1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/sysctl.h> 36 #include <sys/ioctl.h> 37 #include <sys/linker.h> 38 #include <sys/mman.h> 39 #include <sys/module.h> 40 #include <sys/_iovec.h> 41 #include <sys/cpuset.h> 42 43 #include <x86/segments.h> 44 #include <machine/specialreg.h> 45 46 #include <errno.h> 47 #include <stdbool.h> 48 #include <stdio.h> 49 #include <stdlib.h> 50 #include <assert.h> 51 #include <string.h> 52 #include <fcntl.h> 53 #include <unistd.h> 54 55 #include <libutil.h> 56 57 #include <vm/vm.h> 58 #include <machine/vmm.h> 59 #include <machine/vmm_dev.h> 60 #include <machine/vmm_snapshot.h> 61 62 #include "vmmapi.h" 63 64 #define MB (1024 * 1024UL) 65 #define GB (1024 * 1024 * 1024UL) 66 67 /* 68 * Size of the guard region before and after the virtual address space 69 * mapping the guest physical memory. This must be a multiple of the 70 * superpage size for performance reasons. 71 */ 72 #define VM_MMAP_GUARD_SIZE (4 * MB) 73 74 #define PROT_RW (PROT_READ | PROT_WRITE) 75 #define PROT_ALL (PROT_READ | PROT_WRITE | PROT_EXEC) 76 77 struct vmctx { 78 int fd; 79 uint32_t lowmem_limit; 80 int memflags; 81 size_t lowmem; 82 size_t highmem; 83 char *baseaddr; 84 char *name; 85 }; 86 87 #define CREATE(x) sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x))) 88 #define DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x))) 89 90 static int 91 vm_device_open(const char *name) 92 { 93 int fd, len; 94 char *vmfile; 95 96 len = strlen("/dev/vmm/") + strlen(name) + 1; 97 vmfile = malloc(len); 98 assert(vmfile != NULL); 99 snprintf(vmfile, len, "/dev/vmm/%s", name); 100 101 /* Open the device file */ 102 fd = open(vmfile, O_RDWR, 0); 103 104 free(vmfile); 105 return (fd); 106 } 107 108 int 109 vm_create(const char *name) 110 { 111 /* Try to load vmm(4) module before creating a guest. */ 112 if (modfind("vmm") < 0) 113 kldload("vmm"); 114 return (CREATE(name)); 115 } 116 117 struct vmctx * 118 vm_open(const char *name) 119 { 120 struct vmctx *vm; 121 int saved_errno; 122 123 vm = malloc(sizeof(struct vmctx) + strlen(name) + 1); 124 assert(vm != NULL); 125 126 vm->fd = -1; 127 vm->memflags = 0; 128 vm->lowmem_limit = 3 * GB; 129 vm->name = (char *)(vm + 1); 130 strcpy(vm->name, name); 131 132 if ((vm->fd = vm_device_open(vm->name)) < 0) 133 goto err; 134 135 return (vm); 136 err: 137 saved_errno = errno; 138 free(vm); 139 errno = saved_errno; 140 return (NULL); 141 } 142 143 void 144 vm_destroy(struct vmctx *vm) 145 { 146 assert(vm != NULL); 147 148 if (vm->fd >= 0) 149 close(vm->fd); 150 DESTROY(vm->name); 151 152 free(vm); 153 } 154 155 int 156 vm_parse_memsize(const char *opt, size_t *ret_memsize) 157 { 158 char *endptr; 159 size_t optval; 160 int error; 161 162 optval = strtoul(opt, &endptr, 0); 163 if (*opt != '\0' && *endptr == '\0') { 164 /* 165 * For the sake of backward compatibility if the memory size 166 * specified on the command line is less than a megabyte then 167 * it is interpreted as being in units of MB. 168 */ 169 if (optval < MB) 170 optval *= MB; 171 *ret_memsize = optval; 172 error = 0; 173 } else 174 error = expand_number(opt, ret_memsize); 175 176 return (error); 177 } 178 179 uint32_t 180 vm_get_lowmem_limit(struct vmctx *ctx) 181 { 182 183 return (ctx->lowmem_limit); 184 } 185 186 void 187 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit) 188 { 189 190 ctx->lowmem_limit = limit; 191 } 192 193 void 194 vm_set_memflags(struct vmctx *ctx, int flags) 195 { 196 197 ctx->memflags = flags; 198 } 199 200 int 201 vm_get_memflags(struct vmctx *ctx) 202 { 203 204 return (ctx->memflags); 205 } 206 207 /* 208 * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len). 209 */ 210 int 211 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off, 212 size_t len, int prot) 213 { 214 struct vm_memmap memmap; 215 int error, flags; 216 217 memmap.gpa = gpa; 218 memmap.segid = segid; 219 memmap.segoff = off; 220 memmap.len = len; 221 memmap.prot = prot; 222 memmap.flags = 0; 223 224 if (ctx->memflags & VM_MEM_F_WIRED) 225 memmap.flags |= VM_MEMMAP_F_WIRED; 226 227 /* 228 * If this mapping already exists then don't create it again. This 229 * is the common case for SYSMEM mappings created by bhyveload(8). 230 */ 231 error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags); 232 if (error == 0 && gpa == memmap.gpa) { 233 if (segid != memmap.segid || off != memmap.segoff || 234 prot != memmap.prot || flags != memmap.flags) { 235 errno = EEXIST; 236 return (-1); 237 } else { 238 return (0); 239 } 240 } 241 242 error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap); 243 return (error); 244 } 245 246 int 247 vm_get_guestmem_from_ctx(struct vmctx *ctx, char **guest_baseaddr, 248 size_t *lowmem_size, size_t *highmem_size) 249 { 250 251 *guest_baseaddr = ctx->baseaddr; 252 *lowmem_size = ctx->lowmem; 253 *highmem_size = ctx->highmem; 254 return (0); 255 } 256 257 int 258 vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len) 259 { 260 struct vm_munmap munmap; 261 int error; 262 263 munmap.gpa = gpa; 264 munmap.len = len; 265 266 error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap); 267 return (error); 268 } 269 270 int 271 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid, 272 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 273 { 274 struct vm_memmap memmap; 275 int error; 276 277 bzero(&memmap, sizeof(struct vm_memmap)); 278 memmap.gpa = *gpa; 279 error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap); 280 if (error == 0) { 281 *gpa = memmap.gpa; 282 *segid = memmap.segid; 283 *segoff = memmap.segoff; 284 *len = memmap.len; 285 *prot = memmap.prot; 286 *flags = memmap.flags; 287 } 288 return (error); 289 } 290 291 /* 292 * Return 0 if the segments are identical and non-zero otherwise. 