xref: /freebsd/lib/libmemstat/memstat_malloc.c (revision 4fd2d3b6927878771635a3628ae1623daf810d39)
1 /*-
2  * Copyright (c) 2005 Robert N. M. Watson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 #include <sys/param.h>
31 #include <sys/malloc.h>
32 #include <sys/sysctl.h>
33 
34 #include <err.h>
35 #include <errno.h>
36 #include <kvm.h>
37 #include <nlist.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 
42 #include "memstat.h"
43 #include "memstat_internal.h"
44 
45 static struct nlist namelist[] = {
46 #define	X_KMEMSTATISTICS	0
47 	{ .n_name = "_kmemstatistics" },
48 #define	X_MP_MAXCPUS		1
49 	{ .n_name = "_mp_maxcpus" },
50 	{ .n_name = "" },
51 };
52 
53 /*
54  * Extract malloc(9) statistics from the running kernel, and store all memory
55  * type information in the passed list.  For each type, check the list for an
56  * existing entry with the right name/allocator -- if present, update that
57  * entry.  Otherwise, add a new entry.  On error, the entire list will be
58  * cleared, as entries will be in an inconsistent state.
59  *
60  * To reduce the level of work for a list that starts empty, we keep around a
61  * hint as to whether it was empty when we began, so we can avoid searching
62  * the list for entries to update.  Updates are O(n^2) due to searching for
63  * each entry before adding it.
64  */
65 int
66 memstat_sysctl_malloc(struct memory_type_list *list, int flags)
67 {
68 	struct malloc_type_stream_header *mtshp;
69 	struct malloc_type_header *mthp;
70 	struct malloc_type_stats *mtsp;
71 	struct memory_type *mtp;
72 	int count, hint_dontsearch, i, j, maxcpus;
73 	char *buffer, *p;
74 	size_t size;
75 
76 	hint_dontsearch = LIST_EMPTY(&list->mtl_list);
77 
78 	/*
79 	 * Query the number of CPUs, number of malloc types so that we can
80 	 * guess an initial buffer size.  We loop until we succeed or really
81 	 * fail.  Note that the value of maxcpus we query using sysctl is not
82 	 * the version we use when processing the real data -- that is read
83 	 * from the header.
84 	 */
85 retry:
86 	size = sizeof(maxcpus);
87 	if (sysctlbyname("kern.smp.maxcpus", &maxcpus, &size, NULL, 0) < 0) {
88 		if (errno == EACCES || errno == EPERM)
89 			list->mtl_error = MEMSTAT_ERROR_PERMISSION;
90 		else
91 			list->mtl_error = MEMSTAT_ERROR_DATAERROR;
92 		return (-1);
93 	}
94 	if (size != sizeof(maxcpus)) {
95 		list->mtl_error = MEMSTAT_ERROR_DATAERROR;
96 		return (-1);
97 	}
98 
99 	if (maxcpus > MEMSTAT_MAXCPU) {
100 		list->mtl_error = MEMSTAT_ERROR_TOOMANYCPUS;
101 		return (-1);
102 	}
103 
104 	size = sizeof(count);
105 	if (sysctlbyname("kern.malloc_count", &count, &size, NULL, 0) < 0) {
106 		if (errno == EACCES || errno == EPERM)
107 			list->mtl_error = MEMSTAT_ERROR_PERMISSION;
108 		else
109 			list->mtl_error = MEMSTAT_ERROR_VERSION;
110 		return (-1);
111 	}
112 	if (size != sizeof(count)) {
113 		list->mtl_error = MEMSTAT_ERROR_DATAERROR;
114 		return (-1);
115 	}
116 
117 	size = sizeof(*mthp) + count * (sizeof(*mthp) + sizeof(*mtsp) *
118 	    maxcpus);
119 
120 	buffer = malloc(size);
121 	if (buffer == NULL) {
122 		list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
123 		return (-1);
124 	}
125 
126 	if (sysctlbyname("kern.malloc_stats", buffer, &size, NULL, 0) < 0) {
127 		/*
128 		 * XXXRW: ENOMEM is an ambiguous return, we should bound the
129 		 * number of loops, perhaps.
130 		 */
131 		if (errno == ENOMEM) {
132 			free(buffer);
133 			goto retry;
134 		}
135 		if (errno == EACCES || errno == EPERM)
136 			list->mtl_error = MEMSTAT_ERROR_PERMISSION;
137 		else
138 			list->mtl_error = MEMSTAT_ERROR_VERSION;
139 		free(buffer);
140 		return (-1);
141 	}
142 
143 	if (size == 0) {
144 		free(buffer);
145 		return (0);
146 	}
147 
148 	if (size < sizeof(*mtshp)) {
149 		list->mtl_error = MEMSTAT_ERROR_VERSION;
150 		free(buffer);
151 		return (-1);
152 	}
153 	p = buffer;
154 	mtshp = (struct malloc_type_stream_header *)p;
155 	p += sizeof(*mtshp);
156 
157 	if (mtshp->mtsh_version != MALLOC_TYPE_STREAM_VERSION) {
158 		list->mtl_error = MEMSTAT_ERROR_VERSION;
159 		free(buffer);
160 		return (-1);
161 	}
162 
163 	if (mtshp->mtsh_maxcpus > MEMSTAT_MAXCPU) {
164 		list->mtl_error = MEMSTAT_ERROR_TOOMANYCPUS;
165 		free(buffer);
166 		return (-1);
167 	}
168 
169 	/*
170 	 * For the remainder of this function, we are quite trusting about
171 	 * the layout of structures and sizes, since we've determined we have
172 	 * a matching version and acceptable CPU count.
