
3948 	     * Search the dynamic linker itself, and possibly resolve the
3949 	     * symbol from there.  This is how the application links to
3950 	     * dynamic linker services such as dlopen.
3951 	     */
3952 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3953 		res = symlook_obj(&req, &obj_rtld);
3954 		if (res == 0) {
3955 		    def = req.sym_out;
3956 		    defobj = req.defobj_out;
3957 		}
3958 	    }
3959 	}
3960 	else {
3961 	    /* Search the whole DAG rooted at the given object. */
3962 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3963 	    if (res == 0) {
3964 		def = req.sym_out;
3965 		defobj = req.defobj_out;
3966 	    }
3967 	}
3968     }
3969 
3970     if (def != NULL) {
3971 	lock_release(rtld_bind_lock, &lockstate);
3972 
3973 	/*
3974 	 * The value required by the caller is derived from the value
3975 	 * of the symbol. this is simply the relocated value of the
3976 	 * symbol.
3977 	 */
3978 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3979 	    sym = make_function_pointer(def, defobj);
3980 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3981 	    sym = rtld_resolve_ifunc(defobj, def);
3982 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3983 	    ti.ti_module = defobj->tlsindex;
3984 	    ti.ti_offset = def->st_value;
3985 	    sym = __tls_get_addr(&ti);
3986 	} else
3987 	    sym = defobj->relocbase + def->st_value;
3988 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3989 	return (sym);
3990     }
3991 
3992     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3993       ve != NULL ? ve->name : "");
3994     lock_release(rtld_bind_lock, &lockstate);
3995     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3996     return (NULL);
3997 }
3998 
3999 void *
4000 dlsym(void *handle, const char *name)
4001 {
4002 	return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4003 	    SYMLOOK_DLSYM));
4004 }
4005 
4006 dlfunc_t
4007 dlfunc(void *handle, const char *name)
4008 {
4009 	union {
4010 		void *d;
4011 		dlfunc_t f;
4012 	} rv;
4013 
4014 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4015 	    SYMLOOK_DLSYM);
4016 	return (rv.f);
4017 }
4018 
4019 void *
4020 dlvsym(void *handle, const char *name, const char *version)
4021 {
4022 	Ver_Entry ventry;
4023 
4024 	ventry.name = version;
4025 	ventry.file = NULL;
4026 	ventry.hash = elf_hash(version);
4027 	ventry.flags= 0;
4028 	return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4029 	    SYMLOOK_DLSYM));
4030 }
4031 
4032 int
4033 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4034 {
4035     const Obj_Entry *obj;
4036     RtldLockState lockstate;
4037 
4038     rlock_acquire(rtld_bind_lock, &lockstate);
4039     obj = obj_from_addr(addr);
4040     if (obj == NULL) {
4041         _rtld_error("No shared object contains address");
4042 	lock_release(rtld_bind_lock, &lockstate);
4043         return (0);
4044     }
4045     rtld_fill_dl_phdr_info(obj, phdr_info);
4046     lock_release(rtld_bind_lock, &lockstate);
4047     return (1);
4048 }
4049 
4050 int
4051 dladdr(const void *addr, Dl_info *info)
4052 {
4053     const Obj_Entry *obj;
4054     const Elf_Sym *def;
4055     void *symbol_addr;
4056     unsigned long symoffset;
4057     RtldLockState lockstate;
4058 
4059     rlock_acquire(rtld_bind_lock, &lockstate);
4060     obj = obj_from_addr(addr);
4061     if (obj == NULL) {
4062         _rtld_error("No shared object contains address");
4063 	lock_release(rtld_bind_lock, &lockstate);
4064         return (0);
4065     }
4066     info->dli_fname = obj->path;
4067     info->dli_fbase = obj->mapbase;
4068     info->dli_saddr = (void *)0;
4069     info->dli_sname = NULL;
4070 
4071     /*
4072      * Walk the symbol list looking for the symbol whose address is
4073      * closest to the address sent in.
4074      */
4075     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4076         def = obj->symtab + symoffset;
4077 
4078         /*
4079          * For skip the symbol if st_shndx is either SHN_UNDEF or
4080          * SHN_COMMON.
4081          */
4082         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4083             continue;
4084 
4085         /*
4086          * If the symbol is greater than the specified address, or if it
4087          * is further away from addr than the current nearest symbol,
4088          * then reject it.
4089          */
4090         symbol_addr = obj->relocbase + def->st_value;
4091         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4092             continue;
4093 
4094         /* Update our idea of the nearest symbol. */
4095         info->dli_sname = obj->strtab + def->st_name;
4096         info->dli_saddr = symbol_addr;
4097 
4098         /* Exact match? */
4099         if (info->dli_saddr == addr)
4100             break;
4101     }
4102     lock_release(rtld_bind_lock, &lockstate);
4103     return (1);
4104 }
4105 
4106 int
4107 dlinfo(void *handle, int request, void *p)
4108 {
4109     const Obj_Entry *obj;
4110     RtldLockState lockstate;
4111     int error;
4112 
4113     rlock_acquire(rtld_bind_lock, &lockstate);
4114 
4115     if (handle == NULL || handle == RTLD_SELF) {
4116 	void *retaddr;
4117 
4118 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
4119 	if ((obj = obj_from_addr(retaddr)) == NULL)
4120 	    _rtld_error("Cannot determine caller's shared object");
4121     } else
4122 	obj = dlcheck(handle);
4123 
4124     if (obj == NULL) {
4125 	lock_release(rtld_bind_lock, &lockstate);
4126 	return (-1);
4127     }
4128 
4129     error = 0;
4130     switch (request) {
4131     case RTLD_DI_LINKMAP:
4132 	*((struct link_map const **)p) = &obj->linkmap;
4133 	break;
4134     case RTLD_DI_ORIGIN:
4135 	error = rtld_dirname(obj->path, p);
4136 	break;
4137 
4138     case RTLD_DI_SERINFOSIZE:
4139     case RTLD_DI_SERINFO:
4140 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
4141 	break;
4142 
4143     default:
4144 	_rtld_error("Invalid request %d passed to dlinfo()", request);
4145 	error = -1;
4146     }
4147 
4148     lock_release(rtld_bind_lock, &lockstate);
4149 
4150     return (error);
4151 }
4152 
4153 static void
4154 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4155 {
4156 	uintptr_t **dtvp;
4157 
4158 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4159 	phdr_info->dlpi_name = obj->path;
4160 	phdr_info->dlpi_phdr = obj->phdr;
4161 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4162 	phdr_info->dlpi_tls_modid = obj->tlsindex;
4163 	dtvp = &_tcb_get()->tcb_dtv;
4164 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
4165 	    obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
4166 	phdr_info->dlpi_adds = obj_loads;
4167 	phdr_info->dlpi_subs = obj_loads - obj_count;
4168 }
4169 
4170 int
4171 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4172 {
4173 	struct dl_phdr_info phdr_info;
4174 	Obj_Entry *obj, marker;
4175 	RtldLockState bind_lockstate, phdr_lockstate;
4176 	int error;
4177 
4178 	init_marker(&marker);
4179 	error = 0;
4180 
4181 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4182 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
4183 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4184 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4185 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4186 		hold_object(obj);
4187 		lock_release(rtld_bind_lock, &bind_lockstate);
4188 
4189 		error = callback(&phdr_info, sizeof phdr_info, param);
4190 
4191 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
4192 		unhold_object(obj);
4193 		obj = globallist_next(&marker);
4194 		TAILQ_REMOVE(&obj_list, &marker, next);
4195 		if (error != 0) {
4196 			lock_release(rtld_bind_lock, &bind_lockstate);
4197 			lock_release(rtld_phdr_lock, &phdr_lockstate);
4198 			return (error);
4199 		}
4200 	}
4201 
4202 	if (error == 0) {
4203 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4204 		lock_release(rtld_bind_lock, &bind_lockstate);
4205 		error = callback(&phdr_info, sizeof(phdr_info), param);
4206 	}
4207 	lock_release(rtld_phdr_lock, &phdr_lockstate);
4208 	return (error);
4209 }
4210 
4211 static void *
4212 fill_search_info(const char *dir, size_t dirlen, void *param)
4213 {
4214     struct fill_search_info_args *arg;
4215 
4216     arg = param;
4217 
4218     if (arg->request == RTLD_DI_SERINFOSIZE) {
4219 	arg->serinfo->dls_cnt ++;
4220 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
4221     } else {
4222 	struct dl_serpath *s_entry;
4223 
4224 	s_entry = arg->serpath;
4225 	s_entry->dls_name  = arg->strspace;
4226 	s_entry->dls_flags = arg->flags;
4227 
4228 	strncpy(arg->strspace, dir, dirlen);
4229 	arg->strspace[dirlen] = '\0';
4230 
4231 	arg->strspace += dirlen + 1;
4232 	arg->serpath++;
4233     }
4234 
4235     return (NULL);
4236 }
4237 
4238 static int
4239 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4240 {
4241     struct dl_serinfo _info;
4242     struct fill_search_info_args args;
4243 
4244     args.request = RTLD_DI_SERINFOSIZE;
4245     args.serinfo = &_info;
4246 
4247     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4248     _info.dls_cnt  = 0;
4249 
4250     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4251     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4252     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4253     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
