1 /* 2 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. 3 * 4 * Licensed under the OpenSSL license (the "License"). You may not use 5 * this file except in compliance with the License. You can obtain a copy 6 * in the file LICENSE in the source distribution or at 7 * https://www.openssl.org/source/license.html 8 */ 9 10 #include <stdio.h> 11 #include <stdlib.h> 12 #include <openssl/objects.h> 13 #include <openssl/evp.h> 14 #include <openssl/hmac.h> 15 #include <openssl/ocsp.h> 16 #include <openssl/conf.h> 17 #include <openssl/x509v3.h> 18 #include <openssl/dh.h> 19 #include <openssl/bn.h> 20 #include "internal/nelem.h" 21 #include "ssl_local.h" 22 #include <openssl/ct.h> 23 24 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey); 25 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu); 26 27 SSL3_ENC_METHOD const TLSv1_enc_data = { 28 tls1_enc, 29 tls1_mac, 30 tls1_setup_key_block, 31 tls1_generate_master_secret, 32 tls1_change_cipher_state, 33 tls1_final_finish_mac, 34 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, 35 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, 36 tls1_alert_code, 37 tls1_export_keying_material, 38 0, 39 ssl3_set_handshake_header, 40 tls_close_construct_packet, 41 ssl3_handshake_write 42 }; 43 44 SSL3_ENC_METHOD const TLSv1_1_enc_data = { 45 tls1_enc, 46 tls1_mac, 47 tls1_setup_key_block, 48 tls1_generate_master_secret, 49 tls1_change_cipher_state, 50 tls1_final_finish_mac, 51 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, 52 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, 53 tls1_alert_code, 54 tls1_export_keying_material, 55 SSL_ENC_FLAG_EXPLICIT_IV, 56 ssl3_set_handshake_header, 57 tls_close_construct_packet, 58 ssl3_handshake_write 59 }; 60 61 SSL3_ENC_METHOD const TLSv1_2_enc_data = { 62 tls1_enc, 63 tls1_mac, 64 tls1_setup_key_block, 65 tls1_generate_master_secret, 66 tls1_change_cipher_state, 67 tls1_final_finish_mac, 68 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, 69 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, 70 tls1_alert_code, 71 tls1_export_keying_material, 72 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF 73 | SSL_ENC_FLAG_TLS1_2_CIPHERS, 74 ssl3_set_handshake_header, 75 tls_close_construct_packet, 76 ssl3_handshake_write 77 }; 78 79 SSL3_ENC_METHOD const TLSv1_3_enc_data = { 80 tls13_enc, 81 tls1_mac, 82 tls13_setup_key_block, 83 tls13_generate_master_secret, 84 tls13_change_cipher_state, 85 tls13_final_finish_mac, 86 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, 87 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, 88 tls13_alert_code, 89 tls13_export_keying_material, 90 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF, 91 ssl3_set_handshake_header, 92 tls_close_construct_packet, 93 ssl3_handshake_write 94 }; 95 96 long tls1_default_timeout(void) 97 { 98 /* 99 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for 100 * http, the cache would over fill 101 */ 102 return (60 * 60 * 2); 103 } 104 105 int tls1_new(SSL *s) 106 { 107 if (!ssl3_new(s)) 108 return 0; 109 if (!s->method->ssl_clear(s)) 110 return 0; 111 112 return 1; 113 } 114 115 void tls1_free(SSL *s) 116 { 117 OPENSSL_free(s->ext.session_ticket); 118 ssl3_free(s); 119 } 120 121 int tls1_clear(SSL *s) 122 { 123 if (!ssl3_clear(s)) 124 return 0; 125 126 if (s->method->version == TLS_ANY_VERSION) 127 s->version = TLS_MAX_VERSION; 128 else 129 s->version = s->method->version; 130 131 return 1; 132 } 133 134 #ifndef OPENSSL_NO_EC 135 136 /* 137 * Table of curve information. 138 * Do not delete entries or reorder this array! It is used as a lookup 139 * table: the index of each entry is one less than the TLS curve id. 140 */ 141 static const TLS_GROUP_INFO nid_list[] = { 142 {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */ 143 {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */ 144 {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */ 145 {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */ 146 {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */ 147 {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */ 148 {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */ 149 {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */ 150 {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */ 151 {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */ 152 {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */ 153 {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */ 154 {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */ 155 {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */ 156 {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */ 157 {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */ 158 {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */ 159 {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */ 160 {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */ 161 {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */ 162 {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */ 163 {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */ 164 {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */ 165 {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */ 166 {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */ 167 {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */ 168 {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */ 169 {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */ 170 {EVP_PKEY_X25519, 128, TLS_CURVE_CUSTOM}, /* X25519 (29) */ 171 {EVP_PKEY_X448, 224, TLS_CURVE_CUSTOM}, /* X448 (30) */ 172 }; 173 174 static const unsigned char ecformats_default[] = { 175 TLSEXT_ECPOINTFORMAT_uncompressed, 176 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime, 177 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2 178 }; 179 180 /* The default curves */ 181 static const uint16_t eccurves_default[] = { 182 29, /* X25519 (29) */ 183 23, /* secp256r1 (23) */ 184 30, /* X448 (30) */ 185 25, /* secp521r1 (25) */ 186 24, /* secp384r1 (24) */ 187 }; 188 189 static const uint16_t suiteb_curves[] = { 190 TLSEXT_curve_P_256, 191 TLSEXT_curve_P_384 192 }; 193 194 const TLS_GROUP_INFO *tls1_group_id_lookup(uint16_t group_id) 195 { 196 /* ECC curves from RFC 4492 and RFC 7027 */ 197 if (group_id < 1 || group_id > OSSL_NELEM(nid_list)) 198 return NULL; 199 return &nid_list[group_id - 1]; 200 } 201 202 static uint16_t tls1_nid2group_id(int nid) 203 { 204 size_t i; 205 for (i = 0; i < OSSL_NELEM(nid_list); i++) { 206 if (nid_list[i].nid == nid) 207 return (uint16_t)(i + 1); 208 } 209 return 0; 210 } 211 212 /* 213 * Set *pgroups to the supported groups list and *pgroupslen to 214 * the number of groups supported. 215 */ 216 void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups, 217 size_t *pgroupslen) 218 { 219 220 /* For Suite B mode only include P-256, P-384 */ 221 switch (tls1_suiteb(s)) { 222 case SSL_CERT_FLAG_SUITEB_128_LOS: 223 *pgroups = suiteb_curves; 224 *pgroupslen = OSSL_NELEM(suiteb_curves); 225 break; 226 227 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: 228 *pgroups = suiteb_curves; 229 *pgroupslen = 1; 230 break; 231 232 case SSL_CERT_FLAG_SUITEB_192_LOS: 233 *pgroups = suiteb_curves + 1; 234 *pgroupslen = 1; 235 break; 236 237 default: 238 if (s->ext.supportedgroups == NULL) { 239 *pgroups = eccurves_default; 240 *pgroupslen = OSSL_NELEM(eccurves_default); 241 } else { 242 *pgroups = s->ext.supportedgroups; 243 *pgroupslen = s->ext.supportedgroups_len; 244 } 245 break; 246 } 247 } 248 249 /* See if curve is allowed by security callback */ 250 int tls_curve_allowed(SSL *s, uint16_t curve, int op) 251 { 252 const TLS_GROUP_INFO *cinfo = tls1_group_id_lookup(curve); 253 unsigned char ctmp[2]; 254 255 if (cinfo == NULL) 256 return 0; 257 # ifdef OPENSSL_NO_EC2M 258 if (cinfo->flags & TLS_CURVE_CHAR2) 259 return 0; 260 # endif 261 ctmp[0] = curve >> 8; 262 ctmp[1] = curve & 0xff; 263 return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)ctmp); 264 } 265 266 /* Return 1 if "id" is in "list" */ 267 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen) 268 { 269 size_t i; 270 for (i = 0; i < listlen; i++) 271 if (list[i] == id) 272 return 1; 273 return 0; 274 } 275 276 /*- 277 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0 278 * if there is no match. 279 * For nmatch == -1, return number of matches 280 * For nmatch == -2, return the id of the group to use for 281 * a tmp key, or 0 if there is no match. 282 */ 283 uint16_t tls1_shared_group(SSL *s, int nmatch) 284 { 285 const uint16_t *pref, *supp; 286 size_t num_pref, num_supp, i; 287 int k; 288 289 /* Can't do anything on client side */ 290 if (s->server == 0) 291 return 0; 292 if (nmatch == -2) { 293 if (tls1_suiteb(s)) { 294 /* 295 * For Suite B ciphersuite determines curve: we already know 296 * these are acceptable due to previous checks. 297 */ 298 unsigned long cid = s->s3->tmp.new_cipher->id; 299 300 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) 301 return TLSEXT_curve_P_256; 302 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) 303 return TLSEXT_curve_P_384; 304 /* Should never happen */ 305 return 0; 306 } 307 /* If not Suite B just return first preference shared curve */ 308 nmatch = 0; 309 } 310 /* 311 * If server preference set, our groups are the preference order 312 * otherwise peer decides. 313 */ 314 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { 315 tls1_get_supported_groups(s, &pref, &num_pref); 316 tls1_get_peer_groups(s, &supp, &num_supp); 317 } else { 318 tls1_get_peer_groups(s, &pref, &num_pref); 319 tls1_get_supported_groups(s, &supp, &num_supp); 320 } 321 322 for (k = 0, i = 0; i < num_pref; i++) { 323 uint16_t id = pref[i]; 324 325 if (!tls1_in_list(id, supp, num_supp) 326 || !tls_curve_allowed(s, id, SSL_SECOP_CURVE_SHARED)) 327 continue; 328 if (nmatch == k) 329 return id; 330 k++; 331 } 332 if (nmatch == -1) 333 return k; 334 /* Out of range (nmatch > k). */ 335 return 0; 336 } 337 338 int tls1_set_groups(uint16_t **pext, size_t *pextlen, 339 int *groups, size_t ngroups) 340 { 341 uint16_t *glist; 342 size_t i; 343 /* 344 * Bitmap of groups included to detect duplicates: only works while group 345 * ids < 32 346 */ 347 unsigned long dup_list = 0; 348 349 if (ngroups == 0) { 350 SSLerr(SSL_F_TLS1_SET_GROUPS, SSL_R_BAD_LENGTH); 351 return 0; 352 } 353 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) { 354 SSLerr(SSL_F_TLS1_SET_GROUPS, ERR_R_MALLOC_FAILURE); 355 return 0; 356 } 357 for (i = 0; i < ngroups; i++) { 358 unsigned long idmask; 359 uint16_t id; 360 /* TODO(TLS1.3): Convert for DH groups */ 361 id = tls1_nid2group_id(groups[i]); 362 idmask = 1L << id; 363 if (!id || (dup_list & idmask)) { 364 OPENSSL_free(glist); 365 return 0; 366 } 367 dup_list |= idmask; 368 glist[i] = id; 369 } 370 OPENSSL_free(*pext); 371 *pext = glist; 372 *pextlen = ngroups; 373 return 1; 374 } 375 376 # define MAX_CURVELIST OSSL_NELEM(nid_list) 377 378 typedef struct { 379 size_t nidcnt; 380 int nid_arr[MAX_CURVELIST]; 381 } nid_cb_st; 382 383 static int nid_cb(const char *elem, int len, void *arg) 384 { 385 nid_cb_st *narg = arg; 386 size_t i; 387 int nid; 388 char etmp[20]; 389 if (elem == NULL) 390 return 0; 391 if (narg->nidcnt == MAX_CURVELIST) 392 return 0; 393 if (len > (int)(sizeof(etmp) - 1)) 394 return 0; 395 memcpy(etmp, elem, len); 396 etmp[len] = 0; 397 nid = EC_curve_nist2nid(etmp); 398 if (nid == NID_undef) 399 nid = OBJ_sn2nid(etmp); 400 if (nid == NID_undef) 401 nid = OBJ_ln2nid(etmp); 402 if (nid == NID_undef) 403 return 0; 404 for (i = 0; i < narg->nidcnt; i++) 405 if (narg->nid_arr[i] == nid) 406 return 0; 407 narg->nid_arr[narg->nidcnt++] = nid; 408 return 1; 409 } 410 411 /* Set groups based on a colon separate list */ 412 int tls1_set_groups_list(uint16_t **pext, size_t *pextlen, const char *str) 413 { 414 nid_cb_st ncb; 415 ncb.nidcnt = 0; 416 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb)) 417 return 0; 418 if (pext == NULL) 419 return 1; 420 return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt); 421 } 422 /* Return group id of a key */ 423 static uint16_t tls1_get_group_id(EVP_PKEY *pkey) 424 { 425 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey); 426 const EC_GROUP *grp; 427 428 if (ec == NULL) 429 return 0; 430 grp = EC_KEY_get0_group(ec); 431 return tls1_nid2group_id(EC_GROUP_get_curve_name(grp)); 432 } 433 434 /* Check a key is compatible with compression extension */ 435 static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey) 436 { 437 const EC_KEY *ec; 438 const EC_GROUP *grp; 439 unsigned char comp_id; 440 size_t i; 441 442 /* If not an EC key nothing to check */ 443 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC) 444 return 1; 445 ec = EVP_PKEY_get0_EC_KEY(pkey); 446 grp = EC_KEY_get0_group(ec); 447 448 /* Get required compression id */ 449 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) { 450 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed; 451 } else if (SSL_IS_TLS13(s)) { 452 /* 453 * ec_point_formats extension is not used in TLSv1.3 so we ignore 454 * this check. 455 */ 456 return 1; 457 } else { 458 int field_type = EC_METHOD_get_field_type(EC_GROUP_method_of(grp)); 459 460 if (field_type == NID_X9_62_prime_field) 461 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime; 462 else if (field_type == NID_X9_62_characteristic_two_field) 463 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2; 464 else 465 return 0; 466 } 467 /* 468 * If point formats extension present check it, otherwise everything is 469 * supported (see RFC4492). 470 */ 471 if (s->ext.peer_ecpointformats == NULL) 472 return 1; 473 474 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) { 475 if (s->ext.peer_ecpointformats[i] == comp_id) 476 return 1; 477 } 478 return 0; 479 } 480 481 /* Check a group id matches preferences */ 482 int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups) 483 { 484 const uint16_t *groups; 485 size_t groups_len; 486 487 if (group_id == 0) 488 return 0; 489 490 /* Check for Suite B compliance */ 491 if (tls1_suiteb(s) && s->s3->tmp.new_cipher != NULL) { 492 unsigned long cid = s->s3->tmp.new_cipher->id; 493 494 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) { 495 if (group_id != TLSEXT_curve_P_256) 496 return 0; 497 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) { 498 if (group_id != TLSEXT_curve_P_384) 499 return 0; 500 } else { 501 /* Should never happen */ 502 return 0; 503 } 504 } 505 506 if (check_own_groups) { 507 /* Check group is one of our preferences */ 508 tls1_get_supported_groups(s, &groups, &groups_len); 509 if (!tls1_in_list(group_id, groups, groups_len)) 510 return 0; 511 } 512 513 if (!tls_curve_allowed(s, group_id, SSL_SECOP_CURVE_CHECK)) 514 return 0; 515 516 /* For clients, nothing more to check */ 517 if (!s->server) 518 return 1; 519 520 /* Check group is one of peers preferences */ 521 tls1_get_peer_groups(s, &groups, &groups_len); 522 523 /* 524 * RFC 4492 does not require the supported elliptic curves extension 525 * so if it is not sent we can just choose any curve. 526 * It is invalid to send an empty list in the supported groups 527 * extension, so groups_len == 0 always means no extension. 528 */ 529 if (groups_len == 0) 530 return 1; 531 return tls1_in_list(group_id, groups, groups_len); 532 } 533 534 void tls1_get_formatlist(SSL *s, const unsigned char **pformats, 535 size_t *num_formats) 536 { 537 /* 538 * If we have a custom point format list use it otherwise use default 539 */ 540 if (s->ext.ecpointformats) { 541 *pformats = s->ext.ecpointformats; 542 *num_formats = s->ext.ecpointformats_len; 543 } else { 544 *pformats = ecformats_default; 545 /* For Suite B we don't support char2 fields */ 546 if (tls1_suiteb(s)) 547 *num_formats = sizeof(ecformats_default) - 1; 548 else 549 *num_formats = sizeof(ecformats_default); 550 } 551 } 552 553 /* 554 * Check cert parameters compatible with extensions: currently just checks EC 555 * certificates have compatible curves and compression. 556 */ 557 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md) 558 { 559 uint16_t group_id; 560 EVP_PKEY *pkey; 561 pkey = X509_get0_pubkey(x); 562 if (pkey == NULL) 563 return 0; 564 /* If not EC nothing to do */ 565 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC) 566 return 1; 567 /* Check compression */ 568 if (!tls1_check_pkey_comp(s, pkey)) 569 return 0; 570 group_id = tls1_get_group_id(pkey); 571 /* 572 * For a server we allow the certificate to not be in our list of supported 573 * groups. 574 */ 575 if (!tls1_check_group_id(s, group_id, !s->server)) 576 return 0; 577 /* 578 * Special case for suite B. We *MUST* sign using SHA256+P-256 or 579 * SHA384+P-384. 580 */ 581 if (check_ee_md && tls1_suiteb(s)) { 582 int check_md; 583 size_t i; 584 585 /* Check to see we have necessary signing algorithm */ 586 if (group_id == TLSEXT_curve_P_256) 587 check_md = NID_ecdsa_with_SHA256; 588 else if (group_id == TLSEXT_curve_P_384) 589 check_md = NID_ecdsa_with_SHA384; 590 else 591 return 0; /* Should never happen */ 592 for (i = 0; i < s->shared_sigalgslen; i++) { 593 if (check_md == s->shared_sigalgs[i]->sigandhash) 594 return 1;; 595 } 596 return 0; 597 } 598 return 1; 599 } 600 601 /* 602 * tls1_check_ec_tmp_key - Check EC temporary key compatibility 603 * @s: SSL connection 604 * @cid: Cipher ID we're considering using 605 * 606 * Checks that the kECDHE cipher suite we're considering using 607 * is compatible with the client extensions. 608 * 609 * Returns 0 when the cipher can't be used or 1 when it can. 610 */ 611 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid) 612 { 613 /* If not Suite B just need a shared group */ 614 if (!tls1_suiteb(s)) 615 return tls1_shared_group(s, 0) != 0; 616 /* 617 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other 618 * curves permitted. 619 */ 620 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) 621 return tls1_check_group_id(s, TLSEXT_curve_P_256, 1); 622 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) 623 return tls1_check_group_id(s, TLSEXT_curve_P_384, 1); 624 625 return 0; 626 } 627 628 #else 629 630 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md) 631 { 632 return 1; 633 } 634 635 #endif /* OPENSSL_NO_EC */ 636 637 /* Default sigalg schemes */ 638 static const uint16_t tls12_sigalgs[] = { 639 #ifndef OPENSSL_NO_EC 640 TLSEXT_SIGALG_ecdsa_secp256r1_sha256, 641 TLSEXT_SIGALG_ecdsa_secp384r1_sha384, 642 TLSEXT_SIGALG_ecdsa_secp521r1_sha512, 643 TLSEXT_SIGALG_ed25519, 644 TLSEXT_SIGALG_ed448, 645 #endif 646 647 TLSEXT_SIGALG_rsa_pss_pss_sha256, 648 TLSEXT_SIGALG_rsa_pss_pss_sha384, 649 TLSEXT_SIGALG_rsa_pss_pss_sha512, 650 TLSEXT_SIGALG_rsa_pss_rsae_sha256, 651 TLSEXT_SIGALG_rsa_pss_rsae_sha384, 652 TLSEXT_SIGALG_rsa_pss_rsae_sha512, 653 654 TLSEXT_SIGALG_rsa_pkcs1_sha256, 655 TLSEXT_SIGALG_rsa_pkcs1_sha384, 656 TLSEXT_SIGALG_rsa_pkcs1_sha512, 657 658 #ifndef OPENSSL_NO_EC 659 TLSEXT_SIGALG_ecdsa_sha224, 660 TLSEXT_SIGALG_ecdsa_sha1, 661 #endif 662 TLSEXT_SIGALG_rsa_pkcs1_sha224, 663 TLSEXT_SIGALG_rsa_pkcs1_sha1, 664 #ifndef OPENSSL_NO_DSA 665 TLSEXT_SIGALG_dsa_sha224, 666 TLSEXT_SIGALG_dsa_sha1, 667 668 TLSEXT_SIGALG_dsa_sha256, 669 TLSEXT_SIGALG_dsa_sha384, 670 TLSEXT_SIGALG_dsa_sha512, 671 #endif 672 #ifndef OPENSSL_NO_GOST 673 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, 674 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, 675 TLSEXT_SIGALG_gostr34102001_gostr3411, 676 #endif 677 }; 678 679 #ifndef OPENSSL_NO_EC 680 static const uint16_t suiteb_sigalgs[] = { 681 TLSEXT_SIGALG_ecdsa_secp256r1_sha256, 682 TLSEXT_SIGALG_ecdsa_secp384r1_sha384 683 }; 684 #endif 685 686 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = { 687 #ifndef OPENSSL_NO_EC 688 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256, 689 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, 690 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1}, 691 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384, 692 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, 693 NID_ecdsa_with_SHA384, NID_secp384r1}, 694 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512, 695 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, 696 NID_ecdsa_with_SHA512, NID_secp521r1}, 697 {"ed25519", TLSEXT_SIGALG_ed25519, 698 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519, 699 NID_undef, NID_undef}, 700 {"ed448", TLSEXT_SIGALG_ed448, 701 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448, 702 NID_undef, NID_undef}, 703 {NULL, TLSEXT_SIGALG_ecdsa_sha224, 704 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, 705 NID_ecdsa_with_SHA224, NID_undef}, 706 {NULL, TLSEXT_SIGALG_ecdsa_sha1, 707 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, 708 NID_ecdsa_with_SHA1, NID_undef}, 709 #endif 710 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256, 711 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, 712 NID_undef, NID_undef}, 713 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384, 714 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, 715 NID_undef, NID_undef}, 716 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512, 717 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, 718 NID_undef, NID_undef}, 719 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256, 720 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, 721 NID_undef, NID_undef}, 722 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384, 723 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, 724 NID_undef, NID_undef}, 725 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512, 726 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, 727 NID_undef, NID_undef}, 728 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256, 729 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, 730 NID_sha256WithRSAEncryption, NID_undef}, 731 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384, 732 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, 733 NID_sha384WithRSAEncryption, NID_undef}, 734 