xref: /freebsd/lib/msun/src/k_rem_pio2.c (revision 7c43148a974877188a930e4078a164f83da8e652)
1 
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #include <sys/cdefs.h>
14 /*
15  * __kernel_rem_pio2(x,y,e0,nx,prec)
16  * double x[],y[]; int e0,nx,prec;
17  *
18  * __kernel_rem_pio2 return the last three digits of N with
19  *		y = x - N*pi/2
20  * so that |y| < pi/2.
21  *
22  * The method is to compute the integer (mod 8) and fraction parts of
23  * (2/pi)*x without doing the full multiplication. In general we
24  * skip the part of the product that are known to be a huge integer (
25  * more accurately, = 0 mod 8 ). Thus the number of operations are
26  * independent of the exponent of the input.
27  *
28  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
29  *
30  * Input parameters:
31  * 	x[]	The input value (must be positive) is broken into nx
32  *		pieces of 24-bit integers in double precision format.
33  *		x[i] will be the i-th 24 bit of x. The scaled exponent
34  *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
35  *		match x's up to 24 bits.
36  *
37  *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
38  *			e0 = ilogb(z)-23
39  *			z  = scalbn(z,-e0)
40  *		for i = 0,1,2
41  *			x[i] = floor(z)
42  *			z    = (z-x[i])*2**24
43  *
44  *
45  *	y[]	output result in an array of double precision numbers.
46  *		The dimension of y[] is:
47  *			24-bit  precision	1
48  *			53-bit  precision	2
49  *			64-bit  precision	2
50  *			113-bit precision	3
51  *		The actual value is the sum of them. Thus for 113-bit
52  *		precision, one may have to do something like:
53  *
54  *		long double t,w,r_head, r_tail;
55  *		t = (long double)y[2] + (long double)y[1];
56  *		w = (long double)y[0];
57  *		r_head = t+w;
58  *		r_tail = w - (r_head - t);
59  *
60  *	e0	The exponent of x[0]. Must be <= 16360 or you need to
61  *              expand the ipio2 table.
62  *
63  *	nx	dimension of x[]
64  *
65  *  	prec	an integer indicating the precision:
66  *			0	24  bits (single)
67  *			1	53  bits (double)
68  *			2	64  bits (extended)
69  *			3	113 bits (quad)
70  *
71  * External function:
72  *	double scalbn(), floor();
73  *
74  *
75  * Here is the description of some local variables:
76  *
77  * 	jk	jk+1 is the initial number of terms of ipio2[] needed
78  *		in the computation. The minimum and recommended value
79  *		for jk is 3,4,4,6 for single, double, extended, and quad.
80  *		jk+1 must be 2 larger than you might expect so that our
81  *		recomputation test works. (Up to 24 bits in the integer
82  *		part (the 24 bits of it that we compute) and 23 bits in
83  *		the fraction part may be lost to cancellation before we
84  *		recompute.)
85  *
86  * 	jz	local integer variable indicating the number of
87  *		terms of ipio2[] used.
88  *
89  *	jx	nx - 1
90  *
91  *	jv	index for pointing to the suitable ipio2[] for the
92  *		computation. In general, we want
93  *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
94  *		is an integer. Thus
95  *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
96  *		Hence jv = max(0,(e0-3)/24).
97  *
98  *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
99  *
100  * 	q[]	double array with integral value, representing the
101  *		24-bits chunk of the product of x and 2/pi.
102  *
103  *	q0	the corresponding exponent of q[0]. Note that the
104  *		exponent for q[i] would be q0-24*i.
105  *
106  *	PIo2[]	double precision array, obtained by cutting pi/2
107  *		into 24 bits chunks.
108  *
109  *	f[]	ipio2[] in floating point
110  *
111  *	iq[]	integer array by breaking up q[] in 24-bits chunk.
112  *
113  *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
114  *
115  *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
116  *		it also indicates the *sign* of the result.
117  *
118  */
119 
120 
121 /*
122  * Constants:
123  * The hexadecimal values are the intended ones for the following
124  * constants. The decimal values may be used, provided that the
125  * compiler will convert from decimal to binary accurately enough
126  * to produce the hexadecimal values shown.
