1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1997, 1998 Kenneth D. Merry. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/types.h> 35 #include <sys/sysctl.h> 36 #include <sys/errno.h> 37 #include <sys/resource.h> 38 #include <sys/queue.h> 39 40 #include <ctype.h> 41 #include <err.h> 42 #include <fcntl.h> 43 #include <limits.h> 44 #include <stdio.h> 45 #include <stdlib.h> 46 #include <string.h> 47 #include <stdarg.h> 48 #include <kvm.h> 49 #include <nlist.h> 50 51 #include "devstat.h" 52 53 int 54 compute_stats(struct devstat *current, struct devstat *previous, 55 long double etime, u_int64_t *total_bytes, 56 u_int64_t *total_transfers, u_int64_t *total_blocks, 57 long double *kb_per_transfer, long double *transfers_per_second, 58 long double *mb_per_second, long double *blocks_per_second, 59 long double *ms_per_transaction); 60 61 typedef enum { 62 DEVSTAT_ARG_NOTYPE, 63 DEVSTAT_ARG_UINT64, 64 DEVSTAT_ARG_LD, 65 DEVSTAT_ARG_SKIP 66 } devstat_arg_type; 67 68 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE]; 69 70 /* 71 * Table to match descriptive strings with device types. These are in 72 * order from most common to least common to speed search time. 73 */ 74 struct devstat_match_table match_table[] = { 75 {"da", DEVSTAT_TYPE_DIRECT, DEVSTAT_MATCH_TYPE}, 76 {"cd", DEVSTAT_TYPE_CDROM, DEVSTAT_MATCH_TYPE}, 77 {"scsi", DEVSTAT_TYPE_IF_SCSI, DEVSTAT_MATCH_IF}, 78 {"ide", DEVSTAT_TYPE_IF_IDE, DEVSTAT_MATCH_IF}, 79 {"other", DEVSTAT_TYPE_IF_OTHER, DEVSTAT_MATCH_IF}, 80 {"worm", DEVSTAT_TYPE_WORM, DEVSTAT_MATCH_TYPE}, 81 {"sa", DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE}, 82 {"pass", DEVSTAT_TYPE_PASS, DEVSTAT_MATCH_PASS}, 83 {"optical", DEVSTAT_TYPE_OPTICAL, DEVSTAT_MATCH_TYPE}, 84 {"array", DEVSTAT_TYPE_STORARRAY, DEVSTAT_MATCH_TYPE}, 85 {"changer", DEVSTAT_TYPE_CHANGER, DEVSTAT_MATCH_TYPE}, 86 {"scanner", DEVSTAT_TYPE_SCANNER, DEVSTAT_MATCH_TYPE}, 87 {"printer", DEVSTAT_TYPE_PRINTER, DEVSTAT_MATCH_TYPE}, 88 {"floppy", DEVSTAT_TYPE_FLOPPY, DEVSTAT_MATCH_TYPE}, 89 {"proc", DEVSTAT_TYPE_PROCESSOR, DEVSTAT_MATCH_TYPE}, 90 {"comm", DEVSTAT_TYPE_COMM, DEVSTAT_MATCH_TYPE}, 91 {"enclosure", DEVSTAT_TYPE_ENCLOSURE, DEVSTAT_MATCH_TYPE}, 92 {NULL, 0, 0} 93 }; 94 95 struct devstat_args { 96 devstat_metric metric; 97 devstat_arg_type argtype; 98 } devstat_arg_list[] = { 99 { DSM_NONE, DEVSTAT_ARG_NOTYPE }, 100 { DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 }, 101 { DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 }, 102 { DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 }, 103 { DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 }, 104 { DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 }, 105 { DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 }, 106 { DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 }, 107 { DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 }, 108 { DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 }, 109 { DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 }, 110 { DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD }, 111 { DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD }, 112 { DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD }, 113 { DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD }, 114 { DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD }, 115 { DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 116 { DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD }, 117 { DSM_MB_PER_SECOND, DEVSTAT_ARG_LD }, 118 { DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD }, 119 { DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 120 { DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD }, 121 { DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD }, 122 { DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 123 { DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD }, 124 { DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD }, 125 { DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD }, 126 { DSM_SKIP, DEVSTAT_ARG_SKIP }, 127 { DSM_TOTAL_BYTES_FREE, DEVSTAT_ARG_UINT64 }, 128 { DSM_TOTAL_TRANSFERS_FREE, DEVSTAT_ARG_UINT64 }, 129 { DSM_TOTAL_BLOCKS_FREE, DEVSTAT_ARG_UINT64 }, 130 { DSM_KB_PER_TRANSFER_FREE, DEVSTAT_ARG_LD }, 131 { DSM_MB_PER_SECOND_FREE, DEVSTAT_ARG_LD }, 132 { DSM_TRANSFERS_PER_SECOND_FREE, DEVSTAT_ARG_LD }, 133 { DSM_BLOCKS_PER_SECOND_FREE, DEVSTAT_ARG_LD }, 134 { DSM_MS_PER_TRANSACTION_OTHER, DEVSTAT_ARG_LD }, 135 { DSM_MS_PER_TRANSACTION_FREE, DEVSTAT_ARG_LD }, 136 { DSM_BUSY_PCT, DEVSTAT_ARG_LD }, 137 { DSM_QUEUE_LENGTH, DEVSTAT_ARG_UINT64 }, 138 { DSM_TOTAL_DURATION, DEVSTAT_ARG_LD }, 139 { DSM_TOTAL_DURATION_READ, DEVSTAT_ARG_LD }, 140 { DSM_TOTAL_DURATION_WRITE, DEVSTAT_ARG_LD }, 141 { DSM_TOTAL_DURATION_FREE, DEVSTAT_ARG_LD }, 142 { DSM_TOTAL_DURATION_OTHER, DEVSTAT_ARG_LD }, 143 { DSM_TOTAL_BUSY_TIME, DEVSTAT_ARG_LD }, 144 }; 145 146 static const char *namelist[] = { 147 #define X_NUMDEVS 0 148 "_devstat_num_devs", 149 #define X_GENERATION 1 150 "_devstat_generation", 151 #define X_VERSION 2 152 "_devstat_version", 153 #define X_DEVICE_STATQ 3 154 "_device_statq", 155 #define X_TIME_UPTIME 4 156 "_time_uptime", 157 #define X_END 5 158 }; 159 160 /* 161 * Local function declarations. 162 */ 163 static int compare_select(const void *arg1, const void *arg2); 164 static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes); 165 static int readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes); 166 static char *get_devstat_kvm(kvm_t *kd); 167 168 #define KREADNL(kd, var, val) \ 169 readkmem_nl(kd, namelist[var], &val, sizeof(val)) 170 171 int 172 devstat_getnumdevs(kvm_t *kd) 173 { 174 size_t numdevsize; 175 int numdevs; 176 177 numdevsize = sizeof(int); 178 179 /* 180 * Find out how many devices we have in the system. 181 */ 182 if (kd == NULL) { 183 if (sysctlbyname("kern.devstat.numdevs", &numdevs, 184 &numdevsize, NULL, 0) == -1) { 185 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 186 "%s: error getting number of devices\n" 187 "%s: %s", __func__, __func__, 188 strerror(errno)); 189 return(-1); 190 } else 191 return(numdevs); 192 } else { 193 194 if (KREADNL(kd, X_NUMDEVS, numdevs) == -1) 195 return(-1); 196 else 197 return(numdevs); 198 } 199 } 200 201 /* 202 * This is an easy way to get the generation number, but the generation is 203 * supplied in a more atmoic manner by the kern.devstat.all sysctl. 204 * Because this generation sysctl is separate from the statistics sysctl, 205 * the device list and the generation could change between the time that 206 * this function is called and the device list is retrieved. 