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512, 735 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, 736 NID_sha512WithRSAEncryption, NID_undef}, 737 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224, 738 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, 739 NID_sha224WithRSAEncryption, NID_undef}, 740 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1, 741 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, 742 NID_sha1WithRSAEncryption, NID_undef}, 743 #ifndef OPENSSL_NO_DSA 744 {NULL, TLSEXT_SIGALG_dsa_sha256, 745 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, 746 NID_dsa_with_SHA256, NID_undef}, 747 {NULL, TLSEXT_SIGALG_dsa_sha384, 748 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, 749 NID_undef, NID_undef}, 750 {NULL, TLSEXT_SIGALG_dsa_sha512, 751 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, 752 NID_undef, NID_undef}, 753 {NULL, TLSEXT_SIGALG_dsa_sha224, 754 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, 755 NID_undef, NID_undef}, 756 {NULL, TLSEXT_SIGALG_dsa_sha1, 757 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, 758 NID_dsaWithSHA1, NID_undef}, 759 #endif 760 #ifndef OPENSSL_NO_GOST 761 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, 762 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX, 763 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256, 764 NID_undef, NID_undef}, 765 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, 766 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX, 767 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512, 768 NID_undef, NID_undef}, 769 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411, 770 NID_id_GostR3411_94, SSL_MD_GOST94_IDX, 771 NID_id_GostR3410_2001, SSL_PKEY_GOST01, 772 NID_undef, NID_undef} 773 #endif 774 }; 775 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */ 776 static const SIGALG_LOOKUP legacy_rsa_sigalg = { 777 "rsa_pkcs1_md5_sha1", 0, 778 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX, 779 EVP_PKEY_RSA, SSL_PKEY_RSA, 780 NID_undef, NID_undef 781 }; 782 783 /* 784 * Default signature algorithm values used if signature algorithms not present. 785 * From RFC5246. Note: order must match certificate index order. 786 */ 787 static const uint16_t tls_default_sigalg[] = { 788 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */ 789 0, /* SSL_PKEY_RSA_PSS_SIGN */ 790 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */ 791 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */ 792 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */ 793 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, /* SSL_PKEY_GOST12_256 */ 794 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, /* SSL_PKEY_GOST12_512 */ 795 0, /* SSL_PKEY_ED25519 */ 796 0, /* SSL_PKEY_ED448 */ 797 }; 798 799 /* Lookup TLS signature algorithm */ 800 static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg) 801 { 802 size_t i; 803 const SIGALG_LOOKUP *s; 804 805 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); 806 i++, s++) { 807 if (s->sigalg == sigalg) 808 return s; 809 } 810 return NULL; 811 } 812 /* Lookup hash: return 0 if invalid or not enabled */ 813 int tls1_lookup_md(const SIGALG_LOOKUP *lu, const EVP_MD **pmd) 814 { 815 const EVP_MD *md; 816 if (lu == NULL) 817 return 0; 818 /* lu->hash == NID_undef means no associated digest */ 819 if (lu->hash == NID_undef) { 820 md = NULL; 821 } else { 822 md = ssl_md(lu->hash_idx); 823 if (md == NULL) 824 return 0; 825 } 826 if (pmd) 827 *pmd = md; 828 return 1; 829 } 830 831 /* 832 * Check if key is large enough to generate RSA-PSS signature. 833 * 834 * The key must greater than or equal to 2 * hash length + 2. 835 * SHA512 has a hash length of 64 bytes, which is incompatible 836 * with a 128 byte (1024 bit) key. 837 */ 838 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_size(md) + 2) 839 static int rsa_pss_check_min_key_size(const RSA *rsa, const SIGALG_LOOKUP *lu) 840 { 841 const EVP_MD *md; 842 843 if (rsa == NULL) 844 return 0; 845 if (!tls1_lookup_md(lu, &md) || md == NULL) 846 return 0; 847 if (RSA_size(rsa) < RSA_PSS_MINIMUM_KEY_SIZE(md)) 848 return 0; 849 return 1; 850 } 851 852 /* 853 * Returns a signature algorithm when the peer did not send a list of supported 854 * signature algorithms. The signature algorithm is fixed for the certificate 855 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the 856 * certificate type from |s| will be used. 857 * Returns the signature algorithm to use, or NULL on error. 858 */ 859 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx) 860 { 861 if (idx == -1) { 862 if (s->server) { 863 size_t i; 864 865 /* Work out index corresponding to ciphersuite */ 866 for (i = 0; i < SSL_PKEY_NUM; i++) { 867 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i); 868 869 if (clu->amask & s->s3->tmp.new_cipher->algorithm_auth) { 870 idx = i; 871 break; 872 } 873 } 874 875 /* 876 * Some GOST ciphersuites allow more than one signature algorithms 877 * */ 878 if (idx == SSL_PKEY_GOST01 && s->s3->tmp.new_cipher->algorithm_auth != SSL_aGOST01) { 879 int real_idx; 880 881 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01; 882 real_idx--) { 883 if (s->cert->pkeys[real_idx].privatekey != NULL) { 884 idx = real_idx; 885 break; 886 } 887 } 888 } 889 } else { 890 idx = s->cert->key - s->cert->pkeys; 891 } 892 } 893 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg)) 894 return NULL; 895 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) { 896 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(tls_default_sigalg[idx]); 897 898 if (!tls1_lookup_md(lu, NULL)) 899 return NULL; 900 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu)) 901 return NULL; 902 return lu; 903 } 904 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg)) 905 return NULL; 906 return &legacy_rsa_sigalg; 907 } 908 /* Set peer sigalg based key type */ 909 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey) 910 { 911 size_t idx; 912 const SIGALG_LOOKUP *lu; 913 914 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL) 915 return 0; 916 lu = tls1_get_legacy_sigalg(s, idx); 917 if (lu == NULL) 918 return 0; 919 s->s3->tmp.peer_sigalg = lu; 920 return 1; 921 } 922 923 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs) 924 { 925 /* 926 * If Suite B mode use Suite B sigalgs only, ignore any other 927 * preferences. 928 */ 929 #ifndef OPENSSL_NO_EC 930 switch (tls1_suiteb(s)) { 931 case SSL_CERT_FLAG_SUITEB_128_LOS: 932 *psigs = suiteb_sigalgs; 933 return OSSL_NELEM(suiteb_sigalgs); 934 935 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: 936 *psigs = suiteb_sigalgs; 937 return 1; 938 939 case SSL_CERT_FLAG_SUITEB_192_LOS: 940 *psigs = suiteb_sigalgs + 1; 941 return 1; 942 } 943 #endif 944 /* 945 * We use client_sigalgs (if not NULL) if we're a server 946 * and sending a certificate request or if we're a client and 947 * determining which shared algorithm to use. 948 */ 949 if ((s->server == sent) && s->cert->client_sigalgs != NULL) { 950 *psigs = s->cert->client_sigalgs; 951 return s->cert->client_sigalgslen; 952 } else if (s->cert->conf_sigalgs) { 953 *psigs = s->cert->conf_sigalgs; 954 return s->cert->conf_sigalgslen; 955 } else { 956 *psigs = tls12_sigalgs; 957 return OSSL_NELEM(tls12_sigalgs); 958 } 959 } 960 961 #ifndef OPENSSL_NO_EC 962 /* 963 * Called by servers only. Checks that we have a sig alg that supports the 964 * specified EC curve. 965 */ 966 int tls_check_sigalg_curve(const SSL *s, int curve) 967 { 968 const uint16_t *sigs; 969 size_t siglen, i; 970 971 if (s->cert->conf_sigalgs) { 972 sigs = s->cert->conf_sigalgs; 973 siglen = s->cert->conf_sigalgslen; 974 } else { 975 sigs = tls12_sigalgs; 976 siglen = OSSL_NELEM(tls12_sigalgs); 977 } 978 979 for (i = 0; i < siglen; i++) { 980 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(sigs[i]); 981 982 if (lu == NULL) 983 continue; 984 if (lu->sig == EVP_PKEY_EC 985 && lu->curve != NID_undef 986 && curve == lu->curve) 987 return 1; 988 } 989 990 return 0; 991 } 992 #endif 993 994 /* 995 * Return the number of security bits for the signature algorithm, or 0 on 996 * error. 997 */ 998 static int sigalg_security_bits(const SIGALG_LOOKUP *lu) 999 { 1000 const EVP_MD *md = NULL; 1001 int secbits = 0; 1002 1003 if (!tls1_lookup_md(lu, &md)) 1004 return 0; 1005 if (md != NULL) 1006 { 1007 /* Security bits: half digest bits */ 1008 secbits = EVP_MD_size(md) * 4; 1009 } else { 1010 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */ 1011 if (lu->sigalg == TLSEXT_SIGALG_ed25519) 1012 secbits = 128; 1013 else if (lu->sigalg == TLSEXT_SIGALG_ed448) 1014 secbits = 224; 1015 } 1016 return secbits; 1017 } 1018 1019 /* 1020 * Check signature algorithm is consistent with sent supported signature 1021 * algorithms and if so set relevant digest and signature scheme in 1022 * s. 1023 */ 1024 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey) 1025 { 1026 const uint16_t *sent_sigs; 1027 const EVP_MD *md = NULL; 1028 char sigalgstr[2]; 1029 size_t sent_sigslen, i, cidx; 1030 int pkeyid = EVP_PKEY_id(pkey); 1031 const SIGALG_LOOKUP *lu; 1032 int secbits = 0; 1033 1034 /* Should never happen */ 1035 if (pkeyid == -1) 1036 return -1; 1037 if (SSL_IS_TLS13(s)) { 1038 /* Disallow DSA for TLS 1.3 */ 1039 if (pkeyid == EVP_PKEY_DSA) { 1040 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG, 1041 SSL_R_WRONG_SIGNATURE_TYPE); 1042 return 0; 1043 } 1044 /* Only allow PSS for TLS 1.3 */ 1045 if (pkeyid == EVP_PKEY_RSA) 1046 pkeyid = EVP_PKEY_RSA_PSS; 1047 } 1048 lu = tls1_lookup_sigalg(sig); 1049 /* 1050 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type 1051 * is consistent with signature: RSA keys can be used for RSA-PSS 1052 */ 1053 if (lu == NULL 1054 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224)) 1055 || (pkeyid != lu->sig 1056 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) { 1057 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG, 1058 SSL_R_WRONG_SIGNATURE_TYPE); 1059 return 0; 1060 } 1061 /* Check the sigalg is consistent with the key OID */ 1062 if (!ssl_cert_lookup_by_nid(EVP_PKEY_id(pkey), &cidx) 1063 || lu->sig_idx != (int)cidx) { 1064 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG, 1065 SSL_R_WRONG_SIGNATURE_TYPE); 1066 return 0; 1067 } 1068 1069 #ifndef OPENSSL_NO_EC 1070 if (pkeyid == EVP_PKEY_EC) { 1071 1072 /* Check point compression is permitted */ 1073 if (!tls1_check_pkey_comp(s, pkey)) { 1074 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, 1075 SSL_F_TLS12_CHECK_PEER_SIGALG, 1076 SSL_R_ILLEGAL_POINT_COMPRESSION); 1077 return 0; 1078 } 1079 1080 /* For TLS 1.3 or Suite B check curve matches signature algorithm */ 1081 if (SSL_IS_TLS13(s) || tls1_suiteb(s)) { 1082 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey); 1083 int curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); 1084 1085 if (lu->curve != NID_undef && curve != lu->curve) { 1086 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, 1087 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE); 1088 return 0; 1089 } 1090 } 1091 if (!SSL_IS_TLS13(s)) { 1092 /* Check curve matches extensions */ 1093 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) { 1094 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, 1095 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE); 1096 return 0; 1097 } 1098 if (tls1_suiteb(s)) { 1099 /* Check sigalg matches a permissible Suite B value */ 1100 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256 1101 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) { 1102 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, 1103 SSL_F_TLS12_CHECK_PEER_SIGALG, 1104 SSL_R_WRONG_SIGNATURE_TYPE); 1105 return 0; 1106 } 1107 } 1108 } 1109 } else if (tls1_suiteb(s)) { 1110 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, 1111 SSL_R_WRONG_SIGNATURE_TYPE); 1112 return 0; 1113 } 1114 #endif 1115 1116 /* Check signature matches a type we sent */ 1117 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); 1118 for (i = 0; i < sent_sigslen; i++, sent_sigs++) { 1119 if (sig == *sent_sigs) 1120 break; 1121 } 1122 /* Allow fallback to SHA1 if not strict mode */ 1123 if (i == sent_sigslen && (lu->hash != NID_sha1 1124 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) { 1125 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, 1126 SSL_R_WRONG_SIGNATURE_TYPE); 1127 return 0; 1128 } 1129 if (!tls1_lookup_md(lu, &md)) { 1130 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, 1131 SSL_R_UNKNOWN_DIGEST); 1132 return 0; 1133 } 1134 /* 1135 * Make sure security callback allows algorithm. For historical 1136 * reasons we have to pass the sigalg as a two byte char array. 