1 /* 2 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. 3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved 4 * Copyright 2005 Nokia. All rights reserved. 5 * 6 * Licensed under the OpenSSL license (the "License"). You may not use 7 * this file except in compliance with the License. You can obtain a copy 8 * in the file LICENSE in the source distribution or at 9 * https://www.openssl.org/source/license.html 10 */ 11 12 #include <stdio.h> 13 #include "ssl_local.h" 14 #include "e_os.h" 15 #include <openssl/objects.h> 16 #include <openssl/x509v3.h> 17 #include <openssl/rand.h> 18 #include <openssl/rand_drbg.h> 19 #include <openssl/ocsp.h> 20 #include <openssl/dh.h> 21 #include <openssl/engine.h> 22 #include <openssl/async.h> 23 #include <openssl/ct.h> 24 #include "internal/cryptlib.h" 25 #include "internal/refcount.h" 26 #include "internal/ktls.h" 27 28 const char SSL_version_str[] = OPENSSL_VERSION_TEXT; 29 30 static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t) 31 { 32 (void)r; 33 (void)s; 34 (void)t; 35 return ssl_undefined_function(ssl); 36 } 37 38 static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s, 39 int t) 40 { 41 (void)r; 42 (void)s; 43 (void)t; 44 return ssl_undefined_function(ssl); 45 } 46 47 static int ssl_undefined_function_3(SSL *ssl, unsigned char *r, 48 unsigned char *s, size_t t, size_t *u) 49 { 50 (void)r; 51 (void)s; 52 (void)t; 53 (void)u; 54 return ssl_undefined_function(ssl); 55 } 56 57 static int ssl_undefined_function_4(SSL *ssl, int r) 58 { 59 (void)r; 60 return ssl_undefined_function(ssl); 61 } 62 63 static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s, 64 unsigned char *t) 65 { 66 (void)r; 67 (void)s; 68 (void)t; 69 return ssl_undefined_function(ssl); 70 } 71 72 static int ssl_undefined_function_6(int r) 73 { 74 (void)r; 75 return ssl_undefined_function(NULL); 76 } 77 78 static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s, 79 const char *t, size_t u, 80 const unsigned char *v, size_t w, int x) 81 { 82 (void)r; 83 (void)s; 84 (void)t; 85 (void)u; 86 (void)v; 87 (void)w; 88 (void)x; 89 return ssl_undefined_function(ssl); 90 } 91 92 SSL3_ENC_METHOD ssl3_undef_enc_method = { 93 ssl_undefined_function_1, 94 ssl_undefined_function_2, 95 ssl_undefined_function, 96 ssl_undefined_function_3, 97 ssl_undefined_function_4, 98 ssl_undefined_function_5, 99 NULL, /* client_finished_label */ 100 0, /* client_finished_label_len */ 101 NULL, /* server_finished_label */ 102 0, /* server_finished_label_len */ 103 ssl_undefined_function_6, 104 ssl_undefined_function_7, 105 }; 106 107 struct ssl_async_args { 108 SSL *s; 109 void *buf; 110 size_t num; 111 enum { READFUNC, WRITEFUNC, OTHERFUNC } type; 112 union { 113 int (*func_read) (SSL *, void *, size_t, size_t *); 114 int (*func_write) (SSL *, const void *, size_t, size_t *); 115 int (*func_other) (SSL *); 116 } f; 117 }; 118 119 static const struct { 120 uint8_t mtype; 121 uint8_t ord; 122 int nid; 123 } dane_mds[] = { 124 { 125 DANETLS_MATCHING_FULL, 0, NID_undef 126 }, 127 { 128 DANETLS_MATCHING_2256, 1, NID_sha256 129 }, 130 { 131 DANETLS_MATCHING_2512, 2, NID_sha512 132 }, 133 }; 134 135 static int dane_ctx_enable(struct dane_ctx_st *dctx) 136 { 137 const EVP_MD **mdevp; 138 uint8_t *mdord; 139 uint8_t mdmax = DANETLS_MATCHING_LAST; 140 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */ 141 size_t i; 142 143 if (dctx->mdevp != NULL) 144 return 1; 145 146 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp)); 147 mdord = OPENSSL_zalloc(n * sizeof(*mdord)); 148 149 if (mdord == NULL || mdevp == NULL) { 150 OPENSSL_free(mdord); 151 OPENSSL_free(mdevp); 152 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE); 153 return 0; 154 } 155 156 /* Install default entries */ 157 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) { 158 const EVP_MD *md; 159 160 if (dane_mds[i].nid == NID_undef || 161 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL) 162 continue; 163 mdevp[dane_mds[i].mtype] = md; 164 mdord[dane_mds[i].mtype] = dane_mds[i].ord; 165 } 166 167 dctx->mdevp = mdevp; 168 dctx->mdord = mdord; 169 dctx->mdmax = mdmax; 170 171 return 1; 172 } 173 174 static void dane_ctx_final(struct dane_ctx_st *dctx) 175 { 176 OPENSSL_free(dctx->mdevp); 177 dctx->mdevp = NULL; 178 179 OPENSSL_free(dctx->mdord); 180 dctx->mdord = NULL; 181 dctx->mdmax = 0; 182 } 183 184 static void tlsa_free(danetls_record *t) 185 { 186 if (t == NULL) 187 return; 188 OPENSSL_free(t->data); 189 EVP_PKEY_free(t->spki); 190 OPENSSL_free(t); 191 } 192 193 static void dane_final(SSL_DANE *dane) 194 { 195 sk_danetls_record_pop_free(dane->trecs, tlsa_free); 196 dane->trecs = NULL; 197 198 sk_X509_pop_free(dane->certs, X509_free); 199 dane->certs = NULL; 200 201 X509_free(dane->mcert); 202 dane->mcert = NULL; 203 dane->mtlsa = NULL; 204 dane->mdpth = -1; 205 dane->pdpth = -1; 206 } 207 208 /* 209 * dane_copy - Copy dane configuration, sans verification state. 210 */ 211 static int ssl_dane_dup(SSL *to, SSL *from) 212 { 213 int num; 214 int i; 215 216 if (!DANETLS_ENABLED(&from->dane)) 217 return 1; 218 219 num = sk_danetls_record_num(from->dane.trecs); 220 dane_final(&to->dane); 221 to->dane.flags = from->dane.flags; 222 to->dane.dctx = &to->ctx->dane; 223 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num); 224 225 if (to->dane.trecs == NULL) { 226 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE); 227 return 0; 228 } 229 230 for (i = 0; i < num; ++i) { 231 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i); 232 233 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype, 234 t->data, t->dlen) <= 0) 235 return 0; 236 } 237 return 1; 238 } 239 240 static int dane_mtype_set(struct dane_ctx_st *dctx, 241 const EVP_MD *md, uint8_t mtype, uint8_t ord) 242 { 243 int i; 244 245 if (mtype == DANETLS_MATCHING_FULL && md != NULL) { 246 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL); 247 return 0; 248 } 249 250 if (mtype > dctx->mdmax) { 251 const EVP_MD **mdevp; 252 uint8_t *mdord; 253 int n = ((int)mtype) + 1; 254 255 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp)); 256 if (mdevp == NULL) { 257 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE); 258 return -1; 259 } 260 dctx->mdevp = mdevp; 261 262 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord)); 263 if (mdord == NULL) { 264 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE); 265 return -1; 266 } 267 dctx->mdord = mdord; 268 269 /* Zero-fill any gaps */ 270 for (i = dctx->mdmax + 1; i < mtype; ++i) { 271 mdevp[i] = NULL; 272 mdord[i] = 0; 273 } 274 275 dctx->mdmax = mtype; 276 } 277 278 dctx->mdevp[mtype] = md; 279 /* Coerce ordinal of disabled matching types to 0 */ 280 dctx->mdord[mtype] = (md == NULL) ? 0 : ord; 281 282 return 1; 283 } 284 285 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype) 286 { 287 if (mtype > dane->dctx->mdmax) 288 return NULL; 289 return dane->dctx->mdevp[mtype]; 290 } 291 292 static int dane_tlsa_add(SSL_DANE *dane, 293 uint8_t usage, 294 uint8_t selector, 295 uint8_t mtype, unsigned const char *data, size_t dlen) 296 { 297 danetls_record *t; 298 const EVP_MD *md = NULL; 299 int ilen = (int)dlen; 300 int i; 301 int num; 302 303 if (dane->trecs == NULL) { 304 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED); 305 return -1; 306 } 307 308 if (ilen < 0 || dlen != (size_t)ilen) { 309 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH); 310 return 0; 311 } 312 313 if (usage > DANETLS_USAGE_LAST) { 314 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE); 315 return 0; 316 } 317 318 if (selector > DANETLS_SELECTOR_LAST) { 319 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR); 320 return 0; 321 } 322 323 if (mtype != DANETLS_MATCHING_FULL) { 324 md = tlsa_md_get(dane, mtype); 325 if (md == NULL) { 326 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE); 327 return 0; 328 } 329 } 330 331 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) { 332 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH); 333 return 0; 334 } 335 if (!data) { 336 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA); 337 return 0; 338 } 339 340 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) { 341 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 342 return -1; 343 } 344 345 t->usage = usage; 346 t->selector = selector; 347 t->mtype = mtype; 348 t->data = OPENSSL_malloc(dlen); 349 if (t->data == NULL) { 350 tlsa_free(t); 351 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 352 return -1; 353 } 354 memcpy(t->data, data, dlen); 355 t->dlen = dlen; 356 357 /* Validate and cache full certificate or public key */ 358 if (mtype == DANETLS_MATCHING_FULL) { 359 const unsigned char *p = data; 360 X509 *cert = NULL; 361 EVP_PKEY *pkey = NULL; 362 363 switch (selector) { 364 case DANETLS_SELECTOR_CERT: 365 if (!d2i_X509(&cert, &p, ilen) || p < data || 366 dlen != (size_t)(p - data)) { 367 tlsa_free(t); 368 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE); 369 return 0; 370 } 371 if (X509_get0_pubkey(cert) == NULL) { 372 tlsa_free(t); 373 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE); 374 return 0; 375 } 376 377 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) { 378 X509_free(cert); 379 break; 380 } 381 382 /* 383 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA 384 * records that contain full certificates of trust-anchors that are 385 * not present in the wire chain. For usage PKIX-TA(0), we augment 386 * the chain with untrusted Full(0) certificates from DNS, in case 387 * they are missing from the chain. 388 */ 389 if ((dane->certs == NULL && 390 (dane->certs = sk_X509_new_null()) == NULL) || 391 !sk_X509_push(dane->certs, cert)) { 392 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 393 X509_free(cert); 394 tlsa_free(t); 395 return -1; 396 } 397 break; 398 399 case DANETLS_SELECTOR_SPKI: 400 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data || 401 dlen != (size_t)(p - data)) { 402 tlsa_free(t); 403 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY); 404 return 0; 405 } 406 407 /* 408 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA 409 * records that contain full bare keys of trust-anchors that are 410 * not present in the wire chain. 411 */ 412 if (usage == DANETLS_USAGE_DANE_TA) 413 t->spki = pkey; 414 else 415 EVP_PKEY_free(pkey); 416 break; 417 } 418 } 419 420 /*- 421 * Find the right insertion point for the new record. 422 * 423 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that 424 * they can be processed first, as they require no chain building, and no 425 * expiration or hostname checks. Because DANE-EE(3) is numerically 426 * largest, this is accomplished via descending sort by "usage". 427 * 428 * We also sort in descending order by matching ordinal to simplify 429 * the implementation of digest agility in the verification code. 430 * 431 * The choice of order for the selector is not significant, so we 432 * use the same descending order for consistency. 433 */ 434 num = sk_danetls_record_num(dane->trecs); 435 for (i = 0; i < num; ++i) { 436 danetls_record *rec = sk_danetls_record_value(dane->trecs, i); 437 438 if (rec->usage > usage) 439 continue; 440 if (rec->usage < usage) 441 break; 442 if (rec->selector > selector) 443 continue; 444 if (rec->selector < selector) 445 break; 446 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype]) 447 continue; 448 break; 449 } 450 451 if (!sk_danetls_record_insert(dane->trecs, t, i)) { 452 tlsa_free(t); 453 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); 454 return -1; 455 } 456 dane->umask |= DANETLS_USAGE_BIT(usage); 457 458 return 1; 459 } 460 461 /* 462 * Return 0 if there is only one version configured and it was disabled 463 * at configure time. Return 1 otherwise. 464 */ 465 static int ssl_check_allowed_versions(int min_version, int max_version) 466 { 467 int minisdtls = 0, maxisdtls = 0; 468 469 /* Figure out if we're doing DTLS versions or TLS versions */ 470 if (min_version == DTLS1_BAD_VER 471 || min_version >> 8 == DTLS1_VERSION_MAJOR) 472 minisdtls = 1; 473 if (max_version == DTLS1_BAD_VER 474 || max_version >> 8 == DTLS1_VERSION_MAJOR) 475 maxisdtls = 1; 476 /* A wildcard version of 0 could be DTLS or TLS. */ 477 if ((minisdtls && !maxisdtls && max_version != 0) 478 || (maxisdtls && !minisdtls && min_version != 0)) { 479 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */ 480 return 0; 481 } 482 483 if (minisdtls || maxisdtls) { 484 /* Do DTLS version checks. */ 485 if (min_version == 0) 486 /* Ignore DTLS1_BAD_VER */ 487 min_version = DTLS1_VERSION; 488 if (max_version == 0) 489 max_version = DTLS1_2_VERSION; 490 #ifdef OPENSSL_NO_DTLS1_2 491 if (max_version == DTLS1_2_VERSION) 492 max_version = DTLS1_VERSION; 493 #endif 494 #ifdef OPENSSL_NO_DTLS1 495 if (min_version == DTLS1_VERSION) 496 min_version = DTLS1_2_VERSION; 497 #endif 498 /* Done massaging versions; do the check. */ 499 if (0 500 #ifdef OPENSSL_NO_DTLS1 501 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION) 502 && DTLS_VERSION_GE(DTLS1_VERSION, max_version)) 503 #endif 504 #ifdef OPENSSL_NO_DTLS1_2 505 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION) 506 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version)) 507 #endif 508 ) 509 return 0; 510 } else { 511 /* Regular TLS version checks. */ 512 if (min_version == 0) 513 min_version = SSL3_VERSION; 514 if (max_version == 0) 515 max_version = TLS1_3_VERSION; 516 #ifdef OPENSSL_NO_TLS1_3 517 if (max_version == TLS1_3_VERSION) 518 max_version = TLS1_2_VERSION; 519 #endif 520 #ifdef OPENSSL_NO_TLS1_2 521 if (max_version == TLS1_2_VERSION) 522 max_version = TLS1_1_VERSION; 523 #endif 524 #ifdef OPENSSL_NO_TLS1_1 525 if (max_version == TLS1_1_VERSION) 526 max_version = TLS1_VERSION; 527 #endif 528 #ifdef OPENSSL_NO_TLS1 529 if (max_version == TLS1_VERSION) 530 max_version = SSL3_VERSION; 531 #endif 532 #ifdef OPENSSL_NO_SSL3 533 if (min_version == SSL3_VERSION) 534 min_version = TLS1_VERSION; 535 #endif 536 #ifdef OPENSSL_NO_TLS1 537 if (min_version == TLS1_VERSION) 538 min_version = TLS1_1_VERSION; 539 #endif 540 #ifdef OPENSSL_NO_TLS1_1 541 if (min_version == TLS1_1_VERSION) 542 min_version = TLS1_2_VERSION; 543 #endif 544 #ifdef OPENSSL_NO_TLS1_2 545 if (min_version == TLS1_2_VERSION) 546 min_version = TLS1_3_VERSION; 547 #endif 548 /* Done massaging versions; do the check. */ 549 if (0 550 #ifdef OPENSSL_NO_SSL3 551 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version) 552 #endif 553 #ifdef OPENSSL_NO_TLS1 554 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version) 555 #endif 556 #ifdef OPENSSL_NO_TLS1_1 557 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version) 558 #endif 559 #ifdef OPENSSL_NO_TLS1_2 560 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version) 561 #endif 562 #ifdef OPENSSL_NO_TLS1_3 563 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version) 564 #endif 565 ) 566 return 0; 567 } 568 return 1; 569 } 570 571 static void clear_ciphers(SSL *s) 572 { 573 /* clear the current cipher */ 574 ssl_clear_cipher_ctx(s); 575 ssl_clear_hash_ctx(&s->read_hash); 576 ssl_clear_hash_ctx(&s->write_hash); 577 } 578 579 int SSL_clear(SSL *s) 580 { 581 if (s->method == NULL) { 582 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED); 583 return 0; 584 } 585 586 if (ssl_clear_bad_session(s)) { 587 SSL_SESSION_free(s->session); 588 s->session = NULL; 589 } 590 SSL_SESSION_free(s->psksession); 591 s->psksession = NULL; 592 OPENSSL_free(s->psksession_id); 593 s->psksession_id = NULL; 594 s->psksession_id_len = 0; 595 s->hello_retry_request = 0; 596 s->sent_tickets = 0; 597 598 s->error = 0; 599 s->hit = 0; 600 s->shutdown = 0; 601 602 if (s->renegotiate) { 603 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR); 604 return 0; 605 } 606 607 ossl_statem_clear(s); 608 609 s->version = s->method->version; 610 s->client_version = s->version; 611 s->rwstate = SSL_NOTHING; 612 613 BUF_MEM_free(s->init_buf); 614 s->init_buf = NULL; 615 clear_ciphers(s); 616 s->first_packet = 0; 617 618 s->key_update = SSL_KEY_UPDATE_NONE; 619 620 EVP_MD_CTX_free(s->pha_dgst); 621 s->pha_dgst = NULL; 622 623 /* Reset DANE verification result state */ 624 s->dane.mdpth = -1; 625 s->dane.pdpth = -1; 626 X509_free(s->dane.mcert); 627 s->dane.mcert = NULL; 628 s->dane.mtlsa = NULL; 629 630 /* Clear the verification result peername */ 631 X509_VERIFY_PARAM_move_peername(s->param, NULL); 632 633 /* Clear any shared connection state */ 634 OPENSSL_free(s->shared_sigalgs); 635 s->shared_sigalgs = NULL; 636 s->shared_sigalgslen = 0; 637 638 /* 639 * Check to see if we were changed into a different method, if so, revert 640 * back. 641 */ 642 if (s->method != s->ctx->method) { 643 s->method->ssl_free(s); 644 s->method = s->ctx->method; 645 if (!s->method->ssl_new(s)) 646 return 0; 647 } else { 648 if (!s->method->ssl_clear(s)) 649 return 0; 650 } 651 652 RECORD_LAYER_clear(&s->rlayer); 653 654 return 1; 655 } 656 657 /** Used to change an SSL_CTXs default SSL method type */ 658 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth) 659 { 660 STACK_OF(SSL_CIPHER) *sk; 661 662 ctx->method = meth; 663 664 if (!SSL_CTX_set_ciphersuites(ctx, TLS_DEFAULT_CIPHERSUITES)) { 665 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS); 666 return 0; 667 } 668 sk = ssl_create_cipher_list(ctx->method, 669 ctx->tls13_ciphersuites, 670 &(ctx->cipher_list), 671 &(ctx->cipher_list_by_id), 672 SSL_DEFAULT_CIPHER_LIST, ctx->cert); 673 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) { 674 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS); 675 return 0; 676 } 677 return 1; 678 } 679 680 SSL *SSL_new(SSL_CTX *ctx) 681 { 682 SSL *s; 683 684 if (ctx == NULL) { 685 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX); 686 return NULL; 687 } 688 if (ctx->method == NULL) { 689 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION); 690 return NULL; 691 } 692 693 s = OPENSSL_zalloc(sizeof(*s)); 694 if (s == NULL) 695 goto err; 696 697 s->references = 1; 698 s->lock = CRYPTO_THREAD_lock_new(); 699 if (s->lock == NULL) { 700 OPENSSL_free(s); 701 s = NULL; 702 goto err; 703 } 704 705 RECORD_LAYER_init(&s->rlayer, s); 706 707 s->options = ctx->options; 708 s->dane.flags = ctx->dane.flags; 709 s->min_proto_version = ctx->min_proto_version; 710 s->max_proto_version = ctx->max_proto_version; 711 s->mode = ctx->mode; 712 s->max_cert_list = ctx->max_cert_list; 713 s->max_early_data = ctx->max_early_data; 714 s->recv_max_early_data = ctx->recv_max_early_data; 715 s->num_tickets = ctx->num_tickets; 716 s->pha_enabled = ctx->pha_enabled; 717 718 /* Shallow copy of the ciphersuites stack */ 719 s->tls13_ciphersuites = sk_SSL_CIPHER_dup(ctx->tls13_ciphersuites); 720 if (s->tls13_ciphersuites == NULL) 721 goto err; 722 723 /* 724 * Earlier library versions used to copy the pointer to the CERT, not 725 * its contents; only when setting new parameters for the per-SSL 726 * copy, ssl_cert_new would be called (and the direct reference to 727 * the per-SSL_CTX settings would be lost, but those still were 728 * indirectly accessed for various purposes, and for that reason they 729 * used to be known as s->ctx->default_cert). Now we don't look at the 730 * SSL_CTX's CERT after having duplicated it once. 731 */ 732 s->cert = ssl_cert_dup(ctx->cert); 733 if (s->cert == NULL) 734 goto err; 735 736 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead); 737 s->msg_callback = ctx->msg_callback; 738 s->msg_callback_arg = ctx->msg_callback_arg; 739 s->verify_mode = ctx->verify_mode; 740 s->not_resumable_session_cb = ctx->not_resumable_session_cb; 741 s->record_padding_cb = ctx->record_padding_cb; 742 s->record_padding_arg = ctx->record_padding_arg; 743 s->block_padding = ctx->block_padding; 744 s->sid_ctx_length = ctx->sid_ctx_length; 745 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx))) 746 goto err; 747 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx)); 748 s->verify_callback = ctx->default_verify_callback; 749 s->generate_session_id = ctx->generate_session_id; 750 751 s->param = X509_VERIFY_PARAM_new(); 752 if (s->param == NULL) 753 goto err; 754 X509_VERIFY_PARAM_inherit(s->param, ctx->param); 755 s->quiet_shutdown = ctx->quiet_shutdown; 