207 */ 208 long 209 devstat_getgeneration(kvm_t *kd) 210 { 211 size_t gensize; 212 long generation; 213 214 gensize = sizeof(long); 215 216 /* 217 * Get the current generation number. 218 */ 219 if (kd == NULL) { 220 if (sysctlbyname("kern.devstat.generation", &generation, 221 &gensize, NULL, 0) == -1) { 222 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 223 "%s: error getting devstat generation\n%s: %s", 224 __func__, __func__, strerror(errno)); 225 return(-1); 226 } else 227 return(generation); 228 } else { 229 if (KREADNL(kd, X_GENERATION, generation) == -1) 230 return(-1); 231 else 232 return(generation); 233 } 234 } 235 236 /* 237 * Get the current devstat version. The return value of this function 238 * should be compared with DEVSTAT_VERSION, which is defined in 239 * sys/devicestat.h. This will enable userland programs to determine 240 * whether they are out of sync with the kernel. 241 */ 242 int 243 devstat_getversion(kvm_t *kd) 244 { 245 size_t versize; 246 int version; 247 248 versize = sizeof(int); 249 250 /* 251 * Get the current devstat version. 252 */ 253 if (kd == NULL) { 254 if (sysctlbyname("kern.devstat.version", &version, &versize, 255 NULL, 0) == -1) { 256 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 257 "%s: error getting devstat version\n%s: %s", 258 __func__, __func__, strerror(errno)); 259 return(-1); 260 } else 261 return(version); 262 } else { 263 if (KREADNL(kd, X_VERSION, version) == -1) 264 return(-1); 265 else 266 return(version); 267 } 268 } 269 270 /* 271 * Check the devstat version we know about against the devstat version the 272 * kernel knows about. If they don't match, print an error into the 273 * devstat error buffer, and return -1. If they match, return 0. 274 */ 275 int 276 devstat_checkversion(kvm_t *kd) 277 { 278 int buflen, res, retval = 0, version; 279 280 version = devstat_getversion(kd); 281 282 if (version != DEVSTAT_VERSION) { 283 /* 284 * If getversion() returns an error (i.e. -1), then it 285 * has printed an error message in the buffer. Therefore, 286 * we need to add a \n to the end of that message before we 287 * print our own message in the buffer. 288 */ 289 if (version == -1) 290 buflen = strlen(devstat_errbuf); 291 else 292 buflen = 0; 293 294 res = snprintf(devstat_errbuf + buflen, 295 DEVSTAT_ERRBUF_SIZE - buflen, 296 "%s%s: userland devstat version %d is not " 297 "the same as the kernel\n%s: devstat " 298 "version %d\n", version == -1 ? "\n" : "", 299 __func__, DEVSTAT_VERSION, __func__, version); 300 301 if (res < 0) 302 devstat_errbuf[buflen] = '\0'; 303 304 buflen = strlen(devstat_errbuf); 305 if (version < DEVSTAT_VERSION) 306 res = snprintf(devstat_errbuf + buflen, 307 DEVSTAT_ERRBUF_SIZE - buflen, 308 "%s: libdevstat newer than kernel\n", 309 __func__); 310 else 311 res = snprintf(devstat_errbuf + buflen, 312 DEVSTAT_ERRBUF_SIZE - buflen, 313 "%s: kernel newer than libdevstat\n", 314 __func__); 315 316 if (res < 0) 317 devstat_errbuf[buflen] = '\0'; 318 319 retval = -1; 320 } 321 322 return(retval); 323 } 324 325 /* 326 * Get the current list of devices and statistics, and the current 327 * generation number. 328 * 329 * Return values: 330 * -1 -- error 331 * 0 -- device list is unchanged 332 * 1 -- device list has changed 333 */ 334 int 335 devstat_getdevs(kvm_t *kd, struct statinfo *stats) 336 { 337 int error; 338 size_t dssize; 339 long oldgeneration; 340 int retval = 0; 341 struct devinfo *dinfo; 342 struct timespec ts; 343 344 dinfo = stats->dinfo; 345 346 if (dinfo == NULL) { 347 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 348 "%s: stats->dinfo was NULL", __func__); 349 return(-1); 350 } 351 352 oldgeneration = dinfo->generation; 353 354 if (kd == NULL) { 355 clock_gettime(CLOCK_MONOTONIC, &ts); 356 stats->snap_time = ts.tv_sec + ts.tv_nsec * 1e-9; 357 358 /* If this is our first time through, mem_ptr will be null. */ 359 if (dinfo->mem_ptr == NULL) { 360 /* 361 * Get the number of devices. If it's negative, it's an 362 * error. Don't bother setting the error string, since 363 * getnumdevs() has already done that for us. 364 */ 365 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0) 366 return(-1); 367 368 /* 369 * The kern.devstat.all sysctl returns the current 370 * generation number, as well as all the devices. 371 * So we need four bytes more. 372 */ 373 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 374 sizeof(long); 375 dinfo->mem_ptr = (u_int8_t *)malloc(dssize); 376 if (dinfo->mem_ptr == NULL) { 377 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 378 "%s: Cannot allocate memory for mem_ptr element", 379 __func__); 380 return(-1); 381 } 382 } else 383 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 384 sizeof(long); 385 386 /* 387 * Request all of the devices. We only really allow for one 388 * ENOMEM failure. It would, of course, be possible to just go 389 * in a loop and keep reallocing the device structure until we 390 * don't get ENOMEM back. I'm not sure it's worth it, though. 391 * If devices are being added to the system that quickly, maybe 392 * the user can just wait until all devices are added. 393 */ 394 for (;;) { 395 error = sysctlbyname("kern.devstat.all", 396 dinfo->mem_ptr, 397 &dssize, NULL, 0); 398 if (error != -1 || errno != EBUSY) 399 break; 400 } 401 if (error == -1) { 402 /* 403 * If we get ENOMEM back, that means that there are 404 * more devices now, so we need to allocate more 405 * space for the device array. 406 */ 407 if (errno == ENOMEM) { 408 /* 409 * No need to set the error string here, 410 * devstat_getnumdevs() will do that if it fails. 411 */ 412 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0) 413 return(-1); 414 415 dssize = (dinfo->numdevs * 416 sizeof(struct devstat)) + sizeof(long); 417 dinfo->mem_ptr = (u_int8_t *) 418 realloc(dinfo->mem_ptr, dssize); 419 if ((error = sysctlbyname("kern.devstat.all", 420 dinfo->mem_ptr, &dssize, NULL, 0)) == -1) { 421 snprintf(devstat_errbuf, 422 sizeof(devstat_errbuf), 423 "%s: error getting device " 424 "stats\n%s: %s", __func__, 425 __func__, strerror(errno)); 426 return(-1); 427 } 428 } else { 429 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 430 "%s: error getting device stats\n" 431 "%s: %s", __func__, __func__, 432 strerror(errno)); 433 return(-1); 434 } 435 } 436 437 } else { 438 if (KREADNL(kd, X_TIME_UPTIME, ts.tv_sec) == -1) 439 return(-1); 440 else 441 stats->snap_time = ts.tv_sec; 442 443 /* 444 * This is of course non-atomic, but since we are working 445 * on a core dump, the generation is unlikely to change 446 */ 447 if ((dinfo->numdevs = devstat_getnumdevs(kd)) == -1) 448 return(-1); 449 if ((dinfo->mem_ptr = (u_int8_t *)get_devstat_kvm(kd)) == NULL) 450 return(-1); 451 } 452 /* 453 * The sysctl spits out the generation as the first four bytes, 454 * then all of the device statistics structures. 