1137 */ 1138 sigalgstr[0] = (sig >> 8) & 0xff; 1139 sigalgstr[1] = sig & 0xff; 1140 secbits = sigalg_security_bits(lu); 1141 if (secbits == 0 || 1142 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits, 1143 md != NULL ? EVP_MD_type(md) : NID_undef, 1144 (void *)sigalgstr)) { 1145 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, 1146 SSL_R_WRONG_SIGNATURE_TYPE); 1147 return 0; 1148 } 1149 /* Store the sigalg the peer uses */ 1150 s->s3->tmp.peer_sigalg = lu; 1151 return 1; 1152 } 1153 1154 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid) 1155 { 1156 if (s->s3->tmp.peer_sigalg == NULL) 1157 return 0; 1158 *pnid = s->s3->tmp.peer_sigalg->sig; 1159 return 1; 1160 } 1161 1162 int SSL_get_signature_type_nid(const SSL *s, int *pnid) 1163 { 1164 if (s->s3->tmp.sigalg == NULL) 1165 return 0; 1166 *pnid = s->s3->tmp.sigalg->sig; 1167 return 1; 1168 } 1169 1170 /* 1171 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't 1172 * supported, doesn't appear in supported signature algorithms, isn't supported 1173 * by the enabled protocol versions or by the security level. 1174 * 1175 * This function should only be used for checking which ciphers are supported 1176 * by the client. 1177 * 1178 * Call ssl_cipher_disabled() to check that it's enabled or not. 1179 */ 1180 int ssl_set_client_disabled(SSL *s) 1181 { 1182 s->s3->tmp.mask_a = 0; 1183 s->s3->tmp.mask_k = 0; 1184 ssl_set_sig_mask(&s->s3->tmp.mask_a, s, SSL_SECOP_SIGALG_MASK); 1185 if (ssl_get_min_max_version(s, &s->s3->tmp.min_ver, 1186 &s->s3->tmp.max_ver, NULL) != 0) 1187 return 0; 1188 #ifndef OPENSSL_NO_PSK 1189 /* with PSK there must be client callback set */ 1190 if (!s->psk_client_callback) { 1191 s->s3->tmp.mask_a |= SSL_aPSK; 1192 s->s3->tmp.mask_k |= SSL_PSK; 1193 } 1194 #endif /* OPENSSL_NO_PSK */ 1195 #ifndef OPENSSL_NO_SRP 1196 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) { 1197 s->s3->tmp.mask_a |= SSL_aSRP; 1198 s->s3->tmp.mask_k |= SSL_kSRP; 1199 } 1200 #endif 1201 return 1; 1202 } 1203 1204 /* 1205 * ssl_cipher_disabled - check that a cipher is disabled or not 1206 * @s: SSL connection that you want to use the cipher on 1207 * @c: cipher to check 1208 * @op: Security check that you want to do 1209 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3 1210 * 1211 * Returns 1 when it's disabled, 0 when enabled. 1212 */ 1213 int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe) 1214 { 1215 if (c->algorithm_mkey & s->s3->tmp.mask_k 1216 || c->algorithm_auth & s->s3->tmp.mask_a) 1217 return 1; 1218 if (s->s3->tmp.max_ver == 0) 1219 return 1; 1220 if (!SSL_IS_DTLS(s)) { 1221 int min_tls = c->min_tls; 1222 1223 /* 1224 * For historical reasons we will allow ECHDE to be selected by a server 1225 * in SSLv3 if we are a client 1226 */ 1227 if (min_tls == TLS1_VERSION && ecdhe 1228 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0) 1229 min_tls = SSL3_VERSION; 1230 1231 if ((min_tls > s->s3->tmp.max_ver) || (c->max_tls < s->s3->tmp.min_ver)) 1232 return 1; 1233 } 1234 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3->tmp.max_ver) 1235 || DTLS_VERSION_LT(c->max_dtls, s->s3->tmp.min_ver))) 1236 return 1; 1237 1238 return !ssl_security(s, op, c->strength_bits, 0, (void *)c); 1239 } 1240 1241 int tls_use_ticket(SSL *s) 1242 { 1243 if ((s->options & SSL_OP_NO_TICKET)) 1244 return 0; 1245 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL); 1246 } 1247 1248 int tls1_set_server_sigalgs(SSL *s) 1249 { 1250 size_t i; 1251 1252 /* Clear any shared signature algorithms */ 1253 OPENSSL_free(s->shared_sigalgs); 1254 s->shared_sigalgs = NULL; 1255 s->shared_sigalgslen = 0; 1256 /* Clear certificate validity flags */ 1257 for (i = 0; i < SSL_PKEY_NUM; i++) 1258 s->s3->tmp.valid_flags[i] = 0; 1259 /* 1260 * If peer sent no signature algorithms check to see if we support 1261 * the default algorithm for each certificate type 1262 */ 1263 if (s->s3->tmp.peer_cert_sigalgs == NULL 1264 && s->s3->tmp.peer_sigalgs == NULL) { 1265 const uint16_t *sent_sigs; 1266 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); 1267 1268 for (i = 0; i < SSL_PKEY_NUM; i++) { 1269 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i); 1270 size_t j; 1271 1272 if (lu == NULL) 1273 continue; 1274 /* Check default matches a type we sent */ 1275 for (j = 0; j < sent_sigslen; j++) { 1276 if (lu->sigalg == sent_sigs[j]) { 1277 s->s3->tmp.valid_flags[i] = CERT_PKEY_SIGN; 1278 break; 1279 } 1280 } 1281 } 1282 return 1; 1283 } 1284 1285 if (!tls1_process_sigalgs(s)) { 1286 SSLfatal(s, SSL_AD_INTERNAL_ERROR, 1287 SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_INTERNAL_ERROR); 1288 return 0; 1289 } 1290 if (s->shared_sigalgs != NULL) 1291 return 1; 1292 1293 /* Fatal error if no shared signature algorithms */ 1294 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS1_SET_SERVER_SIGALGS, 1295 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS); 1296 return 0; 1297 } 1298 1299 /*- 1300 * Gets the ticket information supplied by the client if any. 1301 * 1302 * hello: The parsed ClientHello data 1303 * ret: (output) on return, if a ticket was decrypted, then this is set to 1304 * point to the resulting session. 1305 */ 1306 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello, 1307 SSL_SESSION **ret) 1308 { 1309 size_t size; 1310 RAW_EXTENSION *ticketext; 1311 1312 *ret = NULL; 1313 s->ext.ticket_expected = 0; 1314 1315 /* 1316 * If tickets disabled or not supported by the protocol version 1317 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful 1318 * resumption. 1319 */ 1320 if (s->version <= SSL3_VERSION || !tls_use_ticket(s)) 1321 return SSL_TICKET_NONE; 1322 1323 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket]; 1324 if (!ticketext->present) 1325 return SSL_TICKET_NONE; 1326 1327 size = PACKET_remaining(&ticketext->data); 1328 1329 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size, 1330 hello->session_id, hello->session_id_len, ret); 1331 } 1332 1333 /*- 1334 * tls_decrypt_ticket attempts to decrypt a session ticket. 1335 * 1336 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are 1337 * expecting a pre-shared key ciphersuite, in which case we have no use for 1338 * session tickets and one will never be decrypted, nor will 1339 * s->ext.ticket_expected be set to 1. 1340 * 1341 * Side effects: 1342 * Sets s->ext.ticket_expected to 1 if the server will have to issue 1343 * a new session ticket to the client because the client indicated support 1344 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have 1345 * a session ticket or we couldn't use the one it gave us, or if 1346 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket. 1347 * Otherwise, s->ext.ticket_expected is set to 0. 1348 * 1349 * etick: points to the body of the session ticket extension. 1350 * eticklen: the length of the session tickets extension. 1351 * sess_id: points at the session ID. 1352 * sesslen: the length of the session ID. 1353 * psess: (output) on return, if a ticket was decrypted, then this is set to 1354 * point to the resulting session. 1355 */ 1356 SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick, 1357 size_t eticklen, const unsigned char *sess_id, 1358 size_t sesslen, SSL_SESSION **psess) 1359 { 1360 SSL_SESSION *sess = NULL; 1361 unsigned char *sdec; 1362 const unsigned char *p; 1363 int slen, renew_ticket = 0, declen; 1364 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER; 1365 size_t mlen; 1366 unsigned char tick_hmac[EVP_MAX_MD_SIZE]; 1367 HMAC_CTX *hctx = NULL; 1368 EVP_CIPHER_CTX *ctx = NULL; 1369 SSL_CTX *tctx = s->session_ctx; 1370 1371 if (eticklen == 0) { 1372 /* 1373 * The client will accept a ticket but doesn't currently have 1374 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3 1375 */ 1376 ret = SSL_TICKET_EMPTY; 1377 goto end; 1378 } 1379 if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) { 1380 /* 1381 * Indicate that the ticket couldn't be decrypted rather than 1382 * generating the session from ticket now, trigger 1383 * abbreviated handshake based on external mechanism to 1384 * calculate the master secret later. 1385 */ 1386 ret = SSL_TICKET_NO_DECRYPT; 1387 goto end; 1388 } 1389 1390 /* Need at least keyname + iv */ 1391 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) { 1392 ret = SSL_TICKET_NO_DECRYPT; 1393 goto end; 1394 } 1395 1396 /* Initialize session ticket encryption and HMAC contexts */ 1397 hctx = HMAC_CTX_new(); 1398 if (hctx == NULL) { 1399 ret = SSL_TICKET_FATAL_ERR_MALLOC; 1400 goto end; 1401 } 1402 ctx = EVP_CIPHER_CTX_new(); 1403 if (ctx == NULL) { 1404 ret = SSL_TICKET_FATAL_ERR_MALLOC; 1405 goto end; 1406 } 1407 if (tctx->ext.ticket_key_cb) { 1408 unsigned char *nctick = (unsigned char *)etick; 1409 int rv = tctx->ext.ticket_key_cb(s, nctick, 1410 nctick + TLSEXT_KEYNAME_LENGTH, 1411 ctx, hctx, 0); 1412 if (rv < 0) { 1413 ret = SSL_TICKET_FATAL_ERR_OTHER; 1414 goto end; 1415 } 1416 if (rv == 0) { 1417 ret = SSL_TICKET_NO_DECRYPT; 1418 goto end; 1419 } 1420 if (rv == 2) 1421 renew_ticket = 1; 1422 } else { 1423 /* Check key name matches */ 1424 if (memcmp(etick, tctx->ext.tick_key_name, 1425 TLSEXT_KEYNAME_LENGTH) != 0) { 1426 ret = SSL_TICKET_NO_DECRYPT; 1427 goto end; 1428 } 1429 if (HMAC_Init_ex(hctx, tctx->ext.secure->tick_hmac_key, 1430 sizeof(tctx->ext.secure->tick_hmac_key), 1431 EVP_sha256(), NULL) <= 0 1432 || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, 1433 tctx->ext.secure->tick_aes_key, 1434 etick + TLSEXT_KEYNAME_LENGTH) <= 0) { 1435 ret = SSL_TICKET_FATAL_ERR_OTHER; 1436 goto end; 1437 } 1438 if (SSL_IS_TLS13(s)) 1439 renew_ticket = 1; 1440 } 1441 /* 1442 * Attempt to process session ticket, first conduct sanity and integrity 1443 * checks on ticket. 