xref: /freebsd/lib/libc/quad/muldi3.c (revision b740c88bfb6453416926271c089262e7164dace3)
1 /*-
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This software was developed by the Computer Systems Engineering group
6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7  * contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #if defined(LIBC_SCCS) && !defined(lint)
35 static char sccsid[] = "@(#)muldi3.c	8.1 (Berkeley) 6/4/93";
36 #endif /* LIBC_SCCS and not lint */
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "quad.h"
41 
42 /*
43  * Multiply two quads.
44  *
45  * Our algorithm is based on the following.  Split incoming quad values
46  * u and v (where u,v >= 0) into
47  *
48  *	u = 2^n u1  *  u0	(n = number of bits in `u_long', usu. 32)
49  *
50  * and
51  *
52  *	v = 2^n v1  *  v0
53  *
54  * Then
55  *
56  *	uv = 2^2n u1 v1  +  2^n u1 v0  +  2^n v1 u0  +  u0 v0
57  *	   = 2^2n u1 v1  +     2^n (u1 v0 + v1 u0)   +  u0 v0
58  *
59  * Now add 2^n u1 v1 to the first term and subtract it from the middle,
60  * and add 2^n u0 v0 to the last term and subtract it from the middle.
61  * This gives:
62  *
63  *	uv = (2^2n + 2^n) (u1 v1)  +
64  *	         (2^n)    (u1 v0 - u1 v1 + u0 v1 - u0 v0)  +
65  *	       (2^n + 1)  (u0 v0)
66  *
67  * Factoring the middle a bit gives us:
68  *
69  *	uv = (2^2n + 2^n) (u1 v1)  +			[u1v1 = high]
70  *		 (2^n)    (u1 - u0) (v0 - v1)  +	[(u1-u0)... = mid]
71  *	       (2^n + 1)  (u0 v0)			[u0v0 = low]
72  *
73  * The terms (u1 v1), (u1 - u0) (v0 - v1), and (u0 v0) can all be done
74  * in just half the precision of the original.  (Note that either or both
75  * of (u1 - u0) or (v0 - v1) may be negative.)
76  *
77  * This algorithm is from Knuth vol. 2 (2nd ed), section 4.3.3, p. 278.
78  *
79  * Since C does not give us a `long * long = quad' operator, we split
80  * our input quads into two longs, then split the two longs into two
81  * shorts.  We can then calculate `short * short = long' in native
82  * arithmetic.
83  *
84  * Our product should, strictly speaking, be a `long quad', with 128
85  * bits, but we are going to discard the upper 64.  In other words,
86  * we are not interested in uv, but rather in (uv mod 2^2n).  This
87  * makes some of the terms above vanish, and we get:
88  *
89  *	(2^n)(high) + (2^n)(mid) + (2^n + 1)(low)
90  *
91  * or
92  *
93  *	(2^n)(high + mid + low) + low
94  *
95  * Furthermore, `high' and `mid' can be computed mod 2^n, as any factor
96  * of 2^n in either one will also vanish.  Only `low' need be computed
97  * mod 2^2n, and only because of the final term above.
98  */
99 static quad_t __lmulq(u_long, u_long);
100 
101 quad_t
102 __muldi3(a, b)
103 	quad_t a, b;
104 {
105 	union uu u, v, low, prod;
106 	u_long high, mid, udiff, vdiff;
107 	int negall, negmid;
108 #define	u1	u.ul[H]
109 #define	u0	u.ul[L]
110 #define	v1	v.ul[H]
111 #define	v0	v.ul[L]
112 
113 	/*
114 	 * Get u and v such that u, v >= 0.  When this is finished,
115 	 * u1, u0, v1, and v0 will be directly accessible through the
116 	 * longword fields.
117 	 */
118 	if (a >= 0)
119 		u.q = a, negall = 0;
120 	else
121 		u.q = -a, negall = 1;
122 	if (b >= 0)
123 		v.q = b;
124 	else
125 		v.q = -b, negall ^= 1;
126 
127 	if (u1 == 0 && v1 == 0) {
128 		/*
129 		 * An (I hope) important optimization occurs when u1 and v1
130 		 * are both 0.  This should be common since most numbers
131 		 * are small.  Here the product is just u0*v0.