455 */ 456 dinfo->generation = *(long *)dinfo->mem_ptr; 457 458 /* 459 * If the generation has changed, and if the current number of 460 * devices is not the same as the number of devices recorded in the 461 * devinfo structure, it is likely that the device list has shrunk. 462 * The reason that it is likely that the device list has shrunk in 463 * this case is that if the device list has grown, the sysctl above 464 * will return an ENOMEM error, and we will reset the number of 465 * devices and reallocate the device array. If the second sysctl 466 * fails, we will return an error and therefore never get to this 467 * point. If the device list has shrunk, the sysctl will not 468 * return an error since we have more space allocated than is 469 * necessary. So, in the shrinkage case, we catch it here and 470 * reallocate the array so that we don't use any more space than is 471 * necessary. 472 */ 473 if (oldgeneration != dinfo->generation) { 474 if (devstat_getnumdevs(kd) != dinfo->numdevs) { 475 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0) 476 return(-1); 477 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 478 sizeof(long); 479 dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr, 480 dssize); 481 } 482 retval = 1; 483 } 484 485 dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long)); 486 487 return(retval); 488 } 489 490 /* 491 * selectdevs(): 492 * 493 * Devices are selected/deselected based upon the following criteria: 494 * - devices specified by the user on the command line 495 * - devices matching any device type expressions given on the command line 496 * - devices with the highest I/O, if 'top' mode is enabled 497 * - the first n unselected devices in the device list, if maxshowdevs 498 * devices haven't already been selected and if the user has not 499 * specified any devices on the command line and if we're in "add" mode. 500 * 501 * Input parameters: 502 * - device selection list (dev_select) 503 * - current number of devices selected (num_selected) 504 * - total number of devices in the selection list (num_selections) 505 * - devstat generation as of the last time selectdevs() was called 506 * (select_generation) 507 * - current devstat generation (current_generation) 508 * - current list of devices and statistics (devices) 509 * - number of devices in the current device list (numdevs) 510 * - compiled version of the command line device type arguments (matches) 511 * - This is optional. If the number of devices is 0, this will be ignored. 512 * - The matching code pays attention to the current selection mode. So 513 * if you pass in a matching expression, it will be evaluated based 514 * upon the selection mode that is passed in. See below for details. 515 * - number of device type matching expressions (num_matches) 516 * - Set to 0 to disable the matching code. 517 * - list of devices specified on the command line by the user (dev_selections) 518 * - number of devices selected on the command line by the user 519 * (num_dev_selections) 520 * - Our selection mode. There are four different selection modes: 521 * - add mode. (DS_SELECT_ADD) Any devices matching devices explicitly 522 * selected by the user or devices matching a pattern given by the 523 * user will be selected in addition to devices that are already 524 * selected. Additional devices will be selected, up to maxshowdevs 525 * number of devices. 526 * - only mode. (DS_SELECT_ONLY) Only devices matching devices 527 * explicitly given by the user or devices matching a pattern 528 * given by the user will be selected. No other devices will be 529 * selected. 530 * - addonly mode. (DS_SELECT_ADDONLY) This is similar to add and 531 * only. Basically, this will not de-select any devices that are 532 * current selected, as only mode would, but it will also not 533 * gratuitously select up to maxshowdevs devices as add mode would. 534 * - remove mode. (DS_SELECT_REMOVE) Any devices matching devices 535 * explicitly selected by the user or devices matching a pattern 536 * given by the user will be de-selected. 537 * - maximum number of devices we can select (maxshowdevs) 538 * - flag indicating whether or not we're in 'top' mode (perf_select) 539 * 540 * Output data: 541 * - the device selection list may be modified and passed back out 542 * - the number of devices selected and the total number of items in the 543 * device selection list may be changed 544 * - the selection generation may be changed to match the current generation 545 * 546 * Return values: 547 * -1 -- error 548 * 0 -- selected devices are unchanged 549 * 1 -- selected devices changed 550 */ 551 int 552 devstat_selectdevs(struct device_selection **dev_select, int *num_selected, 553 int *num_selections, long *select_generation, 554 long current_generation, struct devstat *devices, 555 int numdevs, struct devstat_match *matches, int num_matches, 556 char **dev_selections, int num_dev_selections, 557 devstat_select_mode select_mode, int maxshowdevs, 558 int perf_select) 559 { 560 int i, j, k; 561 int init_selections = 0, init_selected_var = 0; 562 struct device_selection *old_dev_select = NULL; 563 int old_num_selections = 0, old_num_selected; 564 int selection_number = 0; 565 int changed = 0, found = 0; 566 567 if ((dev_select == NULL) || (devices == NULL) || (numdevs < 0)) 568 return(-1); 569 570 /* 571 * We always want to make sure that we have as many dev_select 572 * entries as there are devices. 573 */ 574 /* 575 * In this case, we haven't selected devices before. 576 */ 577 if (*dev_select == NULL) { 578 *dev_select = (struct device_selection *)malloc(numdevs * 579 sizeof(struct device_selection)); 580 *select_generation = current_generation; 581 init_selections = 1; 582 changed = 1; 583 /* 584 * In this case, we have selected devices before, but the device 585 * list has changed since we last selected devices, so we need to 586 * either enlarge or reduce the size of the device selection list. 587 * But delay the resizing until after copying the data to old_dev_select 588 * as to not lose any data in the case of reducing the size. 589 */ 590 } else if (*num_selections != numdevs) { 591 *select_generation = current_generation; 592 init_selections = 1; 593 /* 594 * In this case, we've selected devices before, and the selection 595 * list is the same size as it was the last time, but the device 596 * list has changed. 