1444 */ 1445 mlen = HMAC_size(hctx); 1446 if (mlen == 0) { 1447 ret = SSL_TICKET_FATAL_ERR_OTHER; 1448 goto end; 1449 } 1450 1451 /* Sanity check ticket length: must exceed keyname + IV + HMAC */ 1452 if (eticklen <= 1453 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) { 1454 ret = SSL_TICKET_NO_DECRYPT; 1455 goto end; 1456 } 1457 eticklen -= mlen; 1458 /* Check HMAC of encrypted ticket */ 1459 if (HMAC_Update(hctx, etick, eticklen) <= 0 1460 || HMAC_Final(hctx, tick_hmac, NULL) <= 0) { 1461 ret = SSL_TICKET_FATAL_ERR_OTHER; 1462 goto end; 1463 } 1464 1465 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) { 1466 ret = SSL_TICKET_NO_DECRYPT; 1467 goto end; 1468 } 1469 /* Attempt to decrypt session data */ 1470 /* Move p after IV to start of encrypted ticket, update length */ 1471 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx); 1472 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx); 1473 sdec = OPENSSL_malloc(eticklen); 1474 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p, 1475 (int)eticklen) <= 0) { 1476 OPENSSL_free(sdec); 1477 ret = SSL_TICKET_FATAL_ERR_OTHER; 1478 goto end; 1479 } 1480 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) { 1481 OPENSSL_free(sdec); 1482 ret = SSL_TICKET_NO_DECRYPT; 1483 goto end; 1484 } 1485 slen += declen; 1486 p = sdec; 1487 1488 sess = d2i_SSL_SESSION(NULL, &p, slen); 1489 slen -= p - sdec; 1490 OPENSSL_free(sdec); 1491 if (sess) { 1492 /* Some additional consistency checks */ 1493 if (slen != 0) { 1494 SSL_SESSION_free(sess); 1495 sess = NULL; 1496 ret = SSL_TICKET_NO_DECRYPT; 1497 goto end; 1498 } 1499 /* 1500 * The session ID, if non-empty, is used by some clients to detect 1501 * that the ticket has been accepted. So we copy it to the session 1502 * structure. If it is empty set length to zero as required by 1503 * standard. 1504 */ 1505 if (sesslen) { 1506 memcpy(sess->session_id, sess_id, sesslen); 1507 sess->session_id_length = sesslen; 1508 } 1509 if (renew_ticket) 1510 ret = SSL_TICKET_SUCCESS_RENEW; 1511 else 1512 ret = SSL_TICKET_SUCCESS; 1513 goto end; 1514 } 1515 ERR_clear_error(); 1516 /* 1517 * For session parse failure, indicate that we need to send a new ticket. 1518 */ 1519 ret = SSL_TICKET_NO_DECRYPT; 1520 1521 end: 1522 EVP_CIPHER_CTX_free(ctx); 1523 HMAC_CTX_free(hctx); 1524 1525 /* 1526 * If set, the decrypt_ticket_cb() is called unless a fatal error was 1527 * detected above. The callback is responsible for checking |ret| before it 1528 * performs any action 1529 */ 1530 if (s->session_ctx->decrypt_ticket_cb != NULL 1531 && (ret == SSL_TICKET_EMPTY 1532 || ret == SSL_TICKET_NO_DECRYPT 1533 || ret == SSL_TICKET_SUCCESS 1534 || ret == SSL_TICKET_SUCCESS_RENEW)) { 1535 size_t keyname_len = eticklen; 1536 int retcb; 1537 1538 if (keyname_len > TLSEXT_KEYNAME_LENGTH) 1539 keyname_len = TLSEXT_KEYNAME_LENGTH; 1540 retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len, 1541 ret, 1542 s->session_ctx->ticket_cb_data); 1543 switch (retcb) { 1544 case SSL_TICKET_RETURN_ABORT: 1545 ret = SSL_TICKET_FATAL_ERR_OTHER; 1546 break; 1547 1548 case SSL_TICKET_RETURN_IGNORE: 1549 ret = SSL_TICKET_NONE; 1550 SSL_SESSION_free(sess); 1551 sess = NULL; 1552 break; 1553 1554 case SSL_TICKET_RETURN_IGNORE_RENEW: 1555 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT) 1556 ret = SSL_TICKET_NO_DECRYPT; 1557 /* else the value of |ret| will already do the right thing */ 1558 SSL_SESSION_free(sess); 1559 sess = NULL; 1560 break; 1561 1562 case SSL_TICKET_RETURN_USE: 1563 case SSL_TICKET_RETURN_USE_RENEW: 1564 if (ret != SSL_TICKET_SUCCESS 1565 && ret != SSL_TICKET_SUCCESS_RENEW) 1566 ret = SSL_TICKET_FATAL_ERR_OTHER; 1567 else if (retcb == SSL_TICKET_RETURN_USE) 1568 ret = SSL_TICKET_SUCCESS; 1569 else 1570 ret = SSL_TICKET_SUCCESS_RENEW; 1571 break; 1572 1573 default: 1574 ret = SSL_TICKET_FATAL_ERR_OTHER; 1575 } 1576 } 1577 1578 if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) { 1579 switch (ret) { 1580 case SSL_TICKET_NO_DECRYPT: 1581 case SSL_TICKET_SUCCESS_RENEW: 1582 case SSL_TICKET_EMPTY: 1583 s->ext.ticket_expected = 1; 1584 } 1585 } 1586 1587 *psess = sess; 1588 1589 return ret; 1590 } 1591 1592 /* Check to see if a signature algorithm is allowed */ 1593 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu) 1594 { 1595 unsigned char sigalgstr[2]; 1596 int secbits; 1597 1598 /* See if sigalgs is recognised and if hash is enabled */ 1599 if (!tls1_lookup_md(lu, NULL)) 1600 return 0; 1601 /* DSA is not allowed in TLS 1.3 */ 1602 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA) 1603 return 0; 1604 /* TODO(OpenSSL1.2) fully axe DSA/etc. in ClientHello per TLS 1.3 spec */ 1605 if (!s->server && !SSL_IS_DTLS(s) && s->s3->tmp.min_ver >= TLS1_3_VERSION 1606 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX 1607 || lu->hash_idx == SSL_MD_MD5_IDX 1608 || lu->hash_idx == SSL_MD_SHA224_IDX)) 1609 return 0; 1610 1611 /* See if public key algorithm allowed */ 1612 if (ssl_cert_is_disabled(lu->sig_idx)) 1613 return 0; 1614 1615 if (lu->sig == NID_id_GostR3410_2012_256 1616 || lu->sig == NID_id_GostR3410_2012_512 1617 || lu->sig == NID_id_GostR3410_2001) { 1618 /* We never allow GOST sig algs on the server with TLSv1.3 */ 1619 if (s->server && SSL_IS_TLS13(s)) 1620 return 0; 1621 if (!s->server 1622 && s->method->version == TLS_ANY_VERSION 1623 && s->s3->tmp.max_ver >= TLS1_3_VERSION) { 1624 int i, num; 1625 STACK_OF(SSL_CIPHER) *sk; 1626 1627 /* 1628 * We're a client that could negotiate TLSv1.3. We only allow GOST 1629 * sig algs if we could negotiate TLSv1.2 or below and we have GOST 1630 * ciphersuites enabled. 1631 */ 1632 1633 if (s->s3->tmp.min_ver >= TLS1_3_VERSION) 1634 return 0; 1635 1636 sk = SSL_get_ciphers(s); 1637 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0; 1638 for (i = 0; i < num; i++) { 1639 const SSL_CIPHER *c; 1640 1641 c = sk_SSL_CIPHER_value(sk, i); 1642 /* Skip disabled ciphers */ 1643 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) 1644 continue; 1645 1646 if ((c->algorithm_mkey & SSL_kGOST) != 0) 1647 break; 1648 } 1649 if (i == num) 1650 return 0; 1651 } 1652 } 1653 1654 /* Finally see if security callback allows it */ 1655 secbits = sigalg_security_bits(lu); 1656 sigalgstr[0] = (lu->sigalg >> 8) & 0xff; 1657 sigalgstr[1] = lu->sigalg & 0xff; 1658 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr); 1659 } 1660 1661 /* 1662 * Get a mask of disabled public key algorithms based on supported signature 1663 * algorithms. For example if no signature algorithm supports RSA then RSA is 1664 * disabled. 1665 */ 1666 1667 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op) 1668 { 1669 const uint16_t *sigalgs; 1670 size_t i, sigalgslen; 1671 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA; 1672 /* 1673 * Go through all signature algorithms seeing if we support any 1674 * in disabled_mask. 1675 */ 1676 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs); 1677 for (i = 0; i < sigalgslen; i++, sigalgs++) { 1678 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*sigalgs); 1679 const SSL_CERT_LOOKUP *clu; 1680 1681 if (lu == NULL) 1682 continue; 1683 1684 clu = ssl_cert_lookup_by_idx(lu->sig_idx); 1685 if (clu == NULL) 1686 continue; 1687 1688 /* If algorithm is disabled see if we can enable it */ 1689 if ((clu->amask & disabled_mask) != 0 1690 && tls12_sigalg_allowed(s, op, lu)) 1691 disabled_mask &= ~clu->amask; 1692 } 1693 *pmask_a |= disabled_mask; 1694 } 1695 1696 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt, 1697 const uint16_t *psig, size_t psiglen) 1698 { 1699 size_t i; 1700 int rv = 0; 1701 1702 for (i = 0; i < psiglen; i++, psig++) { 1703 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*psig); 1704 1705 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu)) 1706 continue; 1707 if (!WPACKET_put_bytes_u16(pkt, *psig)) 1708 return 0; 1709 /* 1710 * If TLS 1.3 must have at least one valid TLS 1.3 message 1711 * signing algorithm: i.e. neither RSA nor SHA1/SHA224 1712 */ 1713 if (rv == 0 && (!SSL_IS_TLS13(s) 1714 || (lu->sig != EVP_PKEY_RSA 1715 && lu->hash != NID_sha1 1716 && lu->hash != NID_sha224))) 1717 rv = 1; 1718 } 1719 if (rv == 0) 1720 SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); 1721 return rv; 1722 } 1723 1724 /* Given preference and allowed sigalgs set shared sigalgs */ 1725 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig, 1726 const uint16_t *pref, size_t preflen, 1727 const uint16_t *allow, size_t allowlen) 1728 { 1729 const uint16_t *ptmp, *atmp; 1730 size_t i, j, nmatch = 0; 1731 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) { 1732 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*ptmp); 1733 1734 /* Skip disabled hashes or signature algorithms */ 1735 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu)) 1736 continue; 1737 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) { 1738 if (*ptmp == *atmp) { 1739 nmatch++; 1740 if (shsig) 1741 *shsig++ = lu; 1742 break; 1743 } 1744 } 1745 } 1746 return nmatch; 1747 } 1748 1749 /* Set shared signature algorithms for SSL structures */ 1750 static int tls1_set_shared_sigalgs(SSL *s) 1751 { 1752 const uint16_t *pref, *allow, *conf; 1753 size_t preflen, allowlen, conflen; 1754 size_t nmatch; 1755 const SIGALG_LOOKUP **salgs = NULL; 1756 CERT *c = s->cert; 1757 unsigned int is_suiteb = tls1_suiteb(s); 1758 1759 OPENSSL_free(s->shared_sigalgs); 1760 s->shared_sigalgs = NULL; 1761 s->shared_sigalgslen = 0; 1762 /* If client use client signature algorithms if not NULL */ 1763 if (!s->server && c->client_sigalgs && !is_suiteb) { 1764 conf = c->client_sigalgs; 1765 conflen = c->client_sigalgslen; 1766 } else if (c->conf_sigalgs && !is_suiteb) { 1767 conf = c->conf_sigalgs; 1768 conflen = c->conf_sigalgslen; 1769 } else 1770 conflen = tls12_get_psigalgs(s, 0, &conf); 1771 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) { 1772 pref = conf; 1773 preflen = conflen; 1774 allow = s->s3->tmp.peer_sigalgs; 1775 allowlen = s->s3->tmp.peer_sigalgslen; 1776 } else { 1777 allow = conf; 1778 allowlen = conflen; 1779 pref = s->s3->tmp.peer_sigalgs; 1780 preflen = s->s3->tmp.peer_sigalgslen; 1781 } 1782 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen); 1783 if (nmatch) { 1784 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) { 1785 SSLerr(SSL_F_TLS1_SET_SHARED_SIGALGS, ERR_R_MALLOC_FAILURE); 1786 return 0; 1787 } 1788 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen); 1789 } else { 1790 salgs = NULL; 1791 } 1792 s->shared_sigalgs = salgs; 1793 s->shared_sigalgslen = nmatch; 1794 return 1; 1795 } 1796 1797 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen) 1798 { 1799 unsigned int stmp; 1800 