127  */
128 
129 #include <float.h>
130 
131 #include "math.h"
132 #include "math_private.h"
133 
134 static const int init_jk[] = {3,4,4,6}; /* initial value for jk */
135 
136 /*
137  * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
138  *
139  *		integer array, contains the (24*i)-th to (24*i+23)-th
140  *		bit of 2/pi after binary point. The corresponding
141  *		floating value is
142  *
143  *			ipio2[i] * 2^(-24(i+1)).
144  *
145  * NB: This table must have at least (e0-3)/24 + jk terms.
146  *     For quad precision (e0 <= 16360, jk = 6), this is 686.
147  */
148 static const int32_t ipio2[] = {
149 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
150 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
151 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
152 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
153 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
154 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
155 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
156 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
157 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
158 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
159 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
160 
161 #if LDBL_MAX_EXP > 1024
162 #if LDBL_MAX_EXP > 16384
163 #error "ipio2 table needs to be expanded"
164 #endif
165 0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
166 0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2,
167 0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35,
168 0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
169 0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C,
170 0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4,
171 0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
172 0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7,
173 0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19,
174 0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
175 0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16,
176 0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6,
177 0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
178 0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48,
179 0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3,
180 0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
181 0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55,
182 0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612,
183 0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
184 0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC,
185 0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B,
186 0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
187 0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4,
188 0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB,
189 0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
190 0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C,
191 0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F,
192 0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
193 0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437,
194 0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B,
195 0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
196 0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD,
197 0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3,
198 0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
199 0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717,
200 0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F,
201 0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
202 0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB,
203 0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51,
204 0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
205 0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C,
206 0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6,
207 0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
208 0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED,
209 0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328,
210 0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
211 0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0,
212 0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B,
213 0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
214 0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3,
215 0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F,
216 0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
217 0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B,
218 0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4,
219 0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
220 0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31,
221 0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30,
222 0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
223 0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E,
224 0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1,
225 0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
226 0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4,
227 0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08,
228 0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
229 0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9,
230 0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4,
231 0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
232 0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C,
233 0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0,
234 0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
235 0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0,
236 0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC,
237 0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
238 0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893,
239 0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7,
240 0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
241 0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F,
242 0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4,
243 0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
244 0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B,
245 0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2,
