1 /* $NetBSD: svc_dg.c,v 1.4 2000/07/06 03:10:35 christos Exp $ */ 2 3 /*- 4 * SPDX-License-Identifier: BSD-3-Clause 5 * 6 * Copyright (c) 2009, Sun Microsystems, Inc. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions are met: 11 * - Redistributions of source code must retain the above copyright notice, 12 * this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above copyright notice, 14 * this list of conditions and the following disclaimer in the documentation 15 * and/or other materials provided with the distribution. 16 * - Neither the name of Sun Microsystems, Inc. nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 24 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1986-1991 by Sun Microsystems Inc. 35 */ 36 37 /* 38 * svc_dg.c, Server side for connectionless RPC. 39 * 40 * Does some caching in the hopes of achieving execute-at-most-once semantics. 41 */ 42 43 #include "namespace.h" 44 #include "reentrant.h" 45 #include <sys/types.h> 46 #include <sys/socket.h> 47 #include <rpc/rpc.h> 48 #include <rpc/svc_dg.h> 49 #include <assert.h> 50 #include <errno.h> 51 #include <unistd.h> 52 #include <stdio.h> 53 #include <stdlib.h> 54 #include <string.h> 55 #ifdef RPC_CACHE_DEBUG 56 #include <netconfig.h> 57 #include <netdir.h> 58 #endif 59 #include <err.h> 60 #include "un-namespace.h" 61 62 #include "rpc_com.h" 63 #include "mt_misc.h" 64 65 #define su_data(xprt) ((struct svc_dg_data *)((xprt)->xp_p2)) 66 #define rpc_buffer(xprt) ((xprt)->xp_p1) 67 68 #ifndef MAX 69 #define MAX(a, b) (((a) > (b)) ? (a) : (b)) 70 #endif 71 72 static void svc_dg_ops(SVCXPRT *); 73 static enum xprt_stat svc_dg_stat(SVCXPRT *); 74 static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *); 75 static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *); 76 static bool_t svc_dg_getargs(SVCXPRT *, xdrproc_t, void *); 77 static bool_t svc_dg_freeargs(SVCXPRT *, xdrproc_t, void *); 78 static void svc_dg_destroy(SVCXPRT *); 79 static bool_t svc_dg_control(SVCXPRT *, const u_int, void *); 80 static int cache_get(SVCXPRT *, struct rpc_msg *, char **, size_t *); 81 static void cache_set(SVCXPRT *, size_t); 82 int svc_dg_enablecache(SVCXPRT *, u_int); 83 84 /* 85 * Usage: 86 * xprt = svc_dg_create(sock, sendsize, recvsize); 87 * Does other connectionless specific initializations. 88 * Once *xprt is initialized, it is registered. 89 * see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable 90 * system defaults are chosen. 91 * The routines returns NULL if a problem occurred. 92 */ 93 static const char svc_dg_str[] = "svc_dg_create: %s"; 94 static const char svc_dg_err1[] = "could not get transport information"; 95 static const char svc_dg_err2[] = "transport does not support data transfer"; 96 static const char svc_dg_err3[] = "getsockname failed"; 97 static const char svc_dg_err4[] = "cannot set IP_RECVDSTADDR"; 98 static const char __no_mem_str[] = "out of memory"; 99 100 SVCXPRT * 101 svc_dg_create(int fd, u_int sendsize, u_int recvsize) 102 { 103 SVCXPRT *xprt; 104 struct svc_dg_data *su = NULL; 105 struct __rpc_sockinfo si; 106 struct sockaddr_storage ss; 107 socklen_t slen; 108 109 if (!