size_t size, i; 1801 uint16_t *buf; 1802 1803 size = PACKET_remaining(pkt); 1804 1805 /* Invalid data length */ 1806 if (size == 0 || (size & 1) != 0) 1807 return 0; 1808 1809 size >>= 1; 1810 1811 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) { 1812 SSLerr(SSL_F_TLS1_SAVE_U16, ERR_R_MALLOC_FAILURE); 1813 return 0; 1814 } 1815 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++) 1816 buf[i] = stmp; 1817 1818 if (i != size) { 1819 OPENSSL_free(buf); 1820 return 0; 1821 } 1822 1823 OPENSSL_free(*pdest); 1824 *pdest = buf; 1825 *pdestlen = size; 1826 1827 return 1; 1828 } 1829 1830 int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert) 1831 { 1832 /* Extension ignored for inappropriate versions */ 1833 if (!SSL_USE_SIGALGS(s)) 1834 return 1; 1835 /* Should never happen */ 1836 if (s->cert == NULL) 1837 return 0; 1838 1839 if (cert) 1840 return tls1_save_u16(pkt, &s->s3->tmp.peer_cert_sigalgs, 1841 &s->s3->tmp.peer_cert_sigalgslen); 1842 else 1843 return tls1_save_u16(pkt, &s->s3->tmp.peer_sigalgs, 1844 &s->s3->tmp.peer_sigalgslen); 1845 1846 } 1847 1848 /* Set preferred digest for each key type */ 1849 1850 int tls1_process_sigalgs(SSL *s) 1851 { 1852 size_t i; 1853 uint32_t *pvalid = s->s3->tmp.valid_flags; 1854 1855 if (!tls1_set_shared_sigalgs(s)) 1856 return 0; 1857 1858 for (i = 0; i < SSL_PKEY_NUM; i++) 1859 pvalid[i] = 0; 1860 1861 for (i = 0; i < s->shared_sigalgslen; i++) { 1862 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i]; 1863 int idx = sigptr->sig_idx; 1864 1865 /* Ignore PKCS1 based sig algs in TLSv1.3 */ 1866 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA) 1867 continue; 1868 /* If not disabled indicate we can explicitly sign */ 1869 if (pvalid[idx] == 0 && !ssl_cert_is_disabled(idx)) 1870 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; 1871 } 1872 return 1; 1873 } 1874 1875 int SSL_get_sigalgs(SSL *s, int idx, 1876 int *psign, int *phash, int *psignhash, 1877 unsigned char *rsig, unsigned char *rhash) 1878 { 1879 uint16_t *psig = s->s3->tmp.peer_sigalgs; 1880 size_t numsigalgs = s->s3->tmp.peer_sigalgslen; 1881 if (psig == NULL || numsigalgs > INT_MAX) 1882 return 0; 1883 if (idx >= 0) { 1884 const SIGALG_LOOKUP *lu; 1885 1886 if (idx >= (int)numsigalgs) 1887 return 0; 1888 psig += idx; 1889 if (rhash != NULL) 1890 *rhash = (unsigned char)((*psig >> 8) & 0xff); 1891 if (rsig != NULL) 1892 *rsig = (unsigned char)(*psig & 0xff); 1893 lu = tls1_lookup_sigalg(*psig); 1894 if (psign != NULL) 1895 *psign = lu != NULL ? lu->sig : NID_undef; 1896 if (phash != NULL) 1897 *phash = lu != NULL ? lu->hash : NID_undef; 1898 if (psignhash != NULL) 1899 *psignhash = lu != NULL ? lu->sigandhash : NID_undef; 1900 } 1901 return (int)numsigalgs; 1902 } 1903 1904 int SSL_get_shared_sigalgs(SSL *s, int idx, 1905 int *psign, int *phash, int *psignhash, 1906 unsigned char *rsig, unsigned char *rhash) 1907 { 1908 const SIGALG_LOOKUP *shsigalgs; 1909 if (s->shared_sigalgs == NULL 1910 || idx < 0 1911 || idx >= (int)s->shared_sigalgslen 1912 || s->shared_sigalgslen > INT_MAX) 1913 return 0; 1914 shsigalgs = s->shared_sigalgs[idx]; 1915 if (phash != NULL) 1916 *phash = shsigalgs->hash; 1917 if (psign != NULL) 1918 *psign = shsigalgs->sig; 1919 if (psignhash != NULL) 1920 *psignhash = shsigalgs->sigandhash; 1921 if (rsig != NULL) 1922 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff); 1923 if (rhash != NULL) 1924 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff); 1925 return (int)s->shared_sigalgslen; 1926 } 1927 1928 /* Maximum possible number of unique entries in sigalgs array */ 1929 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2) 1930 1931 typedef struct { 1932 size_t sigalgcnt; 1933 /* TLSEXT_SIGALG_XXX values */ 1934 uint16_t sigalgs[TLS_MAX_SIGALGCNT]; 1935 } sig_cb_st; 1936 1937 static void get_sigorhash(int *psig, int *phash, const char *str) 1938 { 1939 if (strcmp(str, "RSA") == 0) { 1940 *psig = EVP_PKEY_RSA; 1941 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) { 1942 *psig = EVP_PKEY_RSA_PSS; 1943 } else if (strcmp(str, "DSA") == 0) { 1944 *psig = EVP_PKEY_DSA; 1945 } else if (strcmp(str, "ECDSA") == 0) { 1946 *psig = EVP_PKEY_EC; 1947 } else { 1948 *phash = OBJ_sn2nid(str); 1949 if (*phash == NID_undef) 1950 *phash = OBJ_ln2nid(str); 1951 } 1952 } 1953 /* Maximum length of a signature algorithm string component */ 1954 #define TLS_MAX_SIGSTRING_LEN 40 1955 1956 static int sig_cb(const char *elem, int len, void *arg) 1957 { 1958 sig_cb_st *sarg = arg; 1959 size_t i; 1960 const SIGALG_LOOKUP *s; 1961 char etmp[TLS_MAX_SIGSTRING_LEN], *p; 1962 int sig_alg = NID_undef, hash_alg = NID_undef; 1963 if (elem == NULL) 1964 return 0; 1965 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT) 1966 return 0; 1967 if (len > (int)(sizeof(etmp) - 1)) 1968 return 0; 1969 memcpy(etmp, elem, len); 1970 etmp[len] = 0; 1971 p = strchr(etmp, '+'); 1972 /* 1973 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl; 1974 * if there's no '+' in the provided name, look for the new-style combined 1975 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP. 1976 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and 1977 * rsa_pss_rsae_* that differ only by public key OID; in such cases 1978 * we will pick the _rsae_ variant, by virtue of them appearing earlier 1979 * in the table. 1980 */ 1981 if (p == NULL) { 1982 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); 1983 i++, s++) { 1984 if (s->name != NULL && strcmp(etmp, s->name) == 0) { 1985 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; 1986 break; 1987 } 1988 } 1989 if (i == OSSL_NELEM(sigalg_lookup_tbl)) 1990 return 0; 1991 } else { 1992 *p = 0; 1993 p++; 1994 if (*p == 0) 1995 return 0; 1996 get_sigorhash(&sig_alg, &hash_alg, etmp); 1997 get_sigorhash(&sig_alg, &hash_alg, p); 1998 if (sig_alg == NID_undef || hash_alg == NID_undef) 1999 return 0; 2000 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); 2001 i++, s++) { 2002 if (s->hash == hash_alg && s->sig == sig_alg) { 2003 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; 2004 break; 2005 } 2006 } 2007 if (i == OSSL_NELEM(sigalg_lookup_tbl)) 2008 return 0; 2009 } 2010 2011 /* Reject duplicates */ 2012 for (i = 0; i < sarg->sigalgcnt - 1; i++) { 2013 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) { 2014 sarg->sigalgcnt--; 2015 return 0; 2016 } 2017 } 2018 return 1; 2019 } 2020 2021 /* 2022 * Set supported signature algorithms based on a colon separated list of the 2023 * form sig+hash e.g. RSA+SHA512:DSA+SHA512 2024 */ 2025 int tls1_set_sigalgs_list(CERT *c, const char *str, int client) 2026 { 2027 sig_cb_st sig; 2028 sig.sigalgcnt = 0; 2029 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig)) 2030 return 0; 2031 if (c == NULL) 2032 return 1; 2033 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client); 2034 } 2035 2036 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen, 2037 int client) 2038 { 2039 uint16_t *sigalgs; 2040 2041 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) { 2042 SSLerr(SSL_F_TLS1_SET_RAW_SIGALGS, ERR_R_MALLOC_FAILURE); 2043 return 0; 2044 } 2045 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs)); 2046 2047 if (client) { 2048 OPENSSL_free(c->client_sigalgs); 2049 c->client_sigalgs = sigalgs; 2050 c->client_sigalgslen = salglen; 2051 } else { 2052 OPENSSL_free(c->conf_sigalgs); 2053 c->conf_sigalgs = sigalgs; 2054 c->conf_sigalgslen = salglen; 2055 } 2056 2057 return 1; 2058 } 2059 2060 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client) 2061 { 2062 uint16_t *sigalgs, *sptr; 2063 size_t i; 2064 2065 if (salglen & 1) 2066 return 0; 2067 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) { 2068 SSLerr(SSL_F_TLS1_SET_SIGALGS, ERR_R_MALLOC_FAILURE); 2069 return 0; 2070 } 2071 for (i = 0, sptr = sigalgs; i < salglen; i += 2) { 2072 size_t j; 2073 const SIGALG_LOOKUP *curr; 2074 int md_id = *psig_nids++; 2075 int sig_id = *psig_nids++; 2076 2077 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl); 2078 j++, curr++) { 2079 if (curr->hash == md_id && curr->sig == sig_id) { 2080 *sptr++ = curr->sigalg; 2081 break; 2082 } 2083 } 2084 2085 if (j == OSSL_NELEM(sigalg_lookup_tbl)) 2086 goto err; 2087 } 2088 2089 if (client) { 2090 OPENSSL_free(c->client_sigalgs); 2091 c->client_sigalgs = sigalgs; 2092 c->client_sigalgslen = salglen / 2; 2093 } else { 2094 OPENSSL_free(c->conf_sigalgs); 2095 c->conf_sigalgs = sigalgs; 2096 c->conf_sigalgslen = salglen / 2; 2097 } 2098 2099 return 1; 2100 2101 err: 2102 OPENSSL_free(sigalgs); 2103 return 0; 2104 } 2105 2106 static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid) 2107 { 2108 int sig_nid, use_pc_sigalgs = 0; 2109 size_t i; 2110 const SIGALG_LOOKUP *sigalg; 2111 size_t sigalgslen; 2112 if (default_nid == -1) 2113 return 1; 2114 sig_nid = X509_get_signature_nid(x); 2115 if (default_nid) 2116 return sig_nid == default_nid ? 1 : 0; 2117 2118 if (SSL_IS_TLS13(s) && s->s3->tmp.peer_cert_sigalgs != NULL) { 2119 /* 2120 * If we're in TLSv1.3 then we only get here if we're checking the 2121 * chain. If the peer has specified peer_cert_sigalgs then we use them 2122 * otherwise we default to normal sigalgs. 2123 */ 2124 sigalgslen = s->s3->tmp.peer_cert_sigalgslen; 2125 use_pc_sigalgs = 1; 2126 } else { 2127 sigalgslen = s->shared_sigalgslen; 2128 } 2129 for (i = 0; i < sigalgslen; i++) { 2130 sigalg = use_pc_sigalgs 2131 ? tls1_lookup_sigalg(s->s3->tmp.peer_cert_sigalgs[i]) 2132 : s->shared_sigalgs[i]; 2133 if (sigalg != NULL && sig_nid == sigalg->sigandhash) 2134 return 1; 2135 } 2136 return 0; 2137 } 2138 2139 /* Check to see if a certificate issuer name matches list of CA names */ 2140 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x) 2141 { 2142 X509_NAME *nm; 2143 int i; 2144 nm = X509_get_issuer_name(x); 2145 for (i = 0; i < sk_X509_NAME_num(names); i++) { 2146 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i))) 2147 return 1; 2148 } 2149 return 0; 2150 } 2151 2152 /* 2153 * Check certificate chain is consistent with TLS extensions and is usable by 2154 * server. This servers two purposes: it allows users to check chains before 2155 * passing them to the server and it allows the server to check chains before 2156 * attempting to use them. 2157 */ 2158 2159 /* Flags which need to be set for a certificate when strict mode not set */ 2160 2161 #define CERT_PKEY_VALID_FLAGS \ 2162 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM) 2163 /* Strict mode flags */ 2164 #define CERT_PKEY_STRICT_FLAGS \ 2165 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \ 2166 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE) 2167 2168 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, 2169 int idx) 2170 { 2171 int i; 2172 int rv = 0; 2173 int check_flags = 0, strict_mode; 2174 CERT_PKEY *cpk = NULL; 2175 CERT *c = s->cert; 2176 uint32_t *pvalid; 2177 unsigned int suiteb_flags = tls1_suiteb(s); 2178 /* idx == -1 means checking server chains */ 2179 if (idx != -1) { 2180 /* idx == -2 means checking client