4254     if (!obj->z_nodeflib)
4255       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
4256 
4257 
4258     if (request == RTLD_DI_SERINFOSIZE) {
4259 	info->dls_size = _info.dls_size;
4260 	info->dls_cnt = _info.dls_cnt;
4261 	return (0);
4262     }
4263 
4264     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
4265 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
4266 	return (-1);
4267     }
4268 
4269     args.request  = RTLD_DI_SERINFO;
4270     args.serinfo  = info;
4271     args.serpath  = &info->dls_serpath[0];
4272     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4273 
4274     args.flags = LA_SER_RUNPATH;
4275     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4276 	return (-1);
4277 
4278     args.flags = LA_SER_LIBPATH;
4279     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4280 	return (-1);
4281 
4282     args.flags = LA_SER_RUNPATH;
4283     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4284 	return (-1);
4285 
4286     args.flags = LA_SER_CONFIG;
4287     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4288       != NULL)
4289 	return (-1);
4290 
4291     args.flags = LA_SER_DEFAULT;
4292     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4293       fill_search_info, NULL, &args) != NULL)
4294 	return (-1);
4295     return (0);
4296 }
4297 
4298 static int
4299 rtld_dirname(const char *path, char *bname)
4300 {
4301     const char *endp;
4302 
4303     /* Empty or NULL string gets treated as "." */
4304     if (path == NULL || *path == '\0') {
4305 	bname[0] = '.';
4306 	bname[1] = '\0';
4307 	return (0);
4308     }
4309 
4310     /* Strip trailing slashes */
4311     endp = path + strlen(path) - 1;
4312     while (endp > path && *endp == '/')
4313 	endp--;
4314 
4315     /* Find the start of the dir */
4316     while (endp > path && *endp != '/')
4317 	endp--;
4318 
4319     /* Either the dir is "/" or there are no slashes */
4320     if (endp == path) {
4321 	bname[0] = *endp == '/' ? '/' : '.';
4322 	bname[1] = '\0';
4323 	return (0);
4324     } else {
4325 	do {
4326 	    endp--;
4327 	} while (endp > path && *endp == '/');
4328     }
4329 
4330     if (endp - path + 2 > PATH_MAX)
4331     {
4332 	_rtld_error("Filename is too long: %s", path);
4333 	return(-1);
4334     }
4335 
4336     strncpy(bname, path, endp - path + 1);
4337     bname[endp - path + 1] = '\0';
4338     return (0);
4339 }
4340 
4341 static int
4342 rtld_dirname_abs(const char *path, char *base)
4343 {
4344 	char *last;
4345 
4346 	if (realpath(path, base) == NULL) {
4347 		_rtld_error("realpath \"%s\" failed (%s)", path,
4348 		    rtld_strerror(errno));
4349 		return (-1);
4350 	}
4351 	dbg("%s -> %s", path, base);
4352 	last = strrchr(base, '/');
4353 	if (last == NULL) {
4354 		_rtld_error("non-abs result from realpath \"%s\"", path);
4355 		return (-1);
4356 	}
4357 	if (last != base)
4358 		*last = '\0';
4359 	return (0);
4360 }
4361 
4362 static void
4363 linkmap_add(Obj_Entry *obj)
4364 {
4365 	struct link_map *l, *prev;
4366 
4367 	l = &obj->linkmap;
4368 	l->l_name = obj->path;
4369 	l->l_base = obj->mapbase;
4370 	l->l_ld = obj->dynamic;
4371 	l->l_addr = obj->relocbase;
4372 
4373 	if (r_debug.r_map == NULL) {
4374 		r_debug.r_map = l;
4375 		return;
4376 	}
4377 
4378 	/*
4379 	 * Scan to the end of the list, but not past the entry for the
4380 	 * dynamic linker, which we want to keep at the very end.
4381 	 */
4382 	for (prev = r_debug.r_map;
4383 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4384 	     prev = prev->l_next)
4385 		;
4386 
4387 	/* Link in the new entry. */
4388 	l->l_prev = prev;
4389 	l->l_next = prev->l_next;
4390 	if (l->l_next != NULL)
4391 		l->l_next->l_prev = l;
4392 	prev->l_next = l;
4393 }
4394 
4395 static void
4396 linkmap_delete(Obj_Entry *obj)
4397 {
4398 	struct link_map *l;
4399 
4400 	l = &obj->linkmap;
4401 	if (l->l_prev == NULL) {
4402 		if ((r_debug.r_map = l->l_next) != NULL)
4403 			l->l_next->l_prev = NULL;
4404 		return;
4405 	}
4406 
4407 	if ((l->l_prev->l_next = l->l_next) != NULL)
4408 		l->l_next->l_prev = l->l_prev;
4409 }
4410 
4411 /*
4412  * Function for the debugger to set a breakpoint on to gain control.
4413  *
4414  * The two parameters allow the debugger to easily find and determine
4415  * what the runtime loader is doing and to whom it is doing it.
4416  *
4417  * When the loadhook trap is hit (r_debug_state, set at program
4418  * initialization), the arguments can be found on the stack:
4419  *
4420  *  +8   struct link_map *m
4421  *  +4   struct r_debug  *rd
4422  *  +0   RetAddr
4423  */
4424 void
4425 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4426 {
4427     /*
4428      * The following is a hack to force the compiler to emit calls to
4429      * this function, even when optimizing.  If the function is empty,
4430      * the compiler is not obliged to emit any code for calls to it,
4431      * even when marked __noinline.  However, gdb depends on those
4432      * calls being made.
4433      */
4434     __compiler_membar();
4435 }
4436 
4437 /*
4438  * A function called after init routines have completed. This can be used to
4439  * break before a program's entry routine is called, and can be used when
4440  * main is not available in the symbol table.
4441  */
4442 void
4443 _r_debug_postinit(struct link_map *m __unused)
4444 {
4445 
4446 	/* See r_debug_state(). */
4447 	__compiler_membar();
4448 }
4449 
4450 static void
4451 release_object(Obj_Entry *obj)
4452 {
4453 
4454 	if (obj->holdcount > 0) {
4455 		obj->unholdfree = true;
4456 		return;
4457 	}
4458 	munmap(obj->mapbase, obj->mapsize);
4459 	linkmap_delete(obj);
4460 	obj_free(obj);
4461 }
4462 
4463 /*
4464  * Get address of the pointer variable in the main program.
4465  * Prefer non-weak symbol over the weak one.
4466  */
4467 static const void **
4468 get_program_var_addr(const char *name, RtldLockState *lockstate)
4469 {
4470     SymLook req;
4471     DoneList donelist;
4472 
4473     symlook_init(&req, name);
4474     req.lockstate = lockstate;
4475     donelist_init(&donelist);
4476     if (symlook_global(&req, &donelist) != 0)
4477 	return (NULL);
4478     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4479 	return ((const void **)make_function_pointer(req.sym_out,
4480 	  req.defobj_out));
4481     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4482 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4483     else
4484 	return ((const void **)(req.defobj_out->relocbase +
4485 	  req.sym_out->st_value));
4486 }
4487 
4488 /*
4489  * Set a pointer variable in the main program to the given value.  This
4490  * is used to set key variables such as "environ" before any of the
4491  * init functions are called.
4492  */
4493 static void
4494 set_program_var(const char *name, const void *value)
4495 {
4496     const void **addr;
4497 
4498     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4499 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4500 	*addr = value;
4501     }
4502 }
4503 
4504 /*
4505  * Search the global objects, including dependencies and main object,
4506  * for the given symbol.
4507  */
4508 static int
4509 symlook_global(SymLook *req, DoneList *donelist)
4510 {
4511     SymLook req1;
4512     const Objlist_Entry *elm;
4513     int res;
4514 
4515     symlook_init_from_req(&req1, req);
4516 
4517     /* Search all objects loaded at program start up. */
4518     if (req->defobj_out == NULL || (ld_dynamic_weak &&
4519       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4520 	res = symlook_list(&req1, &list_main, donelist);
4521 	if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4522 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4523 	    req->sym_out = req1.sym_out;
4524 	    req->defobj_out = req1.defobj_out;
4525 	    assert(req->defobj_out != NULL);
4526 	}
4527     }
4528 
4529     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4530     STAILQ_FOREACH(elm, &list_global, link) {
4531 	if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4532           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4533 	    break;
4534 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4535 	if (res == 0 && (req->defobj_out == NULL ||
4536 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4537 	    req->sym_out = req1.sym_out;
4538 	    req->defobj_out = req1.defobj_out;
4539 	    assert(req->defobj_out != NULL);
4540 	}
4541     }
4542 
4543     return (req->sym_out != NULL ? 0 : ESRCH);
4544 }
4545 
4546 /*
4547  * Given a symbol name in a referencing object, find the corresponding
4548  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4549  * no definition was found.  Returns a pointer to the Obj_Entry of the
4550  * defining object via the reference parameter DEFOBJ_OUT.
4551  */
4552 static int
4553 symlook_default(SymLook *req, const Obj_Entry *refobj)
4554 {
4555     DoneList donelist;
4556     const Objlist_Entry *elm;
4557     SymLook req1;
4558     int res;
4559 
4560     donelist_init(&donelist);
4561     symlook_init_from_req(&req1, req);
4562 
4563     /*
4564      * Look first in the referencing object if linked symbolically,
4565      * and similarly handle protected symbols.