293 * 294 * This is slightly complicated by the fact that only device memory segments 295 * are named. 296 */ 297 static int 298 cmpseg(size_t len, const char *str, size_t len2, const char *str2) 299 { 300 301 if (len == len2) { 302 if ((!str && !str2) || (str && str2 && !strcmp(str, str2))) 303 return (0); 304 } 305 return (-1); 306 } 307 308 static int 309 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name) 310 { 311 struct vm_memseg memseg; 312 size_t n; 313 int error; 314 315 /* 316 * If the memory segment has already been created then just return. 317 * This is the usual case for the SYSMEM segment created by userspace 318 * loaders like bhyveload(8). 319 */ 320 error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name, 321 sizeof(memseg.name)); 322 if (error) 323 return (error); 324 325 if (memseg.len != 0) { 326 if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) { 327 errno = EINVAL; 328 return (-1); 329 } else { 330 return (0); 331 } 332 } 333 334 bzero(&memseg, sizeof(struct vm_memseg)); 335 memseg.segid = segid; 336 memseg.len = len; 337 if (name != NULL) { 338 n = strlcpy(memseg.name, name, sizeof(memseg.name)); 339 if (n >= sizeof(memseg.name)) { 340 errno = ENAMETOOLONG; 341 return (-1); 342 } 343 } 344 345 error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg); 346 return (error); 347 } 348 349 int 350 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf, 351 size_t bufsize) 352 { 353 struct vm_memseg memseg; 354 size_t n; 355 int error; 356 357 memseg.segid = segid; 358 error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg); 359 if (error == 0) { 360 *lenp = memseg.len; 361 n = strlcpy(namebuf, memseg.name, bufsize); 362 if (n >= bufsize) { 363 errno = ENAMETOOLONG; 364 error = -1; 365 } 366 } 367 return (error); 368 } 369 370 static int 371 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base) 372 { 373 char *ptr; 374 int error, flags; 375 376 /* Map 'len' bytes starting at 'gpa' in the guest address space */ 377 error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL); 378 if (error) 379 return (error); 380 381 flags = MAP_SHARED | MAP_FIXED; 382 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 383 flags |= MAP_NOCORE; 384 385 /* mmap into the process address space on the host */ 386 ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa); 387 if (ptr == MAP_FAILED) 388 return (-1); 389 390 return (0); 391 } 392 393 int 394 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms) 395 { 396 size_t objsize, len; 397 vm_paddr_t gpa; 398 char *baseaddr, *ptr; 399 int error; 400 401 assert(vms == VM_MMAP_ALL); 402 403 /* 404 * If 'memsize' cannot fit entirely in the 'lowmem' segment then 405 * create another 'highmem' segment above 4GB for the remainder. 406 */ 407 if (memsize > ctx->lowmem_limit) { 408 ctx->lowmem = ctx->lowmem_limit; 409 ctx->highmem = memsize - ctx->lowmem_limit; 410 objsize = 4*GB + ctx->highmem; 411 } else { 412 ctx->lowmem = memsize; 413 ctx->highmem = 0; 414 objsize = ctx->lowmem; 415 } 416 417 error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL); 418 if (error) 419 return (error); 420 421 /* 422 * Stake out a contiguous region covering the guest physical memory 423 * and the adjoining guard regions. 424 */ 425 len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE; 426 ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0); 427 if (ptr == MAP_FAILED) 428 return (-1); 429 430 baseaddr = ptr + VM_MMAP_GUARD_SIZE; 431 if (ctx->highmem > 0) { 432 gpa = 4*GB; 433 len = ctx->highmem; 434 error = setup_memory_segment(ctx, gpa, len, baseaddr); 435 if (error) 436 return (error); 437 } 438 439 if (ctx->lowmem > 0) { 440 gpa = 0; 441 len = ctx->lowmem; 442 error = setup_memory_segment(ctx, gpa, len, baseaddr); 443 if (error) 444 return (error); 445 } 446 447 ctx->baseaddr = baseaddr; 448 449 return (0); 450 } 451 452 /* 453 * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in 454 * the lowmem or highmem regions. 455 * 456 * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region. 457 * The instruction emulation code depends on this behavior. 