597 */ 598 } else if (*select_generation < current_generation) { 599 *select_generation = current_generation; 600 init_selections = 1; 601 } 602 603 if (*dev_select == NULL) { 604 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 605 "%s: Cannot (re)allocate memory for dev_select argument", 606 __func__); 607 return(-1); 608 } 609 610 /* 611 * If we're in "only" mode, we want to clear out the selected 612 * variable since we're going to select exactly what the user wants 613 * this time through. 614 */ 615 if (select_mode == DS_SELECT_ONLY) 616 init_selected_var = 1; 617 618 /* 619 * In all cases, we want to back up the number of selected devices. 620 * It is a quick and accurate way to determine whether the selected 621 * devices have changed. 622 */ 623 old_num_selected = *num_selected; 624 625 /* 626 * We want to make a backup of the current selection list if 627 * the list of devices has changed, or if we're in performance 628 * selection mode. In both cases, we don't want to make a backup 629 * if we already know for sure that the list will be different. 630 * This is certainly the case if this is our first time through the 631 * selection code. 632 */ 633 if (((init_selected_var != 0) || (init_selections != 0) 634 || (perf_select != 0)) && (changed == 0)){ 635 old_dev_select = (struct device_selection *)malloc( 636 *num_selections * sizeof(struct device_selection)); 637 if (old_dev_select == NULL) { 638 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 639 "%s: Cannot allocate memory for selection list backup", 640 __func__); 641 return(-1); 642 } 643 old_num_selections = *num_selections; 644 bcopy(*dev_select, old_dev_select, 645 sizeof(struct device_selection) * *num_selections); 646 } 647 648 if (!changed && *num_selections != numdevs) { 649 *dev_select = (struct device_selection *)reallocf(*dev_select, 650 numdevs * sizeof(struct device_selection)); 651 } 652 653 if (init_selections != 0) { 654 bzero(*dev_select, sizeof(struct device_selection) * numdevs); 655 656 for (i = 0; i < numdevs; i++) { 657 (*dev_select)[i].device_number = 658 devices[i].device_number; 659 strncpy((*dev_select)[i].device_name, 660 devices[i].device_name, 661 DEVSTAT_NAME_LEN); 662 (*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0'; 663 (*dev_select)[i].unit_number = devices[i].unit_number; 664 (*dev_select)[i].position = i; 665 } 666 *num_selections = numdevs; 667 } else if (init_selected_var != 0) { 668 for (i = 0; i < numdevs; i++) 669 (*dev_select)[i].selected = 0; 670 } 671 672 /* we haven't gotten around to selecting anything yet.. */ 673 if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0) 674 || (init_selected_var != 0)) 675 *num_selected = 0; 676 677 /* 678 * Look through any devices the user specified on the command line 679 * and see if they match known devices. If so, select them. 680 */ 681 for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) { 682 char tmpstr[80]; 683 684 snprintf(tmpstr, sizeof(tmpstr), "%s%d", 685 (*dev_select)[i].device_name, 686 (*dev_select)[i].unit_number); 687 for (j = 0; j < num_dev_selections; j++) { 688 if (strcmp(tmpstr, dev_selections[j]) == 0) { 689 /* 690 * Here we do different things based on the 691 * mode we're in. If we're in add or 692 * addonly mode, we only select this device 693 * if it hasn't already been selected. 694 * Otherwise, we would be unnecessarily 695 * changing the selection order and 696 * incrementing the selection count. If 697 * we're in only mode, we unconditionally 698 * select this device, since in only mode 699 * any previous selections are erased and 700 * manually specified devices are the first 701 * ones to be selected. If we're in remove 702 * mode, we de-select the specified device and 703 * decrement the selection count. 704 */ 705 switch(select_mode) { 706 case DS_SELECT_ADD: 707 case DS_SELECT_ADDONLY: 708 if ((*dev_select)[i].selected) 709 break; 710 /* FALLTHROUGH */ 711 case DS_SELECT_ONLY: 712 (*dev_select)[i].selected = 713 ++selection_number; 714 (*num_selected)++; 715 break; 716 case DS_SELECT_REMOVE: 717 (*dev_select)[i].selected = 0; 718 (*num_selected)--; 719 /* 720 * This isn't passed back out, we 721 * just use it to keep track of 722 * how many devices we've removed. 723 */ 724 num_dev_selections--; 725 break; 726 } 727 break; 728 } 729 } 730 } 731 732 /* 733 * Go through the user's device type expressions and select devices 734 * accordingly. We only do this if the number of devices already 735 * selected is less than the maximum number we can show. 736 */ 737 for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) { 738 /* We should probably indicate some error here */ 739 if ((matches[i].match_fields == DEVSTAT_MATCH_NONE) 740 || (matches[i].num_match_categories <= 0)) 741 continue; 742 743 for (j = 0; j < numdevs; j++) { 744 int num_match_categories; 745 746 num_match_categories = matches[i].num_match_categories; 747 748 /* 749 * Determine whether or not the current device 750 * matches the given matching expression. This if 751 * statement consists of three components: 752 * - the device type check 753 * - the device interface check 754 * - the passthrough check 755 * If a the matching test is successful, it 756 * decrements the number of matching categories, 757 * and if we've reached the last element that 758 * needed to be matched, the if statement succeeds. 759 * 760 */ 761 if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0) 762 && ((devices[j].device_type & DEVSTAT_TYPE_MASK) == 763 (matches[i].device_type & DEVSTAT_TYPE_MASK)) 764 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 765 || (((matches[i].match_fields & 766 DEVSTAT_MATCH_PASS) == 0) 767 && ((devices[j].device_type & 768 DEVSTAT_TYPE_PASS) == 0))) 769 && (--num_match_categories == 0)) 770 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0) 771 && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) == 772 (matches[i].device_type & DEVSTAT_TYPE_IF_MASK)) 773 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 774 || (((matches[i].match_fields & 775 DEVSTAT_MATCH_PASS) == 0) 776 && ((devices[j].device_type & 777 DEVSTAT_TYPE_PASS) == 0))) 778 && (--num_match_categories == 0)) 779 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 780 && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0) 781 && (--num_match_categories == 0))) { 782 783 /* 784 * This is probably a non-optimal solution 785 * to the problem that the devices in the 786 * device list will not be in the same 787 * order as the devices in the selection 788 * array. 