756 757 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode; 758 s->max_send_fragment = ctx->max_send_fragment; 759 s->split_send_fragment = ctx->split_send_fragment; 760 s->max_pipelines = ctx->max_pipelines; 761 if (s->max_pipelines > 1) 762 RECORD_LAYER_set_read_ahead(&s->rlayer, 1); 763 if (ctx->default_read_buf_len > 0) 764 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len); 765 766 SSL_CTX_up_ref(ctx); 767 s->ctx = ctx; 768 s->ext.debug_cb = 0; 769 s->ext.debug_arg = NULL; 770 s->ext.ticket_expected = 0; 771 s->ext.status_type = ctx->ext.status_type; 772 s->ext.status_expected = 0; 773 s->ext.ocsp.ids = NULL; 774 s->ext.ocsp.exts = NULL; 775 s->ext.ocsp.resp = NULL; 776 s->ext.ocsp.resp_len = 0; 777 SSL_CTX_up_ref(ctx); 778 s->session_ctx = ctx; 779 #ifndef OPENSSL_NO_EC 780 if (ctx->ext.ecpointformats) { 781 s->ext.ecpointformats = 782 OPENSSL_memdup(ctx->ext.ecpointformats, 783 ctx->ext.ecpointformats_len); 784 if (!s->ext.ecpointformats) { 785 s->ext.ecpointformats_len = 0; 786 goto err; 787 } 788 s->ext.ecpointformats_len = 789 ctx->ext.ecpointformats_len; 790 } 791 if (ctx->ext.supportedgroups) { 792 s->ext.supportedgroups = 793 OPENSSL_memdup(ctx->ext.supportedgroups, 794 ctx->ext.supportedgroups_len 795 * sizeof(*ctx->ext.supportedgroups)); 796 if (!s->ext.supportedgroups) { 797 s->ext.supportedgroups_len = 0; 798 goto err; 799 } 800 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len; 801 } 802 #endif 803 #ifndef OPENSSL_NO_NEXTPROTONEG 804 s->ext.npn = NULL; 805 #endif 806 807 if (s->ctx->ext.alpn) { 808 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len); 809 if (s->ext.alpn == NULL) { 810 s->ext.alpn_len = 0; 811 goto err; 812 } 813 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len); 814 s->ext.alpn_len = s->ctx->ext.alpn_len; 815 } 816 817 s->verified_chain = NULL; 818 s->verify_result = X509_V_OK; 819 820 s->default_passwd_callback = ctx->default_passwd_callback; 821 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata; 822 823 s->method = ctx->method; 824 825 s->key_update = SSL_KEY_UPDATE_NONE; 826 827 s->allow_early_data_cb = ctx->allow_early_data_cb; 828 s->allow_early_data_cb_data = ctx->allow_early_data_cb_data; 829 830 if (!s->method->ssl_new(s)) 831 goto err; 832 833 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1; 834 835 if (!SSL_clear(s)) 836 goto err; 837 838 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data)) 839 goto err; 840 841 #ifndef OPENSSL_NO_PSK 842 s->psk_client_callback = ctx->psk_client_callback; 843 s->psk_server_callback = ctx->psk_server_callback; 844 #endif 845 s->psk_find_session_cb = ctx->psk_find_session_cb; 846 s->psk_use_session_cb = ctx->psk_use_session_cb; 847 848 s->job = NULL; 849 850 #ifndef OPENSSL_NO_CT 851 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback, 852 ctx->ct_validation_callback_arg)) 853 goto err; 854 #endif 855 856 return s; 857 err: 858 SSL_free(s); 859 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE); 860 return NULL; 861 } 862 863 int SSL_is_dtls(const SSL *s) 864 { 865 return SSL_IS_DTLS(s) ? 1 : 0; 866 } 867 868 int SSL_up_ref(SSL *s) 869 { 870 int i; 871 872 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0) 873 return 0; 874 875 REF_PRINT_COUNT("SSL", s); 876 REF_ASSERT_ISNT(i < 2); 877 return ((i > 1) ? 1 : 0); 878 } 879 880 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx, 881 unsigned int sid_ctx_len) 882 { 883 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { 884 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT, 885 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); 886 return 0; 887 } 888 ctx->sid_ctx_length = sid_ctx_len; 889 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len); 890 891 return 1; 892 } 893 894 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx, 895 unsigned int sid_ctx_len) 896 { 897 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { 898 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT, 899 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); 900 return 0; 901 } 902 ssl->sid_ctx_length = sid_ctx_len; 903 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len); 904 905 return 1; 906 } 907 908 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb) 909 { 910 CRYPTO_THREAD_write_lock(ctx->lock); 911 ctx->generate_session_id = cb; 912 CRYPTO_THREAD_unlock(ctx->lock); 913 return 1; 914 } 915 916 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb) 917 { 918 CRYPTO_THREAD_write_lock(ssl->lock); 919 ssl->generate_session_id = cb; 920 CRYPTO_THREAD_unlock(ssl->lock); 921 return 1; 922 } 923 924 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id, 925 unsigned int id_len) 926 { 927 /* 928 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how 929 * we can "construct" a session to give us the desired check - i.e. to 930 * find if there's a session in the hash table that would conflict with 931 * any new session built out of this id/id_len and the ssl_version in use 932 * by this SSL. 933 */ 934 SSL_SESSION r, *p; 935 936 if (id_len > sizeof(r.session_id)) 937 return 0; 938 939 r.ssl_version = ssl->version; 940 r.session_id_length = id_len; 941 memcpy(r.session_id, id, id_len); 942 943 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock); 944 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r); 945 CRYPTO_THREAD_unlock(ssl->session_ctx->lock); 946 return (p != NULL); 947 } 948 949 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose) 950 { 951 return X509_VERIFY_PARAM_set_purpose(s->param, purpose); 952 } 953 954 int SSL_set_purpose(SSL *s, int purpose) 955 { 956 return X509_VERIFY_PARAM_set_purpose(s->param, purpose); 957 } 958 959 int SSL_CTX_set_trust(SSL_CTX *s, int trust) 960 { 961 return X509_VERIFY_PARAM_set_trust(s->param, trust); 962 } 963 964 int SSL_set_trust(SSL *s, int trust) 965 { 966 return X509_VERIFY_PARAM_set_trust(s->param, trust); 967 } 968 969 int SSL_set1_host(SSL *s, const char *hostname) 970 { 971 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0); 972 } 973 974 int SSL_add1_host(SSL *s, const char *hostname) 975 { 976 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0); 977 } 978 979 void SSL_set_hostflags(SSL *s, unsigned int flags) 980 { 981 X509_VERIFY_PARAM_set_hostflags(s->param, flags); 982 } 983 984 const char *SSL_get0_peername(SSL *s) 985 { 986 return X509_VERIFY_PARAM_get0_peername(s->param); 987 } 988 989 int SSL_CTX_dane_enable(SSL_CTX *ctx) 990 { 991 return dane_ctx_enable(&ctx->dane); 992 } 993 994 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags) 995 { 996 unsigned long orig = ctx->dane.flags; 997 998 ctx->dane.flags |= flags; 999 return orig; 1000 } 1001 1002 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags) 1003 { 1004 unsigned long orig = ctx->dane.flags; 1005 1006 ctx->dane.flags &= ~flags; 1007 return orig; 1008 } 1009 1010 int SSL_dane_enable(SSL *s, const char *basedomain) 1011 { 1012 SSL_DANE *dane = &s->dane; 1013 1014 if (s->ctx->dane.mdmax == 0) { 1015 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED); 1016 return 0; 1017 } 1018 if (dane->trecs != NULL) { 1019 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED); 1020 return 0; 1021 } 1022 1023 /* 1024 * Default SNI name. This rejects empty names, while set1_host below 1025 * accepts them and disables host name checks. To avoid side-effects with 1026 * invalid input, set the SNI name first. 1027 */ 1028 if (s->ext.hostname == NULL) { 1029 if (!SSL_set_tlsext_host_name(s, basedomain)) { 1030 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN); 1031 return -1; 1032 } 1033 } 1034 1035 /* Primary RFC6125 reference identifier */ 1036 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) { 1037 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN); 1038 return -1; 1039 } 1040 1041 dane->mdpth = -1; 1042 dane->pdpth = -1; 1043 dane->dctx = &s->ctx->dane; 1044 dane->trecs = sk_danetls_record_new_null(); 1045 1046 if (dane->trecs == NULL) { 1047 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE); 1048 return -1; 1049 } 1050 return 1; 1051 } 1052 1053 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags) 1054 { 1055 unsigned long orig = ssl->dane.flags; 1056 1057 ssl->dane.flags |= flags; 1058 return orig; 1059 } 1060 1061 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags) 1062 { 1063 unsigned long orig = ssl->dane.flags; 1064 1065 ssl->dane.flags &= ~flags; 1066 return orig; 1067 } 1068 1069 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki) 1070 { 1071 SSL_DANE *dane = &s->dane; 1072 1073 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK) 1074 return -1; 1075 if (dane->mtlsa) { 1076 if (mcert) 1077 *mcert = dane->mcert; 1078 if (mspki) 1079 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL; 1080 } 1081 return dane->mdpth; 1082 } 1083 1084 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector, 1085 uint8_t *mtype, unsigned const char **data, size_t *dlen) 1086 { 1087 SSL_DANE *dane = &s->dane; 1088 1089 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK) 1090 return -1; 1091 if (dane->mtlsa) { 1092 if (usage) 1093 *usage = dane->mtlsa->usage; 1094 if (selector) 1095 *selector = dane->mtlsa->selector; 1096 if (mtype) 1097 *mtype = dane->mtlsa->mtype; 1098 if (data) 1099 *data = dane->mtlsa->data; 1100 if (dlen) 1101 *dlen = dane->mtlsa->dlen; 1102 } 1103 return dane->mdpth; 1104 } 1105 1106 SSL_DANE *SSL_get0_dane(SSL *s) 1107 { 1108 return &s->dane; 1109 } 1110 1111 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector, 1112 uint8_t mtype, unsigned const char *data, size_t dlen) 1113 { 1114 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen); 1115 } 1116 1117 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype, 1118 uint8_t ord) 1119 { 1120 return dane_mtype_set(&ctx->dane, md, mtype, ord); 1121 } 1122 1123 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm) 1124 { 1125 return X509_VERIFY_PARAM_set1(ctx->param, vpm); 1126 } 1127 1128 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm) 1129 { 1130 return X509_VERIFY_PARAM_set1(ssl->param, vpm); 1131 } 1132 1133 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx) 1134 { 1135 return ctx->param; 1136 } 1137 1138 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl) 1139 { 1140 return ssl->param; 1141 } 1142 1143 void SSL_certs_clear(SSL *s) 1144 { 1145 ssl_cert_clear_certs(s->cert); 1146 } 1147 1148 void SSL_free(SSL *s) 1149 { 1150 int i; 1151 1152 if (s == NULL) 1153 return; 1154 CRYPTO_DOWN_REF(&s->references, &i, s->lock); 1155 REF_PRINT_COUNT("SSL", s); 1156 if (i > 0) 1157 return; 1158 REF_ASSERT_ISNT(i < 0); 1159 1160 X509_VERIFY_PARAM_free(s->param); 1161 dane_final(&s->dane); 1162 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data); 1163 1164 RECORD_LAYER_release(&s->rlayer); 1165 1166 /* Ignore return value */ 1167 ssl_free_wbio_buffer(s); 1168 1169 BIO_free_all(s->wbio); 1170 s->wbio = NULL; 1171 BIO_free_all(s->rbio); 1172 s->rbio = NULL; 1173 1174 BUF_MEM_free(s->init_buf); 1175 1176 /* add extra stuff */ 1177 sk_SSL_CIPHER_free(s->cipher_list); 1178 sk_SSL_CIPHER_free(s->cipher_list_by_id); 1179 sk_SSL_CIPHER_free(s->tls13_ciphersuites); 1180 sk_SSL_CIPHER_free(s->peer_ciphers); 1181 1182 /* Make the next call work :-) */ 1183 if (s->session != NULL) { 1184 ssl_clear_bad_session(s); 1185 SSL_SESSION_free(s->session); 1186 } 1187 SSL_SESSION_free(s->psksession); 1188 OPENSSL_free(s->psksession_id); 1189 1190 clear_ciphers(s); 1191 1192 ssl_cert_free(s->cert); 1193 OPENSSL_free(s->shared_sigalgs); 1194 /* Free up if allocated */ 1195 1196 OPENSSL_free(s->ext.hostname); 1197 SSL_CTX_free(s->session_ctx); 1198 #ifndef OPENSSL_NO_EC 1199 OPENSSL_free(s->ext.ecpointformats); 1200 OPENSSL_free(s->ext.peer_ecpointformats); 1201 OPENSSL_free(s->ext.supportedgroups); 1202 OPENSSL_free(s->ext.peer_supportedgroups); 1203 #endif /* OPENSSL_NO_EC */ 1204 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free); 1205 #ifndef OPENSSL_NO_OCSP 1206 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free); 1207 #endif 1208 #ifndef OPENSSL_NO_CT 1209 SCT_LIST_free(s->scts); 1210 OPENSSL_free(s->ext.scts); 1211 #endif 1212 OPENSSL_free(s->ext.ocsp.resp); 1213 OPENSSL_free(s->ext.alpn); 1214 OPENSSL_free(s->ext.tls13_cookie); 1215 if (s->clienthello != NULL) 1216 OPENSSL_free(s->clienthello->pre_proc_exts); 1217 OPENSSL_free(s->clienthello); 1218 OPENSSL_free(s->pha_context); 1219 EVP_MD_CTX_free(s->pha_dgst); 1220 1221 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free); 1222 sk_X509_NAME_pop_free(s->client_ca_names, X509_NAME_free); 1223 1224 sk_X509_pop_free(s->verified_chain, X509_free); 1225 1226 if (s->method != NULL) 1227 s->method->ssl_free(s); 1228 1229 SSL_CTX_free(s->ctx); 1230 1231 ASYNC_WAIT_CTX_free(s->waitctx); 1232 1233 #if !defined(OPENSSL_NO_NEXTPROTONEG) 1234 OPENSSL_free(s->ext.npn); 1235 #endif 1236 1237 #ifndef OPENSSL_NO_SRTP 1238 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles); 1239 #endif 1240 1241 CRYPTO_THREAD_lock_free(s->lock); 1242 1243 OPENSSL_free(s); 1244 } 1245 1246 void SSL_set0_rbio(SSL *s, BIO *rbio) 1247 { 1248 BIO_free_all(s->rbio); 1249 s->rbio = rbio; 1250 } 1251 1252 void SSL_set0_wbio(SSL *s, BIO *wbio) 1253 { 1254 /* 1255 * If the output buffering BIO is still in place, remove it 1256 */ 1257 if (s->bbio != NULL) 1258 s->wbio = BIO_pop(s->wbio); 1259 1260 BIO_free_all(s->wbio); 1261 s->wbio = wbio; 1262 1263 /* Re-attach |bbio| to the new |wbio|. */ 1264 if (s->bbio != NULL) 1265 s->wbio = BIO_push(s->bbio, s->wbio); 1266 } 1267 1268 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio) 1269 { 1270 /* 1271 * For historical reasons, this function has many different cases in 1272 * ownership handling. 1273 */ 1274 1275 /* If nothing has changed, do nothing */ 1276 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s)) 1277 return; 1278 1279 /* 1280 * If the two arguments are equal then one fewer reference is granted by the 1281 * caller than we want to take 1282 */ 1283 if (rbio != NULL && rbio == wbio) 1284 BIO_up_ref(rbio); 1285 1286 /* 1287 * If only the wbio is changed only adopt one reference. 1288 */ 1289 if (rbio == SSL_get_rbio(s)) { 1290 SSL_set0_wbio(s, wbio); 1291 return; 1292 } 1293 /* 1294 * There is an asymmetry here for historical reasons. If only the rbio is 1295 * changed AND the rbio and wbio were originally different, then we only 1296 * adopt one reference. 1297 */ 1298 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) { 1299 SSL_set0_rbio(s, rbio); 1300 return; 1301 } 1302 1303 /* Otherwise, adopt both references. */ 1304 SSL_set0_rbio(s, rbio); 1305 SSL_set0_wbio(s, wbio); 1306 } 1307 1308 BIO *SSL_get_rbio(const SSL *s) 1309 { 1310 return s->rbio; 1311 } 1312 1313 BIO *SSL_get_wbio(const SSL *s) 1314 { 1315 if (s->bbio != NULL) { 1316 /* 1317 * If |bbio| is active, the true caller-configured BIO is its 1318 * |next_bio|. 1319 */ 1320 return BIO_next(s->bbio); 1321 } 1322 return s->wbio; 1323 } 1324 1325 int SSL_get_fd(const SSL *s) 1326 { 1327 return SSL_get_rfd(s); 1328 } 1329 1330 int SSL_get_rfd(const SSL *s) 1331 { 1332 int ret = -1; 1333 BIO *b, *r; 1334 1335 b = SSL_get_rbio(s); 1336 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); 1337 if (r != NULL) 1338 BIO_get_fd(r, &ret); 1339 return ret; 1340 } 1341 1342 int SSL_get_wfd(const SSL *s) 1343 { 1344 int ret = -1; 1345 BIO *b, *r; 1346 1347 b = SSL_get_wbio(s); 1348 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); 1349 if (r != NULL) 1350 BIO_get_fd(r, &ret); 1351 return ret; 1352 } 1353 1354 #ifndef OPENSSL_NO_SOCK 1355 int SSL_set_fd(SSL *s, int fd) 1356 { 1357 int ret = 0; 1358 BIO *bio = NULL; 1359 1360 bio = BIO_new(BIO_s_socket()); 1361 1362 if (bio == NULL) { 1363 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB); 1364 goto err; 1365 } 1366 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1367 SSL_set_bio(s, bio, bio); 1368 #ifndef OPENSSL_NO_KTLS 1369 /* 1370 * The new socket is created successfully regardless of ktls_enable. 1371 * ktls_enable doesn't change any functionality of the socket, except 1372 * changing the setsockopt to enable the processing of ktls_start. 1373 * Thus, it is not a problem to call it for non-TLS sockets. 1374 */ 1375 ktls_enable(fd); 1376 #endif /* OPENSSL_NO_KTLS */ 1377 ret = 1; 1378 err: 1379 return ret; 1380 } 1381 1382 int SSL_set_wfd(SSL *s, int fd) 1383 { 1384 BIO *rbio = SSL_get_rbio(s); 1385 1386 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET 1387 || (int)BIO_get_fd(rbio, NULL) != fd) { 1388 BIO *bio = BIO_new(BIO_s_socket()); 1389 1390 if (bio == NULL) { 1391 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB); 1392 return 0; 1393 } 1394 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1395 SSL_set0_wbio(s, bio); 1396 #ifndef OPENSSL_NO_KTLS 1397 /* 1398 * The new socket is created successfully regardless of ktls_enable. 1399 * ktls_enable doesn't change any functionality of the socket, except 1400 * changing the setsockopt to enable the processing of ktls_start. 1401 * Thus, it is not a problem to call it for non-TLS sockets. 1402 */ 1403 ktls_enable(fd); 1404 #endif /* OPENSSL_NO_KTLS */ 1405 } else { 1406 BIO_up_ref(rbio); 1407 SSL_set0_wbio(s, rbio); 1408 } 1409 return 1; 1410 } 1411 1412 int SSL_set_rfd(SSL *s, int fd) 1413 { 1414 BIO *wbio = SSL_get_wbio(s); 1415 1416 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET 1417 || ((int)BIO_get_fd(wbio, NULL) != fd)) { 1418 BIO *bio = BIO_new(BIO_s_socket()); 1419 1420 if (bio == NULL) { 1421 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB); 1422 return 0; 1423 } 1424 BIO_set_fd(bio, fd, BIO_NOCLOSE); 1425 SSL_set0_rbio(s, bio); 1426 } else { 1427 BIO_up_ref(wbio); 1428 SSL_set0_rbio(s, wbio); 1429 } 1430 1431 return 1; 1432 } 1433 #endif 1434 1435 /* return length of latest Finished message we sent, copy to 'buf' */ 1436 size_t SSL_get_finished(const SSL *s, void *buf, size_t count) 1437 { 1438 size_t ret = 0; 1439 1440 if (s->s3 != NULL) { 1441 ret = s->s3->tmp.finish_md_len; 1442 if (count > ret) 1443 count = ret; 1444 memcpy(buf, s->s3->tmp.finish_md, count); 1445 } 1446 return ret; 1447 } 1448 1449 /* return length of latest Finished message we expected, copy to 'buf' */ 1450 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count) 1451 { 1452 size_t ret = 0; 1453 1454 if (s->s3 != NULL) { 1455 ret = s->s3->tmp.peer_finish_md_len; 1456 if (count > ret) 1457 count = ret; 1458 memcpy(buf, s->s3->tmp.peer_finish_md, count); 1459 } 1460 return ret; 1461 } 1462 1463 int SSL_get_verify_mode(const SSL *s) 1464 { 1465 return s->verify_mode; 1466 } 1467 1468 int SSL_get_verify_depth(const SSL *s) 1469 { 1470 return X509_VERIFY_PARAM_get_depth(s->param); 1471 } 1472 1473 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) { 1474 return s->verify_callback; 1475 } 1476 1477 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx) 1478 { 1479 return ctx->verify_mode; 1480 } 1481 1482 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx) 1483 { 1484 return X509_VERIFY_PARAM_get_depth(ctx->param); 1485 } 1486 1487 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) { 1488 return ctx->default_verify_callback; 1489 } 1490 1491 void SSL_set_verify(SSL *s, int mode, 1492 int (*callback) (int ok, X509_STORE_CTX *ctx)) 1493 { 1494 s->verify_mode = mode; 1495 if (callback != NULL) 1496 s->verify_callback = callback; 1497 } 1498 1499 void SSL_set_verify_depth(SSL *s, int depth) 1500 { 1501 X509_VERIFY_PARAM_set_depth(s->param, depth); 1502 } 1503 1504 void SSL_set_read_ahead(SSL *s, int yes) 1505 { 1506 RECORD_LAYER_set_read_ahead(&s->rlayer, yes); 1507 } 1508 1509 int SSL_get_read_ahead(const SSL *s) 1510 { 1511 return RECORD_LAYER_get_read_ahead(&s->rlayer); 1512 } 1513 1514 int SSL_pending(const SSL *s) 1515 { 1516 size_t pending = s->method->ssl_pending(s); 1517 1518 /* 1519 * SSL_pending cannot work properly if read-ahead is enabled 1520 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is 1521 * impossible to fix since SSL_pending cannot report errors that may be 1522 * observed while scanning the new data. (Note that SSL_pending() is 1523 * often used as a boolean value, so we'd better not return -1.) 