458 */ 459 void * 460 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len) 461 { 462 463 if (ctx->lowmem > 0) { 464 if (gaddr < ctx->lowmem && len <= ctx->lowmem && 465 gaddr + len <= ctx->lowmem) 466 return (ctx->baseaddr + gaddr); 467 } 468 469 if (ctx->highmem > 0) { 470 if (gaddr >= 4*GB) { 471 if (gaddr < 4*GB + ctx->highmem && 472 len <= ctx->highmem && 473 gaddr + len <= 4*GB + ctx->highmem) 474 return (ctx->baseaddr + gaddr); 475 } 476 } 477 478 return (NULL); 479 } 480 481 vm_paddr_t 482 vm_rev_map_gpa(struct vmctx *ctx, void *addr) 483 { 484 vm_paddr_t offaddr; 485 486 offaddr = (char *)addr - ctx->baseaddr; 487 488 if (ctx->lowmem > 0) 489 if (offaddr >= 0 && offaddr <= ctx->lowmem) 490 return (offaddr); 491 492 if (ctx->highmem > 0) 493 if (offaddr >= 4*GB && offaddr < 4*GB + ctx->highmem) 494 return (offaddr); 495 496 return ((vm_paddr_t)-1); 497 } 498 499 /* TODO: maximum size for vmname */ 500 int 501 vm_get_name(struct vmctx *ctx, char *buf, size_t max_len) 502 { 503 504 if (strlcpy(buf, ctx->name, max_len) >= max_len) 505 return (EINVAL); 506 return (0); 507 } 508 509 size_t 510 vm_get_lowmem_size(struct vmctx *ctx) 511 { 512 513 return (ctx->lowmem); 514 } 515 516 size_t 517 vm_get_highmem_size(struct vmctx *ctx) 518 { 519 520 return (ctx->highmem); 521 } 522 523 void * 524 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len) 525 { 526 char pathname[MAXPATHLEN]; 527 size_t len2; 528 char *base, *ptr; 529 int fd, error, flags; 530 531 fd = -1; 532 ptr = MAP_FAILED; 533 if (name == NULL || strlen(name) == 0) { 534 errno = EINVAL; 535 goto done; 536 } 537 538 error = vm_alloc_memseg(ctx, segid, len, name); 539 if (error) 540 goto done; 541 542 strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname)); 543 strlcat(pathname, ctx->name, sizeof(pathname)); 544 strlcat(pathname, ".", sizeof(pathname)); 545 strlcat(pathname, name, sizeof(pathname)); 546 547 fd = open(pathname, O_RDWR); 548 if (fd < 0) 549 goto done; 550 551 /* 552 * Stake out a contiguous region covering the device memory and the 553 * adjoining guard regions. 554 */ 555 len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE; 556 base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 557 0); 558 if (base == MAP_FAILED) 559 goto done; 560 561 flags = MAP_SHARED | MAP_FIXED; 562 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 563 flags |= MAP_NOCORE; 564 565 /* mmap the devmem region in the host address space */ 566 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0); 567 done: 568 if (fd >= 0) 569 close(fd); 570 return (ptr); 571 } 572 573 int 574 vm_set_desc(struct vmctx *ctx, int vcpu, int reg, 575 uint64_t base, uint32_t limit, uint32_t access) 576 { 577 int error; 578 struct vm_seg_desc vmsegdesc; 579 580 bzero(&vmsegdesc, sizeof(vmsegdesc)); 581 vmsegdesc.cpuid = vcpu; 582 vmsegdesc.regnum = reg; 583 vmsegdesc.desc.base = base; 584 vmsegdesc.desc.limit = limit; 585 vmsegdesc.desc.access = access; 586 587 error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc); 588 return (error); 589 } 590 591 int 592 vm_get_desc(struct vmctx *ctx, int vcpu, int reg, 593 uint64_t *base, uint32_t *limit, uint32_t *access) 594 { 595 int error; 596 struct vm_seg_desc vmsegdesc; 597 598 bzero(&vmsegdesc, sizeof(vmsegdesc)); 599 vmsegdesc.cpuid = vcpu; 600 vmsegdesc.regnum = reg; 601 602 error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc); 603 if (error == 0) { 604 *base = vmsegdesc.desc.base; 605 *limit = vmsegdesc.desc.limit; 606 *access = vmsegdesc.desc.access; 607 } 608 return (error); 609 } 610 611 int 612 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc) 613 { 614 int error; 615 616 error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit, 617 &seg_desc->access); 618 return (error); 619 } 620 621 int 622 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val) 623 { 624 int error; 625 struct vm_register vmreg; 626 627 bzero(&vmreg, sizeof(vmreg)); 628 vmreg.cpuid = vcpu; 629 vmreg.regnum = reg; 630 vmreg.regval = val; 631 632 error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg); 633 return (error); 634 } 635 636 int 637 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val) 638 { 639 int error; 640 struct vm_register vmreg; 641 642 bzero(&vmreg, sizeof(vmreg)); 643 vmreg.cpuid = vcpu; 644 vmreg.regnum = reg; 645 646 error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg); 647 *ret_val = vmreg.regval; 648 return (error); 649 } 650 651 int 652 vm_set_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 653 const int *regnums, uint64_t *regvals) 654 { 655 int error; 656 struct vm_register_set vmregset; 657 658 bzero(&vmregset, sizeof(vmregset)); 659 vmregset.cpuid = vcpu; 660 vmregset.count = count; 661 vmregset.regnums = regnums; 662 vmregset.regvals = regvals; 663 664 error = ioctl(ctx->fd, VM_SET_REGISTER_SET, &vmregset); 665 return (error); 666 } 667 668 int 669 vm_get_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 670 const int *regnums, uint64_t *regvals) 671 { 672 int error; 673 struct vm_register_set vmregset; 674 675 bzero(&vmregset, sizeof(vmregset)); 676 vmregset.cpuid = vcpu; 677 vmregset.count = count; 678 vmregset.regnums = regnums; 679 vmregset.regvals = regvals; 680 681 error = ioctl(ctx->fd, VM_GET_REGISTER_SET, &vmregset); 682 return (error); 683 } 684 685 int 686 vm_run(struct vmctx *ctx, int vcpu, struct vm_exit *vmexit) 687 { 688 int error; 689 struct vm_run vmrun; 690 691 