4566      */
4567     res = symlook_obj(&req1, refobj);
4568     if (res == 0 && (refobj->symbolic ||
4569       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4570 	req->sym_out = req1.sym_out;
4571 	req->defobj_out = req1.defobj_out;
4572 	assert(req->defobj_out != NULL);
4573     }
4574     if (refobj->symbolic || req->defobj_out != NULL)
4575 	donelist_check(&donelist, refobj);
4576 
4577     symlook_global(req, &donelist);
4578 
4579     /* Search all dlopened DAGs containing the referencing object. */
4580     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4581 	if (req->sym_out != NULL && (!ld_dynamic_weak ||
4582           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4583 	    break;
4584 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4585 	if (res == 0 && (req->sym_out == NULL ||
4586 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4587 	    req->sym_out = req1.sym_out;
4588 	    req->defobj_out = req1.defobj_out;
4589 	    assert(req->defobj_out != NULL);
4590 	}
4591     }
4592 
4593     /*
4594      * Search the dynamic linker itself, and possibly resolve the
4595      * symbol from there.  This is how the application links to
4596      * dynamic linker services such as dlopen.
4597      */
4598     if (req->sym_out == NULL ||
4599       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4600 	res = symlook_obj(&req1, &obj_rtld);
4601 	if (res == 0) {
4602 	    req->sym_out = req1.sym_out;
4603 	    req->defobj_out = req1.defobj_out;
4604 	    assert(req->defobj_out != NULL);
4605 	}
4606     }
4607 
4608     return (req->sym_out != NULL ? 0 : ESRCH);
4609 }
4610 
4611 static int
4612 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4613 {
4614     const Elf_Sym *def;
4615     const Obj_Entry *defobj;
4616     const Objlist_Entry *elm;
4617     SymLook req1;
4618     int res;
4619 
4620     def = NULL;
4621     defobj = NULL;
4622     STAILQ_FOREACH(elm, objlist, link) {
4623 	if (donelist_check(dlp, elm->obj))
4624 	    continue;
4625 	symlook_init_from_req(&req1, req);
4626 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4627 	    if (def == NULL || (ld_dynamic_weak &&
4628               ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4629 		def = req1.sym_out;
4630 		defobj = req1.defobj_out;
4631 		if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4632 		    break;
4633 	    }
4634 	}
4635     }
4636     if (def != NULL) {
4637 	req->sym_out = def;
4638 	req->defobj_out = defobj;
4639 	return (0);
4640     }
4641     return (ESRCH);
4642 }
4643 
4644 /*
4645  * Search the chain of DAGS cointed to by the given Needed_Entry
4646  * for a symbol of the given name.  Each DAG is scanned completely
4647  * before advancing to the next one.  Returns a pointer to the symbol,
4648  * or NULL if no definition was found.
4649  */
4650 static int
4651 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4652 {
4653     const Elf_Sym *def;
4654     const Needed_Entry *n;
4655     const Obj_Entry *defobj;
4656     SymLook req1;
4657     int res;
4658 
4659     def = NULL;
4660     defobj = NULL;
4661     symlook_init_from_req(&req1, req);
4662     for (n = needed; n != NULL; n = n->next) {
4663 	if (n->obj == NULL ||
4664 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4665 	    continue;
4666 	if (def == NULL || (ld_dynamic_weak &&
4667           ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4668 	    def = req1.sym_out;
4669 	    defobj = req1.defobj_out;
4670 	    if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4671 		break;
4672 	}
4673     }
4674     if (def != NULL) {
4675 	req->sym_out = def;
4676 	req->defobj_out = defobj;
4677 	return (0);
4678     }
4679     return (ESRCH);
4680 }
4681 
4682 /*
4683  * Search the symbol table of a single shared object for a symbol of
4684  * the given name and version, if requested.  Returns a pointer to the
4685  * symbol, or NULL if no definition was found.  If the object is
4686  * filter, return filtered symbol from filtee.
4687  *
4688  * The symbol's hash value is passed in for efficiency reasons; that
4689  * eliminates many recomputations of the hash value.
4690  */
4691 int
4692 symlook_obj(SymLook *req, const Obj_Entry *obj)
4693 {
4694     DoneList donelist;
4695     SymLook req1;
4696     int flags, res, mres;
4697 
4698     /*
4699      * If there is at least one valid hash at this point, we prefer to
4700      * use the faster GNU version if available.
4701      */
4702     if (obj->valid_hash_gnu)
4703 	mres = symlook_obj1_gnu(req, obj);
4704     else if (obj->valid_hash_sysv)
4705 	mres = symlook_obj1_sysv(req, obj);
4706     else
4707 	return (EINVAL);
4708 
4709     if (mres == 0) {
4710 	if (obj->needed_filtees != NULL) {
4711 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4712 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4713 	    donelist_init(&donelist);
4714 	    symlook_init_from_req(&req1, req);
4715 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4716 	    if (res == 0) {
4717 		req->sym_out = req1.sym_out;
4718 		req->defobj_out = req1.defobj_out;
4719 	    }
4720 	    return (res);
4721 	}
4722 	if (obj->needed_aux_filtees != NULL) {
4723 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4724 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4725 	    donelist_init(&donelist);
4726 	    symlook_init_from_req(&req1, req);
4727 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4728 	    if (res == 0) {
4729 		req->sym_out = req1.sym_out;
4730 		req->defobj_out = req1.defobj_out;
4731 		return (res);
4732 	    }
4733 	}
4734     }
4735     return (mres);
4736 }
4737 
4738 /* Symbol match routine common to both hash functions */
4739 static bool
4740 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4741     const unsigned long symnum)
4742 {
4743 	Elf_Versym verndx;
4744 	const Elf_Sym *symp;
4745 	const char *strp;
4746 
4747 	symp = obj->symtab + symnum;
4748 	strp = obj->strtab + symp->st_name;
4749 
4750 	switch (ELF_ST_TYPE(symp->st_info)) {
4751 	case STT_FUNC:
4752 	case STT_NOTYPE:
4753 	case STT_OBJECT:
4754 	case STT_COMMON:
4755 	case STT_GNU_IFUNC:
4756 		if (symp->st_value == 0)
4757 			return (false);
4758 		/* fallthrough */
4759 	case STT_TLS:
4760 		if (symp->st_shndx != SHN_UNDEF)
4761 			break;
4762 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4763 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4764 			break;
4765 		/* fallthrough */
4766 	default:
4767 		return (false);
4768 	}
4769 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4770 		return (false);
4771 
4772 	if (req->ventry == NULL) {
4773 		if (obj->versyms != NULL) {
4774 			verndx = VER_NDX(obj->versyms[symnum]);
4775 			if (verndx > obj->vernum) {
4776 				_rtld_error(
4777 				    "%s: symbol %s references wrong version %d",
4778 				    obj->path, obj->strtab + symnum, verndx);
4779 				return (false);
4780 			}
4781 			/*
4782 			 * If we are not called from dlsym (i.e. this
4783 			 * is a normal relocation from unversioned
4784 			 * binary), accept the symbol immediately if
4785 			 * it happens to have first version after this
4786 			 * shared object became versioned.  Otherwise,
4787 			 * if symbol is versioned and not hidden,
4788 			 * remember it. If it is the only symbol with
4789 			 * this name exported by the shared object, it
4790 			 * will be returned as a match by the calling
4791 			 * function. If symbol is global (verndx < 2)
4792 			 * accept it unconditionally.
4793 			 */
4794 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4795 			    verndx == VER_NDX_GIVEN) {
4796 				result->sym_out = symp;
4797 				return (true);
4798 			}
4799 			else if (verndx >= VER_NDX_GIVEN) {
4800 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4801 				    == 0) {
4802 					if (result->vsymp == NULL)
4803 						result->vsymp = symp;
4804 					result->vcount++;
4805 				}
4806 				return (false);
4807 			}
4808 		}
4809 		result->sym_out = symp;
4810 		return (true);
4811 	}
4812 	if (obj->versyms == NULL) {
4813 		if (object_match_name(obj, req->ventry->name)) {
4814 			_rtld_error("%s: object %s should provide version %s "
4815 			    "for symbol %s", obj_rtld.path, obj->path,
4816 			    req->ventry->name, obj->strtab + symnum);
4817 			return (false);
4818 		}
4819 	} else {
4820 		verndx = VER_NDX(obj->versyms[symnum]);
4821 		if (verndx > obj->vernum) {
4822 			_rtld_error("%s: symbol %s references wrong version %d",
4823 			    obj->path, obj->strtab + symnum, verndx);
4824 			return (false);
4825 		}
4826 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4827 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4828 			/*
4829 			 * Version does not match. Look if this is a
4830 			 * global symbol and if it is not hidden. If
4831 			 * global symbol (verndx < 2) is available,
4832 			 * use it. Do not return symbol if we are
4833 			 * called by dlvsym, because dlvsym looks for
4834 			 * a specific version and default one is not
4835 			 * what dlvsym wants.
4836 			 */
4837 			if ((req->flags & SYMLOOK_DLSYM) ||
4838 			    (verndx >= VER_NDX_GIVEN) ||
4839 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4840 				return (false);
4841 		}
4842 	}
4843 	result->sym_out = symp;
4844 	return (true);
4845 }
4846 
4847 /*
4848  * Search for symbol using SysV hash function.
4849  * obj->buckets is known not to be NULL at this point; the test for this was
4850  * performed with the obj->valid_hash_sysv assignment.