173 	 */
174 	maxcpus = mtshp->mtsh_maxcpus;
175 	count = mtshp->mtsh_count;
176 	for (i = 0; i < count; i++) {
177 		mthp = (struct malloc_type_header *)p;
178 		p += sizeof(*mthp);
179 
180 		if (hint_dontsearch == 0) {
181 			mtp = memstat_mtl_find(list, ALLOCATOR_MALLOC,
182 			    mthp->mth_name);
183 		} else
184 			mtp = NULL;
185 		if (mtp == NULL)
186 			mtp = _memstat_mt_allocate(list, ALLOCATOR_MALLOC,
187 			    mthp->mth_name);
188 		if (mtp == NULL) {
189 			_memstat_mtl_empty(list);
190 			free(buffer);
191 			list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
192 			return (-1);
193 		}
194 
195 		/*
196 		 * Reset the statistics on a current node.
197 		 */
198 		_memstat_mt_reset_stats(mtp);
199 
200 		for (j = 0; j < maxcpus; j++) {
201 			mtsp = (struct malloc_type_stats *)p;
202 			p += sizeof(*mtsp);
203 
204 			/*
205 			 * Sumarize raw statistics across CPUs into coalesced
206 			 * statistics.
207 			 */
208 			mtp->mt_memalloced += mtsp->mts_memalloced;
209 			mtp->mt_memfreed += mtsp->mts_memfreed;
210 			mtp->mt_numallocs += mtsp->mts_numallocs;
211 			mtp->mt_numfrees += mtsp->mts_numfrees;
212 			mtp->mt_sizemask |= mtsp->mts_size;
213 
214 			/*
215 			 * Copies of per-CPU statistics.
216 			 */
217 			mtp->mt_percpu_alloc[j].mtp_memalloced =
218 			    mtsp->mts_memalloced;
219 			mtp->mt_percpu_alloc[j].mtp_memfreed =
220 			    mtsp->mts_memfreed;
221 			mtp->mt_percpu_alloc[j].mtp_numallocs =
222 			    mtsp->mts_numallocs;
223 			mtp->mt_percpu_alloc[j].mtp_numfrees =
224 			    mtsp->mts_numfrees;
225 			mtp->mt_percpu_alloc[j].mtp_sizemask =
226 			    mtsp->mts_size;
227 		}
228 
229 		/*
230 		 * Derived cross-CPU statistics.
231 		 */
232 		mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
233 		mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
234 	}
235 
236 	free(buffer);
237 
238 	return (0);
239 }
240 
241 static int
242 kread(kvm_t *kvm, void *kvm_pointer, void *address, size_t size,
243     size_t offset)
244 {
245 	ssize_t ret;
246 
247 	ret = kvm_read(kvm, (unsigned long)kvm_pointer + offset, address,
248 	    size);
249 	if (ret < 0)
250 		return (MEMSTAT_ERROR_KVM);
251 	if ((size_t)ret != size)
252 		return (MEMSTAT_ERROR_KVM_SHORTREAD);
253 	return (0);
254 }
255 
256 static int
257 kread_string(kvm_t *kvm, const void *kvm_pointer, char *buffer, int buflen)
258 {
259 	ssize_t ret;
260 	int i;
261 
262 	for (i = 0; i < buflen; i++) {
263 		ret = kvm_read(kvm, __DECONST(unsigned long, kvm_pointer) +
264 		    i, &(buffer[i]), sizeof(char));
265 		if (ret < 0)
266 			return (MEMSTAT_ERROR_KVM);
267 		if ((size_t)ret != sizeof(char))
268 			return (MEMSTAT_ERROR_KVM_SHORTREAD);
269 		if (buffer[i] == '\0')
270 			return (0);
271 	}
272 	/* Truncate. */
273 	buffer[i-1] = '\0';
274 	return (0);
275 }
276 
277 static int
278 kread_symbol(kvm_t *kvm, int index, void *address, size_t size,
279     size_t offset)
280 {
281 	ssize_t ret;
282 
283 	ret = kvm_read(kvm, namelist[index].n_value + offset, address, size);
284 	if (ret < 0)
285 		return (MEMSTAT_ERROR_KVM);
286 	if ((size_t)ret != size)
287 		return (MEMSTAT_ERROR_KVM_SHORTREAD);
288 	return (0);
289 }
290 
291 int
292 memstat_kvm_malloc(struct memory_type_list *list, void *kvm_handle)
293 {
294 	struct memory_type *mtp;
295 	void *kmemstatistics;
296 	int hint_dontsearch, j, mp_maxcpus, ret;