bzero(&vmrun, sizeof(vmrun)); 692 vmrun.cpuid = vcpu; 693 694 error = ioctl(ctx->fd, VM_RUN, &vmrun); 695 bcopy(&vmrun.vm_exit, vmexit, sizeof(struct vm_exit)); 696 return (error); 697 } 698 699 int 700 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how) 701 { 702 struct vm_suspend vmsuspend; 703 704 bzero(&vmsuspend, sizeof(vmsuspend)); 705 vmsuspend.how = how; 706 return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend)); 707 } 708 709 int 710 vm_reinit(struct vmctx *ctx) 711 { 712 713 return (ioctl(ctx->fd, VM_REINIT, 0)); 714 } 715 716 int 717 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid, 718 uint32_t errcode, int restart_instruction) 719 { 720 struct vm_exception exc; 721 722 exc.cpuid = vcpu; 723 exc.vector = vector; 724 exc.error_code = errcode; 725 exc.error_code_valid = errcode_valid; 726 exc.restart_instruction = restart_instruction; 727 728 return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc)); 729 } 730 731 int 732 vm_apicid2vcpu(struct vmctx *ctx __unused, int apicid) 733 { 734 /* 735 * The apic id associated with the 'vcpu' has the same numerical value 736 * as the 'vcpu' itself. 737 */ 738 return (apicid); 739 } 740 741 int 742 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector) 743 { 744 struct vm_lapic_irq vmirq; 745 746 bzero(&vmirq, sizeof(vmirq)); 747 vmirq.cpuid = vcpu; 748 vmirq.vector = vector; 749 750 return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq)); 751 } 752 753 int 754 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector) 755 { 756 struct vm_lapic_irq vmirq; 757 758 bzero(&vmirq, sizeof(vmirq)); 759 vmirq.cpuid = vcpu; 760 vmirq.vector = vector; 761 762 return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq)); 763 } 764 765 int 766 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg) 767 { 768 struct vm_lapic_msi vmmsi; 769 770 bzero(&vmmsi, sizeof(vmmsi)); 771 vmmsi.addr = addr; 772 vmmsi.msg = msg; 773 774 return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi)); 775 } 776 777 int 778 vm_ioapic_assert_irq(struct vmctx *ctx, int irq) 779 { 780 struct vm_ioapic_irq ioapic_irq; 781 782 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 783 ioapic_irq.irq = irq; 784 785 return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq)); 786 } 787 788 int 789 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq) 790 { 791 struct vm_ioapic_irq ioapic_irq; 792 793 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 794 ioapic_irq.irq = irq; 795 796 return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq)); 797 } 798 799 int 800 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq) 801 { 802 struct vm_ioapic_irq ioapic_irq; 803 804 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 805 ioapic_irq.irq = irq; 806 807 return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq)); 808 } 809 810 int 811 vm_ioapic_pincount(struct vmctx *ctx, int *pincount) 812 { 813 814 return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount)); 815 } 816 817 int 818 vm_readwrite_kernemu_device(struct vmctx *ctx, int vcpu, vm_paddr_t gpa, 819 bool write, int size, uint64_t *value) 820 { 821 struct vm_readwrite_kernemu_device irp = { 822 .vcpuid = vcpu, 823 .access_width = fls(size) - 1, 824 .gpa = gpa, 825 .value = write ? *value : ~0ul, 826 }; 827 long cmd = (write ? VM_SET_KERNEMU_DEV : VM_GET_KERNEMU_DEV); 828 int rc; 829 830 rc = ioctl(ctx->fd, cmd, &irp); 831 if (rc == 0 && !write) 832 *value = irp.value; 833 return (rc); 834 } 835 836 int 837 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 838 { 839 struct vm_isa_irq isa_irq; 840 841 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 842 isa_irq.atpic_irq = atpic_irq; 843 isa_irq.ioapic_irq = ioapic_irq; 844 845 return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq)); 846 } 847 848 int 849 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 850 { 851 struct vm_isa_irq isa_irq; 852 853 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 854 isa_irq.atpic_irq = atpic_irq; 855 isa_irq.ioapic_irq = ioapic_irq; 856 857 return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq)); 858 } 859 860 int 861 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 862 { 863 struct vm_isa_irq isa_irq; 864 865 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 866 isa_irq.atpic_irq = atpic_irq; 867 isa_irq.ioapic_irq = ioapic_irq; 868 869 return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq)); 870 } 871 872 int 873 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq, 874 enum vm_intr_trigger trigger) 875 { 876 struct vm_isa_irq_trigger isa_irq_trigger; 877 878 bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger)); 879 isa_irq_trigger.atpic_irq = atpic_irq; 880 isa_irq_trigger.trigger = trigger; 881 882 return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger)); 883 } 884 885 int 886 vm_inject_nmi(struct vmctx *ctx, int vcpu) 887 { 888 struct vm_nmi vmnmi; 889 890 bzero(&vmnmi, sizeof(vmnmi)); 891 vmnmi.cpuid = vcpu; 892 893 return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi)); 894 } 895 896 static const char *capstrmap[] = { 897 [VM_CAP_HALT_EXIT] = "hlt_exit", 898 [VM_CAP_MTRAP_EXIT] = "mtrap_exit", 899 [VM_CAP_PAUSE_EXIT] = "pause_exit", 900 [VM_CAP_UNRESTRICTED_GUEST] = "unrestricted_guest", 901 [VM_CAP_ENABLE_INVPCID] = "enable_invpcid", 902 [VM_CAP_BPT_EXIT] = "bpt_exit", 903 }; 904 905 int 906 vm_capability_name2type(const char *capname) 907 { 908 int i; 909 910 for (i = 0; i < (int)nitems(capstrmap); i++) { 911 if (strcmp(capstrmap[i], capname) == 0) 912 return (i); 913 } 914 915 return (-1); 916 } 917 918 const char * 919 vm_capability_type2name(int type) 920 { 921 if (type >= 0 && type < (int)nitems(capstrmap)) 922 return (capstrmap[type]); 923 924 return (NULL); 925 } 926 927 int 928 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, 929 int *retval) 930 { 931 int error; 932 struct vm_capability vmcap; 933 934 bzero(&vmcap, sizeof(vmcap)); 935 vmcap.cpuid = vcpu; 936 vmcap.captype = cap; 937 938 error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap); 939 *retval = vmcap.capval; 940 return (error); 941 } 942 943 int 944 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val) 945 { 946 struct vm_capability vmcap; 947 948 bzero(&vmcap, sizeof(vmcap)); 949 vmcap.cpuid = vcpu; 950 vmcap.captype = cap; 951 vmcap.capval = val; 952 953 return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap)); 954 } 955 956 int 957 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 958 { 959 struct vm_pptdev pptdev; 960 961 bzero(&pptdev, sizeof(pptdev)); 962 pptdev.bus = bus; 963 pptdev.slot = slot; 964 pptdev.func = func; 965 966 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev)); 967 } 968 969 int 970 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 971 { 972 struct vm_pptdev pptdev; 973 974 bzero(&pptdev, sizeof(pptdev)); 975 pptdev.bus = bus; 976 pptdev.slot = slot; 977 pptdev.func = func; 978 979 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev)); 980 } 981 982 int 983 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 984 vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 985 { 986 struct vm_pptdev_mmio pptmmio; 987 988 bzero(&pptmmio, sizeof(pptmmio)); 989 pptmmio.bus = bus; 990 pptmmio.slot = slot; 991 pptmmio.func = func; 992 pptmmio.gpa = gpa; 993 pptmmio.len = len; 994 pptmmio.hpa = hpa; 995 996 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio)); 997 } 998 999 int 1000 vm_unmap_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 1001 vm_paddr_t gpa, size_t len) 1002 { 1003 struct vm_pptdev_mmio pptmmio; 1004 1005 bzero(&pptmmio, sizeof(pptmmio)); 1006 pptmmio.bus = bus; 1007 pptmmio.slot = slot; 1008 pptmmio.func = func; 1009 pptmmio.gpa = gpa; 1010 pptmmio.len = len; 1011 1012 return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio)); 1013 } 1014 1015 int 1016 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 1017 uint64_t addr, uint64_t msg, int numvec) 1018 { 1019 struct vm_pptdev_msi pptmsi; 1020 1021 bzero(&pptmsi, sizeof(pptmsi)); 1022 pptmsi.vcpu = vcpu; 1023 pptmsi.bus = bus; 1024 pptmsi.slot = slot; 1025 pptmsi.func = func; 1026 pptmsi.msg = msg; 1027 pptmsi.addr = addr; 1028 pptmsi.numvec = numvec; 1029 1030 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi)); 1031 } 1032 1033 int 1034 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 1035 int idx, uint64_t addr, uint64_t msg, uint32_t vector_control) 1036 { 1037 struct vm_pptdev_msix pptmsix; 1038 1039 bzero(&pptmsix, sizeof(pptmsix)); 1040 pptmsix.vcpu = vcpu; 1041 pptmsix.bus = bus; 1042 pptmsix.slot = slot; 1043 pptmsix.func = func; 1044 pptmsix.idx = idx; 1045 pptmsix.msg = msg; 1046 pptmsix.addr = addr; 1047 pptmsix.vector_control = vector_control; 1048 1049 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix); 1050 } 1051 1052 int 1053 vm_disable_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func) 1054 { 1055 struct vm_pptdev ppt; 1056 1057 bzero(&ppt, sizeof(ppt)); 1058 ppt.bus = bus; 1059 ppt.slot = slot; 1060 ppt.func = func; 1061 1062 return ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &ppt); 1063 } 1064 1065 uint64_t * 1066 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv, 1067 int *ret_entries) 1068 { 1069 int error; 1070 1071 static struct vm_stats vmstats; 1072 1073 vmstats.cpuid = vcpu; 1074 1075 error = ioctl(ctx->fd, VM_STATS, &vmstats); 1076 if (error == 0) { 1077 if (ret_entries) 1078 *ret_entries = vmstats.num_entries; 1079 if (ret_tv) 1080 *ret_tv = vmstats.tv; 1081 return (vmstats.statbuf); 1082 } else 1083 return (NULL); 1084 } 1085 1086 const char * 1087 vm_get_stat_desc(struct vmctx *ctx, int index) 1088 { 1089 static struct vm_stat_desc statdesc; 1090 1091 statdesc.index = index; 1092 if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0) 1093 return (statdesc.desc); 1094 else 1095 return (NULL); 1096 } 1097 1098 int 1099 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state) 1100 { 1101 int error; 1102 struct vm_x2apic x2apic; 1103 1104 bzero(&x2apic, sizeof(x2apic)); 1105 x2apic.cpuid = vcpu; 1106 1107 error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic); 1108 *state = x2apic.state; 1109 return (error); 1110 } 1111 