132 		 */
133 		prod.q = __lmulq(u0, v0);
134 	} else {
135 		/*
136 		 * Compute the three intermediate products, remembering
137 		 * whether the middle term is negative.  We can discard
138 		 * any upper bits in high and mid, so we can use native
139 		 * u_long * u_long => u_long arithmetic.
140 		 */
141 		low.q = __lmulq(u0, v0);
142 
143 		if (u1 >= u0)
144 			negmid = 0, udiff = u1 - u0;
145 		else
146 			negmid = 1, udiff = u0 - u1;
147 		if (v0 >= v1)
148 			vdiff = v0 - v1;
149 		else
150 			vdiff = v1 - v0, negmid ^= 1;
151 		mid = udiff * vdiff;
152 
153 		high = u1 * v1;
154 
155 		/*
156 		 * Assemble the final product.
157 		 */
158 		prod.ul[H] = high + (negmid ? -mid : mid) + low.ul[L] +
159 		    low.ul[H];
160 		prod.ul[L] = low.ul[L];
161 	}
162 	return (negall ? -prod.q : prod.q);
163 #undef u1
164 #undef u0
165 #undef v1
166 #undef v0
167 }
168 
169 /*
170  * Multiply two 2N-bit longs to produce a 4N-bit quad, where N is half
171  * the number of bits in a long (whatever that is---the code below
172  * does not care as long as quad.h does its part of the bargain---but
173  * typically N==16).
174  *
175  * We use the same algorithm from Knuth, but this time the modulo refinement
176  * does not apply.  On the other hand, since N is half the size of a long,
177  * we can get away with native multiplication---none of our input terms
178  * exceeds (ULONG_MAX >> 1).
179  *
180  * Note that, for u_long l, the quad-precision result
181  *
182  *	l << N
183  *
184  * splits into high and low longs as HHALF(l) and LHUP(l) respectively.
185  */
186 static quad_t
187 __lmulq(u_long u, u_long v)
188 {
189 	u_long u1, u0, v1, v0, udiff, vdiff, high, mid, low;
190 	u_long prodh, prodl, was;
191 	union uu prod;
192 	int neg;
193 
194 	u1 = HHALF(u);
195 	u0 = LHALF(u);
196 	v1 = HHALF(v);
197 	v0 = LHALF(v);
198 
199 	low = u0 * v0;
200 
201 	/* This is the same small-number optimization as before. */
202 	if (u1 == 0 && v1 == 0)
203 		return (low);
204 
205 	if (u1 >= u0)
206 		udiff = u1 - u0, neg = 0;
207 	else
208 		udiff = u0 - u1, neg = 1;
209 	if (v0 >= v1)
210 		vdiff = v0 - v1;
211 	else
212 		vdiff = v1 - v0, neg ^= 1;
213 	mid = udiff * vdiff;
214 
215 	high = u1 * v1;
216 
217 	/* prod = (high << 2N) + (high << N); */
218 	prodh = high + HHALF(high);
219 	prodl = LHUP(high);
220 
221 	/* if (neg) prod -= mid << N; else prod += mid << N; */
222 	if (neg) {
223 		was = prodl;
224 		prodl -= LHUP(mid);
225 		prodh -= HHALF(mid) + (prodl > was);
226 	} else {
227 		was = prodl;
228 		prodl += LHUP(mid);
229 		prodh += HHALF(mid) + (prodl < was);
230 	}
231 
232 	/* prod += low << N */
233 	was = prodl;
234 	prodl += LHUP(low);
235 	prodh += HHALF(low) + (prodl < was);
236 	/* ... + low; */
237 	if ((prodl += low) < low)
238 		prodh++;
239 
240 	/* return 4N-bit product */
241 	prod.ul[H] = prodh;
242 	prod.ul[L] = prodl;
243 	return (prod.q);
244 }
245