1524 * 1525 * SSL_pending also cannot work properly if the value >INT_MAX. In that case 1526 * we just return INT_MAX. 1527 */ 1528 return pending < INT_MAX ? (int)pending : INT_MAX; 1529 } 1530 1531 int SSL_has_pending(const SSL *s) 1532 { 1533 /* 1534 * Similar to SSL_pending() but returns a 1 to indicate that we have 1535 * unprocessed data available or 0 otherwise (as opposed to the number of 1536 * bytes available). Unlike SSL_pending() this will take into account 1537 * read_ahead data. A 1 return simply indicates that we have unprocessed 1538 * data. That data may not result in any application data, or we may fail 1539 * to parse the records for some reason. 1540 */ 1541 if (RECORD_LAYER_processed_read_pending(&s->rlayer)) 1542 return 1; 1543 1544 return RECORD_LAYER_read_pending(&s->rlayer); 1545 } 1546 1547 X509 *SSL_get_peer_certificate(const SSL *s) 1548 { 1549 X509 *r; 1550 1551 if ((s == NULL) || (s->session == NULL)) 1552 r = NULL; 1553 else 1554 r = s->session->peer; 1555 1556 if (r == NULL) 1557 return r; 1558 1559 X509_up_ref(r); 1560 1561 return r; 1562 } 1563 1564 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s) 1565 { 1566 STACK_OF(X509) *r; 1567 1568 if ((s == NULL) || (s->session == NULL)) 1569 r = NULL; 1570 else 1571 r = s->session->peer_chain; 1572 1573 /* 1574 * If we are a client, cert_chain includes the peer's own certificate; if 1575 * we are a server, it does not. 1576 */ 1577 1578 return r; 1579 } 1580 1581 /* 1582 * Now in theory, since the calling process own 't' it should be safe to 1583 * modify. We need to be able to read f without being hassled 1584 */ 1585 int SSL_copy_session_id(SSL *t, const SSL *f) 1586 { 1587 int i; 1588 /* Do we need to to SSL locking? */ 1589 if (!SSL_set_session(t, SSL_get_session(f))) { 1590 return 0; 1591 } 1592 1593 /* 1594 * what if we are setup for one protocol version but want to talk another 1595 */ 1596 if (t->method != f->method) { 1597 t->method->ssl_free(t); 1598 t->method = f->method; 1599 if (t->method->ssl_new(t) == 0) 1600 return 0; 1601 } 1602 1603 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock); 1604 ssl_cert_free(t->cert); 1605 t->cert = f->cert; 1606 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) { 1607 return 0; 1608 } 1609 1610 return 1; 1611 } 1612 1613 /* Fix this so it checks all the valid key/cert options */ 1614 int SSL_CTX_check_private_key(const SSL_CTX *ctx) 1615 { 1616 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) { 1617 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED); 1618 return 0; 1619 } 1620 if (ctx->cert->key->privatekey == NULL) { 1621 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED); 1622 return 0; 1623 } 1624 return X509_check_private_key 1625 (ctx->cert->key->x509, ctx->cert->key->privatekey); 1626 } 1627 1628 /* Fix this function so that it takes an optional type parameter */ 1629 int SSL_check_private_key(const SSL *ssl) 1630 { 1631 if (ssl == NULL) { 1632 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER); 1633 return 0; 1634 } 1635 if (ssl->cert->key->x509 == NULL) { 1636 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED); 1637 return 0; 1638 } 1639 if (ssl->cert->key->privatekey == NULL) { 1640 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED); 1641 return 0; 1642 } 1643 return X509_check_private_key(ssl->cert->key->x509, 1644 ssl->cert->key->privatekey); 1645 } 1646 1647 int SSL_waiting_for_async(SSL *s) 1648 { 1649 if (s->job) 1650 return 1; 1651 1652 return 0; 1653 } 1654 1655 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds) 1656 { 1657 ASYNC_WAIT_CTX *ctx = s->waitctx; 1658 1659 if (ctx == NULL) 1660 return 0; 1661 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds); 1662 } 1663 1664 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds, 1665 OSSL_ASYNC_FD *delfd, size_t *numdelfds) 1666 { 1667 ASYNC_WAIT_CTX *ctx = s->waitctx; 1668 1669 if (ctx == NULL) 1670 return 0; 1671 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd, 1672 numdelfds); 1673 } 1674 1675 int SSL_accept(SSL *s) 1676 { 1677 if (s->handshake_func == NULL) { 1678 /* Not properly initialized yet */ 1679 SSL_set_accept_state(s); 1680 } 1681 1682 return SSL_do_handshake(s); 1683 } 1684 1685 int SSL_connect(SSL *s) 1686 { 1687 if (s->handshake_func == NULL) { 1688 /* Not properly initialized yet */ 1689 SSL_set_connect_state(s); 1690 } 1691 1692 return SSL_do_handshake(s); 1693 } 1694 1695 long SSL_get_default_timeout(const SSL *s) 1696 { 1697 return s->method->get_timeout(); 1698 } 1699 1700 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args, 1701 int (*func) (void *)) 1702 { 1703 int ret; 1704 if (s->waitctx == NULL) { 1705 s->waitctx = ASYNC_WAIT_CTX_new(); 1706 if (s->waitctx == NULL) 1707 return -1; 1708 } 1709 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args, 1710 sizeof(struct ssl_async_args))) { 1711 case ASYNC_ERR: 1712 s->rwstate = SSL_NOTHING; 1713 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC); 1714 return -1; 1715 case ASYNC_PAUSE: 1716 s->rwstate = SSL_ASYNC_PAUSED; 1717 return -1; 1718 case ASYNC_NO_JOBS: 1719 s->rwstate = SSL_ASYNC_NO_JOBS; 1720 return -1; 1721 case ASYNC_FINISH: 1722 s->job = NULL; 1723 return ret; 1724 default: 1725 s->rwstate = SSL_NOTHING; 1726 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR); 1727 /* Shouldn't happen */ 1728 return -1; 1729 } 1730 } 1731 1732 static int ssl_io_intern(void *vargs) 1733 { 1734 struct ssl_async_args *args; 1735 SSL *s; 1736 void *buf; 1737 size_t num; 1738 1739 args = (struct ssl_async_args *)vargs; 1740 s = args->s; 1741 buf = args->buf; 1742 num = args->num; 1743 switch (args->type) { 1744 case READFUNC: 1745 return args->f.func_read(s, buf, num, &s->asyncrw); 1746 case WRITEFUNC: 1747 return args->f.func_write(s, buf, num, &s->asyncrw); 1748 case OTHERFUNC: 1749 return args->f.func_other(s); 1750 } 1751 return -1; 1752 } 1753 1754 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes) 1755 { 1756 if (s->handshake_func == NULL) { 1757 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED); 1758 return -1; 1759 } 1760 1761 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { 1762 s->rwstate = SSL_NOTHING; 1763 return 0; 1764 } 1765 1766 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY 1767 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) { 1768 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1769 return 0; 1770 } 1771 /* 1772 * If we are a client and haven't received the ServerHello etc then we 1773 * better do that 1774 */ 1775 ossl_statem_check_finish_init(s, 0); 1776 1777 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1778 struct ssl_async_args args; 1779 int ret; 1780 1781 args.s = s; 1782 args.buf = buf; 1783 args.num = num; 1784 args.type = READFUNC; 1785 args.f.func_read = s->method->ssl_read; 1786 1787 ret = ssl_start_async_job(s, &args, ssl_io_intern); 1788 *readbytes = s->asyncrw; 1789 return ret; 1790 } else { 1791 return s->method->ssl_read(s, buf, num, readbytes); 1792 } 1793 } 1794 1795 int SSL_read(SSL *s, void *buf, int num) 1796 { 1797 int ret; 1798 size_t readbytes; 1799 1800 if (num < 0) { 1801 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH); 1802 return -1; 1803 } 1804 1805 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes); 1806 1807 /* 1808 * The cast is safe here because ret should be <= INT_MAX because num is 1809 * <= INT_MAX 1810 */ 1811 if (ret > 0) 1812 ret = (int)readbytes; 1813 1814 return ret; 1815 } 1816 1817 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes) 1818 { 1819 int ret = ssl_read_internal(s, buf, num, readbytes); 1820 1821 if (ret < 0) 1822 ret = 0; 1823 return ret; 1824 } 1825 1826 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes) 1827 { 1828 int ret; 1829 1830 if (!s->server) { 1831 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1832 return SSL_READ_EARLY_DATA_ERROR; 1833 } 1834 1835 switch (s->early_data_state) { 1836 case SSL_EARLY_DATA_NONE: 1837 if (!SSL_in_before(s)) { 1838 SSLerr(SSL_F_SSL_READ_EARLY_DATA, 1839 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1840 return SSL_READ_EARLY_DATA_ERROR; 1841 } 1842 /* fall through */ 1843 1844 case SSL_EARLY_DATA_ACCEPT_RETRY: 1845 s->early_data_state = SSL_EARLY_DATA_ACCEPTING; 1846 ret = SSL_accept(s); 1847 if (ret <= 0) { 1848 /* NBIO or error */ 1849 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY; 1850 return SSL_READ_EARLY_DATA_ERROR; 1851 } 1852 /* fall through */ 1853 1854 case SSL_EARLY_DATA_READ_RETRY: 1855 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) { 1856 s->early_data_state = SSL_EARLY_DATA_READING; 1857 ret = SSL_read_ex(s, buf, num, readbytes); 1858 /* 1859 * State machine will update early_data_state to 1860 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData 1861 * message 1862 */ 1863 if (ret > 0 || (ret <= 0 && s->early_data_state 1864 != SSL_EARLY_DATA_FINISHED_READING)) { 1865 s->early_data_state = SSL_EARLY_DATA_READ_RETRY; 1866 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS 1867 : SSL_READ_EARLY_DATA_ERROR; 1868 } 1869 } else { 1870 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING; 1871 } 1872 *readbytes = 0; 1873 return SSL_READ_EARLY_DATA_FINISH; 1874 1875 default: 1876 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1877 return SSL_READ_EARLY_DATA_ERROR; 1878 } 1879 } 1880 1881 int SSL_get_early_data_status(const SSL *s) 1882 { 1883 return s->ext.early_data; 1884 } 1885 1886 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes) 1887 { 1888 if (s->handshake_func == NULL) { 1889 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED); 1890 return -1; 1891 } 1892 1893 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { 1894 return 0; 1895 } 1896 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1897 struct ssl_async_args args; 1898 int ret; 1899 1900 args.s = s; 1901 args.buf = buf; 1902 args.num = num; 1903 args.type = READFUNC; 1904 args.f.func_read = s->method->ssl_peek; 1905 1906 ret = ssl_start_async_job(s, &args, ssl_io_intern); 1907 *readbytes = s->asyncrw; 1908 return ret; 1909 } else { 1910 return s->method->ssl_peek(s, buf, num, readbytes); 1911 } 1912 } 1913 1914 int SSL_peek(SSL *s, void *buf, int num) 1915 { 1916 int ret; 1917 size_t readbytes; 1918 1919 if (num < 0) { 1920 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH); 1921 return -1; 1922 } 1923 1924 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes); 1925 1926 /* 1927 * The cast is safe here because ret should be <= INT_MAX because num is 1928 * <= INT_MAX 1929 */ 1930 if (ret > 0) 1931 ret = (int)readbytes; 1932 1933 return ret; 1934 } 1935 1936 1937 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes) 1938 { 1939 int ret = ssl_peek_internal(s, buf, num, readbytes); 1940 1941 if (ret < 0) 1942 ret = 0; 1943 return ret; 1944 } 1945 1946 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written) 1947 { 1948 if (s->handshake_func == NULL) { 1949 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED); 1950 return -1; 1951 } 1952 1953 if (s->shutdown & SSL_SENT_SHUTDOWN) { 1954 s->rwstate = SSL_NOTHING; 1955 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN); 1956 return -1; 1957 } 1958 1959 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY 1960 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY 1961 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) { 1962 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 1963 return 0; 1964 } 1965 /* If we are a client and haven't sent the Finished we better do that */ 1966 ossl_statem_check_finish_init(s, 1); 1967 1968 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 1969 int ret; 1970 struct ssl_async_args args; 1971 1972 args.s = s; 1973 args.buf = (void *)buf; 1974 args.num = num; 1975 args.type = WRITEFUNC; 1976 args.f.func_write = s->method->ssl_write; 1977 1978 ret = ssl_start_async_job(s, &args, ssl_io_intern); 1979 *written = s->asyncrw; 1980 return ret; 1981 } else { 1982 return s->method->ssl_write(s, buf, num, written); 1983 } 1984 } 1985 1986 ossl_ssize_t SSL_sendfile(SSL *s, int fd, off_t offset, size_t size, int flags) 1987 { 1988 ossl_ssize_t ret; 1989 1990 if (s->handshake_func == NULL) { 1991 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED); 1992 return -1; 1993 } 1994 1995 if (s->shutdown & SSL_SENT_SHUTDOWN) { 1996 s->rwstate = SSL_NOTHING; 1997 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_PROTOCOL_IS_SHUTDOWN); 1998 return -1; 1999 } 2000 2001 if (!BIO_get_ktls_send(s->wbio)) { 2002 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED); 2003 return -1; 2004 } 2005 2006 /* If we have an alert to send, lets send it */ 2007 if (s->s3->alert_dispatch) { 2008 ret = (ossl_ssize_t)s->method->ssl_dispatch_alert(s); 2009 if (ret <= 0) { 2010 /* SSLfatal() already called if appropriate */ 2011 return ret; 2012 } 2013 /* if it went, fall through and send more stuff */ 2014 } 2015 2016 s->rwstate = SSL_WRITING; 2017 if (BIO_flush(s->wbio) <= 0) { 2018 if (!BIO_should_retry(s->wbio)) { 2019 s->rwstate = SSL_NOTHING; 2020 } else { 2021 #ifdef EAGAIN 2022 set_sys_error(EAGAIN); 2023 #endif 2024 } 2025 return -1; 2026 } 2027 2028 #ifdef OPENSSL_NO_KTLS 2029 ERR_raise_data(ERR_LIB_SYS, ERR_R_INTERNAL_ERROR, "calling sendfile()"); 2030 return -1; 2031 #else 2032 ret = ktls_sendfile(SSL_get_wfd(s), fd, offset, size, flags); 2033 if (ret < 0) { 2034 #if defined(EAGAIN) && defined(EINTR) && defined(EBUSY) 2035 if ((get_last_sys_error() == EAGAIN) || 2036 (get_last_sys_error() == EINTR) || 2037 (get_last_sys_error() == EBUSY)) 2038 BIO_set_retry_write(s->wbio); 2039 else 2040 #endif 2041 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED); 2042 return ret; 2043 } 2044 s->rwstate = SSL_NOTHING; 2045 return ret; 2046 #endif 2047 } 2048 2049 int SSL_write(SSL *s, const void *buf, int num) 2050 { 2051 int ret; 2052 size_t written; 2053 2054 if (num < 0) { 2055 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH); 2056 return -1; 2057 } 2058 2059 ret = ssl_write_internal(s, buf, (size_t)num, &written); 2060 2061 /* 2062 * The cast is safe here because ret should be <= INT_MAX because num is 2063 * <= INT_MAX 2064 */ 2065 if (ret > 0) 2066 ret = (int)written; 2067 2068 return ret; 2069 } 2070 2071 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written) 2072 { 2073 int ret = ssl_write_internal(s, buf, num, written); 2074 2075 if (ret < 0) 2076 ret = 0; 2077 return ret; 2078 } 2079 2080 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written) 2081 { 2082 int ret, early_data_state; 2083 size_t writtmp; 2084 uint32_t partialwrite; 2085 2086 switch (s->early_data_state) { 2087 case SSL_EARLY_DATA_NONE: 2088 if (s->server 2089 || !SSL_in_before(s) 2090 || ((s->session == NULL || s->session->ext.max_early_data == 0) 2091 && (s->psk_use_session_cb == NULL))) { 2092 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, 2093 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 2094 return 0; 2095 } 2096 /* fall through */ 2097 2098 case SSL_EARLY_DATA_CONNECT_RETRY: 2099 s->early_data_state = SSL_EARLY_DATA_CONNECTING; 2100 ret = SSL_connect(s); 2101 if (ret <= 0) { 2102 /* NBIO or error */ 2103 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY; 2104 return 0; 2105 } 2106 /* fall through */ 2107 2108 case SSL_EARLY_DATA_WRITE_RETRY: 2109 s->early_data_state = SSL_EARLY_DATA_WRITING; 2110 /* 2111 * We disable partial write for early data because we don't keep track 2112 * of how many bytes we've written between the SSL_write_ex() call and 2113 * the flush if the flush needs to be retried) 2114 */ 2115 partialwrite = s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE; 2116 s->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE; 2117 ret = SSL_write_ex(s, buf, num, &writtmp); 2118 s->mode |= partialwrite; 2119 if (!ret) { 2120 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY; 2121 return ret; 2122 } 2123 s->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH; 2124 /* fall through */ 2125 2126 case SSL_EARLY_DATA_WRITE_FLUSH: 2127 /* The buffering BIO is still in place so we need to flush it */ 2128 if (statem_flush(s) != 1) 2129 return 0; 2130 *written = num; 2131 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY; 2132 return 1; 2133 2134 case SSL_EARLY_DATA_FINISHED_READING: 2135 case SSL_EARLY_DATA_READ_RETRY: 2136 early_data_state = s->early_data_state; 2137 /* We are a server writing to an unauthenticated client */ 2138 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING; 2139 ret = SSL_write_ex(s, buf, num, written); 2140 /* The buffering BIO is still in place */ 2141 if (ret) 2142 (void)BIO_flush(s->wbio); 2143 s->early_data_state = early_data_state; 2144 return ret; 2145 2146 default: 2147 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 2148 return 0; 2149 } 2150 } 2151 2152 int SSL_shutdown(SSL *s) 2153 { 2154 /* 2155 * Note that this function behaves differently from what one might 2156 * expect. Return values are 0 for no success (yet), 1 for success; but 2157 * calling it once is usually not enough, even if blocking I/O is used 2158 * (see ssl3_shutdown). 2159 */ 2160 2161 if (s->handshake_func == NULL) { 2162 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED); 2163 return -1; 2164 } 2165 2166 if (!SSL_in_init(s)) { 2167 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 2168 struct ssl_async_args args; 2169 2170 args.s = s; 2171 args.type = OTHERFUNC; 2172 args.f.func_other = s->method->ssl_shutdown; 2173 2174 return ssl_start_async_job(s, &args, ssl_io_intern); 2175 } else { 2176 return s->method->ssl_shutdown(s); 2177 } 2178 } else { 2179 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT); 2180 return -1; 2181 } 2182 } 2183 2184 int SSL_key_update(SSL *s, int updatetype) 2185 { 2186 /* 2187 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been 2188 * negotiated, and that it is appropriate to call SSL_key_update() instead 2189 * of SSL_renegotiate(). 