__rpc_fd2sockinfo(fd, &si)) { 110 warnx(svc_dg_str, svc_dg_err1); 111 return (NULL); 112 } 113 /* 114 * Find the receive and the send size 115 */ 116 sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize); 117 recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize); 118 if ((sendsize == 0) || (recvsize == 0)) { 119 warnx(svc_dg_str, svc_dg_err2); 120 return (NULL); 121 } 122 123 xprt = svc_xprt_alloc(); 124 if (xprt == NULL) 125 goto freedata; 126 127 su = mem_alloc(sizeof (*su)); 128 if (su == NULL) 129 goto freedata; 130 su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4; 131 if ((rpc_buffer(xprt) = mem_alloc(su->su_iosz)) == NULL) 132 goto freedata; 133 xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz, 134 XDR_DECODE); 135 su->su_cache = NULL; 136 xprt->xp_fd = fd; 137 xprt->xp_p2 = su; 138 xprt->xp_verf.oa_base = su->su_verfbody; 139 svc_dg_ops(xprt); 140 xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage); 141 142 slen = sizeof ss; 143 if (_getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) { 144 warnx(svc_dg_str, svc_dg_err3); 145 goto freedata_nowarn; 146 } 147 xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage)); 148 xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage); 149 xprt->xp_ltaddr.len = slen; 150 memcpy(xprt->xp_ltaddr.buf, &ss, slen); 151 152 if (ss.ss_family == AF_INET) { 153 struct sockaddr_in *sin; 154 static const int true_value = 1; 155 156 sin = (struct sockaddr_in *)(void *)&ss; 157 if (sin->sin_addr.s_addr == INADDR_ANY) { 158 su->su_srcaddr.buf = mem_alloc(sizeof (ss)); 159 su->su_srcaddr.maxlen = sizeof (ss); 160 161 if (_setsockopt(fd, IPPROTO_IP, IP_RECVDSTADDR, 162 &true_value, sizeof(true_value))) { 163 warnx(svc_dg_str, svc_dg_err4); 164 goto freedata_nowarn; 165 } 166 } 167 } 168 169 xprt_register(xprt); 170 return (xprt); 171 freedata: 172 (void) warnx(svc_dg_str, __no_mem_str); 173 freedata_nowarn: 174 if (xprt) { 175 if (su) 176 (void) mem_free(su, sizeof (*su)); 177 svc_xprt_free(xprt); 178 } 179 return (NULL); 180 } 181 182 /*ARGSUSED*/ 183 static enum xprt_stat 184 svc_dg_stat(SVCXPRT *xprt) 185 { 186 return (XPRT_IDLE); 187 } 188 189 static int 190 svc_dg_recvfrom(int fd, char *buf, int buflen, 191 struct sockaddr *raddr, socklen_t *raddrlen, 192 struct sockaddr *laddr, socklen_t *laddrlen) 193 { 194 struct msghdr msg; 195 struct iovec msg_iov[1]; 196 struct sockaddr_in *lin = (struct sockaddr_in *)laddr; 197 int rlen; 198 bool_t have_lin = FALSE; 199 char tmp[CMSG_LEN(sizeof(*lin))]; 200 struct cmsghdr *cmsg; 201 202 memset((char *)&msg, 0, sizeof(msg)); 203 msg_iov[0].iov_base = buf; 204 msg_iov[0].iov_len = buflen; 205 msg.msg_iov = msg_iov; 206 msg.msg_iovlen = 1; 207 msg.msg_namelen = *raddrlen; 208 msg.msg_name = (char *)raddr; 209 if (laddr != NULL) { 210 msg.msg_control = (caddr_t)tmp; 211 msg.msg_controllen = CMSG_LEN(sizeof(*lin)); 212 } 213 rlen = _recvmsg(fd, &msg, 0); 214 if (rlen >= 0) 215 *raddrlen = msg.msg_namelen; 216 217 if (rlen == -1 || laddr == NULL || 218 msg.msg_controllen < sizeof(struct cmsghdr) || 219 msg.msg_flags & MSG_CTRUNC) 220 return rlen; 221 222 for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL; 223 cmsg = CMSG_NXTHDR(&msg, cmsg)) { 224 if (cmsg->cmsg_level == IPPROTO_IP && 225 cmsg->cmsg_type == IP_RECVDSTADDR) { 226 have_lin = TRUE; 227 memcpy(&lin->sin_addr, 228 (struct in_addr *)CMSG_DATA(cmsg), 229 sizeof(struct in_addr)); 230 break; 231 } 232 } 233 234 lin->sin_family = AF_INET; 235 lin->sin_port = 0; 236 *laddrlen = sizeof(struct sockaddr_in); 237 238 if (!have_lin) 239 lin->sin_addr.s_addr = INADDR_ANY; 240 241 return rlen; 242 } 243 244 static bool_t 245 svc_dg_recv(SVCXPRT *xprt, struct rpc_msg *msg) 246 { 247 struct svc_dg_data *su = su_data(xprt); 248 XDR *xdrs = &(su->su_xdrs); 249 char *reply; 250 struct sockaddr_storage ss; 251 socklen_t alen; 252 size_t replylen; 253 ssize_t rlen; 254 255 again: 256 alen = sizeof (struct sockaddr_storage); 257 rlen = svc_dg_recvfrom(xprt->xp_fd, rpc_buffer(xprt), su->su_iosz, 258 (struct sockaddr *)(void *)&ss, &alen, 259 (struct sockaddr *)su->su_srcaddr.buf, &su->su_srcaddr.len); 260 if (rlen == -1 && errno == EINTR) 261 goto again; 262 if (rlen == -1 || (rlen < (ssize_t)(4 * sizeof (u_int32_t)))) 263 return (FALSE); 264 if (xprt->xp_rtaddr.len < alen) { 265 if (xprt->xp_rtaddr.len != 0) 266 mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len); 267 xprt->xp_rtaddr.buf = mem_alloc(alen); 268 xprt->xp_rtaddr.len = alen; 269 } 270 memcpy(xprt->xp_rtaddr.buf, &ss, alen); 271 #ifdef PORTMAP 272 if (ss.ss_family == AF_INET) { 273 xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf; 274 xprt->xp_addrlen = sizeof (struct sockaddr_in); 275 } 276 #endif /* PORTMAP */ 277 xdrs->x_op = XDR_DECODE; 278 XDR_SETPOS(xdrs, 0); 279 if (! xdr_callmsg(xdrs, msg)) { 280 return (FALSE); 281 } 282 su->su_xid = msg->rm_xid; 283 if (su->su_cache != NULL) { 284 if (cache_get(xprt, msg, &reply, &replylen)) { 285 (void)_sendto(xprt->xp_fd, reply, replylen, 0, 286 (struct sockaddr *)(void *)&ss, alen); 287 return (FALSE); 288 } 289 } 290 return (TRUE); 291 } 292 293 static int 294 svc_dg_sendto(int fd, char *buf, int buflen, 295 const struct sockaddr *raddr, socklen_t raddrlen, 296 const struct sockaddr *laddr, socklen_t laddrlen) 297 { 298 struct msghdr msg; 299 struct iovec msg_iov[1]; 300 struct sockaddr_in *laddr_in = (struct sockaddr_in *)laddr; 301 struct in_addr *lin = &laddr_in->sin_addr; 302 char tmp[CMSG_SPACE(sizeof(*lin))]; 303 struct cmsghdr *cmsg; 304 305 memset((char *)&msg, 0, sizeof(msg)); 306 msg_iov[0].iov_base = buf; 307 msg_iov[0].iov_len = buflen; 308 msg.msg_iov = msg_iov; 309 msg.msg_iovlen = 1; 310 msg.msg_namelen = raddrlen; 311 msg.msg_name = (char *)raddr; 312 313 if (laddr != NULL && laddr->sa_family == AF_INET && 314 lin->s_addr != INADDR_ANY) { 315 msg.msg_control = (caddr_t)tmp; 316 msg.msg_controllen = CMSG_LEN(sizeof(*lin)); 317 cmsg = CMSG_FIRSTHDR(&msg); 318 cmsg->cmsg_len = CMSG_LEN(sizeof(*lin)); 319 cmsg->cmsg_level = IPPROTO_IP; 320 cmsg->cmsg_type = IP_SENDSRCADDR; 321 memcpy(CMSG_DATA(cmsg), lin, sizeof(*lin)); 322 } 323 324 return _sendmsg(fd, &msg, 0); 325 } 326 327 static bool_t 328 svc_dg_reply(SVCXPRT *xprt, struct rpc_msg *msg) 329 { 330 struct svc_dg_data *su = su_data(xprt); 331 XDR *xdrs = &(su->su_xdrs); 332 bool_t stat = TRUE; 333 size_t slen; 334 xdrproc_t xdr_proc; 335 caddr_t xdr_where; 336 337 xdrs->x_op = XDR_ENCODE; 338 XDR_SETPOS(xdrs, 0); 339 msg->rm_xid = su->su_xid; 340 if (msg->rm_reply.rp_stat == MSG_ACCEPTED && 341 msg->rm_reply.rp_acpt.ar_stat == SUCCESS) { 342 xdr_proc = msg->acpted_rply.ar_results.proc; 343 xdr_where = msg->acpted_rply.ar_results.where; 344 msg->acpted_rply.ar_results.proc = (xdrproc_t) xdr_void; 345 msg->acpted_rply.ar_results.where = NULL; 346 347 if (!xdr_replymsg(xdrs, msg) || 348 !SVCAUTH_WRAP(&SVC_AUTH(xprt), xdrs, xdr_proc, xdr_where)) 349 stat = FALSE; 350 } else { 351 stat = xdr_replymsg(xdrs, msg); 352 } 353 if (stat) { 354 slen = XDR_GETPOS(xdrs); 355 if (svc_dg_sendto(xprt->xp_fd, rpc_buffer(xprt), slen, 356 (struct sockaddr *)xprt->xp_rtaddr.buf, 357 (socklen_t)xprt->xp_rtaddr.len, 358 (struct sockaddr *)su->su_srcaddr.buf, 359 (socklen_t)su->su_srcaddr.len) == (ssize_t) slen) { 360 stat = TRUE; 361 if (su->su_cache) 362 cache_set(xprt, slen); 363 } 364 } 365 return (stat); 366 } 367 368 static bool_t 369 svc_dg_getargs(SVCXPRT *xprt, xdrproc_t xdr_args, void *args_ptr) 370 { 371 struct svc_dg_data *su; 372 373 assert(xprt != NULL); 374 su = su_data(xprt); 375 return (SVCAUTH_UNWRAP(&SVC_AUTH(xprt), 376 &su->su_xdrs, xdr_args, args_ptr)); 377 } 378 379 static bool_t 380 svc_dg_freeargs(SVCXPRT *xprt, xdrproc_t xdr_args, void *args_ptr) 381 { 382 XDR *xdrs = &(su_data(xprt)->su_xdrs); 383 384 xdrs->x_op = XDR_FREE; 385 return (*xdr_args)(xdrs, args_ptr); 386 } 387 388 static void 389 svc_dg_destroy(SVCXPRT *xprt) 390 { 391 struct svc_dg_data *su = su_data(xprt); 392 393 xprt_unregister(xprt); 394 if (xprt->xp_fd != -1) 395 (void)_close(xprt->xp_fd); 396 XDR_DESTROY(&(su->su_xdrs)); 397 (void) mem_free(rpc_buffer(xprt), su->su_iosz); 398 if (su->su_srcaddr.buf) 399 (void) mem_free(su->su_srcaddr.buf, su->su_srcaddr.maxlen); 400 (void) mem_free(su, sizeof (*su)); 401 if (xprt->xp_rtaddr.buf) 402 (void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen); 403 if (xprt->xp_ltaddr.buf) 404 (void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen); 405 free(xprt->xp_tp); 406 svc_xprt_free(xprt); 407 } 408 409 static bool_t 410 /*ARGSUSED*/ 411 svc_dg_control(SVCXPRT *xprt, const u_int rq, void *in) 412 { 413 return (FALSE); 414 } 415 416 static void 417 svc_dg_ops(SVCXPRT *xprt) 418 { 419 static struct xp_ops ops; 420 static struct xp_ops2 ops2; 421 422 /* VARIABLES PROTECTED BY ops_lock: ops */ 423 424 mutex_lock(&ops_lock); 425 if (ops.xp_recv == NULL) { 426 ops.xp_recv = svc_dg_recv; 427 ops.xp_stat = svc_dg_stat; 428 ops.xp_getargs = svc_dg_getargs; 429 ops.xp_reply = svc_dg_reply; 430 ops.xp_freeargs = svc_dg_freeargs; 431 ops.xp_destroy = svc_dg_destroy; 432 ops2.xp_control = svc_dg_control; 433 } 434 xprt->xp_ops = &ops; 435 xprt->xp_ops2 = &ops2; 436 mutex_unlock(&ops_lock); 437 } 438 439 /* The CACHING COMPONENT */ 440 441 /* 442 * Could have been a separate file, but some part of it depends upon the 443 * private structure of the client handle. 444 * 445 * Fifo cache for cl server 446 * Copies pointers to reply buffers into fifo cache 447 * Buffers are sent again if retransmissions are detected. 448 */ 449 450 #define SPARSENESS 4 /* 75% sparse */ 451 452 #define ALLOC(type, size) \ 453 (type *) mem_alloc((sizeof (type) * (size))) 454 455 #define MEMZERO(addr, type, size) \ 456 (void) memset((void *) (addr), 0, sizeof (type) * (int) (size)) 457 458 #define FREE(addr, type, size) \ 459 mem_free((addr), (sizeof (type) * (size))) 460 461 /* 462 * An entry in the cache 463 */ 464 typedef struct cache_node *cache_ptr; 465 struct cache_node { 466 /* 467 * Index into cache is xid, proc, vers, prog and address 468 */ 469 u_int32_t cache_xid; 470 rpcproc_t cache_proc; 471 rpcvers_t cache_vers; 472 rpcprog_t cache_prog; 473 struct netbuf cache_addr; 474 /* 475 * The cached reply and length 476 */ 477 char *cache_reply; 478 size_t cache_replylen; 479 /* 480 * Next node on the list, if there is a collision 481 */ 482 cache_ptr cache_next; 483 }; 484 485 /* 486 * The entire cache 487 */ 488 struct cl_cache { 489 u_int uc_size; /* size of cache */ 490 cache_ptr *uc_entries; /* hash table of