1112 int 1113 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state) 1114 { 1115 int error; 1116 struct vm_x2apic x2apic; 1117 1118 bzero(&x2apic, sizeof(x2apic)); 1119 x2apic.cpuid = vcpu; 1120 x2apic.state = state; 1121 1122 error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic); 1123 1124 return (error); 1125 } 1126 1127 /* 1128 * From Intel Vol 3a: 1129 * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT 1130 */ 1131 int 1132 vcpu_reset(struct vmctx *vmctx, int vcpu) 1133 { 1134 int error; 1135 uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx; 1136 uint32_t desc_access, desc_limit; 1137 uint16_t sel; 1138 1139 zero = 0; 1140 1141 rflags = 0x2; 1142 error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags); 1143 if (error) 1144 goto done; 1145 1146 rip = 0xfff0; 1147 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0) 1148 goto done; 1149 1150 cr0 = CR0_NE; 1151 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0) 1152 goto done; 1153 1154 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0) 1155 goto done; 1156 1157 cr4 = 0; 1158 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0) 1159 goto done; 1160 1161 /* 1162 * CS: present, r/w, accessed, 16-bit, byte granularity, usable 1163 */ 1164 desc_base = 0xffff0000; 1165 desc_limit = 0xffff; 1166 desc_access = 0x0093; 1167 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS, 1168 desc_base, desc_limit, desc_access); 1169 if (error) 1170 goto done; 1171 1172 sel = 0xf000; 1173 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0) 1174 goto done; 1175 1176 /* 1177 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity 1178 */ 1179 desc_base = 0; 1180 desc_limit = 0xffff; 1181 desc_access = 0x0093; 1182 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS, 1183 desc_base, desc_limit, desc_access); 1184 if (error) 1185 goto done; 1186 1187 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS, 1188 desc_base, desc_limit, desc_access); 1189 if (error) 1190 goto done; 1191 1192 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES, 1193 desc_base, desc_limit, desc_access); 1194 if (error) 1195 goto done; 1196 1197 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS, 1198 desc_base, desc_limit, desc_access); 1199 if (error) 1200 goto done; 1201 1202 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS, 1203 desc_base, desc_limit, desc_access); 1204 if (error) 1205 goto done; 1206 1207 sel = 0; 1208 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0) 1209 goto done; 1210 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0) 1211 goto done; 1212 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0) 1213 goto done; 1214 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0) 1215 goto done; 1216 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0) 1217 goto done; 1218 1219 /* General purpose registers */ 1220 rdx = 0xf00; 1221 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0) 1222 goto done; 1223 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0) 1224 goto done; 1225 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0) 1226 goto done; 1227 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0) 1228 goto done; 1229 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0) 1230 goto done; 1231 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0) 1232 goto done; 1233 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0) 1234 goto done; 1235 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0) 1236 goto done; 1237 1238 /* GDTR, IDTR */ 1239 desc_base = 0; 1240 desc_limit = 0xffff; 1241 desc_access = 0; 1242 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR, 1243 desc_base, desc_limit, desc_access); 1244 if (error != 0) 1245 goto done; 1246 1247 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR, 1248 desc_base, desc_limit, desc_access); 1249 if (error != 0) 1250 goto done; 1251 1252 /* TR */ 1253 desc_base = 0; 1254 desc_limit = 0xffff; 1255 desc_access = 0x0000008b; 1256 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access); 1257 if (error) 1258 goto done; 1259 1260 sel = 0; 1261 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0) 1262 goto done; 1263 1264 /* LDTR */ 1265 desc_base = 0; 1266 desc_limit = 0xffff; 1267 desc_access = 0x00000082; 1268 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base, 1269 desc_limit, desc_access); 1270 if (error) 1271 goto done; 1272 1273 sel = 0; 1274 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0) 1275 goto done; 1276 1277 /* XXX cr2, debug registers */ 1278 1279 error = 0; 1280 done: 1281 return (error); 1282 } 1283 1284 int 1285 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num) 1286 { 1287 int error, i; 1288 struct vm_gpa_pte gpapte; 1289 1290 bzero(&gpapte, sizeof(gpapte)); 1291 gpapte.gpa = gpa; 1292 1293 error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte); 1294 1295 if (error == 0) { 1296 *num = gpapte.ptenum; 1297 for (i = 0; i < gpapte.ptenum; i++) 1298 pte[i] = gpapte.pte[i]; 1299 } 1300 1301 return (error); 1302 } 1303 1304 int 1305 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities) 