789 */ 790 for (k = 0; k < numdevs; k++) { 791 if ((*dev_select)[k].position == j) { 792 found = 1; 793 break; 794 } 795 } 796 797 /* 798 * There shouldn't be a case where a device 799 * in the device list is not in the 800 * selection list...but it could happen. 801 */ 802 if (found != 1) { 803 fprintf(stderr, "selectdevs: couldn't" 804 " find %s%d in selection " 805 "list\n", 806 devices[j].device_name, 807 devices[j].unit_number); 808 break; 809 } 810 811 /* 812 * We do different things based upon the 813 * mode we're in. If we're in add or only 814 * mode, we go ahead and select this device 815 * if it hasn't already been selected. If 816 * it has already been selected, we leave 817 * it alone so we don't mess up the 818 * selection ordering. Manually specified 819 * devices have already been selected, and 820 * they have higher priority than pattern 821 * matched devices. If we're in remove 822 * mode, we de-select the given device and 823 * decrement the selected count. 824 */ 825 switch(select_mode) { 826 case DS_SELECT_ADD: 827 case DS_SELECT_ADDONLY: 828 case DS_SELECT_ONLY: 829 if ((*dev_select)[k].selected != 0) 830 break; 831 (*dev_select)[k].selected = 832 ++selection_number; 833 (*num_selected)++; 834 break; 835 case DS_SELECT_REMOVE: 836 (*dev_select)[k].selected = 0; 837 (*num_selected)--; 838 break; 839 } 840 } 841 } 842 } 843 844 /* 845 * Here we implement "top" mode. Devices are sorted in the 846 * selection array based on two criteria: whether or not they are 847 * selected (not selection number, just the fact that they are 848 * selected!) and the number of bytes in the "bytes" field of the 849 * selection structure. The bytes field generally must be kept up 850 * by the user. In the future, it may be maintained by library 851 * functions, but for now the user has to do the work. 852 * 853 * At first glance, it may seem wrong that we don't go through and 854 * select every device in the case where the user hasn't specified 855 * any devices or patterns. In fact, though, it won't make any 856 * difference in the device sorting. In that particular case (i.e. 857 * when we're in "add" or "only" mode, and the user hasn't 858 * specified anything) the first time through no devices will be 859 * selected, so the only criterion used to sort them will be their 860 * performance. The second time through, and every time thereafter, 861 * all devices will be selected, so again selection won't matter. 862 */ 863 if (perf_select != 0) { 864 865 /* Sort the device array by throughput */ 866 qsort(*dev_select, *num_selections, 867 sizeof(struct device_selection), 868 compare_select); 869 870 if (*num_selected == 0) { 871 /* 872 * Here we select every device in the array, if it 873 * isn't already selected. Because the 'selected' 874 * variable in the selection array entries contains 875 * the selection order, the devstats routine can show 876 * the devices that were selected first. 877 */ 878 for (i = 0; i < *num_selections; i++) { 879 if ((*dev_select)[i].selected == 0) { 880 (*dev_select)[i].selected = 881 ++selection_number; 882 (*num_selected)++; 883 } 884 } 885 } else { 886 selection_number = 0; 887 for (i = 0; i < *num_selections; i++) { 888 if ((*dev_select)[i].selected != 0) { 889 (*dev_select)[i].selected = 890 ++selection_number; 891 } 892 } 893 } 894 } 895 896 /* 897 * If we're in the "add" selection mode and if we haven't already 898 * selected maxshowdevs number of devices, go through the array and 899 * select any unselected devices. If we're in "only" mode, we 900 * obviously don't want to select anything other than what the user 901 * specifies. If we're in "remove" mode, it probably isn't a good 902 * idea to go through and select any more devices, since we might 903 * end up selecting something that the user wants removed. Through 904 * more complicated logic, we could actually figure this out, but 905 * that would probably require combining this loop with the various 906 * selections loops above. 907 */ 908 if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) { 909 for (i = 0; i < *num_selections; i++) 910 if ((*dev_select)[i].selected == 0) { 911 (*dev_select)[i].selected = ++selection_number; 912 (*num_selected)++; 913 } 914 } 915 916 /* 917 * Look at the number of devices that have been selected. If it 918 * has changed, set the changed variable. Otherwise, if we've 919 * made a backup of the selection list, compare it to the current 920 * selection list to see if the selected devices have changed. 921 */ 922 if ((changed == 0) && (old_num_selected != *num_selected)) 923 changed = 1; 924 else if ((changed == 0) && (old_dev_select != NULL)) { 925 /* 926 * Now we go through the selection list and we look at 927 * it three different ways. 928 */ 929 for (i = 0; (i < *num_selections) && (changed == 0) && 930 (i < old_num_selections); i++) { 931 /* 932 * If the device at index i in both the new and old 933 * selection arrays has the same device number and 934 * selection status, it hasn't changed. We 935 * continue on to the next index. 936 */ 937 if (((*dev_select)[i].device_number == 938 old_dev_select[i].device_number) 939 && ((*dev_select)[i].selected == 940 old_dev_select[i].selected)) 941 continue; 942 943 /* 944 * Now, if we're still going through the if 945 * statement, the above test wasn't true. So we 946 * check here to see if the device at index i in 947 * the current array is the same as the device at 948 * index i in the old array. If it is, that means 949 * that its selection number has changed. Set 950 * changed to 1 and exit the loop. 951 */ 952 else if ((*dev_select)[i].device_number == 953 old_dev_select[i].device_number) { 954 changed = 1; 955 break; 956 } 957 /* 958 * If we get here, then the device at index i in 959 * the current array isn't the same device as the 960 * device at index i in the old array. 961 */ 962 else { 963 found = 0; 964 965 /* 966 * Search through the old selection array 967 * looking for a device with the same 968 * device number as the device at index i 969 * in the current array. If the selection 970 * status is the same, then we mark it as 971 * found. If the selection status isn't 972 * the same, we break out of the loop. 973 * Since found isn't set, changed will be 974 * set to 1 below. 