2190 */ 2191 if (!SSL_IS_TLS13(s)) { 2192 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION); 2193 return 0; 2194 } 2195 2196 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED 2197 && updatetype != SSL_KEY_UPDATE_REQUESTED) { 2198 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE); 2199 return 0; 2200 } 2201 2202 if (!SSL_is_init_finished(s)) { 2203 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT); 2204 return 0; 2205 } 2206 2207 if (RECORD_LAYER_write_pending(&s->rlayer)) { 2208 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_BAD_WRITE_RETRY); 2209 return 0; 2210 } 2211 2212 ossl_statem_set_in_init(s, 1); 2213 s->key_update = updatetype; 2214 return 1; 2215 } 2216 2217 int SSL_get_key_update_type(const SSL *s) 2218 { 2219 return s->key_update; 2220 } 2221 2222 int SSL_renegotiate(SSL *s) 2223 { 2224 if (SSL_IS_TLS13(s)) { 2225 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION); 2226 return 0; 2227 } 2228 2229 if ((s->options & SSL_OP_NO_RENEGOTIATION)) { 2230 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION); 2231 return 0; 2232 } 2233 2234 s->renegotiate = 1; 2235 s->new_session = 1; 2236 2237 return s->method->ssl_renegotiate(s); 2238 } 2239 2240 int SSL_renegotiate_abbreviated(SSL *s) 2241 { 2242 if (SSL_IS_TLS13(s)) { 2243 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION); 2244 return 0; 2245 } 2246 2247 if ((s->options & SSL_OP_NO_RENEGOTIATION)) { 2248 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION); 2249 return 0; 2250 } 2251 2252 s->renegotiate = 1; 2253 s->new_session = 0; 2254 2255 return s->method->ssl_renegotiate(s); 2256 } 2257 2258 int SSL_renegotiate_pending(const SSL *s) 2259 { 2260 /* 2261 * becomes true when negotiation is requested; false again once a 2262 * handshake has finished 2263 */ 2264 return (s->renegotiate != 0); 2265 } 2266 2267 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg) 2268 { 2269 long l; 2270 2271 switch (cmd) { 2272 case SSL_CTRL_GET_READ_AHEAD: 2273 return RECORD_LAYER_get_read_ahead(&s->rlayer); 2274 case SSL_CTRL_SET_READ_AHEAD: 2275 l = RECORD_LAYER_get_read_ahead(&s->rlayer); 2276 RECORD_LAYER_set_read_ahead(&s->rlayer, larg); 2277 return l; 2278 2279 case SSL_CTRL_SET_MSG_CALLBACK_ARG: 2280 s->msg_callback_arg = parg; 2281 return 1; 2282 2283 case SSL_CTRL_MODE: 2284 return (s->mode |= larg); 2285 case SSL_CTRL_CLEAR_MODE: 2286 return (s->mode &= ~larg); 2287 case SSL_CTRL_GET_MAX_CERT_LIST: 2288 return (long)s->max_cert_list; 2289 case SSL_CTRL_SET_MAX_CERT_LIST: 2290 if (larg < 0) 2291 return 0; 2292 l = (long)s->max_cert_list; 2293 s->max_cert_list = (size_t)larg; 2294 return l; 2295 case SSL_CTRL_SET_MAX_SEND_FRAGMENT: 2296 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH) 2297 return 0; 2298 #ifndef OPENSSL_NO_KTLS 2299 if (s->wbio != NULL && BIO_get_ktls_send(s->wbio)) 2300 return 0; 2301 #endif /* OPENSSL_NO_KTLS */ 2302 s->max_send_fragment = larg; 2303 if (s->max_send_fragment < s->split_send_fragment) 2304 s->split_send_fragment = s->max_send_fragment; 2305 return 1; 2306 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: 2307 if ((size_t)larg > s->max_send_fragment || larg == 0) 2308 return 0; 2309 s->split_send_fragment = larg; 2310 return 1; 2311 case SSL_CTRL_SET_MAX_PIPELINES: 2312 if (larg < 1 || larg > SSL_MAX_PIPELINES) 2313 return 0; 2314 s->max_pipelines = larg; 2315 if (larg > 1) 2316 RECORD_LAYER_set_read_ahead(&s->rlayer, 1); 2317 return 1; 2318 case SSL_CTRL_GET_RI_SUPPORT: 2319 if (s->s3) 2320 return s->s3->send_connection_binding; 2321 else 2322 return 0; 2323 case SSL_CTRL_CERT_FLAGS: 2324 return (s->cert->cert_flags |= larg); 2325 case SSL_CTRL_CLEAR_CERT_FLAGS: 2326 return (s->cert->cert_flags &= ~larg); 2327 2328 case SSL_CTRL_GET_RAW_CIPHERLIST: 2329 if (parg) { 2330 if (s->s3->tmp.ciphers_raw == NULL) 2331 return 0; 2332 *(unsigned char **)parg = s->s3->tmp.ciphers_raw; 2333 return (int)s->s3->tmp.ciphers_rawlen; 2334 } else { 2335 return TLS_CIPHER_LEN; 2336 } 2337 case SSL_CTRL_GET_EXTMS_SUPPORT: 2338 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s)) 2339 return -1; 2340 if (s->session->flags & SSL_SESS_FLAG_EXTMS) 2341 return 1; 2342 else 2343 return 0; 2344 case SSL_CTRL_SET_MIN_PROTO_VERSION: 2345 return ssl_check_allowed_versions(larg, s->max_proto_version) 2346 && ssl_set_version_bound(s->ctx->method->version, (int)larg, 2347 &s->min_proto_version); 2348 case SSL_CTRL_GET_MIN_PROTO_VERSION: 2349 return s->min_proto_version; 2350 case SSL_CTRL_SET_MAX_PROTO_VERSION: 2351 return ssl_check_allowed_versions(s->min_proto_version, larg) 2352 && ssl_set_version_bound(s->ctx->method->version, (int)larg, 2353 &s->max_proto_version); 2354 case SSL_CTRL_GET_MAX_PROTO_VERSION: 2355 return s->max_proto_version; 2356 default: 2357 return s->method->ssl_ctrl(s, cmd, larg, parg); 2358 } 2359 } 2360 2361 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void)) 2362 { 2363 switch (cmd) { 2364 case SSL_CTRL_SET_MSG_CALLBACK: 2365 s->msg_callback = (void (*) 2366 (int write_p, int version, int content_type, 2367 const void *buf, size_t len, SSL *ssl, 2368 void *arg))(fp); 2369 return 1; 2370 2371 default: 2372 return s->method->ssl_callback_ctrl(s, cmd, fp); 2373 } 2374 } 2375 2376 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx) 2377 { 2378 return ctx->sessions; 2379 } 2380 2381 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg) 2382 { 2383 long l; 2384 /* For some cases with ctx == NULL perform syntax checks */ 2385 if (ctx == NULL) { 2386 switch (cmd) { 2387 #ifndef OPENSSL_NO_EC 2388 case SSL_CTRL_SET_GROUPS_LIST: 2389 return tls1_set_groups_list(NULL, NULL, parg); 2390 #endif 2391 case SSL_CTRL_SET_SIGALGS_LIST: 2392 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST: 2393 return tls1_set_sigalgs_list(NULL, parg, 0); 2394 default: 2395 return 0; 2396 } 2397 } 2398 2399 switch (cmd) { 2400 case SSL_CTRL_GET_READ_AHEAD: 2401 return ctx->read_ahead; 2402 case SSL_CTRL_SET_READ_AHEAD: 2403 l = ctx->read_ahead; 2404 ctx->read_ahead = larg; 2405 return l; 2406 2407 case SSL_CTRL_SET_MSG_CALLBACK_ARG: 2408 ctx->msg_callback_arg = parg; 2409 return 1; 2410 2411 case SSL_CTRL_GET_MAX_CERT_LIST: 2412 return (long)ctx->max_cert_list; 2413 case SSL_CTRL_SET_MAX_CERT_LIST: 2414 if (larg < 0) 2415 return 0; 2416 l = (long)ctx->max_cert_list; 2417 ctx->max_cert_list = (size_t)larg; 2418 return l; 2419 2420 case SSL_CTRL_SET_SESS_CACHE_SIZE: 2421 if (larg < 0) 2422 return 0; 2423 l = (long)ctx->session_cache_size; 2424 ctx->session_cache_size = (size_t)larg; 2425 return l; 2426 case SSL_CTRL_GET_SESS_CACHE_SIZE: 2427 return (long)ctx->session_cache_size; 2428 case SSL_CTRL_SET_SESS_CACHE_MODE: 2429 l = ctx->session_cache_mode; 2430 ctx->session_cache_mode = larg; 2431 return l; 2432 case SSL_CTRL_GET_SESS_CACHE_MODE: 2433 return ctx->session_cache_mode; 2434 2435 case SSL_CTRL_SESS_NUMBER: 2436 return lh_SSL_SESSION_num_items(ctx->sessions); 2437 case SSL_CTRL_SESS_CONNECT: 2438 return tsan_load(&ctx->stats.sess_connect); 2439 case SSL_CTRL_SESS_CONNECT_GOOD: 2440 return tsan_load(&ctx->stats.sess_connect_good); 2441 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE: 2442 return tsan_load(&ctx->stats.sess_connect_renegotiate); 2443 case SSL_CTRL_SESS_ACCEPT: 2444 return tsan_load(&ctx->stats.sess_accept); 2445 case SSL_CTRL_SESS_ACCEPT_GOOD: 2446 return tsan_load(&ctx->stats.sess_accept_good); 2447 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE: 2448 return tsan_load(&ctx->stats.sess_accept_renegotiate); 2449 case SSL_CTRL_SESS_HIT: 2450 return tsan_load(&ctx->stats.sess_hit); 2451 case SSL_CTRL_SESS_CB_HIT: 2452 return tsan_load(&ctx->stats.sess_cb_hit); 2453 case SSL_CTRL_SESS_MISSES: 2454 return tsan_load(&ctx->stats.sess_miss); 2455 case SSL_CTRL_SESS_TIMEOUTS: 2456 return tsan_load(&ctx->stats.sess_timeout); 2457 case SSL_CTRL_SESS_CACHE_FULL: 2458 return tsan_load(&ctx->stats.sess_cache_full); 2459 case SSL_CTRL_MODE: 2460 return (ctx->mode |= larg); 2461 case SSL_CTRL_CLEAR_MODE: 2462 return (ctx->mode &= ~larg); 2463 case SSL_CTRL_SET_MAX_SEND_FRAGMENT: 2464 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH) 2465 return 0; 2466 ctx->max_send_fragment = larg; 2467 if (ctx->max_send_fragment < ctx->split_send_fragment) 2468 ctx->split_send_fragment = ctx->max_send_fragment; 2469 return 1; 2470 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: 2471 if ((size_t)larg > ctx->max_send_fragment || larg == 0) 2472 return 0; 2473 ctx->split_send_fragment = larg; 2474 return 1; 2475 case SSL_CTRL_SET_MAX_PIPELINES: 2476 if (larg < 1 || larg > SSL_MAX_PIPELINES) 2477 return 0; 2478 ctx->max_pipelines = larg; 2479 return 1; 2480 case SSL_CTRL_CERT_FLAGS: 2481 return (ctx->cert->cert_flags |= larg); 2482 case SSL_CTRL_CLEAR_CERT_FLAGS: 2483 return (ctx->cert->cert_flags &= ~larg); 2484 case SSL_CTRL_SET_MIN_PROTO_VERSION: 2485 return ssl_check_allowed_versions(larg, ctx->max_proto_version) 2486 && ssl_set_version_bound(ctx->method->version, (int)larg, 2487 &ctx->min_proto_version); 2488 case SSL_CTRL_GET_MIN_PROTO_VERSION: 2489 return ctx->min_proto_version; 2490 case SSL_CTRL_SET_MAX_PROTO_VERSION: 2491 return ssl_check_allowed_versions(ctx->min_proto_version, larg) 2492 && ssl_set_version_bound(ctx->method->version, (int)larg, 2493 &ctx->max_proto_version); 2494 case SSL_CTRL_GET_MAX_PROTO_VERSION: 2495 return ctx->max_proto_version; 2496 default: 2497 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg); 2498 } 2499 } 2500 2501 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void)) 2502 { 2503 switch (cmd) { 2504 case SSL_CTRL_SET_MSG_CALLBACK: 2505 ctx->msg_callback = (void (*) 2506 (int write_p, int version, int content_type, 2507 const void *buf, size_t len, SSL *ssl, 2508 void *arg))(fp); 2509 return 1; 2510 2511 default: 2512 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp); 2513 } 2514 } 2515 2516 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b) 2517 { 2518 if (a->id > b->id) 2519 return 1; 2520 if (a->id < b->id) 2521 return -1; 2522 return 0; 2523 } 2524 2525 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap, 2526 const SSL_CIPHER *const *bp) 2527 { 2528 if ((*ap)->id > (*bp)->id) 2529 return 1; 2530 if ((*ap)->id < (*bp)->id) 2531 return -1; 2532 return 0; 2533 } 2534 2535 /** return a STACK of the ciphers available for the SSL and in order of 2536 * preference */ 2537 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s) 2538 { 2539 if (s != NULL) { 2540 if (s->cipher_list != NULL) { 2541 return s->cipher_list; 2542 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) { 2543 return s->ctx->cipher_list; 2544 } 2545 } 2546 return NULL; 2547 } 2548 2549 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s) 2550 { 2551 if ((s == NULL) || !s->server) 2552 return NULL; 2553 return s->peer_ciphers; 2554 } 2555 2556 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s) 2557 { 2558 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers; 2559 int i; 2560 2561 ciphers = SSL_get_ciphers(s); 2562 if (!ciphers) 2563 return NULL; 2564 if (!ssl_set_client_disabled(s)) 2565 return NULL; 2566 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) { 2567 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i); 2568 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) { 2569 if (!sk) 2570 sk = sk_SSL_CIPHER_new_null(); 2571 if (!sk) 2572 return NULL; 2573 if (!sk_SSL_CIPHER_push(sk, c)) { 2574 sk_SSL_CIPHER_free(sk); 2575 return NULL; 2576 } 2577 } 2578 } 2579 return sk; 2580 } 2581 2582 /** return a STACK of the ciphers available for the SSL and in order of 2583 * algorithm id */ 2584 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s) 2585 { 2586 if (s != NULL) { 2587 if (s->cipher_list_by_id != NULL) { 2588 return s->cipher_list_by_id; 2589 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) { 2590 return s->ctx->cipher_list_by_id; 2591 } 2592 } 2593 return NULL; 2594 } 2595 2596 /** The old interface to get the same thing as SSL_get_ciphers() */ 2597 const char *SSL_get_cipher_list(const SSL *s, int n) 2598 { 2599 const SSL_CIPHER *c; 2600 STACK_OF(SSL_CIPHER) *sk; 2601 2602 if (s == NULL) 2603 return NULL; 2604 sk = SSL_get_ciphers(s); 2605 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n)) 2606 return NULL; 2607 c = sk_SSL_CIPHER_value(sk, n); 2608 if (c == NULL) 2609 return NULL; 2610 return c->name; 2611 } 2612 2613 /** return a STACK of the ciphers available for the SSL_CTX and in order of 2614 * preference */ 2615 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx) 2616 { 2617 if (ctx != NULL) 2618 return ctx->cipher_list; 2619 return NULL; 2620 } 2621 2622 /* 2623 * Distinguish between ciphers controlled by set_ciphersuite() and 2624 * set_cipher_list() when counting. 2625 */ 2626 static int cipher_list_tls12_num(STACK_OF(SSL_CIPHER) *sk) 2627 { 2628 int i, num = 0; 2629 const SSL_CIPHER *c; 2630 2631 if (sk == NULL) 2632 return 0; 2633 for (i = 0; i < sk_SSL_CIPHER_num(sk); ++i) { 2634 c = sk_SSL_CIPHER_value(sk, i); 2635 if (c->min_tls >= TLS1_3_VERSION) 2636 continue; 2637 num++; 2638 } 2639 return num; 2640 } 2641 2642 /** specify the ciphers to be used by default by the SSL_CTX */ 2643 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str) 2644 { 2645 STACK_OF(SSL_CIPHER) *sk; 2646 2647 sk = ssl_create_cipher_list(ctx->method, ctx->tls13_ciphersuites, 2648 &ctx->cipher_list, &ctx->cipher_list_by_id, str, 2649 ctx->cert); 2650 /* 2651 * ssl_create_cipher_list may return an empty stack if it was unable to 2652 * find a cipher matching the given rule string (for example if the rule 2653 * string specifies a cipher which has been disabled). This is not an 2654 * error as far as ssl_create_cipher_list is concerned, and hence 2655 * ctx->cipher_list and ctx->cipher_list_by_id has been updated. 2656 */ 2657 if (sk == NULL) 2658 return 0; 2659 else if (cipher_list_tls12_num(sk) == 0) { 2660 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH); 2661 return 0; 2662 } 2663 return 1; 2664 } 2665 2666 /** specify the ciphers to be used by the SSL */ 2667 int SSL_set_cipher_list(SSL *s, const char *str) 2668 { 2669 STACK_OF(SSL_CIPHER) *sk; 2670 2671 sk = ssl_create_cipher_list(s->ctx->method, s->tls13_ciphersuites, 2672 &s->cipher_list, &s->cipher_list_by_id, str, 2673 s->cert); 2674 /* see comment in SSL_CTX_set_cipher_list */ 2675 if (sk == NULL) 2676 return 0; 2677 else if (cipher_list_tls12_num(sk) == 0) { 2678 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH); 2679 return 0; 2680 } 2681 return 1; 2682 } 2683 2684 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int size) 2685 { 2686 char *p; 2687 STACK_OF(SSL_CIPHER) *clntsk, *srvrsk; 2688 const SSL_CIPHER *c; 2689 int i; 2690 2691 if (!s->server 2692 || s->peer_ciphers == NULL 2693 || size < 2) 2694 return NULL; 2695 2696 p = buf; 2697 clntsk = s->peer_ciphers; 2698 srvrsk = SSL_get_ciphers(s); 2699 if (clntsk == NULL || srvrsk == NULL) 2700 return NULL; 2701 2702 if (sk_SSL_CIPHER_num(clntsk) == 0 || sk_SSL_CIPHER_num(srvrsk) == 0) 2703 return NULL; 2704 2705 for (i = 0; i < sk_SSL_CIPHER_num(clntsk); i++) { 2706 int n; 2707 2708 c = sk_SSL_CIPHER_value(clntsk, i); 2709 if (sk_SSL_CIPHER_find(srvrsk, c) < 0) 2710 continue; 2711 2712 n = strlen(c->name); 2713 if (n + 1 > size) { 2714 if (p != buf) 2715 --p; 2716 *p = '\0'; 2717 return buf; 2718 } 2719 strcpy(p, c->name); 2720 p += n; 2721 *(p++) = ':'; 2722 size -= n + 1; 2723 } 2724 p[-1] = '\0'; 2725 return buf; 2726 } 2727 2728 /** 2729 * Return the requested servername (SNI) value. Note that the behaviour varies 2730 * depending on: 2731 * - whether this is called by the client or the server, 2732 * - if we are before or during/after the handshake, 2733 * - if a resumption or normal handshake is being attempted/has occurred 2734 * - whether we have negotiated TLSv1.2 (or below) or TLSv1.3 2735 * 2736 * Note that only the host_name type is defined (RFC 3546). 2737 */ 2738 const char *SSL_get_servername(const SSL *s, const int type) 2739 { 2740 /* 2741 * If we don't know if we are the client or the server yet then we assume 2742 * client. 2743 */ 2744 int server = s->handshake_func == NULL ? 0 : s->server; 2745 if (type != TLSEXT_NAMETYPE_host_name) 2746 return NULL; 2747 2748 if (server) { 2749 /** 2750 * Server side 2751 * In TLSv1.3 on the server SNI is not associated with the session 2752 * but in TLSv1.2 or below it is. 2753 * 2754 * Before the handshake: 2755 * - return NULL 2756 * 2757 * During/after the handshake (TLSv1.2 or below resumption occurred): 2758 * - If a servername was accepted by the server in the original 2759 * handshake then it will return that servername, or NULL otherwise. 2760 * 2761 * During/after the handshake (TLSv1.2 or below resumption did not occur): 2762 * - The function will return the servername requested by the client in 2763 * this handshake or NULL if none was requested. 2764 */ 2765 if (s->hit && !SSL_IS_TLS13(s)) 2766 return s->session->ext.hostname; 2767 } else { 2768 /** 2769 * Client side 2770 * 2771 * Before the handshake: 2772 * - If a servername has been set via a call to 2773 * SSL_set_tlsext_host_name() then it will return that servername 2774 * - If one has not been set, but a TLSv1.2 resumption is being 2775 * attempted and the session from the original handshake had a 2776 * servername accepted by the server then it will return that 2777 * servername 2778 * - Otherwise it returns NULL 2779 * 2780 * During/after the handshake (TLSv1.2 or below resumption occurred): 2781 * - If the session from the original handshake had a servername accepted 2782 * by the server then it will return that servername. 2783 * - Otherwise it returns the servername set via 2784 * SSL_set_tlsext_host_name() (or NULL if it was not called). 2785 * 2786 * During/after the handshake (TLSv1.2 or below resumption did not occur): 2787 * - It will return the servername set via SSL_set_tlsext_host_name() 2788 * (or NULL if it was not called). 2789 */ 2790 if (SSL_in_before(s)) { 2791 if (s->ext.hostname == NULL 2792 && s->session != NULL 2793 && s->session->ssl_version != TLS1_3_VERSION) 2794 return s->session->ext.hostname; 2795 } else { 2796 if (!SSL_IS_TLS13(s) && s->hit && s->session->ext.hostname != NULL) 2797 return s->session->ext.hostname; 2798 } 2799 } 2800 2801 return s->ext.hostname; 2802 } 2803 2804 int SSL_get_servername_type(const SSL *s) 2805 { 2806 if (SSL_get_servername(s, TLSEXT_NAMETYPE_host_name) != NULL) 2807 return TLSEXT_NAMETYPE_host_name; 2808 return -1; 2809 } 2810 2811 /* 2812 * SSL_select_next_proto implements the standard protocol selection. It is 2813 * expected that this function is called from the callback set by 2814 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a 2815 * vector of 8-bit, length prefixed byte strings. The length byte itself is 2816 * not included in the length. A byte string of length 0 is invalid. No byte 2817 * string may be truncated. The current, but experimental algorithm for 2818 * selecting the protocol is: 1) If the server doesn't support NPN then this 2819 * is indicated to the callback. In this case, the client application has to 2820 * abort the connection or have a default application level protocol. 2) If 2821 * the server supports NPN, but advertises an empty list then the client 2822 * selects the first protocol in its list, but indicates via the API that this 2823 * fallback case was enacted. 3) Otherwise, the client finds the first 2824 * protocol in the server's list that it supports and selects this protocol. 2825 * This is because it's assumed that the server has better information about 2826 * which protocol a client should use. 4) If the client doesn't support any 2827 * of the server's advertised protocols, then this is treated the same as 2828 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was 2829 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached. 2830 */ 2831 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen, 2832 const unsigned char *server, 2833 unsigned int server_len, 2834 const unsigned char *client, unsigned int client_len) 2835 { 2836 unsigned int i, j; 2837 const unsigned char *result; 2838 int status = OPENSSL_NPN_UNSUPPORTED; 2839 2840 /* 2841 * For each protocol in server preference order, see if we support it. 2842 */ 2843 for (i = 0; i < server_len;) { 2844 for (j = 0; j < client_len;) { 2845 if (server[i] == client[j] && 2846 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) { 2847 /* We found a match */ 2848 result = &server[i]; 2849 status = OPENSSL_NPN_NEGOTIATED; 2850 goto found; 2851 } 2852 j += client[j]; 2853 j++; 2854 } 2855 i += server[i]; 2856 i++; 2857 } 2858 2859 /* There's no overlap between our protocols and the server's list. */ 2860 result = client; 2861 status = OPENSSL_NPN_NO_OVERLAP; 2862 2863 found: 2864 *out = (unsigned char *)result + 1; 2865 *outlen = result[0]; 2866 return status; 2867 } 2868 2869 #ifndef OPENSSL_NO_NEXTPROTONEG 2870 /* 2871 * SSL_get0_next_proto_negotiated sets *data and *len to point to the 2872 * client's requested protocol for this connection and returns 0. If the 2873 * client didn't request any protocol, then *data is set to NULL. Note that 2874 * the client can request any protocol it chooses. The value returned from 2875 * this function need not be a member of the list of supported protocols 2876 * provided by the callback. 2877 */ 2878 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data, 2879 unsigned *len) 2880 { 2881 *data = s->ext.npn; 2882 if (!*data) { 2883 *len = 0; 2884 } else { 2885 *len = (unsigned int)s->ext.npn_len; 2886 } 2887 } 2888 2889 /* 2890 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when 2891 * a TLS server needs a list of supported protocols for Next Protocol 2892 * Negotiation. The returned list must be in wire format. The list is 2893 * returned by setting |out| to point to it and |outlen| to its length. This 2894 * memory will not be modified, but one should assume that the SSL* keeps a 2895 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it 2896 * wishes to advertise. Otherwise, no such extension will be included in the 2897 * ServerHello. 2898 */ 2899 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx, 2900 SSL_CTX_npn_advertised_cb_func cb, 2901 void *arg) 2902 { 2903 ctx->ext.npn_advertised_cb = cb; 2904 ctx->ext.npn_advertised_cb_arg = arg; 2905 } 2906 2907 /* 2908 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a 2909 * client needs to select a protocol from the server's provided list. |out| 2910 * must be set to point to the selected protocol (which may be within |in|). 