1306 { 1307 int error; 1308 struct vm_hpet_cap cap; 1309 1310 bzero(&cap, sizeof(struct vm_hpet_cap)); 1311 error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap); 1312 if (capabilities != NULL) 1313 *capabilities = cap.capabilities; 1314 return (error); 1315 } 1316 1317 int 1318 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1319 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1320 { 1321 struct vm_gla2gpa gg; 1322 int error; 1323 1324 bzero(&gg, sizeof(struct vm_gla2gpa)); 1325 gg.vcpuid = vcpu; 1326 gg.prot = prot; 1327 gg.gla = gla; 1328 gg.paging = *paging; 1329 1330 error = ioctl(ctx->fd, VM_GLA2GPA, &gg); 1331 if (error == 0) { 1332 *fault = gg.fault; 1333 *gpa = gg.gpa; 1334 } 1335 return (error); 1336 } 1337 1338 int 1339 vm_gla2gpa_nofault(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1340 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1341 { 1342 struct vm_gla2gpa gg; 1343 int error; 1344 1345 bzero(&gg, sizeof(struct vm_gla2gpa)); 1346 gg.vcpuid = vcpu; 1347 gg.prot = prot; 1348 gg.gla = gla; 1349 gg.paging = *paging; 1350 1351 error = ioctl(ctx->fd, VM_GLA2GPA_NOFAULT, &gg); 1352 if (error == 0) { 1353 *fault = gg.fault; 1354 *gpa = gg.gpa; 1355 } 1356 return (error); 1357 } 1358 1359 #ifndef min 1360 #define min(a,b) (((a) < (b)) ? (a) : (b)) 1361 #endif 1362 1363 int 1364 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1365 uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt, 1366 int *fault) 1367 { 1368 void *va; 1369 uint64_t gpa, off; 1370 int error, i, n; 1371 1372 for (i = 0; i < iovcnt; i++) { 1373 iov[i].iov_base = 0; 1374 iov[i].iov_len = 0; 1375 } 1376 1377 while (len) { 1378 assert(iovcnt > 0); 1379 error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault); 1380 if (error || *fault) 1381 return (error); 1382 1383 off = gpa & PAGE_MASK; 1384 n = MIN(len, PAGE_SIZE - off); 1385 1386 va = vm_map_gpa(ctx, gpa, n); 1387 if (va == NULL) 1388 return (EFAULT); 1389 1390 iov->iov_base = va; 1391 iov->iov_len = n; 1392 iov++; 1393 iovcnt--; 1394 1395 gla += n; 1396 len -= n; 1397 } 1398 return (0); 1399 } 1400 1401 void 1402 vm_copy_teardown(struct vmctx *ctx __unused, int vcpu __unused, 1403 struct iovec *iov __unused, int iovcnt __unused) 1404 { 1405 } 1406 1407 void 1408 vm_copyin(struct vmctx *ctx __unused, int vcpu __unused, struct iovec *iov, 1409 void *vp, size_t len) 1410 { 1411 const char *src; 1412 char *dst; 1413 size_t n; 1414 1415 dst = vp; 1416 while (len) { 1417 assert(iov->iov_len); 1418 n = min(len, iov->iov_len); 1419 src = iov->iov_base; 1420 bcopy(src, dst, n); 1421 1422 iov++; 1423 dst += n; 1424 len -= n; 1425 } 1426 } 1427 1428 void 1429 vm_copyout(struct vmctx *ctx __unused, int vcpu __unused, const void *vp, 1430 struct iovec *iov, size_t len) 1431 { 1432 const char *src; 1433 char *dst; 1434 size_t n; 1435 1436 src = vp; 1437 while (len) { 1438 assert(iov->iov_len); 1439 n = min(len, iov->iov_len); 1440 dst = iov->iov_base; 1441 bcopy(src, dst, n); 1442 1443 iov++; 1444 src += n; 1445 len -= n; 1446 } 1447 } 1448 1449 static int 1450 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus) 1451 { 1452 struct vm_cpuset vm_cpuset; 1453 int error; 1454 1455 bzero(&vm_cpuset, sizeof(struct vm_cpuset)); 1456 vm_cpuset.which = which; 1457 vm_cpuset.cpusetsize = sizeof(cpuset_t); 1458 vm_cpuset.cpus = cpus; 1459 1460 error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset); 1461 return (error); 1462 } 1463 1464 int 1465 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus) 1466 { 1467 1468 return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus)); 1469 } 1470 1471 int 1472 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus) 1473 { 1474 1475 return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus)); 1476 } 1477 1478 int 1479 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus) 1480 { 1481 1482 return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus)); 1483 } 1484 1485 int 1486 vm_activate_cpu(struct vmctx *ctx, int vcpu) 1487 { 1488 struct vm_activate_cpu ac; 1489 int error; 1490 1491 bzero(&ac, sizeof(struct vm_activate_cpu)); 1492 ac.vcpuid = vcpu; 1493 error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac); 1494 return (error); 1495 } 1496 1497 int 1498 vm_suspend_cpu(struct vmctx *ctx, int vcpu) 1499 { 1500 struct vm_activate_cpu ac; 1501 int error; 1502 1503 bzero(&ac, sizeof(struct vm_activate_cpu)); 1504 ac.vcpuid = vcpu; 1505 error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac); 1506 return (error); 1507 } 1508 1509 int 1510 vm_resume_cpu(struct vmctx *ctx, int vcpu) 1511 { 1512 struct vm_activate_cpu ac; 1513 int error; 1514 1515 bzero(&ac, sizeof(struct vm_activate_cpu)); 1516 ac.vcpuid = vcpu; 1517 error = ioctl(ctx->fd, VM_RESUME_CPU, &ac); 1518 return (error); 1519 } 1520 1521 int 1522 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2) 1523 { 1524 struct vm_intinfo vmii; 1525 int error; 1526 1527 bzero(&vmii, sizeof(struct vm_intinfo)); 1528 vmii.vcpuid = vcpu; 1529 error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii); 1530 if (error == 0) { 