975 */ 976 for (j = 0; j < old_num_selections; j++) { 977 if (((*dev_select)[i].device_number == 978 old_dev_select[j].device_number) 979 && ((*dev_select)[i].selected == 980 old_dev_select[j].selected)){ 981 found = 1; 982 break; 983 } 984 else if ((*dev_select)[i].device_number 985 == old_dev_select[j].device_number) 986 break; 987 } 988 if (found == 0) 989 changed = 1; 990 } 991 } 992 } 993 if (old_dev_select != NULL) 994 free(old_dev_select); 995 996 return(changed); 997 } 998 999 /* 1000 * Comparison routine for qsort() above. Note that the comparison here is 1001 * backwards -- generally, it should return a value to indicate whether 1002 * arg1 is <, =, or > arg2. Instead, it returns the opposite. The reason 1003 * it returns the opposite is so that the selection array will be sorted in 1004 * order of decreasing performance. We sort on two parameters. The first 1005 * sort key is whether or not one or the other of the devices in question 1006 * has been selected. If one of them has, and the other one has not, the 1007 * selected device is automatically more important than the unselected 1008 * device. If neither device is selected, we judge the devices based upon 1009 * performance. 1010 */ 1011 static int 1012 compare_select(const void *arg1, const void *arg2) 1013 { 1014 if ((((const struct device_selection *)arg1)->selected) 1015 && (((const struct device_selection *)arg2)->selected == 0)) 1016 return(-1); 1017 else if ((((const struct device_selection *)arg1)->selected == 0) 1018 && (((const struct device_selection *)arg2)->selected)) 1019 return(1); 1020 else if (((const struct device_selection *)arg2)->bytes < 1021 ((const struct device_selection *)arg1)->bytes) 1022 return(-1); 1023 else if (((const struct device_selection *)arg2)->bytes > 1024 ((const struct device_selection *)arg1)->bytes) 1025 return(1); 1026 else 1027 return(0); 1028 } 1029 1030 /* 1031 * Take a string with the general format "arg1,arg2,arg3", and build a 1032 * device matching expression from it. 1033 */ 1034 int 1035 devstat_buildmatch(char *match_str, struct devstat_match **matches, 1036 int *num_matches) 1037 { 1038 char *tstr[5]; 1039 char **tempstr; 1040 int num_args; 1041 int i, j; 1042 1043 /* We can't do much without a string to parse */ 1044 if (match_str == NULL) { 1045 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1046 "%s: no match expression", __func__); 1047 return(-1); 1048 } 1049 1050 /* 1051 * Break the (comma delimited) input string out into separate strings. 1052 */ 1053 for (tempstr = tstr, num_args = 0; 1054 (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5);) 1055 if (**tempstr != '\0') { 1056 num_args++; 1057 if (++tempstr >= &tstr[5]) 1058 break; 1059 } 1060 1061 /* The user gave us too many type arguments */ 1062 if (num_args > 3) { 1063 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1064 "%s: too many type arguments", __func__); 1065 return(-1); 1066 } 1067 1068 if (*num_matches == 0) 1069 *matches = NULL; 1070 1071 *matches = (struct devstat_match *)reallocf(*matches, 1072 sizeof(struct devstat_match) * (*num_matches + 1)); 1073 1074 if (*matches == NULL) { 1075 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1076 "%s: Cannot allocate memory for matches list", __func__); 1077 return(-1); 1078 } 1079 1080 /* Make sure the current entry is clear */ 1081 bzero(&matches[0][*num_matches], sizeof(struct devstat_match)); 1082 1083 /* 1084 * Step through the arguments the user gave us and build a device 1085 * matching expression from them. 1086 */ 1087 for (i = 0; i < num_args; i++) { 1088 char *tempstr2, *tempstr3; 1089 1090 /* 1091 * Get rid of leading white space. 1092 */ 1093 tempstr2 = tstr[i]; 1094 while (isspace(*tempstr2) && (*tempstr2 != '\0')) 1095 tempstr2++; 1096 1097 /* 1098 * Get rid of trailing white space. 1099 */ 1100 tempstr3 = &tempstr2[strlen(tempstr2) - 1]; 1101 1102 while ((*tempstr3 != '\0') && (tempstr3 > tempstr2) 1103 && (isspace(*tempstr3))) { 1104 *tempstr3 = '\0'; 1105 tempstr3--; 1106 } 1107 1108 /* 1109 * Go through the match table comparing the user's 1110 * arguments to known device types, interfaces, etc. 1111 */ 1112 for (j = 0; match_table[j].match_str != NULL; j++) { 1113 /* 1114 * We do case-insensitive matching, in case someone 1115 * wants to enter "SCSI" instead of "scsi" or 1116 * something like that. Only compare as many 1117 * characters as are in the string in the match 1118 * table. This should help if someone tries to use 1119 * a super-long match expression. 1120 */ 1121 if (strncasecmp(tempstr2, match_table[j].match_str, 1122 strlen(match_table[j].match_str)) == 0) { 1123 /* 1124 * Make sure the user hasn't specified two 1125 * items of the same type, like "da" and 1126 * "cd". One device cannot be both. 1127 */ 1128 if (((*matches)[*num_matches].match_fields & 1129 match_table[j].match_field) != 0) { 1130 snprintf(devstat_errbuf, 1131 sizeof(devstat_errbuf), 1132 "%s: cannot have more than " 1133 "one match item in a single " 1134 "category", __func__); 1135 return(-1); 1136 } 1137 /* 1138 * If we've gotten this far, we have a 1139 * winner. Set the appropriate fields in 1140 * the match entry. 1141 */ 1142 (*matches)[*num_matches].match_fields |= 1143 match_table[j].match_field; 1144 (*matches)[*num_matches].device_type |= 1145 match_table[j].type; 1146 (*matches)[*num_matches].num_match_categories++; 1147 break; 1148 } 1149 } 1150 /* 1151 * We should have found a match in the above for loop. If 1152 * not, that means the user entered an invalid device type 1153 * or interface. 1154 */ 1155 if ((*matches)[*num_matches].num_match_categories != (i + 1)) { 1156 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1157 "%s: unknown match item \"%s\"", __func__, 1158 tstr[i]); 1159 return(-1); 1160 } 1161 } 1162 1163 (*num_matches)++; 1164 1165 return(0); 1166 } 1167 1168 /* 1169 * Compute a number of device statistics. Only one field is mandatory, and 1170 * that is "current". Everything else is optional. The caller passes in 1171 * pointers to variables to hold the various statistics he desires. If he 1172 * doesn't want a particular staistic, he should pass in a NULL pointer. 