4851  */
4852 static int
4853 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4854 {
4855 	unsigned long symnum;
4856 	Sym_Match_Result matchres;
4857 
4858 	matchres.sym_out = NULL;
4859 	matchres.vsymp = NULL;
4860 	matchres.vcount = 0;
4861 
4862 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4863 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4864 		if (symnum >= obj->nchains)
4865 			return (ESRCH);	/* Bad object */
4866 
4867 		if (matched_symbol(req, obj, &matchres, symnum)) {
4868 			req->sym_out = matchres.sym_out;
4869 			req->defobj_out = obj;
4870 			return (0);
4871 		}
4872 	}
4873 	if (matchres.vcount == 1) {
4874 		req->sym_out = matchres.vsymp;
4875 		req->defobj_out = obj;
4876 		return (0);
4877 	}
4878 	return (ESRCH);
4879 }
4880 
4881 /* Search for symbol using GNU hash function */
4882 static int
4883 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4884 {
4885 	Elf_Addr bloom_word;
4886 	const Elf32_Word *hashval;
4887 	Elf32_Word bucket;
4888 	Sym_Match_Result matchres;
4889 	unsigned int h1, h2;
4890 	unsigned long symnum;
4891 
4892 	matchres.sym_out = NULL;
4893 	matchres.vsymp = NULL;
4894 	matchres.vcount = 0;
4895 
4896 	/* Pick right bitmask word from Bloom filter array */
4897 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4898 	    obj->maskwords_bm_gnu];
4899 
4900 	/* Calculate modulus word size of gnu hash and its derivative */
4901 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4902 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4903 
4904 	/* Filter out the "definitely not in set" queries */
4905 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4906 		return (ESRCH);
4907 
4908 	/* Locate hash chain and corresponding value element*/
4909 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4910 	if (bucket == 0)
4911 		return (ESRCH);
4912 	hashval = &obj->chain_zero_gnu[bucket];
4913 	do {
4914 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4915 			symnum = hashval - obj->chain_zero_gnu;
4916 			if (matched_symbol(req, obj, &matchres, symnum)) {
4917 				req->sym_out = matchres.sym_out;
4918 				req->defobj_out = obj;
4919 				return (0);
4920 			}
4921 		}
4922 	} while ((*hashval++ & 1) == 0);
4923 	if (matchres.vcount == 1) {
4924 		req->sym_out = matchres.vsymp;
4925 		req->defobj_out = obj;
4926 		return (0);
4927 	}
4928 	return (ESRCH);
4929 }
4930 
4931 static void
4932 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
4933 {
4934 	*main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
4935 	if (*main_local == NULL)
4936 		*main_local = "";
4937 
4938 	*fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
4939 	if (*fmt1 == NULL)
4940 		*fmt1 = "\t%o => %p (%x)\n";
4941 
4942 	*fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
4943 	if (*fmt2 == NULL)
4944 		*fmt2 = "\t%o (%x)\n";
4945 }
4946 
4947 static void
4948 trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
4949     const char *main_local, const char *fmt1, const char *fmt2)
4950 {
4951 	const char *fmt;
4952 	int c;
4953 
4954 	if (fmt1 == NULL)
4955 		fmt = fmt2;
4956 	else
4957 		/* XXX bogus */
4958 		fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;
4959 
4960 	while ((c = *fmt++) != '\0') {
4961 		switch (c) {
4962 		default:
4963 			rtld_putchar(c);
4964 			continue;
4965 		case '\\':
4966 			switch (c = *fmt) {
4967 			case '\0':
4968 				continue;
4969 			case 'n':
4970 				rtld_putchar('\n');
4971 				break;
4972 			case 't':
4973 				rtld_putchar('\t');
4974 				break;
4975 			}
4976 			break;
4977 		case '%':
4978 			switch (c = *fmt) {
4979 			case '\0':
4980 				continue;
4981 			case '%':
4982 			default:
4983 				rtld_putchar(c);
4984 				break;
4985 			case 'A':
4986 				rtld_putstr(main_local);
4987 				break;
4988 			case 'a':
4989 				rtld_putstr(obj_main->path);
4990 				break;
4991 			case 'o':
4992 				rtld_putstr(name);
4993 				break;
4994 			case 'p':
4995 				rtld_putstr(path);
4996 				break;
4997 			case 'x':
4998 				rtld_printf("%p", obj != NULL ?
4999 				    obj->mapbase : NULL);
5000 				break;
5001 			}
5002 			break;
5003 		}
5004 		++fmt;
5005 	}
5006 }
5007 
5008 static void
5009 trace_loaded_objects(Obj_Entry *obj, bool show_preload)
5010 {
5011 	const char *fmt1, *fmt2, *main_local;
5012 	const char *name, *path;
5013 	bool first_spurious, list_containers;
5014 
5015 	trace_calc_fmts(&main_local, &fmt1, &fmt2);
5016 	list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
5017 
5018 	for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5019 		Needed_Entry *needed;
5020 
5021 		if (obj->marker)
5022 			continue;
5023 		if (list_containers && obj->needed != NULL)
5024 			rtld_printf("%s:\n", obj->path);
5025 		for (needed = obj->needed; needed; needed = needed->next) {
5026 			if (needed->obj != NULL) {
5027 				if (needed->obj->traced && !list_containers)
5028 					continue;
5029 				needed->obj->traced = true;
5030 				path = needed->obj->path;
5031 			} else
5032 				path = "not found";
5033 
5034 			name = obj->strtab + needed->name;
5035 			trace_print_obj(needed->obj, name, path, main_local,
5036 			    fmt1, fmt2);
5037 		}
5038 	}
5039 
5040 	if (show_preload) {
5041 		if (ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2) == NULL)
5042 			fmt2 = "\t%p (%x)\n";
5043 		first_spurious = true;
5044 
5045 		TAILQ_FOREACH(obj, &obj_list, next) {
5046 			if (obj->marker || obj == obj_main || obj->traced)
5047 				continue;
5048 
5049 			if (list_containers && first_spurious) {
5050 				rtld_printf("[preloaded]\n");
5051 				first_spurious = false;
5052 			}
5053 
5054 			Name_Entry *fname = STAILQ_FIRST(&obj->names);
5055 			name = fname == NULL ? "<unknown>" : fname->name;
5056 			trace_print_obj(obj, name, obj->path, main_local,
5057 			    NULL, fmt2);
5058 		}
5059 	}
5060 }
5061 
5062 /*
5063  * Unload a dlopened object and its dependencies from memory and from
5064  * our data structures.  It is assumed that the DAG rooted in the
5065  * object has already been unreferenced, and that the object has a
5066  * reference count of 0.
5067  */
5068 static void
5069 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5070 {
5071 	Obj_Entry marker, *obj, *next;
5072 
5073 	assert(root->refcount == 0);
5074 
5075 	/*
5076 	 * Pass over the DAG removing unreferenced objects from
5077 	 * appropriate lists.
5078 	 */
5079 	unlink_object(root);
5080 
5081 	/* Unmap all objects that are no longer referenced. */
5082 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5083 		next = TAILQ_NEXT(obj, next);
5084 		if (obj->marker || obj->refcount != 0)
5085 			continue;
5086 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
5087 		    obj->mapsize, 0, obj->path);
5088 		dbg("unloading \"%s\"", obj->path);
5089 		/*
5090 		 * Unlink the object now to prevent new references from
5091 		 * being acquired while the bind lock is dropped in
5092 		 * recursive dlclose() invocations.
5093 		 */
5094 		TAILQ_REMOVE(&obj_list, obj, next);
5095 		obj_count--;
5096 
5097 		if (obj->filtees_loaded) {
5098 			if (next != NULL) {
5099 				init_marker(&marker);
5100 				TAILQ_INSERT_BEFORE(next, &marker, next);
5101 				unload_filtees(obj, lockstate);
5102 				next = TAILQ_NEXT(&marker, next);
5103 				TAILQ_REMOVE(&obj_list, &marker, next);
5104 			} else
5105 				unload_filtees(obj, lockstate);
5106 		}
5107 		release_object(obj);
5108 	}
5109 }
5110 
5111 static void
5112 unlink_object(Obj_Entry *root)
5113 {
5114     Objlist_Entry *elm;
5115 
5116     if (root->refcount == 0) {
5117 	/* Remove the object from the RTLD_GLOBAL list. */
5118 	objlist_remove(&list_global, root);
5119 
5120     	/* Remove the object from all objects' DAG lists. */
5121     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
5122 	    objlist_remove(&elm->obj->dldags, root);
5123 	    if (elm->obj != root)
5124 		unlink_object(elm->obj);
5125 	}
5126     }
5127 }
5128 
5129 static void
5130 ref_dag(Obj_Entry *root)
5131 {
5132     Objlist_Entry *elm;
5133 
5134     assert(root->dag_inited);
5135     STAILQ_FOREACH(elm, &root->dagmembers, link)
5136 	elm->obj->refcount++;
5137 }
5138 
5139 static void
5140 unref_dag(Obj_Entry *root)
5141 {
5142     Objlist_Entry *elm;
5143 
5144     assert(root->dag_inited);
5145     STAILQ_FOREACH(elm, &root->dagmembers, link)
5146 	elm->obj->refcount--;
5147 }
5148 
5149 /*
5150  * Common code for MD __tls_get_addr().