certificate chains */ 2181 if (idx == -2) { 2182 cpk = c->key; 2183 idx = (int)(cpk - c->pkeys); 2184 } else 2185 cpk = c->pkeys + idx; 2186 pvalid = s->s3->tmp.valid_flags + idx; 2187 x = cpk->x509; 2188 pk = cpk->privatekey; 2189 chain = cpk->chain; 2190 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT; 2191 /* If no cert or key, forget it */ 2192 if (!x || !pk) 2193 goto end; 2194 } else { 2195 size_t certidx; 2196 2197 if (!x || !pk) 2198 return 0; 2199 2200 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL) 2201 return 0; 2202 idx = certidx; 2203 pvalid = s->s3->tmp.valid_flags + idx; 2204 2205 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT) 2206 check_flags = CERT_PKEY_STRICT_FLAGS; 2207 else 2208 check_flags = CERT_PKEY_VALID_FLAGS; 2209 strict_mode = 1; 2210 } 2211 2212 if (suiteb_flags) { 2213 int ok; 2214 if (check_flags) 2215 check_flags |= CERT_PKEY_SUITEB; 2216 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags); 2217 if (ok == X509_V_OK) 2218 rv |= CERT_PKEY_SUITEB; 2219 else if (!check_flags) 2220 goto end; 2221 } 2222 2223 /* 2224 * Check all signature algorithms are consistent with signature 2225 * algorithms extension if TLS 1.2 or later and strict mode. 2226 */ 2227 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) { 2228 int default_nid; 2229 int rsign = 0; 2230 if (s->s3->tmp.peer_cert_sigalgs != NULL 2231 || s->s3->tmp.peer_sigalgs != NULL) { 2232 default_nid = 0; 2233 /* If no sigalgs extension use defaults from RFC5246 */ 2234 } else { 2235 switch (idx) { 2236 case SSL_PKEY_RSA: 2237 rsign = EVP_PKEY_RSA; 2238 default_nid = NID_sha1WithRSAEncryption; 2239 break; 2240 2241 case SSL_PKEY_DSA_SIGN: 2242 rsign = EVP_PKEY_DSA; 2243 default_nid = NID_dsaWithSHA1; 2244 break; 2245 2246 case SSL_PKEY_ECC: 2247 rsign = EVP_PKEY_EC; 2248 default_nid = NID_ecdsa_with_SHA1; 2249 break; 2250 2251 case SSL_PKEY_GOST01: 2252 rsign = NID_id_GostR3410_2001; 2253 default_nid = NID_id_GostR3411_94_with_GostR3410_2001; 2254 break; 2255 2256 case SSL_PKEY_GOST12_256: 2257 rsign = NID_id_GostR3410_2012_256; 2258 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256; 2259 break; 2260 2261 case SSL_PKEY_GOST12_512: 2262 rsign = NID_id_GostR3410_2012_512; 2263 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512; 2264 break; 2265 2266 default: 2267 default_nid = -1; 2268 break; 2269 } 2270 } 2271 /* 2272 * If peer sent no signature algorithms extension and we have set 2273 * preferred signature algorithms check we support sha1. 2274 */ 2275 if (default_nid > 0 && c->conf_sigalgs) { 2276 size_t j; 2277 const uint16_t *p = c->conf_sigalgs; 2278 for (j = 0; j < c->conf_sigalgslen; j++, p++) { 2279 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p); 2280 2281 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign) 2282 break; 2283 } 2284 if (j == c->conf_sigalgslen) { 2285 if (check_flags) 2286 goto skip_sigs; 2287 else 2288 goto end; 2289 } 2290 } 2291 /* Check signature algorithm of each cert in chain */ 2292 if (SSL_IS_TLS13(s)) { 2293 /* 2294 * We only get here if the application has called SSL_check_chain(), 2295 * so check_flags is always set. 2296 */ 2297 if (find_sig_alg(s, x, pk) != NULL) 2298 rv |= CERT_PKEY_EE_SIGNATURE; 2299 } else if (!tls1_check_sig_alg(s, x, default_nid)) { 2300 if (!check_flags) 2301 goto end; 2302 } else 2303 rv |= CERT_PKEY_EE_SIGNATURE; 2304 rv |= CERT_PKEY_CA_SIGNATURE; 2305 for (i = 0; i < sk_X509_num(chain); i++) { 2306 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) { 2307 if (check_flags) { 2308 rv &= ~CERT_PKEY_CA_SIGNATURE; 2309 break; 2310 } else 2311 goto end; 2312 } 2313 } 2314 } 2315 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */ 2316 else if (check_flags) 2317 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE; 2318 skip_sigs: 2319 /* Check cert parameters are consistent */ 2320 if (tls1_check_cert_param(s, x, 1)) 2321 rv |= CERT_PKEY_EE_PARAM; 2322 else if (!check_flags) 2323 goto end; 2324 if (!s->server) 2325 rv |= CERT_PKEY_CA_PARAM; 2326 /* In strict mode check rest of chain too */ 2327 else if (strict_mode) { 2328 rv |= CERT_PKEY_CA_PARAM; 2329 for (i = 0; i < sk_X509_num(chain); i++) { 2330 X509 *ca = sk_X509_value(chain, i); 2331 if (!tls1_check_cert_param(s, ca, 0)) { 2332 if (check_flags) { 2333 rv &= ~CERT_PKEY_CA_PARAM; 2334 break; 2335 } else 2336 goto end; 2337 } 2338 } 2339 } 2340 if (!s->server && strict_mode) { 2341 STACK_OF(X509_NAME) *ca_dn; 2342 int check_type = 0; 2343 switch (EVP_PKEY_id(pk)) { 2344 case EVP_PKEY_RSA: 2345 check_type = TLS_CT_RSA_SIGN; 2346 break; 2347 case EVP_PKEY_DSA: 2348 check_type = TLS_CT_DSS_SIGN; 2349 break; 2350 case EVP_PKEY_EC: 2351 check_type = TLS_CT_ECDSA_SIGN; 2352 break; 2353 } 2354 if (check_type) { 2355 const uint8_t *ctypes = s->s3->tmp.ctype; 2356 size_t j; 2357 2358 for (j = 0; j < s->s3->tmp.ctype_len; j++, ctypes++) { 2359 if (*ctypes == check_type) { 2360 rv |= CERT_PKEY_CERT_TYPE; 2361 break; 2362 } 2363 } 2364 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags) 2365 goto end; 2366 } else { 2367 rv |= CERT_PKEY_CERT_TYPE; 2368 } 2369 2370 ca_dn = s->s3->tmp.peer_ca_names; 2371 2372 if (!sk_X509_NAME_num(ca_dn)) 2373 rv |= CERT_PKEY_ISSUER_NAME; 2374 2375 if (!(rv & CERT_PKEY_ISSUER_NAME)) { 2376 if (ssl_check_ca_name(ca_dn, x)) 2377 rv |= CERT_PKEY_ISSUER_NAME; 2378 } 2379 if (!(rv & CERT_PKEY_ISSUER_NAME)) { 2380 for (i = 0; i < sk_X509_num(chain); i++) { 2381 X509 *xtmp = sk_X509_value(chain, i); 2382 if (ssl_check_ca_name(ca_dn, xtmp)) { 2383 rv |= CERT_PKEY_ISSUER_NAME; 2384 break; 2385 } 2386 } 2387 } 2388 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME)) 2389 goto end; 2390 } else 2391 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE; 2392 2393 if (!check_flags || (rv & check_flags) == check_flags) 2394 rv |= CERT_PKEY_VALID; 2395 2396 end: 2397 2398 if (TLS1_get_version(s) >= TLS1_2_VERSION) 2399 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN); 2400 else 2401 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN; 2402 2403 /* 2404 * When checking a CERT_PKEY structure all flags are irrelevant if the 2405 * chain is invalid. 2406 */ 2407 if (!check_flags) { 2408 if (rv & CERT_PKEY_VALID) { 2409 *pvalid = rv; 2410 } else { 2411 /* Preserve sign and explicit sign flag, clear rest */ 2412 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; 2413 return 0; 2414 } 2415 } 2416 return rv; 2417 } 2418 2419 /* Set validity of certificates in an SSL structure */ 2420 void tls1_set_cert_validity(SSL *s) 2421 { 2422 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA); 2423 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN); 2424 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN); 2425 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC); 2426 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01); 2427 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256); 2428 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512); 2429 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519); 2430 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448); 2431 } 2432 2433 /* User level utility function to check a chain is suitable */ 2434 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain) 2435 { 2436 return tls1_check_chain(s, x, pk, chain, -1); 2437 } 2438 2439 #ifndef OPENSSL_NO_DH 2440 DH *ssl_get_auto_dh(SSL *s) 2441 { 2442 DH *dhp = NULL; 2443 BIGNUM *p = NULL, *g = NULL; 2444 int dh_secbits = 80, sec_level_bits; 2445 2446 if (s->cert->dh_tmp_auto != 2) { 2447 if (s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) { 2448 if (s->s3->tmp.new_cipher->strength_bits == 256) 2449 dh_secbits = 128; 2450 else 2451 dh_secbits = 80; 2452 } else { 2453 if (s->s3->tmp.cert == NULL) 2454 return NULL; 2455 dh_secbits = EVP_PKEY_security_bits(s->s3->tmp.cert->privatekey); 2456 } 2457 } 2458 2459 dhp = DH_new(); 2460 if (dhp == NULL) 2461 return NULL; 2462 g = BN_new(); 2463 if (g == NULL || !BN_set_word(g, 2)) { 2464 DH_free(dhp); 2465 BN_free(g); 2466 return NULL; 2467 } 2468 2469 /* Do not pick a prime that is too weak for the current security level */ 2470 sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL); 2471 if (dh_secbits < sec_level_bits) 2472 dh_secbits = sec_level_bits; 2473 2474 if (dh_secbits >= 192) 2475 p = BN_get_rfc3526_prime_8192(NULL); 2476 else if (dh_secbits >= 152) 2477 p = BN_get_rfc3526_prime_4096(NULL); 2478 else if (dh_secbits >= 128) 2479 p = BN_get_rfc3526_prime_3072(NULL); 2480 else if (dh_secbits >= 112) 2481 p = BN_get_rfc3526_prime_2048(NULL); 2482 else 2483 p = BN_get_rfc2409_prime_1024(NULL); 2484 if (p == NULL || !DH_set0_pqg(dhp, p, NULL, g)) { 2485 DH_free(dhp); 2486 BN_free(p); 2487 BN_free(g); 2488 return NULL; 2489 } 2490 return dhp; 2491 } 2492 #endif 2493 2494 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op) 2495 { 2496 int secbits = -1; 2497 EVP_PKEY *pkey = X509_get0_pubkey(x); 2498 if (pkey) { 2499 /* 2500 * If no parameters this will return -1 and fail using the default 2501 * security callback for any non-zero security level. This will 2502 * reject keys which omit parameters but this only affects DSA and 2503 * omission of parameters is never (?) done in practice. 2504 */ 2505 secbits = EVP_PKEY_security_bits(pkey); 2506 } 2507 if (s) 2508 return ssl_security(s, op, secbits, 0, x); 2509 else 2510 return ssl_ctx_security(ctx, op, secbits, 0, x); 2511 } 2512 2513 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op) 2514 { 2515 /* Lookup signature algorithm digest */ 2516 int secbits, nid, pknid; 2517 /* Don't check signature if self signed */ 2518 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0) 2519 return 1; 2520 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL)) 2521 secbits = -1; 2522 /* If digest NID not defined use signature NID */ 2523 if (nid == NID_undef) 2524 nid = pknid; 2525 if (s) 2526 return ssl_security(s, op, secbits, nid, x); 2527 else 2528 return ssl_ctx_security(ctx, op, secbits, nid, x); 2529 } 2530 2531 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee) 2532 { 2533 if (vfy) 2534 vfy = SSL_SECOP_PEER; 2535 if (is_ee) { 2536 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy)) 2537 return SSL_R_EE_KEY_TOO_SMALL; 2538 } else { 2539 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy)) 2540 return SSL_R_CA_KEY_TOO_SMALL; 2541 } 2542 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy)) 2543 return SSL_R_CA_MD_TOO_WEAK; 2544 return 1; 2545 } 2546 2547 /* 2548 * Check security of a chain, if |sk| includes the end entity certificate then 2549 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending 2550 * one to the peer. Return values: 1 if ok otherwise error code to use 2551 */ 2552 2553 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy) 2554 { 2555 int rv, start_idx, i; 2556 if (x == NULL) { 2557 x = sk_X509_value(sk, 0); 2558 start_idx = 1; 2559 } else 2560 start_idx = 0; 2561 2562 rv = ssl_security_cert(s, NULL, x, vfy, 1); 2563 if (rv != 1) 2564 return rv; 2565 2566 for (i = start_idx; i < sk_X509_num(sk); i++) { 2567 x = sk_X509_value(sk, i); 2568 rv = ssl_security_cert(s, NULL, x, vfy, 0); 2569 if (rv != 1) 2570 return rv; 2571 } 2572 return 1; 2573 } 2574 2575 /* 2576 * For TLS 1.2 servers check if we have a certificate which can be used 2577 * with the signature algorithm "lu" and return index of certificate. 