2911 * The length of the protocol name must be written into |outlen|. The 2912 * server's advertised protocols are provided in |in| and |inlen|. The 2913 * callback can assume that |in| is syntactically valid. The client must 2914 * select a protocol. It is fatal to the connection if this callback returns 2915 * a value other than SSL_TLSEXT_ERR_OK. 2916 */ 2917 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx, 2918 SSL_CTX_npn_select_cb_func cb, 2919 void *arg) 2920 { 2921 ctx->ext.npn_select_cb = cb; 2922 ctx->ext.npn_select_cb_arg = arg; 2923 } 2924 #endif 2925 2926 static int alpn_value_ok(const unsigned char *protos, unsigned int protos_len) 2927 { 2928 unsigned int idx; 2929 2930 if (protos_len < 2 || protos == NULL) 2931 return 0; 2932 2933 for (idx = 0; idx < protos_len; idx += protos[idx] + 1) { 2934 if (protos[idx] == 0) 2935 return 0; 2936 } 2937 return idx == protos_len; 2938 } 2939 /* 2940 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|. 2941 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit 2942 * length-prefixed strings). Returns 0 on success. 2943 */ 2944 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos, 2945 unsigned int protos_len) 2946 { 2947 unsigned char *alpn; 2948 2949 if (protos_len == 0 || protos == NULL) { 2950 OPENSSL_free(ctx->ext.alpn); 2951 ctx->ext.alpn = NULL; 2952 ctx->ext.alpn_len = 0; 2953 return 0; 2954 } 2955 /* Not valid per RFC */ 2956 if (!alpn_value_ok(protos, protos_len)) 2957 return 1; 2958 2959 alpn = OPENSSL_memdup(protos, protos_len); 2960 if (alpn == NULL) { 2961 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE); 2962 return 1; 2963 } 2964 OPENSSL_free(ctx->ext.alpn); 2965 ctx->ext.alpn = alpn; 2966 ctx->ext.alpn_len = protos_len; 2967 2968 return 0; 2969 } 2970 2971 /* 2972 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|. 2973 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit 2974 * length-prefixed strings). Returns 0 on success. 2975 */ 2976 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos, 2977 unsigned int protos_len) 2978 { 2979 unsigned char *alpn; 2980 2981 if (protos_len == 0 || protos == NULL) { 2982 OPENSSL_free(ssl->ext.alpn); 2983 ssl->ext.alpn = NULL; 2984 ssl->ext.alpn_len = 0; 2985 return 0; 2986 } 2987 /* Not valid per RFC */ 2988 if (!alpn_value_ok(protos, protos_len)) 2989 return 1; 2990 2991 alpn = OPENSSL_memdup(protos, protos_len); 2992 if (alpn == NULL) { 2993 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE); 2994 return 1; 2995 } 2996 OPENSSL_free(ssl->ext.alpn); 2997 ssl->ext.alpn = alpn; 2998 ssl->ext.alpn_len = protos_len; 2999 3000 return 0; 3001 } 3002 3003 /* 3004 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is 3005 * called during ClientHello processing in order to select an ALPN protocol 3006 * from the client's list of offered protocols. 3007 */ 3008 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx, 3009 SSL_CTX_alpn_select_cb_func cb, 3010 void *arg) 3011 { 3012 ctx->ext.alpn_select_cb = cb; 3013 ctx->ext.alpn_select_cb_arg = arg; 3014 } 3015 3016 /* 3017 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|. 3018 * On return it sets |*data| to point to |*len| bytes of protocol name 3019 * (not including the leading length-prefix byte). If the server didn't 3020 * respond with a negotiated protocol then |*len| will be zero. 3021 */ 3022 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data, 3023 unsigned int *len) 3024 { 3025 *data = NULL; 3026 if (ssl->s3) 3027 *data = ssl->s3->alpn_selected; 3028 if (*data == NULL) 3029 *len = 0; 3030 else 3031 *len = (unsigned int)ssl->s3->alpn_selected_len; 3032 } 3033 3034 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen, 3035 const char *label, size_t llen, 3036 const unsigned char *context, size_t contextlen, 3037 int use_context) 3038 { 3039 if (s->session == NULL 3040 || (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)) 3041 return -1; 3042 3043 return s->method->ssl3_enc->export_keying_material(s, out, olen, label, 3044 llen, context, 3045 contextlen, use_context); 3046 } 3047 3048 int SSL_export_keying_material_early(SSL *s, unsigned char *out, size_t olen, 3049 const char *label, size_t llen, 3050 const unsigned char *context, 3051 size_t contextlen) 3052 { 3053 if (s->version != TLS1_3_VERSION) 3054 return 0; 3055 3056 return tls13_export_keying_material_early(s, out, olen, label, llen, 3057 context, contextlen); 3058 } 3059 3060 static unsigned long ssl_session_hash(const SSL_SESSION *a) 3061 { 3062 const unsigned char *session_id = a->session_id; 3063 unsigned long l; 3064 unsigned char tmp_storage[4]; 3065 3066 if (a->session_id_length < sizeof(tmp_storage)) { 3067 memset(tmp_storage, 0, sizeof(tmp_storage)); 3068 memcpy(tmp_storage, a->session_id, a->session_id_length); 3069 session_id = tmp_storage; 3070 } 3071 3072 l = (unsigned long) 3073 ((unsigned long)session_id[0]) | 3074 ((unsigned long)session_id[1] << 8L) | 3075 ((unsigned long)session_id[2] << 16L) | 3076 ((unsigned long)session_id[3] << 24L); 3077 return l; 3078 } 3079 3080 /* 3081 * NB: If this function (or indeed the hash function which uses a sort of 3082 * coarser function than this one) is changed, ensure 3083 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on 3084 * being able to construct an SSL_SESSION that will collide with any existing 3085 * session with a matching session ID. 3086 */ 3087 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b) 3088 { 3089 if (a->ssl_version != b->ssl_version) 3090 return 1; 3091 if (a->session_id_length != b->session_id_length) 3092 return 1; 3093 return memcmp(a->session_id, b->session_id, a->session_id_length); 3094 } 3095 3096 /* 3097 * These wrapper functions should remain rather than redeclaring 3098 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each 3099 * variable. The reason is that the functions aren't static, they're exposed 3100 * via ssl.h. 3101 */ 3102 3103 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth) 3104 { 3105 SSL_CTX *ret = NULL; 3106 3107 if (meth == NULL) { 3108 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED); 3109 return NULL; 3110 } 3111 3112 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL)) 3113 return NULL; 3114 3115 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) { 3116 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS); 3117 goto err; 3118 } 3119 ret = OPENSSL_zalloc(sizeof(*ret)); 3120 if (ret == NULL) 3121 goto err; 3122 3123 ret->method = meth; 3124 ret->min_proto_version = 0; 3125 ret->max_proto_version = 0; 3126 ret->mode = SSL_MODE_AUTO_RETRY; 3127 ret->session_cache_mode = SSL_SESS_CACHE_SERVER; 3128 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT; 3129 /* We take the system default. */ 3130 ret->session_timeout = meth->get_timeout(); 3131 ret->references = 1; 3132 ret->lock = CRYPTO_THREAD_lock_new(); 3133 if (ret->lock == NULL) { 3134 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE); 3135 OPENSSL_free(ret); 3136 return NULL; 3137 } 3138 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT; 3139 ret->verify_mode = SSL_VERIFY_NONE; 3140 if ((ret->cert = ssl_cert_new()) == NULL) 3141 goto err; 3142 3143 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp); 3144 if (ret->sessions == NULL) 3145 goto err; 3146 ret->cert_store = X509_STORE_new(); 3147 if (ret->cert_store == NULL) 3148 goto err; 3149 #ifndef OPENSSL_NO_CT 3150 ret->ctlog_store = CTLOG_STORE_new(); 3151 if (ret->ctlog_store == NULL) 3152 goto err; 3153 #endif 3154 3155 if (!SSL_CTX_set_ciphersuites(ret, TLS_DEFAULT_CIPHERSUITES)) 3156 goto err; 3157 3158 if (!ssl_create_cipher_list(ret->method, 3159 ret->tls13_ciphersuites, 3160 &ret->cipher_list, &ret->cipher_list_by_id, 3161 SSL_DEFAULT_CIPHER_LIST, ret->cert) 3162 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) { 3163 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS); 3164 goto err2; 3165 } 3166 3167 ret->param = X509_VERIFY_PARAM_new(); 3168 if (ret->param == NULL) 3169 goto err; 3170 3171 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) { 3172 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES); 3173 goto err2; 3174 } 3175 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) { 3176 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES); 3177 goto err2; 3178 } 3179 3180 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL) 3181 goto err; 3182 3183 if ((ret->client_ca_names = sk_X509_NAME_new_null()) == NULL) 3184 goto err; 3185 3186 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data)) 3187 goto err; 3188 3189 if ((ret->ext.secure = OPENSSL_secure_zalloc(sizeof(*ret->ext.secure))) == NULL) 3190 goto err; 3191 3192 /* No compression for DTLS */ 3193 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS)) 3194 ret->comp_methods = SSL_COMP_get_compression_methods(); 3195 3196 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; 3197 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; 3198 3199 /* Setup RFC5077 ticket keys */ 3200 if ((RAND_bytes(ret->ext.tick_key_name, 3201 sizeof(ret->ext.tick_key_name)) <= 0) 3202 || (RAND_priv_bytes(ret->ext.secure->tick_hmac_key, 3203 sizeof(ret->ext.secure->tick_hmac_key)) <= 0) 3204 || (RAND_priv_bytes(ret->ext.secure->tick_aes_key, 3205 sizeof(ret->ext.secure->tick_aes_key)) <= 0)) 3206 ret->options |= SSL_OP_NO_TICKET; 3207 3208 if (RAND_priv_bytes(ret->ext.cookie_hmac_key, 3209 sizeof(ret->ext.cookie_hmac_key)) <= 0) 3210 goto err; 3211 3212 #ifndef OPENSSL_NO_SRP 3213 if (!SSL_CTX_SRP_CTX_init(ret)) 3214 goto err; 3215 #endif 3216 #ifndef OPENSSL_NO_ENGINE 3217 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO 3218 # define eng_strx(x) #x 3219 # define eng_str(x) eng_strx(x) 3220 /* Use specific client engine automatically... ignore errors */ 3221 { 3222 ENGINE *eng; 3223 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO)); 3224 if (!eng) { 3225 ERR_clear_error(); 3226 ENGINE_load_builtin_engines(); 3227 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO)); 3228 } 3229 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng)) 3230 ERR_clear_error(); 3231 } 3232 # endif 3233 #endif 3234 /* 3235 * Default is to connect to non-RI servers. When RI is more widely 3236 * deployed might change this. 3237 */ 3238 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT; 3239 /* 3240 * Disable compression by default to prevent CRIME. Applications can 3241 * re-enable compression by configuring 3242 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION); 3243 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3 3244 * middlebox compatibility by default. This may be disabled by default in 3245 * a later OpenSSL version. 3246 */ 3247 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT; 3248 3249 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing; 3250 3251 /* 3252 * We cannot usefully set a default max_early_data here (which gets 3253 * propagated in SSL_new(), for the following reason: setting the 3254 * SSL field causes tls_construct_stoc_early_data() to tell the 3255 * client that early data will be accepted when constructing a TLS 1.3 3256 * session ticket, and the client will accordingly send us early data 3257 * when using that ticket (if the client has early data to send). 3258 * However, in order for the early data to actually be consumed by 3259 * the application, the application must also have calls to 3260 * SSL_read_early_data(); otherwise we'll just skip past the early data 3261 * and ignore it. So, since the application must add calls to 3262 * SSL_read_early_data(), we also require them to add 3263 * calls to SSL_CTX_set_max_early_data() in order to use early data, 3264 * eliminating the bandwidth-wasting early data in the case described 3265 * above. 3266 */ 3267 ret->max_early_data = 0; 3268 3269 /* 3270 * Default recv_max_early_data is a fully loaded single record. Could be 3271 * split across multiple records in practice. We set this differently to 3272 * max_early_data so that, in the default case, we do not advertise any 3273 * support for early_data, but if a client were to send us some (e.g. 3274 * because of an old, stale ticket) then we will tolerate it and skip over 3275 * it. 3276 */ 3277 ret->recv_max_early_data = SSL3_RT_MAX_PLAIN_LENGTH; 3278 3279 /* By default we send two session tickets automatically in TLSv1.3 */ 3280 ret->num_tickets = 2; 3281 3282 ssl_ctx_system_config(ret); 3283 3284 return ret; 3285 err: 3286 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE); 3287 err2: 3288 SSL_CTX_free(ret); 3289 return NULL; 3290 } 3291 3292 int SSL_CTX_up_ref(SSL_CTX *ctx) 3293 { 3294 int i; 3295 3296 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0) 3297 return 0; 3298 3299 REF_PRINT_COUNT("SSL_CTX", ctx); 3300 REF_ASSERT_ISNT(i < 2); 3301 return ((i > 1) ? 1 : 0); 3302 } 3303 3304 void SSL_CTX_free(SSL_CTX *a) 3305 { 3306 int i; 3307 3308 if (a == NULL) 3309 return; 3310 3311 CRYPTO_DOWN_REF(&a->references, &i, a->lock); 3312 REF_PRINT_COUNT("SSL_CTX", a); 3313 if (i > 0) 3314 return; 3315 REF_ASSERT_ISNT(i < 0); 3316 3317 X509_VERIFY_PARAM_free(a->param); 3318 dane_ctx_final(&a->dane); 3319 3320 /* 3321 * Free internal session cache. However: the remove_cb() may reference 3322 * the ex_data of SSL_CTX, thus the ex_data store can only be removed 3323 * after the sessions were flushed. 3324 * As the ex_data handling routines might also touch the session cache, 3325 * the most secure solution seems to be: empty (flush) the cache, then 3326 * free ex_data, then finally free the cache. 3327 * (See ticket [openssl.org #212].) 3328 */ 3329 if (a->sessions != NULL) 3330 SSL_CTX_flush_sessions(a, 0); 3331 3332 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data); 3333 lh_SSL_SESSION_free(a->sessions); 3334 X509_STORE_free(a->cert_store); 3335 #ifndef OPENSSL_NO_CT 3336 CTLOG_STORE_free(a->ctlog_store); 3337 #endif 3338 sk_SSL_CIPHER_free(a->cipher_list); 3339 sk_SSL_CIPHER_free(a->cipher_list_by_id); 3340 sk_SSL_CIPHER_free(a->tls13_ciphersuites); 3341 ssl_cert_free(a->cert); 3342 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free); 3343 sk_X509_NAME_pop_free(a->client_ca_names, X509_NAME_free); 3344 sk_X509_pop_free(a->extra_certs, X509_free); 3345 a->comp_methods = NULL; 3346 #ifndef OPENSSL_NO_SRTP 3347 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles); 3348 #endif 3349 #ifndef OPENSSL_NO_SRP 3350 SSL_CTX_SRP_CTX_free(a); 3351 #endif 3352 #ifndef OPENSSL_NO_ENGINE 3353 ENGINE_finish(a->client_cert_engine); 3354 #endif 3355 3356 #ifndef OPENSSL_NO_EC 3357 OPENSSL_free(a->ext.ecpointformats); 3358 OPENSSL_free(a->ext.supportedgroups); 3359 #endif 3360 OPENSSL_free(a->ext.alpn); 3361 OPENSSL_secure_free(a->ext.secure); 3362 3363 CRYPTO_THREAD_lock_free(a->lock); 3364 3365 OPENSSL_free(a); 3366 } 3367 3368 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb) 3369 { 3370 ctx->default_passwd_callback = cb; 3371 } 3372 3373 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u) 3374 { 3375 ctx->default_passwd_callback_userdata = u; 3376 } 3377 3378 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx) 3379 { 3380 return ctx->default_passwd_callback; 3381 } 3382 3383 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx) 3384 { 3385 return ctx->default_passwd_callback_userdata; 3386 } 3387 3388 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb) 3389 { 3390 s->default_passwd_callback = cb; 3391 } 3392 3393 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u) 3394 { 3395 s->default_passwd_callback_userdata = u; 3396 } 3397 3398 pem_password_cb *SSL_get_default_passwd_cb(SSL *s) 3399 { 3400 return s->default_passwd_callback; 3401 } 3402 3403 void *SSL_get_default_passwd_cb_userdata(SSL *s) 3404 { 3405 return s->default_passwd_callback_userdata; 3406 } 3407 3408 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx, 3409 int (*cb) (X509_STORE_CTX *, void *), 3410 void *arg) 3411 { 3412 ctx->app_verify_callback = cb; 3413 ctx->app_verify_arg = arg; 3414 } 3415 3416 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode, 3417 int (*cb) (int, X509_STORE_CTX *)) 3418 { 3419 ctx->verify_mode = mode; 3420 ctx->default_verify_callback = cb; 3421 } 3422 3423 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth) 3424 { 3425 X509_VERIFY_PARAM_set_depth(ctx->param, depth); 3426 } 3427 3428 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg) 3429 { 3430 ssl_cert_set_cert_cb(c->cert, cb, arg); 3431 } 3432 3433 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg) 3434 { 3435 ssl_cert_set_cert_cb(s->cert, cb, arg); 3436 } 3437 3438 void ssl_set_masks(SSL *s) 3439 { 3440 CERT *c = s->cert; 3441 uint32_t *pvalid = s->s3->tmp.valid_flags; 3442 int rsa_enc, rsa_sign, dh_tmp, dsa_sign; 3443 unsigned long mask_k, mask_a; 3444 #ifndef OPENSSL_NO_EC 3445 int have_ecc_cert, ecdsa_ok; 3446 #endif 3447 if (c == NULL) 3448 return; 3449 3450 #ifndef OPENSSL_NO_DH 3451 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto); 3452 #else 3453 dh_tmp = 0; 3454 #endif 3455 3456 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID; 3457 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID; 3458 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID; 3459 #ifndef OPENSSL_NO_EC 3460 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID; 3461 #endif 3462 mask_k = 0; 3463 mask_a = 0; 3464 3465 #ifdef CIPHER_DEBUG 3466 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n", 3467 dh_tmp, rsa_enc, rsa_sign, dsa_sign); 3468 #endif 3469 3470 #ifndef OPENSSL_NO_GOST 3471 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) { 3472 mask_k |= SSL_kGOST; 3473 mask_a |= SSL_aGOST12; 3474 } 3475 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) { 3476 mask_k |= SSL_kGOST; 3477 mask_a |= SSL_aGOST12; 3478 } 3479 if (ssl_has_cert(s, SSL_PKEY_GOST01)) { 3480 mask_k |= SSL_kGOST; 3481 mask_a |= SSL_aGOST01; 3482 } 3483 #endif 3484 3485 if (rsa_enc) 3486 mask_k |= SSL_kRSA; 3487 3488 if (dh_tmp) 3489 mask_k |= SSL_kDHE; 3490 3491 /* 3492 * If we only have an RSA-PSS certificate allow RSA authentication 3493 * if TLS 1.2 and peer supports it. 3494 */ 3495 3496 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN) 3497 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN 3498 && TLS1_get_version(s) == TLS1_2_VERSION)) 3499 mask_a |= SSL_aRSA; 3500 3501 if (dsa_sign) { 3502 mask_a |= SSL_aDSS; 3503 } 3504 3505 mask_a |= SSL_aNULL; 3506 3507 /* 3508 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites 3509 * depending on the key usage extension. 3510 */ 3511 #ifndef OPENSSL_NO_EC 3512 if (have_ecc_cert) { 3513 uint32_t ex_kusage; 3514 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509); 3515 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE; 3516 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN)) 3517 ecdsa_ok = 0; 3518 if (ecdsa_ok) 3519 mask_a |= SSL_aECDSA; 3520 } 3521 /* Allow Ed25519 for TLS 1.2 if peer supports it */ 3522 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519) 3523 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN 3524 && TLS1_get_version(s) == TLS1_2_VERSION) 3525 mask_a |= SSL_aECDSA; 3526 3527 /* Allow Ed448 for TLS 1.2 if peer supports it */ 3528 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED448) 3529 && pvalid[SSL_PKEY_ED448] & CERT_PKEY_EXPLICIT_SIGN 3530 && TLS1_get_version(s) == TLS1_2_VERSION) 3531 mask_a |= SSL_aECDSA; 3532 #endif 3533 3534 #ifndef OPENSSL_NO_EC 3535 mask_k |= SSL_kECDHE; 3536 #endif 3537 3538 #ifndef OPENSSL_NO_PSK 3539 mask_k |= SSL_kPSK; 3540 mask_a |= SSL_aPSK; 3541 if (mask_k & SSL_kRSA) 3542 mask_k |= SSL_kRSAPSK; 3543 if (mask_k & SSL_kDHE) 3544 mask_k |= SSL_kDHEPSK; 3545 if (mask_k & SSL_kECDHE) 3546 mask_k |= SSL_kECDHEPSK; 3547 #endif 3548 3549 s->s3->tmp.mask_k = mask_k; 3550 s->s3->tmp.mask_a = mask_a; 3551 } 3552 3553 #ifndef OPENSSL_NO_EC 3554 3555 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s) 3556 { 3557 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) { 3558 /* key usage, if present, must allow signing */ 3559 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) { 3560 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG, 3561 SSL_R_ECC_CERT_NOT_FOR_SIGNING); 3562 return 0; 3563 } 3564 } 3565 return 1; /* all checks are ok */ 3566 } 3567 3568 #endif 3569 3570 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo, 3571 size_t *serverinfo_length) 3572 { 3573 CERT_PKEY *cpk = s->s3->tmp.cert; 3574 *serverinfo_length = 0; 3575 3576 if (cpk == NULL || cpk->serverinfo == NULL) 3577 return 0; 3578 3579 *serverinfo = cpk->serverinfo; 3580 *serverinfo_length = cpk->serverinfo_length; 3581 return 1; 3582 } 3583 3584 void ssl_update_cache(SSL *s, int mode) 3585 { 3586 int i; 3587 3588 /* 3589 * If the session_id_length is 0, we are not supposed to cache it, and it 3590 * would be rather hard to do anyway :-) 3591 */ 3592 if (s->session->session_id_length == 0) 3593 return; 3594 3595 /* 3596 * If sid_ctx_length is 0 there is no specific application context 3597 * associated with this session, so when we try to resume it and 3598 * SSL_VERIFY_PEER is requested to verify the client identity, we have no 3599 * indication that this is actually a session for the proper application 3600 * context, and the *handshake* will fail, not just the resumption attempt. 