5151  */
5152 static void *
5153 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
5154 {
5155 	Elf_Addr *newdtv, *dtv;
5156 	RtldLockState lockstate;
5157 	int to_copy;
5158 
5159 	dtv = *dtvp;
5160 	/* Check dtv generation in case new modules have arrived */
5161 	if (dtv[0] != tls_dtv_generation) {
5162 		if (!locked)
5163 			wlock_acquire(rtld_bind_lock, &lockstate);
5164 		newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5165 		to_copy = dtv[1];
5166 		if (to_copy > tls_max_index)
5167 			to_copy = tls_max_index;
5168 		memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
5169 		newdtv[0] = tls_dtv_generation;
5170 		newdtv[1] = tls_max_index;
5171 		free(dtv);
5172 		if (!locked)
5173 			lock_release(rtld_bind_lock, &lockstate);
5174 		dtv = *dtvp = newdtv;
5175 	}
5176 
5177 	/* Dynamically allocate module TLS if necessary */
5178 	if (dtv[index + 1] == 0) {
5179 		/* Signal safe, wlock will block out signals. */
5180 		if (!locked)
5181 			wlock_acquire(rtld_bind_lock, &lockstate);
5182 		if (!dtv[index + 1])
5183 			dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
5184 		if (!locked)
5185 			lock_release(rtld_bind_lock, &lockstate);
5186 	}
5187 	return ((void *)(dtv[index + 1] + offset));
5188 }
5189 
5190 void *
5191 tls_get_addr_common(uintptr_t **dtvp, int index, size_t offset)
5192 {
5193 	uintptr_t *dtv;
5194 
5195 	dtv = *dtvp;
5196 	/* Check dtv generation in case new modules have arrived */
5197 	if (__predict_true(dtv[0] == tls_dtv_generation &&
5198 	    dtv[index + 1] != 0))
5199 		return ((void *)(dtv[index + 1] + offset));
5200 	return (tls_get_addr_slow(dtvp, index, offset, false));
5201 }
5202 
5203 #ifdef TLS_VARIANT_I
5204 
5205 /*
5206  * Return pointer to allocated TLS block
5207  */
5208 static void *
5209 get_tls_block_ptr(void *tcb, size_t tcbsize)
5210 {
5211     size_t extra_size, post_size, pre_size, tls_block_size;
5212     size_t tls_init_align;
5213 
5214     tls_init_align = MAX(obj_main->tlsalign, 1);
5215 
5216     /* Compute fragments sizes. */
5217     extra_size = tcbsize - TLS_TCB_SIZE;
5218     post_size = calculate_tls_post_size(tls_init_align);
5219     tls_block_size = tcbsize + post_size;
5220     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5221 
5222     return ((char *)tcb - pre_size - extra_size);
5223 }
5224 
5225 /*
5226  * Allocate Static TLS using the Variant I method.
5227  *
5228  * For details on the layout, see lib/libc/gen/tls.c.
5229  *
5230  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5231  *     it is based on tls_last_offset, and TLS offsets here are really TCB
5232  *     offsets, whereas libc's tls_static_space is just the executable's static
5233  *     TLS segment.
5234  */
5235 void *
5236 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5237 {
5238     Obj_Entry *obj;
5239     char *tls_block;
5240     Elf_Addr *dtv, **tcb;
5241     Elf_Addr addr;
5242     Elf_Addr i;
5243     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5244     size_t tls_init_align, tls_init_offset;
5245 
5246     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5247 	return (oldtcb);
5248 
5249     assert(tcbsize >= TLS_TCB_SIZE);
5250     maxalign = MAX(tcbalign, tls_static_max_align);
5251     tls_init_align = MAX(obj_main->tlsalign, 1);
5252 
5253     /* Compute fragmets sizes. */
5254     extra_size = tcbsize - TLS_TCB_SIZE;
5255     post_size = calculate_tls_post_size(tls_init_align);
5256     tls_block_size = tcbsize + post_size;
5257     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5258     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
5259 
5260     /* Allocate whole TLS block */
5261     tls_block = malloc_aligned(tls_block_size, maxalign, 0);
5262     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
5263 
5264     if (oldtcb != NULL) {
5265 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5266 	    tls_static_space);
5267 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
5268 
5269 	/* Adjust the DTV. */
5270 	dtv = tcb[0];
5271 	for (i = 0; i < dtv[1]; i++) {
5272 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
5273 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
5274 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
5275 	    }
5276 	}
5277     } else {
5278 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5279 	tcb[0] = dtv;
5280 	dtv[0] = tls_dtv_generation;
5281 	dtv[1] = tls_max_index;
5282 
5283 	for (obj = globallist_curr(objs); obj != NULL;
5284 	  obj = globallist_next(obj)) {
5285 	    if (obj->tlsoffset == 0)
5286 		continue;
5287 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5288 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
5289 	    if (tls_init_offset > 0)
5290 		memset((void *)addr, 0, tls_init_offset);
5291 	    if (obj->tlsinitsize > 0) {
5292 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
5293 		    obj->tlsinitsize);
5294 	    }
5295 	    if (obj->tlssize > obj->tlsinitsize) {
5296 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
5297 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
5298 	    }
5299 	    dtv[obj->tlsindex + 1] = addr;
5300 	}
5301     }
5302 
5303     return (tcb);
5304 }
5305 
5306 void
5307 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5308 {
5309     Elf_Addr *dtv;
5310     Elf_Addr tlsstart, tlsend;
5311     size_t post_size;
5312     size_t dtvsize, i, tls_init_align __unused;
5313 
5314     assert(tcbsize >= TLS_TCB_SIZE);
5315     tls_init_align = MAX(obj_main->tlsalign, 1);
5316 
5317     /* Compute fragments sizes. */
5318     post_size = calculate_tls_post_size(tls_init_align);
5319 
5320     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5321     tlsend = (Elf_Addr)tcb + tls_static_space;
5322 
5323     dtv = *(Elf_Addr **)tcb;
5324     dtvsize = dtv[1];
5325     for (i = 0; i < dtvsize; i++) {
5326 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5327 	    free((void*)dtv[i+2]);
5328 	}
5329     }
5330     free(dtv);
5331     free_aligned(get_tls_block_ptr(tcb, tcbsize));
5332 }
5333 
5334 #endif	/* TLS_VARIANT_I */
5335 
5336 #ifdef TLS_VARIANT_II
5337 
5338 /*
5339  * Allocate Static TLS using the Variant II method.
5340  */
5341 void *
5342 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5343 {
5344     Obj_Entry *obj;
5345     size_t size, ralign;
5346     char *tls;
5347     Elf_Addr *dtv, *olddtv;
5348     Elf_Addr segbase, oldsegbase, addr;
5349     size_t i;
5350 
5351     ralign = tcbalign;
5352     if (tls_static_max_align > ralign)
5353 	    ralign = tls_static_max_align;
5354     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5355 
5356     assert(tcbsize >= 2*sizeof(Elf_Addr));
5357     tls = malloc_aligned(size, ralign, 0 /* XXX */);
5358     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5359 
5360     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5361     ((Elf_Addr *)segbase)[0] = segbase;
5362     ((Elf_Addr *)segbase)[1] = (Elf_Addr) dtv;
5363 
5364     dtv[0] = tls_dtv_generation;
5365     dtv[1] = tls_max_index;
5366 
5367     if (oldtls) {
5368 	/*
5369 	 * Copy the static TLS block over whole.
5370 	 */
5371 	oldsegbase = (Elf_Addr) oldtls;
5372 	memcpy((void *)(segbase - tls_static_space),
5373 	   (const void *)(oldsegbase - tls_static_space),
5374 	   tls_static_space);
5375 
5376 	/*
5377 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5378 	 * move them over.
5379 	 */
5380 	olddtv = ((Elf_Addr **)oldsegbase)[1];
5381 	for (i = 0; i < olddtv[1]; i++) {
5382 	    if (olddtv[i + 2] < oldsegbase - size ||
5383 		olddtv[i + 2] > oldsegbase) {
5384 		    dtv[i + 2] = olddtv[i + 2];
5385 		    olddtv[i + 2] = 0;
5386 	    }
5387 	}
5388 
5389 	/*
5390 	 * We assume that this block was the one we created with
5391 	 * allocate_initial_tls().
5392 	 */
5393 	free_tls(oldtls, 2 * sizeof(Elf_Addr), sizeof(Elf_Addr));
5394     } else {
5395 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5396 		if (obj->marker || obj->tlsoffset == 0)
5397 			continue;
5398 		addr = segbase - obj->tlsoffset;
5399 		memset((void *)(addr + obj->tlsinitsize),
5400 		    0, obj->tlssize - obj->tlsinitsize);
5401 		if (obj->tlsinit) {
5402 			memcpy((void *)addr, obj->tlsinit, obj->tlsinitsize);
5403 			obj->static_tls_copied = true;
5404 		}
5405 		dtv[obj->tlsindex + 1] = addr;
5406 	}
5407     }
5408 
5409     return ((void *)segbase);
5410 }
5411 
5412 void
5413 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5414 {
5415     Elf_Addr* dtv;
5416     size_t size, ralign;
5417     int dtvsize, i;
5418     Elf_Addr tlsstart, tlsend;
5419 
5420     /*
5421      * Figure out the size of the initial TLS block so that we can
5422      * find stuff which ___tls_get_addr() allocated dynamically.