1173 * Return values: 1174 * 0 -- success 1175 * -1 -- failure 1176 */ 1177 int 1178 compute_stats(struct devstat *current, struct devstat *previous, 1179 long double etime, u_int64_t *total_bytes, 1180 u_int64_t *total_transfers, u_int64_t *total_blocks, 1181 long double *kb_per_transfer, long double *transfers_per_second, 1182 long double *mb_per_second, long double *blocks_per_second, 1183 long double *ms_per_transaction) 1184 { 1185 return(devstat_compute_statistics(current, previous, etime, 1186 total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP, 1187 total_bytes, 1188 total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP, 1189 total_transfers, 1190 total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP, 1191 total_blocks, 1192 kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP, 1193 kb_per_transfer, 1194 transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP, 1195 transfers_per_second, 1196 mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP, 1197 mb_per_second, 1198 blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP, 1199 blocks_per_second, 1200 ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP, 1201 ms_per_transaction, 1202 DSM_NONE)); 1203 } 1204 1205 1206 /* This is 1/2^64 */ 1207 #define BINTIME_SCALE 5.42101086242752217003726400434970855712890625e-20 1208 1209 long double 1210 devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time) 1211 { 1212 long double etime; 1213 1214 etime = cur_time->sec; 1215 etime += cur_time->frac * BINTIME_SCALE; 1216 if (prev_time != NULL) { 1217 etime -= prev_time->sec; 1218 etime -= prev_time->frac * BINTIME_SCALE; 1219 } 1220 return(etime); 1221 } 1222 1223 #define DELTA(field, index) \ 1224 (current->field[(index)] - (previous ? previous->field[(index)] : 0)) 1225 1226 #define DELTA_T(field) \ 1227 devstat_compute_etime(¤t->field, \ 1228 (previous ? &previous->field : NULL)) 1229 1230 int 1231 devstat_compute_statistics(struct devstat *current, struct devstat *previous, 1232 long double etime, ...) 1233 { 1234 u_int64_t totalbytes, totalbytesread, totalbyteswrite, totalbytesfree; 1235 u_int64_t totaltransfers, totaltransfersread, totaltransferswrite; 1236 u_int64_t totaltransfersother, totalblocks, totalblocksread; 1237 u_int64_t totalblockswrite, totaltransfersfree, totalblocksfree; 1238 long double totalduration, totaldurationread, totaldurationwrite; 1239 long double totaldurationfree, totaldurationother; 1240 va_list ap; 1241 devstat_metric metric; 1242 u_int64_t *destu64; 1243 long double *destld; 1244 int retval; 1245 1246 retval = 0; 1247 1248 /* 1249 * current is the only mandatory field. 1250 */ 1251 if (current == NULL) { 1252 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1253 "%s: current stats structure was NULL", __func__); 1254 return(-1); 1255 } 1256 1257 totalbytesread = DELTA(bytes, DEVSTAT_READ); 1258 totalbyteswrite = DELTA(bytes, DEVSTAT_WRITE); 1259 totalbytesfree = DELTA(bytes, DEVSTAT_FREE); 1260 totalbytes = totalbytesread + totalbyteswrite + totalbytesfree; 1261 1262 totaltransfersread = DELTA(operations, DEVSTAT_READ); 1263 totaltransferswrite = DELTA(operations, DEVSTAT_WRITE); 1264 totaltransfersother = DELTA(operations, DEVSTAT_NO_DATA); 1265 totaltransfersfree = DELTA(operations, DEVSTAT_FREE); 1266 totaltransfers = totaltransfersread + totaltransferswrite + 1267 totaltransfersother + totaltransfersfree; 1268 1269 totalblocks = totalbytes; 1270 totalblocksread = totalbytesread; 1271 totalblockswrite = totalbyteswrite; 1272 totalblocksfree = totalbytesfree; 1273 1274 if (current->block_size > 0) { 1275 totalblocks /= current->block_size; 1276 totalblocksread /= current->block_size; 1277 totalblockswrite /= current->block_size; 1278 totalblocksfree /= current->block_size; 1279 } else { 1280 totalblocks /= 512; 1281 totalblocksread /= 512; 1282 totalblockswrite /= 512; 1283 totalblocksfree /= 512; 1284 } 1285 1286 totaldurationread = DELTA_T(duration[DEVSTAT_READ]); 1287 totaldurationwrite = DELTA_T(duration[DEVSTAT_WRITE]); 1288 totaldurationfree = DELTA_T(duration[DEVSTAT_FREE]); 1289 totaldurationother = DELTA_T(duration[DEVSTAT_NO_DATA]); 1290 totalduration = totaldurationread + totaldurationwrite + 1291 totaldurationfree + totaldurationother; 1292 1293 va_start(ap, etime); 1294 1295 while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) { 1296 1297 if (metric == DSM_NONE) 1298 break; 1299 1300 if (metric >= DSM_MAX) { 1301 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1302 "%s: metric %d is out of range", __func__, 1303 metric); 1304 retval = -1; 1305 goto bailout; 1306 } 1307 1308 switch (devstat_arg_list[metric].argtype) { 1309 case DEVSTAT_ARG_UINT64: 1310 destu64 = (u_int64_t *)va_arg(ap, u_int64_t *); 1311 break; 1312 case DEVSTAT_ARG_LD: 1313 destld = (long double *)va_arg(ap, long double *); 1314 break; 1315 case DEVSTAT_ARG_SKIP: 1316 destld = (long double *)va_arg(ap, long double *); 1317 break; 1318 default: 1319 retval = -1; 1320 goto bailout; 1321 break; /* NOTREACHED */ 1322 } 1323 1324 if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP) 1325 continue; 1326 1327 switch (metric) { 1328 case DSM_TOTAL_BYTES: 1329 *destu64 = totalbytes; 1330 break; 1331 case DSM_TOTAL_BYTES_READ: 1332 *destu64 = totalbytesread; 1333 break; 1334 case DSM_TOTAL_BYTES_WRITE: 1335 *destu64 = totalbyteswrite; 1336 break; 1337 case DSM_TOTAL_BYTES_FREE: 1338 *destu64 = totalbytesfree; 1339 break; 1340 case DSM_TOTAL_TRANSFERS: 1341 *destu64 = totaltransfers; 1342 break; 1343 case DSM_TOTAL_TRANSFERS_READ: 1344 *destu64 = totaltransfersread; 1345 break; 1346 case DSM_TOTAL_TRANSFERS_WRITE: 1347 *destu64 = totaltransferswrite; 1348 break; 1349 case DSM_TOTAL_TRANSFERS_FREE: 1350 *destu64 = totaltransfersfree; 1351 break; 1352 case DSM_TOTAL_TRANSFERS_OTHER: 1353 *destu64 = totaltransfersother; 1354 break; 1355 case DSM_TOTAL_BLOCKS: 1356 *destu64 = totalblocks; 1357 break; 1358 case DSM_TOTAL_BLOCKS_READ: 1359 *destu64 = totalblocksread; 1360 break; 1361 case DSM_TOTAL_BLOCKS_WRITE: 1362 *destu64 = totalblockswrite; 1363 break; 1364 case DSM_TOTAL_BLOCKS_FREE: 1365 *destu64 = totalblocksfree; 1366 break; 1367 case DSM_KB_PER_TRANSFER: 1368 *destld = totalbytes; 1369 *destld /= 1024; 1370 if (totaltransfers > 0) 1371 *destld /= totaltransfers; 1372 else 1373 *destld = 0.0; 1374 break; 1375 case DSM_KB_PER_TRANSFER_READ: 1376 *destld = totalbytesread; 1377 *destld /= 1024; 1378 if (totaltransfersread > 0) 1379 *destld /= totaltransfersread; 1380 else 1381 *destld = 0.0; 1382 break; 1383 case DSM_KB_PER_TRANSFER_WRITE: 1384 *destld = totalbyteswrite; 1385 *destld /= 1024; 1386 if (totaltransferswrite > 0) 1387 *destld /= totaltransferswrite; 1388 else 1389 *destld = 0.0; 1390 break; 1391 case DSM_KB_PER_TRANSFER_FREE: 1392 *destld = totalbytesfree; 1393 *destld /= 1024; 1394 if (totaltransfersfree > 0) 1395 *destld /= totaltransfersfree; 1396 else 1397 *destld = 0.0; 1398 break; 1399 case DSM_TRANSFERS_PER_SECOND: 1400 if (etime > 0.0) { 1401 *destld = totaltransfers; 1402 *destld /= etime; 1403 } else 1404 *destld = 0.0; 1405 break; 1406 case DSM_TRANSFERS_PER_SECOND_READ: 1407 if (etime > 0.0) { 1408 *destld = totaltransfersread; 1409 *destld /= etime; 1410 } else 1411 *destld = 0.0; 1412 break; 1413 case DSM_TRANSFERS_PER_SECOND_WRITE: 1414 if (etime > 0.0) { 1415 *destld = totaltransferswrite; 1416 *destld /= etime; 1417 } else 1418 *destld = 0.0; 1419 break; 1420 case DSM_TRANSFERS_PER_SECOND_FREE: 1421 if (etime > 0.0) { 1422 *destld = totaltransfersfree; 1423 *destld /= etime; 1424 } else 1425 *destld = 0.0; 1426 break; 1427 case DSM_TRANSFERS_PER_SECOND_OTHER: 1428 if (etime > 0.0) { 1429 *destld = totaltransfersother; 1430 *destld /= etime; 1431 } else 1432 *destld = 0.0; 1433 break; 1434 case DSM_MB_PER_SECOND: 1435 *destld = totalbytes; 1436 *destld /= 1024 * 1024; 1437 if (etime > 0.0) 1438 *destld /= etime; 1439 else 1440 *destld = 0.0; 1441 break; 1442 case DSM_MB_PER_SECOND_READ: 1443 *destld = totalbytesread; 1444 *destld /= 1024 * 1024; 1445 if (etime > 0.0) 1446 *destld /= etime; 1447 else 1448 *destld = 0.0; 1449 break; 1450 case DSM_MB_PER_SECOND_WRITE: 1451 *destld = totalbyteswrite; 1452 *destld /= 1024 * 1024; 1453 if (etime > 0.0) 1454 *destld /= etime; 1455 else 1456 *destld = 0.0; 1457 break; 1458 case DSM_MB_PER_SECOND_FREE: 1459 *destld = totalbytesfree; 1460 *destld /= 1024 * 1024; 1461 if (etime > 0.0) 1462 *destld /= etime; 1463 else 1464 *destld = 0.0; 1465 break; 1466 case DSM_BLOCKS_PER_SECOND: 1467 *destld = totalblocks; 1468 if (etime > 0.0) 1469 *destld /= etime; 1470 else 1471 *destld = 0.0; 1472 break; 1473 case DSM_BLOCKS_PER_SECOND_READ: 1474 *destld = totalblocksread; 1475 if (etime > 0.0) 1476 *destld /= etime; 1477 else 1478 *destld = 0.0; 1479 break; 1480 case DSM_BLOCKS_PER_SECOND_WRITE: 1481 *destld = totalblockswrite; 1482 if (etime > 0.0) 1483 *destld /= etime; 1484 else 1485 *destld = 0.0; 1486 break; 1487 case DSM_BLOCKS_PER_SECOND_FREE: 1488 *destld = totalblocksfree; 1489 if (etime > 0.0) 1490 *destld /= etime; 1491 else 1492 *destld = 0.0; 1493 break; 1494 /* 1495 * Some devstat callers update the duration and some don't. 1496 * So this will only be accurate if they provide the 1497 * duration. 1498 */ 1499 case DSM_MS_PER_TRANSACTION: 1500 if (totaltransfers > 0) { 1501 *destld = totalduration; 1502 *destld /= totaltransfers; 1503 *destld *= 1000; 1504 } else 1505 *destld = 0.0; 1506 break; 1507 case DSM_MS_PER_TRANSACTION_READ: 1508 if (totaltransfersread > 0) { 1509 *destld = totaldurationread; 1510 *destld /= totaltransfersread; 1511 *destld *= 1000; 1512 } else 1513 *destld = 0.0; 1514 break; 1515 case DSM_MS_PER_TRANSACTION_WRITE: 1516 if (totaltransferswrite > 0) { 1517 *destld = totaldurationwrite; 1518 *destld /= totaltransferswrite; 1519 *destld *= 1000; 1520 } else 1521 *destld = 0.0; 1522 break; 1523 case DSM_MS_PER_TRANSACTION_FREE: 1524 if (totaltransfersfree > 0) { 1525 *destld = totaldurationfree; 1526 *destld /= totaltransfersfree; 1527 *destld *= 1000; 1528 } else 1529 *destld = 0.0; 1530 break; 1531 case DSM_MS_PER_TRANSACTION_OTHER: 1532 if (totaltransfersother > 0) { 1533 *destld = totaldurationother; 1534 *destld /= totaltransfersother; 1535 *destld *= 1000; 1536 } else 1537 *destld = 0.0; 1538 break; 1539 case DSM_BUSY_PCT: 1540 *destld = DELTA_T(busy_time); 1541 if (*destld < 0) 1542 *destld = 0; 1543 *destld /= etime; 1544 *destld *= 100; 1545 if (*destld < 0) 1546 *destld = 0; 1547 break; 1548 case DSM_QUEUE_LENGTH: 1549 *destu64 = current->start_count - current->end_count; 1550 break; 1551 case DSM_TOTAL_DURATION: 1552 *destld = totalduration; 1553 break; 1554 case DSM_TOTAL_DURATION_READ: 1555 *destld = totaldurationread; 1556 break; 1557 case DSM_TOTAL_DURATION_WRITE: 1558 *destld = totaldurationwrite; 1559 break; 1560 case DSM_TOTAL_DURATION_FREE: 1561 *destld = totaldurationfree; 1562 break; 1563 case DSM_TOTAL_DURATION_OTHER: 1564 *destld = totaldurationother; 1565 break; 1566 case DSM_TOTAL_BUSY_TIME: 1567 *destld = DELTA_T(busy_time); 1568 break; 1569 /* 1570 * XXX: comment out the default block to see if any case's are missing. 1571 */ 1572 #if 1 1573 default: 1574 /* 1575 * This shouldn't happen, since we should have 1576 * caught any out of range metrics at the top of 1577 * the loop. 1578 */ 1579 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1580 "%s: unknown metric %d", __func__, metric); 1581 retval = -1; 1582 goto bailout; 1583 break; /* NOTREACHED */ 1584 #endif 1585 } 1586 } 1587 1588 bailout: 1589 1590 va_end(ap); 1591 return(retval); 1592 } 1593 1594 static int 1595 readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes) 1596 { 1597 1598 if (kvm_read(kd, addr, buf, nbytes) == -1) { 1599 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1600 "%s: error reading value (kvm_read): %s", __func__, 1601 kvm_geterr(kd)); 1602 return(-1); 1603 } 1604 return(0); 1605 } 1606 1607 static int 1608 readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes) 1609 { 1610 struct nlist nl[2]; 1611 1612 nl[0].n_name = (char *)name; 1613 nl[1].n_name = NULL; 1614 1615 if (kvm_nlist(kd, nl) == -1) { 1616 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1617 "%s: error getting name list (kvm_nlist): %s", 1618 __func__, kvm_geterr(kd)); 1619 return(-1); 1620 } 1621 return(readkmem(kd, nl[0].n_value, buf, nbytes)); 1622 } 1623 1624 /* 1625 * This duplicates the functionality of the kernel sysctl handler for poking 1626 * through crash dumps. 1627 */ 1628 static char * 1629 get_devstat_kvm(kvm_t *kd) 1630 { 1631 int i, wp; 1632 long gen; 1633 struct devstat *nds; 1634 struct devstat ds; 1635 struct devstatlist dhead; 1636 int num_devs; 1637 char *rv = NULL; 1638 1639 if ((num_devs = devstat_getnumdevs(kd)) <= 0) 1640 return(NULL); 1641 if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1) 1642 return(NULL); 1643 1644 nds = STAILQ_FIRST(&dhead); 1645 1646 if ((rv = malloc(sizeof(gen))) == NULL) { 1647 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1648 "%s: out of memory (initial malloc failed)", 1649 __func__); 1650 return(NULL); 1651 } 1652 gen = devstat_getgeneration(kd); 1653 memcpy(rv, &gen, sizeof(gen)); 1654 wp = sizeof(gen); 1655 /* 1656 * Now push out all the devices. 1657 */ 1658 for (i = 0; (nds != NULL) && (i < num_devs); 1659 nds = STAILQ_NEXT(nds, dev_links), i++) { 1660 if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) { 1661 free(rv); 1662 return(NULL); 1663 } 1664 nds = &ds; 1665 rv = (char *)reallocf(rv, sizeof(gen) + 1666 sizeof(ds) * (i + 1)); 1667 if (rv == NULL) { 1668 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1669 "%s: out of memory (malloc failed)", 1670 __func__); 1671 return(NULL); 1672 } 1673 memcpy(rv + wp, &ds, sizeof(ds)); 1674 wp += sizeof(ds); 1675 } 1676 return(rv); 1677 } 1678