297 	char name[MEMTYPE_MAXNAME];
298 	struct malloc_type_stats mts[MEMSTAT_MAXCPU], *mtsp;
299 	struct malloc_type type, *typep;
300 	kvm_t *kvm;
301 
302 	kvm = (kvm_t *)kvm_handle;
303 
304 	hint_dontsearch = LIST_EMPTY(&list->mtl_list);
305 
306 	if (kvm_nlist(kvm, namelist) != 0) {
307 		list->mtl_error = MEMSTAT_ERROR_KVM;
308 		return (-1);
309 	}
310 
311 	if (namelist[X_KMEMSTATISTICS].n_type == 0 ||
312 	    namelist[X_KMEMSTATISTICS].n_value == 0) {
313 		list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL;
314 		return (-1);
315 	}
316 
317 	ret = kread_symbol(kvm, X_MP_MAXCPUS, &mp_maxcpus,
318 	    sizeof(mp_maxcpus), 0);
319 	if (ret != 0) {
320 		list->mtl_error = ret;
321 		return (-1);
322 	}
323 
324 	if (mp_maxcpus > MEMSTAT_MAXCPU) {
325 		list->mtl_error = MEMSTAT_ERROR_TOOMANYCPUS;
326 		return (-1);
327 	}
328 
329 	ret = kread_symbol(kvm, X_KMEMSTATISTICS, &kmemstatistics,
330 	    sizeof(kmemstatistics), 0);
331 	if (ret != 0) {
332 		list->mtl_error = ret;
333 		return (-1);
334 	}
335 
336 	for (typep = kmemstatistics; typep != NULL; typep = type.ks_next) {
337 		ret = kread(kvm, typep, &type, sizeof(type), 0);
338 		if (ret != 0) {
339 			_memstat_mtl_empty(list);
340 			list->mtl_error = ret;
341 			return (-1);
342 		}
343 		ret = kread_string(kvm, (void *)type.ks_shortdesc, name,
344 		    MEMTYPE_MAXNAME);
345 		if (ret != 0) {
346 			_memstat_mtl_empty(list);
347 			list->mtl_error = ret;
348 			return (-1);
349 		}
350 
351 		/*
352 		 * Take advantage of explicit knowledge that
353 		 * malloc_type_internal is simply an array of statistics
354 		 * structures of number MAXCPU.  Since our compile-time
355 		 * value for MAXCPU may differ from the kernel's, we
356 		 * populate our own array.
357 		 */
358 		ret = kread(kvm, type.ks_handle, mts, mp_maxcpus *
359 		    sizeof(struct malloc_type_stats), 0);
360 		if (ret != 0) {
361 			_memstat_mtl_empty(list);
362 			list->mtl_error = ret;
363 			return (-1);
364 		}
365 
366 		if (hint_dontsearch == 0) {
367 			mtp = memstat_mtl_find(list, ALLOCATOR_MALLOC, name);
368 		} else
369 			mtp = NULL;
370 		if (mtp == NULL)
371 			mtp = _memstat_mt_allocate(list, ALLOCATOR_MALLOC,
372 			    name);
373 		if (mtp == NULL) {
374 			_memstat_mtl_empty(list);
375 			list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
376 			return (-1);
377 		}
378 
379 		/*
380 		 * This logic is replicated from kern_malloc.c, and should
381 		 * be kept in sync.
382 		 */
383 		_memstat_mt_reset_stats(mtp);
384 		for (j = 0; j < mp_maxcpus; j++) {
385 			mtsp = &mts[j];
386 			mtp->mt_memalloced += mtsp->mts_memalloced;
387 			mtp->mt_memfreed += mtsp->mts_memfreed;
388 			mtp->mt_numallocs += mtsp->mts_numallocs;
389 			mtp->mt_numfrees += mtsp->mts_numfrees;
390 			mtp->mt_sizemask |= mtsp->mts_size;
391 
392 			mtp->mt_percpu_alloc[j].mtp_memalloced =
393 			    mtsp->mts_memalloced;
394 			mtp->mt_percpu_alloc[j].mtp_memfreed =
395 			    mtsp->mts_memfreed;
396 			mtp->mt_percpu_alloc[j].mtp_numallocs =
397 			    mtsp->mts_numallocs;
398 			mtp->mt_percpu_alloc[j].mtp_numfrees =
399 			    mtsp->mts_numfrees;
400 			mtp->mt_percpu_alloc[j].mtp_sizemask =
401 			    mtsp->mts_size;
402 		}
403 
404 		mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
405 		mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
406 	}
407 
408 	return (0);
409 }
410