5423      */
5424     ralign = tcbalign;
5425     if (tls_static_max_align > ralign)
5426 	    ralign = tls_static_max_align;
5427     size = roundup(tls_static_space, ralign);
5428 
5429     dtv = ((Elf_Addr **)tls)[1];
5430     dtvsize = dtv[1];
5431     tlsend = (Elf_Addr)tls;
5432     tlsstart = tlsend - size;
5433     for (i = 0; i < dtvsize; i++) {
5434 	    if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart ||
5435 	        dtv[i + 2] > tlsend)) {
5436 		    free_aligned((void *)dtv[i + 2]);
5437 	}
5438     }
5439 
5440     free_aligned((void *)tlsstart);
5441     free((void *)dtv);
5442 }
5443 
5444 #endif	/* TLS_VARIANT_II */
5445 
5446 /*
5447  * Allocate TLS block for module with given index.
5448  */
5449 void *
5450 allocate_module_tls(int index)
5451 {
5452 	Obj_Entry *obj;
5453 	char *p;
5454 
5455 	TAILQ_FOREACH(obj, &obj_list, next) {
5456 		if (obj->marker)
5457 			continue;
5458 		if (obj->tlsindex == index)
5459 			break;
5460 	}
5461 	if (obj == NULL) {
5462 		_rtld_error("Can't find module with TLS index %d", index);
5463 		rtld_die();
5464 	}
5465 
5466 	if (obj->tls_static) {
5467 #ifdef TLS_VARIANT_I
5468 		p = (char *)_tcb_get() + obj->tlsoffset + TLS_TCB_SIZE;
5469 #else
5470 		p = (char *)_tcb_get() - obj->tlsoffset;
5471 #endif
5472 		return (p);
5473 	}
5474 
5475 	obj->tls_dynamic = true;
5476 
5477 	p = malloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5478 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5479 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5480 	return (p);
5481 }
5482 
5483 bool
5484 allocate_tls_offset(Obj_Entry *obj)
5485 {
5486     size_t off;
5487 
5488     if (obj->tls_dynamic)
5489 	return (false);
5490 
5491     if (obj->tls_static)
5492 	return (true);
5493 
5494     if (obj->tlssize == 0) {
5495 	obj->tls_static = true;
5496 	return (true);
5497     }
5498 
5499     if (tls_last_offset == 0)
5500 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5501 	  obj->tlspoffset);
5502     else
5503 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5504 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5505 
5506     obj->tlsoffset = off;
5507 #ifdef TLS_VARIANT_I
5508     off += obj->tlssize;
5509 #endif
5510 
5511     /*
5512      * If we have already fixed the size of the static TLS block, we
5513      * must stay within that size. When allocating the static TLS, we
5514      * leave a small amount of space spare to be used for dynamically
5515      * loading modules which use static TLS.
5516      */
5517     if (tls_static_space != 0) {
5518 	if (off > tls_static_space)
5519 	    return (false);
5520     } else if (obj->tlsalign > tls_static_max_align) {
5521 	    tls_static_max_align = obj->tlsalign;
5522     }
5523 
5524     tls_last_offset = off;
5525     tls_last_size = obj->tlssize;
5526     obj->tls_static = true;
5527 
5528     return (true);
5529 }
5530 
5531 void
5532 free_tls_offset(Obj_Entry *obj)
5533 {
5534 
5535     /*
5536      * If we were the last thing to allocate out of the static TLS
5537      * block, we give our space back to the 'allocator'. This is a
5538      * simplistic workaround to allow libGL.so.1 to be loaded and
5539      * unloaded multiple times.
5540      */
5541     size_t off = obj->tlsoffset;
5542 #ifdef TLS_VARIANT_I
5543     off += obj->tlssize;
5544 #endif
5545     if (off == tls_last_offset) {
5546 	tls_last_offset -= obj->tlssize;
5547 	tls_last_size = 0;
5548     }
5549 }
5550 
5551 void *
5552 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5553 {
5554     void *ret;
5555     RtldLockState lockstate;
5556 
5557     wlock_acquire(rtld_bind_lock, &lockstate);
5558     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5559       tcbsize, tcbalign);
5560     lock_release(rtld_bind_lock, &lockstate);
5561     return (ret);
5562 }
5563 
5564 void
5565 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5566 {
5567     RtldLockState lockstate;
5568 
5569     wlock_acquire(rtld_bind_lock, &lockstate);
5570     free_tls(tcb, tcbsize, tcbalign);
5571     lock_release(rtld_bind_lock, &lockstate);
5572 }
5573 
5574 static void
5575 object_add_name(Obj_Entry *obj, const char *name)
5576 {
5577     Name_Entry *entry;
5578     size_t len;
5579 
5580     len = strlen(name);
5581     entry = malloc(sizeof(Name_Entry) + len);
5582 
5583     if (entry != NULL) {
5584 	strcpy(entry->name, name);
5585 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5586     }
5587 }
5588 
5589 static int
5590 object_match_name(const Obj_Entry *obj, const char *name)
5591 {
5592     Name_Entry *entry;
5593 
5594     STAILQ_FOREACH(entry, &obj->names, link) {
5595 	if (strcmp(name, entry->name) == 0)
5596 	    return (1);
5597     }
5598     return (0);
5599 }
5600 
5601 static Obj_Entry *
5602 locate_dependency(const Obj_Entry *obj, const char *name)
5603 {
5604     const Objlist_Entry *entry;
5605     const Needed_Entry *needed;
5606 
5607     STAILQ_FOREACH(entry, &list_main, link) {
5608 	if (object_match_name(entry->obj, name))
5609 	    return (entry->obj);
5610     }
5611 
5612     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5613 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5614 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5615 	    /*
5616 	     * If there is DT_NEEDED for the name we are looking for,
5617 	     * we are all set.  Note that object might not be found if
5618 	     * dependency was not loaded yet, so the function can
5619 	     * return NULL here.  This is expected and handled
5620 	     * properly by the caller.
5621 	     */
5622 	    return (needed->obj);
5623 	}
5624     }
5625     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5626 	obj->path, name);
5627     rtld_die();
5628 }
5629 
5630 static int
5631 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5632     const Elf_Vernaux *vna)
5633 {
5634     const Elf_Verdef *vd;
5635     const char *vername;
5636 
5637     vername = refobj->strtab + vna->vna_name;
5638     vd = depobj->verdef;
5639     if (vd == NULL) {
5640 	_rtld_error("%s: version %s required by %s not defined",
5641 	    depobj->path, vername, refobj->path);
5642 	return (-1);
5643     }
5644     for (;;) {
5645 	if (vd->vd_version != VER_DEF_CURRENT) {
5646 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5647 		depobj->path, vd->vd_version);
5648 	    return (-1);
5649 	}
5650 	if (vna->vna_hash == vd->vd_hash) {
5651 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5652 		((const char *)vd + vd->vd_aux);
5653 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5654 		return (0);
5655 	}
5656 	if (vd->vd_next == 0)
5657 	    break;
5658 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5659     }
5660     if (vna->vna_flags & VER_FLG_WEAK)
5661 	return (0);
5662     _rtld_error("%s: version %s required by %s not found",
5663 	depobj->path, vername, refobj->path);
5664     return (-1);
5665 }
5666 
5667 static int
5668 rtld_verify_object_versions(Obj_Entry *obj)
5669 {
5670     const Elf_Verneed *vn;
5671     const Elf_Verdef  *vd;
5672     const Elf_Verdaux *vda;
5673     const Elf_Vernaux *vna;
5674     const Obj_Entry *depobj;
5675     int maxvernum, vernum;
5676 
5677     if (obj->ver_checked)
5678 	return (0);
5679     obj->ver_checked = true;
5680 
5681     maxvernum = 0;
5682     /*
5683      * Walk over defined and required version records and figure out
5684      * max index used by any of them. Do very basic sanity checking
5685      * while there.
5686      */
5687     vn = obj->verneed;
5688     while (vn != NULL) {
5689 	if (vn->vn_version != VER_NEED_CURRENT) {
5690 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5691 		obj->path, vn->vn_version);
5692 	    return (-1);
5693 	}
5694 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5695 	for (;;) {
5696 	    vernum = VER_NEED_IDX(vna->vna_other);
5697 	    if (vernum > maxvernum)
5698 		maxvernum = vernum;
5699 	    if (vna->vna_next == 0)
5700 		 break;
5701 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5702 	}
5703 	if (vn->vn_next == 0)
5704 	    break;
5705 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5706     }
5707 
5708     vd = obj->verdef;
5709     while (vd != NULL) {
5710 	if (vd->vd_version != VER_DEF_CURRENT) {
5711 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5712 		obj->path, vd->vd_version);
5713 	    return (-1);
5714 	}
5715 	vernum = VER_DEF_IDX(vd->vd_ndx);
5716 	if (vernum > maxvernum)
5717 		maxvernum = vernum;
5718 	if (vd->vd_next == 0)
5719 	    break;
5720 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5721     }
5722 
5723     if (maxvernum == 0)
5724 	return (0);
5725 
5726     /*
5727      * Store version information in array indexable by version index.
5728      * Verify that object version requirements are satisfied along the
5729      * way.