3601 * Do not cache (on the server) these sessions that are not resumable 3602 * (clients can set SSL_VERIFY_PEER without needing a sid_ctx set). 3603 */ 3604 if (s->server && s->session->sid_ctx_length == 0 3605 && (s->verify_mode & SSL_VERIFY_PEER) != 0) 3606 return; 3607 3608 i = s->session_ctx->session_cache_mode; 3609 if ((i & mode) != 0 3610 && (!s->hit || SSL_IS_TLS13(s))) { 3611 /* 3612 * Add the session to the internal cache. In server side TLSv1.3 we 3613 * normally don't do this because by default it's a full stateless ticket 3614 * with only a dummy session id so there is no reason to cache it, 3615 * unless: 3616 * - we are doing early_data, in which case we cache so that we can 3617 * detect replays 3618 * - the application has set a remove_session_cb so needs to know about 3619 * session timeout events 3620 * - SSL_OP_NO_TICKET is set in which case it is a stateful ticket 3621 */ 3622 if ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) == 0 3623 && (!SSL_IS_TLS13(s) 3624 || !s->server 3625 || (s->max_early_data > 0 3626 && (s->options & SSL_OP_NO_ANTI_REPLAY) == 0) 3627 || s->session_ctx->remove_session_cb != NULL 3628 || (s->options & SSL_OP_NO_TICKET) != 0)) 3629 SSL_CTX_add_session(s->session_ctx, s->session); 3630 3631 /* 3632 * Add the session to the external cache. We do this even in server side 3633 * TLSv1.3 without early data because some applications just want to 3634 * know about the creation of a session and aren't doing a full cache. 3635 */ 3636 if (s->session_ctx->new_session_cb != NULL) { 3637 SSL_SESSION_up_ref(s->session); 3638 if (!s->session_ctx->new_session_cb(s, s->session)) 3639 SSL_SESSION_free(s->session); 3640 } 3641 } 3642 3643 /* auto flush every 255 connections */ 3644 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) { 3645 TSAN_QUALIFIER int *stat; 3646 if (mode & SSL_SESS_CACHE_CLIENT) 3647 stat = &s->session_ctx->stats.sess_connect_good; 3648 else 3649 stat = &s->session_ctx->stats.sess_accept_good; 3650 if ((tsan_load(stat) & 0xff) == 0xff) 3651 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL)); 3652 } 3653 } 3654 3655 const SSL_METHOD *SSL_CTX_get_ssl_method(const SSL_CTX *ctx) 3656 { 3657 return ctx->method; 3658 } 3659 3660 const SSL_METHOD *SSL_get_ssl_method(const SSL *s) 3661 { 3662 return s->method; 3663 } 3664 3665 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth) 3666 { 3667 int ret = 1; 3668 3669 if (s->method != meth) { 3670 const SSL_METHOD *sm = s->method; 3671 int (*hf) (SSL *) = s->handshake_func; 3672 3673 if (sm->version == meth->version) 3674 s->method = meth; 3675 else { 3676 sm->ssl_free(s); 3677 s->method = meth; 3678 ret = s->method->ssl_new(s); 3679 } 3680 3681 if (hf == sm->ssl_connect) 3682 s->handshake_func = meth->ssl_connect; 3683 else if (hf == sm->ssl_accept) 3684 s->handshake_func = meth->ssl_accept; 3685 } 3686 return ret; 3687 } 3688 3689 int SSL_get_error(const SSL *s, int i) 3690 { 3691 int reason; 3692 unsigned long l; 3693 BIO *bio; 3694 3695 if (i > 0) 3696 return SSL_ERROR_NONE; 3697 3698 /* 3699 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc, 3700 * where we do encode the error 3701 */ 3702 if ((l = ERR_peek_error()) != 0) { 3703 if (ERR_GET_LIB(l) == ERR_LIB_SYS) 3704 return SSL_ERROR_SYSCALL; 3705 else 3706 return SSL_ERROR_SSL; 3707 } 3708 3709 if (SSL_want_read(s)) { 3710 bio = SSL_get_rbio(s); 3711 if (BIO_should_read(bio)) 3712 return SSL_ERROR_WANT_READ; 3713 else if (BIO_should_write(bio)) 3714 /* 3715 * This one doesn't make too much sense ... We never try to write 3716 * to the rbio, and an application program where rbio and wbio 3717 * are separate couldn't even know what it should wait for. 3718 * However if we ever set s->rwstate incorrectly (so that we have 3719 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and 3720 * wbio *are* the same, this test works around that bug; so it 3721 * might be safer to keep it. 3722 */ 3723 return SSL_ERROR_WANT_WRITE; 3724 else if (BIO_should_io_special(bio)) { 3725 reason = BIO_get_retry_reason(bio); 3726 if (reason == BIO_RR_CONNECT) 3727 return SSL_ERROR_WANT_CONNECT; 3728 else if (reason == BIO_RR_ACCEPT) 3729 return SSL_ERROR_WANT_ACCEPT; 3730 else 3731 return SSL_ERROR_SYSCALL; /* unknown */ 3732 } 3733 } 3734 3735 if (SSL_want_write(s)) { 3736 /* Access wbio directly - in order to use the buffered bio if present */ 3737 bio = s->wbio; 3738 if (BIO_should_write(bio)) 3739 return SSL_ERROR_WANT_WRITE; 3740 else if (BIO_should_read(bio)) 3741 /* 3742 * See above (SSL_want_read(s) with BIO_should_write(bio)) 3743 */ 3744 return SSL_ERROR_WANT_READ; 3745 else if (BIO_should_io_special(bio)) { 3746 reason = BIO_get_retry_reason(bio); 3747 if (reason == BIO_RR_CONNECT) 3748 return SSL_ERROR_WANT_CONNECT; 3749 else if (reason == BIO_RR_ACCEPT) 3750 return SSL_ERROR_WANT_ACCEPT; 3751 else 3752 return SSL_ERROR_SYSCALL; 3753 } 3754 } 3755 if (SSL_want_x509_lookup(s)) 3756 return SSL_ERROR_WANT_X509_LOOKUP; 3757 if (SSL_want_async(s)) 3758 return SSL_ERROR_WANT_ASYNC; 3759 if (SSL_want_async_job(s)) 3760 return SSL_ERROR_WANT_ASYNC_JOB; 3761 if (SSL_want_client_hello_cb(s)) 3762 return SSL_ERROR_WANT_CLIENT_HELLO_CB; 3763 3764 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) && 3765 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY)) 3766 return SSL_ERROR_ZERO_RETURN; 3767 3768 return SSL_ERROR_SYSCALL; 3769 } 3770 3771 static int ssl_do_handshake_intern(void *vargs) 3772 { 3773 struct ssl_async_args *args; 3774 SSL *s; 3775 3776 args = (struct ssl_async_args *)vargs; 3777 s = args->s; 3778 3779 return s->handshake_func(s); 3780 } 3781 3782 int SSL_do_handshake(SSL *s) 3783 { 3784 int ret = 1; 3785 3786 if (s->handshake_func == NULL) { 3787 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET); 3788 return -1; 3789 } 3790 3791 ossl_statem_check_finish_init(s, -1); 3792 3793 s->method->ssl_renegotiate_check(s, 0); 3794 3795 if (SSL_in_init(s) || SSL_in_before(s)) { 3796 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { 3797 struct ssl_async_args args; 3798 3799 args.s = s; 3800 3801 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern); 3802 } else { 3803 ret = s->handshake_func(s); 3804 } 3805 } 3806 return ret; 3807 } 3808 3809 void SSL_set_accept_state(SSL *s) 3810 { 3811 s->server = 1; 3812 s->shutdown = 0; 3813 ossl_statem_clear(s); 3814 s->handshake_func = s->method->ssl_accept; 3815 clear_ciphers(s); 3816 } 3817 3818 void SSL_set_connect_state(SSL *s) 3819 { 3820 s->server = 0; 3821 s->shutdown = 0; 3822 ossl_statem_clear(s); 3823 s->handshake_func = s->method->ssl_connect; 3824 clear_ciphers(s); 3825 } 3826 3827 int ssl_undefined_function(SSL *s) 3828 { 3829 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 3830 return 0; 3831 } 3832 3833 int ssl_undefined_void_function(void) 3834 { 3835 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION, 3836 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 3837 return 0; 3838 } 3839 3840 int ssl_undefined_const_function(const SSL *s) 3841 { 3842 return 0; 3843 } 3844 3845 const SSL_METHOD *ssl_bad_method(int ver) 3846 { 3847 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); 3848 return NULL; 3849 } 3850 3851 const char *ssl_protocol_to_string(int version) 3852 { 3853 switch(version) 3854 { 3855 case TLS1_3_VERSION: 3856 return "TLSv1.3"; 3857 3858 case TLS1_2_VERSION: 3859 return "TLSv1.2"; 3860 3861 case TLS1_1_VERSION: 3862 return "TLSv1.1"; 3863 3864 case TLS1_VERSION: 3865 return "TLSv1"; 3866 3867 case SSL3_VERSION: 3868 return "SSLv3"; 3869 3870 case DTLS1_BAD_VER: 3871 return "DTLSv0.9"; 3872 3873 case DTLS1_VERSION: 3874 return "DTLSv1"; 3875 3876 case DTLS1_2_VERSION: 3877 return "DTLSv1.2"; 3878 3879 default: 3880 return "unknown"; 3881 } 3882 } 3883 3884 const char *SSL_get_version(const SSL *s) 3885 { 3886 return ssl_protocol_to_string(s->version); 3887 } 3888 3889 static int dup_ca_names(STACK_OF(X509_NAME) **dst, STACK_OF(X509_NAME) *src) 3890 { 3891 STACK_OF(X509_NAME) *sk; 3892 X509_NAME *xn; 3893 int i; 3894 3895 if (src == NULL) { 3896 *dst = NULL; 3897 return 1; 3898 } 3899 3900 if ((sk = sk_X509_NAME_new_null()) == NULL) 3901 return 0; 3902 for (i = 0; i < sk_X509_NAME_num(src); i++) { 3903 xn = X509_NAME_dup(sk_X509_NAME_value(src, i)); 3904 if (xn == NULL) { 3905 sk_X509_NAME_pop_free(sk, X509_NAME_free); 3906 return 0; 3907 } 3908 if (sk_X509_NAME_insert(sk, xn, i) == 0) { 3909 X509_NAME_free(xn); 3910 sk_X509_NAME_pop_free(sk, X509_NAME_free); 3911 return 0; 3912 } 3913 } 3914 *dst = sk; 3915 3916 return 1; 3917 } 3918 3919 SSL *SSL_dup(SSL *s) 3920 { 3921 SSL *ret; 3922 int i; 3923 3924 /* If we're not quiescent, just up_ref! */ 3925 if (!SSL_in_init(s) || !SSL_in_before(s)) { 3926 CRYPTO_UP_REF(&s->references, &i, s->lock); 3927 return s; 3928 } 3929 3930 /* 3931 * Otherwise, copy configuration state, and session if set. 3932 */ 3933 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL) 3934 return NULL; 3935 3936 if (s->session != NULL) { 3937 /* 3938 * Arranges to share the same session via up_ref. This "copies" 3939 * session-id, SSL_METHOD, sid_ctx, and 'cert' 3940 */ 3941 if (!SSL_copy_session_id(ret, s)) 3942 goto err; 3943 } else { 3944 /* 3945 * No session has been established yet, so we have to expect that 3946 * s->cert or ret->cert will be changed later -- they should not both 3947 * point to the same object, and thus we can't use 3948 * SSL_copy_session_id. 3949 */ 3950 if (!SSL_set_ssl_method(ret, s->method)) 3951 goto err; 3952 3953 if (s->cert != NULL) { 3954 ssl_cert_free(ret->cert); 3955 ret->cert = ssl_cert_dup(s->cert); 3956 if (ret->cert == NULL) 3957 goto err; 3958 } 3959 3960 if (!SSL_set_session_id_context(ret, s->sid_ctx, 3961 (int)s->sid_ctx_length)) 3962 goto err; 3963 } 3964 3965 if (!ssl_dane_dup(ret, s)) 3966 goto err; 3967 ret->version = s->version; 3968 ret->options = s->options; 3969 ret->min_proto_version = s->min_proto_version; 3970 ret->max_proto_version = s->max_proto_version; 3971 ret->mode = s->mode; 3972 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s)); 3973 SSL_set_read_ahead(ret, SSL_get_read_ahead(s)); 3974 ret->msg_callback = s->msg_callback; 3975 ret->msg_callback_arg = s->msg_callback_arg; 3976 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s)); 3977 SSL_set_verify_depth(ret, SSL_get_verify_depth(s)); 3978 ret->generate_session_id = s->generate_session_id; 3979 3980 SSL_set_info_callback(ret, SSL_get_info_callback(s)); 3981 3982 /* copy app data, a little dangerous perhaps */ 3983 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data)) 3984 goto err; 3985 3986 ret->server = s->server; 3987 if (s->handshake_func) { 3988 if (s->server) 3989 SSL_set_accept_state(ret); 3990 else 3991 SSL_set_connect_state(ret); 3992 } 3993 ret->shutdown = s->shutdown; 3994 ret->hit = s->hit; 3995 3996 ret->default_passwd_callback = s->default_passwd_callback; 3997 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata; 3998 3999 X509_VERIFY_PARAM_inherit(ret->param, s->param); 4000 4001 /* dup the cipher_list and cipher_list_by_id stacks */ 4002 if (s->cipher_list != NULL) { 4003 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL) 4004 goto err; 4005 } 4006 if (s->cipher_list_by_id != NULL) 4007 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id)) 4008 == NULL) 4009 goto err; 4010 4011 /* Dup the client_CA list */ 4012 if (!dup_ca_names(&ret->ca_names, s->ca_names) 4013 || !dup_ca_names(&ret->client_ca_names, s->client_ca_names)) 4014 goto err; 4015 4016 return ret; 4017 4018 err: 4019 SSL_free(ret); 4020 return NULL; 4021 } 4022 4023 void ssl_clear_cipher_ctx(SSL *s) 4024 { 4025 if (s->enc_read_ctx != NULL) { 4026 EVP_CIPHER_CTX_free(s->enc_read_ctx); 4027 s->enc_read_ctx = NULL; 4028 } 4029 if (s->enc_write_ctx != NULL) { 4030 EVP_CIPHER_CTX_free(s->enc_write_ctx); 4031 s->enc_write_ctx = NULL; 4032 } 4033 #ifndef OPENSSL_NO_COMP 4034 COMP_CTX_free(s->expand); 4035 s->expand = NULL; 4036 COMP_CTX_free(s->compress); 4037 s->compress = NULL; 4038 #endif 4039 } 4040 4041 X509 *SSL_get_certificate(const SSL *s) 4042 { 4043 if (s->cert != NULL) 4044 return s->cert->key->x509; 4045 else 4046 return NULL; 4047 } 4048 4049 EVP_PKEY *SSL_get_privatekey(const SSL *s) 4050 { 4051 if (s->cert != NULL) 4052 return s->cert->key->privatekey; 4053 else 4054 return NULL; 4055 } 4056 4057 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx) 4058 { 4059 if (ctx->cert != NULL) 4060 return ctx->cert->key->x509; 4061 else 4062 return NULL; 4063 } 4064 4065 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx) 4066 { 4067 if (ctx->cert != NULL) 4068 return ctx->cert->key->privatekey; 4069 else 4070 return NULL; 4071 } 4072 4073 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s) 4074 { 4075 if ((s->session != NULL) && (s->session->cipher != NULL)) 4076 return s->session->cipher; 4077 return NULL; 4078 } 4079 4080 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s) 4081 { 4082 return s->s3->tmp.new_cipher; 4083 } 4084 4085 const COMP_METHOD *SSL_get_current_compression(const SSL *s) 4086 { 4087 #ifndef OPENSSL_NO_COMP 4088 return s->compress ? COMP_CTX_get_method(s->compress) : NULL; 4089 #else 4090 return NULL; 4091 #endif 4092 } 4093 4094 const COMP_METHOD *SSL_get_current_expansion(const SSL *s) 4095 { 4096 #ifndef OPENSSL_NO_COMP 4097 return s->expand ? COMP_CTX_get_method(s->expand) : NULL; 4098 #else 4099 return NULL; 4100 #endif 4101 } 4102 4103 int ssl_init_wbio_buffer(SSL *s) 4104 { 4105 BIO *bbio; 4106 4107 if (s->bbio != NULL) { 4108 /* Already buffered. */ 4109 return 1; 4110 } 4111 4112 bbio = BIO_new(BIO_f_buffer()); 4113 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) { 4114 BIO_free(bbio); 4115 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB); 4116 return 0; 4117 } 4118 s->bbio = bbio; 4119 s->wbio = BIO_push(bbio, s->wbio); 4120 4121 return 1; 4122 } 4123 4124 int ssl_free_wbio_buffer(SSL *s) 4125 { 4126 /* callers ensure s is never null */ 4127 if (s->bbio == NULL) 4128 return 1; 4129 4130 s->wbio = BIO_pop(s->wbio); 4131 BIO_free(s->bbio); 4132 s->bbio = NULL; 4133 4134 return 1; 4135 } 4136 4137 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode) 4138 { 4139 ctx->quiet_shutdown = mode; 4140 } 4141 4142 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx) 4143 { 4144 return ctx->quiet_shutdown; 4145 } 4146 4147 void SSL_set_quiet_shutdown(SSL *s, int mode) 4148 { 4149 s->quiet_shutdown = mode; 4150 } 4151 4152 int SSL_get_quiet_shutdown(const SSL *s) 4153 { 4154 return s->quiet_shutdown; 4155 } 4156 4157 void SSL_set_shutdown(SSL *s, int mode) 4158 { 4159 s->shutdown = mode; 4160 } 4161 4162 int SSL_get_shutdown(const SSL *s) 4163 { 4164 return s->shutdown; 4165 } 4166 4167 int SSL_version(const SSL *s) 4168 { 4169 return s->version; 4170 } 4171 4172 int SSL_client_version(const SSL *s) 4173 { 4174 return s->client_version; 4175 } 4176 4177 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl) 4178 { 4179 return ssl->ctx; 4180 } 4181 4182 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx) 4183 { 4184 CERT *new_cert; 4185 if (ssl->ctx == ctx) 4186 return ssl->ctx; 4187 if (ctx == NULL) 4188 ctx = ssl->session_ctx; 4189 new_cert = ssl_cert_dup(ctx->cert); 4190 if (new_cert == NULL) { 4191 return NULL; 4192 } 4193 4194 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) { 4195 ssl_cert_free(new_cert); 4196 return NULL; 4197 } 4198 4199 ssl_cert_free(ssl->cert); 4200 ssl->cert = new_cert; 4201 4202 /* 4203 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH), 4204 * so setter APIs must prevent invalid lengths from entering the system. 4205 */ 4206 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx))) 4207 return NULL; 4208 4209 /* 4210 * If the session ID context matches that of the parent SSL_CTX, 4211 * inherit it from the new SSL_CTX as well. If however the context does 4212 * not match (i.e., it was set per-ssl with SSL_set_session_id_context), 4213 * leave it unchanged. 4214 */ 4215 if ((ssl->ctx != NULL) && 4216 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) && 4217 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) { 4218 ssl->sid_ctx_length = ctx->sid_ctx_length; 4219 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx)); 4220 } 4221 4222 SSL_CTX_up_ref(ctx); 4223 SSL_CTX_free(ssl->ctx); /* decrement reference count */ 4224 ssl->ctx = ctx; 4225 4226 return ssl->ctx; 4227 } 4228 4229 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx) 4230 { 4231 return X509_STORE_set_default_paths(ctx->cert_store); 4232 } 4233 4234 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx) 4235 { 4236 X509_LOOKUP *lookup; 4237 4238 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir()); 4239 if (lookup == NULL) 4240 return 0; 4241 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT); 4242 4243 /* Clear any errors if the default directory does not exist */ 4244 ERR_clear_error(); 4245 4246 return 1; 4247 } 4248 4249 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx) 4250 { 4251 X509_LOOKUP *lookup; 4252 4253 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file()); 4254 if (lookup == NULL) 4255 return 0; 4256 4257 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT); 4258 4259 /* Clear any errors if the default file does not exist */ 4260 ERR_clear_error(); 4261 4262 return 1; 4263 } 4264 4265 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile, 4266 const char *CApath) 4267 { 4268 return X509_STORE_load_locations(ctx->cert_store, CAfile, CApath); 4269 } 4270 4271 void SSL_set_info_callback(SSL *ssl, 4272 void (*cb) (const SSL *ssl, int type, int val)) 4273 { 4274 ssl->info_callback = cb; 4275 } 4276 4277 /* 4278 * One compiler (Diab DCC) doesn't like argument names in returned function 4279 * pointer. 