entries in cache */ 491 cache_ptr *uc_fifo; /* fifo list of entries in cache */ 492 u_int uc_nextvictim; /* points to next victim in fifo list */ 493 rpcprog_t uc_prog; /* saved program number */ 494 rpcvers_t uc_vers; /* saved version number */ 495 rpcproc_t uc_proc; /* saved procedure number */ 496 }; 497 498 499 /* 500 * the hashing function 501 */ 502 #define CACHE_LOC(transp, xid) \ 503 (xid % (SPARSENESS * ((struct cl_cache *) \ 504 su_data(transp)->su_cache)->uc_size)) 505 506 /* 507 * Enable use of the cache. Returns 1 on success, 0 on failure. 508 * Note: there is no disable. 509 */ 510 static const char cache_enable_str[] = "svc_enablecache: %s %s"; 511 static const char alloc_err[] = "could not allocate cache "; 512 static const char enable_err[] = "cache already enabled"; 513 514 int 515 svc_dg_enablecache(SVCXPRT *transp, u_int size) 516 { 517 struct svc_dg_data *su = su_data(transp); 518 struct cl_cache *uc; 519 520 mutex_lock(&dupreq_lock); 521 if (su->su_cache != NULL) { 522 (void) warnx(cache_enable_str, enable_err, " "); 523 mutex_unlock(&dupreq_lock); 524 return (0); 525 } 526 uc = ALLOC(struct cl_cache, 1); 527 if (uc == NULL) { 528 warnx(cache_enable_str, alloc_err, " "); 529 mutex_unlock(&dupreq_lock); 530 return (0); 531 } 532 uc->uc_size = size; 533 uc->uc_nextvictim = 0; 534 uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS); 535 if (uc->uc_entries == NULL) { 536 warnx(cache_enable_str, alloc_err, "data"); 537 FREE(uc, struct cl_cache, 1); 538 mutex_unlock(&dupreq_lock); 539 return (0); 540 } 541 MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS); 542 uc->uc_fifo = ALLOC(cache_ptr, size); 543 if (uc->uc_fifo == NULL) { 544 warnx(cache_enable_str, alloc_err, "fifo"); 545 FREE(uc->uc_entries, cache_ptr, size * SPARSENESS); 546 FREE(uc, struct cl_cache, 1); 547 mutex_unlock(&dupreq_lock); 548 return (0); 549 } 550 MEMZERO(uc->uc_fifo, cache_ptr, size); 551 su->su_cache = (char *)(void *)uc; 552 mutex_unlock(&dupreq_lock); 553 return (1); 554 } 555 556 /* 557 * Set an entry in the cache. It assumes that the uc entry is set from 558 * the earlier call to cache_get() for the same procedure. This will always 559 * happen because cache_get() is calle by svc_dg_recv and cache_set() is called 560 * by svc_dg_reply(). All this hoopla because the right RPC parameters are 561 * not available at svc_dg_reply time. 562 */ 563 564 static const char cache_set_str[] = "cache_set: %s"; 565 static const char cache_set_err1[] = "victim not found"; 566 static const char cache_set_err2[] = "victim alloc failed"; 567 static const char cache_set_err3[] = "could not allocate new rpc buffer"; 568 569 static void 570 cache_set(SVCXPRT *xprt, size_t replylen) 571 { 572 cache_ptr victim; 573 cache_ptr *vicp; 574 struct svc_dg_data *su = su_data(xprt); 575 struct cl_cache *uc = (struct cl_cache *) su->su_cache; 576 u_int loc; 577 char *newbuf; 578 #ifdef RPC_CACHE_DEBUG 579 struct netconfig *nconf; 580 char *uaddr; 581 #endif 582 583 mutex_lock(&dupreq_lock); 584 /* 585 * Find space for the new entry, either by 586 * reusing an old entry, or by mallocing a new one 587 */ 588 victim = uc->uc_fifo[uc->uc_nextvictim]; 589 if (victim != NULL) { 590 loc = CACHE_LOC(xprt, victim->cache_xid); 591 for (vicp = &uc->uc_entries[loc]; 592 *vicp != NULL && *vicp != victim; 593 vicp = &(*vicp)->cache_next) 594 ; 595 if (*vicp == NULL) { 596 warnx(cache_set_str, cache_set_err1); 