5730      */
5731     obj->vernum = maxvernum + 1;
5732     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5733 
5734     vd = obj->verdef;
5735     while (vd != NULL) {
5736 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5737 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5738 	    assert(vernum <= maxvernum);
5739 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5740 	    obj->vertab[vernum].hash = vd->vd_hash;
5741 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5742 	    obj->vertab[vernum].file = NULL;
5743 	    obj->vertab[vernum].flags = 0;
5744 	}
5745 	if (vd->vd_next == 0)
5746 	    break;
5747 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5748     }
5749 
5750     vn = obj->verneed;
5751     while (vn != NULL) {
5752 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5753 	if (depobj == NULL)
5754 	    return (-1);
5755 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5756 	for (;;) {
5757 	    if (check_object_provided_version(obj, depobj, vna))
5758 		return (-1);
5759 	    vernum = VER_NEED_IDX(vna->vna_other);
5760 	    assert(vernum <= maxvernum);
5761 	    obj->vertab[vernum].hash = vna->vna_hash;
5762 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5763 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5764 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5765 		VER_INFO_HIDDEN : 0;
5766 	    if (vna->vna_next == 0)
5767 		 break;
5768 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5769 	}
5770 	if (vn->vn_next == 0)
5771 	    break;
5772 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5773     }
5774     return (0);
5775 }
5776 
5777 static int
5778 rtld_verify_versions(const Objlist *objlist)
5779 {
5780     Objlist_Entry *entry;
5781     int rc;
5782 
5783     rc = 0;
5784     STAILQ_FOREACH(entry, objlist, link) {
5785 	/*
5786 	 * Skip dummy objects or objects that have their version requirements
5787 	 * already checked.
5788 	 */
5789 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5790 	    continue;
5791 	if (rtld_verify_object_versions(entry->obj) == -1) {
5792 	    rc = -1;
5793 	    if (ld_tracing == NULL)
5794 		break;
5795 	}
5796     }
5797     if (rc == 0 || ld_tracing != NULL)
5798     	rc = rtld_verify_object_versions(&obj_rtld);
5799     return (rc);
5800 }
5801 
5802 const Ver_Entry *
5803 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5804 {
5805     Elf_Versym vernum;
5806 
5807     if (obj->vertab) {
5808 	vernum = VER_NDX(obj->versyms[symnum]);
5809 	if (vernum >= obj->vernum) {
5810 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5811 		obj->path, obj->strtab + symnum, vernum);
5812 	} else if (obj->vertab[vernum].hash != 0) {
5813 	    return (&obj->vertab[vernum]);
5814 	}
5815     }
5816     return (NULL);
5817 }
5818 
5819 int
5820 _rtld_get_stack_prot(void)
5821 {
5822 
5823 	return (stack_prot);
5824 }
5825 
5826 int
5827 _rtld_is_dlopened(void *arg)
5828 {
5829 	Obj_Entry *obj;
5830 	RtldLockState lockstate;
5831 	int res;
5832 
5833 	rlock_acquire(rtld_bind_lock, &lockstate);
5834 	obj = dlcheck(arg);
5835 	if (obj == NULL)
5836 		obj = obj_from_addr(arg);
5837 	if (obj == NULL) {
5838 		_rtld_error("No shared object contains address");
5839 		lock_release(rtld_bind_lock, &lockstate);
5840 		return (-1);
5841 	}
5842 	res = obj->dlopened ? 1 : 0;
5843 	lock_release(rtld_bind_lock, &lockstate);
5844 	return (res);
5845 }
5846 
5847 static int
5848 obj_remap_relro(Obj_Entry *obj, int prot)
5849 {
5850 
5851 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5852 	    prot) == -1) {
5853 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5854 		    obj->path, prot, rtld_strerror(errno));
5855 		return (-1);
5856 	}
5857 	return (0);
5858 }
5859 
5860 static int
5861 obj_disable_relro(Obj_Entry *obj)
5862 {
5863 
5864 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5865 }
5866 
5867 static int
5868 obj_enforce_relro(Obj_Entry *obj)
5869 {
5870 
5871 	return (obj_remap_relro(obj, PROT_READ));
5872 }
5873 
5874 static void
5875 map_stacks_exec(RtldLockState *lockstate)
5876 {
5877 	void (*thr_map_stacks_exec)(void);
5878 
5879 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5880 		return;
5881 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5882 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5883 	if (thr_map_stacks_exec != NULL) {
5884 		stack_prot |= PROT_EXEC;
5885 		thr_map_stacks_exec();
5886 	}
5887 }
5888 
5889 static void
5890 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5891 {
5892 	Objlist_Entry *elm;
5893 	Obj_Entry *obj;
5894 	void (*distrib)(size_t, void *, size_t, size_t);
5895 
5896 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5897 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5898 	if (distrib == NULL)
5899 		return;
5900 	STAILQ_FOREACH(elm, list, link) {
5901 		obj = elm->obj;
5902 		if (obj->marker || !obj->tls_static || obj->static_tls_copied)
5903 			continue;
5904 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5905 		    obj->tlssize);
5906 		obj->static_tls_copied = true;
5907 	}
5908 }
5909 
5910 void
5911 symlook_init(SymLook *dst, const char *name)
5912 {
5913 
5914 	bzero(dst, sizeof(*dst));
5915 	dst->name = name;
5916 	dst->hash = elf_hash(name);
5917 	dst->hash_gnu = gnu_hash(name);
5918 }
5919 
5920 static void
5921 symlook_init_from_req(SymLook *dst, const SymLook *src)
5922 {
5923 
5924 	dst->name = src->name;
5925 	dst->hash = src->hash;
5926 	dst->hash_gnu = src->hash_gnu;
5927 	dst->ventry = src->ventry;
5928 	dst->flags = src->flags;
5929 	dst->defobj_out = NULL;
5930 	dst->sym_out = NULL;
5931 	dst->lockstate = src->lockstate;
5932 }
5933 
5934 static int
5935 open_binary_fd(const char *argv0, bool search_in_path,
5936     const char **binpath_res)
5937 {
5938 	char *binpath, *pathenv, *pe, *res1;
5939 	const char *res;
5940 	int fd;
5941 
5942 	binpath = NULL;
5943 	res = NULL;
5944 	if (search_in_path && strchr(argv0, '/') == NULL) {
5945 		binpath = xmalloc(PATH_MAX);
5946 		pathenv = getenv("PATH");
5947 		if (pathenv == NULL) {
5948 			_rtld_error("-p and no PATH environment variable");
5949 			rtld_die();
5950 		}
5951 		pathenv = strdup(pathenv);
5952 		if (pathenv == NULL) {
5953 			_rtld_error("Cannot allocate memory");
5954 			rtld_die();
5955 		}
5956 		fd = -1;
5957 		errno = ENOENT;
5958 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5959 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5960 				continue;
5961 			if (binpath[0] != '\0' &&
5962 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
5963 				continue;
5964 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
5965 				continue;
5966 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5967 			if (fd != -1 || errno != ENOENT) {
5968 				res = binpath;
5969 				break;
5970 			}
5971 		}
5972 		free(pathenv);
5973 	} else {
5974 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5975 		res = argv0;
5976 	}
5977 
5978 	if (fd == -1) {
5979 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5980 		rtld_die();
5981 	}
5982 	if (res != NULL && res[0] != '/') {
5983 		res1 = xmalloc(PATH_MAX);
5984 		if (realpath(res, res1) != NULL) {
5985 			if (res != argv0)
5986 				free(__DECONST(char *, res));
5987 			res = res1;
5988 		} else {
5989 			free(res1);
5990 		}
5991 	}
5992 	*binpath_res = res;
5993 	return (fd);
5994 }
5995 
5996 /*
5997  * Parse a set of command-line arguments.
5998  */
5999 static int
6000 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
6001     const char **argv0, bool *dir_ignore)
6002 {
6003 	const char *arg;
6004 	char machine[64];
6005 	size_t sz;
6006 	int arglen, fd, i, j, mib[2];
6007 	char opt;
6008 	bool seen_b, seen_f;
6009 
6010 	dbg("Parsing command-line arguments");
6011 	*use_pathp = false;
6012 	*fdp = -1;
6013 	*dir_ignore = false;
6014 	seen_b = seen_f = false;
6015 
6016 	for (i = 1; i < argc; i++ ) {
6017 		arg = argv[i];
6018 		dbg("argv[%d]: '%s'", i, arg);
6019 
6020 		/*
6021 		 * rtld arguments end with an explicit "--" or with the first
6022 		 * non-prefixed argument.
6023 		 */
6024 		if (strcmp(arg, "--") == 0) {
6025 			i++;
6026 			break;
6027 		}
6028 		if (arg[0] != '-')
6029 			break;
6030 
6031 		/*
6032 		 * All other arguments are single-character options that can
6033 		 * be combined, so we need to search through `arg` for them.
6034 		 */
6035 		arglen = strlen(arg);
6036 		for (j = 1; j < arglen; j++) {
6037 			opt = arg[j];
6038 			if (opt == 'h') {
6039 				print_usage(argv[0]);
6040 				_exit(0);
6041 			} else if (opt == 'b') {
6042 				if (seen_f) {
6043 					_rtld_error("Both -b and -f specified");
6044 					rtld_die();
6045 				}
6046 				if (j != arglen - 1) {
6047 					_rtld_error("Invalid options: %s", arg);
6048 					rtld_die();
6049 				}
6050 				i++;
6051 				*argv0 = argv[i];
6052 				seen_b = true;
6053 				break;
6054 			} else if (opt == 'd') {
6055 				*dir_ignore = true;
6056 			} else if (opt == 'f') {
6057 				if (seen_b) {
6058 					_rtld_error("Both -b and -f specified");
6059 					rtld_die();
6060 				}
6061 
6062 				/*
6063 				 * -f XX can be used to specify a
6064 				 * descriptor for the binary named at
6065 				 * the command line (i.e., the later
6066 				 * argument will specify the process
6067 				 * name but the descriptor is what
6068 				 * will actually be executed).