4280 */ 4281 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ , 4282 int /* type */ , 4283 int /* val */ ) { 4284 return ssl->info_callback; 4285 } 4286 4287 void SSL_set_verify_result(SSL *ssl, long arg) 4288 { 4289 ssl->verify_result = arg; 4290 } 4291 4292 long SSL_get_verify_result(const SSL *ssl) 4293 { 4294 return ssl->verify_result; 4295 } 4296 4297 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen) 4298 { 4299 if (outlen == 0) 4300 return sizeof(ssl->s3->client_random); 4301 if (outlen > sizeof(ssl->s3->client_random)) 4302 outlen = sizeof(ssl->s3->client_random); 4303 memcpy(out, ssl->s3->client_random, outlen); 4304 return outlen; 4305 } 4306 4307 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen) 4308 { 4309 if (outlen == 0) 4310 return sizeof(ssl->s3->server_random); 4311 if (outlen > sizeof(ssl->s3->server_random)) 4312 outlen = sizeof(ssl->s3->server_random); 4313 memcpy(out, ssl->s3->server_random, outlen); 4314 return outlen; 4315 } 4316 4317 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session, 4318 unsigned char *out, size_t outlen) 4319 { 4320 if (outlen == 0) 4321 return session->master_key_length; 4322 if (outlen > session->master_key_length) 4323 outlen = session->master_key_length; 4324 memcpy(out, session->master_key, outlen); 4325 return outlen; 4326 } 4327 4328 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in, 4329 size_t len) 4330 { 4331 if (len > sizeof(sess->master_key)) 4332 return 0; 4333 4334 memcpy(sess->master_key, in, len); 4335 sess->master_key_length = len; 4336 return 1; 4337 } 4338 4339 4340 int SSL_set_ex_data(SSL *s, int idx, void *arg) 4341 { 4342 return CRYPTO_set_ex_data(&s->ex_data, idx, arg); 4343 } 4344 4345 void *SSL_get_ex_data(const SSL *s, int idx) 4346 { 4347 return CRYPTO_get_ex_data(&s->ex_data, idx); 4348 } 4349 4350 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg) 4351 { 4352 return CRYPTO_set_ex_data(&s->ex_data, idx, arg); 4353 } 4354 4355 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx) 4356 { 4357 return CRYPTO_get_ex_data(&s->ex_data, idx); 4358 } 4359 4360 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx) 4361 { 4362 return ctx->cert_store; 4363 } 4364 4365 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store) 4366 { 4367 X509_STORE_free(ctx->cert_store); 4368 ctx->cert_store = store; 4369 } 4370 4371 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store) 4372 { 4373 if (store != NULL) 4374 X509_STORE_up_ref(store); 4375 SSL_CTX_set_cert_store(ctx, store); 4376 } 4377 4378 int SSL_want(const SSL *s) 4379 { 4380 return s->rwstate; 4381 } 4382 4383 /** 4384 * \brief Set the callback for generating temporary DH keys. 4385 * \param ctx the SSL context. 4386 * \param dh the callback 4387 */ 4388 4389 #ifndef OPENSSL_NO_DH 4390 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx, 4391 DH *(*dh) (SSL *ssl, int is_export, 4392 int keylength)) 4393 { 4394 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh); 4395 } 4396 4397 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export, 4398 int keylength)) 4399 { 4400 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh); 4401 } 4402 #endif 4403 4404 #ifndef OPENSSL_NO_PSK 4405 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint) 4406 { 4407 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { 4408 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG); 4409 return 0; 4410 } 4411 OPENSSL_free(ctx->cert->psk_identity_hint); 4412 if (identity_hint != NULL) { 4413 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint); 4414 if (ctx->cert->psk_identity_hint == NULL) 4415 return 0; 4416 } else 4417 ctx->cert->psk_identity_hint = NULL; 4418 return 1; 4419 } 4420 4421 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint) 4422 { 4423 if (s == NULL) 4424 return 0; 4425 4426 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { 4427 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG); 4428 return 0; 4429 } 4430 OPENSSL_free(s->cert->psk_identity_hint); 4431 if (identity_hint != NULL) { 4432 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint); 4433 if (s->cert->psk_identity_hint == NULL) 4434 return 0; 4435 } else 4436 s->cert->psk_identity_hint = NULL; 4437 return 1; 4438 } 4439 4440 const char *SSL_get_psk_identity_hint(const SSL *s) 4441 { 4442 if (s == NULL || s->session == NULL) 4443 return NULL; 4444 return s->session->psk_identity_hint; 4445 } 4446 4447 const char *SSL_get_psk_identity(const SSL *s) 4448 { 4449 if (s == NULL || s->session == NULL) 4450 return NULL; 4451 return s->session->psk_identity; 4452 } 4453 4454 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb) 4455 { 4456 s->psk_client_callback = cb; 4457 } 4458 4459 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb) 4460 { 4461 ctx->psk_client_callback = cb; 4462 } 4463 4464 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb) 4465 { 4466 s->psk_server_callback = cb; 4467 } 4468 4469 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb) 4470 { 4471 ctx->psk_server_callback = cb; 4472 } 4473 #endif 4474 4475 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb) 4476 { 4477 s->psk_find_session_cb = cb; 4478 } 4479 4480 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx, 4481 SSL_psk_find_session_cb_func cb) 4482 { 4483 ctx->psk_find_session_cb = cb; 4484 } 4485 4486 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb) 4487 { 4488 s->psk_use_session_cb = cb; 4489 } 4490 4491 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx, 4492 SSL_psk_use_session_cb_func cb) 4493 { 4494 ctx->psk_use_session_cb = cb; 4495 } 4496 4497 void SSL_CTX_set_msg_callback(SSL_CTX *ctx, 4498 void (*cb) (int write_p, int version, 4499 int content_type, const void *buf, 4500 size_t len, SSL *ssl, void *arg)) 4501 { 4502 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb); 4503 } 4504 4505 void SSL_set_msg_callback(SSL *ssl, 4506 void (*cb) (int write_p, int version, 4507 int content_type, const void *buf, 4508 size_t len, SSL *ssl, void *arg)) 4509 { 4510 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb); 4511 } 4512 4513 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx, 4514 int (*cb) (SSL *ssl, 4515 int 4516 is_forward_secure)) 4517 { 4518 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB, 4519 (void (*)(void))cb); 4520 } 4521 4522 void SSL_set_not_resumable_session_callback(SSL *ssl, 4523 int (*cb) (SSL *ssl, 4524 int is_forward_secure)) 4525 { 4526 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB, 4527 (void (*)(void))cb); 4528 } 4529 4530 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx, 4531 size_t (*cb) (SSL *ssl, int type, 4532 size_t len, void *arg)) 4533 { 4534 ctx->record_padding_cb = cb; 4535 } 4536 4537 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg) 4538 { 4539 ctx->record_padding_arg = arg; 4540 } 4541 4542 void *SSL_CTX_get_record_padding_callback_arg(const SSL_CTX *ctx) 4543 { 4544 return ctx->record_padding_arg; 4545 } 4546 4547 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size) 4548 { 4549 /* block size of 0 or 1 is basically no padding */ 4550 if (block_size == 1) 4551 ctx->block_padding = 0; 4552 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH) 4553 ctx->block_padding = block_size; 4554 else 4555 return 0; 4556 return 1; 4557 } 4558 4559 int SSL_set_record_padding_callback(SSL *ssl, 4560 size_t (*cb) (SSL *ssl, int type, 4561 size_t len, void *arg)) 4562 { 4563 BIO *b; 4564 4565 b = SSL_get_wbio(ssl); 4566 if (b == NULL || !BIO_get_ktls_send(b)) { 4567 ssl->record_padding_cb = cb; 4568 return 1; 4569 } 4570 return 0; 4571 } 4572 4573 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg) 4574 { 4575 ssl->record_padding_arg = arg; 4576 } 4577 4578 void *SSL_get_record_padding_callback_arg(const SSL *ssl) 4579 { 4580 return ssl->record_padding_arg; 4581 } 4582 4583 int SSL_set_block_padding(SSL *ssl, size_t block_size) 4584 { 4585 /* block size of 0 or 1 is basically no padding */ 4586 if (block_size == 1) 4587 ssl->block_padding = 0; 4588 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH) 4589 ssl->block_padding = block_size; 4590 else 4591 return 0; 4592 return 1; 4593 } 4594 4595 int SSL_set_num_tickets(SSL *s, size_t num_tickets) 4596 { 4597 s->num_tickets = num_tickets; 4598 4599 return 1; 4600 } 4601 4602 size_t SSL_get_num_tickets(const SSL *s) 4603 { 4604 return s->num_tickets; 4605 } 4606 4607 int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets) 4608 { 4609 ctx->num_tickets = num_tickets; 4610 4611 return 1; 4612 } 4613 4614 size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx) 4615 { 4616 return ctx->num_tickets; 4617 } 4618 4619 /* 4620 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer 4621 * variable, freeing EVP_MD_CTX previously stored in that variable, if any. 4622 * If EVP_MD pointer is passed, initializes ctx with this |md|. 4623 * Returns the newly allocated ctx; 4624 */ 4625 4626 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md) 4627 { 4628 ssl_clear_hash_ctx(hash); 4629 *hash = EVP_MD_CTX_new(); 4630 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) { 4631 EVP_MD_CTX_free(*hash); 4632 *hash = NULL; 4633 return NULL; 4634 } 4635 return *hash; 4636 } 4637 4638 void ssl_clear_hash_ctx(EVP_MD_CTX **hash) 4639 { 4640 4641 EVP_MD_CTX_free(*hash); 4642 *hash = NULL; 4643 } 4644 4645 /* Retrieve handshake hashes */ 4646 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen, 4647 size_t *hashlen) 4648 { 4649 EVP_MD_CTX *ctx = NULL; 4650 EVP_MD_CTX *hdgst = s->s3->handshake_dgst; 4651 int hashleni = EVP_MD_CTX_size(hdgst); 4652 int ret = 0; 4653 4654 if (hashleni < 0 || (size_t)hashleni > outlen) { 4655 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH, 4656 ERR_R_INTERNAL_ERROR); 4657 goto err; 4658 } 4659 4660 ctx = EVP_MD_CTX_new(); 4661 if (ctx == NULL) { 4662 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH, 4663 ERR_R_INTERNAL_ERROR); 4664 goto err; 4665 } 4666 4667 if (!EVP_MD_CTX_copy_ex(ctx, hdgst) 4668 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) { 4669 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH, 4670 ERR_R_INTERNAL_ERROR); 4671 goto err; 4672 } 4673 4674 *hashlen = hashleni; 4675 4676 ret = 1; 4677 err: 4678 EVP_MD_CTX_free(ctx); 4679 return ret; 4680 } 4681 4682 int SSL_session_reused(const SSL *s) 4683 { 4684 return s->hit; 4685 } 4686 4687 int SSL_is_server(const SSL *s) 4688 { 4689 return s->server; 4690 } 4691 4692 #if OPENSSL_API_COMPAT < 0x10100000L 4693 void SSL_set_debug(SSL *s, int debug) 4694 { 4695 /* Old function was do-nothing anyway... */ 4696 (void)s; 4697 (void)debug; 4698 } 4699 #endif 4700 4701 void SSL_set_security_level(SSL *s, int level) 4702 { 4703 s->cert->sec_level = level; 4704 } 4705 4706 int SSL_get_security_level(const SSL *s) 4707 { 4708 return s->cert->sec_level; 4709 } 4710 4711 void SSL_set_security_callback(SSL *s, 4712 int (*cb) (const SSL *s, const SSL_CTX *ctx, 4713 int op, int bits, int nid, 4714 void *other, void *ex)) 4715 { 4716 s->cert->sec_cb = cb; 4717 } 4718 4719 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s, 4720 const SSL_CTX *ctx, int op, 4721 int bits, int nid, void *other, 4722 void *ex) { 4723 return s->cert->sec_cb; 4724 } 4725 4726 void SSL_set0_security_ex_data(SSL *s, void *ex) 4727 { 4728 s->cert->sec_ex = ex; 4729 } 4730 4731 void *SSL_get0_security_ex_data(const SSL *s) 4732 { 4733 return s->cert->sec_ex; 4734 } 4735 4736 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level) 4737 { 4738 ctx->cert->sec_level = level; 4739 } 4740 4741 int SSL_CTX_get_security_level(const SSL_CTX *ctx) 4742 { 4743 return ctx->cert->sec_level; 4744 } 4745 4746 void SSL_CTX_set_security_callback(SSL_CTX *ctx, 4747 int (*cb) (const SSL *s, const SSL_CTX *ctx, 4748 int op, int bits, int nid, 4749 void *other, void *ex)) 4750 { 4751 ctx->cert->sec_cb = cb; 4752 } 4753 4754 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s, 4755 const SSL_CTX *ctx, 4756 int op, int bits, 4757 int nid, 4758 void *other, 4759 void *ex) { 4760 return ctx->cert->sec_cb; 4761 } 4762 4763 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex) 4764 { 4765 ctx->cert->sec_ex = ex; 4766 } 4767 4768 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx) 4769 { 4770 return ctx->cert->sec_ex; 4771 } 4772 4773 /* 4774 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that 4775 * can return unsigned long, instead of the generic long return value from the 4776 * control interface. 4777 */ 4778 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx) 4779 { 4780 return ctx->options; 4781 } 4782 4783 unsigned long SSL_get_options(const SSL *s) 4784 { 4785 return s->options; 4786 } 4787 4788 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op) 4789 { 4790 return ctx->options |= op; 4791 } 4792 4793 unsigned long SSL_set_options(SSL *s, unsigned long op) 4794 { 4795 return s->options |= op; 4796 } 4797 4798 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op) 4799 { 4800 return ctx->options &= ~op; 4801 } 4802 4803 unsigned long SSL_clear_options(SSL *s, unsigned long op) 4804 { 4805 return s->options &= ~op; 4806 } 4807 4808 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s) 4809 { 4810 return s->verified_chain; 4811 } 4812 4813 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id); 4814 4815 #ifndef OPENSSL_NO_CT 4816 4817 /* 4818 * Moves SCTs from the |src| stack to the |dst| stack. 4819 * The source of each SCT will be set to |origin|. 4820 * If |dst| points to a NULL pointer, a new stack will be created and owned by 4821 * the caller. 4822 * Returns the number of SCTs moved, or a negative integer if an error occurs. 4823 */ 4824 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src, 4825 sct_source_t origin) 4826 { 4827 int scts_moved = 0; 4828 SCT *sct = NULL; 4829 4830 if (*dst == NULL) { 4831 *dst = sk_SCT_new_null(); 4832 if (*dst == NULL) { 4833 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE); 4834 goto err; 4835 } 4836 } 4837 4838 while ((sct = sk_SCT_pop(src)) != NULL) { 4839 if (SCT_set_source(sct, origin) != 1) 4840 goto err; 4841 4842 if (sk_SCT_push(*dst, sct) <= 0) 4843 goto err; 4844 scts_moved += 1; 4845 } 4846 4847 return scts_moved; 4848 err: 4849 if (sct != NULL) 4850 sk_SCT_push(src, sct); /* Put the SCT back */ 4851 return -1; 4852 } 4853 4854 /* 4855 * Look for data collected during ServerHello and parse if found. 4856 * Returns the number of SCTs extracted. 4857 */ 4858 static int ct_extract_tls_extension_scts(SSL *s) 4859 { 4860 int scts_extracted = 0; 4861 4862 if (s->ext.scts != NULL) { 4863 const unsigned char *p = s->ext.scts; 4864 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len); 4865 4866 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION); 4867 4868 SCT_LIST_free(scts); 4869 } 4870 4871 return scts_extracted; 4872 } 4873 4874 /* 4875 * Checks for an OCSP response and then attempts to extract any SCTs found if it 4876 * contains an SCT X509 extension. They will be stored in |s->scts|. 4877 * Returns: 4878 * - The number of SCTs extracted, assuming an OCSP response exists. 4879 * - 0 if no OCSP response exists or it contains no SCTs. 4880 * - A negative integer if an error occurs. 4881 */ 4882 static int ct_extract_ocsp_response_scts(SSL *s) 4883 { 4884 # ifndef OPENSSL_NO_OCSP 4885 int scts_extracted = 0; 4886 const unsigned char *p; 4887 OCSP_BASICRESP *br = NULL; 4888 OCSP_RESPONSE *rsp = NULL; 4889 STACK_OF(SCT) *scts = NULL; 4890 int i; 4891 4892 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0) 4893 goto err; 4894 4895 p = s->ext.ocsp.resp; 4896 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len); 4897 if (rsp == NULL) 4898 goto err; 4899 4900 br = OCSP_response_get1_basic(rsp); 4901 if (br == NULL) 4902 goto err; 4903 4904 for (i = 0; i < OCSP_resp_count(br); ++i) { 4905 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i); 4906 4907 if (single == NULL) 4908 continue; 4909 4910 scts = 4911 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL); 4912 scts_extracted = 4913 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE); 4914 if (scts_extracted < 0) 4915 goto err; 4916 } 4917 err: 4918 SCT_LIST_free(scts); 4919 OCSP_BASICRESP_free(br); 4920 OCSP_RESPONSE_free(rsp); 4921 return scts_extracted; 4922 # else 4923 /* Behave as if no OCSP response exists */ 4924 return 0; 4925 # endif 4926 } 4927 4928 /* 4929 * Attempts to extract SCTs from the peer certificate. 4930 * Return the number of SCTs extracted, or a negative integer if an error 4931 * occurs. 4932 */ 4933 static int ct_extract_x509v3_extension_scts(SSL *s) 4934 { 4935 int scts_extracted = 0; 4936 X509 *cert = s->session != NULL ? s->session->peer : NULL; 4937 4938 if (cert != NULL) { 4939 STACK_OF(SCT) *scts = 4940 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL); 4941 4942 scts_extracted = 4943 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION); 4944 4945 SCT_LIST_free(scts); 4946 } 4947 4948 return scts_extracted; 4949 } 4950 4951 /* 4952 * Attempts to find all received SCTs by checking TLS extensions, the OCSP 4953 * response (if it exists) and X509v3 extensions in the certificate. 4954 * Returns NULL if an error occurs. 4955 */ 4956 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s) 4957 { 4958 if (!s->scts_parsed) { 4959 if (ct_extract_tls_extension_scts(s) < 0 || 4960 ct_extract_ocsp_response_scts(s) < 0 || 4961 ct_extract_x509v3_extension_scts(s) < 0) 4962 goto err; 4963 4964 s->scts_parsed = 1; 4965 } 4966 return s->scts; 4967 err: 4968 return NULL; 4969 } 4970 4971 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx, 4972 const STACK_OF(SCT) *scts, void *unused_arg) 4973 { 4974 return 1; 4975 } 4976 4977 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx, 4978 const STACK_OF(SCT) *scts, void *unused_arg) 4979 { 4980 int count = scts != NULL ? sk_SCT_num(scts) : 0; 4981 int i; 4982 4983 for (i = 0; i < count; ++i) { 4984 SCT *sct = sk_SCT_value(scts, i); 4985 int status = SCT_get_validation_status(sct); 4986 4987 if (status == SCT_VALIDATION_STATUS_VALID) 4988 return 1; 4989 } 4990 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS); 4991 return 0; 4992 } 4993 4994 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback, 4995 void *arg) 4996 { 4997 /* 4998 * Since code exists that uses the custom extension handler for CT, look 4999 * for this and throw an error if they have already registered to use CT. 5000 */ 5001 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx, 5002 TLSEXT_TYPE_signed_certificate_timestamp)) 5003 { 5004 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK, 5005 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED); 5006 return 0; 5007 } 5008 5009 if (callback != NULL) { 5010 /* 5011 * If we are validating CT, then we MUST accept SCTs served via OCSP 5012 */ 5013 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp)) 5014 return 0; 5015 } 5016 5017 s->ct_validation_callback = callback; 5018 s->ct_validation_callback_arg = arg; 5019 5020 return 1; 5021 } 5022 5023 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx, 5024 ssl_ct_validation_cb callback, void *arg) 5025 { 5026 /* 5027 * Since code exists that uses the custom extension handler for CT, look for 5028 * this and throw an error if they have already registered to use CT. 5029 */ 5030 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx, 5031 TLSEXT_TYPE_signed_certificate_timestamp)) 5032 { 5033 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK, 5034 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED); 5035 return 0; 5036 } 5037 5038 ctx->ct_validation_callback = callback; 5039 ctx->ct_validation_callback_arg = arg; 5040 return 1; 5041 } 5042 5043 int SSL_ct_is_enabled(const SSL *s) 5044 { 5045 return s->ct_validation_callback != NULL; 5046 } 5047 5048 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx) 5049 { 5050 return ctx->ct_validation_callback != NULL; 5051 } 5052 5053 int ssl_validate_ct(SSL *s) 5054 { 5055 int ret = 0; 5056 X509 *cert = s->session != NULL ? s->session->peer : NULL; 5057 X509 *issuer; 5058 SSL_DANE *dane = &s->dane; 5059 CT_POLICY_EVAL_CTX *ctx = NULL; 5060 const STACK_OF(SCT) *scts; 5061 5062 /* 5063 * If no callback is set, the peer is anonymous, or its chain is invalid, 5064 * skip SCT validation - just return success. Applications that continue 5065 * handshakes without certificates, with unverified chains, or pinned leaf 5066 * certificates are outside the scope of the WebPKI and CT. 5067 * 5068 * The above exclusions notwithstanding the vast majority of peers will 5069 * have rather ordinary certificate chains validated by typical 5070 * applications that perform certificate verification and therefore will 5071 * process SCTs when enabled. 5072 */ 5073 if (s->ct_validation_callback == NULL || cert == NULL || 5074 s->verify_result != X509_V_OK || 5075 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1) 5076 return 1; 5077 5078 /* 5079 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3) 5080 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2 5081 */ 5082 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) { 5083 switch (dane->mtlsa->usage) { 5084 case DANETLS_USAGE_DANE_TA: 5085 case DANETLS_USAGE_DANE_EE: 5086 return 1; 5087 } 5088 } 5089 5090 ctx = CT_POLICY_EVAL_CTX_new(); 5091 if (ctx == NULL) { 5092 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_VALIDATE_CT, 5093 ERR_R_MALLOC_FAILURE); 5094 goto end; 5095 } 5096 5097 issuer = sk_X509_value(s->verified_chain, 1); 5098 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert); 5099 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer); 5100 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store); 5101 CT_POLICY_EVAL_CTX_set_time( 5102 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000); 5103 5104 scts = SSL_get0_peer_scts(s); 5105 5106 /* 5107 * This function returns success (> 0) only when all the SCTs are valid, 0 5108 * when some are invalid, and < 0 on various internal errors (out of 5109 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient 5110 * reason to abort the handshake, that decision is up to the callback. 