1531 *info1 = vmii.info1; 1532 *info2 = vmii.info2; 1533 } 1534 return (error); 1535 } 1536 1537 int 1538 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1) 1539 { 1540 struct vm_intinfo vmii; 1541 int error; 1542 1543 bzero(&vmii, sizeof(struct vm_intinfo)); 1544 vmii.vcpuid = vcpu; 1545 vmii.info1 = info1; 1546 error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii); 1547 return (error); 1548 } 1549 1550 int 1551 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value) 1552 { 1553 struct vm_rtc_data rtcdata; 1554 int error; 1555 1556 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1557 rtcdata.offset = offset; 1558 rtcdata.value = value; 1559 error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata); 1560 return (error); 1561 } 1562 1563 int 1564 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval) 1565 { 1566 struct vm_rtc_data rtcdata; 1567 int error; 1568 1569 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1570 rtcdata.offset = offset; 1571 error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata); 1572 if (error == 0) 1573 *retval = rtcdata.value; 1574 return (error); 1575 } 1576 1577 int 1578 vm_rtc_settime(struct vmctx *ctx, time_t secs) 1579 { 1580 struct vm_rtc_time rtctime; 1581 int error; 1582 1583 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1584 rtctime.secs = secs; 1585 error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime); 1586 return (error); 1587 } 1588 1589 int 1590 vm_rtc_gettime(struct vmctx *ctx, time_t *secs) 1591 { 1592 struct vm_rtc_time rtctime; 1593 int error; 1594 1595 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1596 error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime); 1597 if (error == 0) 1598 *secs = rtctime.secs; 1599 return (error); 1600 } 1601 1602 int 1603 vm_restart_instruction(void *arg, int vcpu) 1604 { 1605 struct vmctx *ctx = arg; 1606 1607 return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu)); 1608 } 1609 1610 int 1611 vm_snapshot_req(struct vm_snapshot_meta *meta) 1612 { 1613 1614 if (ioctl(meta->ctx->fd, VM_SNAPSHOT_REQ, meta) == -1) { 1615 #ifdef SNAPSHOT_DEBUG 1616 fprintf(stderr, "%s: snapshot failed for %s: %d\r\n", 1617 __func__, meta->dev_name, errno); 1618 #endif 1619 return (-1); 1620 } 1621 return (0); 1622 } 1623 1624 int 1625 vm_restore_time(struct vmctx *ctx) 1626 { 1627 int dummy; 1628 1629 dummy = 0; 1630 return (ioctl(ctx->fd, VM_RESTORE_TIME, &dummy)); 1631 } 1632 1633 int 1634 vm_set_topology(struct vmctx *ctx, 1635 uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus) 1636 { 1637 struct vm_cpu_topology topology; 1638 1639 bzero(&topology, sizeof (struct vm_cpu_topology)); 1640 topology.sockets = sockets; 1641 topology.cores = cores; 1642 topology.threads = threads; 1643 topology.maxcpus = maxcpus; 1644 return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology)); 1645 } 1646 1647 int 1648 vm_get_topology(struct vmctx *ctx, 1649 uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus) 1650 { 1651 struct vm_cpu_topology topology; 1652 int error; 1653 1654 bzero(&topology, sizeof (struct vm_cpu_topology)); 1655 error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology); 1656 if (error == 0) { 1657 *sockets = topology.sockets; 1658 *cores = topology.cores; 1659 *threads = topology.threads; 1660 *maxcpus = topology.maxcpus; 1661 } 1662 return (error); 1663 } 1664 1665 int 1666 vm_get_device_fd(struct vmctx *ctx) 1667 { 1668 1669 return (ctx->fd); 1670 } 1671 1672 const cap_ioctl_t * 1673 vm_get_ioctls(size_t *len) 1674 { 1675 cap_ioctl_t *cmds; 1676 /* keep in sync with machine/vmm_dev.h */ 1677 static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT, 1678 VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG, 1679 VM_MMAP_GETNEXT, VM_MUNMAP_MEMSEG, VM_SET_REGISTER, VM_GET_REGISTER, 1680 VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR, 1681 VM_SET_REGISTER_SET, VM_GET_REGISTER_SET, 1682 VM_SET_KERNEMU_DEV, VM_GET_KERNEMU_DEV, 1683 VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ, 1684 VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ, 1685 VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ, 1686 VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER, 1687 VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV, 1688 VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI, 1689 VM_PPTDEV_MSIX, VM_UNMAP_PPTDEV_MMIO, VM_PPTDEV_DISABLE_MSIX, 1690 VM_INJECT_NMI, VM_STATS, VM_STAT_DESC, 1691 VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE, 1692 VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA, 1693 VM_GLA2GPA_NOFAULT, 1694 VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU, 1695 VM_SET_INTINFO, VM_GET_INTINFO, 1696 VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME, 1697 VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY }; 1698 1699 if (len == NULL) { 1700 cmds = malloc(sizeof(vm_ioctl_cmds)); 1701 if (cmds == NULL) 1702 return (NULL); 1703 bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds)); 1704 return (cmds); 1705 } 1706 1707 *len = nitems(vm_ioctl_cmds); 1708 return (NULL); 1709 } 1710