597 mutex_unlock(&dupreq_lock); 598 return; 599 } 600 *vicp = victim->cache_next; /* remove from cache */ 601 newbuf = victim->cache_reply; 602 } else { 603 victim = ALLOC(struct cache_node, 1); 604 if (victim == NULL) { 605 warnx(cache_set_str, cache_set_err2); 606 mutex_unlock(&dupreq_lock); 607 return; 608 } 609 newbuf = mem_alloc(su->su_iosz); 610 if (newbuf == NULL) { 611 warnx(cache_set_str, cache_set_err3); 612 FREE(victim, struct cache_node, 1); 613 mutex_unlock(&dupreq_lock); 614 return; 615 } 616 } 617 618 /* 619 * Store it away 620 */ 621 #ifdef RPC_CACHE_DEBUG 622 if (nconf = getnetconfigent(xprt->xp_netid)) { 623 uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr); 624 freenetconfigent(nconf); 625 printf( 626 "cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n", 627 su->su_xid, uc->uc_prog, uc->uc_vers, 628 uc->uc_proc, uaddr); 629 free(uaddr); 630 } 631 #endif 632 victim->cache_replylen = replylen; 633 victim->cache_reply = rpc_buffer(xprt); 634 rpc_buffer(xprt) = newbuf; 635 xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), 636 su->su_iosz, XDR_ENCODE); 637 victim->cache_xid = su->su_xid; 638 victim->cache_proc = uc->uc_proc; 639 victim->cache_vers = uc->uc_vers; 640 victim->cache_prog = uc->uc_prog; 641 victim->cache_addr = xprt->xp_rtaddr; 642 victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len); 643 (void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf, 644 (size_t)xprt->xp_rtaddr.len); 645 loc = CACHE_LOC(xprt, victim->cache_xid); 646 victim->cache_next = uc->uc_entries[loc]; 647 uc->uc_entries[loc] = victim; 648 uc->uc_fifo[uc->uc_nextvictim++] = victim; 649 uc->uc_nextvictim %= uc->uc_size; 650 mutex_unlock(&dupreq_lock); 651 } 652 653 /* 654 * Try to get an entry from the cache 655 * return 1 if found, 0 if not found and set the stage for cache_set() 656 */ 657 static int 658 cache_get(SVCXPRT *xprt, struct rpc_msg *msg, char **replyp, size_t *replylenp) 659 { 660 u_int loc; 661 cache_ptr ent; 662 struct svc_dg_data *su = su_data(xprt); 663 struct cl_cache *uc = (struct cl_cache *) su->su_cache; 664 #ifdef RPC_CACHE_DEBUG 665 struct netconfig *nconf; 666 char *uaddr; 667 #endif 668 669 mutex_lock(&dupreq_lock); 670 loc = CACHE_LOC(xprt, su->su_xid); 671 for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) { 672 if (ent->cache_xid == su->su_xid && 673 ent->cache_proc == msg->rm_call.cb_proc && 674 ent->cache_vers == msg->rm_call.cb_vers && 675 ent->cache_prog == msg->rm_call.cb_prog && 676 ent->cache_addr.len == xprt->xp_rtaddr.len && 677 (memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf, 678 xprt->xp_rtaddr.len) == 0)) { 679 #ifdef RPC_CACHE_DEBUG 680 if (nconf = getnetconfigent(xprt->xp_netid)) { 681 uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr); 682 freenetconfigent(nconf); 683 printf( 684 "cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n", 685 su->su_xid, msg->rm_call.cb_prog, 686 msg->rm_call.cb_vers, 687 msg->rm_call.cb_proc, uaddr); 688 free(uaddr); 689 } 690 #endif 691 *replyp = ent->cache_reply; 692 *replylenp = ent->cache_replylen; 693 mutex_unlock(&dupreq_lock); 694 return (1); 695 } 696 } 697 /* 698 * Failed to find entry 699 * Remember a few things so we can do a set later 700 */ 701 uc->uc_proc = msg->rm_call.cb_proc; 702 uc->uc_vers = msg->rm_call.cb_vers; 703 uc->uc_prog = msg->rm_call.cb_prog; 704 mutex_unlock(&dupreq_lock); 705 return (0); 706 } 707