5111 * Therefore, we error out only in the unexpected case that the return 5112 * value is negative. 5113 * 5114 * XXX: One might well argue that the return value of this function is an 5115 * unfortunate design choice. Its job is only to determine the validation 5116 * status of each of the provided SCTs. So long as it correctly separates 5117 * the wheat from the chaff it should return success. Failure in this case 5118 * ought to correspond to an inability to carry out its duties. 5119 */ 5120 if (SCT_LIST_validate(scts, ctx) < 0) { 5121 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT, 5122 SSL_R_SCT_VERIFICATION_FAILED); 5123 goto end; 5124 } 5125 5126 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg); 5127 if (ret < 0) 5128 ret = 0; /* This function returns 0 on failure */ 5129 if (!ret) 5130 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT, 5131 SSL_R_CALLBACK_FAILED); 5132 5133 end: 5134 CT_POLICY_EVAL_CTX_free(ctx); 5135 /* 5136 * With SSL_VERIFY_NONE the session may be cached and re-used despite a 5137 * failure return code here. Also the application may wish the complete 5138 * the handshake, and then disconnect cleanly at a higher layer, after 5139 * checking the verification status of the completed connection. 5140 * 5141 * We therefore force a certificate verification failure which will be 5142 * visible via SSL_get_verify_result() and cached as part of any resumed 5143 * session. 5144 * 5145 * Note: the permissive callback is for information gathering only, always 5146 * returns success, and does not affect verification status. Only the 5147 * strict callback or a custom application-specified callback can trigger 5148 * connection failure or record a verification error. 5149 */ 5150 if (ret <= 0) 5151 s->verify_result = X509_V_ERR_NO_VALID_SCTS; 5152 return ret; 5153 } 5154 5155 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode) 5156 { 5157 switch (validation_mode) { 5158 default: 5159 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE); 5160 return 0; 5161 case SSL_CT_VALIDATION_PERMISSIVE: 5162 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL); 5163 case SSL_CT_VALIDATION_STRICT: 5164 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL); 5165 } 5166 } 5167 5168 int SSL_enable_ct(SSL *s, int validation_mode) 5169 { 5170 switch (validation_mode) { 5171 default: 5172 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE); 5173 return 0; 5174 case SSL_CT_VALIDATION_PERMISSIVE: 5175 return SSL_set_ct_validation_callback(s, ct_permissive, NULL); 5176 case SSL_CT_VALIDATION_STRICT: 5177 return SSL_set_ct_validation_callback(s, ct_strict, NULL); 5178 } 5179 } 5180 5181 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx) 5182 { 5183 return CTLOG_STORE_load_default_file(ctx->ctlog_store); 5184 } 5185 5186 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path) 5187 { 5188 return CTLOG_STORE_load_file(ctx->ctlog_store, path); 5189 } 5190 5191 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs) 5192 { 5193 CTLOG_STORE_free(ctx->ctlog_store); 5194 ctx->ctlog_store = logs; 5195 } 5196 5197 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx) 5198 { 5199 return ctx->ctlog_store; 5200 } 5201 5202 #endif /* OPENSSL_NO_CT */ 5203 5204 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb, 5205 void *arg) 5206 { 5207 c->client_hello_cb = cb; 5208 c->client_hello_cb_arg = arg; 5209 } 5210 5211 int SSL_client_hello_isv2(SSL *s) 5212 { 5213 if (s->clienthello == NULL) 5214 return 0; 5215 return s->clienthello->isv2; 5216 } 5217 5218 unsigned int SSL_client_hello_get0_legacy_version(SSL *s) 5219 { 5220 if (s->clienthello == NULL) 5221 return 0; 5222 return s->clienthello->legacy_version; 5223 } 5224 5225 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out) 5226 { 5227 if (s->clienthello == NULL) 5228 return 0; 5229 if (out != NULL) 5230 *out = s->clienthello->random; 5231 return SSL3_RANDOM_SIZE; 5232 } 5233 5234 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out) 5235 { 5236 if (s->clienthello == NULL) 5237 return 0; 5238 if (out != NULL) 5239 *out = s->clienthello->session_id; 5240 return s->clienthello->session_id_len; 5241 } 5242 5243 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out) 5244 { 5245 if (s->clienthello == NULL) 5246 return 0; 5247 if (out != NULL) 5248 *out = PACKET_data(&s->clienthello->ciphersuites); 5249 return PACKET_remaining(&s->clienthello->ciphersuites); 5250 } 5251 5252 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out) 5253 { 5254 if (s->clienthello == NULL) 5255 return 0; 5256 if (out != NULL) 5257 *out = s->clienthello->compressions; 5258 return s->clienthello->compressions_len; 5259 } 5260 5261 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen) 5262 { 5263 RAW_EXTENSION *ext; 5264 int *present; 5265 size_t num = 0, i; 5266 5267 if (s->clienthello == NULL || out == NULL || outlen == NULL) 5268 return 0; 5269 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) { 5270 ext = s->clienthello->pre_proc_exts + i; 5271 if (ext->present) 5272 num++; 5273 } 5274 if (num == 0) { 5275 *out = NULL; 5276 *outlen = 0; 5277 return 1; 5278 } 5279 if ((present = OPENSSL_malloc(sizeof(*present) * num)) == NULL) { 5280 SSLerr(SSL_F_SSL_CLIENT_HELLO_GET1_EXTENSIONS_PRESENT, 5281 ERR_R_MALLOC_FAILURE); 5282 return 0; 5283 } 5284 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) { 5285 ext = s->clienthello->pre_proc_exts + i; 5286 if (ext->present) { 5287 if (ext->received_order >= num) 5288 goto err; 5289 present[ext->received_order] = ext->type; 5290 } 5291 } 5292 *out = present; 5293 *outlen = num; 5294 return 1; 5295 err: 5296 OPENSSL_free(present); 5297 return 0; 5298 } 5299 5300 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out, 5301 size_t *outlen) 5302 { 5303 size_t i; 5304 RAW_EXTENSION *r; 5305 5306 if (s->clienthello == NULL) 5307 return 0; 5308 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) { 5309 r = s->clienthello->pre_proc_exts + i; 5310 if (r->present && r->type == type) { 5311 if (out != NULL) 5312 *out = PACKET_data(&r->data); 5313 if (outlen != NULL) 5314 *outlen = PACKET_remaining(&r->data); 5315 return 1; 5316 } 5317 } 5318 return 0; 5319 } 5320 5321 int SSL_free_buffers(SSL *ssl) 5322 { 5323 RECORD_LAYER *rl = &ssl->rlayer; 5324 5325 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl)) 5326 return 0; 5327 5328 RECORD_LAYER_release(rl); 5329 return 1; 5330 } 5331 5332 int SSL_alloc_buffers(SSL *ssl) 5333 { 5334 return ssl3_setup_buffers(ssl); 5335 } 5336 5337 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb) 5338 { 5339 ctx->keylog_callback = cb; 5340 } 5341 5342 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx) 5343 { 5344 return ctx->keylog_callback; 5345 } 5346 5347 static int nss_keylog_int(const char *prefix, 5348 SSL *ssl, 5349 const uint8_t *parameter_1, 5350 size_t parameter_1_len, 5351 const uint8_t *parameter_2, 5352 size_t parameter_2_len) 5353 { 5354 char *out = NULL; 5355 char *cursor = NULL; 5356 size_t out_len = 0; 5357 size_t i; 5358 size_t prefix_len; 5359 5360 if (ssl->ctx->keylog_callback == NULL) 5361 return 1; 5362 5363 /* 5364 * Our output buffer will contain the following strings, rendered with 5365 * space characters in between, terminated by a NULL character: first the 5366 * prefix, then the first parameter, then the second parameter. The 5367 * meaning of each parameter depends on the specific key material being 5368 * logged. Note that the first and second parameters are encoded in 5369 * hexadecimal, so we need a buffer that is twice their lengths. 5370 */ 5371 prefix_len = strlen(prefix); 5372 out_len = prefix_len + (2 * parameter_1_len) + (2 * parameter_2_len) + 3; 5373 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) { 5374 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, SSL_F_NSS_KEYLOG_INT, 5375 ERR_R_MALLOC_FAILURE); 5376 return 0; 5377 } 5378 5379 strcpy(cursor, prefix); 5380 cursor += prefix_len; 5381 *cursor++ = ' '; 5382 5383 for (i = 0; i < parameter_1_len; i++) { 5384 sprintf(cursor, "%02x", parameter_1[i]); 5385 cursor += 2; 5386 } 5387 *cursor++ = ' '; 5388 5389 for (i = 0; i < parameter_2_len; i++) { 5390 sprintf(cursor, "%02x", parameter_2[i]); 5391 cursor += 2; 5392 } 5393 *cursor = '\0'; 5394 5395 ssl->ctx->keylog_callback(ssl, (const char *)out); 5396 OPENSSL_clear_free(out, out_len); 5397 return 1; 5398 5399 } 5400 5401 int ssl_log_rsa_client_key_exchange(SSL *ssl, 5402 const uint8_t *encrypted_premaster, 5403 size_t encrypted_premaster_len, 5404 const uint8_t *premaster, 5405 size_t premaster_len) 5406 { 5407 if (encrypted_premaster_len < 8) { 5408 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, 5409 SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR); 5410 return 0; 5411 } 5412 5413 /* We only want the first 8 bytes of the encrypted premaster as a tag. */ 5414 return nss_keylog_int("RSA", 5415 ssl, 5416 encrypted_premaster, 5417 8, 5418 premaster, 5419 premaster_len); 5420 } 5421 5422 int ssl_log_secret(SSL *ssl, 5423 const char *label, 5424 const uint8_t *secret, 5425 size_t secret_len) 5426 { 5427 return nss_keylog_int(label, 5428 ssl, 5429 ssl->s3->client_random, 5430 SSL3_RANDOM_SIZE, 5431 secret, 5432 secret_len); 5433 } 5434 5435 #define SSLV2_CIPHER_LEN 3 5436 5437 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format) 5438 { 5439 int n; 5440 5441 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN; 5442 5443 if (PACKET_remaining(cipher_suites) == 0) { 5444 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL_CACHE_CIPHERLIST, 5445 SSL_R_NO_CIPHERS_SPECIFIED); 5446 return 0; 5447 } 5448 5449 if (PACKET_remaining(cipher_suites) % n != 0) { 5450 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5451 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5452 return 0; 5453 } 5454 5455 OPENSSL_free(s->s3->tmp.ciphers_raw); 5456 s->s3->tmp.ciphers_raw = NULL; 5457 s->s3->tmp.ciphers_rawlen = 0; 5458 5459 if (sslv2format) { 5460 size_t numciphers = PACKET_remaining(cipher_suites) / n; 5461 PACKET sslv2ciphers = *cipher_suites; 5462 unsigned int leadbyte; 5463 unsigned char *raw; 5464 5465 /* 5466 * We store the raw ciphers list in SSLv3+ format so we need to do some 5467 * preprocessing to convert the list first. If there are any SSLv2 only 5468 * ciphersuites with a non-zero leading byte then we are going to 5469 * slightly over allocate because we won't store those. But that isn't a 5470 * problem. 5471 */ 5472 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN); 5473 s->s3->tmp.ciphers_raw = raw; 5474 if (raw == NULL) { 5475 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5476 ERR_R_MALLOC_FAILURE); 5477 return 0; 5478 } 5479 for (s->s3->tmp.ciphers_rawlen = 0; 5480 PACKET_remaining(&sslv2ciphers) > 0; 5481 raw += TLS_CIPHER_LEN) { 5482 if (!PACKET_get_1(&sslv2ciphers, &leadbyte) 5483 || (leadbyte == 0 5484 && !PACKET_copy_bytes(&sslv2ciphers, raw, 5485 TLS_CIPHER_LEN)) 5486 || (leadbyte != 0 5487 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) { 5488 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5489 SSL_R_BAD_PACKET); 5490 OPENSSL_free(s->s3->tmp.ciphers_raw); 5491 s->s3->tmp.ciphers_raw = NULL; 5492 s->s3->tmp.ciphers_rawlen = 0; 5493 return 0; 5494 } 5495 if (leadbyte == 0) 5496 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN; 5497 } 5498 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw, 5499 &s->s3->tmp.ciphers_rawlen)) { 5500 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST, 5501 ERR_R_INTERNAL_ERROR); 5502 return 0; 5503 } 5504 return 1; 5505 } 5506 5507 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len, 5508 int isv2format, STACK_OF(SSL_CIPHER) **sk, 5509 STACK_OF(SSL_CIPHER) **scsvs) 5510 { 5511 PACKET pkt; 5512 5513 if (!PACKET_buf_init(&pkt, bytes, len)) 5514 return 0; 5515 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0); 5516 } 5517 5518 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites, 5519 STACK_OF(SSL_CIPHER) **skp, 5520 STACK_OF(SSL_CIPHER) **scsvs_out, 5521 int sslv2format, int fatal) 5522 { 5523 const SSL_CIPHER *c; 5524 STACK_OF(SSL_CIPHER) *sk = NULL; 5525 STACK_OF(SSL_CIPHER) *scsvs = NULL; 5526 int n; 5527 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */ 5528 unsigned char cipher[SSLV2_CIPHER_LEN]; 5529 5530 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN; 5531 5532 if (PACKET_remaining(cipher_suites) == 0) { 5533 if (fatal) 5534 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_BYTES_TO_CIPHER_LIST, 5535 SSL_R_NO_CIPHERS_SPECIFIED); 5536 else 5537 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED); 5538 return 0; 5539 } 5540 5541 if (PACKET_remaining(cipher_suites) % n != 0) { 5542 if (fatal) 5543 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST, 5544 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5545 else 5546 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, 5547 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 5548 return 0; 5549 } 5550 5551 sk = sk_SSL_CIPHER_new_null(); 5552 scsvs = sk_SSL_CIPHER_new_null(); 5553 if (sk == NULL || scsvs == NULL) { 5554 if (fatal) 5555 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_BYTES_TO_CIPHER_LIST, 5556 ERR_R_MALLOC_FAILURE); 5557 else 5558 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE); 5559 goto err; 5560 } 5561 5562 while (PACKET_copy_bytes(cipher_suites, cipher, n)) { 5563 /* 5564 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the 5565 * first byte set to zero, while true SSLv2 ciphers have a non-zero 5566 * first byte. We don't support any true SSLv2 ciphers, so skip them. 5567 */ 5568 if (sslv2format && cipher[0] != '\0') 5569 continue; 5570 5571 /* For SSLv2-compat, ignore leading 0-byte. */ 5572 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1); 5573 if (c != NULL) { 5574 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) || 5575 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) { 5576 if (fatal) 5577 SSLfatal(s, SSL_AD_INTERNAL_ERROR, 5578 SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE); 5579 else 5580 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE); 5581 goto err; 5582 } 5583 } 5584 } 5585 if (PACKET_remaining(cipher_suites) > 0) { 5586 if (fatal) 5587 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST, 5588 SSL_R_BAD_LENGTH); 5589 else 5590 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH); 5591 goto err; 5592 } 5593 5594 if (skp != NULL) 5595 *skp = sk; 5596 else 5597 sk_SSL_CIPHER_free(sk); 5598 if (scsvs_out != NULL) 5599 *scsvs_out = scsvs; 5600 else 5601 sk_SSL_CIPHER_free(scsvs); 5602 return 1; 5603 err: 5604 sk_SSL_CIPHER_free(sk); 5605 sk_SSL_CIPHER_free(scsvs); 5606 return 0; 5607 } 5608 5609 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data) 5610 { 5611 ctx->max_early_data = max_early_data; 5612 5613 return 1; 5614 } 5615 5616 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx) 5617 { 5618 return ctx->max_early_data; 5619 } 5620 5621 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data) 5622 { 5623 s->max_early_data = max_early_data; 5624 5625 return 1; 5626 } 5627 5628 uint32_t SSL_get_max_early_data(const SSL *s) 5629 { 5630 return s->max_early_data; 5631 } 5632 5633 int SSL_CTX_set_recv_max_early_data(SSL_CTX *ctx, uint32_t recv_max_early_data) 5634 { 5635 ctx->recv_max_early_data = recv_max_early_data; 5636 5637 return 1; 5638 } 5639 5640 uint32_t SSL_CTX_get_recv_max_early_data(const SSL_CTX *ctx) 5641 { 5642 return ctx->recv_max_early_data; 5643 } 5644 5645 int SSL_set_recv_max_early_data(SSL *s, uint32_t recv_max_early_data) 5646 { 5647 s->recv_max_early_data = recv_max_early_data; 5648 5649 return 1; 5650 } 5651 5652 uint32_t SSL_get_recv_max_early_data(const SSL *s) 5653 { 5654 return s->recv_max_early_data; 5655 } 5656 5657 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl) 5658 { 5659 /* Return any active Max Fragment Len extension */ 5660 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)) 5661 return GET_MAX_FRAGMENT_LENGTH(ssl->session); 5662 5663 /* return current SSL connection setting */ 5664 return ssl->max_send_fragment; 5665 } 5666 5667 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl) 5668 { 5669 /* Return a value regarding an active Max Fragment Len extension */ 5670 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session) 5671 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session)) 5672 return GET_MAX_FRAGMENT_LENGTH(ssl->session); 5673 5674 /* else limit |split_send_fragment| to current |max_send_fragment| */ 5675 if (ssl->split_send_fragment > ssl->max_send_fragment) 5676 return ssl->max_send_fragment; 5677 5678 /* return current SSL connection setting */ 5679 return ssl->split_send_fragment; 5680 } 5681 5682 int SSL_stateless(SSL *s) 5683 { 5684 int ret; 5685 5686 /* Ensure there is no state left over from a previous invocation */ 5687 if (!SSL_clear(s)) 5688 return 0; 5689 5690 ERR_clear_error(); 5691 5692 s->s3->flags |= TLS1_FLAGS_STATELESS; 5693 ret = SSL_accept(s); 5694 s->s3->flags &= ~TLS1_FLAGS_STATELESS; 5695 5696 if (ret > 0 && s->ext.cookieok) 5697 return 1; 5698 5699 if (s->hello_retry_request == SSL_HRR_PENDING && !ossl_statem_in_error(s)) 5700 return 0; 5701 5702 return -1; 5703 } 5704 5705 void SSL_CTX_set_post_handshake_auth(SSL_CTX *ctx, int val) 5706 { 5707 ctx->pha_enabled = val; 5708 } 5709 5710 void SSL_set_post_handshake_auth(SSL *ssl, int val) 5711 { 5712 ssl->pha_enabled = val; 5713 } 5714 5715 int SSL_verify_client_post_handshake(SSL *ssl) 5716 { 5717 if (!SSL_IS_TLS13(ssl)) { 5718 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_WRONG_SSL_VERSION); 5719 return 0; 5720 } 5721 if (!ssl->server) { 5722 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_NOT_SERVER); 5723 return 0; 5724 } 5725 5726 if (!SSL_is_init_finished(ssl)) { 5727 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_STILL_IN_INIT); 5728 return 0; 5729 } 5730 5731 switch (ssl->post_handshake_auth) { 5732 case SSL_PHA_NONE: 5733 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_EXTENSION_NOT_RECEIVED); 5734 return 0; 5735 default: 5736 case SSL_PHA_EXT_SENT: 5737 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, ERR_R_INTERNAL_ERROR); 5738 return 0; 5739 case SSL_PHA_EXT_RECEIVED: 5740 break; 5741 case SSL_PHA_REQUEST_PENDING: 5742 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_PENDING); 5743 return 0; 5744 case SSL_PHA_REQUESTED: 5745 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_SENT); 5746 return 0; 5747 } 5748 5749 ssl->post_handshake_auth = SSL_PHA_REQUEST_PENDING; 5750 5751 /* checks verify_mode and algorithm_auth */ 5752 if (!send_certificate_request(ssl)) { 5753 ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; /* restore on error */ 5754 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_INVALID_CONFIG); 5755 return 0; 5756 } 5757 5758 ossl_statem_set_in_init(ssl, 1); 5759 return 1; 5760 } 5761 5762 int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx, 5763 SSL_CTX_generate_session_ticket_fn gen_cb, 5764 SSL_CTX_decrypt_session_ticket_fn dec_cb, 5765 void *arg) 5766 { 5767 ctx->generate_ticket_cb = gen_cb; 5768 ctx->decrypt_ticket_cb = dec_cb; 5769 ctx->ticket_cb_data = arg; 5770 return 1; 5771 } 5772 5773 void SSL_CTX_set_allow_early_data_cb(SSL_CTX *ctx, 5774 SSL_allow_early_data_cb_fn cb, 5775 void *arg) 5776 { 5777 ctx->allow_early_data_cb = cb; 5778 ctx->allow_early_data_cb_data = arg; 5779 } 5780 5781 void SSL_set_allow_early_data_cb(SSL *s, 5782 SSL_allow_early_data_cb_fn cb, 5783 void *arg) 5784 { 5785 s->allow_early_data_cb = cb; 5786 s->allow_early_data_cb_data = arg; 5787 } 5788