6069 				 *
6070 				 * -f must be the last option in the
6071 				 * group, e.g., -abcf <fd>.
6072 				 */
6073 				if (j != arglen - 1) {
6074 					_rtld_error("Invalid options: %s", arg);
6075 					rtld_die();
6076 				}
6077 				i++;
6078 				fd = parse_integer(argv[i]);
6079 				if (fd == -1) {
6080 					_rtld_error(
6081 					    "Invalid file descriptor: '%s'",
6082 					    argv[i]);
6083 					rtld_die();
6084 				}
6085 				*fdp = fd;
6086 				seen_f = true;
6087 				break;
6088 			} else if (opt == 'p') {
6089 				*use_pathp = true;
6090 			} else if (opt == 'u') {
6091 				trust = false;
6092 			} else if (opt == 'v') {
6093 				machine[0] = '\0';
6094 				mib[0] = CTL_HW;
6095 				mib[1] = HW_MACHINE;
6096 				sz = sizeof(machine);
6097 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6098 				ld_elf_hints_path = ld_get_env_var(
6099 				    LD_ELF_HINTS_PATH);
6100 				set_ld_elf_hints_path();
6101 				rtld_printf(
6102 				    "FreeBSD ld-elf.so.1 %s\n"
6103 				    "FreeBSD_version %d\n"
6104 				    "Default lib path %s\n"
6105 				    "Hints lib path %s\n"
6106 				    "Env prefix %s\n"
6107 				    "Default hint file %s\n"
6108 				    "Hint file %s\n"
6109 				    "libmap file %s\n",
6110 				    machine,
6111 				    __FreeBSD_version, ld_standard_library_path,
6112 				    gethints(false),
6113 				    ld_env_prefix, ld_elf_hints_default,
6114 				    ld_elf_hints_path,
6115 				    ld_path_libmap_conf);
6116 				_exit(0);
6117 			} else {
6118 				_rtld_error("Invalid argument: '%s'", arg);
6119 				print_usage(argv[0]);
6120 				rtld_die();
6121 			}
6122 		}
6123 	}
6124 
6125 	if (!seen_b)
6126 		*argv0 = argv[i];
6127 	return (i);
6128 }
6129 
6130 /*
6131  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6132  */
6133 static int
6134 parse_integer(const char *str)
6135 {
6136 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
6137 	const char *orig;
6138 	int n;
6139 	char c;
6140 
6141 	orig = str;
6142 	n = 0;
6143 	for (c = *str; c != '\0'; c = *++str) {
6144 		if (c < '0' || c > '9')
6145 			return (-1);
6146 
6147 		n *= RADIX;
6148 		n += c - '0';
6149 	}
6150 
6151 	/* Make sure we actually parsed something. */
6152 	if (str == orig)
6153 		return (-1);
6154 	return (n);
6155 }
6156 
6157 static void
6158 print_usage(const char *argv0)
6159 {
6160 
6161 	rtld_printf(
6162 	    "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6163 	    "\n"
6164 	    "Options:\n"
6165 	    "  -h        Display this help message\n"
6166 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
6167 	    "  -d        Ignore lack of exec permissions for the binary\n"
6168 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
6169 	    "  -p        Search in PATH for named binary\n"
6170 	    "  -u        Ignore LD_ environment variables\n"
6171 	    "  -v        Display identification information\n"
6172 	    "  --        End of RTLD options\n"
6173 	    "  <binary>  Name of process to execute\n"
6174 	    "  <args>    Arguments to the executed process\n", argv0);
6175 }
6176 
6177 #define	AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6178 static const struct auxfmt {
6179 	const char *name;
6180 	const char *fmt;
6181 } auxfmts[] = {
6182 	AUXFMT(AT_NULL, NULL),
6183 	AUXFMT(AT_IGNORE, NULL),
6184 	AUXFMT(AT_EXECFD, "%ld"),
6185 	AUXFMT(AT_PHDR, "%p"),
6186 	AUXFMT(AT_PHENT, "%lu"),
6187 	AUXFMT(AT_PHNUM, "%lu"),
6188 	AUXFMT(AT_PAGESZ, "%lu"),
6189 	AUXFMT(AT_BASE, "%#lx"),
6190 	AUXFMT(AT_FLAGS, "%#lx"),
6191 	AUXFMT(AT_ENTRY, "%p"),
6192 	AUXFMT(AT_NOTELF, NULL),
6193 	AUXFMT(AT_UID, "%ld"),
6194 	AUXFMT(AT_EUID, "%ld"),
6195 	AUXFMT(AT_GID, "%ld"),
6196 	AUXFMT(AT_EGID, "%ld"),
6197 	AUXFMT(AT_EXECPATH, "%s"),
6198 	AUXFMT(AT_CANARY, "%p"),
6199 	AUXFMT(AT_CANARYLEN, "%lu"),
6200 	AUXFMT(AT_OSRELDATE, "%lu"),
6201 	AUXFMT(AT_NCPUS, "%lu"),
6202 	AUXFMT(AT_PAGESIZES, "%p"),
6203 	AUXFMT(AT_PAGESIZESLEN, "%lu"),
6204 	AUXFMT(AT_TIMEKEEP, "%p"),
6205 	AUXFMT(AT_STACKPROT, "%#lx"),
6206 	AUXFMT(AT_EHDRFLAGS, "%#lx"),
6207 	AUXFMT(AT_HWCAP, "%#lx"),
6208 	AUXFMT(AT_HWCAP2, "%#lx"),
6209 	AUXFMT(AT_BSDFLAGS, "%#lx"),
6210 	AUXFMT(AT_ARGC, "%lu"),
6211 	AUXFMT(AT_ARGV, "%p"),
6212 	AUXFMT(AT_ENVC, "%p"),
6213 	AUXFMT(AT_ENVV, "%p"),
6214 	AUXFMT(AT_PS_STRINGS, "%p"),
6215 	AUXFMT(AT_FXRNG, "%p"),
6216 	AUXFMT(AT_KPRELOAD, "%p"),
6217 	AUXFMT(AT_USRSTACKBASE, "%#lx"),
6218 	AUXFMT(AT_USRSTACKLIM, "%#lx"),
6219 };
6220 
6221 static bool
6222 is_ptr_fmt(const char *fmt)
6223 {
6224 	char last;
6225 
6226 	last = fmt[strlen(fmt) - 1];
6227 	return (last == 'p' || last == 's');
6228 }
6229 
6230 static void
6231 dump_auxv(Elf_Auxinfo **aux_info)
6232 {
6233 	Elf_Auxinfo *auxp;
6234 	const struct auxfmt *fmt;
6235 	int i;
6236 
6237 	for (i = 0; i < AT_COUNT; i++) {
6238 		auxp = aux_info[i];
6239 		if (auxp == NULL)
6240 			continue;
6241 		fmt = &auxfmts[i];
6242 		if (fmt->fmt == NULL)
6243 			continue;
6244 		rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6245 		if (is_ptr_fmt(fmt->fmt)) {
6246 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6247 			    auxp->a_un.a_ptr);
6248 		} else {
6249 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6250 			    auxp->a_un.a_val);
6251 		}
6252 		rtld_fdprintf(STDOUT_FILENO, "\n");
6253 	}
6254 }
6255 
6256 /*
6257  * Overrides for libc_pic-provided functions.
6258  */
6259 
6260 int
6261 __getosreldate(void)
6262 {
6263 	size_t len;
6264 	int oid[2];
6265 	int error, osrel;
6266 
6267 	if (osreldate != 0)
6268 		return (osreldate);
6269 
6270 	oid[0] = CTL_KERN;
6271 	oid[1] = KERN_OSRELDATE;
6272 	osrel = 0;
6273 	len = sizeof(osrel);
6274 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6275 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
6276 		osreldate = osrel;
6277 	return (osreldate);
6278 }
6279 const char *
6280 rtld_strerror(int errnum)
6281 {
6282 
6283 	if (errnum < 0 || errnum >= sys_nerr)
6284 		return ("Unknown error");
6285 	return (sys_errlist[errnum]);
6286 }
6287 
6288 char *
6289 getenv(const char *name)
6290 {
6291 	return (__DECONST(char *, rtld_get_env_val(environ, name,
6292 	    strlen(name))));
6293 }
6294 
6295 /* malloc */
6296 void *
6297 malloc(size_t nbytes)
6298 {
6299 
6300 	return (__crt_malloc(nbytes));
6301 }
6302 
6303 void *
6304 calloc(size_t num, size_t size)
6305 {
6306 
6307 	return (__crt_calloc(num, size));
6308 }
6309 
6310 void
6311 free(void *cp)
6312 {
6313 
6314 	__crt_free(cp);
6315 }
6316 
6317 void *
6318 realloc(void *cp, size_t nbytes)
6319 {
6320 
6321 	return (__crt_realloc(cp, nbytes));
6322 }
6323 
6324 extern int _rtld_version__FreeBSD_version __exported;
6325 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6326 
6327 extern char _rtld_version_laddr_offset __exported;
6328 char _rtld_version_laddr_offset;
6329 
6330 extern char _rtld_version_dlpi_tls_data __exported;
6331 char _rtld_version_dlpi_tls_data;
6332