246 0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
247 0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E,
248 0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569,
249 0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
250 0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9,
251 0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D,
252 0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
253 0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855,
254 0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569,
255 0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
256 0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE,
257 0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41,
258 0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
259 0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F,
260 0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110,
261 0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
262 0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365,
263 0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A,
264 0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
265 0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5,
266 0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616,
267 0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
268 0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
269 #endif
270 
271 };
272 
273 static const double PIo2[] = {
274   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
275   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
276   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
277   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
278   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
279   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
280   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
281   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
282 };
283 
284 static const double
285 zero   = 0.0,
286 one    = 1.0,
287 two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
288 twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
289 
290 int
291 __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec)
292 {
293 	int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
294 	double z,fw,f[20],fq[20],q[20];
295 
296     /* initialize jk*/
297 	jk = init_jk[prec];
298 	jp = jk;
299 
300     /* determine jx,jv,q0, note that 3>q0 */
301 	jx =  nx-1;
302 	jv = (e0-3)/24; if(jv<0) jv=0;
303 	q0 =  e0-24*(jv+1);
304 
305     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
306 	j = jv-jx; m = jx+jk;
307 	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
308 
309     /* compute q[0],q[1],...q[jk] */
310 	for (i=0;i<=jk;i++) {
311 	    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
312 	}
313 
314 	jz = jk;
315 recompute:
316     /* distill q[] into iq[] reversingly */
317 	for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
318 	    fw    =  (double)((int32_t)(twon24* z));
319 	    iq[i] =  (int32_t)(z-two24*fw);
320 	    z     =  q[j-1]+fw;
321 	}
322 
323     /* compute n */
324 	z  = scalbn(z,q0);		/* actual value of z */
325 	z -= 8.0*floor(z*0.125);		/* trim off integer >= 8 */
326 	n  = (int32_t) z;
327 	z -= (double)n;
328 	ih = 0;
329 	if(q0>0) {	/* need iq[jz-1] to determine n */
330 	    i  = (iq[jz-1]>>(24-q0)); n += i;
331 	    iq[jz-1] -= i<<(24-q0);
332 	    ih = iq[jz-1]>>(23-q0);
333 	}
334 	else if(q0==0) ih = iq[jz-1]>>23;
335 	else if(z>=0.5) ih=2;
336 
337 	if(ih>0) {	/* q > 0.5 */
338 	    n += 1; carry = 0;
339 	    for(i=0;i<jz ;i++) {	/* compute 1-q */
340 		j = iq[i];
341 		if(carry==0) {
342 		    if(j!=0) {
343 			carry = 1; iq[i] = 0x1000000- j;
344 		    }
345 		} else  iq[i] = 0xffffff - j;
346 	    }
347 	    if(q0>0) {		/* rare case: chance is 1 in 12 */
348 	        switch(q0) {
349 	        case 1:
350 	    	   iq[jz-1] &= 0x7fffff; break;
351 	    	case 2:
352 	    	   iq[jz-1] &= 0x3fffff; break;
353 	        }
354 	    }
355 	    if(ih==2) {
356 		z = one - z;
357 		if(carry!=0) z -= scalbn(one,q0);
358 	    }
359 	}
360 
361     /* check if recomputation is needed */
362 	if(z==zero) {
363 	    j = 0;
364 	    for (i=jz-1;i>=jk;i--) j |= iq[i];
365 	    if(j==0) { /* need recomputation */
366 		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
367 
368 		for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
369 		    f[jx+i] = (double) ipio2[jv+i];
370 		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
371 		    q[i] = fw;
372 		}
373 		jz += k;
374 		goto recompute;
375 	    }
376 	}
377 
378     /* chop off zero terms */
379 	if(z==0.0) {
380 	    jz -= 1; q0 -= 24;
381 	    while(iq[jz]==0) { jz--; q0-=24;}
382 	} else { /* break z into 24-bit if necessary */
383 	    z = scalbn(z,-q0);
384 	    if(z>=two24) {
385 		fw = (double)((int32_t)(twon24*z));
386 		iq[jz] = (int32_t)(z-two24*fw);
387 		jz += 1; q0 += 24;
388 		iq[jz] = (int32_t) fw;
389 	    } else iq[jz] = (int32_t) z ;
390 	}
391 
392     /* convert integer "bit" chunk to floating-point value */
393 	fw = scalbn(one,q0);
394 	for(i=jz;i>=0;i--) {
395 	    q[i] = fw*(double)iq[i]; fw*=twon24;
396 	}
397 
398     /* compute PIo2[0,...,jp]*q[jz,...,0] */
399 	for(i=jz;i>=0;i--) {
400 	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
401 	    fq[jz-i] = fw;
402 	}
403 
404     /* compress fq[] into y[] */
405 	switch(prec) {
406 	    case 0:
407 		fw = 0.0;
408 		for (i=jz;i>=0;i--) fw += fq[i];
409 		y[0] = (ih==0)? fw: -fw;
410 		break;
411 	    case 1:
412 	    case 2:
413 		fw = 0.0;
414 		for (i=jz;i>=0;i--) fw += fq[i];
415 		STRICT_ASSIGN(double,fw,fw);
416 		y[0] = (ih==0)? fw: -fw;
417 		fw = fq[0]-fw;
418 		for (i=1;i<=jz;i++) fw += fq[i];
419 		y[1] = (ih==0)? fw: -fw;
420 		break;
421 	    case 3:	/* painful */
422 		for (i=jz;i>0;i--) {
423 		    fw      = fq[i-1]+fq[i];
424 		    fq[i]  += fq[i-1]-fw;
425 		    fq[i-1] = fw;
426 		}
427 		for (i=jz;i>1;i--) {
428 		    fw      = fq[i-1]+fq[i];
429 		    fq[i]  += fq[i-1]-fw;
430 		    fq[i-1] = fw;
431 		}
432 		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
433 		if(ih==0) {
434 		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
435 		} else {
436 		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
437 		}
438 	}
439 	return n&7;
440 }
441