2578 */ 2579 2580 static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu) 2581 { 2582 int sig_idx = lu->sig_idx; 2583 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx); 2584 2585 /* If not recognised or not supported by cipher mask it is not suitable */ 2586 if (clu == NULL 2587 || (clu->amask & s->s3->tmp.new_cipher->algorithm_auth) == 0 2588 || (clu->nid == EVP_PKEY_RSA_PSS 2589 && (s->s3->tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0)) 2590 return -1; 2591 2592 return s->s3->tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1; 2593 } 2594 2595 /* 2596 * Checks the given cert against signature_algorithm_cert restrictions sent by 2597 * the peer (if any) as well as whether the hash from the sigalg is usable with 2598 * the key. 2599 * Returns true if the cert is usable and false otherwise. 2600 */ 2601 static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x, 2602 EVP_PKEY *pkey) 2603 { 2604 const SIGALG_LOOKUP *lu; 2605 int mdnid, pknid, default_mdnid; 2606 size_t i; 2607 2608 /* If the EVP_PKEY reports a mandatory digest, allow nothing else. */ 2609 ERR_set_mark(); 2610 if (EVP_PKEY_get_default_digest_nid(pkey, &default_mdnid) == 2 && 2611 sig->hash != default_mdnid) 2612 return 0; 2613 2614 /* If it didn't report a mandatory NID, for whatever reasons, 2615 * just clear the error and allow all hashes to be used. */ 2616 ERR_pop_to_mark(); 2617 2618 if (s->s3->tmp.peer_cert_sigalgs != NULL) { 2619 for (i = 0; i < s->s3->tmp.peer_cert_sigalgslen; i++) { 2620 lu = tls1_lookup_sigalg(s->s3->tmp.peer_cert_sigalgs[i]); 2621 if (lu == NULL 2622 || !X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL)) 2623 continue; 2624 /* 2625 * TODO this does not differentiate between the 2626 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not 2627 * have a chain here that lets us look at the key OID in the 2628 * signing certificate. 2629 */ 2630 if (mdnid == lu->hash && pknid == lu->sig) 2631 return 1; 2632 } 2633 return 0; 2634 } 2635 return 1; 2636 } 2637 2638 /* 2639 * Returns true if |s| has a usable certificate configured for use 2640 * with signature scheme |sig|. 2641 * "Usable" includes a check for presence as well as applying 2642 * the signature_algorithm_cert restrictions sent by the peer (if any). 2643 * Returns false if no usable certificate is found. 2644 */ 2645 static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx) 2646 { 2647 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */ 2648 if (idx == -1) 2649 idx = sig->sig_idx; 2650 if (!ssl_has_cert(s, idx)) 2651 return 0; 2652 2653 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509, 2654 s->cert->pkeys[idx].privatekey); 2655 } 2656 2657 /* 2658 * Returns true if the supplied cert |x| and key |pkey| is usable with the 2659 * specified signature scheme |sig|, or false otherwise. 2660 */ 2661 static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x, 2662 EVP_PKEY *pkey) 2663 { 2664 size_t idx; 2665 2666 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL) 2667 return 0; 2668 2669 /* Check the key is consistent with the sig alg */ 2670 if ((int)idx != sig->sig_idx) 2671 return 0; 2672 2673 return check_cert_usable(s, sig, x, pkey); 2674 } 2675 2676 /* 2677 * Find a signature scheme that works with the supplied certificate |x| and key 2678 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our 2679 * available certs/keys to find one that works. 2680 */ 2681 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey) 2682 { 2683 const SIGALG_LOOKUP *lu = NULL; 2684 size_t i; 2685 #ifndef OPENSSL_NO_EC 2686 int curve = -1; 2687 #endif 2688 EVP_PKEY *tmppkey; 2689 2690 /* Look for a shared sigalgs matching possible certificates */ 2691 for (i = 0; i < s->shared_sigalgslen; i++) { 2692 lu = s->shared_sigalgs[i]; 2693 2694 /* Skip SHA1, SHA224, DSA and RSA if not PSS */ 2695 if (lu->hash == NID_sha1 2696 || lu->hash == NID_sha224 2697 || lu->sig == EVP_PKEY_DSA 2698 || lu->sig == EVP_PKEY_RSA) 2699 continue; 2700 /* Check that we have a cert, and signature_algorithms_cert */ 2701 if (!tls1_lookup_md(lu, NULL)) 2702 continue; 2703 if ((pkey == NULL && !has_usable_cert(s, lu, -1)) 2704 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey))) 2705 continue; 2706 2707 tmppkey = (pkey != NULL) ? pkey 2708 : s->cert->pkeys[lu->sig_idx].privatekey; 2709 2710 if (lu->sig == EVP_PKEY_EC) { 2711 #ifndef OPENSSL_NO_EC 2712 if (curve == -1) { 2713 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(tmppkey); 2714 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); 2715 } 2716 if (lu->curve != NID_undef && curve != lu->curve) 2717 continue; 2718 #else 2719 continue; 2720 #endif 2721 } else if (lu->sig == EVP_PKEY_RSA_PSS) { 2722 /* validate that key is large enough for the signature algorithm */ 2723 if (!rsa_pss_check_min_key_size(EVP_PKEY_get0(tmppkey), lu)) 2724 continue; 2725 } 2726 break; 2727 } 2728 2729 if (i == s->shared_sigalgslen) 2730 return NULL; 2731 2732 return lu; 2733 } 2734 2735 /* 2736 * Choose an appropriate signature algorithm based on available certificates 2737 * Sets chosen certificate and signature algorithm. 2738 * 2739 * For servers if we fail to find a required certificate it is a fatal error, 2740 * an appropriate error code is set and a TLS alert is sent. 2741 * 2742 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not 2743 * a fatal error: we will either try another certificate or not present one 2744 * to the server. In this case no error is set. 2745 */ 2746 int tls_choose_sigalg(SSL *s, int fatalerrs) 2747 { 2748 const SIGALG_LOOKUP *lu = NULL; 2749 int sig_idx = -1; 2750 2751 s->s3->tmp.cert = NULL; 2752 s->s3->tmp.sigalg = NULL; 2753 2754 if (SSL_IS_TLS13(s)) { 2755 lu = find_sig_alg(s, NULL, NULL); 2756 if (lu == NULL) { 2757 if (!fatalerrs) 2758 return 1; 2759 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_CHOOSE_SIGALG, 2760 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); 2761 return 0; 2762 } 2763 } else { 2764 /* If ciphersuite doesn't require a cert nothing to do */ 2765 if (!(s->s3->tmp.new_cipher->algorithm_auth & SSL_aCERT)) 2766 return 1; 2767 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys)) 2768 return 1; 2769 2770 if (SSL_USE_SIGALGS(s)) { 2771 size_t i; 2772 if (s->s3->tmp.peer_sigalgs != NULL) { 2773 #ifndef OPENSSL_NO_EC 2774 int curve; 2775 2776 /* For Suite B need to match signature algorithm to curve */ 2777 if (tls1_suiteb(s)) { 2778 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[SSL_PKEY_ECC].privatekey); 2779 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); 2780 } else { 2781 curve = -1; 2782 } 2783 #endif 2784 2785 /* 2786 * Find highest preference signature algorithm matching 2787 * cert type 2788 */ 2789 for (i = 0; i < s->shared_sigalgslen; i++) { 2790 lu = s->shared_sigalgs[i]; 2791 2792 if (s->server) { 2793 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1) 2794 continue; 2795 } else { 2796 int cc_idx = s->cert->key - s->cert->pkeys; 2797 2798 sig_idx = lu->sig_idx; 2799 if (cc_idx != sig_idx) 2800 continue; 2801 } 2802 /* Check that we have a cert, and sig_algs_cert */ 2803 if (!has_usable_cert(s, lu, sig_idx)) 2804 continue; 2805 if (lu->sig == EVP_PKEY_RSA_PSS) { 2806 /* validate that key is large enough for the signature algorithm */ 2807 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey; 2808 2809 if (!rsa_pss_check_min_key_size(EVP_PKEY_get0(pkey), lu)) 2810 continue; 2811 } 2812 #ifndef OPENSSL_NO_EC 2813 if (curve == -1 || lu->curve == curve) 2814 #endif 2815 break; 2816 } 2817 #ifndef OPENSSL_NO_GOST 2818 /* 2819 * Some Windows-based implementations do not send GOST algorithms indication 2820 * in supported_algorithms extension, so when we have GOST-based ciphersuite, 2821 * we have to assume GOST support. 2822 */ 2823 if (i == s->shared_sigalgslen && s->s3->tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) { 2824 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { 2825 if (!fatalerrs) 2826 return 1; 2827 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, 2828 SSL_F_TLS_CHOOSE_SIGALG, 2829 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); 2830 return 0; 2831 } else { 2832 i = 0; 2833 sig_idx = lu->sig_idx; 2834 } 2835 } 2836 #endif 2837 if (i == s->shared_sigalgslen) { 2838 if (!fatalerrs) 2839 return 1; 2840 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, 2841 SSL_F_TLS_CHOOSE_SIGALG, 2842 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); 2843 return 0; 2844 } 2845 } else { 2846 /* 2847 * If we have no sigalg use defaults 2848 */ 2849 const uint16_t *sent_sigs; 2850 size_t sent_sigslen; 2851 2852 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { 2853 if (!fatalerrs) 2854 return 1; 2855 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG, 2856 ERR_R_INTERNAL_ERROR); 2857 return 0; 2858 } 2859 2860 /* Check signature matches a type we sent */ 2861 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); 2862 for (i = 0; i < sent_sigslen; i++, sent_sigs++) { 2863 if (lu->sigalg == *sent_sigs 2864 && has_usable_cert(s, lu, lu->sig_idx)) 2865 break; 2866 } 2867 if (i == sent_sigslen) { 2868 if (!fatalerrs) 2869 return 1; 2870 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, 2871 SSL_F_TLS_CHOOSE_SIGALG, 2872 SSL_R_WRONG_SIGNATURE_TYPE); 2873 return 0; 2874 } 2875 } 2876 } else { 2877 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { 2878 if (!fatalerrs) 2879 return 1; 2880 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG, 2881 ERR_R_INTERNAL_ERROR); 2882 return 0; 2883 } 2884 } 2885 } 2886 if (sig_idx == -1) 2887 sig_idx = lu->sig_idx; 2888 s->s3->tmp.cert = &s->cert->pkeys[sig_idx]; 2889 s->cert->key = s->s3->tmp.cert; 2890 s->s3->tmp.sigalg = lu; 2891 return 1; 2892 } 2893 2894 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode) 2895 { 2896 if (mode != TLSEXT_max_fragment_length_DISABLED 2897 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { 2898 SSLerr(SSL_F_SSL_CTX_SET_TLSEXT_MAX_FRAGMENT_LENGTH, 2899 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); 2900 return 0; 2901 } 2902 2903 ctx->ext.max_fragment_len_mode = mode; 2904 return 1; 2905 } 2906 2907 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode) 2908 { 2909 if (mode != TLSEXT_max_fragment_length_DISABLED 2910 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { 2911 SSLerr(SSL_F_SSL_SET_TLSEXT_MAX_FRAGMENT_LENGTH, 2912 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); 2913 return 0; 2914 } 2915 2916 ssl->ext.max_fragment_len_mode = mode; 2917 return 1; 2918 } 2919 2920 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session) 2921 { 2922 return session->ext.max_fragment_len_mode; 2923 } 2924